JP7259846B2 - アルミナ粒子 - Google Patents

アルミナ粒子 Download PDF

Info

Publication number
JP7259846B2
JP7259846B2 JP2020512249A JP2020512249A JP7259846B2 JP 7259846 B2 JP7259846 B2 JP 7259846B2 JP 2020512249 A JP2020512249 A JP 2020512249A JP 2020512249 A JP2020512249 A JP 2020512249A JP 7259846 B2 JP7259846 B2 JP 7259846B2
Authority
JP
Japan
Prior art keywords
alumina
alumina particles
compound
particles
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020512249A
Other languages
English (en)
Other versions
JPWO2019194158A1 (ja
Inventor
新吾 高田
一男 糸谷
建軍 袁
孝之 兼松
正道 林
文彦 前川
義之 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2019194158A1 publication Critical patent/JPWO2019194158A1/ja
Application granted granted Critical
Publication of JP7259846B2 publication Critical patent/JP7259846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/04Compounds with a limited amount of crystallinty, e.g. as indicated by a crystallinity index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、新規アルミナ粒子、なかでもカードハウス構造を有するアルミナ粒子に関する。
無機フィラーとしては、例えば、窒化硼素、アルミナ等の各種のものが知られている。これらは、目的用途に応じて使い分けられており、硬度が高く、機械強度に優れ、また酸化雰囲気中の最高使用温度も高い等といった優れた技術的長所の他、より安価であることから、窒化硼素等に比べて、アルミナに大きな期待が求められている。
アルミナは、その製造方法により、粒状、針状、平板状等の各種の構造を有するものが知られている。一般的に板状のアルミナ粒子はアスペクト比が高くなるにつれ、表面積の増大・かさ密度の増大にともなう粉体の流動性低下が起こり、実用上に問題がある。
特許文献1には、特異な形状をしたアルミナとして、2枚の平板状アルミナが貫入型に交差して成長した、粒子径が0.5~10μmの双晶アルミナ粒子が知られている。
また、特許文献2においては、ベーマイト等のウィスカー状のアルミナ複合酸化物微粒子が平板状に集合した、平板状結晶性アルミナ複合酸化物微粒子集合体がカードハウス構造をなしている粒子が、知られている。このウィスカー状のアルミナ複合酸化物微粒子は、平均長さが2~100nm、平均直径が1~20nmの範囲にあり、複合酸化物微粒子集合体の平均粒子径30~300nm、平均厚み2~50nmの範囲にあることを特徴とすることを特徴とする平板状結晶性アルミナ複合酸化物微粒子集合体である。即ち、微粒子集合体がカードハウス構造をなしている粒子自体も、ミクロンオーダーに届かない微小なアルミナ複合酸化物粒子である。
特開平7-207066号公報 特開2014-28716公報
特許文献1においては、プラスチックやゴムに耐磨耗性を付与し、その強度や難燃性を向上させ、更に表面の摩擦係数を大きくし、透明性に優れた高分子化合物を提供できることが記載されている。しかしながら、この様な双晶アルミナ粒子は、粉体として優れた流動性を示すという知見はない。
また、特許文献2においても、この様な複合酸化物微粒子集合体がカードハウス構造をなした粒子についても、粉体としての流動性が優れるという知見はない。また、該粒子は、例えばフィラーとしてバインダーや溶媒に添加した際、極端なスラリ粘度増大に伴う加工性低下の懸念があるのみならず、界面の増加に伴う効率的な伝導パスの形成が不利となり、熱伝導性に優れたアルミナ本来の機能を損なう恐れもある。
本発明者らは、より流動性に優れたアルミナ粒子を得るべく、上記実情に鑑みて鋭意検討したところ、上記した様なアルミナ粒子ではなく、これまで知られていない特異形状のアルミナ粒子を用いることで、それ自体の流動性を大幅に改善することができることを見い出し、本発明を完成するに至った。
本発明のアルミナ粒子は、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する、平均粒子径が3~1000μmであるアルミナ粒子であるので、それ自体で、より流動性に優れたアルミナを提供できるという格別顕著な技術的効果を奏する。
双晶アルミナ粒子の模式図である。 3枚以上の平板状アルミナにより形成された、固着したカードハウス構造を有するアルミナ粒子の模式図である。 実施例1で得られた、本発明のアルミナ粒子の走査型電子顕微鏡写真である(a)。 実施例1で得られた、本発明のアルミナ粒子の拡大走査型電子顕微鏡写真である(b)。
<カードハウス構造を有するアルミナ粒子>
本発明のアルミナ粒子は、それを構成する粒子が、1)3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する点、及び、2)平均粒子径が3~1000μmである点に特徴を有する。以下、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する、平均粒子径が3~1000μmであるアルミナ粒子を、単にアルミナ粒子と略記することがある。尚、本発明において、平板状とは、立体的には六面体の板の形であって、二次元の投影面の形状が角が四つの典型的な四角形であるか(四角板状)、または二次元の投影面の形状が角が五つ以上の多角形(以下、後者を多角板状と称する場合がある)を言う。
アルミナ粒子の形態は、走査型電子顕微鏡(SEM)により確認することができる。カードハウス構造とは、例えば板状粒子が配向せず複雑に配置した構造であるものを言う。本発明におけるカードハウス構造とは、3枚以上の平板状アルミナにより形成され、固着したものを言い、より具体的には、3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態のことをいう(図2~図4参照)。交差する位置は平板状アルミナの如何なる位置であっても構わない。無秩序に配置された状態とは、互いの面が交差する向きがX軸、Y軸、Z軸何れの方位においても制限がなく、また、互いの面が交差する角度は如何なる角度であっても構わないことをいう。「平板状アルミナ」の詳細については後に詳記する。
必要とするアルミナ粒子の平均粒子径により異なるが、フィラー(充填剤)として用いる場合は、一つのアルミナ粒子当たり、例えば3~10000枚、中でも10~5000枚、特に15~3000枚であることが、性能上でも容易に製造できる上でも好ましい。
平板状アルミナの交差は、3枚以上の平板状アルミナが、何らかの相互作用、例えば、焼成工程により結晶形成する過程で固着して集合したことで発現する。結果として貫入型に見える場合もある。平板状アルミナが互いに強固に固着することでカードハウス構造の強度が増すことになる。
また、交差とは、2つ以上の面が一つの箇所で交わることを表わし、互いの面が交わる位置・径・面積等に制限はない。また、交差した箇所を起点とした面の方位数は3方位であっても、4方位以上であっても構わない。
また、当カードハウス構造に含まれる平板状アルミナ自体の面の長径、短径、および厚みは如何なるサイズでも良い。また、複数のサイズの平板状アルミナからなるものでも良い。
上記した通り「平板状アルミナ」は、四角板状のアルミナ、または多角板状のアルミナであっても良い。単一のアルミナ粒子内において、四角板状のアルミナと多角板状のアルミナが片方のみ存在しても、両方存在しても構わず、その比率においても制限は無い。
また、本来の目的である流動性向上の効果を損なわない範囲において、カードハウス構造以外に、2枚の平板状アルミナが交差した略X字型(双晶アルミナ粒子と呼ばれる場合がある。図1参照。)、略T字型、略L字型などの粒子や、1枚からなる平板状アルミナを、如何なる状態で含んでいても構わない。勿論、優れた流動性を得るためには、これらの含有割合は少ない方が好ましく、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造の粒子の含有割合が重量基準で80%以上が好ましい。より好ましくは90%以上である。双晶や1枚の平板状アルミナは篩分級、風力分級など、一般的な分級操作で容易に含有割合を調整することが可能である。
本発明におけるアルミナ粒子は、その特異な構造上、圧壊強度が非常に高く、外部応力が加わっても容易には圧壊しない。これより、バインダーや溶剤と配合した際、アルミナ粒子自体の異方性に基づく流動性不良が起こり難い。従って、アルミナ粒子が本来もつ機能を存分に引き出せる上に、仮にそれを板状アルミナ粒子と併せて混合して用いても、長手方向に配向がちな板状アルミナ粒子を、ランダムな方向に存在させることが可能となる。結果として長手方向のみならず、厚さ方向に対しても熱伝導や機械強度等、アルミナが本来持つ特性を発現できる。
本発明におけるアルミナ粒子は、その特異な構造上に基づき、粉体としての流動性に優れ、工業製品として応用する為の、ホッパーやフィーダー等、機械搬送の際に用いる供給機の吐出を上げる事が可能となる。本発明におけるアルミナ粒子は、その特有の構造により内部に空隙を持つ為、かさ比重は板状アルミナ粒子と大きくは変わらないが、板状アルミナ粒子と比較し、球形度が高くかつ上述の通り圧壊強度が高く壊れにくいものである為、アルミナ粒子の転がりによる搬送のし易さに与える効果が高いと推測される。
本発明に用いるアルミナ粒子は、カードハウス構造を有する。カードハウス構造は上記説明したとおりであるが、このアルミナ粒子は、好ましくは平板状アルミナが四角板状であって、平面部と端面部ならびに端面部同士が接触しているカードハウス構造を有するアルミナ粒子であり、より好ましくは平板状アルミナが多角板状であって、平面部と端面部、ならびに端面部同士が接触しているカードハウス構造を有するアルミナ粒子である。
[結晶形・α結晶化率]
本発明におけるアルミナ粒子は酸化アルミニウムであり、結晶形は特に制限されず、例えば、γ、δ、θ、κ等の各種の結晶形の遷移アルミナであっても、または遷移アルミナ中にアルミナ水和物を含んでであっても良いが、より機械的な強度または熱伝導性に優れる点で、基本的にα結晶形であることが好ましい。
