JP6074244B2 - Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method - Google Patents

Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method Download PDF

Info

Publication number
JP6074244B2
JP6074244B2 JP2012267724A JP2012267724A JP6074244B2 JP 6074244 B2 JP6074244 B2 JP 6074244B2 JP 2012267724 A JP2012267724 A JP 2012267724A JP 2012267724 A JP2012267724 A JP 2012267724A JP 6074244 B2 JP6074244 B2 JP 6074244B2
Authority
JP
Japan
Prior art keywords
probe pin
hardness
mass
aging treatment
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012267724A
Other languages
Japanese (ja)
Other versions
JP2014114465A (en
Inventor
長谷川 浩一
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2012267724A priority Critical patent/JP6074244B2/en
Publication of JP2014114465A publication Critical patent/JP2014114465A/en
Application granted granted Critical
Publication of JP6074244B2 publication Critical patent/JP6074244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体ウェハ上の集積回路や液晶表示装置等の電気的特性を検査するためのプローブピン(以下、「プローブピン」と略称する)とその製造方法に関する。   The present invention relates to a probe pin (hereinafter abbreviated as “probe pin”) for inspecting electrical characteristics of an integrated circuit, a liquid crystal display device, and the like on a semiconductor wafer and a method of manufacturing the same.

半導体ウェハ上に形成された集積回路や液晶表示装置等の電気的特性の検査には、プローブピンが用いられている。この検査は、ソケットやプローブカードに組み込まれたプローブピンを、集積回路や液晶表示装置等の電極や端子、導電部にプローブピンを接触させることにより行われている。   Probe pins are used for inspection of electrical characteristics of an integrated circuit, a liquid crystal display device and the like formed on a semiconductor wafer. This inspection is performed by bringing a probe pin incorporated in a socket or a probe card into contact with an electrode, a terminal, or a conductive portion of an integrated circuit or a liquid crystal display device.

このようなプローブピンは、高導電性はもちろん、安定した検査結果を得るため、プローブピンは耐酸化性が求められ、且つ検査対象物に繰り返し接触させるため、十分な硬さが必要となる。硬さが必要なのは、何万回と検査体にプローブピンを接触することによる摩耗を低減させる必要があるためである。   Such a probe pin is not only highly conductive, but also obtains a stable inspection result, so that the probe pin is required to have oxidation resistance and is repeatedly brought into contact with an object to be inspected. The reason why the hardness is necessary is that it is necessary to reduce wear caused by contacting the probe pin with the test object tens of thousands of times.

また半導体集積回路等の電極や端子等、検査対象のファインピッチ化に伴い、例えばφ0.05〜0.15mmのプローブピンをプローブカードに多量に設置する方法や、プローブピンの先端を検査対象物に合わせた形状に加工したものが用いられる。   In addition, with the fine pitch of inspection objects such as electrodes and terminals of semiconductor integrated circuits etc., for example, a method of installing a large amount of probe pins of φ 0.05 to 0.15 mm on the probe card, or the tip of the probe pin as the inspection object A machined shape is used.

プローブピンが細線の場合、一定の線径で焼鈍した線材を、所定の線径まで伸線加工を行う。プローブピンの先端が複雑形状の場合、一定の太さの線や板を切削加工により作製する。   When the probe pin is a thin wire, the wire rod annealed with a constant wire diameter is drawn to a predetermined wire diameter. When the tip of the probe pin has a complicated shape, a wire or plate having a certain thickness is produced by cutting.

使用されるプローブピンの形状が様々あるため加工率は一定ではなく、加工硬化による硬さのコントロールが難しい。そのため、プローブピンの材質は、加工前後で硬さがコントロールできる時効硬化能を有した材質が望まれている。   Since the probe pins used have various shapes, the processing rate is not constant, and it is difficult to control the hardness by work hardening. Therefore, the material of the probe pin is desired to have age-hardening ability that can control the hardness before and after processing.

