JP7255086B2 - Charge/Discharge Distribution Control Device, Charge/Discharge Distribution Control System, and Charge/Discharge Distribution Control Method - Google Patents

Charge/Discharge Distribution Control Device, Charge/Discharge Distribution Control System, and Charge/Discharge Distribution Control Method Download PDF

Info

Publication number
JP7255086B2
JP7255086B2 JP2018083461A JP2018083461A JP7255086B2 JP 7255086 B2 JP7255086 B2 JP 7255086B2 JP 2018083461 A JP2018083461 A JP 2018083461A JP 2018083461 A JP2018083461 A JP 2018083461A JP 7255086 B2 JP7255086 B2 JP 7255086B2
Authority
JP
Japan
Prior art keywords
charge
storage battery
discharge
priority
distribution control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083461A
Other languages
Japanese (ja)
Other versions
JP2018191500A (en
Inventor
巨己 林
達也 飯坂
浩一郎 吉見
英幸 近藤
尚孝 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JP2018191500A publication Critical patent/JP2018191500A/en
Application granted granted Critical
Publication of JP7255086B2 publication Critical patent/JP7255086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充放電配分制御装置、充放電配分制御システム、および充放電配分制御方法に関する。 The present invention relates to a charge/discharge distribution control device, a charge/discharge distribution control system, and a charge/discharge distribution control method.

従来、蓄電池を用いたシステムにおいて、1つの制御装置は1つの蓄電池を制御していた。例えば、制御装置は、充放電に関する依頼に応じて1つの蓄電池の充放電制御を行っていた。 Conventionally, in a system using storage batteries, one control device controls one storage battery. For example, the control device performs charging/discharging control of one storage battery in response to a request regarding charging/discharging.

近年、蓄電池システムの大型化により、1つの制御装置が複数の蓄電池を制御するシステムが現れた(特許文献1)。特許文献1に開示されている発明は、1つの制御装置が複数の電池を制御するものである。ここでは、制御装置は、制御対象である各蓄電池の充放電量を個別に制御できる。このとき、各蓄電池に配分される充放電量は、蓄電池の効率と、SOC(State of Charge 充電残量)による電池の劣化状態から判定される。 In recent years, due to the increase in size of storage battery systems, a system in which one control device controls a plurality of storage batteries has emerged (Patent Document 1). In the invention disclosed in Patent Document 1, one control device controls a plurality of batteries. Here, the control device can individually control the charge/discharge amount of each storage battery to be controlled. At this time, the charge/discharge amount allocated to each storage battery is determined from the efficiency of the storage battery and the state of deterioration of the battery based on the SOC (State of Charge).

特開2014―171335号公報JP 2014-171335 A

しかし、蓄電池の劣化速度は、SOC以外にその蓄電池の温度による影響も受ける。また上記特許文献における蓄電池システムにおいては、蓄電池は、全て同一種類であると共に、かつ同一地点に設置されている。このため、異なる種類の電池が蓄電池システムにおいて共存する場合には、制御装置は、各蓄電池に対し、その劣化状態に合わせた充放電量の配分を行えない。また、上記特許文献では、蓄電池は同一個所に設置されていることが前提となっており、温度条件等が異なる地点に蓄電池が分散して設置されている場合には、制御装置は充放電量の配分を各蓄電池の状態に合せて行えない。 However, the deterioration rate of the storage battery is also affected by the temperature of the storage battery in addition to the SOC. Moreover, in the storage battery system in the above patent document, the storage batteries are all of the same type and installed at the same location. Therefore, when batteries of different types coexist in a storage battery system, the control device cannot allocate the charge/discharge amount to each storage battery according to the state of deterioration thereof. In addition, in the above patent document, it is assumed that the storage batteries are installed in the same place. cannot be distributed according to the state of each storage battery.

一方、近年では分散する複数の蓄電池を統合して制御する試みがなされている。この場合において蓄電池は、例えば北海道と九州などのように気候が異なる場所に設置されることもある。これらの蓄電池を一様に制御することにより、比較的気温の高い地域に設置されている蓄電池の劣化が早まる。また、同じ場所に設置された蓄電池であっても、その種類が異なると、同じ温度でも劣化の進行度合いが異なる。また、同じ地点に設置された同じ電池であっても、充放電による内部ジュール熱により温度に差が生じ、劣化速度が変化する。 On the other hand, in recent years, attempts have been made to integrate and control a plurality of distributed storage batteries. In this case, the storage batteries may be installed in places with different climates, such as Hokkaido and Kyushu. By uniformly controlling these storage batteries, deterioration of storage batteries installed in areas with relatively high temperatures is accelerated. Moreover, even if the storage batteries are installed in the same place, different types of storage batteries progress in different degrees of deterioration even at the same temperature. Moreover, even if the same battery is installed at the same location, the internal Joule heat caused by charging and discharging causes a difference in temperature, which causes a change in the rate of deterioration.

本発明は、複数の蓄電池を含む蓄電池システムにおける蓄電池の長寿命化を目的とする。 An object of the present invention is to extend the life of storage batteries in a storage battery system including a plurality of storage batteries.

電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電要求量を受けて、充放電指令を送信する充放電配分制御装置は、劣化速度導出部と配分率決定部と充放電量算出部と充放電指令部とを備える。劣化速度導出部は、各蓄電池の内部温度と各蓄電池の劣化速度特性に基づいて各蓄電池の劣化速度を求める。配分率決定部は、劣化速度導出部の出力信号を受け、劣化速度がより小さい蓄電池に対してより大きい配分率を設定する。充放電量算出部は、配分率決定部の出力信号を受け、充放電要求量に対し各蓄電池の配分率を乗算して得た各値を各蓄電池の最大充放電量と比較して、各蓄電池の充放電指令値を算出する。充放電指令部は、充放電量算出部の出力信号を受け、複数の蓄電ユニットの各々に充放電指令値による充放電指令を送信する。 A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including storage batteries that are interconnected to a power system via a power converter. A rate determining unit, a charging/discharging amount calculating unit, and a charging/discharging command unit are provided. The deterioration rate deriving unit obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery. The distribution rate determining section receives an output signal from the deterioration rate deriving section and sets a larger distribution rate for a storage battery with a lower deterioration rate. The charge/discharge amount calculation unit receives the output signal from the allocation rate determination unit, compares each value obtained by multiplying the charge/discharge request amount by the allocation rate of each storage battery with the maximum charge/discharge amount of each storage battery, Calculate the charge/discharge command value of the storage battery. The charge/discharge command section receives an output signal from the charge/discharge amount calculation section, and transmits a charge/discharge command based on a charge/discharge command value to each of the plurality of power storage units.

異なる種類、異なる環境下の各蓄電池の劣化を最小化し、各蓄電池の長寿命化を実現できる。 By minimizing the deterioration of each storage battery under different types and different environments, it is possible to extend the life of each storage battery.

蓄電池の温度と劣化速度との関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the temperature of a storage battery and the rate of deterioration; 蓄電池の内部温度の推移を示す図である。It is a figure which shows transition of the internal temperature of a storage battery. 第1から7の実施形態に係る充放電配分制御システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the charge/discharge distribution control system which concerns on 1st-7th embodiment. 第1、3、4、6の実施形態に係る充放電配分制御装置の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the charge/discharge distribution control apparatus which concerns on 1st, 3rd, 4th, and 6th embodiment. 第1から6の実施形態に係る充放電配分制御装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the charge/discharge distribution control apparatus which concerns on 1st-6th embodiment. 第1、3から7の実施形態に係る充放電配分制御装置により行われる処理のフローの一例を示す図である。FIG. 5 is a diagram showing an example of the flow of processing performed by the charge/discharge distribution control devices according to the first, third to seventh embodiments; 充放電配分制御装置による配分率決定処理について説明するための図である。It is a figure for demonstrating the distribution rate determination process by a charge/discharge distribution control apparatus. 第2から4、6の実施形態に係る充放電配分制御装置の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the charge/discharge distribution control apparatus which concerns on 2nd-4th, 6th embodiment. 第2から7の実施形態に係る充放電配分制御装置により行われる処理のフローの一例を示す図である。FIG. 7 is a diagram showing an example of the flow of processing performed by the charge/discharge distribution control devices according to the second to seventh embodiments; 充放電配分制御装置による優先順位決定処理について説明するための図である。It is a figure for demonstrating the priority determination process by a charge/discharge distribution control apparatus. 蓄電池の内部温度とSOCと劣化速度との関係を平面により表した図である。FIG. 3 is a diagram showing the relationship between the internal temperature of a storage battery, the SOC, and the rate of deterioration in a plane. 第5、6の実施形態に係る充放電配分制御装置の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the charge/discharge distribution control apparatus which concerns on 5th, 6th embodiment. 第6の実施形態における蓄電池情報の一例を示す図である。It is a figure which shows an example of the storage battery information in 6th Embodiment. 第7の実施形態に係る充放電配分制御装置の機能ブロックの一例を示す図である。FIG. 13 is a diagram showing an example of functional blocks of a charge/discharge distribution control device according to a seventh embodiment; 第7の実施形態に係る充放電配分制御装置の表示部により表示される画像の一例を示す図である。FIG. 11 is a diagram showing an example of an image displayed by a display unit of a charge/discharge distribution control device according to a seventh embodiment; 第7の実施形態に係る充放電配分制御装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the charge/discharge distribution control apparatus which concerns on 7th Embodiment. 第8の実施形態に係る充放電配分制御システムの構成の一例を示す図である。FIG. 20 is a diagram showing an example of the configuration of a charge/discharge distribution control system according to an eighth embodiment; 第8の実施形態における上位制御装置及び各下位制御装置の機能ブロックの一例を示す図である。FIG. 23 is a diagram showing an example of functional blocks of a higher-level control device and each lower-level control device in an eighth embodiment; 第8の実施形態に係る上位制御装置または下位制御装置のハードウェア構成の一例を示す図である。FIG. 21 is a diagram illustrating an example of a hardware configuration of a higher-level control device or a lower-level control device according to an eighth embodiment; FIG. 第8の実施形態に係る上位制御装置及び下位制御装置により行われる処理の一例を示すシーケンス図である。FIG. 14 is a sequence diagram showing an example of processing performed by a higher-level control device and a lower-level control device according to the eighth embodiment; 第8の実施形態における下位制御装置の記憶部に記憶される情報の一例を示す図である。FIG. 22 is a diagram showing an example of information stored in a storage unit of a lower control device in the eighth embodiment; FIG. 第8の実施形態における上位制御装置の記憶部に記憶される情報の一例を示す図である。FIG. 22 is a diagram showing an example of information stored in a storage unit of a host controller in the eighth embodiment; FIG.

(第1の実施形態)
本実施形態に係る充放電配分制御システムは、当該システムが備える複数の蓄電池のうち、他と比較して劣化速度の小さい蓄電池に対し大きい充放電量(充放電の電気量)が割り振られることにより、システム全体として劣化の進行を遅らせるようにするものである。ここで、劣化速度は蓄電池の内部温度によって変化する量であることから、本実施形態に係る充放電配分制御システムにおける充放電配分制御装置は、各蓄電池の内部温度から各蓄電池の劣化速度を求め、これに基づき各蓄電池に対し充放電の配分を行う。
(First embodiment)
The charge/discharge distribution control system according to the present embodiment allocates a large charge/discharge amount (charge/discharge amount of electricity) to a storage battery having a lower deterioration rate than others among the plurality of storage batteries provided in the system. , to delay the progression of deterioration of the system as a whole. Here, since the deterioration rate is an amount that varies depending on the internal temperature of the storage battery, the charge/discharge distribution control device in the charge/discharge distribution control system according to the present embodiment obtains the deterioration rate of each storage battery from the internal temperature of each storage battery. , based on which the charge/discharge is distributed to each storage battery.

図1は、蓄電池の温度と劣化速度との関係の一例を示す図である。図1に示すように蓄電池の劣化速度は、一般的に内部温度が高くなるほど大きくなる。ここで蓄電池A、B、Cは互いに異なる種類の蓄電池である。図1に示すように蓄電池の種類により同じ温度下でも劣化速度が異なる。また、内部温度の変化に対する劣化速度の変化(勾配)の大きさも、各蓄電池では異なる。なお、図1では各蓄電池の内部温度と劣化速度との関係は1次式で近似されるものとして表しているが、これに限定されず、例えば2次式や3次式で近似されてもよく、または表形式等で表されてもよい。なお、以下では各電池の劣化速度と内部温度との関係は式により表されるものとし、この内部温度と劣化速度の関係式を特性式(または第1の特性式)と称する。この特性式は、後述する充放電配分制御装置が保持する。また、この特性式のように蓄電池の内部温度等と劣化速度の対応付けを劣化速度特性とも称する。特性式は、蓄電池毎に予め定められた既知のものである。 FIG. 1 is a diagram showing an example of the relationship between the temperature of a storage battery and the rate of deterioration. As shown in FIG. 1, the rate of deterioration of a storage battery generally increases as the internal temperature increases. Here, storage batteries A, B, and C are storage batteries of different types. As shown in FIG. 1, the rate of deterioration differs depending on the type of storage battery even under the same temperature. In addition, the magnitude of change (slope) in deterioration rate with respect to change in internal temperature is also different for each storage battery. In FIG. 1, the relationship between the internal temperature and the deterioration rate of each storage battery is shown as being approximated by a linear expression, but it is not limited to this, and may be approximated by a secondary or cubic expression, for example. or may be represented in tabular form or the like. In the following description, the relationship between the deterioration rate and the internal temperature of each battery is expressed by a formula, and this relational expression between the internal temperature and the deterioration rate is called a characteristic formula (or a first characteristic formula). This characteristic formula is held by a charge/discharge distribution control device, which will be described later. Further, the correspondence between the internal temperature and the like of the storage battery and the deterioration rate like this characteristic formula is also called the deterioration rate characteristic. The characteristic formula is a known one that is predetermined for each storage battery.

ここで、蓄電池の内部温度の測定方法について説明を行う。本実施形態では、蓄電池が設置されている場所に温度計測装置が配置されているものとする。本実施形態では、蓄電池毎に温度計測装置が配置される場合を考える。ただし、これには限定されず、同一箇所にある複数の蓄電池に対し、1つの温度計測装置が設けられていてもよく、この場合には、蓄電池同士の間隔やシステム内における蓄電池の密度や空調の状態等により、温度計測装置により得られる値を、各蓄電池用に適宜、補正してもよい。 Here, a method for measuring the internal temperature of the storage battery will be described. In this embodiment, it is assumed that the temperature measuring device is arranged at the place where the storage battery is installed. In this embodiment, a case is considered in which a temperature measuring device is arranged for each storage battery. However, it is not limited to this, and one temperature measuring device may be provided for a plurality of storage batteries in the same location. The value obtained by the temperature measuring device may be appropriately corrected for each storage battery depending on the state of the temperature.

各温度計測装置は、蓄電池に接触するよう設けられ蓄電池の外部温度を測定するものでも、蓄電池と間隔を空けて設けられ蓄電池の周辺環境の気温を求めるものであってもよい。あるいは各温度計測装置は、蓄電池に内蔵され、蓄電池内部の温度を計測するものであってもよい。本実施形態に係る温度計測装置は、蓄電池の周辺環境の気温を計測するものとする。 Each temperature measuring device may be provided in contact with the storage battery to measure the external temperature of the storage battery, or may be provided spaced apart from the storage battery to obtain the ambient temperature of the storage battery. Alternatively, each temperature measuring device may be built in the storage battery and measure the temperature inside the storage battery. The temperature measuring device according to this embodiment measures the ambient temperature of the storage battery.

上述のように、温度計測装置により得られる温度は、蓄電池の内部温度ではない場合がある。しかし、蓄電池の劣化速度に影響を与えるものは蓄電池の内部温度である。このため、各温度計測装置により測定された温度に対し、補正を行うことで、蓄電池の内部温度の推定値を得る。この処理は充放電配分制御装置により行われる。 As described above, the temperature obtained by the temperature measuring device may not be the internal temperature of the storage battery. However, it is the internal temperature of the storage battery that affects the deterioration rate of the storage battery. Therefore, by correcting the temperature measured by each temperature measuring device, an estimated value of the internal temperature of the storage battery is obtained. This processing is performed by the charge/discharge distribution control device.

図2は蓄電池の内部温度の推移を示す図である。図2の上段の図に示されるものは、蓄電池の内部温度の時間的な変化である。図2の上段の図においての計測点温度とは、温度計測装置により計測された、蓄電池の設置箇所の気温である。 FIG. 2 is a diagram showing changes in the internal temperature of the storage battery. What is shown in the upper diagram of FIG. 2 is the temporal change in the internal temperature of the storage battery. The measurement point temperature in the upper diagram of FIG. 2 is the air temperature at the location where the storage battery is installed, which is measured by the temperature measurement device.

図2における下段の図は、任意の蓄電池が、どの期間充放電を行わず、どのタイミングで充放電を開始し、どの期間充放電を継続し、どのタイミングで充放電を終了したかを示す図である。図2の下段の図に示されるように、期間aにおいて蓄電池は充放電を行っておらず、期間aと期間bの境界の時点t0において、蓄電池の充放電が開始されている。また期間bにおいて蓄電池は充放電処理を継続し、期間bと期間cの境界の時点t1において充放電が中止されている。また期間cにおいて蓄電池は充放電処理を実行していない。 The lower diagram in FIG. 2 is a diagram showing when an arbitrary storage battery is not charged or discharged, at what timing charging and discharging is started, at what period charging and discharging is continued, and at what timing charging and discharging is completed. is. As shown in the lower part of FIG. 2, the storage battery is not charged or discharged during the period a, and charging/discharging of the storage battery is started at time t0 on the boundary between the periods a and b. In period b, the storage battery continues charging and discharging, and charging and discharging is stopped at time t1 on the boundary between period b and period c. Moreover, the storage battery is not performing the charging/discharging process in the period c.

図2の下段の図に対応させて上段の図を参照すると、期間aは、蓄電池の内部と周辺環境が熱平衡の状態にある期間であり、蓄電池の内部温度は、計測点温度に近いかそれに等しく、また大きな変動もない。時刻t0において充放電処理が開始されると、蓄電池の内部温度は、内部に発生するジュール熱によって上昇を始める。そして、期間bにおいて蓄電池の内部温度は上昇する。時刻t1において充放電処理が中止されると、蓄電池の内部温度は下降し始め、期間cにおいて当該内部温度は、計測点温度かそれに近い温度になるまで下降し続ける。このため、蓄電池の内部温度を以下の式(1)により定義し、充放電配分制御装置はこの式(1)を用いて蓄電池の内部温度を求める。 Referring to the upper diagram corresponding to the lower diagram of FIG. 2, period a is a period in which the inside of the storage battery and the surrounding environment are in a state of thermal equilibrium, and the internal temperature of the storage battery is close to or equal to the measurement point temperature. Equal and without significant variation. When the charging/discharging process starts at time t0, the internal temperature of the storage battery begins to rise due to Joule heat generated inside. Then, the internal temperature of the storage battery rises during the period b. When the charging/discharging process is stopped at time t1, the internal temperature of the storage battery begins to drop, and during period c, the internal temperature continues to drop until it reaches the measurement point temperature or a temperature close to it. Therefore, the internal temperature of the storage battery is defined by the following equation (1), and the charge/discharge distribution control device uses this equation (1) to obtain the internal temperature of the storage battery.

蓄電池の内部温度=計測点温度+f(x,y,z1,z2)・・・(1) Internal temperature of storage battery=Measurement point temperature+f(x, y, z1, z2) (1)

ここで、x:最新の充放電開始時点から現時点までの経過時間、y:最新の充放電終了時点から現時点までの経過時間、z1:最新の充放電処理における単位時間当たりの充放電量、z2:前回の充放電処理における単位時間当たりの充放電量、である。 Here, x: elapsed time from the latest charge/discharge start point to the present time, y: elapsed time from the latest charge/discharge end point to the present point, z1: charge/discharge amount per unit time in the latest charge/discharge process, z2 : Charge/discharge amount per unit time in the previous charge/discharge treatment.

式(1)について詳細に説明する。第1項は、設置環境の気温により蓄電池の内部温度が上昇することから設けられている。第2項の関数fは、蓄電池の種類によって決まる関数であり、後述する充放電配分制御装置による蓄電池の内部温度の算出に先立って決められる。この関数の決め方は後述する。式(1)の第2項について、現時点において充放電を行っている場合とそうでない場合とに分けて説明を行う。 Formula (1) will be described in detail. The first term is provided because the internal temperature of the storage battery rises due to the temperature of the installation environment. The function f of the second term is a function determined by the type of storage battery, and is determined prior to calculation of the internal temperature of the storage battery by a charge/discharge distribution control device, which will be described later. How to determine this function will be described later. The second term of the formula (1) will be described separately for the case where charging/discharging is currently being performed and the case where it is not.

充放電が行われているときは、最新の充放電開始時点から現時点までの時間の長さxに応じて蓄電池の内部温度は上昇する。このため第2項の値は、xの値が大きくなるに従って大きくなる。 When charging/discharging is being performed, the internal temperature of the storage battery rises according to the length of time x from the latest charging/discharging start point to the present time. Therefore, the value of the second term increases as the value of x increases.

また、前回の充放電処理の後に十分時間が経過せず、蓄電池の内部温度が計測点温度に近づいていない場合が考えられる。このことから前回の充放電の終了時点からどれだけ蓄電池の内部が冷却されたかを示す指標としてyが用いられる。このため第2項の値は、y-xの値が大きくなるに従って小さくなる。すなわち、yの値が大きいほど第2項の値は小さくなる。 Also, it is conceivable that a sufficient amount of time has not passed since the previous charging/discharging process, and the internal temperature of the storage battery has not approached the measurement point temperature. For this reason, y is used as an index indicating how much the inside of the storage battery has been cooled since the end of the previous charge/discharge. Therefore, the value of the second term decreases as the value of yx increases. That is, the larger the value of y, the smaller the value of the second term.

また、単位時間当たりの充放電量が大きくなるほど、蓄電池の内部温度が上昇するためz1の値が大きいほど第2項の値は大きくなる。なお、パラメータとしてz1の代わりに、充放電開始時点から現時点までに累積された充放電量が用いられてもよい。 Also, as the charge/discharge amount per unit time increases, the internal temperature of the storage battery rises, so the value of the second term increases as the value of z1 increases. As a parameter, instead of z1, the charge/discharge amount accumulated from the charge/discharge start point to the current point may be used.

また、前回の充放電終了時間から現時点までの間に前回の充放電量の大きさによっては、y-xの期間に蓄電池の内部温度が十分下がらない場合が考えられ、正確に内部温度を求めるためにz2をパラメータとして用いる。z2の値が大きいほど、第2項の値は大きくなる。 Also, depending on the magnitude of the previous charge/discharge amount from the previous charge/discharge end time to the present time, it is conceivable that the internal temperature of the storage battery may not drop sufficiently during the period yx, so the internal temperature can be obtained accurately. Therefore, z2 is used as a parameter. The larger the value of z2, the larger the value of the second term.

一方、現時点において蓄電池において充放電が行われていない場合のx、y、z1、z2について説明する。xは、直前の充放電処理の開始時点から現時点までの時間に対応する。 On the other hand, x, y, z1, and z2 when charging and discharging are not performed in the storage battery at present will be described. x corresponds to the time from the start of the immediately preceding charge/discharge process to the current time.

またyは、直前の充放電処理を終了してから現時点までの経過時間である。この時間が長いほど、内部温度は計測点温度に近い。そのため、yの値が大きいほど、第2項の値は小さくなる。 Also, y is the elapsed time from the end of the immediately preceding charge/discharge process to the present time. The longer this time is, the closer the internal temperature is to the measuring point temperature. Therefore, the larger the value of y, the smaller the value of the second term.

また、x-yは、直前の充放電処理の継続時間となり、この時間が長いほど蓄電池の内部温度の下降が遅くなるため、xの値が大きいほど第2項の値は大きくなる。 Also, xy is the duration of the last charging/discharging process, and the longer this time, the slower the decrease in the internal temperature of the storage battery. Therefore, the larger the value of x, the larger the value of the second term.

またz1は、直前の充放電処理における単位時間当たりの充放電量である。この値が大きいほど、内部温度の下降は遅くなるため、z1の値が大きいほど、第2項の値は大きくなる。 Also, z1 is the charge/discharge amount per unit time in the immediately preceding charge/discharge process. The larger this value, the slower the internal temperature will drop, so the larger the value of z1, the larger the value of the second term.

z2は、最新の充放電処理よりも前の充放電処理における単位時間当たりの充放電量であり、この値が大きいほど蓄電池内部に未だ熱がこもっている場合があり、これにより蓄電池の内部温度が高くなっている可能性がある。そのため、z2の値が大きいほど、第2項の値は大きくなる。 z2 is the charge/discharge amount per unit time in the charge/discharge process before the latest charge/discharge process. may be higher. Therefore, the larger the value of z2, the larger the value of the second term.

なお、単位時間当たりの充放電量が定格量であるような場合には、fのパラメータはxとyのみでよい。またこれらx、y以外の時間、例えば、「前回の充放電開始時点から現時点までの経過時間」や「前回の充放電終了時点から現時点までの経過時間」等を、fのパラメータに含めてもよい。 If the charge/discharge amount per unit time is the rated amount, only x and y may be used as parameters for f. In addition, time other than x and y, such as "elapsed time from the previous charging/discharging start point to the present time" or "elapsed time from the previous charging/discharging end point to the present time", may be included in the parameter of f. good.

各蓄電池の関数fは、充放電処理に先立ち予め決定されている。例えば、fは蓄電池の内部構造を囲む筐体の素材やその体積により求められてもよい。また、一定時間充放電を行った蓄電池の外部温度がどれだけの時間をかけて設置点温度に近づいていくかの、熱平衡にかかる時間を計測し、これを用いてfが決定されてもよい。また、fは次のように決められてもよい。まず、モデルを決めて微分方程式を決定し、これに解いて解曲線を求め、この解曲線を元に基底関数を合成することにより、fを求めてもよい。また、fは図2に示すような温度の推移データに回帰分析を用いることにより決定されてもよい。 The function f of each storage battery is determined in advance prior to charge/discharge processing. For example, f may be obtained from the material and volume of the housing surrounding the internal structure of the storage battery. In addition, the time required for thermal equilibrium is measured to determine how long it takes for the external temperature of the storage battery that has been charged and discharged for a certain period of time to approach the installation point temperature, and f may be determined using this. . Alternatively, f may be determined as follows. First, f can be obtained by determining a model to determine a differential equation, solving this to obtain a solution curve, and synthesizing basis functions based on this solution curve. Alternatively, f may be determined by using regression analysis on the temperature transition data as shown in FIG.

式(1)により計測点温度から蓄電池の内部温度を求めることができ、各蓄電池の内部温度と第1の特性式から各蓄電池の劣化速度が求まる。各蓄電池の劣化速度に基づいて、各蓄電池の充放電の配分の比率(配分率と称する)が求められる。本実施形態では劣化速度が最も小さい蓄電池に最も大きい配分率が設定される。 The internal temperature of the storage battery can be obtained from the measurement point temperature by equation (1), and the deterioration rate of each storage battery can be obtained from the internal temperature of each storage battery and the first characteristic equation. Based on the deterioration rate of each storage battery, the ratio of charge/discharge distribution of each storage battery (referred to as distribution ratio) is obtained. In this embodiment, the largest allocation rate is set for the storage battery with the lowest deterioration rate.

なお、本実施形態において蓄電池の内部温度を式(1)により求めるものとしているが、これには限定されない。例えば蓄電池の内部温度は、当該蓄電池から取り出される充放電電力量(充放電の電力の大きさ)や蓄電池の内部抵抗から求められてもよい。ここで、内部抵抗の測定は、例えば蓄電池を満充電させた状態の後に全放電させ、その際に出力される電流と電力を測定することにより行われるものとする。この内部抵抗の測定は、定期的に蓄電池の運用時以外のタイミングで行われる。そして充放電配分制御装置は、蓄電池の運用に先立ち各蓄電池の内部抵抗を取得する。この内部抵抗と運用時に出力される電流とを用いて充放電電力量が求められ、これにより蓄電池の内部温度が求められてもよい。なお、蓄電池の内部抵抗は、測定される電圧と電流を用いて求められてもよい。 In addition, in the present embodiment, the internal temperature of the storage battery is obtained by the formula (1), but it is not limited to this. For example, the internal temperature of a storage battery may be obtained from the charge/discharge power amount (magnitude of charge/discharge power) taken out from the storage battery or the internal resistance of the storage battery. Here, the measurement of the internal resistance is performed, for example, by fully discharging the storage battery after being fully charged, and measuring the current and power output at that time. This internal resistance measurement is periodically performed at a timing other than when the storage battery is in operation. Then, the charge/discharge distribution control device acquires the internal resistance of each storage battery prior to operating the storage battery. Using this internal resistance and the current output during operation, the charge/discharge power amount may be obtained, and the internal temperature of the storage battery may be obtained from this. In addition, the internal resistance of the storage battery may be obtained using the measured voltage and current.

(構成要素の説明)
図3に、本実施形態に係る充放電配分制御システム1Aのシステム構成の一例を示す。充放電配分制御システム1Aは、1台の充放電配分制御装置2A、複数の蓄電池3、蓄電池と同数の温度計測装置4、および蓄電池3と同数のPCS(Power Conditioning System)5を備える。なお、各温度計測装置4は蓄電池3毎に設けられ、各PCS5は蓄電池3毎に設けられている。
(Description of components)
FIG. 3 shows an example of a system configuration of a charge/discharge distribution control system 1A according to this embodiment. The charge/discharge distribution control system 1A includes one charge/discharge distribution control device 2A, a plurality of storage batteries 3, the same number of temperature measuring devices 4 as the storage batteries, and the same number of PCSs (Power Conditioning Systems) 5 as the storage batteries 3. Each temperature measuring device 4 is provided for each storage battery 3 , and each PCS 5 is provided for each storage battery 3 .