本発明におけるアルミナ粒子のα結晶化率は、XRD測定により求めることができる。 例えば、株式会社リガク製広角X線回折装置[Rint-Ultma]を用い、作製した試料を測定試料用ホルダーにのせセットし、Cu/Kα線、40kV/30mA、スキャンスピード1.0°/分、走査範囲5~80°の条件で測定し、ピーク強度の強度比からα結晶化度を求める。α結晶化率は焼成条件や使用する原料により異なり、圧壊強度が高く、流動性が高いアルミナ粒子は、α結晶化率が90%以上である。更に好ましくは95%以上である。なお、測定に供する試料は、アルミナ粒子であっても、何らかの機械処理によりカードハウス構造を解して得た平板状アルミナであっても良い。
[平均粒子径]
本発明における、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子の平均粒子径は、その構造が形成できる範囲においては如何なるサイズでも構わないが、流動性に特に優れるという点においては平均粒子径3μm以上が好ましく、より好ましくは10μm以上である。また、サイズが大きすぎると熱伝導フィラーや高輝度顔料などの種々の用途において、カードハウス構造が露出することによる外観不良を起こす可能性がある為、平均粒子径1000μm以下が好ましい。より好ましくは300μm以下である。
[最大粒子径]
また、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子の体積基準の最大粒子径(本明細書では、以下、単に「最大粒子径」と記載する場合がある。)は特に限定されるものではないが、通常3000μm以下であり、好ましくは1000μm以下、より好ましくは500μm以下である。
アルミナ粒子の最大粒子径が、上記上限より大きいと、溶媒やマトリクスとなるバインダーに配合して使用する場合、最終用途の形態によっては、バインダー層の表面にアルミナ粒子が突出して、外観不良を引き起こす恐れがあるため好ましくない。最大粒子径が上記下限より小さいと、溶媒やバインダーに配合した場合、同量配合で見た場合粒子径の大きなものと比べ溶媒やマトリックスとの界面が増大することにより、アルミナが本来持つ性能を十分に発現しなくなる恐れがあるため好ましくない。例えば、放熱シートの厚み方向の熱伝導率向上効果が不十分となったり、マトリックスとフィラーの界面面積が大きくなり、耐電圧特性が低下する傾向がある。
尚、ここでいう平均粒子径および最大粒子径は、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子そのものをレーザー回折式粒度分布計を用いて測定した乾式法により求めた値である。
また、上記平均粒径及び最大粒子径は、例えば、これを適当な溶剤に分散させ、具体的には、分散安定剤としてヘキサメタリン酸ナトリウム等を含有する純水媒体中にアルミナ粒子を分散させた試料を、レーザー回折/散乱式粒度分布測定装置にて測定する、湿式法により推測することもできる。
[平板状アルミナのアスペクト比]
平板状アルミナは、多角板状であり、かつ厚みに対する粒子径の比率であるアスペクト比が2~500であることが好ましい。アスペクト比が2以上であると、平板状アルミナ特有の性能を保持した状態でのカードハウス構造の形成に有利であり好ましく、アスペクト比が500以下であると、アルミナ粒子の平均粒子径の調整が容易に行える上、熱伝導フィラーや高輝度顔料などの種々の用途において、カードハウス構造が露出することによる外観不良の発生や機械的強度低下が抑制でき、好ましい。より好ましくは、アスペクト比が5~300、更に好ましくは7~100である。アスペクト比が7~100であると、平板状アルミナの熱的特性や輝度をはじめとする光学特性に優れ、かつ流動性の高いカードハウス構造を有するアルミナ粒子が得られ、実用性の点で好ましい。
なお、本明細書において、平板状アルミナの厚みは、走査型電子顕微鏡(SEM)を用いて、10個の厚みを測定した平均値を採用するものとする。
また、平板状アルミナの粒子径は、板の輪郭線上の2点間の距離のうち、最大の長さの算術平均値を意味し、その値は走査型電子顕微鏡(SEM)を用いて測定された値を採用するものとする。
平均粒子径の値は、任意の100個の平板状アルミナ粒子の粒子径を走査型電子顕微鏡(SEM)により得られたイメージから測定、算出された値を意味する。
尚、平板状アルミナの平均粒子径を求める方法は、例えば、アルミナ粒子をSEMで観察し、アルミナ粒子中央に位置する平板状アルミナの最大の長さを測定する方法を用いる。あるいは、アルミナ粒子に風力分級操作を行うことで得られる単片の最大の長さを、SEMで測定する方法を用いても良い。または、平板状アルミナ自体を破壊しない条件下において、何らかの機械処理によりカードハウス構造を解して単片を得て、SEMで最大の長さを測定する方法を用いても良い。
[珪素原子及び/又は無機珪素化合物]
また、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子は、なかでも、珪素原子及び/又は無機珪素化合物を、当該平板状アルミナの表面に含有しているものが好ましい。特に、表面に局在的に含有している方が、それを内部に含有しているよりも、より少量で、例えばバインダーとの親和性を効果的に向上させるためには好ましい。
珪素原子及び/又は無機珪素化合物を含む平板状アルミナの、表面にどの程度の量、珪素原子及び/又は無機珪素化合物が偏在しているかについては、例えば、蛍光X線分析装置(XRF)を用いた分析、ならびに、X線光電子分光法(XPS)を用いた分析で測定することができる。
一般的に、蛍光X線分析法(XRF)はX線の照射により発生する蛍光X線を検出し、波長と強度を測定することにより材料のバルク組成の定量分析を行う手法である。また、一般的に、X線光電子分光法(XPS)は試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーを計測することで、試料表面を構成する元素組成の分析を行う手法である。珪素原子及び/又は珪素化合物が、平板状アルミナの表面及びその近傍に偏って存在することは、具体的には、生成物のXRF分析結果により求められる[Si]/[Al]%(バルク)と比較し、XPS分析結果により求められる[Si]/[Al]%(表面)は大きい値を示すか否かから推定できると考えられる。これは、珪素原子及び/又は珪素化合物を配合することによって得られた平板状アルミナ表面は、珪素原子及び/又は珪素化合物の量が、平板状アルミナの最内部と比較し多い事を意味するからである。尚、上記した様なXRF分析は、株式会社リガク製、波長分散型 ZSX Primus IV等を用いて行うことができる。また、XPS分析はアルバックファイ社製 Quantera SXM等を用いて行うことができる。
本発明におけるアルミナ粒子としては、好ましくは、それを構成する平板状アルミナの表面に珪素原子及び/又は無機珪素化合物が局在的に含有していれば良いが、上記XPS測定による珪素濃度とアルミニウム濃度の比[Si]/[Al]%が2.0~50.0%の平板状アルミナからなるアルミナ粒子であることが、例えばバインダーとの親和性をより良好とすることができる。
平板状アルミナ表面に珪素原子及び/又は無機珪素化合物の量が多いことで、それが存在しない場合に比べて、平板状アルミナからなるアルミナ粒子の表面性状をより疎水化することができるだけでなく、フィラーとして用いた際の有機化合物や種々のバインダーやマトリックスとの親和性を向上させる事が可能となる。更に、アルミナ粒子表面に存在する珪素原子及び/又は珪素化合物を反応点として、有機シラン化合物をはじめとする各種カップリング剤との反応へも寄与し、アルミナ表面の表面状態を容易に調整することも可能となる。
[モリブデン]
3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子は、なかでも、モリブデンを含有しているものが好ましい。
モリブデンは触媒機能、光学的機能を有する。また、モリブデンを活用することにより、後述するように製造方法において、流動性に優れたアルミナ粒子を製造することができる。
当該モリブデンとしては、特に制限されないが、モリブデン金属の他、酸化モリブデンや一部が還元されたモリブデン化合物等が含まれる。
モリブデンの含有形態は、特に制限されず、カードハウス構造を有するアルミナ粒子の平板状アルミナの表面に付着する形態で含まれていても、アルミナの結晶構造のアルミニウムの一部に置換された形態で含まれていてもよいし、これらの組み合わせであってもよい。
本発明のアルミナ粒子中のモリブデンの含有量は、三酸化モリブデン換算で、好ましくは、10質量%以下であり、焼成温度、焼成時間、フラックス条件を調整する事で、より好ましくは、0.001~8質量%であり、さらに好ましくは、0.01~5質量%以下である。モリブデンの含有量が10質量%以下であると、アルミナのα単結晶品質を向上させることから好ましい。
[圧壊強度]
上記したカードハウス構造をなす本アルミナ粒子は、圧縮・せん断等の機械分散により、カードハウス構造が壊れてしまうと本来の流動性を損なう為、圧壊強度はより高いことが好ましい。圧壊強度は、平板状アルミナの交差する位置、数、面積、平板状アルミナの厚みやアスペクト比等により異なる上、種々の用途において求められる圧壊強度は異なり、実用性の面において圧壊強度1~100MPaであることが好ましく、20~100MPaであることがより好ましく、50~100MPaであることが更に好ましい。
本アルミナ粒子の圧壊強度は、例えば株式会社ナノシーズ製 微小粒子圧壊力測定装置NS-A100型、あるいは、株式会社島津製作所製MCT-510等を用いて測定する事が可能である。圧壊時のピーク値とベースライン(何も力がかかっていない状況)との差を圧壊力F[N]とし、圧壊強度S[Pa]は次式より算出した10個の値の平均値とした。
Figure 0007259846000001
ただし、上記式中、Fは圧壊力[N]、Dは粒子径[m]である。
尚、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子としては、珪素原子及び/又は無機珪素化合物を更に含むものは、これらを含まないものに比べて、上記した圧壊強度は高いことを本発明者等は知見している。珪素原子及び/又は無機珪素化合物の含有量によっても、上記圧壊強度は異なり、それが多くなる程、粒子の圧壊強度は高く出来る。また、例えば、その製造方法として、特定の製造条件を採用することで上記圧壊強度を高めることも可能である。製造条件においても上記圧壊強度を任意に調整することが可能であり、一例を挙げると、焼成温度をより高くすることで、アルミナ粒子の圧壊強度をより高くすることが出来る。
[粉体の流動性]
