JP7260910B2 - Materials for probe pins and probe pins - Google Patents

Materials for probe pins and probe pins Download PDF

Info

Publication number
JP7260910B2
JP7260910B2 JP2019211630A JP2019211630A JP7260910B2 JP 7260910 B2 JP7260910 B2 JP 7260910B2 JP 2019211630 A JP2019211630 A JP 2019211630A JP 2019211630 A JP2019211630 A JP 2019211630A JP 7260910 B2 JP7260910 B2 JP 7260910B2
Authority
JP
Japan
Prior art keywords
hardness
aging
probe pin
mass
probe pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019211630A
Other languages
Japanese (ja)
Other versions
JP2021080552A (en
Inventor
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2019211630A priority Critical patent/JP7260910B2/en
Publication of JP2021080552A publication Critical patent/JP2021080552A/en
Application granted granted Critical
Publication of JP7260910B2 publication Critical patent/JP7260910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体ウェハ上の集積回路や液晶表示装置等の電気的特性を検査するためのプローブピン(以下、「プローブピン」と略称する)に関する。 The present invention relates to a probe pin (hereinafter abbreviated as "probe pin") for inspecting electrical characteristics of integrated circuits on semiconductor wafers, liquid crystal display devices, and the like.

半導体ウェハ上に形成された集積回路や液晶表示装置等の電気的特性の検査には、プローブピンが用いられている。この検査は、ソケットやプローブカードに組み込まれたプローブピンを、集積回路や液晶表示装置等の電極や端子、導電部に接触させることにより行われている。 2. Description of the Related Art Probe pins are used to inspect electrical characteristics of integrated circuits, liquid crystal display devices, and the like formed on semiconductor wafers. This inspection is performed by bringing probe pins incorporated in sockets or probe cards into contact with electrodes, terminals, and conductive portions of integrated circuits, liquid crystal display devices, and the like.

このようなプローブピンは、検査対象物に繰り返し接触させるため、硬さが重要となる。硬さが重要なのは、何万回と検査体にプローブピンを接触することによる摩耗を低減させる必要があるためである。ここで要求されている硬さは、プローブピンの摩耗を抑えるのに非常に有効なため、プローブピンは硬いほど望ましい。 Hardness is important for such a probe pin because it is repeatedly brought into contact with an object to be inspected. The reason why hardness is important is that it is necessary to reduce wear due to the probe pins contacting the test object tens of thousands of times. Since the hardness required here is very effective in suppressing wear of the probe pin, the harder the probe pin, the better.

コンタクトプローブピンに使用される材質としてベリリウム銅合金やタングステン、タングステン合金があるが、酸化しやすく、酸化膜による導通不良や酸化膜が検査対象物に付着する場合がある。金メッキ等で酸化を防ぐ場合があるが、メッキの剥離等の問題がある。 Materials used for contact probe pins include beryllium-copper alloys, tungsten, and tungsten alloys, but they are easily oxidized and may cause poor conduction due to oxide films or adhesion of oxide films to the test object. Gold plating may be used to prevent oxidation, but there are problems such as peeling of the plating.

プローブピンの酸化膜形成による不良を防ぐために、特許文献1~7のように白金合金、パラジウム合金等ベース材自体を酸化しにくいものを使用する場合がある。 In order to prevent defects due to the formation of an oxide film on the probe pin, as in Patent Documents 1 to 7, a platinum alloy, palladium alloy, or other base material that is difficult to oxidize may be used.

特許第4216823号Patent No. 4216823 特許第4878401号Patent No. 4878401 特許第4176133号Patent No. 4176133 特開2004-93355号Japanese Patent Application Laid-Open No. 2004-93355 特許第5657881号Patent No. 5657881 国際公開番号WO2014/021465International publication number WO2014/021465 特開2017-25354号JP 2017-25354

使用されるプローブピンの形状は様々あるため、圧延や伸線、曲げ加工、切削加工等が施される。そのため、プローブピンは、加工後に硬さがコントロールできる時効硬化能を有した材質が望まれている。 Since the probe pins used have various shapes, they are subjected to rolling, drawing, bending, cutting, and the like. For this reason, probe pins are desired to be made of a material that has age-hardening ability so that the hardness can be controlled after processing.

