JP7258349B2 - 透磁率測定用治具、透磁率測定装置および透磁率測定方法 - Google Patents

透磁率測定用治具、透磁率測定装置および透磁率測定方法 Download PDF

Info

Publication number
JP7258349B2
JP7258349B2 JP2019163605A JP2019163605A JP7258349B2 JP 7258349 B2 JP7258349 B2 JP 7258349B2 JP 2019163605 A JP2019163605 A JP 2019163605A JP 2019163605 A JP2019163605 A JP 2019163605A JP 7258349 B2 JP7258349 B2 JP 7258349B2
Authority
JP
Japan
Prior art keywords
magnetic permeability
signal
excitation
jig
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019163605A
Other languages
English (en)
Other versions
JP2021043008A (ja
Inventor
慎吾 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019163605A priority Critical patent/JP7258349B2/ja
Publication of JP2021043008A publication Critical patent/JP2021043008A/ja
Application granted granted Critical
Publication of JP7258349B2 publication Critical patent/JP7258349B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、磁性体の透磁率の測定技術に関し、特に単体の磁性微粒子の高周波透磁率測定用の治具および透磁率測定装置に関する。
近年、携帯電話機、ノートパソコン等の電子デバイスは小型化、軽量化等の要請により、高度に集積化しており、内蔵する集積回路チップが発生する電磁ノイズの影響により電子機器の誤動作が発生する可能性が高くなっている。電磁ノイズを吸収して抑制するノイズ抑制シートや、電源ラインや信号ラインのノイズを除去するためにインダクタやチョークコイルが使用され、低周波数から高周波数までの広い周波数範囲でノイズを抑制することが求められる。
ノイズ抑制シートの多くは、磁性微粒子にバインダーを混ぜて硬化させたものである。インダクタやチョークコイルの磁心には、渦電流の発生を抑制するために磁性微粒子を焼結したりバインダーを混ぜて硬化させた圧粉磁心が用いられている。その開発において磁性微粒子を材料としてその高周波透磁率を評価することが重要である。
高周波透磁率の測定は、これまで多くの方法が開発されている。代表的なものとしては、(1)平面導波路またはマイクロストリップ線路の信号線路上に磁性体を配置し透過係数よりその磁性体の透磁率を求める方法(例えば、非特許文献1参照。)、(2)マイクロストリップ線路の短絡端に磁性材料を配置して、反射係数より透磁率を求める方法(例えば、特許文献1参照。)、(3)側面開放型TEMセル(高周波空洞)内に置かれたシールディドループコイルに磁性材料を挿入し、TEMセルに励起交流信号を注入して磁化の動きを励起し、シールディドループコイルに誘起された逆起電力から透磁率を求める方法(例えば、特許文献2参照。)等が挙げられる。
特開2008-014920号公報 特開2004-069337号公報
Y. Chen et al., "Novel Ultra-Wide Band (10MHz-26GHz) Permeability Measurements for Magnetic Films", IEEE Trans. Magn., 2018, vol. 54, No. 11, 6100504
しかしながら、非特許文献1の透過係数を用いる方法および特許文献1の反射係数を用いる方法では、低周波数側で入力信号に対して磁性材料によって生じる逆起電力が小さくなり、逆起電力による信号成分を入力信号から分離することが困難になり、その結果、測定の感度が低下する問題が生じる。特許文献2のTEMセル内にシールディドループコイルを配置し、シールディドループコイル内に磁性材料を挿入するという治具の構造では、TEMセルを小型化することが困難であり、その結果、測定の感度を向上することが困難であるという問題がある。
本発明の目的は、上記の問題を解決するもので、新規で有用な透磁率測定用治具およびこれを用いた透磁率測定装置および測定方法を提供することである。
本発明の一態様によれば、第1の導波路であって、その信号線路が一端側に励起信号により磁界を発生する励磁部を有する、上記第1の導波路と、第2の導波路であって、その信号線路が一端側に上記励磁部で発生した磁界が測定試料に作用して検知信号が誘起する検知部を有し、その検知部が上記励磁部上に所定の距離をもって対向して配置してなる、上記第2の導波路と、上記第1の導波路のグランド線路と上記第2の導波路のグランド線路との間に接続されたダンピング抵抗と、を含む、透磁率測定用治具が提供される。
上記態様によれば、透磁率測定用治具は、第1の導波路と第2の導波路とで構成されており、信号線路である励磁部と検知部とを小型化することができ、励磁部および検知部を試料に近接して配置することが容易に可能であるので、透磁率の測定の感度を向上できる。また、検知部の検知信号は、測定試料の磁化の動きによる誘導起電力による信号であるが、励磁部からの励起信号の影響による信号も加わる。検知信号および励起信号による信号の電圧は周波数に比例するので、その比率は同じである。そのため、透磁率測定用治具は、測定周波数全体に亘って一定の測定感度が得られ、低周波数側の測定の感度の低下を極めて抑制できる。さらに、透磁率測定用治具は、ダンピング抵抗が第1の導波路のグランド線路と第2の導波路のグランド線路との間に接続されるので、透磁率測定用治具で生じた回路の共振を抑制でき、より精確な透磁率の測定が可能となる。
本発明の他の態様によれば、上記態様の透磁率測定用治具と、上記透磁率測定用治具の入力部に接続され、上記励起信号を生成する信号生成手段と、上記透磁率測定用治具の出力部に接続され、上記検知信号を解析する信号解析手段と、上記解析した信号から透磁率を求める演算手段と、を備える、透磁率測定装置が提供される。