充放電配分制御装置2Aは、各PCS5を介して各蓄電池3に接続されている。また各蓄電池3は、各PCS5を介して電力系統に接続され、充放電配分制御装置2Aからの指示に基づき、充放電処理を行う。以下、充放電配分制御システム1Aが備える各装置について、より詳細に説明を行う。 2 A of charge/discharge distribution control apparatuses are connected to each storage battery 3 via each PCS5. Moreover, each storage battery 3 is connected to the power system via each PCS 5, and performs charge/discharge processing based on instructions from the charge/discharge distribution control device 2A. Each device included in the charge/discharge distribution control system 1A will be described in more detail below.

充放電配分制御装置2Aは、図3に不図示の上位装置から充放電要求を受け付ける。この際に充放電配分制御装置2Aは、充放電配分制御システム1A全体で充放電しなければならない量(充放電要求量とも称する)を上位装置より取得する。 The charge/discharge distribution control device 2A receives a charge/discharge request from a host device (not shown in FIG. 3). At this time, the charge/discharge distribution control device 2A acquires the amount (also referred to as the charge/discharge request amount) that must be charged/discharged by the entire charge/discharge distribution control system 1A from the host device.

なお、充放電配分制御装置2Aは、上位装置から充放電要求を受け付けるのではなく、自己の内部に別途存在する制御ロジックにより充放電要求量を決定してもよい。より詳しくは例えば、充放電配分制御装置2Aが、「どの時間にどれだけの充放電要求量が必要か」等の情報を表形式等により記憶しており、これを用いて充放電要求量を決定してもよい。 It should be noted that the charge/discharge distribution control device 2A may determine the charge/discharge request amount by a control logic that exists separately inside itself instead of receiving the charge/discharge request from the host device. More specifically, for example, the charge/discharge distribution control device 2A stores information such as "how much charge/discharge amount is required at what time" in a tabular form or the like, and uses this information to determine the charge/discharge amount. may decide.

充放電配分制御装置2Aは、各蓄電池3の関数fを記憶する。また充放電配分制御装置2Aは、各蓄電池3が充放電状態にあるかそうでないかを検知し、各蓄電池3の充放電を行っている時間と充放電を行っていない時間を計測する。また充放電配分制御装置2Aは、この時間の計測によって取得した上述したx、yを記憶する。また充放電配分制御装置2Aは、各蓄電池3の現在の単位時間当たりの充放電量を各PCS5より通信部20(図4)を介して取得してもよい。そして充放電配分制御装置2Aは、各蓄電池3の単位時間当たりの充放電量のうち最新の充放電処理時のものをz1、それよりも1つ前の充放電処理時のものをz2として記憶する。 The charge/discharge distribution control device 2A stores the function f of each storage battery 3 . The charge/discharge distribution control device 2A also detects whether each storage battery 3 is in a charged/discharged state or not, and measures the time during which each storage battery 3 is being charged/discharged and the time during which it is not being charged/discharged. The charge/discharge distribution control device 2A also stores the above-described x and y obtained by measuring this time. The charge/discharge distribution control device 2A may acquire the current charge/discharge amount per unit time of each storage battery 3 from each PCS 5 via the communication unit 20 (FIG. 4). Then, the charge/discharge distribution control device 2A stores the charge/discharge amount per unit time of each storage battery 3 in the latest charge/discharge process as z1 and the charge/discharge amount in the previous charge/discharge process as z2. do.

さらにまた、充放電配分制御装置2Aは、各温度計測装置4から上述した計測点温度を取得する。そして、充放電配分制御装置2Aは、蓄電池3毎の計測点温度とx、y、z1、z2と関数fを用いて、各蓄電池3の内部温度を求める。 Furthermore, the charge/discharge distribution control device 2A acquires the above-described measurement point temperature from each temperature measurement device 4 . Then, the charge/discharge distribution control device 2A obtains the internal temperature of each storage battery 3 using the measurement point temperature for each storage battery 3, x, y, z1, z2, and the function f.

充放電配分制御装置2Aは、各蓄電池3の第1の特性式に対し、求めた各蓄電池3の内部温度を代入して各蓄電池3の劣化速度を求める。そして各蓄電池3の劣化速度に基づいて、各蓄電池3の配分率を決定する。この配分率の算出の仕方については後述する。 The charge/discharge distribution control device 2A obtains the deterioration rate of each storage battery 3 by substituting the obtained internal temperature of each storage battery 3 into the first characteristic expression of each storage battery 3 . Then, based on the deterioration rate of each storage battery 3, the allocation ratio of each storage battery 3 is determined. A method of calculating this distribution ratio will be described later.

また後述するように、充放電配分制御装置2Aは、充放電要求量と配分率に基づいて各蓄電池3が充放電する電気量(充放電配分量とも称する)を決定する。 As will be described later, the charge/discharge distribution control device 2A determines the amount of electricity charged/discharged by each storage battery 3 (also referred to as charge/discharge distribution amount) based on the charge/discharge request amount and the distribution rate.

充放電配分制御装置2Aは、充放電配分量が0より大きい蓄電池3に充放電指示(充放電指令とも称する)を行う。充放電指令には、蓄電池3に対し充放電すべき充放電量(充放電指令値とも称する)の情報が含まれる。充放電指令値は、蓄電池3が一定時間(1回に充放電処理にかかる時間)の間に連続的に充放電する充放電量の総量である。なお、本実施形態において、充放電指令値は、後述する充放電量算出部223A(図4)により最終的に決定された充放電配分量と等しい。 The charge/discharge distribution control device 2A issues a charge/discharge instruction (also referred to as a charge/discharge instruction) to the storage battery 3 whose charge/discharge distribution amount is greater than zero. The charge/discharge command includes information on the charge/discharge amount (also referred to as charge/discharge command value) to be charged/discharged for the storage battery 3 . The charge/discharge command value is the total amount of charge/discharge that the storage battery 3 continuously charges/discharges for a certain period of time (time required for one charge/discharge process). In the present embodiment, the charge/discharge command value is equal to the charge/discharge distribution amount finally determined by the charge/discharge amount calculator 223A (FIG. 4) described later.

充放電配分制御装置2Aは、充放電指令値が0となる蓄電池3も含めた全ての蓄電池3に対し充放電指令を行ってもよい。この場合に充放電配分制御装置2Aは、充放電指令値が0の蓄電池3に対し充放電指令値を0として通知してもよい。 The charge/discharge distribution control device 2A may issue a charge/discharge command to all the storage batteries 3 including the storage battery 3 with a charge/discharge command value of zero. In this case, the charge/discharge distribution control device 2A may notify the storage battery 3 with the charge/discharge command value of 0 as the charge/discharge command value of 0.

複数の蓄電池3には、異なる種類の蓄電池3が含まれていてもよい。各蓄電池3は、充放電配分制御装置2Aからの充放電指令に応じて充放電処理を行い、充放電配分制御装置2Aからの充放電指令値に応じ充放電の処理を行う。 The plurality of storage batteries 3 may include different types of storage batteries 3 . Each storage battery 3 performs charge/discharge processing according to the charge/discharge command from the charge/discharge distribution control device 2A, and performs charge/discharge processing according to the charge/discharge command value from the charge/discharge distribution control device 2A.

温度計測装置4は、自己が設けられる蓄電池3の周辺環境の温度(計測点温度)を計測する。そして温度計測装置4は、充放電配分制御装置2Aからの指示に基づき、または自動的に、充放電配分制御装置2Aに対し測定した計測点温度の通知を行う。あるいは温度計測装置4は、式(1)を記憶し、自己が測定した計測点温度に基づき蓄電池3の内部温度を求めて充放電配分制御装置2Aに通知してもよい。 The temperature measuring device 4 measures the ambient temperature (measurement point temperature) of the storage battery 3 in which it is provided. Then, the temperature measurement device 4 notifies the charge/discharge distribution control device 2A of the measured measurement point temperature based on an instruction from the charge/discharge distribution control device 2A or automatically. Alternatively, the temperature measuring device 4 may store the formula (1), determine the internal temperature of the storage battery 3 based on the temperature at the measuring point measured by itself, and notify the charge/discharge distribution control device 2A.

PCS5は、充放電配分制御装置2Aからの充放電指令に基づいて、蓄電池3に充放電を行わせる。PCS5は、蓄電池3が放電する場合、蓄電池3が出力した直流電流を交流電流に変換して、電力系統の図示しない負荷装置に出力する。PCS5は、蓄電池3に充電する場合、電力系統から入力した交流電流を直流電流に変換して、蓄電池3に出力する。 The PCS 5 causes the storage battery 3 to charge and discharge based on the charge and discharge command from the charge and discharge distribution control device 2A. When the storage battery 3 is discharged, the PCS 5 converts the direct current output by the storage battery 3 into an alternating current, and outputs the alternating current to a load device (not shown) of the electric power system. When charging the storage battery 3 , the PCS 5 converts alternating current input from the power system into direct current and outputs the direct current to the storage battery 3 .

上述のPCS5と蓄電池3の組の全部または一部は、同一の場所に設置されてもよいし、別の1以上の場所に分散され設置されてもよい。 All or part of the above-described PCS 5 and storage battery 3 set may be installed at the same place, or may be installed at one or more separate places.

ここで、蓄電池3と電力変換器との組み合わせを蓄電ユニット6とも称する。電力変換器とは、蓄電池3が出力した直流電流を交流電流に変換し、充放電配分制御装置2Aからの充放電指令に基づいて蓄電池3に充放電を行わせるなどの処理を行う装置であり、上記PCS5はその一例である。 Here, the combination of the storage battery 3 and the power converter is also referred to as a power storage unit 6 . The power converter is a device that converts the direct current output by the storage battery 3 into an alternating current, and performs processing such as charging and discharging the storage battery 3 based on the charge/discharge command from the charge/discharge distribution control device 2A. , and PCS5 described above are examples thereof.

なお、充放電配分制御装置2Aは、有線または無線のインターネット、イントラネット等の通信網を介し、蓄電ユニット6に接続されていてもよい。 Note that the charge/discharge distribution control device 2A may be connected to the power storage unit 6 via a wired or wireless communication network such as the Internet or an intranet.

図4に示されるものは、充放電配分制御装置2Aの機能ブロックの一例を示す図である。充放電配分制御装置2Aは、通信部20、記憶部21、および制御部22Aを備える。また制御部22Aは、時刻計測部220、劣化速度導出部221、配分率決定部222A、および充放電量算出部223Aを備える。 FIG. 4 shows an example of functional blocks of the charge/discharge distribution control device 2A. 2 A of charge/discharge distribution control apparatuses are provided with the communication part 20, the memory|storage part 21, and 22 A of control parts. The control unit 22A also includes a time measuring unit 220, a deterioration speed deriving unit 221, a distribution ratio determining unit 222A, and a charge/discharge amount calculating unit 223A.

通信部20は、充放電配分制御装置(本実施形態に係る充放電配分制御装置2Aと以下の実施形態に係る充放電配分制御装置)による処理に必要な情報を上位装置や各PCS5や各温度計測装置4等から取得する。 The communication unit 20 transmits information necessary for processing by the charge/discharge distribution control device (the charge/discharge distribution control device 2A according to the present embodiment and the charge/discharge distribution control device according to the following embodiments) to the host device, each PCS 5, each temperature Acquired from the measuring device 4 or the like.

本実施形態において通信部20は、上位装置から充放電要求を受けて、制御部22Aに通知する。 In this embodiment, the communication unit 20 receives a charge/discharge request from a host device and notifies the control unit 22A.

また、通信部20は、各温度計測装置4から計測点温度を取得し、これを制御部22Aに出力する。 Also, the communication unit 20 acquires the measurement point temperature from each temperature measuring device 4 and outputs it to the control unit 22A.

また、通信部20は、各蓄電池3から充放電を行っているかいないかの情報を取得し、これを制御部22Aに通知する。 Further, the communication unit 20 acquires information as to whether or not charging/discharging is being performed from each storage battery 3, and notifies the control unit 22A of this.

また、通信部20は各蓄電池3から、z1、z2の値を取得する。ただし、各蓄電池3が定格で充放電を行う場合には、この動作は必要ではない。またこの場合、後述する記憶部21は各蓄電池3の定格での単位時間当たりの充放電量を記憶している。 Also, the communication unit 20 acquires values of z1 and z2 from each storage battery 3 . However, this operation is not necessary when each storage battery 3 charges and discharges at the rated value. In this case, a storage unit 21, which will be described later, stores the charging/discharging amount per unit time of each storage battery 3 at its rating.

さらにまた、通信部20は、制御部22Aにより決定された各蓄電池3の充放電指令値等に従って、上述した蓄電ユニット6(PCS5)に対して、充放電指令を行う。 Furthermore, the communication unit 20 issues a charge/discharge command to the above-described power storage unit 6 (PCS 5) according to the charge/discharge command value for each storage battery 3 determined by the control unit 22A.

なお、充放電配分制御装置(本実施形態に係る充放電配分制御装置2Aや以下の充放電配分制御装置を例とする充放電配分制御装置)から蓄電ユニット6に対し、充放電指令を行う機能を有するものを充放電指令部と称すると、本実施形態における充放電指令部は通信部20に対応する。なお、充放電指令部による蓄電ユニット6への充放電指令の通知方法は、上位装置や温度計測装置4等との間の情報の授受の方法と異なっていてもよく、同じでもよい。 Note that a charge/discharge distribution control device (a charge/discharge distribution control device 2A according to the present embodiment or a charge/discharge distribution control device exemplified by the following charge/discharge distribution control device) issues a charge/discharge command to the storage unit 6. is called a charge/discharge command unit, the charge/discharge command unit in this embodiment corresponds to the communication unit 20 . Note that the method of notifying the charge/discharge command to the storage unit 6 by the charge/discharge command unit may be different from or the same as the method of exchanging information between the host device, the temperature measuring device 4, and the like.

もし充放電配分制御装置2Aが上位装置等と蓄電ユニット6の各々に対し、互いに異なる方法で通信を行うような場合には、本実施形態において通信部20として例示される機能ブロックは、それぞれの方法に対応する複数の通信部(サブ通信部とも称する)を内部に備えていてもよく、またこのサブ通信部のうちの一部を充放電配分制御装置2Aは通信部20の外部に備えていてもよい。このうち蓄電ユニット6に対し、充放電指令を行う機能を有するものが、充放電指令部に対応する。 If the charge/discharge distribution control device 2A communicates with each of the host device or the like and the power storage unit 6 by different methods, the functional block exemplified as the communication unit 20 in this embodiment may A plurality of communication units (also referred to as sub-communication units) corresponding to the method may be provided inside, and some of these sub-communication units are provided outside the communication unit 20 of the charge/discharge distribution control device 2A. may Among them, the one having the function of issuing a charge/discharge command to the storage unit 6 corresponds to the charge/discharge command section.

記憶部21は、各蓄電池3の式(1)や特性式を記憶している。また、記憶部21は各蓄電池3のx、y、z1、z2の値を記憶する。また記憶部21は、充放電要求量を記憶する。また記憶部21は、各蓄電池3の充放電量の上限値である最大充放電量を記憶する。なお、記憶部21は、特性式の代わりに、各蓄電池3の内部温度と劣化速度とを対応付けした、表形式等のデータを記憶していてもよい。当該データの内容は劣化速度特性に含まれる。 The storage unit 21 stores the formula (1) and the characteristic formula of each storage battery 3 . In addition, the storage unit 21 stores the values of x, y, z1 and z2 of each storage battery 3 . The storage unit 21 also stores the charge/discharge request amount. The storage unit 21 also stores the maximum charge/discharge amount, which is the upper limit of the charge/discharge amount of each storage battery 3 . Note that the storage unit 21 may store data in tabular form or the like in which the internal temperature of each storage battery 3 is associated with the deterioration rate instead of the characteristic formula. The content of the data is included in the deterioration rate characteristics.

次に制御部22Aの各機能ブロックについて説明する。時刻計測部220は、各蓄電池3の充放電処理の時間、および充放電処理を行っていない時間を計測し、求められた各時間を記憶部21に記憶する。この情報とは例えば上述したx、yである。ただし、x、y以外の時間が記憶されてもよい。 Next, each functional block of the control section 22A will be described. The time measuring unit 220 measures the charging/discharging processing time and the non-charging/discharging time of each storage battery 3 and stores the obtained times in the storage unit 21 . This information is, for example, x and y as described above. However, times other than x and y may be stored.

また劣化速度導出部221は、記憶部21に記憶される各蓄電池3の式(1)に対し、各温度計測装置4から取得した計測点温度と記憶部21に記憶されるx、y、z1、z2を代入し、各蓄電池3の内部温度を求める。そして劣化速度導出部221は、求めた各蓄電池3の内部温度の値を記憶部21に記憶されている特性式に代入し、各蓄電池3の劣化速度を求める。なお、劣化速度導出部221による各蓄電池3の劣化速度の導出は、特性式に代わり、各蓄電池3の内部温度と劣化速度とを対応付けしたデータ等に基づいて行われてもよい。 Further, the deterioration rate derivation unit 221 calculates the measurement point temperature obtained from each temperature measuring device 4 and x, y, z1 stored in the storage unit 21 for the equation (1) of each storage battery 3 stored in the storage unit 21 , z2 to obtain the internal temperature of each storage battery 3 . Then, the deterioration rate derivation unit 221 substitutes the determined value of the internal temperature of each storage battery 3 into the characteristic formula stored in the storage unit 21 to obtain the deterioration rate of each storage battery 3 . Derivation of the deterioration rate of each storage battery 3 by the deterioration rate derivation unit 221 may be performed based on data or the like that associates the internal temperature of each storage battery 3 with the deterioration rate instead of the characteristic formula.

配分率決定部222Aは、各蓄電池3の劣化速度に基づき、各蓄電池3の配分率を決定する。この決定処理についてより詳細に説明する。ここで或る蓄電池3の配分率を以下の例1、例2のように定義する。 222 A of allocation ratio determination parts determine the allocation ratio of each storage battery 3 based on the deterioration rate of each storage battery 3. FIG. This determination process will be described in more detail. Here, the allocation rate of a certain storage battery 3 is defined as shown in Examples 1 and 2 below.

例1
蓄電池3の配分率=(1/蓄電池3の劣化速度)/{Σ(1/蓄電池3の劣化速度)}
ここで分母は、充放電処理の配分対象となる全ての蓄電池3の各々の「1/蓄電池3の劣化速度」の、これらの蓄電池3の分の総和である。
Example 1
Allocation rate of storage battery 3 = (1/degradation speed of storage battery 3)/{Σ(1/degradation speed of storage battery 3)}
Here, the denominator is the total sum of "1/deterioration rate of storage battery 3" of all storage batteries 3 to which charging/discharging processing is to be distributed.

例2
蓄電池3の配分率=蓄電池3のポイント
ここでポイントとは、充放電処理の配分対象の各蓄電池3に割り当てられる値であり、充放電要求量に対する各蓄電池3の充放電量の割合に対応する値である。そして、劣化速度のより小さい蓄電池3に対し、より大きい値のポイントが割り当てられる。ポイントは、例えば、劣化速度が小さいものから5点、4点、3点・・・のように割り当てる値であり、例えば予め定義されていてもよい。
Example 2
Distribution rate of storage battery 3 = Point of storage battery 3 Here, the point is a value assigned to each storage battery 3 to be allocated in the charge/discharge process, and corresponds to the ratio of the charge/discharge amount of each storage battery 3 to the charge/discharge request amount. value. A larger value of points is assigned to a storage battery 3 with a lower deterioration rate. The points are, for example, values assigned in order of 5 points, 4 points, 3 points, .

充放電量算出部223Aは、受け付けた充放電要求量と決定した各蓄電池3の配分率と後述する蓄電池3の最大充放電量とを用いて、蓄電池3の充放電配分量を求める。 The charge/discharge amount calculation unit 223A obtains the charge/discharge allocation amount of the storage battery 3 using the received charge/discharge request amount, the determined allocation ratio of each storage battery 3, and the maximum charge/discharge amount of the storage battery 3, which will be described later.

図5は、本実施形態に係る充放電配分制御装置2Aのハードウェア構成の一例である。充放電配分制御装置2Aはプロセッサ70とメモリ71と記憶装置72と通信装置73とを備える。 FIG. 5 shows an example of the hardware configuration of a charge/discharge distribution control device 2A according to this embodiment. The charge/discharge distribution control device 2A includes a processor 70, a memory 71, a storage device 72, and a communication device 73. FIG.

プロセッサ70は、例えばシングルコア、デュアルコア、またはマルチコアプロセッサ等が含まれる。 Processor 70 includes, for example, a single-core, dual-core, or multi-core processor.

メモリ71は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、半導体メモリである。 The memory 71 is, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or a semiconductor memory.

プロセッサ70が、記憶装置72に記憶されている情報をメモリ71に読み込み、メモリ71内のプログラムを実行することにより、上述した制御部22の機能が実現される。 The processor 70 reads the information stored in the storage device 72 into the memory 71 and executes the program in the memory 71, thereby realizing the functions of the control unit 22 described above.

記憶装置72は、ハードディスクドライブ、光ディスク装置等であり、外部記憶装置や可搬型記憶媒体であってもよい。この記憶装置72により記憶部21の機能が実現される。 The storage device 72 is a hard disk drive, an optical disk device, or the like, and may be an external storage device or a portable storage medium. The storage device 72 implements the function of the storage unit 21 .

通信装置73は、上位装置や各PCS5と、充放電配分制御装置2Aが有線または無線で情報の授受を行うためのものであり、通信のためのインターフェースを含む。また通信装置73は、上位装置等との通信方法と蓄電ユニット6との通信方法が異なる場合などにおいて、それぞれの通信方法に応じた通信装置(サブ通信装置とも称する)を内部に備えていてもよい。また充放電配分制御装置2Aは、これらのサブ通信装置の一部を通信装置73の外部に備えていてもよい。 The communication device 73 is for wired or wireless exchange of information between the host device and each PCS 5 and the charge/discharge distribution control device 2A, and includes an interface for communication. Further, when the communication method with the higher-level device and the communication method with the power storage unit 6 are different, the communication device 73 may internally include a communication device (also referred to as a sub-communication device) corresponding to each communication method. good. Also, the charge/discharge distribution control device 2A may include some of these sub-communication devices outside the communication device 73 .

通信装置73より通信部20の機能が実現される。 The function of the communication unit 20 is realized by the communication device 73 .

なお、充放電配分制御装置2Aは、例えばPLC(Programmable Logic Controller)が好ましい。 Note that the charge/discharge distribution control device 2A is preferably a PLC (Programmable Logic Controller), for example.

(作用)
図6は、充放電配分制御装置2Aにより行われる処理のフローを示す図である。充放電配分制御装置2Aの通信部20は、各蓄電池3の状態に関する情報を収集し(ステップS1001)、当該情報を制御部22へ出力する。この情報には、各蓄電池3の設置点温度が含まれ、また各蓄電池3が充放電処理を行っているか行っていないかの情報が含まれる。またこの情報には上述したz1、z2の情報が含まれてもよい。また、この情報は通信部20を介さずに得られるものでもよく、制御部22が記憶部21から読み込むものであってもよい。また、時刻計測部220により求められたx、y等を制御部22は取得する(ステップS1001)。
(action)
FIG. 6 is a diagram showing the flow of processing performed by the charge/discharge distribution control device 2A. The communication unit 20 of the charge/discharge distribution control device 2A collects information about the state of each storage battery 3 (step S1001) and outputs the information to the control unit 22. FIG. This information includes the installation point temperature of each storage battery 3, and information on whether or not each storage battery 3 is performing charging/discharging processing. This information may also include the above-described information on z1 and z2. Also, this information may be obtained without going through the communication section 20 or may be read from the storage section 21 by the control section 22 . Also, the control unit 22 acquires x, y, etc. obtained by the time measurement unit 220 (step S1001).

劣化速度導出部221は、式(1)を用いて、各蓄電池3の内部温度を求める。また劣化速度導出部221は、各蓄電池3の内部温度と特性式に基づいて、各蓄電池3の劣化速度を求める(ステップS1002)。劣化速度導出部221は求めた各蓄電池3の劣化速度を配分率決定部222Aに出力する。 The deterioration rate derivation unit 221 obtains the internal temperature of each storage battery 3 using Equation (1). Further, the deterioration rate deriving unit 221 obtains the deterioration rate of each storage battery 3 based on the internal temperature of each storage battery 3 and the characteristic formula (step S1002). The deterioration speed derivation unit 221 outputs the obtained deterioration speed of each storage battery 3 to the distribution ratio determination unit 222A.

配分率決定部222Aは、上記例1、2により示したような、劣化速度がより低い蓄電池3に対して、より高い配分率を設定し(ステップS1003)、設定した配分率を充放電量算出部223Aへ出力する。 222 A of allocation rate determination parts set a higher allocation rate with respect to the storage battery 3 with a lower deterioration rate as shown by the said example 1, 2 (step S1003), and charge/discharge amount calculation is carried out with the set allocation rate. Output to the section 223A.

ステップS1003について以下、図7を用いて詳細に述べる。図7では、理解容易のために3つの異なる蓄電池3が充放電配分制御システム1Aに備わる場合を説明するが、蓄電池3の数はこれに限定されない。図7には、各蓄電池3の内部温度と劣化速度との関係を示す第1の特性式に対応する特性と共に、充放電配分制御装置2Aが求めた現在の各蓄電池3の内部温度が示される。 Step S1003 will be described in detail below with reference to FIG. For ease of understanding, FIG. 7 illustrates a case where the charge/discharge distribution control system 1A includes three different storage batteries 3, but the number of storage batteries 3 is not limited to this. FIG. 7 shows the current internal temperature of each storage battery 3 obtained by the charge/discharge distribution control device 2A, along with the characteristic corresponding to the first characteristic expression showing the relationship between the internal temperature of each storage battery 3 and the rate of deterioration. .

第1の特性式により表される蓄電池3Aの内部温度に対する劣化速度の勾配は、蓄電池3Bの内部温度の劣化速度に対する勾配よりも大きい。しかし、充放電配分制御装置2Aにより求められている現在の蓄電池3Aの内部温度Tは、蓄電池3Bの現在の内部温度Tよりも低い。これに伴い、充放電配分制御装置2Aにより求められている蓄電池3Aの現在の劣化速度Vは、蓄電池3Bの現在の劣化速度Vよりも小さい。同様にして、蓄電池3A、3B、3Cの各劣化速度の大小関係が求められ、充放電配分制御装置2Aは、最も劣化速度の小さい蓄電池3Aに最大の配分率を設定し、次に劣化速度が小さい蓄電池3Bに次に大きい値の配分率を設定し、最も劣化速度の大きい蓄電池3Cに最小の配分率を設定する。 The gradient of the deterioration speed with respect to the internal temperature of the storage battery 3A represented by the first characteristic formula is larger than the gradient of the deterioration speed with respect to the internal temperature of the storage battery 3B. However, the current internal temperature T A of the storage battery 3A obtained by the charge/discharge distribution control device 2A is lower than the current internal temperature T B of the storage battery 3B. Accordingly, the current deterioration rate V A of the storage battery 3A obtained by the charge/discharge distribution control device 2A is smaller than the current deterioration rate V B of the storage battery 3B. Similarly, the magnitude relationship between the deterioration rates of the storage batteries 3A, 3B, and 3C is obtained, and the charge/discharge distribution control device 2A sets the maximum distribution rate for the storage battery 3A, which has the lowest deterioration rate, and then sets the deterioration rate. The next largest value allocation ratio is set for the small storage battery 3B, and the minimum allocation ratio is set for the storage battery 3C with the highest deterioration rate.

図6に戻ると、ステップS1004において、充放電配分制御装置2Aの通信部20は上位装置から充放電要求を取得する(ステップS1004)。 Returning to FIG. 6, in step S1004, the communication unit 20 of the charge/discharge distribution control device 2A acquires a charge/discharge request from the host device (step S1004).

ここで後述するように、蓄電池3の運用時においては、図6に示すステップS1001からステップS1006までのフロー処理は数分毎に繰り返される。そのため今回のフロー処理のステップS1003までに、前回のフロー処理で取得した充放電要求に対応する各蓄電池3の充放電指令値相当の充放電が、各蓄電池3により未だなされていない場合がある。この場合、充放電配分制御装置2Aは後どれだけの充放電量が必要かを再計算する必要がある。この場合、充放電配分制御装置2Aは、各蓄電池3の充放電時間と単位時間当たりの充放電量に係る情報を収集し、現時点で各蓄電池3により充放電された充放電量の総和を求め、これを前回のフロー処理のステップS1004で取得した充放電要求量から差し引いたものを充放電要求量として更新する。そして充放電配分制御装置2Aは、更新した当該充放電要求量に対し、今回のフロー処理のステップS1004において、上位装置から取得した充放電要求量を加算したものを新たな充放電要求量として更に充放電要求量を更新する(ステップS1004)。この処理は、例えば充放電量算出部223Aにより行われる。 As will be described later, during operation of the storage battery 3, the flow process from step S1001 to step S1006 shown in FIG. 6 is repeated every few minutes. Therefore, until step S1003 of the current flow process, each storage battery 3 may not have been charged/discharged by the charge/discharge command value corresponding to the charge/discharge request acquired in the previous flow process. In this case, the charge/discharge distribution control device 2A needs to recalculate how much charge/discharge is required. In this case, the charge/discharge distribution control device 2A collects information related to the charge/discharge time of each storage battery 3 and the charge/discharge amount per unit time, and obtains the total charge/discharge amount of each storage battery 3 at the present time. , is subtracted from the requested charge/discharge amount acquired in step S1004 of the previous flow process to update the requested charge/discharge amount. Then, the charge/discharge distribution control device 2A adds the charge/discharge request amount acquired from the host device in step S1004 of the current flow process to the updated charge/discharge request amount as a new charge/discharge request amount. The required charge/discharge amount is updated (step S1004). This processing is performed, for example, by the charge/discharge amount calculator 223A.

