JP7254983B2 - All-secondary air-cooled industrial steam condenser - Google Patents

All-secondary air-cooled industrial steam condenser Download PDF

Info

Publication number
JP7254983B2
JP7254983B2 JP2022014775A JP2022014775A JP7254983B2 JP 7254983 B2 JP7254983 B2 JP 7254983B2 JP 2022014775 A JP2022014775 A JP 2022014775A JP 2022014775 A JP2022014775 A JP 2022014775A JP 7254983 B2 JP7254983 B2 JP 7254983B2
Authority
JP
Japan
Prior art keywords
steam
condenser
condensate
tube bundle
finned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022014775A
Other languages
Japanese (ja)
Other versions
JP2022078027A (en
Inventor
トーマス・ダブリュー・バグラー
ジャン‐ピエール・リベール
マーク・フーバー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evapco Inc
Original Assignee
Evapco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evapco Inc filed Critical Evapco Inc
Publication of JP2022078027A publication Critical patent/JP2022078027A/en
Priority to JP2023053055A priority Critical patent/JP7506217B2/en
Application granted granted Critical
Publication of JP7254983B2 publication Critical patent/JP7254983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • F28B2001/065Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium with secondary condenser, e.g. reflux condenser or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、大規模現場組立型空冷式産業用蒸気復水器に関する。 The present invention relates to large scale field assembled air cooled industrial steam condensers.

大部分の大規模現場組立型空冷式産業用蒸気復水器(「ACC」)に使用される現在のフィン付き管は、長さ約11メートル×幅200mm(「空気移動長さ」とも称される)で、半円形の前縁および後縁を有し、また18.8mmの内部高さ(空気移動長さに垂直)を有する平坦な管を使用する。管壁の厚さは1.35mmである。フィンは、各管の両側の平らな側面にろう付けされる。フィンは、通常18.5mmの高さで、1インチ(25.4mm)あたりフィンが11枚の間隔である。フィン表面は、熱伝達を促進し、フィン剛性を支援するために波状のパターンを有する。管の中心間の標準間隔は57.2mmである。管自体は、断面面積(cross sectional face area)(空気流れ方向に対して垂直な)の約3分の1を構成する一方、フィンは断面面積(cross section face area)のほぼ3分の2を占める。隣接するフィン先端の間に1.5mmの小さなスペースが存在する。夏季の周囲条件では、管を通過する最大蒸気速度は、典型的には28mpsほど高く、より典型的には23~25mpsである可能性がある。これらの管とフィンとを組み合わせた単一のA字型フレーム設計は、管の長さ、フィンの間隔、フィンの高さと形状、および空気移動長さに基づいて最適化されてきた。フィン付き管は、典型的には熱交換器管束あたり39本の管の熱交換器管束へと組み立てられ、ファンあたり10~14個の管束が単一のA字型フレーム内に一緒に配列された2つの熱交換器へと配置される。ファンは、典型的にはA字型フレームの下部に存在し、管束を通して上向きに空気を強制通風する。管とフィンの全体的な設計と、管とフィンの組み合わせによる空気圧低下も、200~250馬力で動作する大口径(36フィート(10.9メートル))のファンの空気移動能力に適合するように最適化されてきた。この最適化された配置は、20年以上も前に単列楕円管の概念が導入されて以来、多くの異なる製造業者にわたってあまり変化していない。 Current finned tubes used in most large-scale field-assembled air-cooled industrial steam condensers (“ACC”) are approximately 11 meters long by 200 mm wide (also referred to as the “air travel length”). A flat tube with semi-circular leading and trailing edges and an internal height (perpendicular to the air travel length) of 18.8 mm is used. The tube wall thickness is 1.35 mm. Fins are brazed to the flat sides on both sides of each tube. The fins are typically 18.5 mm high with a spacing of 11 fins per inch (25.4 mm). The fin surface has a wavy pattern to facilitate heat transfer and aid in fin stiffness. The standard spacing between tube centers is 57.2 mm. The tubes themselves constitute about one-third of the cross sectional face area (perpendicular to the direction of air flow), while the fins occupy approximately two-thirds of the cross section face area. Occupy There is a small space of 1.5 mm between adjacent fin tips. At summer ambient conditions, the maximum steam velocity through the tube can typically be as high as 28 mps, more typically 23-25 mps. These combined tube and fin A-frame designs have been optimized based on tube length, fin spacing, fin height and shape, and air travel length. The finned tubes are typically assembled into heat exchanger tube bundles of 39 tubes per heat exchanger tube bundle, with 10-14 tube bundles per fan arranged together in a single A-frame. It is arranged into two heat exchangers. A fan typically resides at the bottom of the A-frame and forces air upward through the tube bundle. The overall design of the tubes and fins, and the combined air pressure drop of the tubes and fins, is also adapted to the air-moving capacity of large diameter (36 feet (10.9 m)) fans operating at 200-250 horsepower. has been optimized. This optimized arrangement has not changed much across many different manufacturers since the single row oval tube concept was introduced over 20 years ago.