ここで要求されている硬さは、ハンダが使用されている電極や端子を検査する場合、ハンダを溶融する際、酸化膜が形成されるため、酸化膜を破り検査する必要がある。酸化膜を破らず検査した場合、接触箇所の酸化膜の形成状態により接触抵抗が変わり、検査結果が安定しないためである。このため、プローブピンは硬いほど望ましいとされている。   The hardness required here is that when inspecting electrodes and terminals where solder is used, an oxide film is formed when the solder is melted. This is because when the inspection is performed without breaking the oxide film, the contact resistance varies depending on the state of formation of the oxide film at the contact location, and the inspection result is not stable. For this reason, the harder the probe pin, the better.

しかしながら、金メッキで作製した電極や銅配線等の用途では、硬すぎるとプローブピンにより傷が付く場合があり、このような用途で使用する場合、摩耗を抑えつつ検査対象物に傷が付きにくい硬さを有するプローブピンが望まれている。   However, in applications such as gold-plated electrodes and copper wiring, if it is too hard, it may be damaged by the probe pin. When used in such applications, it is difficult to damage the inspection object while suppressing wear. There is a need for a probe pin having a thickness.

要求としては、ビッカース硬さで200〜400程度で、200以下だと摩耗が多くなり、400を超えると傷が付きやすくなるためである。   The requirement is that the Vickers hardness is about 200 to 400, and if it is 200 or less, wear increases, and if it exceeds 400, scratches are likely to occur.

特開平10-38922号公報Japanese Patent Laid-Open No. 10-38922 特開平10-221366号公報Japanese Patent Laid-Open No. 10-221366 特開2011-122194号公報JP 2011-122194 A 特許第4216823号公報Japanese Patent No. 4216823 特開2010-275596号公報JP 2010-275596 A

従来用いられるプローブピンには、特許文献1や特許文献2に示すようにリン青銅やタングステンが使用されている。これらのプローブピンは、耐酸化性に劣り、使用の際、表面に酸化膜が生成され、繰り返し検査を続けていくうちに酸化物が検査対象物に付着し、導通不良が発生するといった問題がある。   As shown in Patent Document 1 and Patent Document 2, phosphor bronze or tungsten is used for probe pins used conventionally. These probe pins are inferior in oxidation resistance, and when used, an oxide film is formed on the surface, and the oxide adheres to the object to be inspected as the inspection is repeated. is there.

このようなプローブピンの酸化膜形成による不良を防ぐために、特許文献3、特許文献4、特許文献5のようにパラジウム合金、白金合金を使用する場合がある。   In order to prevent such defects due to the formation of the oxide film of the probe pin, a palladium alloy or a platinum alloy may be used as in Patent Document 3, Patent Document 4, and Patent Document 5.

このなかで特許文献3のパラジウム合金は、時効硬化能があり時効硬化後の硬さが非常に高い。そのため時効処理後の硬さは非常に硬くなり、検査対象に傷が付く恐れがある。また時効硬化させない場合、比抵抗が高い問題がある。   Among these, the palladium alloy of Patent Document 3 has age-hardening ability and extremely high hardness after age-hardening. Therefore, the hardness after the aging treatment becomes very hard, and there is a possibility that the inspection object is damaged. Further, when age hardening is not performed, there is a problem of high specific resistance.

特許文献4の白金合金は合金にもよるが、時効硬化しない組成のため、固溶硬化と加工硬化で硬さを上げる方法となるが、加工後の硬さのコントロールが難しい。   Although the platinum alloy of Patent Document 4 depends on the alloy, it has a composition that does not age harden, so it becomes a method of increasing the hardness by solid solution hardening and work hardening, but it is difficult to control the hardness after processing.

また特許文献5の銀合金も同様に、析出硬化および加工硬化により硬さをコントロールしているが、時効硬化能がほとんどないため加工後の硬さのコントロールが難しい問題がある。   Similarly, the silver alloy of Patent Document 5 controls the hardness by precipitation hardening and work hardening, but there is a problem that it is difficult to control the hardness after processing because there is almost no age hardening ability.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、Agに所定量のPdとCuを含有させ、さらに特定少量のInまたは/およびSnを添加させた合金を、圧延率または断面減少率にして40%以上加工し、250〜500℃で加熱、時効処理を行うことによりHV200〜400の硬さとなり、さらに時効処理前後の硬さの差ΔHVが10以上で、且つ比抵抗が15μΩ・cm以下のプローブピンが得られることを見出し、本発明を完成するに至った。   As a result of diligent investigations to solve the above problems, the inventors of the present invention have incorporated a predetermined amount of Pd and Cu into Ag, and further added a specific small amount of In or / and Sn. Reduced to 40% or more, heated at 250 to 500 ° C, and subjected to aging treatment, resulting in a hardness of HV200 to 400, and the hardness difference ΔHV before and after aging treatment is 10 or more, and the specific resistance is The inventors have found that a probe pin of 15 μΩ · cm or less can be obtained, and have completed the present invention.