ステップS1005において、充放電量算出部223Aは、各蓄電池3の充放電配分量を求める。充放電量算出部223Aは、配分率決定部222Aからの出力信号により取得した各蓄電池3への配分率を用いて、各蓄電池3の充放電配分量を算出する。詳細には、充放電要求量に対し、蓄電池3の配分率を乗算したものを、その蓄電池3の充放電配分量とする。ただし、ここで求められた蓄電池3の充放電配分量が、当該蓄電池3の最大充放電量よりも大きい場合には、充放電量算出部223Aは、その蓄電池3への充放電配分量とその蓄電池3の最大充放電量との差分を求める。そして充放電量算出部223Aは、上記ステップS1003で得た、この蓄電池3を除く他の各蓄電池3の配分率を当該差分に乗算したものを、これらの他の各蓄電池3への充放電配分量に加算する。この処理を差分の分配処理とも称する。なお、充放電量算出部223Aは、充放電配分量が最大充放電量より大きくなった蓄電池3に対する充放電配分量を、当該蓄電池3の最大充放電量に設定する。また、充放電量算出部223Aは、このような差分が生じる間は、当該差分が解消されるまで、または蓄電池3への充放電配分量の総和が充放電要求量と一致するまで、差分の分配処理を繰り返す。 In step S<b>1005 , the charge/discharge amount calculation unit 223</b>A obtains the charge/discharge allocation amount of each storage battery 3 . 223 A of charge/discharge amount calculation parts calculate the charge/discharge allocation amount of each storage battery 3 using the allocation rate to each storage battery 3 acquired by the output signal from 222 A of allocation rate determination parts. Specifically, the charge/discharge request amount is multiplied by the allocation rate of the storage battery 3 to obtain the charge/discharge allocation amount of the storage battery 3 . However, if the charge/discharge allocation amount of the storage battery 3 obtained here is larger than the maximum charge/discharge amount of the storage battery 3, the charge/discharge amount calculation unit 223A calculates the charge/discharge allocation amount to the storage battery 3 and its A difference from the maximum charge/discharge amount of the storage battery 3 is obtained. Then, the charge/discharge amount calculation unit 223A multiplies the difference by the allocation rate of each of the storage batteries 3 other than this storage battery 3 obtained in the above step S1003, and calculates the charge/discharge allocation to each of these other storage batteries 3. Add to quantity. This processing is also referred to as difference distribution processing. Note that the charge/discharge amount calculation unit 223A sets the charge/discharge allocation amount for the storage battery 3 whose charge/discharge allocation amount is larger than the maximum charge/discharge amount as the maximum charge/discharge amount of the storage battery 3 . In addition, while such a difference occurs, the charge/discharge amount calculation unit 223A continues to calculate the difference until the difference is eliminated or until the sum of the charge/discharge allocation amounts to the storage battery 3 matches the charge/discharge request amount. Repeat the distribution process.

ステップS1005において最終的に算出された蓄電池3の充放電配分量は、当該蓄電池3が充放電すべき電気量(充放電指令値とも称する)となる。充放電量算出部223Aは、算出した各蓄電池3の充放電指令値を通信部20へ出力する。 The charge/discharge distribution amount of the storage battery 3 finally calculated in step S1005 is the amount of electricity to be charged/discharged by the storage battery 3 (also referred to as a charge/discharge command value). The charge/discharge amount calculation unit 223A outputs the calculated charge/discharge command value of each storage battery 3 to the communication unit 20 .

通信部20は、充放電指令値が0より大きい蓄電池3へ充放電指令を行う(ステップS1006)。なお通信部20は、充放電指令値が0または充放電を行わなくてもよい蓄電池3に対しても、充放電指令値を0として充放電指令を行ってもよい。また、充放電指令がなされる蓄電池3が複数ある場合には、1つの蓄電池3の充放電指令値がステップS1005において求まるたびにステップS1006の充放電指令がなされてもよい。 The communication unit 20 issues a charge/discharge command to the storage battery 3 whose charge/discharge command value is greater than 0 (step S1006). Note that the communication unit 20 may issue a charge/discharge command with the charge/discharge command value set to 0 even for the storage battery 3 that has a charge/discharge command value of 0 or that does not need to be charged/discharged. Further, when there are a plurality of storage batteries 3 to which the charge/discharge command is issued, the charge/discharge command in step S1006 may be issued each time the charge/discharge command value for one storage battery 3 is obtained in step S1005.

なお、例えば図7の場合において蓄電池3Aの負荷は、充放電処理をさせるうちに他の蓄電池3の負荷より大きくなる可能性がある。蓄電池3を稼動させ続けることにより、蓄電池3の内部で熱が発生し続け、これにより蓄電池3の内部温度が上昇するためである。このため、充放電配分制御装置2Aの図6に示すステップS1001からS1006までのフロー処理は、数分オーダで繰り返される。 In addition, for example, in the case of FIG. 7, the load of the storage battery 3A may become larger than the load of the other storage batteries 3 while the charging/discharging process is performed. This is because heat continues to be generated inside the storage battery 3 by continuing to operate the storage battery 3 , thereby increasing the internal temperature of the storage battery 3 . Therefore, the flow processing from steps S1001 to S1006 shown in FIG. 6 of the charge/discharge distribution control device 2A is repeated on the order of several minutes.

(効果)
上述した充放電配分制御システム1Aによれば、既に製造済みの蓄電池3の内部温度を、蓄電池3を開けることなく求めることが可能となり、多種類の蓄電池3を当該システムに組み入れることが可能になる。また、充放電配分制御装置2Aは、各蓄電池3の内部温度の上昇特性と劣化速度特性を予め取得しておくことにより、素早く正確に各蓄電池3の劣化速度を把握できる。そして充放電配分制御装置2Aが、劣化速度に基づき適切な充放電量を各蓄電池3に割り当てることにより、充放電配分制御システム1A内の各蓄電池3の劣化の進行を遅らせることができる。これにより、充放電配分制御システム1A全体としての劣化の進行を遅らせることが可能となる。
(effect)
According to the charge/discharge distribution control system 1A described above, it is possible to obtain the internal temperature of the already manufactured storage battery 3 without opening the storage battery 3, and it is possible to incorporate many types of storage batteries 3 into the system. . In addition, the charge/discharge distribution control device 2A can grasp the deterioration speed of each storage battery 3 quickly and accurately by acquiring the internal temperature rise characteristics and the deterioration speed characteristics of each storage battery 3 in advance. Then, the charge/discharge distribution control device 2A assigns an appropriate charge/discharge amount to each storage battery 3 based on the deterioration rate, thereby delaying the progress of deterioration of each storage battery 3 in the charge/discharge distribution control system 1A. This makes it possible to delay the progress of deterioration of the charge/discharge distribution control system 1A as a whole.

(第2の実施形態)
上述した第1の実施形態に係る充放電配分制御装置2Aは、充放電要求に対する各蓄電池3の配分率を設定して充放電配分量を算出し、これを充放電指令値とした。本実施形態に係る充放電配分量制御装置2Bは、各蓄電池3の劣化速度に基づいて、充放電を行わせる各蓄電池3の優先順位を決定し、これに基づき蓄電池3へ充放電指令を行う。
(Second embodiment)
The charge/discharge distribution control device 2A according to the first embodiment described above sets the distribution ratio of each storage battery 3 with respect to the charge/discharge request, calculates the charge/discharge distribution amount, and uses this as the charge/discharge command value. The charge/discharge distribution amount control device 2B according to the present embodiment determines the priority of each storage battery 3 to be charged/discharged based on the deterioration speed of each storage battery 3, and issues a charge/discharge command to the storage battery 3 based on this. .

(構成要素の説明)
本実施形態に係る充放電配分制御システム1Bの構成は、図3で例示された充放電配分制御システム1Aにおいて、充放電配分制御装置2Aを本実施形態に係る充放電配分制御装置2Bに置き換えたものに対応する。充放電配分制御システム1Bにおいて充放電配分制御装置2B以外の構成要素は、第1の実施形態に係るものと同様であるため、説明を省略する。
(Description of components)
The configuration of the charge/discharge distribution control system 1B according to the present embodiment is obtained by replacing the charge/discharge distribution control device 2A in the charge/discharge distribution control system 1A illustrated in FIG. 3 with the charge/discharge distribution control device 2B according to the present embodiment. correspond to things. Components other than the charge/discharge distribution control device 2B in the charge/discharge distribution control system 1B are the same as those according to the first embodiment, and therefore description thereof is omitted.

図8は、本実施形態の一例に係る充放電配分制御装置2Bの機能ブロック図である。充放電配分制御装置2Bは、上記充放電配分制御装置2Aにおける制御部22Aに代わり、制御部22Bを備える。制御部22Bは、第1の実施形態における配分率決定部222Aに代わり優先順位決定部222Bを、また充放電量算出部223Aに代わり充放電量算出部223Bを備える。 FIG. 8 is a functional block diagram of a charge/discharge distribution control device 2B according to an example of this embodiment. The charge/discharge distribution control device 2B includes a control section 22B instead of the control section 22A in the charge/discharge distribution control device 2A. The control unit 22B includes a priority order determination unit 222B in place of the distribution rate determination unit 222A in the first embodiment, and a charge/discharge amount calculation unit 223B in place of the charge/discharge amount calculation unit 223A.

充放電配分制御装置2Bにおける他の機能ブロックで、充放電配分制御装置2Aにおけるものと同様の処理を行うものについては同一の符号を付し、説明を省略する。ただし、劣化速度導出部221からの劣化速度の出力先は、第1の実施形態では配分率決定部222Aであったが、本実施形態では優先順位決定部222Bである。また、通信部20へ各蓄電池3の充放電指令値を出力するのは、第1の実施形態では充放電量算出部223Aであったが、本実施形態では充放電量算出部223Bである。 Other functional blocks in the charge/discharge distribution control device 2B that perform the same processes as those in the charge/discharge distribution control device 2A are denoted by the same reference numerals, and description thereof is omitted. However, the output destination of the deterioration speed from the deterioration speed derivation unit 221 is the allocation ratio determination unit 222A in the first embodiment, but is the priority determination unit 222B in this embodiment. In the first embodiment, the charging/discharging amount calculating section 223A outputs the charging/discharging command value of each storage battery 3 to the communication section 20, but in the present embodiment, the charging/discharging amount calculating section 223B.

制御部22Bの優先順位決定部222Bは、劣化速度導出部221からの出力により取得した各蓄電池3の劣化速度に基づいて、各蓄電池3の優先順位を決定する。ここで優先順位とは、どの蓄電池3に優先させて充放電をさせるかを示す順番を意味する。 The priority determination unit 222B of the control unit 22B determines the priority of each storage battery 3 based on the deterioration speed of each storage battery 3 acquired from the output from the deterioration speed derivation unit 221. FIG. Here, the order of priority means an order indicating which storage battery 3 should be prioritized for charging and discharging.

制御部22Bの充放電量算出部223Bは、優先順位決定部222Bから取得した各蓄電池3の優先順位に基づき、蓄電池3に対する充放電指令値を算出する。 The charge/discharge amount calculation unit 223B of the control unit 22B calculates a charge/discharge command value for the storage battery 3 based on the priority of each storage battery 3 acquired from the priority determination unit 222B.

本実施形態に係る充放電配分制御装置2Bのハードウェア構成は第1の実施形態に係る図5に示すものと同様である。ただし、図5に示すプロセッサ70がメモリ71等からの情報を用いて処理を行うことにより上記実施形態において制御部22Aとして実現された機能に対応する機能は、本実施形態においては制御部22Bの機能である。これ以外は、上記第1の実施形態の場合と同様である。 The hardware configuration of a charge/discharge distribution control device 2B according to this embodiment is the same as that shown in FIG. 5 according to the first embodiment. However, the function corresponding to the function realized as the control unit 22A in the above embodiment by the processor 70 shown in FIG. It is a function. Other than this, it is the same as the case of the said 1st Embodiment.

(作用)
図9は本実施形態に係る充放電制御装置2Bによる処理のフローを示す図である。図9に示すように本実施形態に係る充放電制御装置2Bは、図6を参照して説明した第1の実施形態に係る充放電配分制御装置2AによるステップS1003に代わりステップS1003B、ステップS1005に代わりステップS1005Bを実行する。
(Action)
FIG. 9 is a diagram showing the flow of processing by the charge/discharge control device 2B according to this embodiment. As shown in FIG. 9, the charge/discharge control device 2B according to the present embodiment performs steps S1003B and S1005 instead of step S1003 by the charge/discharge distribution control device 2A according to the first embodiment described with reference to FIG. Instead, step S1005B is executed.

ステップS1001、ステップS1002、ステップS1004、およびステップS1006における各処理は、上記第1の実施形態の場合と同様であるので説明を省略する。なお、これらの各処理は、第1の実施形態のフローにおける対応する処理において説明した処理主体と同じ機能ブロックの名称を持つ機能ブロック(符号が異なる場合もある)によりなされるものとする。 Each process in step S1001, step S1002, step S1004, and step S1006 is the same as in the case of the above-described first embodiment, so description thereof will be omitted. It should be noted that each of these processes is performed by a functional block having the same functional block name (with a different code in some cases) as the processing entity described in the corresponding process in the flow of the first embodiment.

優先順位決定部222Bは、劣化速度導出部221からの出力に基づき、各蓄電池3の優先順位を決定する(ステップS1003B)。この決定処理について図10を用いて詳しく説明する。 The priority determining unit 222B determines the priority of each storage battery 3 based on the output from the deterioration rate deriving unit 221 (step S1003B). This decision processing will be described in detail with reference to FIG.

図10においては、理解容易の為に充放電配分制御システム1Bにおいて3つの蓄電池3A、3B、3Cがあるものとしているが、当該システムにおける蓄電池3の個数は3つとは限らない。図10では、現在の蓄電池3A、3B、3Cの各内部温度は、T、T、Tであり、これに応じ現在の蓄電池3A、3B、3Cの各劣化速度は、V、V、Vである(V<V<V)。優先順位決定部222Bは、蓄電池3Aの劣化速度が最も小さいため、蓄電池3Aに対し最も高い優先順位(優先順位1とする)を設定する。そして優先順位決定部222Bは、次に劣化速度の小さい蓄電池3Bに対し、次に高い優先順位(優先順位2とする)を設定する。充放電の配分対象となるn個の蓄電池3のうち、最も劣化速度の大きい蓄電池3に対し、優先順位決定部223Bは最も低い優先順位(優先順位n)を設定する。図10の場合ではn=3で、蓄電池3Cの劣化速度が最も大きいことから、優先順位決定部223Bは、蓄電池3Cに対し優先順位3を設定する。 In FIG. 10, for ease of understanding, it is assumed that there are three storage batteries 3A, 3B, and 3C in the charge/discharge distribution control system 1B, but the number of storage batteries 3 in the system is not limited to three. In FIG. 10, the current internal temperatures of the storage batteries 3A, 3B, 3C are T A , T B , T C , and correspondingly the respective deterioration rates of the current storage batteries 3A, 3B, 3C are V A , V B and VC ( VA < VB < VC ). Since the storage battery 3A has the lowest deterioration rate, the priority determining unit 222B sets the highest priority (priority 1) to the storage battery 3A. Then, the priority determining unit 222B sets the next highest priority (priority 2) to the storage battery 3B having the next lowest deterioration rate. The priority determining unit 223B sets the lowest priority (priority n) to the storage battery 3 having the highest deterioration rate among the n storage batteries 3 to be charged and discharged. In the case of FIG. 10, since n=3 and the deterioration rate of the storage battery 3C is the highest, the priority determining unit 223B sets priority 3 to the storage battery 3C.

優先順位決定部222Bは、決定した各蓄電池3の優先順位を充放電量算出部223Bへ出力する。 The priority determination unit 222B outputs the determined priority of each storage battery 3 to the charge/discharge amount calculation unit 223B.

図9に戻り、ステップS1005Bにおいて、充放電量算出部223Bは、優先順位決定部222Bからの出力信号に基づき、各蓄電池3への充放電指令値を求める。より詳細には充放電量算出部223Bは、最も高い優先順位(優先順位1)の蓄電池3の最大充放電量が充放電要求量より大きいか否かを判定する。そして充放電要求量が当該最大充放電量以下の場合には、充放電量算出部223Bは、この優先順位1の蓄電池3に対し、充放電要求量を充放電指令値として割り当てる。 Returning to FIG. 9, in step S1005B, the charge/discharge amount calculation unit 223B obtains a charge/discharge command value for each storage battery 3 based on the output signal from the priority order determination unit 222B. More specifically, the charge/discharge amount calculator 223B determines whether or not the maximum charge/discharge amount of the storage battery 3 with the highest priority (priority 1) is greater than the charge/discharge request amount. When the charge/discharge request amount is equal to or less than the maximum charge/discharge amount, the charge/discharge amount calculation unit 223B assigns the charge/discharge request amount to the storage battery 3 having priority 1 as the charge/discharge command value.

一方、充放電要求量が優先順位1の蓄電池3の最大充放電量より大きい場合には、充放電量算出部223Bは、優先順位1の蓄電池3に対し、当該蓄電池3の最大充放電量を充放電指令値として割り当てる。そして充放電量算出部223Bは、充放電要求量と当該優先順位1の蓄電池3の最大充放電量との差分が、次に優先順位の高い蓄電池3(優先順位2の蓄電池3)の最大充放電量より大きいか否かを判定する。そしてこの差分が当該最大充放電量以下の場合には、充放電量算出部223Bは、この優先順位2の蓄電池3に対し、当該差分に相当する充放電指令値を割り当てる。一方、当該差分が、優先順位2の蓄電池3の最大充放電量より大きい場合には、充放電量算出部223Bは、当該差分と当該優先順位2の蓄電池3の最大充放電量との差分を更に求め、この求めた差分が次に優先順位の高い蓄電池3(優先順位3)の蓄電池3の最大充放電量より大きいか否かを判定する。以降、充放電量算出部223Bは、同様の処理を、差分が0になるまで、または蓄電池3に割り当てられる充放電指令値の総和が充放電要求量となるまで繰り返す(ステップS1005B)。 On the other hand, when the requested charge/discharge amount is greater than the maximum charge/discharge amount of the storage battery 3 with priority 1, the charge/discharge amount calculation unit 223B calculates the maximum charge/discharge amount of the storage battery 3 with priority 1. Assigned as a charge/discharge command value. Then, the charge/discharge amount calculation unit 223B determines that the difference between the charge/discharge request amount and the maximum charge/discharge amount of the storage battery 3 with the priority 1 is the maximum charge of the storage battery 3 with the next highest priority (the storage battery 3 with the priority 2). It is determined whether or not it is greater than the discharge amount. Then, when this difference is equal to or less than the maximum charge/discharge amount, the charge/discharge amount calculation unit 223B assigns the charge/discharge command value corresponding to the difference to the storage battery 3 with priority 2 . On the other hand, when the difference is larger than the maximum charge/discharge amount of the storage battery 3 of priority 2, the charge/discharge amount calculation unit 223B calculates the difference between the difference and the maximum charge/discharge amount of the storage battery 3 of priority 2. Further, it is determined whether or not the calculated difference is greater than the maximum charge/discharge amount of the storage battery 3 of the next highest priority (priority 3). After that, the charge/discharge amount calculation unit 223B repeats the same processing until the difference becomes 0 or until the sum of the charge/discharge command values assigned to the storage battery 3 becomes the charge/discharge request amount (step S1005B).

(効果)
本実施形態によれば、充放電配分制御装置2Bが、劣化速度に基づき各蓄電池3の優先順位を決定し、これに基づき各蓄電池3への充放指令値を算出することにより、計算量のさらなる低減を図れると共に、充放電配分制御システム1Bにおける蓄電池3の劣化の進行の抑制を実現できる。
(effect)
According to this embodiment, the charge/discharge distribution control device 2B determines the priority of each storage battery 3 based on the deterioration rate, and calculates the charge/discharge command value for each storage battery 3 based on this, thereby reducing the amount of calculation. Further reduction can be achieved, and progress of deterioration of the storage battery 3 in the charge/discharge distribution control system 1B can be suppressed.

(第3の実施形態)
上述した第1、2の実施形態においては、蓄電池3の劣化速度と温度との関係について述べた。しかし、蓄電池3の劣化速度の大きさは、温度以外に充電残量(以下、SOCとも称する)によっても変化する。本実施形態においては、上記劣化速度の導出においてSOCも考慮に入れる。SOCは、一般に蓄電池3の充放電量の累積を用いて、または電圧を用いて求められる。充放電量の累積を用いてSOCが求められる場合、これによるSOCの推定値は、計測誤差により徐々に実際の値とは一致しないものとなっていく。そこで、例えば2週間に1度、蓄電池3を満充電の状態から全放電の状態に、またはその逆に全放電の状態から満充電の状態にし、SOCの基準値(例えば、0%または100%)を求める。この基準値を用いてSOC推定値を補正することにより、SOCの正確な値が求められる。この処理をSOCの補正処理と称する。
(Third embodiment)
In the first and second embodiments described above, the relationship between the deterioration rate of the storage battery 3 and the temperature was described. However, the rate of deterioration of the storage battery 3 varies depending on the remaining charge (hereinafter also referred to as SOC) in addition to the temperature. In this embodiment, the SOC is also taken into consideration in deriving the deterioration rate. The SOC is generally obtained by using the accumulated charge/discharge amount of the storage battery 3 or by using the voltage. When the SOC is obtained by using the accumulated charge/discharge amount, the estimated SOC value obtained by the calculation gradually deviates from the actual value due to measurement error. Therefore, for example, once every two weeks, the storage battery 3 is changed from a fully charged state to a fully discharged state, or vice versa, from a fully discharged state to a fully charged state, and the SOC reference value (for example, 0% or 100%) ). By correcting the SOC estimated value using this reference value, an accurate SOC value can be obtained. This processing is referred to as SOC correction processing.

SOCの推定値や基準値のうちの少なくとも一方は、本実施形態に係る充放電配分制御装置2CまたはPCS5により導出されてもよい。PCS5によりSOCの推定値や基準値のうちの少なくとも一方が導出される場合には、PCS5から充放電配分制御装置2Cに、導出されたSOCの情報が伝送される。またSOCの推定値や基準値に係る情報のうちの少なくとも一方は、充放電配分制御装置2Cが外部から取得するものであってもよい。なお、本実施形態においては、充放電配分制御装置2CがSOCの基準値を予め取得しているものとする。そして充放電配分制御装置2Cは、この基準値と充放電量の累積とによりSOCを求めるものとする。 At least one of the SOC estimated value and the reference value may be derived by the charge/discharge distribution control device 2C or the PCS 5 according to the present embodiment. When at least one of the SOC estimated value and the reference value is derived by the PCS 5, information on the derived SOC is transmitted from the PCS 5 to the charge/discharge distribution control device 2C. Moreover, at least one of the information relating to the SOC estimated value and the reference value may be obtained from the outside by the charge/discharge distribution control device 2C. In this embodiment, it is assumed that the charge/discharge distribution control device 2C acquires the SOC reference value in advance. Then, the charge/discharge distribution control device 2C obtains the SOC from this reference value and the accumulation of charge/discharge amounts.

なお、SOCが電圧から求められる場合には、上述のSOCの補正処理は行われない。ここでSOCは、電圧から求められる場合に比べ、上記補正も含めた充放電量の積算により求められるほうが正確な値が得られる場合が多い。そのため、本実施形態と以後の実施形態においては、SOCは充放電量の積算により求められるものとする。 Note that when the SOC is obtained from the voltage, the SOC correction process described above is not performed. In many cases, the SOC can be obtained more accurately by integrating the charge/discharge amount including the correction described above than by calculating the SOC from the voltage. Therefore, in this embodiment and subsequent embodiments, the SOC is obtained by integrating the charge/discharge amount.

本実施形態では、充放電配分制御装置2Cは、各蓄電池3の内部温度とSOCとにより、各蓄電池3の劣化速度を求める。そしてこの劣化速度に応じて、充放電配分制御装置2Cは各蓄電池3への充放電量の配分を行う。 In this embodiment, the charge/discharge distribution control device 2C obtains the deterioration speed of each storage battery 3 from the internal temperature and SOC of each storage battery 3 . Then, the charge/discharge distribution control device 2C distributes the charge/discharge amount to each storage battery 3 according to the deterioration speed.

ここで、蓄電池3の内部温度とSOCは互いに独立であり、劣化速度はこれらにより決まる。充放電配分制御装置2Cは、蓄電池3の内部温度とSOCと劣化速度との関係を近似した第2の特性式を保持する。そしてこの特性式では、内部温度とSOCとがパラメータとなり、これらの各値が一意的に決まることにより、劣化速度が導き出される。この第2の特性式は各蓄電池3の固有の式であり、既知のものである。なお、このような特性式以外にも、制御装置2は、蓄電池3毎の内部温度とSOCと劣化速度の各値が関係付けされた表形式等のデータを保持していてもよい。なお、第2の特性式と当該表形式等のデータは、劣化速度特性に含まれる。 Here, the internal temperature and SOC of the storage battery 3 are independent of each other, and the rate of deterioration is determined by these. The charge/discharge distribution control device 2C holds a second characteristic formula that approximates the relationship between the internal temperature of the storage battery 3, the SOC, and the rate of deterioration. In this characteristic formula, the internal temperature and SOC are parameters, and the deterioration rate is derived by uniquely determining these values. This second characteristic formula is unique to each storage battery 3 and is known. In addition to such a characteristic formula, the control device 2 may hold data in tabular form or the like in which the internal temperature, SOC, and deterioration rate of each storage battery 3 are associated with each other. The second characteristic formula and the data in tabular form are included in the deterioration rate characteristic.

(構成要素の説明)
本実施形態に係る充放電配分制御システム1Cについて、図3を用いて説明する、本実施形態に係る充放電配分制御システム1Cは、第1、2の実施形態に係る充放電配分制御装置2A、2Bに代わり、充放電配分制御装置1Cを備える。その他の構成要素については、上記実施形態の場合と同様であるので説明を省略する。
(Description of components)
A charge/discharge distribution control system 1C according to the present embodiment will be described with reference to FIG. 2B is replaced with a charge/discharge distribution control device 1C. Other constituent elements are the same as in the above embodiment, so description thereof will be omitted.

本実施形態に係る充放電配分制御装置2Cの機能ブロックは、図4、8により示される。充放電配分制御装置2Cは、第1、2の実施形態に係る充放電配分制御装置2A、2Bの記憶部21に代わり記憶部21Cを備える。また充放電配分制御装置2Cは、第1、2の実施形態における制御部22A、22Bに代わり、制御部22Cを備える。制御部22Cは、上記実施形態における劣化速度導出部221に代わり、劣化速度導出部221Cを備える。その他の各機能ブロックは、上記実施形態の場合と同様であるため説明を省略する。 Functional blocks of the charge/discharge distribution control device 2C according to this embodiment are shown in FIGS. The charge/discharge distribution control device 2C includes a storage unit 21C instead of the storage unit 21 of the charge/discharge distribution control devices 2A and 2B according to the first and second embodiments. Also, the charge/discharge distribution control device 2C includes a controller 22C instead of the controllers 22A and 22B in the first and second embodiments. 22 C of control parts are provided with 221 C of deterioration rate derivation|leading-out parts instead of the deterioration rate derivation part 221 in the said embodiment. Other functional blocks are the same as those in the above embodiment, so description thereof is omitted.

記憶部21Cは、第1の特性式に代わり、または第1の特性式と共に、第2の特性式を記憶する。なお、第1の特性式は、第2の特性式から得られてもよい。また、記憶部21Cは、各蓄電池3のSOCの基準値と、各蓄電池3の充放電量の塁積値を記憶する。また記憶部21Cは、上記実施形態における記憶部21が記憶する、式(1)等の情報を記憶する。 The storage unit 21C stores the second characteristic formula instead of or together with the first characteristic formula. Note that the first characteristic formula may be obtained from the second characteristic formula. The storage unit 21</b>C also stores the reference value of the SOC of each storage battery 3 and the accumulated value of the charge/discharge amount of each storage battery 3 . The storage unit 21C also stores information such as Equation (1) stored by the storage unit 21 in the above embodiment.

制御部22Cの劣化速度導出部221Cは、記憶部21Cに記憶されているSOCの基準値と充放電量の累積値から各蓄電池3のSOCを求める。また、各蓄電池3の内部温度と共にSOCを第2の特性式に代入して、各蓄電池3の劣化速度を求める。 The deterioration rate derivation unit 221C of the control unit 22C obtains the SOC of each storage battery 3 from the SOC reference value and the accumulated charge/discharge amount stored in the storage unit 21C. Also, the deterioration rate of each storage battery 3 is obtained by substituting the SOC into the second characteristic expression together with the internal temperature of each storage battery 3 .

また本実施形態に係る充放電配分制御装置2Cのハードウェア構成は、上記第1、2の実施形態と同様、図5に例示される。ここで、記憶装置72は記憶部21Cの機能を実現することができる。またプロセッサ70が、メモリ71の情報を用い、または記憶装置72からの情報をメモリ71に読み込み、処理を行うことにより上記制御部22Cの機能が実現される。その他の点は上記実施形態において説明したものと同様であるので、説明を省略する。 Further, the hardware configuration of the charge/discharge distribution control device 2C according to this embodiment is illustrated in FIG. 5, as in the first and second embodiments. Here, the storage device 72 can implement the function of the storage section 21C. Further, the processor 70 uses the information in the memory 71 or reads the information from the storage device 72 into the memory 71 and performs processing, thereby realizing the functions of the control section 22C. Since other points are the same as those described in the above embodiment, the description is omitted.

(作用)
本実施形態に係る充放電配分制御装置2Cによる処理のフローは、図6、9により示される。本実施形態においてはステップS1001に代わりステップS1001C、ステップS1002に代わりステップS1002Cの処理が行われる。
(action)
Flows of processing by the charge/discharge distribution control device 2C according to the present embodiment are shown in FIGS. In this embodiment, step S1001C is replaced with step S1001, and step S1002C is replaced with step S1002.

ステップS1001Cにおいて、上記実施形態でのステップS1001の処理が実行すれる以外にも、制御部22C(劣化速度導出部221C)により記憶部21Cに記憶されたSOCの基準値と充放電量の累積値が読み出される。 In step S1001C, in addition to executing the processing of step S1001 in the above embodiment, the SOC reference value and the accumulated charge/discharge amount stored in the storage unit 21C by the control unit 22C (degradation rate deriving unit 221C) is read out.