上述の典型的なA字型フレームACCは、第1段または「一次」復水器管束と第2段または「二次」管束との両方を含む。熱交換器管束の約80%~90%は第1段または一次復水器管束である。蒸気は一次復水器管束の頂部に入り、復水と一部の蒸気が底部から出される。第1段構成は熱効率が良好であるが、非凝縮性ガスを除去する手段が提供されない。第1段の管束を通る非凝縮性ガスを一掃するために、熱交換器管束の10%~20%は第2段または二次管束として構成され、典型的には一次管束の間に点在し、下部復水マニホールドからベイパーを吸引する。この配置では、蒸気および非凝縮性ガスは、それらが二次管束の底部に引き込まれるときに第1段の管束を通って進む。ガスの混合物が二次管束を通って上昇するにつれて、残りの蒸気は凝縮し、非凝縮性ガスを濃縮する。二次管束の頂部は、システムから非凝縮性ガスを除去する真空マニホールドに取り付けられる。 The typical A-frame ACC described above includes both a first stage or "primary" condenser tube bundle and a second stage or "secondary" tube bundle. About 80% to 90% of the heat exchanger tube bundles are first stage or primary condenser tube bundles. Steam enters the top of the primary condenser tube bundle, with condensate and some steam leaving the bottom. The first stage configuration is thermally efficient, but does not provide a means of removing non-condensable gases. To sweep non-condensable gases through the first stage bundle, 10% to 20% of the heat exchanger bundle is configured as a second stage or secondary bundle, typically interspersed between the primary bundles. , draws vapor from the lower condensate manifold. In this arrangement, steam and non-condensable gases travel through the first stage tube bundle as they are drawn to the bottom of the secondary tube bundle. As the gas mixture rises through the secondary tube bundle, the remaining vapor condenses, enriching the non-condensable gases. The top of the secondary bundle is attached to a vacuum manifold that removes non-condensable gases from the system.

標準的な先行技術のACC配置に対する変形例は、例えば米国特許出願公開第2015/0204611号および同第2015/0330709号に開示されている。これらの明細書は、同一のフィン付き管を示すが、管の長さが大幅に短縮されたもので、一連の小さなA字型フレーム、典型的にはファンあたり5つのA字型フレームに配置されている。この論理の一部は、蒸気圧力降下を低減することであり、夏季における全容量に及ぼす影響は小さいが、冬季の条件ではより大きな影響を与える。この論理の別の一部は、工場において管束の各々に頂部蒸気マニホールドダクトを溶接してこれらを一緒に出荷し、高価な現場での溶接作業を省くことである。工場で取り付けられ、管束と共に出荷される蒸気マニホールドを用いたこの配置の正味の効果は、標準的なハイキューブ輸送コンテナ内のマニホールドに適合するように管の長さを短縮することである。管がより短く、従って表面積の総量が減少するため、夏季の条件においては、類似の全体的な寸法の標準単一A字型フレーム設計に対する比較容量は約3%減少する。 Variations to standard prior art ACC arrangements are disclosed, for example, in US Patent Application Publication Nos. 2015/0204611 and 2015/0330709. These specifications show the same finned tubes, but with greatly reduced tube lengths, arranged in a series of smaller A-frames, typically five A-frames per fan. It is Part of the logic is to reduce steam pressure drop, which has a smaller impact on total capacity in summer, but has a greater impact in winter conditions. Another part of this logic is to weld a top steam manifold duct to each of the tube bundles at the factory and ship them together, saving expensive on-site welding operations. The net effect of this arrangement, with factory-installed steam manifolds shipped with the tube bundle, is to shorten the length of the tubes to fit the manifolds in a standard highcube shipping container. Because the tubes are shorter and therefore the total amount of surface area is reduced, the comparative capacity for a standard single A-frame design of similar overall dimensions is reduced by about 3% in summer conditions.