本発明は、時効処理前の加工性が良好で、且つ時効処理により十分な硬度を有し且つ比抵抗が15μΩ・cm以下となり、さらに貴金属を58.2mass%以上含有することから、耐酸化性にも優れるため検査対象物を汚染することなく、長期間安定して使用可能なプローブピンを得ることができる。   The present invention has good workability before aging treatment, has sufficient hardness by aging treatment, has a specific resistance of 15 μΩ · cm or less, and further contains no less than 58.2 mass% of noble metal, thereby improving oxidation resistance. Therefore, it is possible to obtain a probe pin that can be used stably for a long period of time without contaminating the inspection object.

実施例1の断面減少率に対する硬さの変化を示すグラフである。2 is a graph showing a change in hardness with respect to a cross-sectional reduction rate of Example 1. 実施例4の断面減少率に対する硬さの変化を示すグラフである。6 is a graph showing a change in hardness with respect to a cross-section reduction rate of Example 4. 実施例6の断面減少率に対する硬さの変化を示すグラフである。6 is a graph showing the change in hardness with respect to the cross-section reduction rate of Example 6. 実施例16の断面減少率に対する硬さの変化を示すグラフである。14 is a graph showing a change in hardness with respect to a cross-section reduction rate in Example 16.

半導体集積回路や液晶表示装置等の電極や導電部の検査に使用するプローブピンは、摩耗を低減させるため十分な硬さであるHV200以上が必要となる。そのため、時効処理前はHV200未満でも時効処理後はHV200以上にする必要があり、圧延率または断面減少率が40%未満の場合、時効処理後の硬さがHV200未満になるため、40%以上にする必要がある。   Probe pins used for inspecting electrodes and conductive parts of semiconductor integrated circuits, liquid crystal display devices, and the like need to have HV200 or higher, which is sufficient hardness to reduce wear. Therefore, before aging treatment, even if it is less than HV200, it is necessary to make it HV200 or more after aging treatment.If the rolling reduction or cross-section reduction rate is less than 40%, the hardness after aging treatment will be less than HV200, so 40% or more It is necessary to.

また本発明のプローブピンの材料は、50.2mass%〜85mass%のAg基合金で、Inまたは/およびSnが0.2〜3.0mass%、8〜35mass%のPd、13.3〜40mass%のCuが、不可避不純物と合わせて合計で100mass%からなる合金からなるものである。より好ましい組成は、Agが50.3〜75mass%、Inまたは/およびSnが0.3〜2.0mass%、Pdが10〜30mass%、Cuが13.3〜35mass%からなることができる。またPdとAgの合計が、58.2mass%以上にすることにより大気中での酸化を抑えることができ、検査対象物への酸化物の付着が起こりにくくなる。 The material of the probe pin of the present invention is an Ag-based alloy of 50.2 mass% to 85 mass%, In or / and Sn is 0.2 to 3.0 mass%, Pd of 8 to 35 mass%, and 13.3 to 40 mass% of Cu are inevitable. It is made of an alloy consisting of 100 mass% in total with impurities. A more preferable composition may be composed of Ag of 50.3 to 75 mass%, In or / and Sn of 0.3 to 2.0 mass%, Pd of 10 to 30 mass%, and Cu of 13.3 to 35 mass%. In addition, when the total of Pd and Ag is 58.2 mass% or more, oxidation in the atmosphere can be suppressed, and adhesion of the oxide to the inspection object is less likely to occur.