上記態様によれば、磁率測定装置は、上記態様の透磁率測定用治具を備えることで、測定の感度が高く、その結果信号対雑音比(S/N比)が良好であり、透磁率測定用治具で生じた回路の共振を抑制できるので、試料が微小な磁性粉末単体でもその透磁率の測定が可能となる。
本発明のその他の態様によれば、上記他の態様の透磁率測定装置を用いて透磁率を測定する方法であって、測定帯域毎に励起信号の電力を設定して励起信号を入力し検知信号を測定するステップであって、上記透磁率測定用治具の入力部に低周波数側において高周波数側よりも大きな電力の上記励起信号を供給するように上記信号生成手段を制御する、該ステップを含む、上記方法が提供される。
上記態様によれば、上記態様の透磁率測定用治具を用いることで、測定の感度が高く、S/N比が良好であり、透磁率測定用治具で生じた回路の共振を抑制できるので、微小な磁性粉末単体の透磁率を測定が可能な測定方法を提供できる。また、励起信号の電力を低周波数側において高周波数側よりも大きく設定することで、低周波数側の検知信号の電力を増加させて、低周波数側のS/N比の低下を抑制できる。
本発明の一実施形態に係る透磁率測定用治具の概略構成を示す上面図である。 本発明の一実施形態に係る透磁率測定用治具の概略構成を示す断面図であり、A1-A1矢視断面図である。 本発明の一実施形態に係る透磁率測定用治具の概略構成を示す断面図であり、B1-B1矢視断面図である。 本発明の一実施形態に係る透磁率測定用治具の要部の分解斜視図である。 本発明の一実施形態に係る透磁率測定用治具の試料配置と測定原理を説明するための図である。 本発明の一実施形態に係る透磁率測定用治具のダンピング抵抗の作用を説明するための図である。 本発明の一実施形態に係る透磁率測定装置の概略構成を示す図である。 本発明の一実施形態に係る透磁率測定方法を示すフローチャートである。 本発明の一実施形態に係る透磁率測定方法における励起信号の設定と検知信号の特性を説明するための図である。 本発明の他の実施形態に係る透磁率測定用治具の概略構成を示す上面図である。 本発明の他の実施形態に係る透磁率測定用治具の概略構成を示す断面図であり、A2-A2矢視断面図である。 本発明の他の実施形態に係る透磁率測定用治具の概略構成を示す断面図であり、B2-B2矢視断面図である。 本発明の一実施形態に係る透磁率測定用治具のダンピング抵抗に対する伝送特性を示す図である。 本発明に係る実施例の複素透磁率の周波数特性を示す図である。示す図である。
以下、図面に基づいて本発明の一実施形態を説明する。なお、図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。
図1は、本発明の一実施形態に係る透磁率測定用治具の概略構成を示す上面図であり、図2はA1-A1矢視断面図、図3はB1-B1矢視断面図、図4は要部の分解斜視図である。図1~図3において、構成の一部を透視図で示す。また、説明の便宜のため、構成要素の一部を省略して示しており、例えば図4ではネジを省略している。
図1~図4を参照するに、透磁率測定用治具10は、シールドケース11内に、励起信号を伝送する入力用導波路20と、高周波の励起信号によって発生した励起磁界が試料に印加され、励起磁界によって試料の磁化に動きが生じて磁束が変化し、それにより誘起した逆起電力である検知信号を伝送する出力用導波路30とを有する。透磁率測定用治具10は、入力用導波路20と出力用導波路30とがトランス結合している。本実施形態では、入力用導波路20および出力用導波路30は、コプレーナ線路構造を有する。透磁率測定用治具10は、説明の便宜のため図2に示すように入力用導波路20が紙面下側に配置され、出力用導波路30が紙面上側に配置されているが、上下逆でもよく、特に限定されない。
入力用導波路20は、誘電体材料からなる基板21の第1面21aに、X方向に延在する信号線路22とその両側にグランド線路(接地線路)23とを有する。信号線路22は、励起信号の入力部22a側からグランド線路23と結合される短絡端22sに亘って延在する。信号線路22は、短絡端22sの部分(短絡端22sから入力部22a側の部分)が試料46に印加する磁界を発生する励磁部22bとなる。試料46は、励磁部22bと検知部32bとが対向する位置、例えば、励磁部22bと検知部32bに挟まれた位置に配置される。励磁部22bは、所定の幅で励起信号が伝送される方向(X軸方向)に延在する。
信号線路22は、励起信号の入力部22a側に同軸ケーブル40の信号線40aが接続される。同軸ケーブル40は、励起信号生成器(図7に示す。)から励起信号を伝送する。信号線路22は、その幅が励起信号の入力部22a側から励磁部22bに向かって所定の幅で形成される。代替例としては、例えば、信号線路22は、入力部22a側の同軸ケーブル40が接続される部分だけ幅広く形成し、それ以外の部分を励磁部22bと同じ幅で形成してもよく、励磁部22bまで長さ方向(X軸方向)に所定の割合で狭くなるように形成してもよい。
グランド線路23は、入力部22a側において信号線路22の両側に設けられ、それぞれ、同軸ケーブル40の絶縁部材40cを覆うグランド線40bが接続される。グランド線路23は、信号線路22の側部と所定の距離を離隔して形成される。グランド線路23は、励磁部22bの短絡端22sにおいて結合する。グランド線路23は、平面視において、先端に向かって幅(Y方向の長さ)が次第に狭くなるように形成されており、これは、出力用導波路30のグランド線路33との容量結合を減少させる点から好ましい。
出力用導波路30は、入力用導波路20と同様に、誘電体材料からなる基板31上に、信号線路32と、その両側にグランド線路33を有する。信号線路32は、検知信号の出力部32a側からグランド線路33と結合される短絡端32sに亘って延在する。信号線路32は、短絡端32sの部分(短絡端32sから出力部32a側の部分)が試料に磁界を印加することで発生した磁束を検知する検知部32bとなる。検知部32bは励磁部22bに対向して所定の距離をもって平行に配置され、検知部32bと励磁部22bとの間に試料46が配置される。検知部32bは、所定の幅で長さ方向(X軸方向)に延在する。
信号線路32は、励起信号の出力部32a側に同軸ケーブル43の信号線43aが接続される。同軸ケーブル43は、低雑音増幅器または検知信号解析器(いずれも図7に示す。)に検知信号を伝送する。信号線路32は、その幅が検知部32bから検知信号の出力部32a側に向かって所定の幅で形成される。代替例としては、例えば、信号線路32は、出力側の同軸ケーブル43の信号線43aが接続される部分だけ幅広く形成し、それ以外の部分を検知部32bと同じ幅で形成してもよく、検知部32bまで長さ方向(X軸方向)に対して所定の割合で狭くなるように形成してもよい。