本発明におけるアルミナ粒子の粉体は、それを構成するアルミナ自体が特有の構造であること及び特定の平均粒子径を有していることにより、板状アルミナ粒子や双晶アルミナ粒子に比べ、粉体としての流動性に優れるが、より流動性を高める為に、一単位のカードハウス構造を成すアルミナ粒子は、当該粒子を構成する全ての平板状アルミナを包摂する様に囲んだ際の体積基準の最大の包囲面の形状が、球状または略球状である事が好ましい。また、必要ならば、更に、流動性向上の為に滑剤や微粒子シリカなどを任意に添着させても構わない。
カードハウス構造のアルミナ粒子の粉体としての流動性は、例えば、JIS R9301-2-2による安息角測定等により求めることができる。安息角の値としては、フィーダーやホッパー等による機械搬送において、ホッパーブリッジやフィードネック、供給の不均一化、吐出量低下等の問題が起きにくいことから、50°以下が好ましい。より好ましくは40°以下である。
本発明は、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する、平均粒子径が3~1000μmであることを特徴とするアルミナ粒子に関するものであるが、より好適には、前記アルミナ粒子の内部構造に、固着したカードハウス構造として、前記3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にあるアルミナ粒子であることが好ましい。
従来公知の双晶アルミナ粒子は、その形状からして、角が目立つ構造であり、本発明のアルミナ粒子よりも転がり難い形状であることから、フィラー(充填剤)として、そもそも充分な流動性が得られない。また、仮に本発明と同一のカードハウス構造を有したアルミナ粒子であったとして、平均粒子径が著しく小さいと流動性が劣ったものとなり、それをより大きなものとする手段は明確でなく、いずれにしても、フィラー(充填剤)としての適性は充分ではない。本発明の優れた流動性は、カードハウス構造と、その平均粒子径の相乗効果に起因するものである。
[比表面積]
3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子の粉体の比表面積は、通常50~0.001m/gの範囲であるが、好ましくは10m/g~0.01m/gの範囲、より好ましくは5.0m/g~0.05m/gの範囲である。上記の範囲にあると、カードハウス構造をなす平板状アルミナの数が適切であり、アルミナが本来もつ機能が十分に得られ、スラリ化した際の粘度の著しい増大もなく加工性に優れる。
なお、この比表面積は、JIS Z 8830:BET1点法(吸着ガス:窒素)等で測定することができる。
[空隙率]
本アルミナ粒子は、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有することにより、アルミナ粒子内に空隙をもつが、空隙の割合が小さいと形状が不均一となりやすく流動性も低下する傾向にあることから、当該空隙率は10体積%以上である事が好ましい。より好ましくは30体積%以上である。また、空隙の割合が大きいと、粉体として圧壊強度が低くなる為、空隙率は90体積%以下が好ましい。より好ましくは70体積%以下である。空隙率がこの範囲であると、かさ比重が適当であり、本来の目的である流動性を損なわず、かつハンドリング性も良好である。この空隙率は、JIS Z 8831などの、ガス吸着法や水銀圧入法等の測定により求めることができる。
簡便には、上記空隙率は、アルミナ粒子を、エポキシ化合物や(メタ)アクリルモノマー等の液状硬化性化合物と混合した後に硬化し、その後断面を切削・研磨後、SEM観察することにより空隙率を推測することができる。
<アルミナ粒子の製造方法>
本発明のアルミナ粒子は、カードハウス構造を有し、好ましくは上記物性を満たすものであれば、その製造方法は限定されない。以下に、アルミナ粒子の製造方法の詳細を例示する。
本発明のアルミナ粒子における、その平均粒子径、流動性、比表面積、機械強度、空隙率、平板状アルミナの厚みやアスペクト比等は、後に詳述する製造方法において、調整することができる。製造方法として、例えば、フラックス法を採用する場合には、フラックス剤であるモリブデン化合物と、アルミニウム化合物種、アルミニウム化合物の平均粒子径、アルミニウム化合物の純度、珪素化合物の使用割合、その他形状制御剤の種類、その他形状制御剤との使用割合、珪素化合物とアルミニウム化合物との存在状態、その他形状制御剤とアルミニウム化合物との存在状態を選択することにより調整することができる。
本発明に係るアルミナ粒子は、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造ができ、かつ特定の平均粒子径にできさえすれば、どの様な製造方法に基づいて得たものであっても良い。しかしながら、既存構造のアルミナを用いて、後処理にて、カードハウス構造という特異構造であって、かつ、珪素原子及び/又は無機珪素化合物を含有するアルミナを得ることは、製造工程が多段となり生産性が劣るので好ましくない。例えば、既存のアルミナの原料から、構造として選択的にカードハウス構造を形成することができ、かつ、モリブデンを容易にそこに含有させることができ、更には珪素原子及び/又は無機珪素化合物を容易にそこに含有させることができる、一挙に両者が満たされるアルミナ粒子の製造方法を採用することが、生産性の観点からも好ましい。
即ち本発明のアルミナ粒子を得るに当たっては、より平板状アルミナのアスペクト比が高く、よりアルミナ粒子の流動性や分散性に優れ、より生産性に優れる点で、モリブデン化合物と、珪素原子及び/又は珪素化合物、及びその他形状制御剤の存在下で、アルミニウム化合物を焼成する事により得ることが好ましい。モリブデン化合物や珪素化合物として有機化合物を用いた場合には、焼成によりその有機成分は焼失する。すなわち、アルミナ粒子は、モリブデン化合物がアルミニウム化合物と高温で反応し、モリブデン酸アルミニウムを形成した後、このモリブデン酸アルミニウムが、さらに、より高温でアルミナと酸化モリブデンに分解する際に、モリブデンをアルミナ粒子内に取り込む事で、より容易に得られる。酸化モリブデンは昇華するが、これを回収して、再利用することもできる。以下、この製造方法をフラックス法という。このフラックス法については、後に詳記する。
珪素化合物、及びその他形状制御剤は板状結晶成長に重要な役割を果たす。一般的に行なわれるモリブデン化合物を用いたフラックス法では酸化モリブデンがアルミナのα結晶の[113]面に選択的に吸着し、結晶成分は[113]面に供給されにくくなり、[001]面の出現を完全に抑制できるとするものであることから、六角両錘型をベースした多面体粒子を形成する。上記製造方法では、形状制御剤を用いて、フラックス剤である酸化モリブデンが[113]面に選択的な吸着を抑制することで、[001]面の発達した熱力学的に最も安定的な稠密六方格子の結晶構造を有する平板状形態を形成することができる。モリブデン化合物をフラックス剤として用いることで、α結晶化率が高い、中でもα結晶化率が90%以上の、モリブデンを含む平板状アルミナからなる、アルミナ粒子をより容易に形成できる。
前記アルミナ粒子は、モリブデン化合物を活用することにより、アルミナは高いα結晶率を有し、自形を持つことから、マトリックスに対する優れた分散性と機械強度、高熱伝導性を実現することができる。
また、上記製造方法で得たアルミナ粒子は、粒子にモリブデンを含むことから、通常のアルミナに比べてゼータ電位の等電点が酸性側にシフトしているため、分散性に優れる。また、アルミナ粒子に含まれたモリブデンの特性を利用して、酸化反応触媒、光学材料の用途に適用することが可能となりうる。
[フラックス法によるアルミナ粒子の製造方法]
アルミナ粒子の製造方法は、特に制限されないが、相対的に低温で高α結晶化率を有するアルミナを好適に制御することができる観点から、好ましくはモリブデン化合物を利用したフラックス法での製造方法が適用されうる。
より詳細には、アルミナ粒子の好ましい製造方法は、モリブデン化合物および珪素化合物、及び必要に応じ形状制御剤の存在下で、アルミニウム化合物を焼成する工程を含む。
本発明者らは、フラックス法において、モリブデン化合物をフラックス剤として用い、形状制御剤として珪素化合物を併用して、これらをアルミニウム化合物と混合して焼成する製造方法を採用する際には、原料アルミニウムの大きさ、モリブデン化合物の使用量、珪素化合物の使用量が、本発明のアルミナ粒子を選択的に生成できる重要因子であることを、新たに見い出した。
(アルミニウム化合物)
本発明におけるアルミニウム化合物は、本発明の3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する、特定平均粒子径のアルミナ粒子の原料であり、熱処理によりアルミナになるものであれば特に限定されず、例えば、塩化アルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウム、水酸化アルミニウム、ベーマイト、擬ベーマイト、遷移アルミナ(γ-アルミナ、δ-アルミナ、θ-アルミナなど)、α-アルミナ、二種以上の結晶相を有する混合アルミナなどが使用できる。
また、アルミニウム化合物は、アルミニウム化合物のみからなるものであっても、アルミニウム化合物と有機化合物との複合体であってもよい。例えば、有機シラン化合物を用いて、アルミニウム化合物を修飾して得られる有機/無機複合体、ポリマーを吸着したアルミニウム化合物複合体などであっても好適に用いることができる。有機化合物は、焼成により有機成分は焼失するので、これらの複合体を用いる場合、有機化合物の含有率としては、特に制限はないが、カードハウス構造を有するアルミナ粒子を効率的に製造できる観点より、当該含有率は60質量%以下であることが好ましく、30質量%以下であることがより好ましい。
アルミニウム化合物の比表面積は特に限定されるものではない。フラックス剤のモリブデン化合物が効果的に作用するため、比表面積が大きい方が好ましいが、焼成条件やモリブデン化合物の使用量を調整する事で、いずれの比表面積のものでも原料として使用することができる。
本発明のアルミナ粒子の形状は、下で詳記するフラックス法によれば、原料のアルミニウム化合物の形状を反映する。球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどのいずれであっても用いることができるが、粉体の流動性を向上させるという点において、球状のアルミニウム化合物を用いることが、得られるアルミナ粒子が球状により近くなる為好ましい。
また、本発明におけるアルミニウム化合物からのアルミナ粒子の製造方法では、アルミナ粒子の平均粒子径も、基本的には原料のアルミニウム化合物の粒子径を反映する。
下記するフラックス法によれば、焼成工程において、主に、原料アルミニウム化合物粒子内に平板状アルミナの結晶形成、および近接する3枚以上の平板状アルミナの交差が進行し、固着することで、カードハウス構造となると推測される。これより、得られるカーハウス構造を有するアルミナ粒子の平均粒子径は、主に原料アルミニウム粒子の平均粒子径を反映すると推測される。