本発明のプローブピンの材料は、250〜500℃の範囲で熱処理し、時効硬化によりより硬くすることができる。熱処理温度は、250℃未満では、十分な硬さの上昇がみられず、500℃を超えると熱処理により軟化することから、上記の温度範囲とする。熱処理を行うことにより、HV200〜400の硬さとなる。   The material of the probe pin of the present invention can be heat-treated in the range of 250 to 500 ° C. and hardened by age hardening. When the heat treatment temperature is less than 250 ° C., a sufficient increase in hardness is not observed, and when the heat treatment temperature exceeds 500 ° C., the heat treatment is softened. By performing the heat treatment, the hardness becomes HV200 to 400.

熱処理の時間は、時効硬化が十分生じる時間が好ましいが、例えば線径がφ0.05〜0.5mmの場合、10分程度でも十分な時効硬化が得られる。また熱処理による時効硬化後の硬さは、HV200以上、さらに好ましくはHV210以上が好ましい。HVが200未満の場合、プローブピンとしての硬さが十分ではなく、繰り返し検査に耐えられず、検査回数が低下するためである。   The time for the heat treatment is preferably a time at which age hardening sufficiently occurs. For example, when the wire diameter is 0.05 to 0.5 mm, sufficient age hardening can be obtained even for about 10 minutes. The hardness after age hardening by heat treatment is preferably HV200 or more, more preferably HV210 or more. This is because when the HV is less than 200, the probe pin is not sufficiently hard, cannot withstand repeated inspections, and the number of inspections decreases.

時効処理前後の硬さの差ΔHVが10以上としたのは、10未満だと時効硬化による硬さの上昇が十分ではなく、塑性加工後の硬さのコントロールが困難なためである。   The reason why the difference ΔHV in hardness before and after the aging treatment is set to 10 or more is that if it is less than 10, the increase in hardness due to age hardening is not sufficient, and it is difficult to control the hardness after plastic working.

比抵抗[=(抵抗(Ω)・測定試料断面積)/測定箇所の長さ]は、時効処理を行うことにより15μΩ・cm以下とすることができる。   The specific resistance [= (resistance (Ω) · measured sample cross-sectional area) / measured portion length] can be reduced to 15 μΩ · cm or less by performing an aging treatment.

本発明に従うプローブピンに使用する合金は、それ自体既知の方法に従い、例えばAgにPdとCuとInおよび/またはSnを上記の量で添加、原料配合物を調整し、それをガス炉、高周波溶解炉など適当な金属溶解炉で溶解することにより製造することができる。
溶解時の炉雰囲気としては、通常大気が用いられるが、必要に応じて不活性ガスまたは真空を使用することができる。
また溶融状態の上記の合金を適当な型に鋳造し、インゴットを作製する。
必要に応じて、インゴットを鍛造やスェージング加工を施し、圧延による板加工や、溝ロールにより角形または多角形の棒材または線材に加工、さらにダイスを用い伸線加工することにより、プローブピン用材料を作製することができる。
The alloy used for the probe pin according to the present invention is prepared according to a method known per se, for example, by adding Pd, Cu, In and / or Sn to Ag in the above amounts, adjusting the raw material composition, It can be produced by melting in a suitable metal melting furnace such as a melting furnace.
As the furnace atmosphere at the time of melting, air is usually used, but an inert gas or a vacuum can be used as necessary.
Further, the above alloy in a molten state is cast into an appropriate mold to produce an ingot.
If necessary, the ingot is subjected to forging or swaging, plate processing by rolling, processing into a square or polygonal bar or wire with a grooved roll, and wire drawing using a die, thereby making the probe pin material Can be produced.

以下、本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

Agに、Pd、Cu、In、Snを1試料につき20gになるよう所定量配合し、アーク溶解炉にて溶解、鋳造によりインゴットを作製した。表1に作製したサンプルの組成を示す。   A predetermined amount of Pd, Cu, In, and Sn was mixed with Ag in an amount of 20 g per sample, and an ingot was prepared by melting and casting in an arc melting furnace. Table 1 shows the composition of the prepared sample.