グランド線路33は、入力用導波路20のグランド線路23と同様に形成され、同軸ケーブル43のグランド線43bが接続される。グランド線路33は、平面視において、入力用導波路20のグランド線路23との重なる面積は小さい方が、容量結合を減少させる点から好ましい。
励磁部22bおよび検知部32bは、それぞれ励起信号および検知信号が伝送される方向(X軸方向)に沿った対向する長さ(X軸方向の長さ)が測定感度の点で10mm以下に形成されることが好ましく、試料46の配置および励磁部22bと検知部32bとが対向するように重ね合わせする容易さの点で0.1mm以上に形成されることが好ましい。さらに、励磁部22bおよび検知部32bの上記X軸方向の長さは、10nm以上としてもよい。励磁部22bおよび検知部32bの作製並びに試料の配置を微細加工技術、例えば半導体プロセス技術を用いて行うことで、大きさが数nmの極小の試料の透磁率を高感度で測定することが可能となる。
入力用導波路20および出力用導波路30の信号線路22,32およびグランド線路23、33は、導電材料、例えば銅からなり、厚さが、例えば35μmである。基板21,31は、例えばガラス布基材エポキシ樹脂積層板(ガラスエポキシ)からなり、厚さが例えば1.6mmである。入力用導波路20および出力用導波路30は、伝送インピーダンスが、例えば50Ωになるように形成される。
透磁率測定用治具10は、励磁部22bと検知部32bとの間に、励磁部22bと検知部32bとの間を所定の距離離隔するために、非磁性絶縁層47を設けてもよい。非磁性絶縁層47は、試料46を例えば励磁部22b上に固定するために接着材料を表面に有してもよい。非磁性絶縁層47は、例えば、粘着剤を有するポリイミドテープを用いることができる。
図3を特に参照するに、透磁率測定用治具10は、入力用導波路20のグランド線路23と出力用導波路のグランド線路33との間にダンピング抵抗50aおよび50bが電気的に接続される。具体的には、出力用導波路30の基板31の第2面31bに、電極51a~51dが形成され、電極51aと電極51bとに一方のダンピング抵抗50aが実装され、電極51cと電極51dとに他方のダンピング抵抗50bが実装される。
電極51aは、基板31の第1面31aに形成されたグランド線路33と基板31を貫通するビア52aを介して電気的に接続される。電極51bは、基板31の第1面31aに形成された接続用電極53aと基板31を貫通するビア52bを介して電気的に接続される。接続用電極53aは、基板21の第1面21aに形成された接続用電極54aと、基板21と基板31とがネジ55の保持部材11aへの締め付けによって互いに接触することで導通する。接続用電極54aはグランド線路23と第1面21a上に形成した導電パターンにより電気的に接続される。これにより、一方のダンピング抵抗50aが入力用導波路20のグランド線路23と出力用導波路のグランド線路33とに電気的に接続される。他方のダンピング抵抗50bも同様にして、入力用導波路20のグランド線路23と出力用導波路のグランド線路33とに電気的に接続される。
図5は、本発明の一実施形態に係る透磁率測定用治具の測定原理を説明するための図である。図5(a)は、図3と同様にY方向に沿った励磁部22bおよび検知部32bにおける断面図を模式的に示しており、図5(b)は、図5(a)の励磁部22bおよび検知部32bの拡大図である。なお、図5(a)および(b)において、説明の便宜のため、基板21,31および非磁性絶縁層47の図示を省略している。
図5(a)を参照するに、励磁部22bには、励起信号が紙面の手前から奥に流れているとする。励起信号により、励磁部22bの周囲には励起磁界Hexが発生する。励起磁界Hexは試料に印加されると、試料が強磁性体であるのでその磁化の動きにより磁束Bidが発生し、検知部32bに誘導起電力が生じ検知信号が発生する。
図5(b)を参照するに、励磁部22bの幅w2は、励起効率が増加する点で、試料の幅w1とほぼ同じ(実質的に同じ(w1≒w2))であることが好ましく、実質的に同じことがさらに好ましい。検知部32bの幅w3も、検出感度が増加する点で、試料の幅w1とほぼ同じ(実質的に同じ(w1≒w3))であることが好ましい。幅w2,w3は、試料46の配置および励磁部22bと検知部32bとが対向するように重ね合わせする容易さの点で0.1mm以上であることが好ましい。励磁部22bと検知部32bとの距離(中心線距離)d1は、励磁部22bの幅w2および検知部32bの幅w3よりも測定感度の点で小さい(d1<w1,w2)ことが好ましい。さらに、幅w2,w3は、10nm以上としてもよい。励磁部22bおよび検知部32bの作製並びに試料の配置を微細加工技術、例えば半導体プロセス技術を用いて行うことで、大きさが数nmの極小の試料の透磁率を高感度で測定することが可能となる。
試料46は、励磁部22bおよび検知部32bの表面に接触しないように配置してもよく、そのいずれかの表面に接触するように配置してもよい。ただし、励磁部22bと検知部32bとが直接接触しないようにする。
図6は、本発明の一実施形態に係る透磁率測定用治具のダンピング抵抗の作用を説明するための図である。図6を図1と合わせて参照するに、透磁率測定用治具10は、おおよそ、同軸ケーブル40および43、入力用導波路20および出力用導波路30のグランド線路に付随する寄生インダクタンスL(入力側の寄生インダクタンスL1と出力側の寄生インダクタンスL2との和)と、同軸ケーブル40と同軸ケーブル43との間の浮遊容量Csと、励磁部22bと検知部32bとが形成する浮遊容量Ctとシールドケース11によりLC共振回路が生じる。ダンピング抵抗50(ダンピング抵抗50aおよび50bの合成抵抗)は、入力用導波路20のグランド線路23と出力用導波路のグランド線路33との間に接続されるので、LC共振回路に接続されて、全体としてLCR共振回路が形成される。ダンピング抵抗50は、本発明者の検討によれば、比較的低周波数、例えば、100MHzのオーダーから1GHzのオーダーの共振周波数の共振を抑制することができ、より精確な透磁率の測定が可能となる。
図3に戻り、ダンピング抵抗50aおよび50bは、励磁部22bおよび検知部32bに対して、その両側に対称に配置されている。これにより、高周波数側の共振を効果的に抑制できる。
なお、ダンピング抵抗50aおよび50bは、その合成抵抗値と同じ抵抗値であれば、その一方だけでもよい。
図7は、本発明の一実施形態に係る透磁率測定装置の概略構成を示す図である。図7を参照するに、透磁率測定装置60は、大別すると、透磁率測定用治具10と、低雑音増幅器62と、信号生成解析部64と、直流磁界生成部70と、制御演算部80とを有する。
透磁率測定用治具10は、上記の実施形態に係る図1~図4に示した透磁率測定用治具10であり、さらに、後述する図11および図12に示す他の実施形態の透磁率測定用治具100でもよい。