従って、原料として、平均粒子径がより小さいアルミニウム化合物を用いた場合、平均粒子径がより小さいアルミナ粒子が得られ易くなり、平均粒子径がより大きいアルミニウム化合物を用いた場合、平均粒子径がより大きいアルミナ粒子が得られ易くなる。
本発明のアルミナ粒子は、平均粒子径が3~1000μmであるアルミナ粒子であることから、前記範囲内で、生成させたい特定の平均粒子径のアルミナ粒子に相当する、それと同一ないし略同一の特定平均粒子径のアルミニウム化合物を用いるようにすれば良い。
カードハウス構造を有するアルミナ粒子は、例えば、モリブデン化合物、および珪素化合物、ならびに必要に応じその他形状制御剤の存在下でアルミニウム化合物を焼成する工程を含むアルミナ粒子の製造方法にて、平板状アルミナを形成させ、その3枚以上の平板状アルミナを、形成と同時に複数箇所で互いの結晶面と接触させ、交差させ、固着させることにより得る事ができる。その固着により、カードハウス構造が、圧力等の外部応力によって容易には壊れない(解れない)、それが固定された状態が得られる。例えば、平板状アルミナが形成する際のフラックス条件等は、得られるカードハウス構造を有するアルミナ粒子の圧壊強度に影響する。
モリブデン化合物の量がより少ないほど、アルミニウム化合物粒子内に3枚以上の平板状アルミナの固着が早くなり、また頻度も高くなるため、圧壊強度の高い強固なカードハウス構造を得ることができる。
フラックス法においては、モリブデン化合物をフラックス剤として用い、形状制御剤として珪素化合物を併用して、これらをアルミニウム化合物と混合して焼成するアルミナ粒子の製造方法において、1)特定の平均粒子径の原料アルミニウム化合物を用いて、2)モリブデン化合物の使用量を特定範囲に制限し、かつ、3)珪素化合物の使用量を特定範囲に制限することで、特定の平均粒子径の範囲にある、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有することを特徴とするアルミナ粒子を選択的に生成できるので好ましい。
フラックス法に着眼した本発明者等の知見によれば、具体的には例えば、1)原料のアルミニウム化合物として、平均粒子径が2μm以上、中でも4μm以上の、得たいアルミナ粒子の粒子径に対応したアルミニウム化合物を用いて、かつ2)フラックス剤としてのモリブデン化合物の量を、アルミニウム化合物のアルミニウム金属1モルに対して、モリブデン化合物のモリブデン金属として0.005~0.236モルとし、かつ3)形状制御剤としての珪素化合物の量を、アルミニウム化合物のアルミニウム金属1モルに対して、珪素化合物の珪素金属として0.003~0.09モルとした場合、より流動性の高く、より圧壊強度の高いカードハウス構造を有するアルミナ粒子が得られる。
また、カードハウス構造を有するアルミナ粒子は、後術する解砕工程、分級工程により平均粒子径や形状を任意に調整することが可能である。
(モリブデン化合物)
モリブデン化合物は、後述するように、相対的に低温においてアルミナのα結晶成長にフラックス機能を有する。モリブデン化合物としては、特に制限されないが、酸化モリブデン、モリブデン金属が酸素との結合からなる酸根アニオン(MoO n-)を含有する化合物が挙げられる。
前記酸根アニオン(MoO n-)を含有する化合物としては、特に制限されないが、モリブデン酸、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸リチウム、HPMo1240、HSiMo1240、NHMo12、二硫化モリブデン等が挙げられる。
モリブデン化合物にナトリウムまたはシリコンを含むことも可能であり、その場合、該ナトリウムまたはシリコンを含むモリブデン化合物がフラックス剤と形状制御剤と両方の役割を果たす。
上述のモリブデン化合物のうち、コストの観点から、酸化モリブデンを用いることが好ましい。また、上述のモリブデン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
モリブデン化合物の使用量は、特に制限されないが、アルミニウム化合物のアルミニウム金属1モルに対して、モリブデン化合物のモリブデン金属として0.005~0.236モルであることが好ましく、0.007~0.09モルであることがより好ましく、0.01~0.04モルであることが更に好ましい。モリブデン化合物の使用量が上記範囲にあると、高アスペクト比と優れた分散性を有する平板状アルミナからなるカードハウス構造のアルミナ粒子が得られやすいことから好ましい。また、フラックス法を採用した際に、フラックス剤としてモリブデン化合物を用いた場合には、アルミナ粒子に、モリブデンを含むことから、それを証左に、未知のアルミナ粒子がどの様な製造方法で製造されたかを特定できる。
(珪素化合物)
本発明に係るアルミナ粒子の製造方法においては、さらに珪素化合物を形状制御剤として用い、結果的に得られるアルミナ粒子の流動性等がより良好となる点で、好ましい。珪素化合物は、モリブデン化合物の存在下でアルミナ化合物を焼成する事による、アルミナの平板状結晶成長に重要な役割を果たす。
珪素化合物の珪素はアルミナのα結晶の[113]面に選択的に吸着し、フラックス剤である酸化モリブデンの[113]面への選択的な吸着を抑制することで、[001]面の発達した熱力学的に最も安定的な稠密六方格子の結晶構造を有する平板状形態を形成することができる。これより珪素の量が大きくなる程、[001]面の結晶形成を助長すると推測され、厚みが薄い平板状アルミナが得られる。
また、珪素は、アルミナのα結晶の[113]面に選択的に吸着し得る十分な量が存在することで、酸化モリブデンの[113]面への選択的な吸着を抑制し、[001]面の発達した熱力学的に最も安定的な稠密六方格子の結晶構造を有する平板状形態を形成することができる。これより珪素の量が大きくなる程、互いの平板状アルミナの交差箇所も、他の箇所と同様に熱力学的に最も安定的な稠密六方格子の結晶構造を有し、強固な固着となり得ると推測される。すなわち、珪素量が多くなる程、得られるカードハウス構造を有するアルミナ粒子の圧壊強度は向上する。
珪素化合物の種類は特に制限されず、珪素原子のみならず珪素化合物であれば公知のものが使用されうる。これらの具体例としては、金属シリコン(珪素原子)、有機シラン化合物、シリコーン樹脂、シリカ(SiO)微粒子、シリカゲル、メソポーラスシリカ、SiC、ムライト等の人工合成シリコン化合物;バイオシリカ等の天然シリコン化合物等が挙げられる。これらのうち、アルミニウム化合物との複合、混合がより均一的に形成できる観点から、有機シラン化合物、シリコーン樹脂、シリカ微粒子を用いることが好ましい。なお、上記したものは、単独で用いても、2種以上を組み合わせて用いてもよい。
この珪素化合物が有機珪素化合物の場合は、焼成することで有機成分が焼失し、珪素原子または無機珪素化合物となって、アルミナ粒子に含有されることになる。珪素化合物が無機珪素化合物の場合は、焼成することで、珪素原子または焼成時の高温で分解しない無機珪素化合物はそのままで、平板状アルミナの表面に局在的に含有されることになる。上記の観点から、同一分子量ならばより少量で珪素原子の含有率を高められる、珪素原子及び/又は無機珪素化合物を用いることが好ましい。
珪素化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
珪素化合物の使用量は特に制限されないが、アルミナのα結晶の[113]面に選択的に吸着し得る十分な量を用いる様にすること好ましく、原料とするアルミニウム化合物のアルミニウム金属1モルに対して、珪素化合物の珪素金属として0.003~0.09モルであることが好ましく、0.005~0.04モルであることがより好ましく、0.007~0.03モルが更に好ましい。珪素化合物の使用量が上記範囲にあると、平板状アルミナのアスペクト比が高く、優れた分散性を有するアルミナ粒子が得られやすいことから好ましい。珪素化合物の量が不十分であると、フラックス剤である酸化モリブデンの[113]面への吸着が十分に抑制できないことが多く、平板状アルミナのアスペクト比が小さく、かつ不均一な平板状アルミナとなる傾向がある。更に。珪素化合物の量が不十分であると、生成するアルミナ粒子が、本発明のカードハウス構造でない、多面体状のアルミナとなりやすくなるので好ましくない。また珪素化合物の量が多過ぎると、余剰な珪素が単独で酸化物となる他、3Al・2SiOの様なアルミナ以外の異種結晶を含むこととなるので、好ましくない。
また、珪素化合物は、上記した通り、アルミニウム化合物に任意に添加しても良いが、アルミニウム化合物中に不純物として含まれていても良い。
上記製造方法において、珪素化合物の添加方法に特に制限はなく、粉体として直接添加混合するドライブレンド方式や、混合機を用いた混合、または予め溶媒やモノマー等に分散させ添加する方式を用いても良い。
モリブデン化合物および珪素化合物の存在下で、アルミニウム化合物を焼成する工程を経る事で、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面及びその近傍に偏在した、カードハウス構造を有するアルミナ粒子を容易に得ることができる。本発明者らの知見では、仕込み時における珪素化合物の使用は、カードハウス構造を容易に得るための重要な要素、一方、焼成により生成したアルミナ粒子の表面及びその近傍に偏在した珪素原子及び/又は無機珪素化合物の存在は、元来、活性点に乏しいアルミナの表面状態に大きな変化をもたらし、それ自体で優れたアルミナの特性を最大限に引き出すだけでなく、更にその活性点を起点とした、反応による表面処理剤との一体化でのより優れた表面状態付与が可能となるといった重要な要素、となる。
(珪素化合物以外の形状制御剤)
本発明のカードハウス構造を有するアルミナ粒子において、珪素原子及び/又は無機珪素化合物を含むことによる平板状アルミナの形成を阻害しない限りにおいて、必要に応じ、流動性や分散性、機械強度、および平均粒子径や平板状アルミナのアスペクト比等を調整する為に、珪素化合物以外の形状制御剤を用いても良い。珪素化合物以外の形状制御剤は珪素化合物と同様に、モリブデン化合物の存在下でアルミナ化合物を焼成する事による、アルミナの板状結晶成長に寄与する。
珪素化合物以外の形状制御剤の存在状態は、アルミニウム化合物との接触ができれば、特に制限されない。例えば、形状制御剤とアルミニウム化合物と物理混合物、形状制御剤がアルミニウム化合物の表面または内部に均一または局在に存在した複合体などが好適に用いることができる。
また、珪素化合物以外の形状制御剤は、アルミニウム化合物に任意に添加しても良いが、アルミニウム化合物中に不純物として含まれていても良い。
珪素化合物以外の形状制御剤の添加方法に特に制限はなく、粉体として直接添加混合するドライブレンド方式や、混合機を用いた混合、または予め溶媒やモノマー等に分散させ添加する方式を用いても良い。