作製した表1のサンプルの加工性を見極めるため、作製したインゴットは、焼鈍条件を700℃×1hr熱処理後水冷とし、1回目は圧延率[=((圧延前の厚さ−圧延後の厚さ)/圧延前の厚さ)×100]が15〜30%になるよう圧延、熱処理を行い、2回目以降は50〜80%内の圧延率で実施し、最終板厚が約0.5mmとなるよう圧延加工を行った。   In order to ascertain the workability of the prepared samples in Table 1, the prepared ingot was annealed at 700 ° C. for 1 hour and then water-cooled, and the first time the rolling rate [= ((thickness before rolling−thickness after rolling) ) / Thickness before rolling) x 100] is rolled and heat-treated so that it becomes 15-30%, and after the second time, it is carried out at a rolling rate within 50-80%, and the final thickness becomes about 0.5 mm The rolling process was performed.

結果を表2に示す。   The results are shown in Table 2.

表2の外観の欄で−が記載している試料は、特に問題なく圧延できた。
その中で比較例4は、最初の圧延加工中、圧延率が僅か4%で中心部まで割れが入り、その後の圧延が困難なため、以後の調査を中止した。比較例4の結果からInが5mass%も入ると塑性加工が困難であることが分る。
Samples indicated by-in the appearance column of Table 2 could be rolled without any particular problem.
Among them, in Comparative Example 4, since the rolling rate was only 4% during the first rolling process, cracking occurred to the center, and subsequent rolling was difficult, so the subsequent investigation was stopped. From the result of Comparative Example 4, it can be seen that plastic working is difficult when 5 mass% of In is included.

<硬さ試験>
表2の組成のサンプルの各加工率に対する硬さを測定、その後250〜500℃の範囲で1hr熱処理し、再度硬さを測定した。測定結果を表3に示す。表3の時効処理後の硬さは、250〜500℃の温度範囲で時効処理を行った際、最も硬かった値である。
<Hardness test>
The hardness with respect to each processing rate of the sample of the composition of Table 2 was measured, then heat-treated for 1 hour in a range of 250 to 500 ° C., and the hardness was measured again. Table 3 shows the measurement results. The hardness after aging treatment in Table 3 is the hardest value when aging treatment is performed in a temperature range of 250 to 500 ° C.

時効硬化能を調べるため、時効処理前後の硬さの差ΔHV[=時効処理後の硬さ−時効処理前の硬さ]も算出した。試験結果を表3に示す。   In order to examine the age hardening ability, the difference ΔHV [= hardness after aging treatment−hardness before aging treatment] before and after the aging treatment was also calculated. The test results are shown in Table 3.

表3の結果から、実施例および参考例は全て時効処理後の硬さがHV200以上となっているが、比較例は一部を除き時効処理後もHV200未満のものや、ΔHVが10未満または−となった時効硬化能がない試料であることが分かる。 From the results of Table 3, all the examples and reference examples have a hardness after aging treatment of HV200 or more, except for some comparative examples, which are less than HV200 after aging treatment, or ΔHV is less than 10 or It turns out that it is a sample with no age-hardening ability.

実施例19〜21のように、Pdが8mass%以上でInおよびCuが所定量添加されているものは、時効処理によりHV200以上の硬さが得られている。   As in Examples 19 to 21, in the case where Pd is 8 mass% or more and a predetermined amount of In and Cu is added, hardness of HV200 or more is obtained by aging treatment.

一方、比較例15のように、実施例19、20と同じくPdが9mass%、Cuが31mass%添加した試料でも、InやSnが添加されていないと、時効処理時の加熱処理で逆に硬さが低下しており、時効硬化が起きていない。   On the other hand, as in Comparative Example 15, even in the sample added with 9 mass% Pd and 31 mass% Cu as in Examples 19 and 20, if In and Sn were not added, the sample was hardened by heat treatment during the aging treatment. The age has decreased and age hardening has not occurred.

比較例17のように、Inが0.5mass%、Cuが23.5mass%添加されていても、Pdが8mass%に満たないと、時効処理後でもHV200未満の硬さで、ΔHVが0になっていることから、硬さが上がっておらず、時効硬化しない。   As in Comparative Example 17, even if In is added 0.5 mass%, Cu is added 23.5 mass%, Pd is less than 8 mass%, even after aging treatment, the hardness is less than HV200, ΔHV becomes 0 Therefore, the hardness does not increase and age hardening does not occur.