ステップS1002Cにおいて劣化速度導出部221Cは、上記実施形態のときと同様、式(1)を用いて各蓄電池3の内部温度を求める。また劣化速度導出部221Cは、SOCの基準値と充放電量の累積値から現在のSOCを求める。劣化速度導出部221Cは、求めた各蓄電池3の内部温度とSOCと各蓄電池3の劣化速度特性(ここでは第2の特性式)を用いて、各蓄電池3の劣化速度を求める(ステップS1002C)。 In step S1002C, the deterioration rate derivation unit 221C obtains the internal temperature of each storage battery 3 using equation (1), as in the above embodiment. Further, the deterioration rate derivation unit 221C obtains the current SOC from the SOC reference value and the accumulated charge/discharge amount. The deterioration speed deriving unit 221C obtains the deterioration speed of each storage battery 3 using the obtained internal temperature and SOC of each storage battery 3 and the deterioration speed characteristic (here, the second characteristic formula) of each storage battery 3 (step S1002C). .

ここで、図11を用いて、ステップS1002Cにおける劣化速度の導出処理について、より詳細に説明を行う。図11は、蓄電池3の内部温度とSOCと劣化速度との関係を2次元平面で表したものである。上述した第1の特性式により表される図11中の各蓄電池3の特性は、SOCの変化により勾配等が変化する。また各蓄電池3の特性は、SOCが小さいほど勾配が小さい。 Here, with reference to FIG. 11, the deterioration rate derivation process in step S1002C will be described in more detail. FIG. 11 shows the relationship between the internal temperature, SOC, and deterioration rate of the storage battery 3 on a two-dimensional plane. The characteristic of each storage battery 3 in FIG. 11 represented by the above-described first characteristic formula changes in slope or the like according to changes in SOC. Also, the characteristic of each storage battery 3 has a smaller slope as the SOC decreases.

図11に示すように、蓄電池3A、3B、3Cの現在の各SOCを、30%、30%、50%とする。また蓄電池3A、3B、3Cの現在の各内部温度を、T、T、Tとする。このとき図11に示す通り、蓄電池3A、3B、3Cの現在の各劣化速度は、V、V、Vと求まり、蓄電池3Bの劣化速度が最も小さく、蓄電池3Cの劣化速度が最も大きいことがわかる。 As shown in FIG. 11, the current SOCs of storage batteries 3A, 3B, and 3C are assumed to be 30%, 30%, and 50%, respectively. Also, let the current internal temperatures of the storage batteries 3A, 3B, and 3C be TA , TB , and TC . At this time, as shown in FIG. 11, the current deterioration speeds of storage batteries 3A, 3B, and 3C are obtained as VA , VB , and VC . I understand.

図6、9に戻り、劣化速度導出部221Cにより求められた各蓄電池3の劣化速度は、配分率決定部222Aまたは優先順位決定部222Bへ出力される。 Returning to FIGS. 6 and 9, the deterioration rate of each storage battery 3 obtained by the deterioration rate derivation section 221C is output to the distribution rate determination section 222A or the priority order determination section 222B.

以降の処理は上記第1、2の実施形態のものと同様なので説明を省略する。なお、これらの各処理は、上記実施形態のフローにおける対応する処理において説明した処理主体と同じ機能ブロックの名称を持つ機能ブロック(符号が異なる場合もある)によりなされるものとする。 Since subsequent processing is the same as that of the first and second embodiments, the description is omitted. It should be noted that each of these processes is performed by a functional block having the same functional block name (with a different code in some cases) as the processing entity described in the corresponding process in the flow of the above embodiment.

(効果)
本実施形態に係る充放電配分制御システム1Cによれば、各蓄電池3の内部温度だけではなくSOCも考慮に入れるため、上記実施形態の場合よりも正確に劣化速度が求められる。そしてこれに応じ各蓄電池3の劣化の進行を遅らせるためのより適切な充放電指令値が算出される。これにより、充放電配分制御システム1Cにおける各蓄電池3の劣化の進行をより遅らせることができる。
(effect)
According to the charge/discharge distribution control system 1C according to the present embodiment, not only the internal temperature of each storage battery 3 but also the SOC is taken into consideration, so the deterioration speed can be obtained more accurately than in the case of the above embodiment. Accordingly, a more appropriate charge/discharge command value for delaying the progress of deterioration of each storage battery 3 is calculated. As a result, progress of deterioration of each storage battery 3 in the charge/discharge distribution control system 1C can be further delayed.

(第4の実施形態)
上記の実施形態では、各蓄電池3の劣化速度の導出に際し、現在の蓄電池3の内部温度、または現在の蓄電池3の内部温度とSOCとの組み合わせが用いられた。本実施形態においては、所定時間経過後の各蓄電池3の内部温度、または所定時間経過後の蓄電池3の内部温度とSOCとの組み合わせを用いて、所定時間経過後の各蓄電池3の劣化速度が求められ、これを用いて各蓄電池3への配分率や各蓄電池3の優先順位が決定されるものとする。なお、以下では、この蓄電池3の内部温度とSOCをまとめて制御用パラメータとも称する。
(Fourth embodiment)
In the above embodiment, the current internal temperature of the storage battery 3 or a combination of the current internal temperature of the storage battery 3 and the SOC is used to derive the deterioration rate of each storage battery 3 . In the present embodiment, the deterioration rate of each storage battery 3 after a predetermined period of time is calculated using the internal temperature of each storage battery 3 after a predetermined period of time has passed, or the combination of the internal temperature of each storage battery 3 after a predetermined period of time has passed and the SOC. It is assumed that the distribution ratio to each storage battery 3 and the priority of each storage battery 3 are determined using this. In the following description, the internal temperature and SOC of the storage battery 3 are collectively referred to as control parameters.

以下、より詳細に説明する。各蓄電池3には、一定時間、充放電を行うことにより内部発熱が生じている。本実施形態に係る充放電配分制御装置2Dは、各蓄電池3の現時点から所定時間後の制御用パラメータの値を予測して、この予測値に基づいて劣化速度を求める。これにより、現在の制御用パラメータの値を用いて劣化速度を求めている間における制御用パラメータの値に変化によって発生する劣化速度の誤差をより小さくできる。なおこの場合、現在の劣化速度の導出は行われなくともよい。 A more detailed description will be given below. Internal heat is generated in each storage battery 3 by charging and discharging for a certain period of time. The charge/discharge distribution control device 2D according to the present embodiment predicts the value of the control parameter of each storage battery 3 after a predetermined time from the present time, and obtains the deterioration speed based on this predicted value. As a result, it is possible to further reduce the deterioration rate error caused by a change in the value of the control parameter while the deterioration rate is being obtained using the current value of the control parameter. In this case, derivation of the current deterioration rate may not be performed.

また蓄電池3に対して、所定時間、充放電を行わせる場合に、当該所定時間後の制御用パラメータの予測値に基づく劣化速度が、上限値以上となるような場合がある。充放電配分制御装置2Dは、このような蓄電池3に対し配分率を少なく設定したり、時間経過と共に小さくなるような配分率を設定したりしてもよい。また充放電配分制御装置2Dは、このような蓄電池3に対し劣化速度が上限値となる時点等で優先順位を下げるようにしてもよい。 Further, when the storage battery 3 is charged and discharged for a predetermined period of time, the deterioration rate based on the predicted value of the control parameter after the predetermined period of time may be equal to or higher than the upper limit value. The charge/discharge distribution control device 2D may set a small distribution rate for such a storage battery 3, or may set a distribution rate that decreases over time. Also, the charge/discharge distribution control device 2D may lower the priority of such a storage battery 3 when the rate of deterioration reaches the upper limit.

蓄電池3の内部温度の予測値は、例えば充放電電流と内部抵抗とを用いて充放電電力量を求めることにより、求められてもよい。また、式(1)により内部温度の予測値が求められてもよい。ここで式(1)を用いる場合には、xを「最新の充放電開始時点から現時点までの経過時間」ではなく、「最新の充放電開始時点から予測時点までの経過時間」と置き直し、yを「最新の充放電終了時点から予測時点までの経過時間」と置き直す。 The predicted value of the internal temperature of the storage battery 3 may be obtained, for example, by obtaining the charge/discharge electric energy using the charge/discharge current and the internal resistance. Also, the predicted value of the internal temperature may be obtained from the equation (1). Here, when formula (1) is used, x is replaced with "elapsed time from the latest charge/discharge start point to the prediction point" instead of "elapsed time from the latest charge/discharge start point to the present time", Replace y with "elapsed time from the latest charging/discharging end point to the predicted point".

SOCの予測値は、現時点のSOCを元にして予測時点までに充放電がされる充放電量から求められる。 The predicted value of SOC is obtained from the charge/discharge amount to be charged/discharged by the prediction time based on the current SOC.

内部温度とSOCの各予測値は、現時点から例えば数分後のものが求められる。各蓄電池3の劣化速度は、内部温度の予測値を第1の特性式に代入するか、内部温度とSOCの予測値を第2の特性式に代入すること等により求められる。以下説明する本実施形態においては、内部温度とSOCの予測値が求められ、これらにより蓄電池3の劣化速度が求められるものとする。 The predicted values of the internal temperature and SOC are obtained several minutes after the current time. The deterioration rate of each storage battery 3 is obtained by substituting the predicted value of the internal temperature into the first characteristic formula, or substituting the predicted values of the internal temperature and the SOC into the second characteristic formula, or the like. In the present embodiment described below, it is assumed that predicted values of the internal temperature and SOC are obtained, and the deterioration rate of the storage battery 3 is obtained from these.

(構成要素の説明)
本実施形態に係る充放電配分制御システム1Dのシステム構成は図3に示され、充放電配分制御システム1Dは、上記実施形態に係る充放電配分制御装置2A、2B、2Cに代わり、充放電配分制御装置2Dを備える。その他の各構成要素は上記実施形態の場合と同様である。
(Description of components)
The system configuration of the charge/discharge distribution control system 1D according to the present embodiment is shown in FIG. A control device 2D is provided. Other components are the same as in the above embodiment.

また本実施形態に係る充放電配分制御装置2Dの機能ブロックは図4、8に示され、充放電配分制御装置2Dは、上記実施形態の記憶部に代わり記憶部21Dを備え、上記実施形態の制御部に代わり制御部22Dを備える。また制御部22Dは、上記実施形態における劣化速度導出部に代わり劣化速度導出部221Dを備える。その他の各機能ブロックは図4、8に示す上記実施形態の場合と同様であるため説明を省略する。 The functional blocks of the charge/discharge distribution control device 2D according to the present embodiment are shown in FIGS. A controller 22D is provided in place of the controller. Further, the control section 22D includes a deterioration rate deriving section 221D in place of the deterioration rate deriving section in the above embodiment. Other functional blocks are the same as those in the above embodiment shown in FIGS. 4 and 8, so description thereof is omitted.

記憶部21Dは、上記実施形態に係る記憶部において記憶した情報以外に各蓄電池3の一定時間当たり(例えば配分率や優先順位の決定処理のサイクル時間当たり)のSOCの累積値を一定値または一定の式等により近似したもの(これらをまとめて一定時間当たりのSOCの累積値と称する)を保持する。 In addition to the information stored in the storage unit according to the above-described embodiment, the storage unit 21D stores the accumulated SOC value of each storage battery 3 per a certain period of time (for example, per cycle time of the allocation rate and priority order determination process) as a constant value or a constant value. (collectively referred to as the accumulated value of SOC per fixed time) is held.

制御部22Dの劣化速度導出部221Dは、記憶部21Dに記憶された一定時間当たりのSOCの累積値を読み込み、所定時間経過後のSOCの予測値を求める。また劣化速度導出部221Dは、上述したように、充放電電力量を求めることにより、または式(1)により、所定時間経過後の内部温度の予測値を求める。劣化速度導出部221Dは、これら予測値から所定時間経過後の劣化速度を求める。 The deterioration rate derivation unit 221D of the control unit 22D reads the cumulative value of SOC per predetermined time stored in the storage unit 21D, and obtains the predicted value of the SOC after the predetermined time has passed. Further, the deterioration rate derivation unit 221D obtains the predicted value of the internal temperature after a predetermined time has elapsed by obtaining the charge/discharge power amount as described above or by using the formula (1). The deterioration speed derivation unit 221D obtains the deterioration speed after a predetermined time from these predicted values.

本実施形態に係る充放電配分制御装置2Dのハードウェア構成は、上記実施形態と同様、図5に例示される。ここで、記憶装置72は記憶部21Dの機能を実現することができる。またプロセッサ70が、メモリ71の情報を用い、または記憶装置72からの情報をメモリ71に読み込み、処理を行うことにより上記制御部22Dの機能が実現される。その他の点は上記実施形態において説明したものと同様であるので、説明を省略する。 The hardware configuration of a charge/discharge distribution control device 2D according to this embodiment is illustrated in FIG. 5, as in the above embodiment. Here, the storage device 72 can implement the function of the storage section 21D. Further, the processor 70 uses the information in the memory 71 or reads the information from the storage device 72 into the memory 71 and performs processing, thereby realizing the function of the control section 22D. Since other points are the same as those described in the above embodiment, the description is omitted.

(作用)
本実施形態に係る充放電配分制御装置2Dの処理のフローについて、図6、9を用いて説明する。充放電配分制御装置2Dによるフローには、上記実施形態に係るフローにおけるステップS1001、S1001Cの処理に代わりステップS1001D、またステップS1002、S1002Cの処理に代わりステップS1002Dの処理が含まれる。
(action)
A processing flow of the charge/discharge distribution control device 2D according to the present embodiment will be described with reference to FIGS. The flow by the charge/discharge distribution control device 2D includes step S1001D instead of steps S1001 and S1001C in the flow according to the above embodiment, and step S1002D instead of steps S1002 and S1002C.

劣化速度導出部221Dは、通信部220を介し、または記憶部21Dから、各蓄電池3の状態に関する情報を収集する(ステップS1001D)。ここで収集される情報は上記実施形態におけるステップS1001、S1001Cにおいて収集された情報に加え、各蓄電池3の一定時間当たりのSOCの累積値を含む。 The deterioration rate derivation unit 221D collects information about the state of each storage battery 3 via the communication unit 220 or from the storage unit 21D (step S1001D). The information collected here includes the accumulated value of the SOC of each storage battery 3 per certain period of time in addition to the information collected in steps S1001 and S1001C in the above embodiment.

S1002Dにおいて、劣化速度導出部221Dは、充放電電流と内部抵抗とを用いて充放電電力量を求めることにより、または現時点を予測時点に置き換えたx、yを式(1)に代入することより、各蓄電池3の内部温度の予測値を求める。また、劣化速度導出部221Dは、各蓄電池3の現時点のSOCと、一定時間当たりのSOCの累積値を用いて、SOCの予測値を求める。そして劣化速度導出部221Dは、これらの各蓄電池3の内部温度とSOCの各予測値を用いて予測時点における各蓄電池3の劣化速度を求める(S1002D)。この予測時点における各蓄電池3劣化速度は、配分率決定部222Aまたは優先順位決定部222Bに出力される。 In S1002D, the deterioration rate derivation unit 221D obtains the charge/discharge power amount using the charge/discharge current and the internal resistance, or by substituting x and y obtained by replacing the current time with the predicted time into the equation (1). , a predicted value of the internal temperature of each storage battery 3 is obtained. Further, the deterioration rate derivation unit 221D obtains a predicted value of SOC using the current SOC of each storage battery 3 and the accumulated value of SOC per certain period of time. Then, the deterioration rate derivation unit 221D obtains the deterioration rate of each storage battery 3 at the time of prediction using the predicted values of the internal temperature and SOC of each storage battery 3 (S1002D). The deterioration rate of each storage battery 3 at the time of prediction is output to the allocation rate determination section 222A or the priority order determination section 222B.

図6におけるステップS1003において配分率決定部222Aは、劣化速度導出部221Dからの、予測時点における各蓄電池3の劣化速度に基づいて、各蓄電池3の配分率を設定する。なお、ステップS1003の配分率決定部222Aにおける処理は、用いられる劣化速度以外、上記実施形態におけるものと同様である。 In step S1003 in FIG. 6, the distribution rate determination unit 222A sets the distribution rate of each storage battery 3 based on the deterioration speed of each storage battery 3 at the time of prediction from the deterioration speed derivation unit 221D. It should be noted that the processing in the allocation rate determination unit 222A in step S1003 is the same as that in the above-described embodiment except for the deterioration rate used.

また図9におけるステップS1003Bにおいて優先順位決定部222Bは、劣化速度導出部221Dからの、予測時点における各蓄電池3の劣化速度に基づいて、各蓄電池3の優先順位を決定する。なお、ステップS1003Bの優先順位決定部222Bにおける処理は、用いられる劣化速度以外、上記実施形態におけるものと同様である。 In step S1003B in FIG. 9, the priority determination unit 222B determines the priority of each storage battery 3 based on the deterioration speed of each storage battery 3 at the time of prediction from the deterioration speed derivation unit 221D. It should be noted that the processing in the priority determining unit 222B in step S1003B is the same as that in the above embodiment, except for the deterioration rate used.

その他の処理は上記実施形態における処理と同様であるため、説明を省略する。なお、これらの各処理は、上記実施形態のフローにおける対応する処理において説明した処理主体と同じ機能ブロックの名称を持つ機能ブロック(符号が異なる場合もある)によりなされるものとする。 Since other processing is the same as the processing in the above embodiment, the description is omitted. It should be noted that each of these processes is performed by a functional block having the same functional block name (with a different code in some cases) as the processing entity described in the corresponding process in the flow of the above embodiment.

(効果)
本実施形態に係る充放電配分制御装置2Dによれば、現在の制御用パラメータを用いて劣化速度を求めている間に、制御用パラメータの値に変化があるような場合でも、その変化後の各蓄電池3の劣化速度が求められる。これにより、劣化速度の変化に応じた適切な充放電指令が各蓄電池3に割り振られる。また、制御用パラメータの予測値から所定時間後の蓄電池3の劣化速度が求められることにより、これに応じた充放電指令の割り振りが可能となる。
(effect)
According to the charge/discharge distribution control device 2D according to the present embodiment, even if there is a change in the value of the control parameter while the deterioration rate is being obtained using the current control parameter, after the change A deterioration rate of each storage battery 3 is obtained. As a result, an appropriate charge/discharge command is assigned to each storage battery 3 in accordance with the change in deterioration rate. Further, by obtaining the deterioration speed of the storage battery 3 after a predetermined time from the predicted value of the control parameter, it becomes possible to allocate charge/discharge commands accordingly.

(第5の実施形態)
上記実施形態に係る充放電配分制御システムにおいては、各蓄電池3の充放電指令値は劣化速度に基づいて求められた。しかし、劣化速度が大きくとも劣化の度合いの小さい蓄電池3が存在したり、劣化速度が小さくとも劣化の度合いの大きい蓄電池3が存在したりする場合がある。そのため、導出された劣化速度が小さいが、劣化の度合いが進行した蓄電池3に対し大きな充放電指令値が割り当てられる場合が存在する。これにより、蓄電池3の寿命が短くなる虞がある。
(Fifth embodiment)
In the charge/discharge distribution control system according to the above embodiment, the charge/discharge command value for each storage battery 3 is obtained based on the deterioration rate. However, there may be a storage battery 3 with a high deterioration rate but a small degree of deterioration, or a storage battery 3 with a low deterioration rate but a high degree of deterioration. Therefore, there is a case where a large charge/discharge command value is assigned to the storage battery 3 in which the derived deterioration rate is small but the degree of deterioration has progressed. As a result, the life of the storage battery 3 may be shortened.

本実施形態では、各蓄電池3の劣化の度合いも考慮に入れて、劣化の度合いが大きい蓄電池3の優先順位を後ろにずらしたり、充放電配分の対象から外したりするような場合を考える。 In the present embodiment, the degree of deterioration of each storage battery 3 is taken into consideration, and a case is considered in which the priority of the storage battery 3 having a greater degree of deterioration is shifted backward or removed from the target of charge/discharge distribution.

本実施形態において、各蓄電池3の劣化度の測定は以下のようにして行われる。本実施形態に係る充放電配分制御装置2E、PCS5、または外部装置は、第3の実施形態において述べたようなSOCの補正処理の際などに、各蓄電池3の満充電時の充電量を求める。なお、PCS5や外部装置が満充電時の充電量を取得する場合には、この値は充放電配分制御装置2Eへ通知される。 In this embodiment, the degree of deterioration of each storage battery 3 is measured as follows. The charge/discharge distribution control device 2E, the PCS 5, or an external device according to the present embodiment obtains the charge amount when each storage battery 3 is fully charged during the SOC correction process as described in the third embodiment. . When the PCS 5 or an external device acquires the charge amount at full charge, this value is notified to the charge/discharge distribution control device 2E.

劣化の度合いを示す指標となる劣化度は以下に定義される。
劣化度=満充電時の充電量/定格の充電量・・・(2)
The degree of deterioration, which is an index indicating the degree of deterioration, is defined below.
Degree of deterioration = charge amount at full charge / rated charge amount (2)

この劣化度は、値が小さいほど劣化の度合いが大きく、値が大きいほど劣化の度合いが小さい量である。 The degree of deterioration is such that the smaller the value, the larger the degree of deterioration, and the larger the value, the smaller the degree of deterioration.

充放電配分制御装置2Eは式(2)を用いて、各蓄電池3の劣化度を求める。本実施形態では、充放電配分制御装置2Eにより劣化の度合いが自動的に測定されるものとする。 The charge/discharge distribution control device 2E obtains the degree of deterioration of each storage battery 3 using equation (2). In this embodiment, it is assumed that the degree of deterioration is automatically measured by the charge/discharge distribution control device 2E.

各蓄電池3の劣化は、内部抵抗が大きいほど進行しているため、劣化度は上記方法以外に内部抵抗から求められてもよい。また、各蓄電池3の劣化度は劣化速度の時間積分として求められてもよい。 Since the deterioration of each storage battery 3 progresses as the internal resistance increases, the degree of deterioration may be obtained from the internal resistance in addition to the above method. Further, the degree of deterioration of each storage battery 3 may be obtained as a time integral of the deterioration rate.

充放電配分制御装置2Eは、上記実施形態の場合と同様な処理により、各蓄電池3の充放電の配分率または優先順位を決定し、また劣化度を参照して配分率または優先順位に対し重み付け等を行い、配分率または優先順位を変更させる。また蓄電池3の劣化度が下限値以下であれば、当該蓄電池3を充放電処理の対象から外してもよい。 The charge/discharge distribution control device 2E determines the charge/discharge distribution ratio or priority of each storage battery 3 by the same processing as in the above embodiment, and weights the distribution ratio or priority with reference to the degree of deterioration. etc. to change the allocation rate or priority. Moreover, if the degree of deterioration of the storage battery 3 is equal to or lower than the lower limit value, the storage battery 3 may be excluded from the target of the charge/discharge process.

(構成要素の説明)
本実施形態に係る充放電配分制御システム1Eのシステム構成は、図3に示され、上記実施形態における充放電配分制御装置に代え、充放電配分制御装置2Eを備える。充放電配分制御装置以外の構成要素については、上記実施形態におけるものと同様であるため説明を省略する。
(Description of components)
A system configuration of a charge/discharge distribution control system 1E according to this embodiment is shown in FIG. 3, and includes a charge/discharge distribution control device 2E instead of the charge/discharge distribution control device in the above embodiment. Components other than the charge/discharge distribution control device are the same as those in the above-described embodiment, so description thereof will be omitted.

図12は、本実施形態に係る充放電配分制御装置2Eの機能ブロックの一例を示す図である。充放電配分制御装置2Eは、上記実施形態における記憶部に代え記憶部21Eを備え、上記実施形態における制御部に代え制御部22Eを備える。 FIG. 12 is a diagram showing an example of functional blocks of a charge/discharge distribution control device 2E according to this embodiment. The charge/discharge distribution control device 2E includes a storage unit 21E instead of the storage unit in the above embodiment, and a control unit 22E instead of the control unit in the above embodiment.

記憶部21Eは、上記実施形態における記憶部が記憶している情報に加え、各蓄電池3の定格の充電量を記憶し、充放電配分制御装置2EがSOCの補正処理等において取得する各蓄電池3の満充電時の充電量を記憶する。あるいは満充電時の充電量については、記憶部21Eがこれを記憶する代わりに、後述する劣化度検出部224がSOCの補正処理等においてこれを直接取得してもよい。 The storage unit 21E stores the rated charge amount of each storage battery 3 in addition to the information stored in the storage unit in the above-described embodiment, and stores each storage battery 3 obtained by the charge/discharge distribution control device 2E in the SOC correction process or the like. Stores the amount of charge when the battery is fully charged. Alternatively, instead of being stored in the storage unit 21E, the charge amount at full charge may be directly acquired by the deterioration degree detection unit 224, which will be described later, in the SOC correction process or the like.

また記憶部21Eは、劣化度検出部224により算出された各蓄電池3の劣化度を記憶する。 The storage unit 21E also stores the deterioration degree of each storage battery 3 calculated by the deterioration degree detection unit 224 .

制御部22Eは、上記実施形態に係る劣化速度導出部に代え劣化速度導出部221Eを備え、上記実施形態に係る配分率決定部または優先順位決定部に代え配分率/優先順位決定部222Eを備え、さらに劣化度検出部224を備える。 The control unit 22E includes a deterioration speed derivation unit 221E instead of the deterioration speed derivation unit according to the above embodiment, and an allocation ratio/priority determination unit 222E instead of the allocation ratio determination unit or priority determination unit according to the above embodiment. , and further includes a deterioration degree detection unit 224 .

劣化度検出部224は、上述した式(2)を用いて各蓄電池3の劣化度を算出する。ここで、劣化度検出部224は記憶部21Eから各蓄電池3の定格の充電量を読み込む。そして劣化度検出部224は、各蓄電池3の定格の充電量と、SOCの補正処理等の際に取得された各蓄電池3の満充電時の充電量を用いて、式(2)より各蓄電池3の劣化度を算出する。劣化度検出部224により求められた各蓄電池3の劣化度は記憶部21Eに記憶される。なお、これらの処理は、蓄電池3の運用の際の充放電処理とは独立して行われる。 The deterioration degree detection unit 224 calculates the deterioration degree of each storage battery 3 using the formula (2) described above. Here, the deterioration degree detection unit 224 reads the rated charge amount of each storage battery 3 from the storage unit 21E. Then, the deterioration degree detection unit 224 uses the rated charge amount of each storage battery 3 and the charge amount at full charge of each storage battery 3 acquired during the SOC correction process or the like to determine each storage battery from equation (2). 3 is calculated. The deterioration degree of each storage battery 3 obtained by the deterioration degree detection unit 224 is stored in the storage unit 21E. It should be noted that these processes are performed independently of the charge/discharge process during operation of the storage battery 3 .

劣化速度導出部221Eは、各蓄電池3の劣化度を記憶部21Eから読み込む。そして劣化速度導出部221Eは、各蓄電池3の劣化度が下限値以下か否かを判定し、劣化度が下限値より大きい蓄電池3の劣化速度を求める。また劣化速度導出部221Eは、劣化度が下限値以下の蓄電池3の劣化速度を求めなくともよいし、求めてもよい。 The deterioration rate derivation unit 221E reads the degree of deterioration of each storage battery 3 from the storage unit 21E. Then, the deterioration rate derivation unit 221E determines whether the degree of deterioration of each storage battery 3 is equal to or lower than the lower limit, and obtains the deterioration rate of the storage battery 3 whose degree of deterioration is greater than the lower limit. Further, the deterioration rate derivation unit 221E may or may not obtain the deterioration rate of the storage battery 3 whose degree of deterioration is equal to or lower than the lower limit value.

劣化速度導出部221Eは、求めた蓄電池3の劣化速度を配分率/優先順位決定部222Eに出力する。 The deterioration speed derivation unit 221E outputs the obtained deterioration speed of the storage battery 3 to the distribution ratio/priority determination unit 222E.

配分率/優先順位決定部222Eは、上記劣化速度導出部221Eにより出力された各蓄電池3の劣化速度に基づき、各蓄電池3の配分率または優先順位を決定する。なお、配分率/優先順位決定部222Eは、劣化速度導出部221Eにおいて劣化速度が求められなかった蓄電池3の配分率と優先順位は決定しなくともよい。そして決定しない配分率または優先順位について、配分率/優先順位決定部222Eは、充放電量算出部(223A、223B)に出力しなくともよい。 The distribution ratio/priority determination unit 222E determines the distribution ratio or priority of each storage battery 3 based on the deterioration speed of each storage battery 3 output by the deterioration speed derivation unit 221E. Note that the allocation ratio/priority determination unit 222E does not have to determine the allocation ratio and priority of the storage battery 3 for which the deterioration speed is not obtained by the deterioration speed derivation unit 221E. The allocation ratio/priority determination unit 222E does not have to output the undetermined allocation ratio or priority to the charge/discharge amount calculation units (223A, 223B).

配分率/優先順位決定部222Eは、劣化速度導出部221Eより劣化度が下限値以下の蓄電池3の劣化速度を取得する場合、記憶部21Eより各蓄電池3の劣化度を読み込んでもよい。そして配分率/優先順位決定部222Eは、劣化度が下限値以下の蓄電池3の配分率または優先順位を決定しなくともよい。または配分率/優先順位決定部222Eは、劣化度が下限値以下の蓄電池3の配分率または優先順位を劣化速度から求めてもよい。そして配分率/優先順位決定部222Eは、求めた配分率をより小さい値にしたものを当該蓄電池3の新たな配分率としてもよいし、求めた優先順位の値をより大きい値にしたものを当該蓄電池3の新たな優先順位としてもよい。 When acquiring the deterioration rate of the storage battery 3 whose deterioration degree is equal to or less than the lower limit value from the deterioration rate derivation unit 221E, the allocation ratio/priority determination unit 222E may read the deterioration degree of each storage battery 3 from the storage unit 21E. Then, the allocation rate/priority determination unit 222E does not have to determine the allocation rate or the priority of the storage batteries 3 whose degree of deterioration is equal to or less than the lower limit value. Alternatively, the allocation rate/priority determination unit 222E may obtain the allocation rate or priority of the storage battery 3 whose degree of deterioration is equal to or less than the lower limit value from the deterioration rate. Then, the allocation ratio/priority determining unit 222E may set the obtained allocation ratio to a smaller value as a new allocation ratio for the storage battery 3, or may set the obtained priority value to a higher value. A new priority order for the storage battery 3 may be used.

なお、配分率/優先順位決定部222Eは、配分率の総和が1となるように、または優先順位の値が小さいものから連番になるように(とびとび値の優先順位とならないように)決定する。 Note that the allocation rate/priority determining unit 222E determines such that the sum of the allocation rates becomes 1, or that the priority values are consecutively numbered from the smallest (so that the priorities do not have discrete values). do.