上記文献のなかで特許文献1の白金合金は、時効硬化しない組成のため、固溶硬化と加工硬化で硬さを上げる方法となるが、硬さのコントロールが難しい。 Among the above documents, the platinum alloy of Patent Document 1 has a composition that does not age harden, so it is difficult to control the hardness, although solution hardening and work hardening can be used to increase the hardness.

特許文献2~7におけるAgPdCu系合金は、時効硬化により硬さのコントロールができる。 AgPdCu-based alloys in Patent Documents 2 to 7 can be controlled in hardness by age hardening.

上記のようなAgPdCu系合金において、プローブピンの形態により、時効後に曲げ加工等の加工を施す場合がある。その場合、時効後に加工する場合、時効時の最大硬さでは、加工時に破断するため、時効後の硬さを抑える必要があるが、加工可能時の硬さの低下はできるだけ抑えたい。 In the AgPdCu-based alloy as described above, depending on the shape of the probe pin, processing such as bending may be applied after aging. In that case, when working after aging, the maximum hardness at the time of aging breaks during working, so it is necessary to suppress the hardness after aging, but it is desirable to suppress the decrease in hardness when workable as much as possible.

AgPdCu系合金は、時効硬化により硬さのコントロールができるが、時効後は曲げ加工等の加工が難しくなり、加工ができるまで熱処理すると、加工時と同程度の硬さまで低下することがある。硬さ向上を目的として添加元素を多量に加えると、硬さの向上と反比例して塑性加工性が低下する。そこで、時効後の硬さと加工性のバランスを向上させたプローブピン用材料が求められている。
すなわち、本発明の目的は、時効硬化後に曲げ加工等の加工が加わる場合に対応できるように、時効時の硬さが高くてその後の加工ができるような、プローブピン用材料を提供することにある。また、本発明の他の目的は、このようなプローブピン用材料を用いて作製されたプローブピンを提供することにある。
The hardness of AgPdCu alloys can be controlled by age hardening, but after aging, it becomes difficult to work such as bending. If a large amount of additive element is added for the purpose of improving hardness, plastic workability decreases in inverse proportion to the improvement in hardness. Therefore, there is a demand for a probe pin material having an improved balance between hardness and workability after aging.
That is, the object of the present invention is to provide a probe pin material which has high hardness when aged and can be processed after age hardening, so that it can be applied to a case where processing such as bending is applied after age hardening. be. Another object of the present invention is to provide a probe pin manufactured using such a probe pin material.

AgPdCu系合金において、「塑性加工性が良く、時効後の硬さを向上させることができ」、かつ、「時効時の硬さが高くてその後の加工ができる」組成について研究した結果、AgPdCu合金にIn、Ga、B(ホウ素)を添加することで、上記要求を満足する合金を開発するに至った。 In AgPdCu-based alloys, as a result of research on a composition that "has good plastic workability and can improve hardness after aging" and "has high hardness during aging and can be worked afterward", AgPdCu alloy By adding In, Ga, and B (boron) to the alloy, we have developed an alloy that satisfies the above requirements.

前述した目的は、Ag19~37mass%、Pd39~50mass%、Cu23~35mass%、In0.1~1.0mass%未満、Ga0.1~0.6mass%、B0.03~0.3mass%からなるプローブピン用材料によって達成される。 For the above-mentioned purposes, the probe pin material consisting of 19 to 37 mass% Ag, 39 to 50 mass% Pd, 23 to 35 mass% Cu, 0.1 to less than 1.0 mass% In, 0.1 to 0.6 mass% Ga, and 0.03 to 0.3 mass% B achieved by

また前述した目的は、上記のプローブピン用材料を用いて作製されたプローブピンによって達成される。 Further, the above object is achieved by a probe pin manufactured using the probe pin material described above.