参考例2と比較例7を比較すると、PdとInが添加され、Cuが6.7mass%の場合、時効処理後の硬さは、HV200以上を有している一方、比較例7のようにInが添加されていないと、時効処理により硬さは上がっているものの比較例17と同様にHV200に達していない。 Comparing Reference Example 2 and Comparative Example 7, when Pd and In are added and Cu is 6.7 mass%, the hardness after aging treatment has HV200 or more, while In as in Comparative Example 7 If no is added, although the hardness is increased by aging treatment, it does not reach HV200 as in Comparative Example 17.

InとSnの添加効果は、実施例13と実施例15で分かるように、時効処理後、HV200以上の硬さが得られ、且つΔHVがほぼ同じであることから、InとSnの添加はほぼ同じ効果が得られることが分かる。   As can be seen from Examples 13 and 15, the effect of adding In and Sn is that after aging treatment, a hardness of HV200 or higher is obtained, and ΔHV is almost the same. It can be seen that the same effect can be obtained.

比較例5、6、8は、加工前の硬さがHV200以上あるが、ΔHVが10未満で時効処理後の硬さの上昇がほとんどないことから、塑性加工後の硬さのコントロールができない。   In Comparative Examples 5, 6, and 8, the hardness before processing is HV200 or more, but since ΔHV is less than 10 and the hardness after aging treatment hardly increases, the hardness after plastic processing cannot be controlled.

比較例7、10〜18は、ΔHVが0か−となり、時効硬化能がない。   In Comparative Examples 7 and 10 to 18, ΔHV is 0 or −, and there is no age hardening ability.

<比抵抗調査>
各試料の圧延材と250〜500℃の範囲で最も硬くなった温度で1hr時効処理した時効処理材の比抵抗を測定した。室温で各試料の抵抗を測定し、式1に従い比抵抗を算出した。
式1:比抵抗=(抵抗×断面積)/測定長
<Resistivity survey>
The specific resistance of the rolled material of each sample and the aging-treated material that had been aged for 1 hr at a temperature that became the hardest in the range of 250 to 500 ° C. was measured. The resistance of each sample was measured at room temperature, and the specific resistance was calculated according to Equation 1.
Formula 1: Specific resistance = (resistance x cross-sectional area) / measurement length

比抵抗測定結果を表4に示す   Specific resistance measurement results are shown in Table 4.

実施例1〜21と参考例1,2は、時効処理前は15μΩ・cm以上の試料もあるが、時効処理後全て15μΩ・cm未満となっている。 In Examples 1 to 21 and Reference Examples 1 and 2 , there are samples of 15 μΩ · cm or more before the aging treatment, but all are less than 15 μΩ · cm after the aging treatment.

一方比較例1〜3は、時効処理後の硬さがHV200以上で、ΔHVも10以上有していたが、時効処理後の比抵抗の低下が実施例および参考例と比較して不十分で15μΩ・cmを超えていた。 On the other hand, Comparative Examples 1 to 3 had a hardness after aging treatment of HV200 or more and ΔHV of 10 or more, but the decrease in specific resistance after aging treatment was insufficient compared to Examples and Reference Examples. It exceeded 15 μΩ · cm.

比較例2〜3と実施例3〜7は、PdとCuの添加量が一緒で、In添加量が違うだけである。Inを入れていない比較例2および0.1mass%In添加した比較例3は、時効処理後の比抵抗が15μΩ・cmを超えているが、0.3mass%In以上添加した実施例は、15μΩ・cm以下となっている。このことから、0.1mass%を超える量のInを入れなければ、時効処理後の比抵抗を15μΩ・cm以下にすることができない。   In Comparative Examples 2-3 and Examples 3-7, the addition amounts of Pd and Cu are the same, but the addition amount of In is different. Comparative Example 2 with no In and Comparative Example 3 with 0.1 mass% In added, the specific resistance after aging treatment exceeds 15 μΩ ・ cm, but the example with 0.3 mass% In or more added is 15 μΩ ・ cm It is as follows. For this reason, the specific resistance after the aging treatment cannot be made 15 μΩ · cm or less unless an amount of In exceeding 0.1 mass% is added.