珪素化合物以外の形状制御剤の種類については、珪素化合物と同様に、モリブデン化合物の存在下、高温焼成中、酸化モリブデンがα-アルミナの[113]面に選択的な吸着を抑制し、板状形態を形成することが出来れば、特に制限されない。より平板状アルミナのアスペクト比が高く、よりアルミナ粒子の流動性や分散性に優れ、より生産性に優れる点で、モリブデン化合物とアルミニウム化合物を除く金属化合物を用いることが好ましい。または、ナトリウム原子及び/又はナトリウム化合物を用いることがより好ましい。
ナトリウム原子及び/又はナトリウム化合物としては、特に制限されず、公知のものが使用されうる。これらの具体例としては、炭酸ナトリウム、モリブデンナトリウム、酸化ナトリウム、硫酸ナトリウム、水酸化ナトリウム、硝酸ナトリウム、塩化ナトリウム、金属ナトリウム等が挙げられる。これらのうち、工業的に容易入手と取扱いし易さの観点から炭酸ナトリウム、モリブデン酸ナトリウム、酸化ナトリウム、硫酸ナトリウムを用いることが好ましい。なお、ナトリウムあるいはナトリウム原子を含む化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
ナトリウム原子及び/又はナトリウム化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
ナトリウム原子及び/又はナトリウム化合物の使用量は特に制限されないが、アルミニウム化合物のアルミニウム金属1モルに対して、ナトリウム金属として0.0001~2モルであることが好ましく、0.001~1モルであることがより好ましい。ナトリウム原子及び/又はナトリウム化合物の使用量が上記範囲にあると、高アスペクト比と優れた分散性を有するアルミナ粒子が得られやすいことから好ましい。
(焼成工程)
焼成工程は、好適には、モリブデン化合物および珪素化合物、ならびに必要に応じ珪素化合物以外の形状制御剤の存在下で、アルミニウム化合物を焼成する工程である。
本発明のアルミナ粒子は、例えば、モリブデン化合物および形状制御剤の存在下で、アルミニウム化合物を焼成することで得られる。上記した通り、この製造方法はフラックス法と呼ばれる。モリブデン化合物の存在下でアルミニウム化合物を焼成すると、モリブデン化合物がアルミニウム化合物と高温で反応し、モリブデン酸アルミニウムを形成した後、このモリブデン酸アルミニウムが、さらに、より高温でアルミナと酸化モリブデンに分解し、形状制御剤の存在下でアルミナの板状結晶を成長させることで、本発明のカードハウス構造を有するアルミナ粒子が容易に得られる。上記したフラックス法に基づくと、平板状アルミナの形成と、3枚以上の左記平板状アルミナの固着に伴うカードハウス構造の形成とは、並行的に進むものと推定される。
また、本発明のカードハウス構造を有するアルミナ粒子は、平均粒子径3~1000μmであることから、それを構成する、平板状アルミナは、例えば、厚みが0.01~5μm、平均粒子径が0.1~500μm、厚みに対する粒子径の比率であるアスペクト比が2~500であることが好ましい。なかでも、このアルミナ粒子を充填剤として用いる場合には、その使い勝手が良好なことから、平板状アルミナの厚みが0.03~3μmであり、平均粒子径が0.5~100μmであり、厚みに対する粒子径の比率であるアスペクト比が5~300であることがより好ましい。更に好ましくはアスペクト比が7~200である。
焼成の方法は、特に限定はなく、公知慣用の方法で行う事ができる。焼成温度が700℃を超えると、アルミニウム化合物と、モリブデン化合物が反応して、モリブデン酸アルミニウムを形成する。さらに、焼成温度が900℃以上になると、モリブデン酸アルミニウムが分解し、珪素化合物、および形状制御剤の作用で平板状アルミナを形成する。また、平板状アルミナは、モリブデン酸アルミニウムが分解することで、アルミナと酸化モリブデンになる際に、モリブデンを酸化アルミニウム粒子内に取り込む事で得られる。
また、焼成する時に、アルミニウム化合物と、珪素化合物と、更には珪素化合物以外の形状制御剤と、モリブデン化合物の状態は特に限定されず、モリブデン化合物と珪素化合物、及び珪素化合物以外の形状制御剤がアルミニウム化合物に作用できる程度に近接して存在する状態であればよい。具体的には、モリブデン化合物と珪素化合物、及び珪素化合物以外の形状制御剤とアルミニウム化合物との粉体を混ぜ合わせる簡便な混合、粉砕機等を用いた機械的な混合、乳鉢等を用いた混合であっても良く、乾式状態、湿式状態での混合であっても良い。
焼成温度の条件に特に限定は無く、目的とする本発明のアルミナ粒子の平均粒子径、流動性、分散性、平板状アルミナのアスペクト比等により、適宜、決定される。通常、焼成の温度については、最高温度がモリブデン酸アルミニウム(Al(MoO)の分解温度である900℃以上であればよい。
一般的に、焼成後に得られるα-アルミナの形状を制御しようとすると、α-アルミナの融点に近い2000℃以上の高温焼成を行う必要があるが、焼成炉へ負担や燃料コストの点から、産業上利用する為には大きな課題がある。
本発明のアルミナ粒子の上記した様な好適な製造方法は、2000℃を超えるような高温であっても実施可能であるが、1600℃以下というα-アルミナの融点よりかなり低い温度であっても、α結晶化率が高くアスペクト比の高い平板状アルミナからなるアルミナ粒子を形成することができる。
上記した様な好適な製造方法に依れば、最高焼成温度が900℃~1600℃の条件であっても、平板状アルミナのアスペクト比が高く、α結晶化率が90%以上であるアルミナ粒子の形成を簡便かつ低コストで効率的に行うことができ、最高温度が920~1500℃での焼成がより好ましく、最高温度が950~1400℃の範囲の焼成が最も好ましい。
焼成温度が高温となるほど、平板状アルミナの交差箇所のα結晶化も、他の箇所と同様に向上し、機械強度に優れるカードハウス構造を有するアルミナ粒子が得られる。
焼成の時間については、所定最高温度への昇温時間を15分~10時間の範囲で行い、且つ焼成最高温度における保持時間を5分~30時間の範囲で行うことが好ましい。平板状アルミナの形成を効率的に行うには、10分~15時間程度の時間の焼成保持時間であることがより好ましい。
焼成最高温度における保持時間が長時間となるほど、平板状アルミナの交差箇所のα結晶化も、他の箇所と同様に向上し、圧壊強度に優れるカードハウス構造を有するアルミナ粒子が得られる。
焼成の雰囲気としては、本発明の効果が得られるのであれば特に限定されないが、例えば、空気や酸素のといった含酸素雰囲気や、窒素やアルゴンといった不活性雰囲気が好ましく、コストの面を考慮した場合は空気雰囲気がより好ましい。
焼成するための装置としても必ずしも限定されず、いわゆる焼成炉を用いることができる。焼成炉は昇華した酸化モリブデンと反応しない材質で構成されていることが好ましく、さらに酸化モリブデンを効率的に利用するように、密閉性の高い焼成炉を用いる事が好ましい。
上記した好適な製造方法では、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する、平均粒子径が3~1000μmであることを特徴とするアルミナ粒子が選択的に得られ、当該アルミナ粒子を全体の60%以上の割合で含んだ粉体が容易に得られる。前記製造方法の中でより好適な条件を選択して製造することにより、前記アルミナ粒子の中でも、前記3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にあるカードハウス構造を有するアルミナ粒子を全体の80%以上の割合で含んだ粉体が、より容易に得ることができるので好ましい。
[モリブデン除去工程]
アルミナ粒子の製造方法は、焼成工程後、必要に応じてモリブデンの少なくとも一部を除去するモリブデン除去工程をさらに含んでいてもよい。
上述のように、焼成時において酸化モリブデンは昇華を伴うことから、焼成時間、焼成温度等を制御することで、アルミナ粒子に含まれるモリブデンの存在部位やそれらの含有量を制御することができる。
モリブデンは、アルミナ粒子の表面に付着しうる。アルミナ表面における不要な当該モリブデンは水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液で洗浄することにより除去することができる。
この際、使用する水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液の濃度、使用量、および洗浄部位、洗浄時間等を適宜変更することで、モリブデン含有量を制御することができる。
[粉砕工程]
焼成物はアルミナ粒子が凝集して、本発明に好適な粒子径の範囲を満たさない場合がある。そのため、アルミナ粒子は、必要に応じて、本発明に好適な粒子径の範囲を満たすように粉砕してもよい。
焼成物の粉砕の方法は特に限定されず、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等の従来公知の粉砕方法を適用できる。
[分級工程]
アルミナ粒子は、平均粒子径を調整し、粉体の流動性を向上するため、またはマトリックスを形成するためのバインダーに配合したときの粘度上昇を抑制するために、好ましくは分級処理する。
分級は湿式、乾式のいずれでも良いが、生産性の観点からは、乾式の分級が好ましい。乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、分級精度の観点からは、風力分級が好ましく、コアンダ効果を利用した気流分級機、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うことができる。
上記した粉砕工程や分級工程は、後述する有機化合物層形成工程の前後を含めて、必要な段階において行うことができる。これら粉砕や分級の有無やそれらの条件選定により、例えば、得られるアルミナ粒子の平均粒子径を調整することができる。アルミナ粒子の平均粒子径は、その安息角と密接な関係にあり、上記した様なアルミナ粒子自体の製造方法や製造条件だけで充分に調整が行えなかった場合であっても、分級等の条件選定によりアルミナ粒子の平均粒子径を変化させる(間接的に安息角を変化させる)ことにより、アルミナ粒子の流動性を調整することができる。
具体的には、例えば、目的とする平均粒子径のカードハウス構造を有するアルミナ粒子が無い場合には、より大きな平均粒子径のアルミナ粒子を分級等することで、より小さな平均粒子径を有する、同一平均粒子径同士の対比においては、公知のアルミナ粒子より流動性が優れた、カードハウス構造を有するアルミナ粒子が得られる。
[有機化合物層形成工程]
一実施形態において、上記したアルミナ粒子の製造方法は、平板状アルミナの表面に有機化合物層形成工程をさらに含んでいてもよい。当該有機化合物層形成工程は、必要であれば、当該有機化合物が分解しない温度、通常、焼成工程の後、またはモリブデン除去工程の後に行われる。
アルミナ粒子の平板状アルミナの表面に有機化合物層を形成する方法としては、特に制限されず、公知の方法が適宜採用されうる。例えば、有機化合物を含む溶液又は分散液をモリブデンを含むアルミナ粒子に接触させ、乾燥する方法等が挙げられる。