また本発明のプローブピン用材料において、時効後の硬さがビッカース硬さHV480以上であるようにしてもよい。 Further, in the probe pin material of the present invention, the hardness after aging may be Vickers hardness HV480 or more.

また本発明のプローブピン用材料において、時効させてから加工する用途においては、時効後の硬さがビッカース硬さHV350以上であるようにしてもよい。 Further, in the use of the probe pin material of the present invention, the hardness after aging may be Vickers hardness HV 350 or more in the application of working after aging.

本発明は、時効前の加工性が良好で、且つ時効後の硬さがHV480以上、または時効後の加工性を向上させた場合の硬さがHV350以上のプローブピン用材料およびプローブピンを得ることができる。 The present invention provides a probe pin material and a probe pin having good workability before aging and hardness of HV480 or more after aging or hardness of HV350 or more when workability after aging is improved. be able to.

本発明のプローブピン用材料は、Agが19~37mass%、Pdが39~50mass%、Cuが23~35mass%、Inが0.1~1.0mass%未満、Gaが0.1~0.6mass%、Bが0.03~0.3mass%であり、不可避不純物と合わせて合計で100mass%からなる合金からなるものである。 The probe pin material of the present invention contains 19 to 37 mass% Ag, 39 to 50 mass% Pd, 23 to 35 mass% Cu, 0.1 to less than 1.0 mass% In, 0.1 to 0.6 mass% Ga, and 0.03 B. ~0.3mass%, and the alloy consists of a total of 100mass% together with unavoidable impurities.

Agが20~36mass%、Pdが40~48mass%、Cuが25~35mass%、Inが0.2~0.9mass%、Gaが0.1~0.5mass%、Bが0.05~0.2mass%とすることが好ましい。 It is preferable that Ag is 20-36 mass%, Pd is 40-48 mass%, Cu is 25-35 mass%, In is 0.2-0.9 mass%, Ga is 0.1-0.5 mass%, and B is 0.05-0.2 mass%.

本発明のプローブピン用材料が、「塑性加工性が良く、時効後の硬さを向上させることができ」、かつ、「加工ができる時効後の硬さが高い」材料になる理由は以下のように考える。
すなわち、AgPdCu合金は溶融から固化する際に「銀リッチ相」と「銅リッチ相」に相分離する一方、Pdは両相に全率固溶しますが、熱処理(時効硬化処理)により「銅リッチ相」中に規則格子相(PdCu相)を生成し硬さが上昇します。Inは「銀リッチ相」からPdを追い出し、規則格子相(PdCu相)の形成を促進させる作用があり、GaはPdCu相の形成を促進させる作用があり、ともに、「銅リッチ相」中の規則格子相の生成を促進させるので、合金の硬さが上昇すると考える。一方、Bは粒界強度を向上させて粒界破壊を抑制することにより、「加工ができる時効後の硬さが高く」なるものと考える。
The reason why the probe pin material of the present invention is a material that "has good plastic workability and can improve hardness after aging" and "has high hardness after aging that can be processed" is as follows. think like this.
AgPdCu alloy separates into a silver-rich phase and a copper-rich phase when it solidifies after melting. An ordered lattice phase (PdCu phase) is generated in the "rich phase" and the hardness increases. In has the effect of expelling Pd from the “silver-rich phase” and promoting the formation of an ordered lattice phase (PdCu phase), and Ga has the effect of promoting the formation of the PdCu phase. It is thought that the hardness of the alloy increases because it promotes the formation of the ordered lattice phase. On the other hand, it is believed that B improves the grain boundary strength and suppresses grain boundary fracture, thereby increasing the hardness after aging, which enables processing.