低雑音増幅器62は、透磁率測定用治具10の出力用導波路30の出力部に接続され、検知信号を増幅する。低雑音増幅器62は、市販のローノイズアンプを用いることができ、全測定帯域において一定の増幅率を有し、それ自体のノイズが低い程好ましい。低雑音増幅器62は、増幅率は、検知信号解析器68のディテクタ(不図示)の雑音指数よりも大きいことがディテクタの雑音指数の影響を抑制して総合的なS/N比を向上する点で好ましく、例えば25dB~30dBである。なお、透磁率測定装置60には低雑音増幅器62を用いることが好ましいが必須ではない。
信号生成解析部64は、透磁率測定用治具10の入力用導波路20に供給する励起信号を生成する励起信号生成器65と、励起信号生成器65の励起信号の電力および周波数を制御する励起信号制御器66と、低雑音増幅器62により増幅された検知信号を受信して解析を行う検知信号解析器68とを有する。信号生成解析部64は、例えば市販のベクトルネットワークアナライザ(VNA)を用いることができる。
直流磁界生成部70は、電磁石71と、電磁石71を制御する直流磁界制御器72とを有する。電磁石71は、直流磁界制御器72に制御され、一対の磁極間に配置された透磁率測定用治具10の試料46に印加する磁界を生成する。電磁石71によって印加する磁界の大きさは試料46に応じて適宜選択されるが、例えば最大2T(テスラ)程度である。なお、電磁石71の代わりに永久磁石を用いてもよく、例えば複数の異なる残留磁束密度の永久磁石を必要に応じて組み合わせて用いることができる。
制御演算部80は、信号生成解析部64および直流磁界制御器72を制御するとともに、検知信号解析器68からのSパラメータの周波数特性データを受信して複素透磁率の演算を行う。制御演算部80は、図示を省略しているが、データを記憶する半導体メモリ、ディスプレイ、キーボードおよびマウスを有する。制御演算部80は、例えばPC(パーソナルコンピュータ)を用いることができる。
図8は、本発明の一実施形態に係る透磁率測定方法を示すフローチャートである。図8を図7と合わせて参照しつつ透磁率の測定方法を説明する。
透磁率μは、下記式(1)で表される。
Figure 0007258349000001
ここで、Cは透磁率測定用治具10と試料46に固有の補正係数であり、Sパラメータの下添え字「21」は透磁率測定用治具10の入力側から出力側の伝送Sパラメータであることを表し、Sパラメータの上添え字「0」(n=0)は試料の磁化が飽和した磁界における伝送Sパラメータであることを表し、Sパラメータの上添え字「1」(n=1)は所定の磁界における伝送Sパラメータであることを表す。所定の磁界は、例えば、試料が実装された環境において試料に印加される直流磁界を用いる。試料が電子基板を格納した筐体に設置するノイズ抑制シートに用いられる場合は、所定の磁界は、例えば、0(零)T(テスラ)を選択する。
最初に、ステップS100では、補正係数Cを決定する。具体的には、試料46を透磁率測定用治具10に設定し、電磁石71により試料46に直流磁界に印加して、所定の周波数(低周波数)の励起信号を透磁率測定用治具10に入力して検知信号解析器68で検知信号を測定し、伝送SパラメータSn 21を測定する。直流磁界の大きさは、試料の磁化が十分に飽和する範囲で数点選択し、それぞれ大きさの直流磁界HBに対して伝送SパラメータSn 21を測定する。次いで、制御演算部が測定したSn 21と印加した直流磁界HBの大きさから、理論式μ=MS/HB+1(ここで、MSは試料の飽和磁化である。)をフィッティングすることで、上記式(1)の補正係数Cが決定される。
次いで、ステップS110では、直流磁界制御器72により電磁石71の直流磁界HBを所定の磁界(n=1)に設定して、電磁石71は、透磁率測定用治具10に配置した試料に直流磁界HBを印加する。透磁率測定用治具10は、励磁部22bに励起信号が流れる方向に平行に直流磁界HBが印加されるように配置する。なお、後述する飽和磁界も同じ方向に印加される。直流磁界HBは、上記式(1)においてSパラメータの上添え字が「1」の場合である。
次いで、ステップS120では、測定帯域毎に励起信号の電力を設定して励起信号を入力し検知信号を測定する。具体的には、透磁率を測定する周波数の全帯域を複数の測定帯域に分割し、その測定帯域毎に励起信号の電力を設定して透磁率測定用治具10に励起信号を入力して、出力として検知信号を測定する。
図9は、本発明の一実施形態に係る透磁率測定方法における励起信号の設定と検知信号の特性を説明するための図である。図9を参照するに、励起信号は、透磁率を測定する周波数、例えば1MHz~50GHzの全測定帯域f0~f4を複数の帯域、この例では4個の帯域FB1~FB4に分割する。帯域FB1~FB4毎に、図9に実線で示す励起信号の電力PiをP1~P4に設定する。励起信号に応じて励磁部22bで発生した励起磁界が試料46に印加され、試料の磁化の動きによって生じた磁束の変化が検知部32bに逆起電力として検知信号が誘起される。検知信号は図9に破線で示している。励起信号の電力が全測定帯域に亘って一定の電力である場合は、特性上、低周波数側の帯域ほど検知信号の電力が低くなる。さらに、ジョンソンノイズは周波数に亘って電力が一定であるので、低周波数側ほどS/N比に影響する。本実施形態では、励起信号の電力Piが低周波数側が高周波数側よりも大きく設定されている。これによって検知信号の電力が低周波数側が増加することで全測定帯域に亘ってほぼ同等の電力の検知信号が得られるので、検知信号解析器68を飽和させることなく、つまり、検知信号解析器68のディテクタの入力電力範囲を超えてその出力を飽和させることなく、ジョンソンノイズによる低周波数側のS/N比の低下を抑制できる。
さらに、検知信号は低雑音増幅器62により増幅され、増幅された検知信号を図9に一点鎖線で示している。これにより、低周波数側の検知信号の電力を増加させることで、低雑音増幅器62および検知信号解析器68を飽和させることなく、ジョンソンノイズによる低周波数側のS/N比の低下をさらに抑制できる。
図8に戻り、次いで、ステップS130では、測定周波数全体の測定が終了したかどうかを判定する。測定周波数全体の測定が終了していない場合(“No”の場合)は、その測定が終了するまでS120を行う。測定周波数全体の測定が終了した場合(“Yes”の場合)は、ステップS140に進む。
次いで、ステップS140では、測定周波数全体に亘る所定の磁界におけるSパラメータS1 21を上記S120の増幅された検知信号のデータから取得する。
次いで、ステップS150では、電磁石71による直流磁界HBが試料46の磁化が飽和する磁界(飽和磁界)であるかどうかを判定する。直流磁界HBが飽和磁界でない場合(“No”の場合)は、ステップS152に進み、直流磁界HBが飽和磁界の場合(“Yes”の場合)は、ステップS160に進む。