本明細書に提示される発明は、1)大規模現場組立型産業用蒸気復水器を含むがこれに限定されない、熱交換器システムで使用するための新規な管設計と、2)発電所等のための大規模現場組立型産業用蒸気復水器の新規な設計とを含み、その両方とも、ACCの熱容量を著しく増大させる一方、いくつかの構成では材料を低減する。本発明の様々な態様および/または実施形態を以下に示す。 The inventions presented herein are 1) novel tube designs for use in heat exchanger systems, including but not limited to large scale field-assembled industrial steam condensers, and 2) power plants. and novel designs of large-scale field-assembled industrial steam condensers for, etc., both of which significantly increase the heat capacity of the ACC while reducing materials in some configurations. Various aspects and/or embodiments of the invention are presented below.

管設計発明の様々な実施形態によれば、管は長さ2.044mであり、管の断面寸法は100~200mm幅、好ましくは125mm幅(空気移動長さ)であると共に、断面高さ(空気移動長さに垂直)は10mm未満、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mm、最も好ましくは6.0mmの高さ(「外側管幅」とも呼ばれる)であり、1インチ(25.4mm)あたりのフィンの数が9~12枚、好ましくは9.8枚で配置されたフィンを有する。さらに好ましい実施形態によれば、実際のフィンは、高さが17~20mm、好ましくは高さが18.5mmであり、2本の隣接する管の間の空間にまたがり、効果的に9.25mmのフィンを各管に対してそれぞれの側で利用できるようにする。 According to various embodiments of the tube design invention, the tube is 2.044 m long, the cross-sectional dimension of the tube is 100-200 mm wide, preferably 125 mm wide (air movement length), and the cross-sectional height ( perpendicular to the air travel length) is less than 10 mm, preferably 4-10 mm, more preferably 5.0-9 mm, even more preferably 5.2-7 mm, most preferably 6.0 mm high ("outer tube width ) and has fins arranged at 9 to 12, preferably 9.8 fins per inch (25.4 mm). According to a further preferred embodiment, the actual fins are 17-20 mm high, preferably 18.5 mm high and span the space between two adjacent tubes, effectively 9.25 mm of fins are available on each side for each tube.

より小さな断面の管(空気移動長さは同じであるが、高さが顕著により小さい)を製造することは、大規模な発電所によって出力される膨大な蒸気量に対応するために、できる限り大きな断面で管を製造する必要があり、管のサイズが大きくなるほどコストが下がるという当該技術分野における現行の支配的な見解に直接的に反している。この配置のコストは先行技術の管配置よりもはるかに大きいが、本発明者らは予期しないことに、より低い高さの管を用いることによる効率増加は(最も好ましい実施形態では、先行技術の管と比較して効率が30%超より高い)、コストの増加を埋め合わせるに留まらないことを発見した。この新規な管設計は、先行技術の大規模現場組立型産業用蒸気復水器(例えば、背景技術の項で説明したような)に使用されてもよく、または本明細書で後述する新規なACC設計と併せて使用されてもよい。 Producing smaller cross-section tubes (same air travel length but significantly smaller height) is recommended as much as possible to accommodate the enormous steam volumes output by large power plants. There is a need to manufacture tubes with large cross-sections, which directly contradicts the currently prevailing view in the art that the larger the size of the tube, the lower the cost. Although the cost of this arrangement is much higher than prior art tube arrangements, we unexpectedly discovered that the efficiency gains from using lower height tubes (in the most preferred embodiment, 30% higher efficiency compared to tubes), more than making up for the increased cost. This novel tube design may be used in prior art large scale field assembled industrial steam condensers (e.g., as described in the Background section) or the novel tube design described later in this specification. It may be used in conjunction with ACC designs.