なお、この有機化合物層の形成に使用されうる有機化合物としては、例えば有機シラン化合物が挙げられる。
(有機シラン化合物)
本発明におけるカードハウス構造を有するアルミナ粒子は、珪素原子及び/又は無機珪素化合物含む場合には、それを含まない場合に比べて上記した様な表面改質効果が期待できるが、更に、珪素原子及び/又は無機珪素化合物を含むアルミナ粒子と、有機シラン化合物との反応物とした上で用いることもできる。珪素原子及び/又は無機珪素化合物を含有しかつカードハウス構造を有するアルミナ粒子に比べて、それと有機シラン化合物との反応物であるカードハウス構造を有するアルミナ粒子の方が、アルミナ粒子を構成する平板状アルミナ粒子表面に局在化する珪素原子及び/又は無機珪素化合物と、有機シラン化合物との反応に基づき、マトリックスとの親和性をより良好とすることができ好ましい。
前記有機シラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1~22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類、3,3,3-トリフルオロプロピルトリメトキシシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリクロロシラン類、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン類等、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン、さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシランが挙げられる。なお、上記有機シラン化合物は、単独で含まれていても、2種以上を含んでいてもよい。
有機シラン化合物は、反応により、アルミナ粒子の平板状アルミナの表面の珪素原子及び/又は無機珪素化合物の少なくとも一部又は全部と共有結合により連結されていればよく、アルミナ一部だけでなく全体が上記反応物で被覆されていてもよい。アルミナ表面への提供方法としては、浸漬による付着や化学蒸着(CVD)を採用することができる。
有機シラン化合物の使用量は、アルミナ粒子の平板状アルミナの表面に含有される珪素原子又は無機珪素化合物の質量に対して、珪素原子基準で、20質量%以下であることが好ましく、10~0.01質量%であることがさらに好ましい。有機シラン化合物の使用量が20質量%以下であると、アルミナ粒子由来の物性発現が容易にできることから好ましい。
珪素原子及び/又は無機珪素化合物を含むアルミナ粒子と、有機シラン化合物との反応は、公知慣用のフィラーの表面改質方法により行なう事ができ、例えば、流体ノズルを用いた噴霧方式、せん断力のある攪拌、ボールミル、ミキサー等の乾式法、水系または有機溶剤系等の湿式法を採用することができる。せん断力を利用した処理は、本発明で用いるアルミナ粒子の破壊が起こらない程度にして行うことが望ましい。
乾式法における系内温度ないしは湿式法における処理後の乾燥温度は、有機シラン化合物の種類に応じ、それが熱分解しない領域で適宜決定される。例えば、上記した様な有機シラン化合物で処理する場合は、80~150℃の温度が望ましい。
[後加工工程]
カードハウス構造を有するアルミナ粒子は、その効果を損なわない限り、その製造の途中に任意工程を追加したり、後処理工程を追加し、任意に粒度や形状等を調整しても良い。例えば、転動造粒や圧縮造粒等の造粒工程、結着剤をバインダーとしたスプレードライ製法による造粒などが挙げられ、市販の機器を用いて容易に得る事ができる。
以下、アルミナ粒子及びその製造方法を実施例にて詳細に説明するが、本発明はこれらに限定されるものではない。なお、特に断わりがない限り、「%」は「質量%」を表わす。
[粒度分布測定によるアルミナ粒子の平均粒子径測定]
作製した試料を、レーザー回折式乾式粒度分布計[株式会社日本レーザー製 HELOS(H3355)&RODOS]を用いて測定し、体積平均値d50を求めた。
[X線回折(XRD)法による分析]
作製した試料を測定試料用ホルダーにのせ、それを広角X線回折装置[株式会社リガク製 Rint-Ultma]にセットし、Cu/Kα線、40kV/30mA、スキャンスピード1.0°/分、走査範囲5~80°の条件で測定を行った。ピーク強度比よりα化率を求めた。
[粉体の流動性の測定]
試料を300g用意し、JIS R9301-2-2に準じた方法で、試料の安息角を測定し、粉体の流動性を評価した。値は小数第二位を四捨五入し小数第一位まで求めた値とした。安息角が30.0°以下を極めて良好、30.1°以上40.0°以下を良好、40.1°以上50.0°以下をやや不良、50.1°以上を不良とした。
[アルミナ粒子の圧壊強度の測定]
作製した試料を、株式会社ナノシーズ製 微小粒子圧壊力測定装置NS-A100型を用い、圧壊時のピーク値とベースライン(何も力がかかっていない状況)との差である圧壊力F[N]を求め、圧壊強度S[Pa]を次式により算出した。値は、10個の値の平均値とした。50MPa以上のものを◎、20MPa以上50MPa未満のものを〇、1MPa20MPa未満のものを△、1MPa未満のものを×とした。
Figure 0007259846000002
ただし、Fは圧壊力[N]、Dは粒子径[m]である。
[かさ密度の測定]
JIS R1628に準拠した方法で、温度25℃湿度50%の環境下、定容積測定法により試料のかさ密度、(g/cm)を求めた。
[比表面積測定]
作製した試料をマイクロメリティックス社製、TriStar3000を用い、300℃3時間の条件で前処理を行った後、測定した。
[密度測定]
作製した試料を、300℃3時間の条件で前処理を行った後、マイクロメリティックス社製 乾式自動密度計アキュピックII1330を用いて、測定温度25℃、ヘリウムをキャリアガスとして使用した条件で測定した。
[空隙率の評価]
作製した粉末の45%、(メタ)アクリル系モノマー(日本化薬株式会社製 KAYARAD DPEA-12)の54.5%、重合開始剤(日油株式会社製 パーブチルO)の0.5%を配合し攪拌後、厚み1mmのシート状とした後150℃2時間の条件で硬化し、試験片を得た。その試験片を切断し、断面を研磨後、SEMにより粉末の分散状態を観察した。アルミナ粒子を構成する平板状アルミナの間の空隙が(メタ)アクリル樹脂(上記モノマー硬化物)で埋まった状態であることを確認の上、粒子50個を任意に選択し、画像解析により、粒子内のアルミナが占める面積、およびアルミナ粒子の内部に含まれる(メタ)アクリル樹脂の面積を求め、その値を用い、それぞれを球とみなした場合の体積を求め、全体積に対する樹脂が占める体積の割合をアルミナ粒子の空隙率とした。
[走査電子顕微鏡によるアルミナ粒子の形状分析]
作製した試料を両面テープにてサンプル支持台に固定し、それを株式会社キーエンス製表面観察装置VE-9800にて観察した。
[蛍光X線によるアルミナ粒子の組成分析]
作製した試料約100mgをろ紙にとり、PPフィルムをかぶせて、株式会社リガク製 ZSX100e を用いて行った。
[X線光電子分光法(XPS)によるアルミナ粒子の組成分析]
作製した試料を両面テープ上にプレス固定し、アルバックファイ社製 Quantera SXMを用いて行った。
[焼成法]
焼成は、株式会社アサヒ理化製作所製セラミック電気炉ARF-100K型、AMF-2P型温度コントローラ付きの焼成炉装置にて行った。
実施例1<カードハウス構造を有するアルミナ粒子の製造>
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径9.4μm)の146.15gと、二酸化珪素(関東化学株式会社製、特級)の0.95gと、三酸化モリブデン(太陽鉱工株式会社製)の5gとを乳鉢で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて1100℃で10時間焼成を行なった。降温後、坩堝を取り出し、105.0gの薄青色の粉末を得た。得られた粉末を乳鉢で、106μm篩を通るまで解砕した。
続いて、得られた前記薄青色粉末の100gを0.5%アンモニア水の150mLに分散し、分散溶液を室温(25~30℃)で0.5時間攪拌後、ろ過によりアンモニア水を除き、水洗浄と乾燥を行う事で、粒子表面に残存するモリブデンを除去し、98gの粉末を得た。その後、コアンダ効果を利用した気流分級機((株)パウダーシステムズ製ハイプレック分級機 HPC-ZERO型) で微粒成分を分級除去しアルミナ粒子粉末65gを得た。また、ゼータ電位の測定を行ったところ、得られたアルミナ粒子の等電点はpH5.3であることが解った。
得られた粉末は、SEM観察により、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子であることを確認した(図3~図4参照。)。得られた粉末の平均粒子径を測定したところ、24.1μmであった。また、カードハウス構造を構成する平板状アルミナ自体は、形状が多角板状で、厚みが400nm,平均粒子径が8.9μm、アスペクト比が22である事を確認した。さらに、XRD測定を行ったところ、α-アルミナに由来する鋭い散乱ピークが表れ、α結晶構造の以外のアルミナ結晶系ピークは観察されなかった。また、蛍光X線定量分析(XRF)の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.79質量%含み、Alに対するSiの濃度[Si]/[Al]%は0.74%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は24.3%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
また、得られた粉末の密度を測定したところ、3.961(g/cm)であることが解った。
また、得られた粉末の比表面積を測定したところ、1.337(m/g)であることが解った。
また、得られた粉末のかさ密度を測定したところ、0.50(g/cm)であることが解った。
更に、得られた粉末を株式会社ナノシーズ製 微小粒子圧壊力測定装置NS-A100型を用い、圧壊強度を算出した結果、27MPaであった。
更に、上記した空隙率の測定方法に従って、試験片を得た。その試験片を切断し、断面を研磨後、SEMにより粉末の分散状態を観察した。その結果、カードハウス構造を有するアルミナ粒子を構成する平板状アルミナの間の空隙にはアクリル樹脂で埋まった状態で観察されることを確認した。このアルミナ粒子の空隙率は、67体積%であった。
実施例2<アルミナ粒子の製造>
水酸化アルミニウムを(日本軽金属株式会社製、平均粒子径44.8μm)に変えた以外は実施例1と同様に実験を行い、アルミナ粒子粉末83gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析(XRF)の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.77質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は0.71%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は22.8%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