ステップS152では、直流磁界制御器72により電磁石71の印加磁場HBを飽和磁界(n=0)に設定する。飽和磁界は、試料の磁化を飽和する磁界でありかつ励起信号による高周波で交番する励起磁界に対して磁化の動きを極力小さくする十分に大きな磁界に設定する。飽和磁界は、上記式(1)においてSパラメータの上添え字が“0”の場合である。次いで、飽和磁界を印加して、S120およびS130を行い、S140において飽和磁界における測定周波数全体に亘る所定の磁界におけるSパラメータS0 21をS120の増幅された検知信号のデータから取得する。
ステップS160では、測定周波数全体に亘る透磁率を演算する。具体的には、制御演算部80は、検知信号解析器68から、SパラメータS0 21、S1 21を受信して、S100で算出した補正係数Cを用いて上記式(1)に従って複素透磁率を求める演算を行う。制御演算部80は求めた複素透磁率をメモリ、ハードディスクドライブ、クラウド等に記憶すると共に、ディスプレイに表示し、プリンタによって印刷することができる。
上記の透磁率測定方法は、ソフトウェアのプログラムとして制御演算部80により実行してもよく、ハードウェアとして制御演算部80を構成してもよく、これによって、制御演算部80が信号生成解析部64と直流磁界生成部70を制御して透磁率を測定することができる。
なお、上記の測定方法の変形例として、S120において測定帯域全体に亘って励起信号の電力を一定にして検知信号の測定を行ってもよい。
本実施形態によれば、透磁率測定用治具10は、入力用導波路20および出力用導波路30がコプレーナ線路構造を有しており、信号線路である励磁部22bと検知部32bとを小型化することができ、励磁部22bおよび検知部32bを微小な磁性粉末単体に近接して配置することが容易に可能であるので、透磁率の測定感度を向上できる。励磁部22bおよび検知部32bは、それぞれグランド線路23、33と短絡する終端部分であり、励磁部22bと検知部32bとを対向して配置しているので、電場の影響を抑制することができる。検知部32bの検知信号は、試料46の磁化の動きによる誘導起電力による信号であるが、励磁部22bからの励起信号の影響による信号も加わる。検知信号および励起信号による信号の電圧は周波数に比例するので、その比率は同じである。そのため、透磁率測定用治具10は、測定周波数全体に亘って一定の測定感度が得られる。透磁率測定用治具10は、ダンピング抵抗50aおよび50bが入力用導波路20のグランド線路23と出力用導波路のグランド線路33との間に電気的に接続されるので、透磁率測定用治具10で生じたLC共振回路の共振を抑制でき、より精確な透磁率の測定が可能となる。透磁率測定用治具10は、特許文献1および非特許文献1に記載の測定装置における低周波数側で生じる測定感度の低下を極めて抑制することができる。
本実施形態によれば、透磁率測定装置60は、透磁率測定用治具10を備えることで、測定の感度が高く、S/N比が良好であるので、微小な磁性粉末単体の透磁率を測定できる。また、励起信号の電力Piを低周波数側が高周波数側よりも大きく設定することで、低周波数側の検知信号の電力を増加させて、全測定帯域に亘ってほぼ同等の電力の検知信号が得られるので、ジョンソンノイズによる低周波数側のS/N比の低下を抑制できる。また、透磁率測定用治具10は、ダンピング抵抗50aおよび50bにより透磁率測定用治具10で生じたLC共振回路の共振を抑制でき、より精確な透磁率の測定が可能となる。
本実施形態の透磁率測定方法によれば、透磁率測定用治具10を用いることで、測定の感度が高く、S/N比が良好であるので、微小な磁性粉末単体の透磁率を測定が可能となり、また、励起信号の電力Piを低周波数側が高周波数側よりも大きく設定することで、低周波数側の検知信号の電力を増加させて、全測定帯域に亘ってほぼ同等の電力の検知信号が得られるので、低周波数側のS/N比の低下を抑制できる。また、透磁率測定用治具10は、ダンピング抵抗50aおよび50bにより透磁率測定用治具10で生じたLC共振回路の共振を抑制でき、より精確な透磁率の測定が可能となる。
上記の実施形態の透磁率測定用治具10の変形例である一実施形態を以下に説明する。
図10は、本発明の他の実施形態に係る透磁率測定用治具の概略構成を示す上面図であり、図11はそのA2-A2矢視断面図、図12はB2-B2矢視断面図である。
図10~図12を参照するに、透磁率測定用治具100は、励起信号を伝送する入力用導波路120と、励起信号によって発生した磁界が試料46に印加され、その励起磁界によって試料の磁化に動きが生じて磁束が変化し、それにより誘起した逆起電力である検知信号を伝送する出力用導波路130とを有する。本実施形態では、入力用導波路120および出力用導波路130は、マイクロストリップ線路構造を有する。透磁率測定用治具100は、説明の便宜のため入力用導波路120が紙面下側に配置され、出力用導波路130が紙面上側に配置されているが、上下逆でもよく、特に限定されない。
入力用導波路120は、誘電体材料からなる基板121の第1面121a上に信号線路122と、その裏面の第2面121bおよび端面121c上にグランド線路123とを有する。信号線路122は、励起信号の入力部122a側から端面121cに形成されたグランド線路123と結合される短絡端122sに亘って延在する。信号線路122は、短絡端122sの部分(短絡端122sから入力部122a側の部分)が試料46に印加する磁界を発生する励磁部122bとなる。試料46は、励磁部122bと検知部132bとが対向する位置、例えば、励磁部122bと検知部132bに挟まれた位置に配置される。励磁部122bは、所定の幅で長さ方向(X方向)に延在する。
信号線路122は、励起信号の入力部122a側に同軸ケーブル40の信号線40aが接続される。信号線路122は、透磁率測定用治具10の信号線路22と同様に形成され、その詳細な説明は省略する。グランド線路123は、基板121の第2面121bおよび端面121c上に設けられ、入力部123a側において同軸ケーブル40の絶縁部材40cを覆うグランド線40bが接続される。グランド線路123は、端面121c上に形成された部分において励磁部122bの短絡端122sと連続することで、信号線路122と結合する。グランド線路123は、平面視において、第2面121b全体に形成してもよく、先端に向かって幅(Y方向の長さ)が次第に狭くなるように形成してもよい。
出力用導波路130は、入力用導波路120と同様に形成される。信号線路132は、グランド線路133と結合される短絡端132sの部分(短絡端132sから出力部132a側の部分)が、試料に磁界を印加することで発生した磁束を検知する検知部132bとなる。検知部132bは励磁部122bに対向して所定の距離をもって平行に配置され、検知部132bと励磁部122bとの間に試料46が配置される。