次に、大規模現場組立型産業用蒸気復水器の新規な設計を検討してみるが、本発明の主な特徴は、本発明によるACCの全ての管束が二次管束として構築され、その中では蒸気は、底部から上向きに配向された管(管束の横断方向軸と平行に整列され、各管は概して25°~35°、好ましくは垂直から30°に配向される)に供給され、復水は管束からは底部から回収され、好ましくは管への蒸気の送達と管からの復水の回収との両方を行う統合/ハイブリッドマニホールドを使用して回収される。一実施形態によれば、統合/ハイブリッドマニホールドは、復水が蒸気送達ライザー(複数可)を下降するのを阻止し、その代わりに統合/ハイブリッドマニホールドに接続された復水回収管に送達されるように構築されてもよい。代替的な実施形態によれば、復水は蒸気送達ライザーを下降することができ、地面により近い蒸気送達ダクトから除去されるように、統合/ハイブリッドマニホールドが構築されてもよい。管の頂部は、非凝縮性ガスを回収するための別個のマニホールドに接続されている。この新規な「全てが二次の」ACC構成は、A字型フレームで、管から非凝縮性ガスを集める単一のマニホールドを有する頂部で結合された2つの二次管束を有して、または各管束の頂部に1つずつの2つの非凝縮性マニホールドを有して構成されてもよい。 Considering now a novel design for a large scale field-assembled industrial steam condenser, the main feature of the invention is that all the tube bundles of the ACC according to the invention are constructed as secondary tube bundles and in which steam is fed from the bottom into upwardly oriented tubes (aligned parallel to the transverse axis of the tube bundle, each tube generally oriented between 25° and 35°, preferably 30° from vertical); Condensate is withdrawn from the tube bundle at the bottom, preferably using an integrated/hybrid manifold that both delivers steam to the tubes and collects condensate from the tubes. According to one embodiment, the integrated/hybrid manifold prevents condensate from going down the steam delivery riser(s) and is instead delivered to the condensate recovery pipe connected to the integrated/hybrid manifold. may be constructed as According to an alternative embodiment, an integrated/hybrid manifold may be constructed so that condensate can descend the steam delivery riser and be removed from the steam delivery duct closer to the ground. The top of the tube is connected to a separate manifold for collecting non-condensable gases. This novel "all secondary" ACC configuration is an A-frame and has two secondary tube bundles joined at the top with a single manifold that collects the non-condensable gases from the tubes, or It may be configured with two non-condensable manifolds, one at the top of each tube bundle.

本明細書で使用される場合、用語「全てが二次の」および「一次がない」は、全ての管束が底部から水蒸気を受け取り、底部において復水を回収し、非凝縮性ガスを上部から送達する大規模現場組立型空冷式産業用蒸気復水器を指す。比較すると、大規模現場組立型空冷式産業用蒸気復水器における一次管束は上部で蒸気を受け取り、底部で復水を送達し、また底部で別個の二次復水器に非凝縮ガスを送達する。 As used herein, the terms "all secondary" and "no primary" mean that all tube bundles receive water vapor from the bottom, collect condensate at the bottom, and non-condensable gases from the top. Refers to large-scale field-assembled air-cooled industrial steam condensers that deliver. By comparison, the primary tube bundle in a large field-assembled air-cooled industrial steam condenser receives steam at the top, delivers condensate at the bottom, and delivers non-condensable gases at the bottom to a separate secondary condenser. do.

しかし、好ましくは、本発明のACCはV字構成で配置されてもよく、その中で2つの二次専用コンデンサ束が底部で単一の統合蒸気分配マニホールド/復水回収マニホールドと接続され、別個の非凝縮物回収マニホールドを各管束の頂部に有している。 Preferably, however, the ACC of the present invention may be arranged in a V-configuration in which two secondary-only condenser bundles are connected at the bottom with a single integrated steam distribution manifold/condensate recovery manifold and separate of non-condensate collection manifold at the top of each tube bundle.

好ましいV字構成の実施形態によれば、蒸気マニホールドは管束の底部に存在するため、2つ以上の位置でマニホールドに入ることでマニホールドのサイズが小さくなり、フィン付き管を少し長くすることができる。本明細書に記載のより小さい断面の管(200mm×高さ10mm未満、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mm、最も好ましくは6.0mm)と組み合わせると、システムは、上述した標準的なACC配置および構成に対して、少なくとも25%~30%の改善された性能を示し、ユニットは、床面積の点でも同様な量だけ小さくできる場合がある。 According to the preferred V-configuration embodiment, the steam manifold resides at the bottom of the tube bundle, so entering the manifold at more than one location reduces the size of the manifold and allows the finned tubes to be slightly longer. . Smaller cross-section tubes described herein (less than 200 mm x 10 mm high, preferably 4-10 mm, more preferably 5.0-9 mm, even more preferably 5.2-7 mm, most preferably 6.0 mm) ), the system exhibits at least a 25%-30% improved performance over the standard ACC arrangement and configuration described above, and the unit can be made a similar amount smaller in terms of floor space. There is