この実施例2では、実施例1に比べて平均粒子径の大きなアルミニウム化合物を原料としたことから、得られたアルミナ粒子も、原料の大きさを反映して、より大きな平均粒子径のアルミナ粒子となっていた。
実施例3<アルミナ粒子の製造>
実施例1と同様に実験を行い、アルミナ粒子粉末65gを得たのち、再度気流分級機を通し、微粒成分より9gのアルミナ粒子粉末を得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.75質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は0.73%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は23.9%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
この実施例3では、実施例1で得られたアルミナ粒子を基に、より平均粒子径の小さい同様のアルミナ粒子を得ることを企図した。分級条件を調整して、圧壊強度を損なうことなく、安息角が小さい、流動性の優れたアルミナ粒子が得られた。より平均粒子径の小さいアルミナ同士の対比においては、従来のアルミナ粒子よりも、この実施例3のアルミナ粒子の方が安息角は小さいことがわかっており、より流動性に優れている。
実施例4<アルミナ粒子の製造>
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径9.4μm)の123.08gと、二酸化珪素(関東化学株式会社製、特級)の0.8gと、三酸化モリブデン(太陽鉱工株式会社製)の20gとした以外は実施例1と同様に実験を行い、アルミナ粒子粉末63gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.92質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は0.78%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は28.6%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
実施例5<アルミナ粒子の製造>
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径9.4μm)の146.15gと、二酸化珪素(関東化学株式会社製、特級)の0.48gと、三酸化モリブデン(太陽鉱工株式会社製)の5gとした以外は実施例1と同様に実験を行い、アルミナ粒子粉末73gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.87質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は0.54%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は22.3%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
実施例6<アルミナ粒子の製造>
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径9.4μm)の146.15gと、二酸化珪素(関東化学株式会社製、特級)の1.9gと、三酸化モリブデン(太陽鉱工株式会社製)の5gとした以外は実施例1と同様に実験を行い、アルミナ粒子粉末73gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.60質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は0.10%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は28.3%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
実施例7<アルミナ粒子の製造>
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径9.4μm)の146.15gと、二酸化珪素(関東化学株式会社製、特級)の4.75gと、三酸化モリブデン(太陽鉱工株式会社製)の5gとした以外は実施例1と同様に実験を行い、アルミナ粒子粉末76gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.60質量%含むものであり、Alに対するSiの濃度[Si]/[Al]%は3.1%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は28.5%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
実施例8<アルミナ粒子の製造>
焼成条件を1400℃で10時間とした以外は実施例1と同様に実験を行い、アルミナ粒子粉末84gを得た。得られた粉末は、SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子であることを確認した。また、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.55質量%含むものであるあり、Alに対するSiの濃度[Si]/[Al]%は0.61%であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]%は21.6%であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
この実施例8では、実施例1よりも焼成温度を高めたことで、得られたアルミナ粒子の圧壊強度をより大きくすることができた。
上記実施例1~8の各アルミナ粒子粉体は、いずれも、3枚以上の平板状アルミナにより形成され、固着しており、3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にある、カードハウス構造を有したアルミナ粒子を、その全体の粒子個数の85%以上含有するものであった。
また、実施例1~8の各アルミナ粒子を構成する平板状アルミナの数は、いずれも一つのアルミナ粒子当たり、15~1500枚の範囲にあった。
比較例1<板状アルミナ粒子の製造>
活性化アルミナ(和光純薬工業株式会社製、平均粒径45μm)の5gと、シリカナノ粒子(日本触媒株式会社製、KE-P10、平均粒径0.1~0.2μm)の0.01gと、三酸化モリブデン(和光純薬工業株式会社製)の5gとを乳鉢で混合し、混合物の10.01gを得た。得られた混合物を坩堝に入れ、セラミック電気炉にて1100℃で10時間焼成を行なった。降温後、坩堝を取り出し、5.1gの青色の粉末を得た。
得られた粉末は、SEM観察により、形状が多角で、厚みが500nm,平均粒子径が10μm、アスペクト比が20である事を確認した。また、SEM観察により双晶または複数の板が重なり合う凝集体が観察されず、板状形状の粒子であることが確認された。フラックス剤の量は、アルミニウム化合物中のアルミニウム金属1モルに対して、モリブデン金属として0.35モルであるため、3枚以上の平板状アルミナにより形成され、固着しており、3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にある、カードハウス構造を有したアルミナ粒子の形成は出来なかった。
さらに、XRD測定を行ったところ、α-アルミナに由来する鋭い散乱ピークが表れ、α結晶構造の以外のアルミナ結晶系ピークは観察されなかった。
また、得られた前記青色粉末の4gを10%アンモニア水の4mLに分散し、分散溶液を室温(25~30℃)で3時間攪拌後、ろ過によりアンモニア水を除き、水洗浄と乾燥を行う事で、粒子表面に残存するモリブデンを除去し、3.9gの粉末を得た。得られた粉末の蛍光X線定量評価測定を行った結果、粉末の中のモリブデンの量が三酸化モリブデン換算で0.84%であり、粒子内部にモリブデンを含むアルミナ粒子であることを確認した。
比較例2
市販の板状アルミナ粒子であるセラフ07070(キンセイマテック株式会社製合成板状アルミナ)を用いて評価を行った。SEM観察により、複数の平板状アルミナからなる、カードハウス構造を有するアルミナ粒子ではなく、平均粒子径5.3μm、平均厚み400nmの板状アルミナ粒子であることを確認した。また、蛍光X線定量分析(XRF)およびX線光電子分光法(XPS)で分析した結果、モリブデンおよびSiが検出されなかった。
上記した実施例1~8及び比較例1~2のそれぞれのアルミナ粒子の特性を、下表にそれぞれ示した。
Figure 0007259846000003
Figure 0007259846000004
Figure 0007259846000005
本発明の特定平均粒子径の、カードハウス構造を有するアルミナ粒子は、流動性が優れるため、優れた分散性や高充填性が期待できることから、熱伝導性フィラー、化粧料、研磨材、高輝性顔料、滑材、導電性粉体の基材、セラミックス材料などに好適に使用できる。

Claims (6)

  1. 3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有
    前記平板状アルミナは、XPS測定による[Si]/[Al]%が2.0~50.0%であり、
    前記カードハウス構造は、3枚以上の平板状アルミナが、2箇所以上の複数個所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にある、平均粒子径が3~1000μmであることを特徴とするアルミナ粒子。
  2. α化結晶化率90%以上のアルミナからなる請求項1記載のアルミナ粒子。
  3. 前記平板状アルミナが多角板状であり、アスペクト比が2~500である、請求項1または2に記載のアルミナ粒子。
  4. 安息角が50°以下である、請求項1~のいずれか一項記載のアルミナ粒子。
  5. 圧壊強度が1MPa~100MPaである、請求項1~のいずれか一項記載のアルミナ粒子。
  6. アルミナ粒子内部の空隙率が10~90%である、請求項1~のいずれか一項記載のアルミナ粒子。
JP2020512249A 2018-04-06 2019-04-02 アルミナ粒子 Active JP7259846B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018073986 2018-04-06
JP2018073986 2018-04-06