信号線路132は、入力用導波路120と同様に形成され、励起信号の出力部132a側に同軸ケーブル43の信号線43aが接続される。グランド線路133は、入力用導波路120のグランド線路123と同様に形成され、その詳細な説明は省略する。
透磁率測定用治具100は、励磁部122bと検知部132bとの間に、励磁部122bと検知部132bとの間を所定の距離離隔するために、非磁性絶縁層47を設けてもよい。
図12を参照するに、透磁率測定用治具100は、入力用導波路120のグランド線路123と出力用導波路のグランド線路133との間にダンピング抵抗50a,50bが電気的に接続される。具体的には、出力用導波路130の基板131の第2面131b上のグランド線路133と電極151aとに一方のダンピング抵抗50aが実装され、グランド線路133と電極151bとに他方のダンピング抵抗50bが実装される。電極151aおよび電極151bは、第2面131b上に形成されているが、グランド線路123とは離隔され電気的に直接接続されていない。
電極151aは、基板131の第1面31aに形成された接続用電極153aと基板131を貫通するビア152aを介して電気的に接続される。接続用電極153aは、基板121の第1面121aに形成された接続用電極154aと、基板121と基板131とがネジ55の保持部材11aへの締め付けによって互いに接触することで導通する。接続用電極154aは入力用導波路120のグランド線路123と基板121を貫通するビア155aを介して電気的に接続される。これにより、一方のダンピング抵抗50aが入力用導波路120のグランド線路123と出力用導波路のグランド線路133とに電気的に接続される。他方のダンピング抵抗50bも同様にして、電極151b、ビア152b、接続用電極153b、154bおよびビア155bを介して入力用導波路120のグランド線路123と出力用導波路130のグランド線路133とに電気的に接続される。
ダンピング抵抗50aおよび50bは、励磁部122bおよび検知部132bに対して、その両側に対称に配置されている。これにより、高周波数側の共振を効果的に抑制できる。なお、ダンピング抵抗50aおよび50bは、その合成抵抗値と同じ抵抗値のダンピング抵抗を一方だけに用いてもよい。なお、ダンピング抵抗50aおよび50bの配置はこれに限定されない。
透磁率測定用治具100による透磁率の測定原理は透磁率測定用治具10と同様である。検知部132bおよび励磁部122bの幅、並びに、その幅と、検知部132bと励磁部122bとの距離との関係は透磁率測定用治具10と同様である。
本実施形態によれば、透磁率測定用治具100は、先の実施形態の透磁率測定用治具10と同様の効果を有する。入力用導波路120および出力用導波路130がマイクロストリップ線路構造を有しており、信号線路である励磁部122bと検知部132bとを小型化することができ、励磁部122bおよび検知部132bを微小な磁性粉末単体に近接して配置することが容易に可能であるので、透磁率の測定感度が向上できる。励磁部122bおよび検知部132bは、それぞれグランド線路123、133と短絡する終端部分であり、励磁部122bと検知部132bとを対向して配置しているので、電場の影響を抑制することができる。検知部132bの検知信号は、試料46の磁化の動きによる誘導起電力による信号であるが、励磁部122bからの励起信号の影響による信号も加わる。検知信号および励起信号による信号の電圧は周波数に比例するので、その比率は同じである。そのため、透磁率測定用治具100は、測定周波数全体に亘って一定の測定感度が得られる。透磁率測定用治具100は、ダンピング抵抗50aおよび50bが入力用導波路120のグランド線路123と出力用導波路のグランド線路133との間に電気的に接続されるので、透磁率測定用治具100で生じたLC共振回路の共振を抑制でき、より精確な透磁率の測定が可能となる。透磁率測定用治具100は、特許文献1および非特許文献1に記載の測定装置における低周波数側で生じる測定感度の低下を極めて抑制することができる。
図13は、本発明の一実施形態に係る透磁率測定用治具のダンピング抵抗に対する伝送特性を示す図である。図1~図4に示した透磁率測定用治具を用いた。図13の横軸は励起信号の周波数を示し、縦軸は、SパラメータのS21の絶対値であり、透磁率測定用治具の入力側から出力側の透過係数である。特性線の右側に、その制動係数ζおよびダンピング抵抗値を示した。
図13を参照するに、周波数が1GHz~6GHzにおいて、ダンピング抵抗値(2つの並列のダンピング抵抗50aおよび50bの合成値)が9Ω~280Ωの範囲で透過係数がほぼ直線状となり、透磁率測定用治具が形成するLC共振回路の共振が抑制されていること分かる。この範囲にダンピング抵抗の抵抗値を設定することが好ましい。ここで使用した透磁率測定用治具は、ダンピング抵抗を設けない場合の共振周波数が1.07GHzであることと(図13に示す最下部の特性線)、インダクタンスLが8.4nHであったことから、制動係数ζは、下記(2)式で表される。
ζ=28/Rd ・・・ (2)
ここで、Rdはダンピング抵抗の抵抗値(Ω)である。したがって、R=9Ω~280Ωに対応する制動係数ζは0.1~3であり、制動係数ζが0.1~3になるようにダンピング抵抗の抵抗値を選択することが好ましいことが分かる。
[実施例]
図1~4に示した透磁率測定用治具10を含む図7に示した透磁率測定装置を用いて図8に示した透磁率測定方法により試料としてパーマロイの磁性粉末1個の複素透磁率を測定した。磁性粉末は、組成がNi80Fe20(原子%)であり、1個の大きさが約180μm×100μm、厚さ0.5μmの不定形の扁平体である。磁性粉末は、励磁部に一つの面に粘着剤を有する厚さ35μmのポリイミドテープを用いて貼り付け、他の面に検知部が接触するように配置した。
電磁石により印加した直流磁界は、所定の磁界(n=1)を無磁界(零T)とし、飽和磁界を1.5Tに設定した。測定周波数を10MHz~20GHzとして、励起信号の電力と帯域幅を下記の表に示す設定とした。信号生成解析部64として、米国キーサイト・テクノロジー社製のベクトルネットワークアナライザ(モデル:N5222A)を用いた。低雑音増幅器62として、アンリツ社製の広帯域ローノイズアンプ(モデル:AH14149A)を用いた。
Figure 0007258349000002