さらなる代替的な実施形態によれば、本発明の新規なACC設計は、100mm×、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mmの寸法を有し、最も好ましくは6.0mmの高さの管と共に、オフセットフィンを有して、使用されてもよい。 According to a further alternative embodiment, the novel ACC design of the present invention has dimensions of 100mm x, preferably 4-10mm, more preferably 5.0-9mm, even more preferably 5.2-7mm. and most preferably with 6.0 mm tall tubes, with offset fins.

さらなる実施形態によれば、本発明の新規なACC設計は、1インチ(25.4mm)あたりフィンが9.8枚配置された「アローヘッド」タイプのフィンを有する120mmまたは最大200mm×5mm~7mmの管で使用されてもよい。 According to a further embodiment, the novel ACC design of the present invention is 120 mm or up to 200 mm x 5 mm to 7 mm with "arrowhead" type fins with 9.8 fins per inch (25.4 mm) may be used in tubes of

さらに別の実施形態によれば、本発明の新規なACC設計は、オフセットフィンとほぼ同様に機能する「ルーバー」フィンを有する管と共に使用されてもよく、より容易に入手可能で製造が容易となる。 According to yet another embodiment, the novel ACC design of the present invention may be used with tubes having "louvered" fins that function much like offset fins and are more readily available and easier to manufacture. Become.

最も好ましいACC構成と最も好ましい管寸法とを組み合わせた本発明の好ましい実施形態および最も好ましい実施形態によれば、本発明のACCは、以下の特徴及び寸法を有する:
一次管束はなく、全てが二次の管束(全ての管は底部から蒸気を受け、復水を底部を通して分配し、非凝縮性ガスを頂部から外へ分配する)、
セル/ファンあたり4つ、5つ(最も好ましい)または6つのV字型の管束の対
管の外径4~10mm(好ましくは5~7mm、最も好ましくは6.0mm)×100~200mm(最も好ましくは125mm)の断面、
管中心間の間隔が20~29mm(最も好ましくは24.5mm)、
管壁の厚さ0.7~0.9mm(最も好ましくは0.8mm)、
管束あたりの管数=40~60(最も好ましくは50)、
管の長さ1,700~2,400mm(最も好ましくは2,044mm)、
隣接する管の間にまたがり両方の管に熱的に接続されているアローヘッドフィン(好ましいが、要件ではない)、
フィン高さ17~19(最も好ましくは18.5mm(有効高さは管の片側あたり9.25mm))、
空気移動長さのフィン95mm~195mm、最も好ましくは120mm。
According to preferred and most preferred embodiments of the present invention in combination with the most preferred ACC configuration and most preferred tube dimensions, the ACC of the present invention has the following features and dimensions:
no primary tube bundles, all secondary tube bundles (all tubes receive steam from the bottom, distribute condensate through the bottom, and distribute non-condensable gases out the top);
Pairs of 4, 5 (most preferred) or 6 V-shaped tube bundles per cell/fan cross-section of preferably 125 mm),
tube center-to-center spacing of 20-29 mm (most preferably 24.5 mm);
tube wall thickness 0.7-0.9 mm (most preferably 0.8 mm),
Number of tubes per tube bundle = 40-60 (most preferably 50),
a tube length of 1,700 to 2,400 mm (most preferably 2,044 mm);
arrowhead fins spanning between adjacent tubes and thermally connected to both tubes (preferred but not a requirement);
fin height 17-19 (most preferably 18.5 mm (effective height 9.25 mm per side of tube));
Fins with an air displacement length of 95mm to 195mm, most preferably 120mm.

この最も好ましい実施形態によれば、総ファン出力、蒸気量、および熱条件が同一である先行技術のACCに対する管束面の総面積は79%であり、同様に、この最も好ましい実施形態の総床面積は、総ファン出力、蒸気量、および熱条件が同一である先行技術のACCの面積の79%である。 According to this most preferred embodiment, the total area of the tube bundle surface for a prior art ACC with identical total fan power, steam volume and thermal conditions is 79%; The area is 79% of that of the prior art ACC with the same total fan output, steam volume and thermal conditions.