配分率/優先順位決定部222Eは、決定した蓄電池3の配分率または優先順位を、それぞれ充放電量算出部223Aまたは充放電量算出部223Bに出力する。 The allocation ratio/priority determination unit 222E outputs the determined allocation ratio or priority of the storage battery 3 to the charge/discharge amount calculation unit 223A or the charge/discharge amount calculation unit 223B, respectively.

その他の機能ブロックについては、上記実施形態の場合と同様であるので、説明を省略する。 Other functional blocks are the same as in the above-described embodiment, so description thereof will be omitted.

本実施形態に係る充放電配分制御装置2Eのハードウェア構成は、上記実施形態と同様、図5に例示される。ここで、記憶装置72は記憶部21Eの機能を実現することができる。またプロセッサ70が、メモリ71の情報を用い、または記憶装置72からの情報をメモリ71に読み込み、処理を行うことにより上記制御部22Eの機能が実現される。その他の点は上記実施形態において説明したものと同様であるので、説明を省略する。 The hardware configuration of a charge/discharge distribution control device 2E according to this embodiment is illustrated in FIG. 5, as in the above embodiment. Here, the storage device 72 can implement the function of the storage unit 21E. Further, the processor 70 uses the information in the memory 71 or reads the information from the storage device 72 into the memory 71 and performs processing, thereby realizing the function of the control section 22E. Since other points are the same as those described in the above embodiment, the description is omitted.

(作用)
本実施形態の処理のフローを、図6、9を用いて説明する。本実施形態におけるフローにおいては、上記実施形態におけるステップS1001、S1001C、S1001Dの処理に代えステップS1001Eの処理が行われ、ステップS1002、S1002C,S1002Dの処理に代えステップS1002Eの処理が行われ、ステップS1003、S1003Bに代えステップS1003Eの処理が行われる。これらの処理について以下説明する。
(Action)
The processing flow of this embodiment will be described with reference to FIGS. In the flow of this embodiment, the processing of step S1001E is performed instead of the processing of steps S1001, S1001C, and S1001D in the above embodiment, the processing of step S1002E is performed instead of the processing of steps S1002, S1002C, and S1002D, and the processing of step S1003 is performed. , the process of step S1003E is performed instead of S1003B. These processes are described below.

ステップS1001Eにおいて、劣化速度導出部221Eは、上記実施形態に係る劣化速度導出部の処理に加え、記憶部21Eより各蓄電池3の劣化度を取得する(ステップS1001E)。劣化速度導出部221Eは、各蓄電池3の劣化度が下限値以下か否かを判定する。計算量の低減のため、本実施形態における劣化速度導出部221Eは、劣化度が下限値以下の蓄電池3を劣化速度導出の対象から外し、残りの蓄電池3の劣化速度を求める(ステップS1002E)。ただし、劣化速度導出部221Eは、劣化度が下限値以下の蓄電池3の劣化速度を求めてもよい。 In step S1001E, the deterioration rate deriving unit 221E acquires the degree of deterioration of each storage battery 3 from the storage unit 21E in addition to the processing of the deterioration rate deriving unit according to the above embodiment (step S1001E). The deterioration rate derivation unit 221E determines whether the degree of deterioration of each storage battery 3 is equal to or less than the lower limit. In order to reduce the amount of calculation, the deterioration rate derivation unit 221E in this embodiment excludes the storage batteries 3 whose degree of deterioration is equal to or lower than the lower limit value from deterioration rate derivation targets, and obtains the deterioration rate of the remaining storage batteries 3 (step S1002E). However, the deterioration speed deriving unit 221E may obtain the deterioration speed of the storage battery 3 whose degree of deterioration is equal to or less than the lower limit value.

劣化速度導出部221Eは、導出した各蓄電池3の劣化速度を配分率/優先順位決定部222Eに出力する。 The deterioration rate derivation unit 221E outputs the derived deterioration rate of each storage battery 3 to the distribution ratio/priority determination unit 222E.

ステップS1003Eにおいて配分率/優先順位決定部222Eは、劣化速度導出部221Eより取得した劣化速度に基づき、各蓄電池3の配分率または優先順位を決定する。本実施形態における配分率/優先順位決定部222Eは、劣化度が下限値より大きい蓄電池3の劣化速度の出力を劣化速度導出部221Eより受け、これらの蓄電池3についての配分率または優先順位を決定する(ステップS1003E)。ただし、劣化度が下限値以下の蓄電池3の劣化速度の出力を劣化速度導出部221Eより受ける場合には、配分率/優先順位決定部222Eは記憶部21Eから各蓄電池3の劣化度を読み込み、劣化度が下限値以下の蓄電池3については配分率または優先順位を決定しなくともよいし、これら劣化度が下限値以下の蓄電池3についての配分率または優先順位を劣化速度に基づき決定した後に配分率をより小さく設定したり、優先順位をより低く設定したりしてもよい。 In step S1003E, the allocation ratio/priority determination unit 222E determines the allocation ratio or priority of each storage battery 3 based on the deterioration speed acquired from the deterioration speed derivation unit 221E. The allocation ratio/priority determination unit 222E in this embodiment receives the output of the deterioration speed of the storage battery 3 whose degree of deterioration is greater than the lower limit value from the deterioration speed derivation unit 221E, and determines the allocation ratio or priority of these storage batteries 3. (step S1003E). However, when receiving the output of the deterioration speed of the storage battery 3 whose degree of deterioration is equal to or less than the lower limit value from the deterioration speed derivation unit 221E, the distribution ratio/priority determination unit 222E reads the deterioration degree of each storage battery 3 from the storage unit 21E, It is not necessary to determine the allocation rate or the priority order for the storage batteries 3 whose degree of deterioration is equal to or less than the lower limit value, or the allocation rate or the priority order for the storage batteries 3 whose degree of deterioration is equal to or less than the lower limit value is determined based on the deterioration speed. A lower rate may be set, or a lower priority may be set.

配分率/優先順位決定部222Eは、決定した配分率を充放電量算出部223Aに出力、または優先順位を充放電量算出部223Bに出力する。 Distribution ratio/priority determination unit 222E outputs the determined distribution ratio to charge/discharge amount calculation unit 223A, or outputs the priority to charge/discharge amount calculation unit 223B.

図6、9に示される以降の処理については上記実施形態の各処理と同様であるので、説明を省略する。なお、これらの各処理は、上記実施形態のフローにおける対応する処理において説明した処理主体と同じ機能ブロックの名称を持つ機能ブロック(符号が異なる場合もある)によりなされるものとする。 The subsequent processes shown in FIGS. 6 and 9 are the same as the processes in the above embodiments, so descriptions thereof will be omitted. It should be noted that each of these processes is performed by a functional block having the same functional block name (with a different code in some cases) as the processing entity described in the corresponding process in the flow of the above embodiment.

(効果)
本実施形態によれば、劣化の進んだ蓄電池3に充放電処理を行わせないようにすることより、例えば蓄電池3の交換時期に合わせ劣化度を調整することができ、また各蓄電池3の寿命を長くすることができる。
(effect)
According to the present embodiment, by not performing charge/discharge processing on the storage battery 3 that has progressed in deterioration, the degree of deterioration can be adjusted according to, for example, the replacement time of the storage battery 3, and the life of each storage battery 3 can be adjusted. can be lengthened.

(第6の実施形態)
上記実施形態においては、劣化速度に基づいて各蓄電池への配分率または優先順位が決定された。このため、例えば第2の実施形態においては、複数の蓄電池3が同一優先順位になる場合が生じうる。また蓄電池3について劣化速度や劣化度以外にも考慮しなければならない項目が存在する。本実施形態は劣化速度や劣化度以外に蓄電池3のより詳細な情報を元にして、充放電の配分を行う。
(Sixth embodiment)
In the above embodiment, the allocation ratio or priority order to each storage battery is determined based on the deterioration rate. Therefore, for example, in the second embodiment, a plurality of storage batteries 3 may have the same priority. In addition to the deterioration rate and degree of deterioration, there are items that must be considered for the storage battery 3 . In this embodiment, charging/discharging is distributed based on more detailed information of the storage battery 3 in addition to the deterioration rate and degree of deterioration.

(構成要素の説明)
本実施形態に係る充放電配分制御システム1Fは、上記同様、図3により示される。本実施形態に係る充放電配分制御システム1Fは、上記実施形態に係る充放電配分制御装置に代わり、充放電配分制御装置2Fを備える。その他の構成要素については上記実施形態と同様であるので説明を省略する。
(Description of components)
A charge/discharge distribution control system 1F according to the present embodiment is shown in FIG. 3 as described above. A charge/discharge distribution control system 1F according to the present embodiment includes a charge/discharge distribution control device 2F instead of the charge/discharge distribution control device according to the above embodiment. Other constituent elements are the same as those of the above embodiment, so description thereof will be omitted.

本実施形態に係る充放電配分制御装置2Fの機能ブロックは図4、図8、または図12に示され、充放電配分制御装置2Fは上記実施形態における記憶部に代わり記憶部21Fと、上記実施形態における制御部に代わり制御部22Fを備える。その他の機能ブロックについては、上記実施形態におけるものと同様であるので説明を省略する。 The functional block of the charge/discharge distribution control device 2F according to the present embodiment is shown in FIG. 4, FIG. 8, or FIG. A control unit 22F is provided in place of the control unit in the embodiment. Other functional blocks are the same as those in the above-described embodiment, so description thereof is omitted.

ここで、本実施形態においては記憶部21Fには、上記実施形態において記憶された情報に加え、図13に一例が示される情報(蓄電池情報とも呼ぶ)が記憶される。 Here, in the present embodiment, in addition to the information stored in the above embodiment, the storage unit 21F stores information (also referred to as storage battery information) an example of which is shown in FIG.

図13について説明すると、記憶部21Fは各蓄電池3の、一意的に与えられた識別番号、最大充放電量、内部温度、SOC、劣化度、およびメンテナンス後の累積使用時間、累積充放電量等の各項目についての情報を記憶する。図13の上段に示されるのは、各蓄電池3の識別番号、最大充放電量、最大および最小のSOC(それぞれを最大SOC、最小SOCとする)、現在のSOC、およびメンテナンス後の使用時間等である。また図13の下段に示されるのは、各蓄電池3の識別番号、最大充放電量、内部温度の上限下限、現在の内部温度、劣化度の下限、現在の劣化度、および累積充放電量等である。なお、図13に示されるこれらの項目以外にも蓄電池情報には別の項目が存在してもよく、また蓄電池情報には図13に示すこれら項目のうちの一部がない場合があってもよい。また図13の上段、下段のそれぞれに示す項目の組み合わせ以外の組み合わせが、蓄電池3毎に記憶されていてもよい。また、蓄電池3毎にこれらの項目が関係付けられていれば、図13に示す表の代わりに表形式以外のデータが記憶部21Fに記憶されていてもよい。 Referring to FIG. 13, the storage unit 21F stores information such as a unique identification number, maximum charge/discharge amount, internal temperature, SOC, deterioration degree, accumulated usage time after maintenance, accumulated charge/discharge amount, etc. of each storage battery 3. store information about each item in The upper part of FIG. 13 shows the identification number of each storage battery 3, maximum charge/discharge amount, maximum and minimum SOC (maximum SOC and minimum SOC, respectively), current SOC, usage time after maintenance, and the like. is. Also shown in the lower part of FIG. 13 are the identification number of each storage battery 3, maximum charge/discharge amount, upper/lower limit of internal temperature, current internal temperature, lower limit of degree of deterioration, current degree of deterioration, accumulated amount of charge/discharge, etc. is. In addition to the items shown in FIG. 13, the storage battery information may include other items, and even if the storage battery information does not include some of these items shown in FIG. good. Combinations other than the combination of items shown in the upper and lower stages of FIG. 13 may be stored for each storage battery 3 . Further, if these items are associated with each storage battery 3, data in a format other than a table may be stored in the storage unit 21F instead of the table shown in FIG.

制御部22Fは、上記実施形態における劣化速度導出部に代えて劣化速度導出部221Fを備える。また制御部22Fは、上記実施形態における配分率決定部、優先順位決定部配分率/優先順位決定部に代えて配分率/優先順位決定部(配分率決定部または優先順位決定部)222Fを備える。 The control section 22F includes a deterioration rate derivation section 221F instead of the deterioration rate derivation section in the above embodiment. Further, the control unit 22F includes an allocation ratio/priority determination unit (allocation ratio determination unit or priority determination unit) 222F instead of the allocation ratio determination unit and priority determination unit allocation ratio/priority determination unit in the above embodiment. .

制御部22Fは、上記蓄電池情報を参照し、例えば蓄電池3の現在の内部温度が内部温度の上限を上回る場合には、当該蓄電池3を充放電処理の対象とはしない。まず劣化速度導出部221Fは、記憶部21Fを参照し、蓄電池3の各種情報(現在の内部温度や現在のSOCなど)を読み込む。そして劣化速度導出部221Fは、例えば、内部温度がその上限よりも高い、現在の劣化度が下限値(劣化度下限)以下、または現在のSOCが最大SOCより大きい等の蓄電池3の劣化速度を求めなくともよい。また、例えば図13の下段の表の識別番号2の蓄電池3について見てみると、現在の内部温度の値は30であり、内部温度上限の値は25である。この場合、劣化速度導出部221Fは当該蓄電池3の劣化速度を求めなくともよい。これにより、制御部22Fは識別番号2の蓄電池3を充放電指令の対象とはせず、これを外した蓄電池3の中で配分率や優先順位を決定してもよい。 The control unit 22F refers to the storage battery information and, for example, when the current internal temperature of the storage battery 3 exceeds the upper limit of the internal temperature, does not subject the storage battery 3 to the charging/discharging process. First, the deterioration rate derivation unit 221F refers to the storage unit 21F and reads various information of the storage battery 3 (current internal temperature, current SOC, etc.). Then, the deterioration rate derivation unit 221F calculates the deterioration rate of the storage battery 3, for example, when the internal temperature is higher than the upper limit, the current deterioration degree is equal to or less than the lower limit value (deterioration degree lower limit), or the current SOC is greater than the maximum SOC. You don't have to ask. 13, the current internal temperature value is 30 and the internal temperature upper limit value is 25, for example. In this case, the deterioration speed derivation unit 221F does not need to obtain the deterioration speed of the storage battery 3. As a result, the control unit 22F may determine the allocation ratio and the priority order among the storage batteries 3 excluding the storage battery 3 having the identification number 2, which is not subject to the charge/discharge command.

また例えば、配分率/優先順位決定部222Fは、メンテナンスから所用期間が過ぎている蓄電池3の配分率や優先順位を下げてもよいし、メンテナンス予定日が近い蓄電池3の配分率を大きくしても優先順位を上げてもよい。なお、図13のメンテナンス後の使用時間については、メンテナンス時の時刻を記憶部21Fが記憶し、これに基づいて時刻計測部21が求めたものを蓄電池情報中に随時更新しながら格納する。また、メンテナンス後の使用時間に代えて、最終メンテナンス時が記憶されてもよい。 Further, for example, the allocation ratio/priority determining unit 222F may lower the allocation ratio or priority of the storage battery 3 whose required period has passed since maintenance, or increase the allocation ratio of the storage battery 3 whose scheduled maintenance date is near. may also be prioritized. As for the usage time after maintenance in FIG. 13, the storage unit 21F stores the time at the time of maintenance, and based on this, the time measurement unit 21 calculates and stores the storage battery information while updating it from time to time. Also, instead of the usage time after maintenance, the time of the last maintenance may be stored.

蓄電池情報には、蓄電池3の種類が格納されてもよく、配分率/優先順位決定部222Fは、例えば劣化速度が極めて小さく寿命の長いレドックスフロー電池には大きい配分率や高い優先順位を与えるなど、蓄電池3の種類によって配分率または優先順位を変えてもよい。 The type of storage battery 3 may be stored in the storage battery information, and the allocation rate/priority determining unit 222F gives a large allocation rate or high priority to a redox flow battery with an extremely low deterioration rate and a long life, for example. , the allocation rate or the order of priority may be changed according to the type of the storage battery 3 .

なお、劣化速度導出部221Fと配分率/優先順位決定部222Fの各処理は上述したものに限定されない。 Note that the processes of the deterioration rate derivation unit 221F and the allocation ratio/priority determination unit 222F are not limited to those described above.

図13の、内部温度の上下限値、SOCの最大値および最小値、最大充放電量等は以下の処理に先立ち、記憶部21Fに記憶されている。 The upper and lower limits of the internal temperature, the maximum and minimum values of SOC, the maximum charge/discharge amount, etc. in FIG. 13 are stored in the storage unit 21F prior to the following processing.

本実施形態に係る充放電配分制御装置2Fのハードウェア構成は上記実施形態のものと同様であり、各ハードウェアと各機能ブロック(符号は上記実施形態におけるものと異なっても機能ブロック名が同じもの)の対応も上記と同様であるため説明を省略する。 The hardware configuration of the charge/discharge distribution control device 2F according to this embodiment is the same as that of the above embodiment, and each hardware and each function block (the code is different from that in the above embodiment, but the function block name is the same ) are also the same as above, so the description is omitted.

(作用)
本実施形態に係る充放電配分制御装置2による充放電配分処理は、上記同様図6、9を用いて説明される。ただし、ステップS1001、S1001C、S1001D、S1001Eに代えて以下に説明するステップS1001Fの処理が実行される。またステップS1002、S1002C、S1002D、S1002Eに代わり以下に説明するステップS1002Fの処理が実行される。またステップS1003、S1003B、S1003Eの処理に代わり、ステップS1003Fの処理が実行される。
(Action)
The charge/discharge distribution processing by the charge/discharge distribution control device 2 according to the present embodiment will be described with reference to FIGS. However, instead of steps S1001, S1001C, S1001D, and S1001E, the process of step S1001F described below is executed. Also, instead of steps S1002, S1002C, S1002D, and S1002E, the processing of step S1002F described below is executed. Also, instead of the processing of steps S1003, S1003B, and S1003E, the processing of step S1003F is executed.

ステップS1001Fにおいて劣化速度導出部221Fは、上記実施形態に係る劣化速度導出部が行う情報の収集に加え、各蓄電池3の蓄電池情報を記憶部21Fより収集する。 In step S1001F, the deterioration rate derivation unit 221F collects the storage battery information of each storage battery 3 from the storage unit 21F in addition to the information collection performed by the deterioration rate derivation unit according to the above embodiment.

ステップS1002において、劣化速度導出部221Fは求めた上記制御用パラメータの値(現在のSOC、現在の内部温度等)を記憶部21Fの蓄電池情報に格納する。劣化速度導出部221Fは、各蓄電池3の蓄電池情報を参照すると共に、求めた制御用パラメータの値を用いて、蓄電池3の中から充放電処理の配分を行わないものを選択する。続いて、劣化速度導出部221Fは、充放電処理の配分の対象とする蓄電池3の劣化速度を上述した方法により求める。 In step S1002, the deterioration rate derivation unit 221F stores the obtained control parameter values (current SOC, current internal temperature, etc.) in the storage battery information of the storage unit 21F. The deterioration rate derivation unit 221F refers to the storage battery information of each storage battery 3 and selects the storage battery 3 to which the charging/discharging process is not distributed by using the obtained control parameter value. Subsequently, the deterioration rate derivation unit 221F obtains the deterioration rate of the storage battery 3 to which the charge/discharge process is to be distributed by the method described above.

配分率/優先順位決定部222Fは、劣化速度導出部221Fにより求められた各蓄電池3の劣化速度に基づいて配分率または優先順位を決定し、蓄電池情報を参照し適宜、重み付けを行って配分率または優先順位を補正する。 The allocation ratio/priority determination unit 222F determines the allocation ratio or priority based on the deterioration speed of each storage battery 3 obtained by the deterioration speed derivation unit 221F, refers to the storage battery information, and appropriately weights the allocation ratio. Or correct the priority.

その他の各処理は上記実施形態に係る処理と同様であるので説明を省略する。なお、これらの各処理は、上記実施形態のフローにおける対応する処理において説明した処理主体と同じ機能ブロックの名称を持つ機能ブロック(符号が異なる場合もある)によりなされるものとする。 Other processing is the same as the processing according to the above-described embodiment, so the description is omitted. It should be noted that each of these processes is performed by a functional block having the same functional block name (with a different code in some cases) as the processing entity described in the corresponding process in the flow of the above embodiment.

(効果)
本実施形態により、各蓄電池3の詳細な情報に基づく適切な優先順位の決定と充放電の配分が行われる。
(effect)
According to this embodiment, appropriate priority determination and charging/discharging distribution are performed based on detailed information on each storage battery 3 .

(第7の実施形態)
上記実施形態における各蓄電池3への配分処理は充放電配分制御装置により行われていた。本実施形態に係る充放電配分制御システムは、ユーザが各蓄電池3の状態を参照し、これに基づいて配分処理を行うための画面と入力装置を備えるもの、またはユーザが充放電配分制御装置により適切な充放電処理の配分がされているかを確認するための画面を備えるものである。
(Seventh embodiment)
The allocation process to each storage battery 3 in the above embodiment was performed by the charge/discharge allocation control device. The charge/discharge distribution control system according to the present embodiment includes a screen and an input device for the user to refer to the state of each storage battery 3 and perform distribution processing based on this, or the user can use the charge/discharge distribution control device to It is provided with a screen for confirming whether or not appropriate charge/discharge processing is distributed.

(構成要素の説明)
本実施形態に係る充放電配分制御システム2Gは、図3により表され、上記実施形態に係る充放電配分制御装置に代わり、充放電配分制御装置2Gを備える。当該システムにおけるその他の構成要素は上記実施形態におけるものと同様であるので説明を省略する。
(Description of components)
A charge/discharge distribution control system 2G according to this embodiment is represented by FIG. 3 and includes a charge/discharge distribution control device 2G instead of the charge/discharge distribution control device according to the above embodiment. Other components in the system are the same as those in the above embodiment, so the description is omitted.

充放電配分制御装置2Gの機能ブロックは図14に示され、上記実施形態における制御部に代わり制御部22Gを備え、またさらに表示部23、入力部24、入力処理部25、および表示処理部26等を備えるものとする。充放電制御装置2Gにおけるその他の機能ブロックは上記実施形態におけるものと同様であるので説明を省略する。なお、充放電配分制御装置2Gは記憶部21Fを備える。 The functional block of charge/discharge distribution control device 2G is shown in FIG. etc. shall be provided. Other functional blocks in the charge/discharge control device 2G are the same as those in the above-described embodiment, so description thereof will be omitted. Note that the charge/discharge distribution control device 2G includes a storage unit 21F.

なお、表示部23や入力部24等は、充放電配分制御装置2Gとは別個に、充放電配分制御システム1G内に備えられてもよい。 Note that the display unit 23, the input unit 24, and the like may be provided in the charge/discharge distribution control system 1G separately from the charge/discharge distribution control device 2G.

入力部24は、ユーザからの入力を受け付け、ユーザによる手動での優先順位の決定や、後述する画像を表示部23に表示させるためのユーザからのコマンドの入力を受け付ける。 The input unit 24 accepts input from the user, and accepts input of a command from the user for manually determining priorities by the user and for displaying an image, which will be described later, on the display unit 23 .

入力処理部25は、入力部24に読み込まれたコマンドを処理する。例えば、ユーザから入力部24により読み込まれたコマンドが、各蓄電池3の情報(表示用蓄電池情報とも称する)の表示である場合には、入力処理部25は表示処理部26にこれを通知する。表示用蓄電池情報については後述する。 The input processing unit 25 processes commands read by the input unit 24 . For example, if the command read by the input unit 24 from the user is to display information on each storage battery 3 (also referred to as storage battery information for display), the input processing unit 25 notifies the display processing unit 26 of this. The storage battery information for display will be described later.

入力処理部25は、入力部24に読み込まれたコマンドが各蓄電池3の配分率または優先順位の変更である場合には、制御部22Gに対し、これを通知し、当該コマンドに基づいた配分率や優先順位にて充放電指令値を算出するよう指示する。 When the command read by the input unit 24 is to change the allocation ratio or priority order of each storage battery 3, the input processing unit 25 notifies the control unit 22G of this, and the allocation ratio based on the command. or priority order to calculate the charge/discharge command value.

表示処理部26は、記憶部21Fに記憶された蓄電池情報等の、各蓄電池3の状態を示す情報を参照し、当該情報を表示部23に表示するための処理を行う。 The display processing unit 26 refers to information indicating the state of each storage battery 3, such as storage battery information stored in the storage unit 21F, and performs processing for displaying the information on the display unit 23. FIG.

表示部23は、表示処理部25からの指示に基づき、表示用蓄電池情報を表示する。 The display unit 23 displays display storage battery information based on an instruction from the display processing unit 25 .

制御部22Gは、上記実施形態に係る制御部と同様の機能ブロックを備える。ただし、上記実施形態における配分率決定部、優先順位決定部、または配分率/優先順位決定部の有する機能に加え、入力部24から各蓄電池3の配分率または優先順位の決定の変更指示を受けた場合に、当該指示に応じた配分率または優先順位に変更する機能を有する配分率決定部、優先順位決定部、または配分率/優先順位決定部を備える。 The control unit 22G has functional blocks similar to those of the control unit according to the above embodiment. However, in addition to the functions of the allocation rate determining unit, priority determining unit, or allocation rate/priority determining unit in the above embodiment, an instruction to change the determination of the allocation ratio or priority of each storage battery 3 is received from the input unit 24. an allocation ratio determining unit, a priority determining unit, or an allocation ratio/priority determining unit that has a function of changing the allocation ratio or the priority according to the instruction in the event of an error.

図15は、表示部23により表示される表示用蓄電池情報の一例を示す。ユーザは表示用蓄電池情報を参照し、各蓄電池3の、例えば現在の充放電量、SOC、内部温度、劣化度、優先順位、SOCの上下限、温度の上限等を知ることができる。なお、図15に示される項目以外の項目についても表示されてもよい。また図15に示される項目の全てが表示される必要はない。 FIG. 15 shows an example of the storage battery information for display displayed by the display unit 23. As shown in FIG. The user can refer to the storage battery information for display to know, for example, the current charge/discharge amount, SOC, internal temperature, degree of deterioration, priority, upper and lower limits of SOC, upper limit of temperature, etc. of each storage battery 3 . Note that items other than the items shown in FIG. 15 may also be displayed. Also, not all of the items shown in FIG. 15 need to be displayed.

図16は、充放電配分制御装置2Gのハードウェア構成の一例を示す。本実施形態に係る充放電配分制御装置2Gは、上記実施形態におけるハードウェアに加え、入力装置74と表示装置75を備える。 FIG. 16 shows an example of the hardware configuration of the charge/discharge distribution control device 2G. A charge/discharge distribution control device 2G according to this embodiment includes an input device 74 and a display device 75 in addition to the hardware in the above embodiments.

入力装置74は例えば操作ボタンやマウスやタッチパネル等である。入力部24の機能は入力装置74により実現される。 The input device 74 is, for example, operation buttons, a mouse, a touch panel, or the like. The function of the input unit 24 is implemented by the input device 74 .

表示装置75は、例えば液晶パネルやブラウン管装置等である。当該表示装置25により表示部23の機能が実現される。 The display device 75 is, for example, a liquid crystal panel, a cathode ray tube device, or the like. The function of the display unit 23 is realized by the display device 25 .

プロセッサ70が、メモリ71に各種情報を読み込み、処理を行うことにより、制御部22G、入力処理部25、および表示処理部26の機能が実現される。 The functions of the control unit 22G, the input processing unit 25, and the display processing unit 26 are realized by the processor 70 reading various types of information into the memory 71 and processing the information.

(作用)
本実施形態に係る充放電配分制御装置2Gの処理は、図6、9により示される。ただし、上述したステップS1003、S1003B、S1003E、S1003Fに代わり、ステップS1003Gの処理が実行される。
(Action)
The processing of the charge/discharge distribution control device 2G according to this embodiment is shown in FIGS. However, instead of steps S1003, S1003B, S1003E, and S1003F described above, the process of step S1003G is executed.

ステップS1003Gにおいて、制御部22Gは、入力部24を介し配分率または優先順位の設定の指示があった場合に、これに応じて配分率または優先順位を設定する。 In step S1003G, the control unit 22G sets the allocation ratio or the priority in response to an instruction to set the allocation ratio or the priority through the input unit 24. FIG.

その他の処理は、他の実施形態と同様であるので説明を省略する。なお、これらの各処理は上記実施形態において同様の名称(符号は異なっていてもよい)を持つ機能ブロックにより行われる。 Other processes are the same as those of the other embodiments, so the description is omitted. Note that each of these processes is performed by functional blocks having the same names (the symbols may be different) in the above embodiment.

(効果)
ユーザは、蓄電池3の状態を監視することができると共に、適宜、各蓄電池3の充放電処理の配分率または優先順位を変更することができる。
(effect)
The user can monitor the state of the storage battery 3 and change the allocation ratio or priority of the charging/discharging process of each storage battery 3 as appropriate.

(第8の実施形態)
上記実施形態における各蓄電池3への充放電要求量の配分処理は1つの充放電配分制御装置により行われていた。
(Eighth embodiment)
The process of distributing the charge/discharge request amount to each storage battery 3 in the above embodiment was performed by one charge/discharge distribution control device.

第8の実施形態に係る充放電配分制御システムは、充放電配分制御装置を上位制御装置と下位制御装置とに階層化し、各蓄電池3への充放電要求量の配分処理を上位制御装置と下位制御装置とで分担して行うことで、配分処理の高速化を図る。 In the charge/discharge distribution control system according to the eighth embodiment, the charge/discharge distribution control devices are hierarchized into a high-order control device and a low-order control device. By sharing the work with the control device, the speed of the allocation process is increased.

図17は、第8の実施形態に係る充放電配分制御システムの構成の一例を示す図である。 FIG. 17 is a diagram showing an example of the configuration of a charge/discharge distribution control system according to the eighth embodiment.

充放電配分制御システム1Hは、充放電配分制御装置2Hと、複数の蓄電池グループG(蓄電池グループG1~Gn)とを備える。なお、蓄電池グループGの数は特に限定されない。また、nは2以上の自然数とする。 The charge/discharge distribution control system 1H includes a charge/discharge distribution control device 2H and a plurality of storage battery groups G (storage battery groups G1 to Gn). In addition, the number of the storage battery groups G is not specifically limited. Also, n is a natural number of 2 or more.