PCT/JP2019/014584 WO2019194158A1 (ja) 2018-04-06 2019-04-02 アルミナ粒子

Publications (2)

Publication Number Publication Date
JPWO2019194158A1 JPWO2019194158A1 (ja) 2021-04-08
JP7259846B2 true JP7259846B2 (ja) 2023-04-18

Family

ID=68100598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020512249A Active JP7259846B2 (ja) 2018-04-06 2019-04-02 アルミナ粒子

Country Status (7)

Country Link
US (1) US11401169B2 (ja)
EP (1) EP3778486A4 (ja)
JP (1) JP7259846B2 (ja)
KR (1) KR20200139134A (ja)
CN (1) CN111902363A (ja)
TW (1) TWI828674B (ja)
WO (1) WO2019194158A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926531B2 (en) 2018-07-26 2024-03-12 Dic Corporation Flaky alumina particles and method for producing flaky alumina particles
CN114555718B (zh) * 2019-10-09 2024-01-26 Dic株式会社 氧化铝颗粒和氧化铝颗粒的制造方法
CN114514200A (zh) * 2019-10-09 2022-05-17 Dic株式会社 复合颗粒和复合颗粒的制造方法
CN116724003A (zh) * 2021-01-13 2023-09-08 Dic株式会社 复合颗粒和复合颗粒的生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035430A (ja) 2007-07-31 2009-02-19 Asahi Kagaku Kogyo Co Ltd 薄片状αアルミナの製造方法
US20120172608A1 (en) 2010-12-29 2012-07-05 Beijing Research Institute Of Chemical Industry Carrier for silver catalyst, its preparation, a silver catalyst made from the same and its use
US20130183527A1 (en) 2010-08-06 2013-07-18 Universitat De Valencia Process for obtaining nanocrystalline corundum from natural or synthetic alums
WO2014051091A1 (ja) 2012-09-28 2014-04-03 Dic株式会社 α-アルミナ微粒子及びその製造方法
WO2016084723A1 (ja) 2014-11-28 2016-06-02 日本碍子株式会社 板状アルミナ粉末の製法及び板状アルミナ粉末
JP2016222501A (ja) 2015-06-01 2016-12-28 Dic株式会社 板状アルミナ粒子およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465523A (en) * 1973-01-26 1977-02-23 Norton Co Low surface area alumina
JPS59203774A (ja) * 1983-05-07 1984-11-17 昭和電工株式会社 セラミツク成形体焼成用敷粉
JPH02229713A (ja) * 1989-03-01 1990-09-12 Kanebo Ltd アルミナ多孔体の製造方法
EP0656319B1 (en) * 1993-11-25 2003-04-09 Sumitomo Chemical Company, Limited Method for producing alpha-alumina powder
JP2945262B2 (ja) 1994-01-17 1999-09-06 ワイケイケイ株式会社 高分子組成物
CN101691302B (zh) * 2009-09-27 2012-05-02 上海大学 一种片状α-氧化铝颗粒的制备方法
JP6008642B2 (ja) 2012-07-31 2016-10-19 日揮触媒化成株式会社 平板状結晶性アルミナ複合酸化物微粒子集合体、平板状結晶性アルミナ複合酸化物微粒子集合体からなる結晶性アルミナ複合酸化物粒子ならびに該平板状結晶性アルミナ複合酸化物微粒子集合体および該結晶性アルミナ複合酸化物粒子の製造方法
WO2016024624A1 (ja) * 2014-08-15 2016-02-18 Dic株式会社 研磨材、その製造方法および研磨材組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035430A (ja) 2007-07-31 2009-02-19 Asahi Kagaku Kogyo Co Ltd 薄片状αアルミナの製造方法
US20130183527A1 (en) 2010-08-06 2013-07-18 Universitat De Valencia Process for obtaining nanocrystalline corundum from natural or synthetic alums
US20120172608A1 (en) 2010-12-29 2012-07-05 Beijing Research Institute Of Chemical Industry Carrier for silver catalyst, its preparation, a silver catalyst made from the same and its use
WO2014051091A1 (ja) 2012-09-28 2014-04-03 Dic株式会社 α-アルミナ微粒子及びその製造方法
WO2016084723A1 (ja) 2014-11-28 2016-06-02 日本碍子株式会社 板状アルミナ粉末の製法及び板状アルミナ粉末
JP2016222501A (ja) 2015-06-01 2016-12-28 Dic株式会社 板状アルミナ粒子およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO, S., et al.,Synthesis and mechanical properties of porous alumina from anisotropic alumina particles,Journal of the European Ceramic Society,2010年,Vol.30, No.3,PP.635-639,ISSN:0955-2219, DOI:10.1016/j.jeurceramsoc.2009.09.018
HASHIMOTO, S., et al.,Synthesis of α-Al2O3 platelets using sodium sulfate flux,Journal of Materials Research,1999年,Vol.14, No.12,PP.4667-4672,ISSN:0884-2914
HONDA, Sawao, et al.,Fabirication and thermal conductivity of highly porous alumina body from platelets with yeast fungi,Ceramics International,2016年09月,Vol.42, No.12,pp.13882-13887
MUTO, Daimu, et al.,Characterization of porous alumina bodies fabricated by high-temperature evaporation of boric acid w,Ceramics International,2018年03月,Vol.44, No.4,pp.3678-3683

Also Published As

Publication number Publication date
TWI828674B (zh) 2024-01-11
JPWO2019194158A1 (ja) 2021-04-08
TW201946873A (zh) 2019-12-16
US11401169B2 (en) 2022-08-02
CN111902363A (zh) 2020-11-06
KR20200139134A (ko) 2020-12-11
WO2019194158A1 (ja) 2019-10-10
EP3778486A4 (en) 2022-01-19
EP3778486A1 (en) 2021-02-17
US20210053836A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7259846B2 (ja) アルミナ粒子
JP7272352B2 (ja) アルミナを含有する樹脂組成物及び放熱部材
JP6753555B2 (ja) 板状アルミナ粒子、及び板状アルミナ粒子の製造方法
JP7388549B2 (ja) 複合粒子及び複合粒子の製造方法
JP7388548B2 (ja) アルミナ粒子、及びアルミナ粒子の製造方法
JP7480916B2 (ja) 複合粒子及び複合粒子の製造方法
CN114555719B (zh) 复合颗粒和复合颗粒的制造方法
JP7248128B2 (ja) 板状アルミナ粒子、及び板状アルミナ粒子の製造方法
JP7151935B2 (ja) 板状アルミナ粒子、及び板状アルミナ粒子の製造方法
JP2021059724A (ja) 耐摩耗剤、コーティング剤、積層体、積層体の製造方法、及び基材のコーティング方法
JP2021059487A (ja) 防蝕剤、防蝕塗料、積層体、積層体の製造方法、及び基材の防蝕方法
JP2024072854A (ja) 複合粒子の製造方法
JP2022171034A (ja) 複合粒子及び該複合粒子の製造方法
JP2021059479A (ja) ガスバリア性組成物、ガスバリア材、及び積層体
TW202142490A (zh) 板狀氧化鋁粒子及板狀氧化鋁粒子的製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7259846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151