本発明に従うプローブピンに使用する合金は、それ自体既知の方法に従い、例えばAgとPdとCuとInとGaとBを上記の量で調整し、それをガス炉、高周波溶解炉など適当な金属溶解炉で溶解することにより製造することができる。溶解時の炉雰囲気としては、通常大気が用いられるが、必要に応じて不活性ガスまたは真空を使用することができる。 The alloy used for the probe pin according to the present invention can be prepared according to a method known per se, for example by adjusting Ag, Pd, Cu, In, Ga and B in the amounts mentioned above, and then melting it into a suitable metal in a gas furnace, high frequency melting furnace or the like. It can be produced by melting in a melting furnace. As the furnace atmosphere during melting, air is usually used, but inert gas or vacuum can be used as necessary.

溶融状態の上記の合金を適当な型に鋳造し、インゴットを作製する。必要に応じて、インゴットを鍛造やスェージング加工を施し、圧延による板加工や、溝ロールにより角形または多角形の棒材または線材に加工、さらにダイスを用い伸線加工することにより、プローブピン用材料を作製することができる。 The molten alloy is cast into a suitable mold to produce an ingot. If necessary, the ingot is forged or swaged, processed into a plate by rolling, processed into a square or polygonal bar or wire by grooved rolls, and then wire-drawn using a die to produce a probe pin material. can be made.

本発明のプローブピン用材料は、所定のプローブピンの形状に加工した後、300~450℃の範囲で熱処理し、時効硬化により硬くすることができる。時効硬化を行うことにより、HV480以上の硬さとすることができる。 The probe pin material of the present invention can be hardened by heat treatment in the range of 300 to 450° C. after being processed into a predetermined probe pin shape by age hardening. Hardness of HV480 or higher can be achieved by age hardening.

また本発明のプローブピン用材料は、時効させてから加工する用途においては、時効後の硬さがビッカース硬さHV350以上とすることができる。すなわち、時効後に曲げ加工等の加工を施してプローブピンの形状とする場合、所定の温度で時効させ、その後例えば90°曲げる等の加工を施してプローブピンの形状とすることができる。その所定の温度は、材料組成、材料形状、加工条件により異なるが400~650℃の範囲とすることができる。 Further, the probe pin material of the present invention can have a Vickers hardness HV of 350 or more after aging in applications where processing is performed after aging. That is, when processing such as bending is performed after aging to form a probe pin shape, aging is performed at a predetermined temperature, and then processing such as bending 90° is performed to obtain the probe pin shape. The predetermined temperature may be in the range of 400 to 650° C., depending on the material composition, material shape, and processing conditions.

以下、本発明を実施例によりさらに具体的に説明する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples.

Ag、Pd、Cu、In、Ga、Bを1試料につき30gになるよう配合し、アーク溶解炉にて溶解、鋳造によりインゴットを作製した。表1に作製した組成を示す。 Ag, Pd, Cu, In, Ga, and B were blended to 30 g per sample, melted in an arc melting furnace, and cast to produce an ingot. Table 1 shows the compositions prepared.

Figure 0007260910000001
Figure 0007260910000001

作製した表1のサンプルの加工性を見極めるため、作製したインゴットは、850℃で60分熱処理した後水冷し、圧延、熱処理と圧延を繰り返し、t2.5mmまで圧延後、再度850℃で60分熱処理した後水冷し、圧延率[=((圧延前の厚さ)-(圧延後の厚さ))/(圧延前の厚さ)×100]が88%になるようt0.3mmまで圧延を行った。
加工性評価は圧延状況で評価した。評価基準は大きな割れなく圧延ができたものを○、t2.5mm迄圧延できずに割れたものを×とした。評価結果を表2に示す。
In order to determine the workability of the samples in Table 1, the ingots were heat-treated at 850°C for 60 minutes, then water-cooled, rolled, heat-treated, and rolled repeatedly, rolled to a thickness of 2.5 mm, and again at 850°C for 60 minutes. After heat treatment, it is water-cooled and rolled to t0.3mm so that the rolling ratio [= ((thickness before rolling) - (thickness after rolling)) / (thickness before rolling) x 100] is 88%. gone.
The workability was evaluated by the rolling conditions. As the evaluation criteria, ∘ indicates that rolling was possible without large cracks, and x indicates that cracks occurred without being rolled to t2.5 mm. Table 2 shows the evaluation results.