充放電配分制御装置2Hは、上位制御装置Uと、蓄電池グループGと同数の下位制御装置L(下位制御装置L1~Ln)とを備える。 The charge/discharge distribution control device 2H includes a high-order control device U and the same number of low-order control devices L as the storage battery groups G (low-order control devices L1 to Ln).

蓄電池グループG1は、複数の蓄電池3(蓄電池3-11~3-16)と、蓄電池3と同数の温度計測装置4(温度計測装置4-11~4-16)と、蓄電池3と同数のPCS(Power Conditioning System)5(PCS5-11~5-16)とを備える。同様に、蓄電池グループGnは、複数の蓄電池3(蓄電池3-n1~3-n6)と、蓄電池3と同数の温度計測装置4(温度計測装置4-n1~4-n6)と、蓄電池3と同数のPCS5(PCS5-n1~5-n6)とを備える。なお、各蓄電池グループG内の蓄電池3の数は6つに限定されない。 The storage battery group G1 includes a plurality of storage batteries 3 (storage batteries 3-11 to 3-16), the same number of temperature measurement devices 4 (temperature measurement devices 4-11 to 4-16) as the storage batteries 3, and the same number of PCS as the storage batteries 3. (Power Conditioning System) 5 (PCS 5-11 to 5-16). Similarly, the storage battery group Gn includes a plurality of storage batteries 3 (storage batteries 3-n1 to 3-n6), the same number of temperature measurement devices 4 (temperature measurement devices 4-n1 to 4-n6) as the storage batteries 3, and storage batteries 3 and the same number of PCS5 (PCS5-n1 to 5-n6). Note that the number of storage batteries 3 in each storage battery group G is not limited to six.

上位制御装置Uは、充放電配分制御システム1H全体の充放電要求量を上位装置(不図示)から受け付ける。なお、上位制御装置Uは、上位装置から充放電要求量を受け付けるのではなく、自己の内部に別途存在する制御ロジックにより充放電要求量を決定してもよい。より詳しくは、例えば、上位制御装置Uが、「どの時間にどれだけの充放電要求量が必要か」等の情報を表形式等により記憶しており、これを用いて充放電要求量を決定してもよい。 The host control device U receives a charge/discharge request amount for the entire charge/discharge distribution control system 1H from a host device (not shown). Note that the host control device U may determine the charge/discharge request amount by a control logic that exists separately inside itself instead of receiving the charge/discharge request amount from the host device. More specifically, for example, the upper control device U stores information such as "how much charge/discharge amount is required at what time" in tabular form or the like, and uses this information to determine the charge/discharge amount. You may

また、上位制御装置Uは、蓄電池グループG毎に劣化速度(以下、グループ劣化速度という)を求め、その求めた各グループ劣化速度を用いて、各蓄電池グループGにそれぞれ対応する優先順位(以下、グループ優先順位)を設定し、その設定した各グループ優先順位を用いて、上位装置から受け付けた充放電要求量をグループ充放電要求量として各蓄電池グループGに配分する。ここで、グループ劣化速度とは、蓄電池グループの劣化特性から求まるグループ全体の劣化速度を表す。また、グループ優先順位とは、蓄電池グループ毎に評価される評価値であり、グループ単位でみた場合の優先順位を表す。 In addition, the host controller U obtains a deterioration speed (hereinafter referred to as group deterioration speed) for each storage battery group G, and uses the obtained deterioration speed for each group to determine the priority (hereinafter referred to as a priority order) corresponding to each storage battery group G. group priority), and using the set group priority, the charge/discharge request amount received from the host device is distributed to each storage battery group G as the group charge/discharge request amount. Here, the group deterioration speed represents the deterioration speed of the entire group obtained from the deterioration characteristics of the storage battery group. Also, the group priority is an evaluation value evaluated for each storage battery group, and represents the priority when viewed in group units.

各下位制御装置Lは、対応する蓄電池グループG内の蓄電池3毎に劣化速度(以下、蓄電池劣化速度という)を求め、その求めた各蓄電池劣化速度を用いて、各蓄電池3にそれぞれ対応する優先順位(以下、蓄電池優先順位)を求め、その求めた各蓄電池優先順位を用いて、グループ充放電要求量を充放電指令値としてさらに各蓄電池3に配分する。 Each low-order control device L obtains a deterioration speed (hereinafter referred to as a battery deterioration speed) for each of the storage batteries 3 in the corresponding storage battery group G, and uses the obtained storage battery deterioration speed to determine the priority corresponding to each storage battery 3. The order (hereinafter referred to as battery priority order) is determined, and the group charge/discharge request amount is further distributed to each storage battery 3 as a charge/discharge command value using the determined priority order of each storage battery.

各温度計測装置4は、対応する蓄電池3の周辺環境の温度(計測点温度)を計測する。そして、温度計測装置4は、対応する下位制御装置Lからの情報取得要求に基づき、または自動的に、対応する下位制御装置Lに対し測定した計測点温度の通知を行う。あるいは温度計測装置4は、上記式(1)を記憶し、自己が測定した計測点温度に基づき蓄電池3の内部温度を求めて、対応する下位制御装置Lに通知してもよい。 Each temperature measuring device 4 measures the ambient temperature (measurement point temperature) of the corresponding storage battery 3 . Then, the temperature measuring device 4 notifies the corresponding lower control device L of the measured temperature at the measuring point based on the information acquisition request from the corresponding lower control device L or automatically. Alternatively, the temperature measuring device 4 may store the above equation (1), obtain the internal temperature of the storage battery 3 based on the temperature at the measuring point measured by itself, and notify the corresponding lower control device L of the internal temperature.

各PCS5は、対応する下位制御装置Lからの充放電指令値に基づいて、蓄電池3を充電または放電させる。また、各PCS5は、対応する蓄電池3を充電させる場合、太陽光発電装置や風力発電装置などが接続される電力系統から入力される交流電力を直流電力に変換して、蓄電池3に出力する。また、各PCS5は、対応する蓄電池3を放電させる場合、その蓄電池3から出力される直流電力を交流電力に変換して、電力系統に出力する。 Each PCS 5 charges or discharges the storage battery 3 based on the charge/discharge command value from the corresponding low order control device L. When charging the corresponding storage battery 3 , each PCS 5 converts AC power input from a power system to which a solar power generation device or a wind power generation device is connected into DC power, and outputs the DC power to the storage battery 3 . When discharging the corresponding storage battery 3, each PCS 5 converts the DC power output from the storage battery 3 into AC power and outputs the AC power to the power system.

なお、蓄電池3とPCS5(電力変換器)との組み合わせを蓄電ユニットとする。また、充放電配分制御装置2Hは、有線または無線のインターネット、イントラネット等の通信網を介し、蓄電ユニットに接続されていてもよい。 A combination of the storage battery 3 and the PCS 5 (power converter) is defined as a power storage unit. Also, the charge/discharge distribution control device 2H may be connected to the power storage unit via a wired or wireless communication network such as the Internet or an intranet.

図18は、上位制御装置U及び下位制御装置L1~Lnの機能ブロックの一例を示す図である。 FIG. 18 is a diagram showing an example of functional blocks of the upper controller U and the lower controllers L1 to Ln.

上位制御装置Uは、通信部U-1と、記憶部U-2と、制御部U-3とを備える。 The host controller U includes a communication unit U-1, a storage unit U-2, and a control unit U-3.

通信部U-1は、上位制御装置Uによる処理に必要な情報を上位装置や各下位制御装置Lから取得する。すなわち、通信部U-1は、上位装置から充放電要求量を受けて、制御部U-3に通知する。また、通信部U-1は、各下位制御装置Lから蓄電池グループGの状態を示す情報を取得し、記憶部U-2に記憶させる。 The communication unit U-1 acquires information necessary for processing by the upper controller U from the upper controller and each lower controller L. FIG. That is, the communication unit U-1 receives the charge/discharge request amount from the host device and notifies it to the control unit U-3. Further, the communication unit U-1 acquires information indicating the state of the storage battery group G from each lower control device L, and stores the information in the storage unit U-2.

制御部U-3は、上位劣化速度導出部U-31と、上位優先順位設定部U-32と、上位充放電要求量算出部U-33とを備える。 The control unit U-3 includes an upper deterioration rate derivation unit U-31, an upper priority order setting unit U-32, and an upper charge/discharge request amount calculation unit U-33.

上位劣化速度計算部U-31は、各蓄電池グループGにそれぞれ対応するグループ劣化速度を求め、記憶部U-2に記憶させる。 The upper deterioration rate calculation unit U-31 obtains the group deterioration rate corresponding to each storage battery group G, and stores it in the storage unit U-2.

例えば、上位劣化速度計算部U-31は、グループ温度とグループSOCとグループ劣化速度との関係を近似した第3の特性式(劣化速度特性)に、下位制御装置Lから取得されるグループ温度とグループSOCを代入することによりグループ劣化速度を求める。なお、第3の特性式は、蓄電池グループG毎の固有の式であり、蓄電池の種類によって使い分けるように、記憶部U-2に記憶されているものとする。また、グループSOCは、グループ内の蓄電池の定格容量[kWh]を分母とし、グループ内の蓄電池を実際に蓄電したときに蓄電池に供給される電力量[kWh]を分子として計算される、グループ全体のSOCを表す。 For example, the upper deterioration rate calculator U-31 stores the group temperature obtained from the lower controller L and the Obtain the group degradation rate by substituting the group SOC. The third characteristic formula is a unique formula for each storage battery group G, and is stored in the storage unit U-2 so that it can be used according to the type of storage battery. In addition, the group SOC is calculated using the rated capacity [kWh] of the storage batteries in the group as the denominator and the amount of power [kWh] supplied to the storage batteries in the group when they are actually charged as the numerator. represents the SOC of

または、上位劣化速度計算部U-31は、蓄電池グループG毎のグループ温度とグループSOCとグループ劣化速度の各値が関係付けされた表形式のデータ(劣化速度特性)を参照して、下位制御装置Lから取得されるグループ温度とグループSOCとに対応するグループ劣化速度を求めてもよい。なお、グループ温度とグループSOCとグループ劣化速度との各値が関係付けされた表形式のデータは、蓄電池グループG毎の固有のデータであり、記憶部U-2に記憶されているものとする。 Alternatively, the upper deterioration rate calculation unit U-31 refers to tabular data (deterioration rate characteristics) in which the values of the group temperature, group SOC, and group deterioration rate for each storage battery group G are associated with each other, and performs lower control. A group deterioration rate corresponding to the group temperature and the group SOC obtained from the device L may be obtained. Note that the tabular data in which the values of the group temperature, the group SOC, and the group deterioration rate are associated is specific data for each storage battery group G, and is stored in the storage unit U-2. .

上位優先順位設定部U-32は、各蓄電池グループGに対応するグループ優先順位を設定し、記憶部U-2に記憶させる。 The upper priority order setting unit U-32 sets the group priority order corresponding to each storage battery group G and stores it in the storage unit U-2.

例えば、上位優先順位設定部U-32は、グループ劣化速度の小さい順(昇順)に、グループ優先順位を低くしていく。言い換えると、上位優先順位設定部U-32は、グループ劣化速度がより小さい蓄電池グループGに対してより高いグループ優先順位を設定する。これにより、劣化速度が遅い蓄電池3を多く含む蓄電池グループGに対して優先的に充放電容量が配分されるため、劣化速度が速い蓄電池3を多く含む蓄電池グループGに対して充放電容量が配分されることを抑制することができる。その結果、蓄電池全体として、劣化の進行度合いを遅くすることができる。 For example, the upper priority order setting unit U-32 lowers the group priority order in ascending order of the group deterioration rate. In other words, the higher priority setting unit U-32 sets a higher group priority to the storage battery group G having a lower group deterioration rate. As a result, since the charge/discharge capacity is preferentially allocated to the storage battery group G including many storage batteries 3 with a slow deterioration rate, the charge/discharge capacity is distributed to the storage battery group G including many storage batteries 3 with a fast deterioration rate. can be suppressed. As a result, the progress of deterioration of the storage battery as a whole can be slowed down.

上位充放電要求量算出部U-33は、蓄電池グループG毎に、充放電要求量と、グループ優先順位と、蓄電池グループGの出力電力の上下限値とを用いて、グループ充放電要求量を算出し、記憶部U-2に記憶させる。 The higher charge/discharge request amount calculation unit U-33 calculates the group charge/discharge request amount for each storage battery group G using the charge/discharge request amount, the group priority, and the upper and lower limits of the output power of the storage battery group G. It is calculated and stored in the storage unit U-2.

例えば、上位充放電要求量算出部U-33は、グループ出力電力上限値を上限値として、グループ優先順位の小さい順(昇順)に、充放電要求量を各蓄電池グループGに配分することにより、各蓄電池グループGに対応するグループ充放電要求量を算出する。 For example, the upper charge/discharge request amount calculation unit U-33 uses the group output power upper limit value as the upper limit value, and distributes the charge/discharge request amount to each storage battery group G in descending order of group priority (ascending order). A group charging/discharging demand amount corresponding to each storage battery group G is calculated.

下位制御装置L1~Lnは、それぞれ、通信部L-1と、記憶部L-2と、制御部L-3とを備える。 Each of the lower control devices L1 to Ln includes a communication section L-1, a storage section L-2, and a control section L-3.

通信部L-1は、制御部L-3により算出される各蓄電池3の充放電指令値に従って、上述した蓄電ユニット(PCS5)に対して、充放電指令を行う。なお、充放電配分制御装置2Hから蓄電ユニットに対し、充放電指令を行う機能を有するものを充放電指令部と称すると、本実施形態における充放電指令部は通信部L-1に対応する。 The communication unit L-1 issues a charge/discharge command to the above-described power storage unit (PCS5) according to the charge/discharge command value for each storage battery 3 calculated by the control unit L-3. If a unit having a function of issuing a charge/discharge command from the charge/discharge distribution control device 2H to the storage unit is called a charge/discharge command unit, the charge/discharge command unit in this embodiment corresponds to the communication unit L-1.

また、通信部L-1は、上位制御装置Uから情報取得要求を受けると、制御部L-3に通知する。制御部L-3は、情報取得要求を受けると、対応する蓄電池グループGの各PCS5から送られてくる蓄電池3の内部温度の積算値を蓄電池3の合計数で除算することにより、その蓄電池グループGに対応するグループ温度を求め、通信部L-1を介して上位制御装置Uに送信する。また、制御部L-3は、情報取得要求を受けると、対応する蓄電池グループGの各PCS5から送られてくる蓄電池3のSOCの積算値を蓄電池3の合計数で除算することにより、その蓄電池グループGに対応するグループSOCを求め、通信部L-1を介して上位制御装置Uに送信する。 Further, when the communication unit L-1 receives an information acquisition request from the upper control device U, it notifies the control unit L-3. Upon receiving the information acquisition request, the control unit L-3 divides the integrated value of the internal temperature of the storage battery 3 sent from each PCS 5 of the corresponding storage battery group G by the total number of storage batteries 3, thereby obtaining A group temperature corresponding to G is obtained and transmitted to the host controller U via the communication unit L-1. In addition, when receiving the information acquisition request, the control unit L-3 divides the integrated value of the SOC of the storage battery 3 sent from each PCS 5 of the corresponding storage battery group G by the total number of the storage batteries 3 to obtain the storage battery A group SOC corresponding to the group G is obtained and transmitted to the upper control device U via the communication unit L-1.

また、通信部L-1は、上位制御装置Uから情報取得要求を受けると、対応する蓄電池グループGの各PCS5から蓄電池3の状態を示す情報を取得し、記憶部L-2に記憶させる。 Further, when receiving an information acquisition request from the host controller U, the communication unit L-1 acquires information indicating the state of the storage battery 3 from each PCS 5 of the corresponding storage battery group G, and stores the information in the storage unit L-2.

また、制御部L-3は、下位劣化速度導出部L-31と、下位優先順位設定部L-32と、下位充放電指令値算出部L-33とを備える。 The control unit L-3 also includes a lower deterioration rate derivation unit L-31, a lower priority order setting unit L-32, and a lower charge/discharge command value calculation unit L-33.

下位劣化速度導出部L-31は、各蓄電池3にそれぞれ対応する蓄電池劣化速度を求め、記憶部U-2に記憶させる。 The lower deterioration rate derivation unit L-31 obtains the storage battery deterioration rate corresponding to each storage battery 3, and stores it in the storage unit U-2.

例えば、下位劣化速度導出部L-31は、蓄電池温度と蓄電池SOCと蓄電池劣化速度との関係を近似した第2の特性式(劣化速度特性)に、PCS5から取得される蓄電池温度と蓄電池SOCを代入することにより蓄電池劣化速度を求める。なお、第2の特性式は、蓄電池3毎の固有の式であり、記憶部L-2に記憶されているものとする。 For example, the lower deterioration rate derivation unit L-31 adds the storage battery temperature and the storage battery SOC obtained from the PCS 5 to the second characteristic expression (deterioration rate characteristic) that approximates the relationship between the storage battery temperature, the storage battery SOC, and the storage battery deterioration rate. By substituting, the storage battery deterioration rate is obtained. It is assumed that the second characteristic equation is unique to each storage battery 3 and is stored in the storage unit L-2.

または、下位劣化速度導出部L-31は、蓄電池温度と蓄電池SOCと蓄電池劣化速度との各値が関係付けされた表形式のデータ(劣化速度特性)を参照して、PCS5から取得される蓄電池温度と蓄電池SOCとに対応する蓄電池劣化速度を求めてもよい。なお、蓄電池温度と蓄電池SOCと蓄電池劣化速度との各値が関係付けされた表形式のデータは、蓄電池3毎の固有のデータであり、記憶部L-2に記憶されているものとする。 Alternatively, the lower deterioration rate derivation unit L-31 refers to tabular data (degradation rate characteristics) in which the values of the storage battery temperature, the storage battery SOC, and the storage battery deterioration rate are associated with each other, and refers to the storage battery acquired from the PCS 5. A storage battery deterioration rate corresponding to the temperature and the storage battery SOC may be obtained. The tabular data in which the values of the storage battery temperature, the storage battery SOC, and the storage battery deterioration rate are associated with each other are specific data for each storage battery 3, and are stored in the storage unit L-2.

なお、第4の特性式や蓄電池温度と蓄電池SOCと蓄電池劣化速度との各値が関係付けされた表形式のデータの例として、蓄電池温度が高い程、かつ、蓄電池SOCが高い程、蓄電池劣化速度が大きくなるものが考えられる。 As an example of tabular data in which the values of the fourth characteristic formula, the storage battery temperature, the storage battery SOC, and the storage battery deterioration rate are associated with each other, the higher the storage battery temperature and the higher the storage battery SOC, the higher the storage battery deterioration. It is conceivable that the speed increases.

または、第4の特性式や蓄電池温度と蓄電池SOCと蓄電池劣化速度との各値が関係付けされた表形式のデータの他の例として、蓄電池温度が高い程、かつ、蓄電池SOCが低い程、蓄電池劣化速度が大きくなるものが考えられる。 Alternatively, as another example of tabular data in which the values of the fourth characteristic formula, the storage battery temperature, the storage battery SOC, and the storage battery deterioration rate are associated with each other, the higher the storage battery temperature and the lower the storage battery SOC, the more It is conceivable that the deterioration speed of the storage battery increases.

下位優先順位設定部L-32は、各蓄電池3に対応する蓄電池優先順位を設定し、記憶部L-2に記憶させる。 The lower priority setting unit L-32 sets the storage battery priority corresponding to each storage battery 3, and stores it in the storage unit L-2.

例えば、下位優先順位設定部L-32は、蓄電池劣化速度の小さい順(昇順)に、蓄電池優先順位を高くしていく。言い換えると、下位優先順位設定部L-32は、蓄電池劣化速度がより小さい蓄電池3に対してより高い蓄電池優先順位を設定する。これにより、劣化速度が遅い蓄電池3に対して優先的にグループ充放電容量が配分されるため、劣化速度が速い蓄電池3に対してグループ充放電容量が配分されることを抑制することができる。その結果、蓄電池全体として、劣化の進行度合いをさらに遅くすることができる。 For example, the lower priority setting unit L-32 increases the storage battery priority in descending order (ascending order) of the storage battery deterioration rate. In other words, the lower priority order setting unit L-32 sets a higher priority order for the storage battery 3 having a lower storage battery deterioration rate. As a result, the group charge/discharge capacity is preferentially allocated to the storage battery 3 whose deterioration rate is slow, so it is possible to suppress the group charge/discharge capacity from being distributed to the storage battery 3 whose deterioration rate is fast. As a result, the progress of deterioration of the storage battery as a whole can be further slowed down.

下位充放電指令値算出部L-33は、蓄電池3毎に、グループ充放電要求量と、蓄電池優先順位と、蓄電池3の出力電力の上下限値とを用いて、充放電指令値を算出し、記憶部L-2に記憶される情報D2に格納する。 The lower charge/discharge command value calculation unit L-33 calculates a charge/discharge command value for each storage battery 3 using the group charge/discharge request amount, the storage battery priority, and the upper and lower limits of the output power of the storage battery 3. , is stored in the information D2 stored in the storage unit L-2.

例えば、下位充放電指令値算出部L-33は、蓄電池出力電力上限値を上限値として、蓄電池優先順位の小さい順(昇順)に、グループ充放電要求量を各蓄電池3に配分することにより、各蓄電池3に対応する充放電指令値を算出する。 For example, the lower charge/discharge command value calculation unit L-33 assigns the group charge/discharge request amount to each storage battery 3 in ascending order of storage battery priority with the storage battery output power upper limit value as the upper limit value. A charge/discharge command value corresponding to each storage battery 3 is calculated.

図19は、第8の実施形態に係る上位制御装置Uまたは下位制御装置Lのハードウェア構成の一例である。 FIG. 19 is an example of the hardware configuration of the upper control device U or the lower control device L according to the eighth embodiment.

上位制御装置Uまたは下位制御装置Lは、プロセッサ80と、メモリ81と、記憶装置82と、通信装置83とを備える。 The upper controller U or lower controller L includes a processor 80 , a memory 81 , a storage device 82 and a communication device 83 .

プロセッサ80は、例えばシングルコア、デュアルコア、またはマルチコアプロセッサ等が含まれる。 Processor 80 includes, for example, a single-core, dual-core, or multi-core processor.

メモリ81は、例えばROM、RAM、半導体メモリである。 The memory 81 is, for example, ROM, RAM, or semiconductor memory.

プロセッサ80が、記憶装置82に記憶されている情報をメモリ81に読み込み、メモリ81内のプログラムを実行することにより、制御部U-3または制御部L-3の機能が実現される。 The processor 80 reads the information stored in the storage device 82 into the memory 81 and executes the program in the memory 81, thereby realizing the functions of the control unit U-3 or the control unit L-3.

記憶装置82は、ハードディスクドライブ、光ディスク装置等であり、外部記憶装置や可搬型記憶媒体であってもよい。この記憶装置82により記憶部U-2または記憶部L-2の機能が実現される。 The storage device 82 is a hard disk drive, an optical disk device, or the like, and may be an external storage device or a portable storage medium. The storage device 82 implements the function of the storage unit U-2 or the storage unit L-2.

通信装置83は、有線または無線により、上位装置や各下位制御装置L、または、上位制御装置UやPCS5と情報の授受を行うためのものであり、通信のためのインターフェースを含む。この通信装置83により通信部U-1または通信部L-1の機能が実現される。 The communication device 83 is for exchanging information with the upper device, each lower control device L, or the upper control device U and the PCS 5 by wire or wirelessly, and includes an interface for communication. The communication device 83 implements the function of the communication unit U-1 or the communication unit L-1.

なお、上位制御装置Uまたは下位制御装置Lは、PLCにより構成されてもよい。 Note that the upper control device U or the lower control device L may be configured by a PLC.

図20は、第8の実施形態に係る上位制御装置U及び下位制御装置L1~Lnにより行われる処理の一例を示すシーケンス図である。図20は、上位装置から上位制御装置Uに充放電要求量が送られ、上位制御装置Uから各下位制御装置Lに情報取得要求が送られた後、上位制御装置U及び下位制御装置L1~Lnにより行われる処理を示すものとする。 FIG. 20 is a sequence diagram showing an example of processing performed by the upper controller U and the lower controllers L1 to Ln according to the eighth embodiment. FIG. 20 shows that after the charge/discharge request amount is sent from the host device to the host control device U, and the information acquisition request is sent from the host control device U to each low order control device L, the host control device U and the low order control device L1 to Let us denote the processing performed by Ln.

まず、下位制御装置L1~Lnは、それぞれ、PCS5から蓄電池3の状態を示す情報を取得し(ステップS1001H)、その取得した情報を記憶部L-2に記憶させるとともに、その取得した情報を用いてグループ温度及びグループSOCを求め上位制御装置Uに送信する(ステップS1002H)。 First, each of the lower control devices L1 to Ln acquires information indicating the state of the storage battery 3 from the PCS 5 (step S1001H), stores the acquired information in the storage unit L-2, and uses the acquired information. Then, the group temperature and group SOC are obtained and transmitted to the host controller U (step S1002H).

図21は、記憶部L-2に記憶される情報D1の一例を示す図である。 FIG. 21 is a diagram showing an example of information D1 stored in storage unit L-2.

図21に示す情報D1には、蓄電池3-11~3-16のそれぞれの状態を示す情報などが格納される。すなわち、図21に示す情報D1には、「蓄電池名」、「蓄電池温度[℃]」、「蓄電池出力電力[kW]」、「蓄電池SOC[%]」、「蓄電池出力電力上限値[kW]」、「蓄電池出力電力下限値[kW]」、「蓄電池SOC上限値[%]」、「蓄電池SOC下限値[%]」、「蓄電池劣化速度」、「蓄電池優先順位」、及び「充放電指令値[kW]」の各項目にそれぞれ対応する情報が格納される。なお、PCS5から取得される蓄電池3の状態を示す情報とは、「蓄電池名」、「蓄電池温度[℃]」、「蓄電池出力電力[kW]」、及び「蓄電池SOC[%]」の各項目にそれぞれ対応する情報とする。また、「蓄電池名」の項目に対応する情報は、蓄電池3を識別するための情報である。また、「蓄電池温度[℃]」に対応する情報は、蓄電池3の現在の温度を示す情報である。また、「蓄電池出力電力[kW]」に対応する情報は、蓄電池3の現在の出力電力を示す情報である。また、「蓄電池SOC[%]」に対応する情報は、蓄電池3の現在のSOCを示す情報である。また、「蓄電池出力電力上限値[kW]」に対応する情報は、蓄電池3の出力電力の上限値を示す情報である。また、「蓄電池出力電力下限値[kW]」に対応する情報は、蓄電池3の出力電力の下限値を示す情報である。また、「蓄電池SOC上限値[%]」に対応する情報は、蓄電池3のSOCの上限値を示す情報である。また、「蓄電池SOC下限値[%]」に対応する情報は、蓄電池3のSOCの下限値を示す情報である。また、「蓄電池劣化速度」に対応する情報は、上記蓄電池劣化速度を示す情報である。また、「蓄電池優先順位」に対応する情報は、上記蓄電池優先順位である。また、「充放電指令値[kW]」に対応する情報は、蓄電池3毎に算出される充放電指令値である。 Information indicating the state of each of the storage batteries 3-11 to 3-16 and the like are stored in the information D1 shown in FIG. That is, the information D1 shown in FIG. 21 includes “battery name”, “battery temperature [° C.]”, “battery output power [kW]”, “battery SOC [%]”, “storage battery output power upper limit [kW] ", "lower limit value of storage battery output power [kW]", "upper limit value of storage battery SOC [%]", "lower limit value of storage battery SOC [%]", "storage battery deterioration rate", "storage battery priority", and "charge/discharge command Information corresponding to each item of "value [kW]" is stored. The information indicating the state of the storage battery 3 acquired from the PCS 5 includes items of "battery name", "battery temperature [°C]", "battery output power [kW]", and "battery SOC [%]". and information corresponding to each. Information corresponding to the item “storage battery name” is information for identifying the storage battery 3 . The information corresponding to the “storage battery temperature [°C]” is information indicating the current temperature of the storage battery 3 . Further, the information corresponding to the “storage battery output power [kW]” is information indicating the current output power of the storage battery 3 . The information corresponding to “storage battery SOC [%]” is information indicating the current SOC of the storage battery 3 . The information corresponding to the “storage battery output power upper limit value [kW]” is information indicating the upper limit value of the output power of the storage battery 3 . The information corresponding to the “lower limit value of output power of storage battery [kW]” is information indicating the lower limit value of output power of storage battery 3 . The information corresponding to the “storage battery SOC upper limit value [%]” is information indicating the upper limit value of the SOC of the storage battery 3 . The information corresponding to the “storage battery SOC lower limit value [%]” is information indicating the lower limit value of the SOC of the storage battery 3 . Further, the information corresponding to the "storage battery deterioration speed" is information indicating the storage battery deterioration speed. Information corresponding to the "storage battery priority" is the above-mentioned storage battery priority. Information corresponding to the “charge/discharge command value [kW]” is the charge/discharge command value calculated for each storage battery 3 .

次に、図20に示すシーケンス図において、上位制御装置Uは、グループ温度及びグループSOCをすべての下位制御装置Lから受信したと判断すると(ステップS1003H:Yes)、グループ温度及びグループSOCを記憶部U-2に記憶させた後、それらグループ温度及びグループSOCを用いて、蓄電池グループG毎にグループ劣化速度を求め、それら各グループ劣化速度を用いて、各蓄電池グループGにそれぞれ対応するグループ優先順位を設定する(ステップS1004H)。 Next, in the sequence diagram shown in FIG. 20, when the upper controller U determines that the group temperature and group SOC have been received from all the lower controllers L (step S1003H: Yes), the group temperature and group SOC are stored in the storage unit. After stored in U-2, the group temperature and group SOC are used to obtain the group deterioration speed for each storage battery group G, and the group deterioration speed is used to obtain the group priority corresponding to each storage battery group G. is set (step S1004H).

図22は、記憶部U-2に記憶される情報D2の一例を示す図である。 FIG. 22 is a diagram showing an example of information D2 stored in storage unit U-2.