図14は、本発明に係る実施例の複素透磁率の周波数特性を示す図である。図14を参照するに、大きさが100μm~300μm程度で厚さが1μm~2μmの微小な磁性粉末単体でも複素透磁率の実部および虚部が10MHz~20GHzに亘って複素透磁率が安定して精確に測定できていることが分かる。なお、補正係数Cは8.7×10-5である。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。
10,100 透磁率測定用治具
20,120 入力用導波路
21,31,121,131 基板
22,32,122,132 信号線路
22b,122b 励磁部
23,33,123,133 グランド線路
30,130 出力用導波路
32b,132b 検知部
47 非磁性絶縁層
50,50a,50b ダンピング抵抗
60 透磁率測定装置
64 信号生成解析部
70 直流磁界生成部
80 制御演算部

Claims (12)

  1. 第1の導波路であって、その信号線路が一端側に励起信号により磁界を発生する励磁部を有する、前記第1の導波路と、
    第2の導波路であって、その信号線路が一端側に前記励磁部で発生した磁界が測定試料に作用して検知信号が誘起する検知部を有し、該検知部が前記励磁部上に所定の距離をもって対向して配置してなる、前記第2の導波路と、
    前記第1の導波路のグランド線路と前記第2の導波路のグランド線路との間に接続されたダンピング抵抗と、を備える、透磁率測定用治具。
  2. 前記ダンピング抵抗は、当該透磁率測定用治具が形成する共振回路の共振を抑制する、請求項1記載の透磁率測定用治具。
  3. 前記共振回路はLCR共振回路であり、前記ダンピング抵抗は、該LCR共振回路の制動係数が0.1以上3.0以下の範囲になるように選択されてなる、請求項2記載の透磁率測定用治具。
  4. 前記第1の導波路および第2の導波路は、各々、第1の誘電体基板および第2の誘電体基板の主面に信号線路とその両側にグランド線路とを有し、前記信号線路が、前記励磁部および前記検知部の各々の前記一端で、各々の前記グランド線路と短絡する、請求項1~3のうちいずれか一項記載の透磁率測定用治具。
  5. 前記ダンピング抵抗は、前記第1の導波路の前記信号線路に対する一方の側のグランド線路と前記第2の導波路の前記信号線路に対する前記一方の側と同じ側のグランド線路とに接続されてなる、請求項4記載の透磁率測定用治具。
  6. 前記ダンピング抵抗は2つの抵抗素子であり、その一つの抵抗素子が前記第1の導波路の前記信号線路の一方の側のグランド線路と前記第2の導波路の前記信号線路の前記一方の側と同じ側のグランド線路とに接続されてなり、他の一つ抵抗素子が前記第1の導波路の前記信号線路の他方の側のグランド線路と前記第2の導波路の前記信号線路の前記他方の側と同じ側のグランド線路とに接続されてなる、請求項4記載の透磁率測定用治具。
  7. 前記第1および第2の導波路は、各々、誘電体基板の表面に信号線路とその誘電体基板の裏側にグランド線路とを有し、前記信号線路が、前記励磁部および前記検知部の各々の前記一端で、各々の前記グランド線路と短絡する、請求項1~3のうちいずれか一項記載の透磁率測定用治具。
  8. 請求項1~7のうちいずれか一項記載の透磁率測定用治具と、
    前記透磁率測定用治具の入力部に接続され、前記励起信号を生成する信号生成手段と、
    前記透磁率測定用治具の出力部に接続され、前記検知信号を解析する信号解析手段と、
    前記解析した信号から透磁率を求める演算手段と、
    を備える、透磁率測定装置。
  9. 前記入力部に低周波数側において高周波数側よりも大きな電力の前記励起信号を供給するように前記信号生成手段を制御する励起信号制御手段をさらに備える、請求項8記載の透磁率測定装置。
  10. 前記出力部と前記信号解析手段との間に前記検知信号を増幅する増幅手段をさらに備える、請求項8または9記載の透磁率測定装置。
  11. 前記透磁率測定用治具の前記励磁部および検知部に励起信号および検知信号の伝送方向に沿って直流磁界を印加する直流磁界印加手段をさらに備える請求項8~10のうちいずれか一項記載の透磁率測定装置。
  12. 請求項8~11のうちいずれか一項記載の透磁率測定装置を用いて透磁率を測定する方法であって、
    測定帯域毎に励起信号の電力を設定して励起信号を入力し検知信号を測定するステップであって、前記透磁率測定用治具の入力部に低周波数側において高周波数側よりも大きな電力の前記励起信号を供給するように前記信号生成手段を制御する、該ステップを含む、前記方法。
JP2019163605A 2019-09-09 2019-09-09 透磁率測定用治具、透磁率測定装置および透磁率測定方法 Active JP7258349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019163605A JP7258349B2 (ja) 2019-09-09 2019-09-09 透磁率測定用治具、透磁率測定装置および透磁率測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163605A JP7258349B2 (ja) 2019-09-09 2019-09-09 透磁率測定用治具、透磁率測定装置および透磁率測定方法

Publications (2)

Publication Number Publication Date
JP2021043008A JP2021043008A (ja) 2021-03-18
JP7258349B2 true JP7258349B2 (ja) 2023-04-17

Family

ID=74862530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163605A Active JP7258349B2 (ja) 2019-09-09 2019-09-09 透磁率測定用治具、透磁率測定装置および透磁率測定方法

Country Status (1)

Country Link
JP (1) JP7258349B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058243A (ja) 2006-09-01 2008-03-13 Tdk Corp 磁界発生装置及びそれを用いた透磁率測定装置
JP2015172497A (ja) 2014-03-11 2015-10-01 学校法人東北学院 磁性体の透磁率計測装置および磁性体の透磁率計測方法
WO2018175080A1 (en) 2017-03-20 2018-09-27 Headway Technologies, Inc. Scanning ferromagnetic resonance (fmr) for wafer-level characterization of magnetic films and multilayers