<加工率調査用試料>
表1に示す作製した試料の実施例の内、実施例1、4、6、16を抜粋し、伸線加工を行った。試料の組成を表5に示す。
<Sample for processing rate investigation>
Examples 1, 4, 6, and 16 were extracted from the examples of the prepared samples shown in Table 1, and subjected to wire drawing. The composition of the sample is shown in Table 5.

作製方法は、φ5mmの棒材を鋳造により作製、鋳造したインゴットを700℃×1hr熱処理後、水冷し、溝ロールにより□2.5mmまで伸線加工し、再度700℃×1hr熱処理した試料を起点とした。   The production method is to produce a φ5mm bar by casting, heat the cast ingot to 700 ° C x 1hr, then water-cool, wire drawing to □ 2.5mm with groove roll, and again 700 ° C x 1hr heat-treated sample did.

その後、加工率による硬さの変化を調査するため、一定の線径になったサンプルの一部を採取し、加工率算出方法の一つである断面減少率[=((伸線加工前の断面積−伸線加工後の断面積)/伸線加工前の断面積)×100]に対する硬さの変化を調査した。   After that, in order to investigate the change in hardness due to the processing rate, a part of the sample with a constant wire diameter was taken, and the cross-section reduction rate [= ((before wire drawing) is one of the processing rate calculation methods. Cross-sectional area—cross-sectional area after wire drawing) / cross-sectional area before wire drawing) × 100] was investigated.

<硬さ試験>
表5の組成のサンプルの各断面減少率に対する硬さを測定、その後250〜500℃の範囲で1hr熱処理し、再度硬さを測定した。測定結果を表7に示す。
<Hardness test>
The hardness of each sample having the composition shown in Table 5 with respect to each cross-sectional reduction rate was measured, and thereafter heat-treated for 1 hour in the range of 250 to 500 ° C., and the hardness was measured again. Table 7 shows the measurement results.

表7のように実施例の場合、加工率が40%以上の加工率であれば、時効処理後HV200以上になることが分かる。各実施例の断面減少率に対する硬さの変化の図を図1〜4に示す。   As shown in Table 7, in the case of the example, if the processing rate is 40% or more, it can be seen that the aging treatment is HV200 or more. FIGS. 1 to 4 show changes in hardness with respect to the cross-sectional reduction rate of each example.

図1〜3は、断面減少率が大きくなるに従い、硬さも上昇している。
一方、図4の実施例16は、低加工率の方がΔHVが大きい傾向にある。ただし実施例16も断面減少率が大きくなるに従い、硬さも上昇していることから、断面減少率が40%を下回ると、時効処理してもHV200以上に到達しなくなる恐れがあるため、加工率は40%以上必要である。
In FIGS. 1 to 3, the hardness increases as the cross-sectional reduction rate increases.
On the other hand, in Example 16 of FIG. 4, ΔHV tends to be larger at the low processing rate. However, since the hardness also increased as the cross-sectional area reduction rate also increased in Example 16, if the cross-sectional area reduction rate is less than 40%, there is a risk that it will not reach HV200 or higher even if aging treatment is performed. Is required more than 40%.

Claims (3)