図22に示す情報D2には、蓄電池グループG1~G6のそれぞれの状態を示す情報などが格納される。すなわち、図22に示す情報D2には、「蓄電池グループ名」、「グループ温度[℃]」、「グループ出力電力[kW]」、「グループSOC[%]」、「グループ出力電力上限値[kW]」、「グループ出力電力下限値[kW]」、「グループSOC上限値[%]」、「グループSOC下限値[%]」、「グループ劣化速度」、「グループ優先順位」、及び「グループ充放電要求量[kW]」の各項目にそれぞれ対応する情報が格納される。なお、下位制御装置Lから上位制御装置Uに送信される情報とは、「蓄電池グループ名」、「グループ温度[℃]」、「グループ出力電力[kW]」、及び「グループSOC[%]」の各項目にそれぞれ対応する情報とする。また、「蓄電池グループ名」の項目に対応する情報は、蓄電池グループGを識別するための情報である。また、「グループ温度[℃]」の項目に対応する情報は、蓄電池グループG内の各蓄電池3のそれぞれの現在の温度の平均値を示す情報である。また、「グループ出力電力[kW]」の項目に対応する情報は、蓄電池グループG内の各蓄電池3のそれぞれの現在の出力電力を積算した値を示す情報である。また、「グループSOC[%]」の項目に対応する情報は、蓄電池グループG内の各蓄電池3のそれぞれの現在のSOCの平均値を示す情報である。また、「グループ出力電力上限値[kW]」の項目に対応する情報は、蓄電池グループG内の各蓄電池3のそれぞれの出力電力の上限値を積算した値を示す情報である。また、「グループ出力電力下限値[kW]」の項目に対応する情報は、蓄電池グループG内の各蓄電池3のそれぞれの出力電力の下限値を積算した値を示す情報である。また、「グループSOC上限値[%]」の項目に対応する情報は、蓄電池グループGに対応するSOCの上限値である。また、「グループSOC下限値[%]」の項目に対応する情報は、蓄電池グループGに対応するSOCの下限値である。また、「グループ劣化速度」の項目に対応する情報は、上記グループ劣化速度である。また、「グループ優先順位」の項目に対応する情報は、上記グループ優先順位である。また、「グループ充放電要求量[kW]」の項目に対応する情報は、上記グループ充放電要求量である。 Information indicating the state of each of the storage battery groups G1 to G6 and the like are stored in the information D2 shown in FIG. That is, the information D2 shown in FIG. 22 includes “storage battery group name”, “group temperature [°C]”, “group output power [kW]”, “group SOC [%]”, “group output power upper limit [kW ]”, “lower limit of group output power [kW]”, “upper limit of group SOC [%]”, “lower limit of group SOC [%]”, “group deterioration speed”, “group priority”, and “group charging Information corresponding to each item of "discharge request amount [kW]" is stored. The information transmitted from the lower control device L to the upper control device U includes "storage battery group name", "group temperature [°C]", "group output power [kW]", and "group SOC [%]". information corresponding to each item of Further, the information corresponding to the item “storage battery group name” is information for identifying the storage battery group G. FIG. The information corresponding to the item "group temperature [°C]" is information indicating the average current temperature of each of the storage batteries 3 in the storage battery group G. Further, the information corresponding to the item “group output power [kW]” is information indicating the value obtained by integrating the current output power of each storage battery 3 in the storage battery group G. FIG. Information corresponding to the item “group SOC [%]” is information indicating the current SOC average value of each of the storage batteries 3 in the storage battery group G. FIG. Information corresponding to the item “group output power upper limit value [kW]” is information indicating a value obtained by integrating the upper limit value of the output power of each storage battery 3 in the storage battery group G. FIG. The information corresponding to the item "group output power lower limit value [kW]" is information indicating a value obtained by integrating the lower limit value of the output power of each storage battery 3 in the storage battery group G. FIG. Information corresponding to the item “group SOC upper limit [%]” is the upper limit of SOC corresponding to the storage battery group G. FIG. Information corresponding to the item “group SOC lower limit [%]” is the SOC lower limit value corresponding to the storage battery group G. FIG. The information corresponding to the item "group deterioration rate" is the group deterioration rate. Information corresponding to the item "group priority" is the group priority. Further, the information corresponding to the item "group charge/discharge request amount [kW]" is the group charge/discharge request amount.

次に、図20に示すシーケンス図において、上位制御装置Uは、充放電要求量及び各グループ優先順位などを用いて、蓄電池グループG毎にグループ充放電要求量を算出し(ステップS1005H)、その算出した各グループ充放電要求量を、対応する下位制御装置Lに送信する(ステップS1006H)。 Next, in the sequence diagram shown in FIG. 20, the upper control device U uses the charge/discharge request amount and each group priority to calculate the group charge/discharge request amount for each storage battery group G (step S1005H). The calculated charge/discharge request amount for each group is transmitted to the corresponding lower control device L (step S1006H).

次に、下位制御装置L1~Lnは、それぞれ、グループ充放電要求量を受信すると(ステップS1007H:Yes)、蓄電池劣化速度を用いて、各蓄電池3にそれぞれ対応する蓄電池優先順位を設定し(ステップS1008H)、グループ充放電要求量及び各蓄電池優先順位などを用いて、各蓄電池3にそれぞれ対応する充放電指令値を算出し(ステップS1009H)、対応する各PCS5に充放電指令値を送信する(ステップS1010H)。 Next, when each of the low-order control devices L1 to Ln receives the group charge/discharge request amount (step S1007H: Yes), it uses the storage battery deterioration rate to set the storage battery priority order corresponding to each storage battery 3 (step S1008H), the charge/discharge command value corresponding to each storage battery 3 is calculated using the group charge/discharge request amount and the priority of each storage battery (step S1009H), and the charge/discharge command value is transmitted to each corresponding PCS 5 ( step S1010H).

ここで、図22に示すように、蓄電池グループG1に対応するグループ劣化速度が「0.005」、蓄電池グループG2に対応するグループ劣化速度が「0.003」、蓄電池グループG3に対応するグループ劣化速度が「0.010」、蓄電池グループG4に対応するグループ劣化速度が「0.002」、蓄電池グループG5に対応するグループ劣化速度が「0.009」、蓄電池グループG6に対応するグループ劣化速度が「0.007」である場合を想定する。このような場合、蓄電池グループG4に対応するグループ優先順位が「1」、蓄電池グループG2に対応するグループ優先順位が「2」、蓄電池グループG1に対応するグループ優先順位が「3」、蓄電池グループG6に対応するグループ優先順位が「4」、蓄電池グループG5に対応するグループ優先順位が「5」、蓄電池グループG3に対応するグループ優先順位が「6」となる。また、充放電配分制御システム1H全体に対する放電要求量を「2900[kW]」とする。 Here, as shown in FIG. 22, the group deterioration rate corresponding to the storage battery group G1 is "0.005", the group deterioration rate corresponding to the storage battery group G2 is "0.003", and the group deterioration rate corresponding to the storage battery group G3 is The speed is "0.010", the group deterioration speed corresponding to the storage battery group G4 is "0.002", the group deterioration speed corresponding to the storage battery group G5 is "0.009", and the group deterioration speed corresponding to the storage battery group G6 is Assume that it is "0.007". In such a case, the group priority corresponding to the storage battery group G4 is "1", the group priority corresponding to the storage battery group G2 is "2", the group priority corresponding to the storage battery group G1 is "3", and the group priority corresponding to the storage battery group G6 is "1". The group priority corresponding to , is "4", the group priority corresponding to the storage battery group G5 is "5", and the group priority corresponding to the storage battery group G3 is "6". Also, the discharge request amount for the entire charge/discharge distribution control system 1H is assumed to be "2900 [kW]".

まず、上位充放電要求量算出部U-33は、充放電要求量「2900[kW]」のうち、グループ優先順位が「1」である蓄電池グループG4のグループ出力電力上限値と同じ値の充放電要求量「1200[kW]」を、蓄電池グループG4に対応するグループ充放電要求量として情報D2に格納する。 First, the high-order charge/discharge request amount calculation unit U-33 selects the charge/discharge request amount “2900 [kW]” that is the same as the group output power upper limit value of the storage battery group G4 whose group priority is “1”. The requested discharge amount "1200 [kW]" is stored in the information D2 as the requested group charge/discharge amount corresponding to the storage battery group G4.

次に、上位充放電要求量算出部U-33は、残りの充放電要求量「1700[kW]」のうち、グループ優先順位が「2」である蓄電池グループG2のグループ出力電力上限値と同じ値の充放電要求量「1200[kW]」を、蓄電池グループG2に対応するグループ充放電要求量として情報D2に格納する。 Next, the upper charge/discharge request amount calculation unit U-33 determines that the remaining charge/discharge request amount "1700 [kW]" is the same as the group output power upper limit value of the storage battery group G2 with the group priority of "2". The requested charge/discharge amount of the value "1200 [kW]" is stored in the information D2 as the requested group charge/discharge amount corresponding to the storage battery group G2.

次に、上位充放電要求量算出部U-33は、残りの充放電要求量「500[kW]」が、グループ優先順位が「3」である蓄電池グループG1のグループ出力電力上限値「1200[kW]」よりも小さいと判断すると、その充放電要求量「500[kW]」を、蓄電池グループG1に対応するグループ充放電要求量として情報D2に格納する。 Next, the upper charge/discharge request amount calculation unit U-33 determines that the remaining charge/discharge request amount “500 [kW]” is the group output power upper limit value “1200 [kW]” of the storage battery group G1 whose group priority is “3”. kW]”, the requested charge/discharge amount “500 [kW]” is stored in the information D2 as the requested group charge/discharge amount corresponding to the storage battery group G1.

次に、上位充放電要求量算出部U-33は、残りの充放電要求量が「0[kW]」になったと判断すると、その充放電要求量「0[kW]」を、グループ優先順位が「4」、「5」、「6」である蓄電池グループG6、G5、G3にそれぞれ対応するグループ充放電要求量として情報D2に格納する。 Next, when the upper charge/discharge request amount calculation unit U-33 determines that the remaining charge/discharge request amount has become "0 [kW]", the charge/discharge request amount "0 [kW]" is set to the group priority order. are stored in the information D2 as group charge/discharge request amounts corresponding to the storage battery groups G6, G5, and G3, respectively, where the values are "4," "5," and "6."

そして、上位制御装置Uは、グループ劣化速度が比較的小さい蓄電池グループGに対応する下位制御装置L2、L4にグループ充放電要求量「1200[kW]」を送信し、下位制御装置L1にグループ充放電要求量「500[kW]」を送信し、グループ劣化速度が比較的大きい蓄電池グループGに対応する下位制御装置L3、L5、L6にグループ充放電要求量「0[kW]」を送信する。 Then, the upper control device U transmits the group charging/discharging request amount “1200 [kW]” to the lower control devices L2 and L4 corresponding to the storage battery group G whose group deterioration rate is relatively low, and sends the group charging/discharging request to the lower control device L1. A discharge request amount of "500 [kW]" is transmitted, and a group charge/discharge request amount of "0 [kW]" is transmitted to the lower control devices L3, L5, and L6 corresponding to the storage battery group G having a relatively high group deterioration rate.

また、図21に示すように、蓄電池3-11に対応する蓄電池劣化速度が「0.009」、蓄電池3-12に対応する劣化速度が「0.010」、蓄電池3-13に対応する蓄電池劣化速度が「0.006」、蓄電池3-14に対応する劣化速度が「0.008」、蓄電池3-15に対応する蓄電池劣化速度が「0.007」、蓄電池3-16に対応する蓄電池劣化速度が「0.004」である場合を想定する。このような場合、蓄電池3-16に対応する蓄電池優先順位が「1」、蓄電池3-13に対応する蓄電池優先順位が「2」、蓄電池3-15に対応する蓄電池優先順位が「3」、蓄電池3-14に対応する蓄電池優先順位が「4」、蓄電池3-11に対応する蓄電池優先順位が「5」、蓄電池3-12に対応する蓄電池優先順位が「6」となる。なお、下位制御装置L1に対するグループ充放電要求量を「500[kW]」とする。 Further, as shown in FIG. 21, the storage battery deterioration rate corresponding to the storage battery 3-11 is "0.009", the deterioration rate corresponding to the storage battery 3-12 is "0.010", and the storage battery corresponding to the storage battery 3-13 The deterioration rate is "0.006", the deterioration rate corresponding to the storage battery 3-14 is "0.008", the storage battery deterioration rate corresponding to the storage battery 3-15 is "0.007", and the storage battery corresponding to the storage battery 3-16 Assume that the deterioration rate is "0.004". In such a case, the storage battery priority corresponding to the storage battery 3-16 is "1", the storage battery priority corresponding to the storage battery 3-13 is "2", the storage battery priority corresponding to the storage battery 3-15 is "3", The storage battery priority corresponding to the storage battery 3-14 is "4", the storage battery priority corresponding to the storage battery 3-11 is "5", and the storage battery priority corresponding to the storage battery 3-12 is "6". It is assumed that the group charging/discharging request amount for the lower control device L1 is "500 [kW]".

まず、下位充放電指令値算出部L-33は、グループ充放電要求量「500[kW]」のうち、蓄電池優先順位が「1」である蓄電池3-16の蓄電池出力電力上限値と同じ値のグループ充放電要求量「200[kW]」を、蓄電池3-16に対応する充放電指令値として情報D1に格納する。 First, the lower charge/discharge command value calculator L-33 selects the same value as the storage battery output power upper limit value of the storage battery 3-16 having the storage battery priority of “1” in the group charge/discharge request amount “500 [kW]”. is stored in the information D1 as a charge/discharge command value corresponding to the storage battery 3-16.

次に、下位充放電指令値算出部L-33は、残りのグループ充放電要求量「300[kW]」のうち、蓄電池優先順位が「2」である蓄電池3-13の蓄電池出力電力上限値と同じ値のグループ充放電要求量「200[kW]」を、蓄電池3-13に対応する充放電指令値として情報D1に格納する。 Next, the lower charge/discharge command value calculation unit L-33 calculates the storage battery output power upper limit value of the storage battery 3-13 having the storage battery priority of “2” among the remaining group charge/discharge request amounts “300 [kW]”. The group charge/discharge request amount "200 [kW]", which is the same value as , is stored in the information D1 as the charge/discharge command value corresponding to the storage battery 3-13.

次に、下位充放電指令値算出部L-33は、残りのグループ充放電要求量「100[kW]」が、蓄電池優先順位が「3」である蓄電池3-15の蓄電池出力電力上限値「200[kW]」よりも小さいと判断すると、そのグループ充放電要求量「100[kW]」を、蓄電池3-15に対応する充放電指令値として情報D1に格納する。 Next, the lower charge/discharge command value calculation unit L-33 determines that the remaining group charge/discharge request amount “100 [kW]” is the storage battery output power upper limit value “ 200 [kW]”, the group charge/discharge request amount “100 [kW]” is stored in the information D1 as a charge/discharge command value corresponding to the storage battery 3-15.

次に、下位充放電指令値算出部L-33は、残りのグループ放電要求量が「0[kW]」になったと判断すると、そのグループ充放電要求量「0[kW]」を、蓄電池優先順位が「4」、「5」、「6」である蓄電池3-14、3-11、3-12にそれぞれ対応する充放電指令値として情報D1に格納する。 Next, when the lower charge/discharge command value calculation unit L-33 determines that the remaining group discharge request amount has become "0 [kW]", the group charge/discharge request amount "0 [kW]" is given priority to the storage battery. They are stored in the information D1 as charge/discharge command values corresponding to the storage batteries 3-14, 3-11 and 3-12 with the ranks of "4", "5" and "6" respectively.

そして、下位制御装置1は、PCS5-13、5-16に充放電指令値「200[kW]」を送信し、PCS3-15に充放電指令値「100[kW]」を送信し、PCS5-11、5-12、5-14に充放電指令値「0[kW]」を送信する。これにより、PCS5-13は、蓄電池劣化速度が最も小さい蓄電池3-15を200[kW]で放電させ、PCS5-16は、蓄電池劣化速度が2番目に小さい蓄電池3-16を200[kW]で放電させ、PCS5-15は、蓄電池劣化速度が3番目に小さい蓄電池3-15を100[kW]で放電させる。また、PCS5-11、5-12、5-14は、蓄電池劣化速度が比較的大きい蓄電池3-11、3-12、3-14を放電させない。 Then, the lower control device 1 transmits the charge/discharge command value "200 [kW]" to PCS5-13 and 5-16, transmits the charge/discharge command value "100 [kW]" to PCS3-15, and transmits the charge/discharge command value "100 [kW]" to PCS5-15. 11, 5-12, and 5-14 with a charge/discharge command value of "0 [kW]". As a result, the PCS 5-13 discharges the storage battery 3-15 having the lowest storage battery deterioration rate at 200 [kW], and the PCS 5-16 discharges the storage battery 3-16 having the second lowest storage battery deterioration rate at 200 [kW]. The PCS 5-15 discharges the storage battery 3-15, which has the third lowest storage battery deterioration rate, at 100 [kW]. Also, PCS 5-11, 5-12 and 5-14 do not discharge storage batteries 3-11, 3-12 and 3-14 whose storage battery deterioration rate is relatively high.

このように、第8の実施形態に係る充放電配分制御システム1Hによれば、複数の蓄電池3のうち、劣化の速度が遅い状態の蓄電池グループGや蓄電池3を優先して充電または放電させることができるため、各蓄電池3の長寿命化を実現することができる。 As described above, according to the charge/discharge distribution control system 1H according to the eighth embodiment, among the plurality of storage batteries 3, the storage battery group G or the storage battery 3 in a state of slow deterioration is preferentially charged or discharged. is possible, the life of each storage battery 3 can be extended.

また、第8の実施形態に係る充放電配分制御システム1Hによれば、充放電要求量の配分処理により充放電配分制御装置にかかる負荷を、上位制御装置Uと下位制御装置Lとに分散させることができるため、1つの充放電配分制御装置に配分処理を行わせる場合に比べて、配分処理にかかる時間の短縮を図ることができる。 Further, according to the charge/discharge distribution control system 1H according to the eighth embodiment, the load applied to the charge/discharge distribution control device is distributed to the upper control device U and the lower control device L by the process of distributing the charge/discharge request amount. Therefore, the time required for the distribution process can be shortened as compared with the case where the distribution process is performed by one charge/discharge distribution control device.

また、第8の実施形態の係る充放電配分制御システム1Hでは、複数の蓄電池3を複数のグループに分け、充放電要求量を各グループに配分し、充放電指令値を各グループでそれぞれ並行して算出することができるため、蓄電池全体の大容量化を図るために蓄電池3の数が増大したとしても、充放電指令値の算出にかかる時間の増加を抑えることができる。 Further, in the charge/discharge distribution control system 1H according to the eighth embodiment, a plurality of storage batteries 3 are divided into a plurality of groups, a charge/discharge request amount is distributed to each group, and a charge/discharge command value is set in parallel for each group. Therefore, even if the number of storage batteries 3 is increased in order to increase the capacity of the entire storage battery, it is possible to suppress an increase in the time required to calculate the charge/discharge command value.

なお、第8の実施形態に係る充放電配分制御システム1Hにおいて、上述の構成では、蓄電池3の劣化速度により設定される優先順位を用いて充放電要求量を配分する構成であるが、第1の実施形態に係る充放電配分制御システム1Aのように、蓄電池3の劣化速度により設定される配分率を用いて充放電要求量を配分するように構成してもよい。このように構成する場合、図18に示す上位優先順位設定部U-32の代わりに、グループ劣化速度がより小さい蓄電池グループGに対してより大きいグループ配分率(各蓄電池グループGの充放電要求量の配分の比率)を設定する上位配分率設定部を上位制御装置Uに備える。また、上位充放電要求量算出部U-33は、充放電要求量にグループ配分率を乗算した結果を蓄電池グループGの充放電量の上下限値と比較して、グループ充放電要求量を算出する。また、このように構成する場合、図18に示す下位優先順位設定部L-32の代わりに、蓄電池劣化速度がより小さい蓄電池3に対してより大きい蓄電池配分率(各蓄電池3のグループ充放電要求量の配分の比率)を設定する下位配分率設定部を下位制御装置Lに備える。また、下位充放電指令部L-33は、グループ充放電要求量に蓄電池配分率を乗算した結果と、蓄電池3の充放電量の上下限値とを比較して、充放電指令値を算出する。その他の構成は、図18に示す構成と同様である。このように構成しても、各蓄電池3の長寿命化を実現することができるとともに、配分処理にかかる時間の短縮を図ることができる。 In addition, in the charge/discharge distribution control system 1H according to the eighth embodiment, in the above-described configuration, the charge/discharge request amount is distributed using the priority set according to the deterioration rate of the storage battery 3. As in the charge/discharge distribution control system 1A according to the embodiment, the charge/discharge request amount may be distributed using a distribution rate set according to the deterioration rate of the storage battery 3 . In this configuration, instead of the upper priority order setting unit U-32 shown in FIG. The host control device U is provided with a higher-level allocation ratio setting unit for setting the allocation ratio of the . In addition, the upper charge/discharge request amount calculation unit U-33 compares the result of multiplying the charge/discharge request amount by the group allocation rate with the upper and lower limit values of the charge/discharge amount of the storage battery group G, and calculates the group charge/discharge request amount. do. In this configuration, instead of the lower priority order setting unit L-32 shown in FIG. 18, a larger storage battery distribution rate (group charge/discharge request The subordinate control device L is provided with a subordinate allocation ratio setting unit for setting the allocation ratio of the quantity. In addition, the lower charge/discharge command unit L-33 compares the result of multiplying the group charge/discharge request amount by the storage battery distribution ratio with the upper and lower limit values of the charge/discharge amount of the storage battery 3, and calculates the charge/discharge command value. . Other configurations are the same as those shown in FIG. Even with this configuration, it is possible to extend the life of each storage battery 3 and shorten the time required for the allocation process.

また、第8の実施形態に係る充放電配分制御システム1Hの他の変形例として、上位制御装置Uにおいて蓄電池3の劣化速度により設定されるグループ配分率を用いて充放電要求量を配分し、各下位制御装置Lにおいて蓄電池3の劣化速度により設定される蓄電池優先順位を用いてグループ充放電要求量を配分するように構成してもよい。このように構成する場合、図18に示す上位優先順位設定部U-32の代わりに、グループ劣化速度がより小さい蓄電池グループGに対してより大きいグループ配分率を設定する上位配分率設定部を上位制御装置Uに備える。また、上位充放電要求量算出部U-33は、充放電要求量にグループ配分率を乗算した結果を蓄電池グループGの充放電量の上下限値と比較して、グループ充放電要求量を算出する。その他の構成は、図18に示す構成と同様である。このように構成しても、各蓄電池3の長寿命化を実現することができるとともに、配分処理にかかる時間の短縮を図ることができる。 Further, as another modification of the charge/discharge distribution control system 1H according to the eighth embodiment, the host controller U distributes the charge/discharge request amount using a group distribution rate set according to the deterioration rate of the storage battery 3, It may be configured such that the group charging/discharging request amount is distributed using the storage battery priority set according to the deterioration rate of the storage battery 3 in each lower control device L. In this configuration, instead of the upper priority order setting unit U-32 shown in FIG. It is provided in the control device U. In addition, the upper charge/discharge request amount calculation unit U-33 compares the result of multiplying the charge/discharge request amount by the group allocation rate with the upper and lower limit values of the charge/discharge amount of the storage battery group G, and calculates the group charge/discharge request amount. do. Other configurations are the same as those shown in FIG. Even with this configuration, it is possible to extend the life of each storage battery 3 and shorten the time required for the allocation process.

また、第8の実施形態に係る充放電配分制御システム1Hのさらに他の変形例として、上位制御装置Uにおいて蓄電池3の劣化速度により設定されるグループ優先順位を用いて充放電要求量を配分し、各下位制御装置Lにおいて蓄電池3の劣化速度により設定される蓄電池配分率を用いてグループ充放電要求量を配分するように構成してもよい。このように構成する場合、図18に示す下位優先順位設定部L-32の代わりに、蓄電池劣化速度がより小さい蓄電池3に対してより大きい蓄電池配分率を設定する下位配分率設定部を下位制御装置Lに備える。また、下位充放電指令部L-33は、グループ充放電要求量に蓄電池配分率を乗算した結果と、蓄電池3の充放電量の上下限値とを比較して、充放電指令値を算出する。その他の構成は、図18に示す構成と同様である。このように構成しても、各蓄電池3の長寿命化を実現することができるとともに、配分処理にかかる時間の短縮を図ることができる。 Further, as still another modification of the charge/discharge distribution control system 1H according to the eighth embodiment, the higher level controller U distributes the charge/discharge request amount using the group priority set according to the deterioration rate of the storage battery 3. Alternatively, the group charging/discharging request amount may be distributed using a storage battery distribution rate set according to the deterioration rate of the storage battery 3 in each low-order control device L. When configured in this way, instead of the lower priority order setting unit L-32 shown in FIG. Apparatus L is provided. In addition, the lower charge/discharge command unit L-33 compares the result of multiplying the group charge/discharge request amount by the storage battery distribution ratio with the upper and lower limit values of the charge/discharge amount of the storage battery 3, and calculates the charge/discharge command value. . Other configurations are the same as those shown in FIG. Even with this configuration, it is possible to extend the life of each storage battery 3 and shorten the time required for the allocation process.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形も、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broader spirit and scope of the invention. Moreover, the above-described embodiments are for explaining the present invention, and do not limit the scope of the present invention. Various modifications made within the scope of the claims and within the scope of equivalents of the invention are also considered to be within the scope of the present invention.

1A、1B、1C、1D、1E、1F、1G、1H 配分システム
2A、2B、2C、2D、2E、2F、2G、2H 制御装置
3 蓄電池
4 温度計測装置
5 PCS
6 蓄電ユニット
20 通信部
21、21C、21D、21E、21F 記憶部
22A、22B、22C、22D、22E、22F、22G 制御部
23 表示部
24 入力部
25 入力処理部
26 表示処理部
70 プロセッサ
71 メモリ
72 記憶装置
73 通信装置
74 入力装置
75 表示装置
220 時刻計測部
221、221B、221C、221D、221E、221F 劣化速度導出部
222A、222F 配分率決定部
222B、222F 優先順位決定部
222E、222F 配分/優先順位決定部
223A、223B 充放電量算出部
224 劣化度検出部
U 上位制御装置
L 下位制御装置
G 蓄電池グループ
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H distribution system 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H control device 3 storage battery 4 temperature measuring device 5 PCS
6 power storage unit 20 communication units 21, 21C, 21D, 21E, 21F storage units 22A, 22B, 22C, 22D, 22E, 22F, 22G control unit 23 display unit 24 input unit 25 input processing unit 26 display processing unit 70 processor 71 memory 72 storage device 73 communication device 74 input device 75 display device 220 time measurement units 221, 221B, 221C, 221D, 221E, 221F deterioration rate derivation units 222A, 222F allocation rate determination units 222B, 222F priority determination units 222E, 222F allocation/ Priority determination units 223A and 223B Charge/discharge amount calculation unit 224 Degradation level detection unit U Upper control device L Lower control device G Storage battery group

Claims (28)