JP2020159886A (ja) 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 透磁率測定用治具、透磁率測定装置および透磁率測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085651B2 (ja) * 1996-09-06 2000-09-11 凌和電子株式会社 磁界センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058243A (ja) 2006-09-01 2008-03-13 Tdk Corp 磁界発生装置及びそれを用いた透磁率測定装置
JP2015172497A (ja) 2014-03-11 2015-10-01 学校法人東北学院 磁性体の透磁率計測装置および磁性体の透磁率計測方法
WO2018175080A1 (en) 2017-03-20 2018-09-27 Headway Technologies, Inc. Scanning ferromagnetic resonance (fmr) for wafer-level characterization of magnetic films and multilayers
JP2020159886A (ja) 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 透磁率測定用治具、透磁率測定装置および透磁率測定方法

Also Published As

Publication number Publication date
JP2021043008A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP2007192820A (ja) 電流測定装置
Kostylev Strong asymmetry of microwave absorption by bilayer conducting ferromagnetic films in the microstrip-line based broadband ferromagnetic resonance
Maksymov et al. Microwave eddy-current shielding effect in metallic films and periodic nanostructures of sub-skin-depth thicknesses and its impact on stripline ferromagnetic resonance spectroscopy
JP7162344B2 (ja) 透磁率測定用治具、透磁率測定装置および透磁率測定方法
Mukherjee et al. A self-biased, low-frequency, miniaturized magnetoelectric antenna for implantable medical device applications
CN103197263B (zh) 具有可调偏置磁路的小型交变磁电传感器
Das et al. Control of magnetic and electric responses with electric and magnetic fields in magnetoelectric heterostructures
JP2020197479A (ja) 小型で超高感度の磁気インピーダンスセンサ、及びこれを用いた非破壊検査装置
Xu et al. Macro-spin modeling and experimental study of spin-orbit torque biased magnetic sensors
WO2022085441A1 (ja) 透磁率及び誘電率を測定する測定装置及び測定方法
JP7258349B2 (ja) 透磁率測定用治具、透磁率測定装置および透磁率測定方法
Lei et al. A low power micro fluxgate sensor with improved magnetic core
Erkovan et al. Ferromagnetic resonance investigation of Py/Cr multilayer system
Xu et al. Experimental validation of multiferroic antennas in GHz frequency range
WO2023087740A1 (zh) 一种磁传感器和电子设备
Kennewell et al. Calculation of spin wave mode response induced by a coplanar microwave line
Banuazizi et al. Magnetic force microscopy of an operational spin nano-oscillator
TWI759018B (zh) 電磁特性量測裝置、電磁特性量測系統以及電磁特性量測方法
Sukstanskii et al. Impedance and surface impedance of ferromagnetic multilayers: the role of exchange interaction
Seddaoui et al. Nonlinear electromagnetic response of ferromagnetic metals: Magnetoimpedance in microwires
Messer et al. Broadband calibration of radio-frequency magnetic induction probes
JP7448898B2 (ja) 透磁率計測用プローブ及びそれを用いた透磁率計測装置
Lei et al. Low power integrated fluxgate sensor with a spiral magnetic core
Li et al. Magnetic measurement and analysis of c-type amorphous by an improved adjustable air gap tester
Jin et al. Experimental measurements and analysis of thermal magnetization noise in GMR sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7258349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150