Figure 0007260910000002
Figure 0007260910000002

表2の実施例は、特に問題なく圧延できた。比較例でBを多く添加された比較例3は、t2.5mm迄の圧延中に割れが入り、その後の圧延が困難となり×とした。×とした試料は、以後の調査を中止した。Bを多量に添加すると塑性加工が困難になることが分かる。 Examples in Table 2 could be rolled without particular problems. In Comparative Example 3, in which a large amount of B was added, cracks occurred during rolling up to t2.5 mm, and the subsequent rolling was difficult, and was marked as x. Subsequent investigations were discontinued for the samples marked with x. It can be seen that the addition of a large amount of B makes plastic working difficult.

・硬さ試験
表2の加工性評価結果から○となったサンプルの圧延後の硬さを測定、その後300~450℃の範囲で1hr熱処理し、時効後の硬さを測定した。測定結果を表3に示す。表3の時効後の硬さは、300~450℃の温度範囲で時効を行った際、最も硬かった値である。
・Hardness test The hardness after rolling of the samples marked with ○ from the workability evaluation results in Table 2 was measured, followed by heat treatment in the range of 300 to 450°C for 1 hour, and the hardness after aging was measured. Table 3 shows the measurement results. The hardness after aging in Table 3 is the hardest value when aging is performed in the temperature range of 300 to 450°C.

Figure 0007260910000003
Figure 0007260910000003

圧延率が88%の場合、作製したサンプルは、時効後の硬さが全てHV480以上となった。 When the rolling reduction was 88%, all the samples produced had a hardness of HV480 or higher after aging.

・曲げ加工調査
表2の加工性評価結果から○となったサンプルの圧延後の硬さを測定、その後400~650℃の範囲で1hr熱処理して時効硬化させたt0.3mm×w5mmの板を、R0.2に面取りした炭素鋼ブロックにバイスで挟み、90°曲げを行い、破折しなかった最大硬さを測定した。測定結果を表4に示す。
・Investigation of bending work The hardness after rolling of the samples marked with ○ from the workability evaluation results in Table 2 was measured, and then heat-treated for 1 hour in the range of 400 to 650°C for age hardening. , sandwiched between R0.2 chamfered carbon steel blocks with a vise, bent 90°, and measured the maximum hardness without breaking. Table 4 shows the measurement results.

Figure 0007260910000004
Figure 0007260910000004

90°曲げ時に破折しなかった時効後の最大硬さは、実施例全てHV350以上となった。一方、比較例は、HV350に届かず、比較例1では圧延時より硬さが低くなった。

The maximum hardness after aging without breaking at 90° bending was HV350 or more for all the examples. On the other hand, the comparative example did not reach HV350, and the hardness of comparative example 1 was lower than that at the time of rolling.

Claims (2)

Ag19~37mass%、Pd39~50mass%、Cu23~35mass%、In0.1~1.0mass%未満、Ga0.1~0.6mass%、B0.03~0.3mass%からなるプローブピン用材料。 Probe pin material consisting of 19 to 37 mass% Ag, 39 to 50 mass% Pd, 23 to 35 mass% Cu, 0.1 to less than 1.0 mass% In, 0.1 to 0.6 mass% Ga, and 0.03 to 0.3 mass% B. 請求項1に記載のプローブピン用材料を用いて作製されたプローブピン。 A probe pin produced using the probe pin material according to claim 1.
JP2019211630A 2019-11-22 2019-11-22 Materials for probe pins and probe pins Active JP7260910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211630A JP7260910B2 (en) 2019-11-22 2019-11-22 Materials for probe pins and probe pins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211630A JP7260910B2 (en) 2019-11-22 2019-11-22 Materials for probe pins and probe pins