充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電指令を送信する充放電配分制御装置であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求める劣化速度導出部と、
前記劣化速度導出部の出力信号を受け、前記劣化速度がより小さい蓄電池に対してより大きい配分率を設定する配分率決定部と、
前記配分率決定部の出力信号を受け、前記充放電要求量に対し前記各蓄電池の前記配分率を乗算して得た各値を前記各蓄電池の最大充放電量と比較して、前記各蓄電池の充放電指令値を算出する充放電量算出部と、
前記充放電量算出部の出力信号を受け、前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する充放電指令部と、
を備え、
前記充放電量算出部は、前記各蓄電池のうちの所定の蓄電池の充放電配分量が、前記所定の蓄電池の最大充放電量よりも大きい場合、前記所定の蓄電池の最大充放電量を前記所定の蓄電池の充放電指令値として割り当て、前記所定の蓄電池の充放電配分量と前記所定の蓄電池の最大充放電量との差分を求め、前記各蓄電池のうちの前記所定の蓄電池を除く他の各蓄電池の配分率と前記差分との乗算結果を前記他の各蓄電池の充放電配分量に加算したものを前記他の各蓄電池の充放電指令値として割り当てる充放電配分制御装置。
A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
a deterioration rate deriving unit that obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery;
a distribution rate determination unit that receives an output signal from the deterioration rate derivation unit and sets a higher distribution rate for a storage battery with a lower deterioration rate;
receiving the output signal of the allocation rate determination unit, comparing each value obtained by multiplying the charge/discharge request amount by the allocation rate of each storage battery with the maximum charge/discharge amount of each storage battery, A charge/discharge amount calculation unit that calculates the charge/discharge command value of
a charge/discharge command unit that receives an output signal from the charge/discharge amount calculation unit and transmits a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
with
When the charge/discharge distribution amount of a predetermined storage battery among the storage batteries is larger than the maximum charge/discharge amount of the predetermined storage battery, the charge/discharge amount calculation unit calculates the maximum charge/discharge amount of the predetermined storage battery as the predetermined storage battery. is assigned as a charge/discharge command value for the storage battery, the difference between the charge/discharge allocation amount of the predetermined storage battery and the maximum charge/discharge amount of the predetermined storage battery is obtained, and each of the storage batteries other than the predetermined storage battery is calculated. A charge/discharge distribution control device for assigning, as a charge/discharge command value for each of the other storage batteries, a result obtained by multiplying the distribution ratio of the storage battery by the difference and adding the result to the charge/discharge distribution amount of each of the other storage batteries.
前記充放電配分制御装置は、前記各蓄電池の劣化度を検出する劣化度検出部をさらに有し、
前記配分率決定部は、前記劣化度により劣化が進行していると判定される蓄電池に対しより小さい配分率を設定することを特徴とする請求項1に記載の充放電配分制御装置。
The charge/discharge distribution control device further has a deterioration degree detection unit that detects the degree of deterioration of each storage battery,
2. The charge/discharge distribution control device according to claim 1, wherein the distribution rate determining unit sets a smaller distribution rate for a storage battery determined to be degraded based on the degree of deterioration.
充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電指令を送信する充放電配分制御装置であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求める劣化速度導出部と、
前記劣化速度導出部の出力信号を受け、前記劣化速度がより小さい蓄電池に対してより高い優先順位を設定する優先順位決定部と、
前記優先順位決定部の出力信号を受け、前記優先順位と前記各蓄電池の最大充放電量と前記充放電要求量とに基づいて、前記各蓄電池の充放電指令値を算出する充放電量算出部と、
前記充放電量算出部の出力信号を受け、前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する充放電指令部と、
を備え、
前記充放電算出部は、前記充放電要求量が第1優先順位の前記蓄電池の最大充放電量より大きい場合、前記第1優先順位の蓄電池の最大充放電量を前記第1優先順位の蓄電池の充放電指令値として割り当て、前記充放電要求量と前記第1優先順位の蓄電池の最大充放電量との第1差分が前記第1優先順位より低い第2優先順位の蓄電池の最大充放電量より大きい場合、前記第2優先順位の蓄電池の最大充放電量を前記第2優先順位の蓄電池の充放電指令値として割り当て、前記第1差分と前記第2優先順位の蓄電池の最大充放電量との第2差分が前記第2優先順位より低い第3優先順位の蓄電池の最大充放電量より大きい場合、前記第3優先順位の蓄電池の最大充放電量を前記第3優先順位の蓄電池の充放電指令値として割り当てることを、前記第2差分がゼロになるまで、または前記充放電指令値の総和が前記充放電要求量となるまで繰り返す充放電配分制御装置。
A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
a deterioration rate deriving unit that obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery;
a priority determining unit that receives an output signal from the deterioration rate deriving unit and sets a higher priority to a storage battery having a lower deterioration rate;
A charge/discharge amount calculation unit that receives an output signal from the priority determination unit and calculates a charge/discharge command value for each storage battery based on the priority, the maximum charge/discharge amount of each storage battery, and the charge/discharge request amount. and,
a charge/discharge command unit that receives an output signal from the charge/discharge amount calculation unit and transmits a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
with
The charge/discharge amount calculation unit calculates the maximum charge/discharge amount of the first priority storage battery when the requested charge/discharge amount is larger than the maximum charge/discharge amount of the first priority storage battery. and the first difference between the charge/discharge request amount and the maximum charge/discharge amount of the first priority storage battery is the maximum charge/discharge amount of the second priority storage battery that is lower than the first priority. If it is larger, the maximum charge/discharge amount of the second priority storage battery is assigned as the charge/discharge command value for the second priority storage battery, and the first difference and the maximum charge/discharge amount of the second priority storage battery are combined. is greater than the maximum charge/discharge amount of the storage battery with the third priority lower than the second priority, the maximum charge/discharge amount of the storage battery with the third priority is set to the charge/discharge of the storage battery with the third priority. A charge/discharge distribution control device that repeats assignment as a command value until the second difference becomes zero or until the sum of the charge/discharge command values becomes the charge/discharge request amount.
前記充放電配分制御装置は、前記各蓄電池の劣化度を検出する劣化度検出部をさらに有し、
前記優先順位決定部は、前記劣化度の値が小さい蓄電池の優先順位をより低く設定することを特徴とする請求項3に記載の充放電配分制御装置。
The charge/discharge distribution control device further includes a deterioration degree detection unit that detects the degree of deterioration of each storage battery,
4. The charge/discharge distribution control device according to claim 3, wherein the priority determining unit sets a lower priority to a storage battery having a smaller degree of deterioration.
前記優先順位決定部は、
前記複数の蓄電ユニットが含む蓄電池のうち、前記優先順位が同一の前記蓄電池が複数存在する場合に、前記優先順位が同一の蓄電池の各々の周辺温度、製造年月、種類、サイクル寿命、点検日からの日数、点検予定日までの日数のうちの少なくとも1つを用いて優先順位を決定する、
ことを特徴とする請求項3または4に記載の充放電配分制御装置。
The priority order determination unit
When there are a plurality of storage batteries with the same priority among the storage batteries included in the plurality of power storage units, the ambient temperature, date of manufacture, type, cycle life, and inspection date of each of the storage batteries with the same priority Determine priority using at least one of the number of days from and the number of days until the scheduled inspection date,
5. The charge/discharge distribution control device according to claim 3 or 4, characterized in that:
劣化速度導出部は、さらに前記各蓄電池の充電残量を検出し、前記各蓄電池の前記充電残量と前記内部温度と前記劣化速度特性とに基づいて、前記各蓄電池の劣化速度を求める請求項1から5のいずれか1項に記載の充放電配分制御装置。 The deterioration rate deriving unit further detects the remaining charge of each of the storage batteries, and obtains the deterioration rate of each of the storage batteries based on the remaining charge, the internal temperature, and the deterioration rate characteristic of each of the storage batteries. 6. The charge/discharge distribution control device according to any one of 1 to 5. 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた時点の前記各蓄電池の内部温度であることを特徴とする請求項1から6のいずれか1項に記載の充放電配分制御装置。 7. The charge/discharge distribution control device according to any one of claims 1 to 6, wherein the internal temperature of each storage battery is the internal temperature of each storage battery at the time when the charge/discharge request amount is received. . 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた後、所定時間経過後の前記各蓄電池の内部温度であることを特徴とする請求項1から6のいずれか1項に記載の充放電配分制御装置。 7. The internal temperature of each storage battery according to any one of claims 1 to 6, wherein the internal temperature of each storage battery is the internal temperature of each storage battery after a lapse of a predetermined time after receiving the charge/discharge request amount. Charge/discharge distribution control device. 前記充放電配分制御装置は、さらに、
前記各蓄電池の温度、充電残量、劣化度、優先順位、充電残量上限、充電残量下限、温度上限のうちの少なくとも1つを含む蓄電池情報を表示する表示装置を備える、
ことを特徴とする請求項1から8のいずれか1項に記載の充放電配分制御装置。
The charge/discharge distribution control device further includes:
a display device for displaying storage battery information including at least one of temperature, remaining charge, degree of deterioration, priority, upper limit of remaining charge, lower limit of remaining charge, and upper limit of temperature of each storage battery;
The charge/discharge distribution control device according to any one of claims 1 to 8, characterized in that:
電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットと、充放電要求量を受けて前記複数の蓄電ユニットに充放電指令を送信する充放電配分制御装置と、を備える充放電配分制御システムであって、
前記充放電配分制御装置は、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求め、
前記劣化速度がより小さい蓄電池に対してより大きい配分率を設定し、
前記各蓄電池のうちの所定の蓄電池の充放電配分量が、前記所定の蓄電池の最大充放電量よりも大きい場合、前記所定の蓄電池の最大充放電量を前記所定の蓄電池の充放電指令値として割り当て、前記所定の蓄電池の充放電配分量と前記所定の蓄電池の最大充放電量との差分を求め、前記各蓄電池のうちの前記所定の蓄電池を除く他の各蓄電池の配分率と前記差分との乗算結果を前記他の各蓄電池の充放電配分量に加算したものを前記他の各蓄電池の充放電指令値として割り当て、
前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する、
ことを特徴とする充放電配分制御システム。
a plurality of power storage units each including a storage battery interconnected to an electric power system via a power converter; A charge/discharge distribution control system comprising:
The charge/discharge distribution control device,
Obtaining the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery,
setting a higher allocation rate for a storage battery with a lower deterioration rate;
When the charge/discharge allocation amount of a predetermined storage battery among the storage batteries is larger than the maximum charge/discharge amount of the predetermined storage battery, the maximum charge/discharge amount of the predetermined storage battery is used as the charge/discharge command value of the predetermined storage battery. allocation, calculating the difference between the charge/discharge allocation amount of the predetermined storage battery and the maximum charge/discharge amount of the predetermined storage battery, and calculating the allocation rate of each storage battery other than the predetermined storage battery among the storage batteries and the difference; is added to the charge/discharge allocation amount of each of the other storage batteries, and is assigned as the charge/discharge command value of each of the other storage batteries;
transmitting a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
A charge/discharge distribution control system characterized by:
電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットと、充放電要求量を受けて前記複数の蓄電ユニットに充放電指令を送信する充放電配分制御装置と、を備える充放電配分制御システムであって、
前記充放電配分制御装置は、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求め、
前記劣化速度がより小さい蓄電池に対してより高い優先順位を設定し、
前記充放電要求量が第1優先順位の前記蓄電池の最大充放電量より大きい場合、前記第1優先順位の蓄電池の最大充放電量を前記第1優先順位の蓄電池の充放電指令値として割り当て、前記充放電要求量と前記第1優先順位の蓄電池の最大充放電量との第1差分が前記第1優先順位より低い第2優先順位の蓄電池の最大充放電量より大きい場合、前記第2優先順位の蓄電池の最大充放電量を前記第2優先順位の蓄電池の充放電指令値として割り当て、前記第1差分と前記第2優先順位の蓄電池の最大充放電量との第2差分が前記第2優先順位より低い第3優先順位の蓄電池の最大充放電量より大きい場合、前記第3優先順位の蓄電池の最大充放電量を前記第3優先順位の蓄電池の充放電指令値として割り当てることを、前記第2差分がゼロになるまで、または前記充放電指令値の総和が前記充放電要求量となるまで繰り返し、
前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する、
ことを特徴とする充放電配分制御システム。
a plurality of power storage units each including a storage battery interconnected to an electric power system via a power converter; A charge/discharge distribution control system comprising:
The charge/discharge distribution control device,
Obtaining the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery,
setting a higher priority to a storage battery with a lower deterioration rate;
When the requested charge/discharge amount is greater than the maximum charge/discharge amount of the first priority storage battery, assigning the maximum charge/discharge amount of the first priority storage battery as a charge/discharge command value of the first priority storage battery; When a first difference between the requested charge/discharge amount and the maximum charge/discharge amount of the first priority storage battery is larger than the maximum charge/discharge amount of the second priority storage battery lower than the first priority, the second priority The maximum charge/discharge amount of the secondary storage battery is assigned as the charge/discharge command value for the second priority storage battery, and the second difference between the first difference and the maximum charge/discharge amount of the second priority storage battery is assigned to the second priority storage battery. assigning the maximum charge/discharge amount of the storage battery with the third priority order as the charge/discharge command value of the storage battery with the third priority order when the maximum charge/discharge amount of the storage battery with the third priority order lower than the priority order is larger than the maximum charge/discharge amount of the storage battery with the third priority order; Repeat until the second difference becomes zero or until the sum of the charge/discharge command values becomes the charge/discharge request amount,
transmitting a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
A charge/discharge distribution control system characterized by:
前記充放電配分制御装置と前記複数の蓄電ユニットとは、ネットワークを介して通信可能に接続されることを特徴とする請求項10または11に記載の蓄電池の充放電配分制御システム。 12. The storage battery charge/discharge distribution control system according to claim 10, wherein the charge/discharge distribution control device and the plurality of power storage units are communicably connected via a network. 充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに充放電指令を送信する充放電配分制御方法であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求め、
前記劣化速度がより低い蓄電池に対してより高い配分率を設定し、
前記各蓄電池のうちの所定の蓄電池の充放電配分量が、前記所定の蓄電池の最大充放電量よりも大きい場合、前記所定の蓄電池の最大充放電量を前記所定の蓄電池の充放電指令値として割り当て、前記所定の蓄電池の充放電配分量と前記所定の蓄電池の最大充放電量との差分を求め、前記各蓄電池のうちの前記所定の蓄電池を除く他の各蓄電池の配分率と前記差分との乗算結果を前記他の各蓄電池の充放電配分量に加算したものを前記他の各蓄電池の充放電指令値として割り当て、
前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する、
充放電配分制御装置により実行される充放電配分制御方法。
A charge/discharge distribution control method for receiving a charge/discharge request amount and transmitting a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
Obtaining the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery,
setting a higher allocation rate for a storage battery with a lower deterioration rate,
When the charge/discharge allocation amount of a predetermined storage battery among the storage batteries is larger than the maximum charge/discharge amount of the predetermined storage battery, the maximum charge/discharge amount of the predetermined storage battery is used as the charge/discharge command value of the predetermined storage battery. allocation, calculating the difference between the charge/discharge allocation amount of the predetermined storage battery and the maximum charge/discharge amount of the predetermined storage battery, and calculating the allocation rate of each storage battery other than the predetermined storage battery among the storage batteries and the difference; is added to the charge/discharge allocation amount of each of the other storage batteries, and is assigned as the charge/discharge command value of each of the other storage batteries;
transmitting a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
A charge/discharge distribution control method executed by a charge/discharge distribution control device.
充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに充放電指令を送信する充放電配分制御方法であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求め、
前記劣化速度がより低い蓄電池に対してより高い優先順位を設定し、
前記充放電要求量が第1優先順位の前記蓄電池の最大充放電量より大きい場合、前記第1優先順位の蓄電池の最大充放電量を前記第1優先順位の蓄電池の充放電指令値として割り当て、前記充放電要求量と前記第1優先順位の蓄電池の最大充放電量との第1差分が前記第1優先順位より低い第2優先順位の蓄電池の最大充放電量より大きい場合、前記第2優先順位の蓄電池の最大充放電量を前記第2優先順位の蓄電池の充放電指令値として割り当て、前記第1差分と前記第2優先順位の蓄電池の最大充放電量との第2差分が前記第2優先順位より低い第3優先順位の蓄電池の最大充放電量より大きい場合、前記第3優先順位の蓄電池の最大充放電量を前記第3優先順位の蓄電池の充放電指令値として割り当てることを、前記第2差分がゼロになるまで、または前記充放電指令値の総和が前記充放電要求量となるまで繰り返し、
前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する、
充放電配分制御装置により実行される充放電配分制御方法。
A charge/discharge distribution control method for receiving a charge/discharge request amount and transmitting a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
Obtaining the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery,
setting a higher priority to a storage battery with a lower deterioration rate;
When the requested charge/discharge amount is greater than the maximum charge/discharge amount of the first priority storage battery, assigning the maximum charge/discharge amount of the first priority storage battery as a charge/discharge command value of the first priority storage battery; When a first difference between the requested charge/discharge amount and the maximum charge/discharge amount of the first priority storage battery is larger than the maximum charge/discharge amount of the second priority storage battery lower than the first priority, the second priority The maximum charge/discharge amount of the secondary storage battery is assigned as the charge/discharge command value for the second priority storage battery, and the second difference between the first difference and the maximum charge/discharge amount of the second priority storage battery is assigned to the second priority storage battery. assigning the maximum charge/discharge amount of the storage battery with the third priority order as the charge/discharge command value of the storage battery with the third priority order when the maximum charge/discharge amount of the storage battery with the third priority order lower than the priority order is larger than the maximum charge/discharge amount of the storage battery with the third priority order; Repeat until the second difference becomes zero or until the sum of the charge/discharge command values becomes the charge/discharge request amount,
transmitting a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
A charge/discharge distribution control method executed by a charge/discharge distribution control device.
充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電指令を送信する充放電配分制御装置であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求める劣化速度導出部と、
前記劣化速度導出部の出力信号を受け、前記劣化速度がより小さい蓄電池に対してより高い優先順位を設定する優先順位決定部と、
前記優先順位決定部の出力信号を受け、前記優先順位と前記各蓄電池の最大充放電量と前記充放電要求量とに基づいて、前記各蓄電池の充放電指令値を算出する充放電量算出部と、
前記充放電量算出部の出力信号を受け、前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する充放電指令部と、
を備え、
前記優先順位決定部は、前記複数の蓄電ユニットが含む蓄電池のうち、前記優先順位が同一の前記蓄電池が複数存在する場合に、前記優先順位が同一の蓄電池の各々の周辺温度、製造年月、種類、サイクル寿命、点検日からの日数、点検予定日までの日数のうちの少なくとも1つを用いて前記優先順位を決定する、
ことを特徴とする充放電配分制御装置。
A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
a deterioration rate deriving unit that obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery;
a priority determining unit that receives an output signal from the deterioration rate deriving unit and sets a higher priority to a storage battery having a lower deterioration rate;
A charge/discharge amount calculation unit that receives an output signal from the priority determination unit and calculates a charge/discharge command value for each storage battery based on the priority, the maximum charge/discharge amount of each storage battery, and the charge/discharge request amount. and,
a charge/discharge command unit that receives an output signal from the charge/discharge amount calculation unit and transmits a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
with
When there are a plurality of storage batteries having the same priority among the storage batteries included in the plurality of power storage units, the priority determination unit determines the ambient temperature, the date of manufacture, and the temperature of each of the storage batteries having the same priority. Determining the priority using at least one of the type, cycle life, number of days from inspection date, number of days until scheduled inspection date,
A charge/discharge distribution control device characterized by:
前記充放電配分制御装置は、前記各蓄電池の劣化度を検出する劣化度検出部をさらに有し、
前記優先順位決定部は、前記劣化度の値が小さい蓄電池の優先順位をより低く設定することを特徴とする請求項15に記載の充放電配分制御装置。
The charge/discharge distribution control device further includes a deterioration degree detection unit that detects the degree of deterioration of each storage battery,
16. The charge/discharge distribution control device according to claim 15, wherein the priority order determining unit sets a lower priority order for a storage battery having a smaller deterioration degree value.
前記劣化速度導出部は、さらに前記各蓄電池の充電残量を検出し、前記各蓄電池の前記充電残量と前記内部温度と前記劣化速度特性とに基づいて、前記各蓄電池の劣化速度を求める請求項15または16に記載の充放電配分制御装置。 The deterioration rate deriving unit further detects the remaining charge of each storage battery, and obtains the deterioration rate of each storage battery based on the remaining charge, the internal temperature, and the deterioration rate characteristic of each storage battery. 17. A charge/discharge distribution control device according to Item 15 or 16. 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた時点の前記各蓄電池の内部温度であることを特徴とする請求項15から17のいずれか1項に記載の充放電配分制御装置。 18. The charge/discharge distribution control device according to any one of claims 15 to 17, wherein the internal temperature of each storage battery is the internal temperature of each storage battery at the time when the charge/discharge request amount is received. . 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた後、所定時間経過後の前記各蓄電池の内部温度であることを特徴とする請求項15から18のいずれか1項に記載の充放電配分制御装置。 19. The internal temperature of each storage battery according to any one of claims 15 to 18, wherein the internal temperature of each storage battery is the internal temperature of each storage battery after a lapse of a predetermined time after receiving the charge/discharge request amount. Charge/discharge distribution control device. 前記充放電配分制御装置は、さらに、
前記各蓄電池の温度、充電残量、劣化度、優先順位、充電残量上限、充電残量下限、温度上限のうちの少なくとも1つを含む蓄電池情報を表示する表示装置を備える、
ことを特徴とする請求項15から19のいずれか1項に記載の充放電配分制御装置。
The charge/discharge distribution control device further includes:
a display device for displaying storage battery information including at least one of temperature, remaining charge, degree of deterioration, priority, upper limit of remaining charge, lower limit of remaining charge, and upper limit of temperature of each storage battery;
The charge/discharge distribution control device according to any one of claims 15 to 19, characterized in that:
充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電指令を送信する充放電配分制御装置であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求める劣化速度導出部と、
前記劣化速度導出部の出力信号を受け、前記劣化速度がより小さい蓄電池に対してより大きい配分率を設定する配分率決定部と、
前記配分率決定部の出力信号を受け、前記充放電要求量に対し前記各蓄電池の前記配分率を乗算して得た各値を前記各蓄電池の最大充放電量と比較して、前記各蓄電池の充放電指令値を算出する充放電量算出部と、
前記充放電量算出部の出力信号を受け、前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する充放電指令部と、
前記各蓄電池の温度、充電残量、劣化度、優先順位、充電残量上限、充電残量下限、温度上限のうちの少なくとも1つを含む蓄電池情報を表示する表示装置と、
を備える充放電配分制御装置。
A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
a deterioration rate deriving unit that obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery;
a distribution rate determination unit that receives an output signal from the deterioration rate derivation unit and sets a higher distribution rate for a storage battery with a lower deterioration rate;
receiving the output signal of the allocation rate determination unit, comparing each value obtained by multiplying the charge/discharge request amount by the allocation rate of each storage battery with the maximum charge/discharge amount of each storage battery, A charge/discharge amount calculation unit that calculates the charge/discharge command value of
a charge/discharge command unit that receives an output signal from the charge/discharge amount calculation unit and transmits a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
a display device for displaying storage battery information including at least one of temperature, remaining charge, degree of deterioration, priority, upper limit of remaining charge, lower limit of remaining charge, and upper limit of temperature of each storage battery;
A charge/discharge distribution control device.
前記充放電配分制御装置は、前記各蓄電池の劣化度を検出する劣化度検出部をさらに有し、
前記配分率決定部は、前記劣化度により劣化が進行していると判定される蓄電池に対しより小さい配分率を設定することを特徴とする請求項21に記載の充放電配分制御装置。
The charge/discharge distribution control device further includes a deterioration degree detection unit that detects the degree of deterioration of each storage battery,
22. The charge/discharge distribution control device according to claim 21, wherein the distribution rate determination unit sets a smaller distribution rate for a storage battery determined to be degraded according to the degree of deterioration.
充放電要求量を受けて、電力系統に電力変換器を介して連系接続される蓄電池を含む複数の蓄電ユニットに、充放電指令を送信する充放電配分制御装置であって、
各蓄電池の内部温度と前記各蓄電池の劣化速度特性に基づいて前記各蓄電池の劣化速度を求める劣化速度導出部と、
前記劣化速度導出部の出力信号を受け、前記劣化速度がより小さい蓄電池に対してより高い優先順位を設定する優先順位決定部と、
前記優先順位決定部の出力信号を受け、前記優先順位と前記各蓄電池の最大充放電量と前記充放電要求量とに基づいて、前記各蓄電池の充放電指令値を算出する充放電量算出部と、
前記充放電量算出部の出力信号を受け、前記複数の蓄電ユニットの各々に前記充放電指令値による充放電指令を送信する充放電指令部と、
前記各蓄電池の温度、充電残量、劣化度、優先順位、充電残量上限、充電残量下限、温度上限のうちの少なくとも1つを含む蓄電池情報を表示する表示装置と、
を備える充放電配分制御装置。
A charge/discharge distribution control device that receives a charge/discharge request amount and transmits a charge/discharge command to a plurality of power storage units including a storage battery interconnected to a power system via a power converter,
a deterioration rate deriving unit that obtains the deterioration rate of each storage battery based on the internal temperature of each storage battery and the deterioration rate characteristic of each storage battery;
a priority determining unit that receives an output signal from the deterioration rate deriving unit and sets a higher priority to a storage battery having a lower deterioration rate;
A charge/discharge amount calculation unit that receives an output signal from the priority determination unit and calculates a charge/discharge command value for each storage battery based on the priority, the maximum charge/discharge amount of each storage battery, and the charge/discharge request amount. and,
a charge/discharge command unit that receives an output signal from the charge/discharge amount calculation unit and transmits a charge/discharge command based on the charge/discharge command value to each of the plurality of power storage units;
a display device for displaying storage battery information including at least one of temperature, remaining charge, degree of deterioration, priority, upper limit of remaining charge, lower limit of remaining charge, and upper limit of temperature of each storage battery;
A charge/discharge distribution control device.
前記充放電配分制御装置は、前記各蓄電池の劣化度を検出する劣化度検出部をさらに有し、
前記優先順位決定部は、前記劣化度の値が小さい蓄電池の優先順位をより低く設定することを特徴とする請求項23に記載の充放電配分制御装置。
The charge/discharge distribution control device further has a deterioration degree detection unit that detects the degree of deterioration of each storage battery,
24. The charge/discharge distribution control device according to claim 23, wherein the priority order determination unit sets a lower priority order for a storage battery having a smaller degree of deterioration.
前記優先順位決定部は、
前記複数の蓄電ユニットが含む蓄電池のうち、前記優先順位が同一の前記蓄電池が複数存在する場合に、前記優先順位が同一の蓄電池の各々の周辺温度、製造年月、種類、サイクル寿命、点検日からの日数、点検予定日までの日数のうちの少なくとも1つを用いて優先順位を決定する、
ことを特徴とする請求項23または24に記載の充放電配分制御装置。
The priority order determination unit
When there are a plurality of storage batteries with the same priority among the storage batteries included in the plurality of power storage units, the ambient temperature, date of manufacture, type, cycle life, and inspection date of each of the storage batteries with the same priority Determine priority using at least one of the number of days from and the number of days until the scheduled inspection date,
25. The charge/discharge distribution control device according to claim 23 or 24, characterized in that:
前記劣化速度導出部は、さらに前記各蓄電池の充電残量を検出し、前記各蓄電池の前記充電残量と前記内部温度と前記劣化速度特性とに基づいて、前記各蓄電池の劣化速度を求める請求項21から25のいずれか1項に記載の充放電配分制御装置。 The deterioration rate deriving unit further detects the remaining charge of each storage battery, and obtains the deterioration rate of each storage battery based on the remaining charge, the internal temperature, and the deterioration rate characteristic of each storage battery. 26. The charge/discharge distribution control device according to any one of items 21 to 25. 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた時点の前記各蓄電池の内部温度であることを特徴とする請求項21から26のいずれか1項に記載の充放電配分制御装置。 27. The charge/discharge distribution control device according to any one of claims 21 to 26, wherein the internal temperature of each storage battery is the internal temperature of each storage battery at the time when the charge/discharge request amount is received. . 前記各蓄電池の前記内部温度は、前記充放電要求量を受けた後、所定時間経過後の前記各蓄電池の内部温度であることを特徴とする請求項21から26のいずれか1項に記載の充放電配分制御装置。
27. The internal temperature of each storage battery according to any one of claims 21 to 26, wherein the internal temperature of each storage battery is the internal temperature of each storage battery after a lapse of a predetermined time after receiving the charge/discharge request amount. Charge/discharge distribution control device.
JP2018083461A 2017-04-28 2018-04-24 Charge/Discharge Distribution Control Device, Charge/Discharge Distribution Control System, and Charge/Discharge Distribution Control Method Active JP7255086B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090389 2017-04-28
JP2017090389 2017-04-28

Publications (2)

Publication Number Publication Date
JP2018191500A JP2018191500A (en) 2018-11-29
JP7255086B2 true JP7255086B2 (en) 2023-04-11

Family

ID=64479213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083461A Active JP7255086B2 (en) 2017-04-28 2018-04-24 Charge/Discharge Distribution Control Device, Charge/Discharge Distribution Control System, and Charge/Discharge Distribution Control Method

Country Status (1)

Country Link
JP (1) JP7255086B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112248A (en) * 2019-03-21 2020-10-05 주식회사 엘지화학 Apparatus and method for controlling battery bank
JP7185590B2 (en) * 2019-04-24 2022-12-07 株式会社日立製作所 Electricity storage system, battery sales method, and battery counting system
WO2021038762A1 (en) * 2019-08-28 2021-03-04 三菱電機株式会社 Charge/discharge control device, electricity storage system, and charge/discharge control method
US11682916B2 (en) 2020-03-09 2023-06-20 Insurtap Inc. Processing device, processing method, and non-transitory storage medium
DE112021000960T5 (en) 2020-03-27 2022-11-24 Honda Motor Co., Ltd. battery system
JP2024077720A (en) * 2022-11-29 2024-06-10 矢崎総業株式会社 Storage battery control apparatus, and power storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306637A1 (en) 2007-06-05 2008-12-11 Borumand Mori M Battery network system with life-optimal power management and operating methods thereof
JP2012098794A (en) 2010-10-29 2012-05-24 Kyocera Mita Corp Storage device and image formation device
JP2014073053A (en) 2012-10-01 2014-04-21 Toshiba Corp Gateway device and method thereof and charge/discharge system
WO2016114147A1 (en) 2015-01-15 2016-07-21 日本電気株式会社 Storage cell control system, storage cell control method, and recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329392B (en) * 2011-01-18 2016-02-17 日产自动车株式会社 Battery control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306637A1 (en) 2007-06-05 2008-12-11 Borumand Mori M Battery network system with life-optimal power management and operating methods thereof
JP2012098794A (en) 2010-10-29 2012-05-24 Kyocera Mita Corp Storage device and image formation device
JP2014073053A (en) 2012-10-01 2014-04-21 Toshiba Corp Gateway device and method thereof and charge/discharge system
WO2016114147A1 (en) 2015-01-15 2016-07-21 日本電気株式会社 Storage cell control system, storage cell control method, and recording medium

Also Published As

Publication number Publication date
JP2018191500A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP7255086B2 (en) Charge/Discharge Distribution Control Device, Charge/Discharge Distribution Control System, and Charge/Discharge Distribution Control Method
JP5628820B2 (en) Control device, control device network, and control method
JP6038275B2 (en) Secondary battery deterioration diagnosis method and apparatus using the same
JP6350738B2 (en) Battery selection device, battery selection method, program, and recording medium
JP5485392B2 (en) Charge / discharge control device
EP3107173A1 (en) Demand control device and program
JP2013247726A (en) Storage battery deterioration controller
WO2014073475A1 (en) Battery controller, power storage device, power storage method, and program
EP3306769A1 (en) Energy management system, energy management method, and energy management device
CN115940224A (en) Charge-discharge control method, device, equipment and medium of energy storage system
KR20240101772A (en) Apparatus and Method for Battery Management
JP5874297B2 (en) Heat source control device, air conditioning system, heat source control program, and heat source control method
JP4431965B2 (en) Multi air conditioner distributed control system
JP2017212861A (en) Power adjustment system, information processing device, information processing method, and program
CN115995861A (en) Controller, method and system for controlling discharging or charging of multiple battery packs
CN108350752B (en) Turbine analysis device, turbine analysis method, and computer-readable recording medium
JP2015032067A (en) Storage battery introduction effect evaluation device, storage battery introduction effect evaluation method, and program
JP2021093804A (en) Charge/discharge control method for power storage system and charge/discharge control device
JP6453744B2 (en) Power demand management apparatus and power demand management method
US10113766B2 (en) Air-conditioning management device and air-conditioning system using the same
WO2015087375A1 (en) Storage battery control system, device, and method
JP7305574B2 (en) Battery control device, energy management system
JP6113030B2 (en) Energy management apparatus, energy management method, and energy management system
US20180313720A1 (en) Planning device, planning method, and program
JP6464848B2 (en) Output smoothing apparatus and output smoothing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150