50.2mass%〜85mass%のAg基合金で、Inまたは/およびSnが0.2〜3.0mass%、8〜35mass%のPd、13.3〜40mass%のCuが、不可避不純物と合わせて合計で100mass%の合金からなるプローブピン用材料。 50.2 mass% to 85 mass% Ag based alloy, In or / and Sn 0.2 to 3.0 mass%, 8 to 35 mass% Pd, 13.3 to 40 mass% Cu, combined with inevitable impurities, a total of 100 mass% alloy Probe pin material consisting of 請求項1の組成を有し、ビッカース硬さが200〜400であることを特徴とするプローブピン。   2. A probe pin having the composition of claim 1 and a Vickers hardness of 200 to 400. 請求項1の合金に圧延率[圧延率(%)=((圧延前の板厚−圧延後の板厚)/圧延前の板厚)×100とする]または断面減少率[断面減少率(%)=((伸線加工前の断面積−伸線加工後の断面積)/伸線加工前の断面積)×100とする]が、40%以上の圧延または/および伸線加工後、250〜500℃で時効処理を行うことを特徴とするプローブピンの製造方法。   The alloy of claim 1 has a rolling rate [rolling rate (%) = ((plate thickness before rolling−plate thickness after rolling) / plate thickness before rolling) × 100] or cross-section reduction rate [cross-section reduction rate ( %) = ((Cross-sectional area before wire drawing−cross-sectional area after wire drawing) / cross-sectional area before wire drawing) × 100] is 40% or more after rolling or / and wire drawing, A method for producing a probe pin, characterized by performing an aging treatment at 250 to 500 ° C.
JP2012267724A 2012-12-06 2012-12-06 Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method Active JP6074244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267724A JP6074244B2 (en) 2012-12-06 2012-12-06 Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267724A JP6074244B2 (en) 2012-12-06 2012-12-06 Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method

Publications (2)

Publication Number Publication Date
JP2014114465A JP2014114465A (en) 2014-06-26
JP6074244B2 true JP6074244B2 (en) 2017-02-01

Family

ID=51170785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267724A Active JP6074244B2 (en) 2012-12-06 2012-12-06 Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method

Country Status (1)

Country Link
JP (1) JP6074244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083955A (en) * 2013-10-25 2015-04-30 石福金属興業株式会社 PROBE PIN MADE OF Pt-BASED ALLOY

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704352B (en) * 2015-03-13 2020-09-11 義大利商探針科技公司 Contact probe for a testing head
SG11201708015XA (en) 2015-03-31 2017-10-30 Nhk Spring Co Ltd Alloy material, contact probe, and connection terminal
JP6734486B2 (en) 2018-11-06 2020-08-05 株式会社徳力本店 Pd alloy for electric/electronic equipment, Pd alloy material, probe pin and manufacturing method
CN117604361A (en) * 2023-11-23 2024-02-27 浙江金连接科技股份有限公司 Palladium alloy rod for chip test probe sleeve and manufacturing method thereof
CN117310234B (en) * 2023-11-30 2024-03-01 浙江金连接科技股份有限公司 Palladium alloy probe sleeve for semiconductor chip test and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2637490C2 (en) * 1976-08-20 1978-08-31 W.C. Heraeus Gmbh, 6450 Hanau Silver-palladium alloy for electrical contact purposes
JP4878401B1 (en) * 2011-05-17 2012-02-15 石福金属興業株式会社 Probe pin material, probe pin and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083955A (en) * 2013-10-25 2015-04-30 石福金属興業株式会社 PROBE PIN MADE OF Pt-BASED ALLOY

Also Published As

Publication number Publication date
JP2014114465A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6074244B2 (en) Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method
EP2248920B1 (en) Iridium alloy excellent in hardness, processability and anti-contamination property
JP4878401B1 (en) Probe pin material, probe pin and manufacturing method thereof
EP2159581B1 (en) Method of manufacturing probe pins
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
US11920227B2 (en) PD alloy, PD alloy material and probe pin for electric and electronic devices, and methods for manufacturing the same
JP7141098B2 (en) Materials for probe pins and probe pins
KR101943191B1 (en) Cu-ni-si-based copper alloy strip and method of manufacturing the same
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
TWI441930B (en) Rhodium alloy suitable for wire rod for probe pin use, excellent in hardness, workability and anti-contamination property
JP7260910B2 (en) Materials for probe pins and probe pins
JP6850365B2 (en) Precipitation hardening type Ag-Pd-Cu-In-B alloy
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP7429011B2 (en) Probe pin materials and probe pins
JP2017150065A (en) Wire for connector terminals
JP6654608B2 (en) Cu alloy for electric / electronic equipment and probe pin using the same
JP6372952B2 (en) Probe pin material composed of a Pt-based alloy and method for manufacturing the probe pin
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2020002404A (en) Material for probe pin and probe pin
JP7300677B2 (en) Probe pin material and probe pin made of Rh-based alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170106

R150 Certificate of patent or registration of utility model

Ref document number: 6074244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250