Publications (2)

Publication Number Publication Date
JP2021080552A JP2021080552A (en) 2021-05-27
JP7260910B2 true JP7260910B2 (en) 2023-04-19

Family

ID=75964340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211630A Active JP7260910B2 (en) 2019-11-22 2019-11-22 Materials for probe pins and probe pins

Country Status (1)

Country Link
JP (1) JP7260910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072126B1 (en) * 2022-02-10 2022-05-19 田中貴金属工業株式会社 Material for probe pins made of Ag-Pd-Cu alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122194A (en) 2009-12-09 2011-06-23 Tokuriki Honten Co Ltd Pd ALLOY FOR ELECTRIC-ELECTRONIC EQUIPMENT
WO2013099682A1 (en) 2011-12-27 2013-07-04 株式会社徳力本店 Pd ALLOY FOR ELECTRIC/ELECTRONIC DEVICES
JP2019508592A (en) 2016-01-29 2019-03-28 デリンジャー−ニー・インコーポレイテッドDeringer−Ney, Inc. Palladium base alloy
JP2020056067A (en) 2018-10-02 2020-04-09 石福金属興業株式会社 Material for probe pin, and probe pin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122194A (en) 2009-12-09 2011-06-23 Tokuriki Honten Co Ltd Pd ALLOY FOR ELECTRIC-ELECTRONIC EQUIPMENT
WO2013099682A1 (en) 2011-12-27 2013-07-04 株式会社徳力本店 Pd ALLOY FOR ELECTRIC/ELECTRONIC DEVICES
JP2019508592A (en) 2016-01-29 2019-03-28 デリンジャー−ニー・インコーポレイテッドDeringer−Ney, Inc. Palladium base alloy
JP2020056067A (en) 2018-10-02 2020-04-09 石福金属興業株式会社 Material for probe pin, and probe pin

Also Published As

Publication number Publication date
JP2021080552A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
EP2159581B1 (en) Method of manufacturing probe pins
KR102349939B1 (en) Pd alloy for electric/electronic devices, Pd alloy material, probe pin and manufacturing method
JP2017025354A (en) Alloy material for probe pin and manufacturing method therefor
JP6074244B2 (en) Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method
JP7141098B2 (en) Materials for probe pins and probe pins
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP7260910B2 (en) Materials for probe pins and probe pins
KR102349545B1 (en) Copper alloy wire rod and manufacturing method thereof
JP7300051B1 (en) Lead frames and semiconductor packages
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP2020002404A (en) Material for probe pin and probe pin
JP7429011B2 (en) Probe pin materials and probe pins
CN111511939B (en) Precipitation hardening type Ag-Pd-Cu-In-B alloy
JP6654608B2 (en) Cu alloy for electric / electronic equipment and probe pin using the same
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP2004225112A (en) High strength and high conductivity copper alloy having excellent fatigue and intermediate temperature property
JP6372952B2 (en) Probe pin material composed of a Pt-based alloy and method for manufacturing the probe pin
US11807925B2 (en) Probe pin material including Ag—Pd—Cu-based alloy
WO2023189160A1 (en) Alloy material for probe pins
JP2000080426A (en) Copper alloy for electronic equipment
JPH0559467A (en) Copper alloy improved in stress relaxation property
JP2024037196A (en) Alloy material for probe pin
JP2021092450A (en) PROBE PIN MATERIAL COMPRISING Rh-BASED ALLOY, AND PROBE PIN
KR20010090780A (en) A copper alloy with punchability, and a manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7260910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150