さらに、本発明のACC設計は、より容易に設置することができ、発電所内の必要とされる全体のスペースをより小さくすることができる。 Additionally, the ACC design of the present invention may be easier to install and may require less overall space within the power plant.

先行技術の大規模現場組立型空冷式産業用蒸気復水器の熱交換部分の斜視図である。1 is a perspective view of the heat exchange portion of a prior art large scale field assembled air cooled industrial steam condenser; FIG. 蒸気分配マニホールドに対する管の配向を示す、先行技術の大規模現場組立型空冷式産業用蒸気復水器の熱交換部分を部分的に分解した拡大図である。1 is an enlarged partially exploded view of the heat exchange portion of a prior art large scale field assembled air cooled industrial steam condenser showing the orientation of the tubes relative to the steam distribution manifold; FIG. 本発明の第1の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。1 is a perspective view of a heat exchange portion of a large scale field assembled air cooled industrial steam condenser (“ACC”) according to a first embodiment of the present invention; FIG. 本発明の第2の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。1 is a perspective view of a heat exchange portion of a large scale field assembled air cooled industrial steam condenser (“ACC”) according to a second embodiment of the present invention; FIG. 本発明の第3の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。FIG. 4 is a perspective view of the heat exchange portion of a large scale field assembled air cooled industrial steam condenser (“ACC”) according to a third embodiment of the present invention; 本発明の第4の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。FIG. 4 is a perspective view of a heat exchange portion of a large scale field assembled air cooled industrial steam condenser (“ACC”) according to a fourth embodiment of the present invention; 先行技術のACC管およびフィンの断面の斜視図である。1 is a cross-sectional perspective view of a prior art ACC tube and fin; FIG. 本発明の一実施形態によるミニ管およびフィンの斜視図である。FIG. 2 is a perspective view of a mini-tube and fins according to one embodiment of the invention; 本発明の別の実施形態によるミニ管およびフィンの斜視図である。FIG. 10 is a perspective view of a mini-tube and fins according to another embodiment of the invention; 図4Aに示されたV字型の二次的な熱交換管束のみの対の配置を有する、本発明の一実施形態による、大規模現場組立型空冷式産業用蒸気復水器の1つのストリートの側面図である。1 street of a large scale field-assembled air-cooled industrial steam condenser according to an embodiment of the invention having the V-shaped secondary heat exchange tube bundle only pair arrangement shown in FIG. 4A. is a side view of the. 図8に示される大規模現場組立型空冷式産業用蒸気復水器の端面図である。9 is an end view of the large scale field assembled air cooled industrial steam condenser shown in FIG. 8. FIG. それぞれ6つのセルの6つの縦蒸気ヘッダー(6つのストリート)に分割されている1つのタービン排気ダクトを示す、図8に示す大規模現場組立型空冷式産業用蒸気復水器の上面図である。9 is a top view of the large field assembled air cooled industrial steam condenser shown in FIG. 8 showing one turbine exhaust duct divided into six longitudinal steam headers (six streets) of six cells each; FIG. . 本発明の一実施形態による二次復水器フィン付き管束の斜視図である。1 is a perspective view of a secondary condenser finned tube bundle in accordance with one embodiment of the present invention; FIG. 図11に描かれた二次復水器フィン付き管束の斜視写真である。12 is a perspective photograph of the secondary condenser finned tube bundle depicted in FIG. 11; FIG.

(全てが二次の管束を有するAフレームACC) (A-frame ACC with all secondary bundles)

図2を参照すると、管2は二次管束4に配置されている。管2の長手方向軸は、管束の横断方向軸と平行に整列され、各管は概して垂直から25°~35°、好ましくは30°に配向されている。統合蒸気分配/凝縮回収マニホールド6は、Aフレーム構成でその頂部で結合されている2つの二次管束4の各々の底部に取り付けられている。蒸気は、統合蒸気分配/復水回収マニホールド6を介して管2に分配され、蒸気が凝縮すると管2内に復水を形成し、管2を下降して統合蒸気分配/復水回収マニホールド6に流入する。単一の非凝縮物回収マニホールド8が、管2の頂部に移動する非凝縮性ガスを集めるために、両方の管束6の頂部に取り付けられている。蒸気は、ライザー12を介して蒸気ダクト10から統合蒸気分配/復水回収マニホールド6に供給される。統合蒸気分配/復水回収マニホールド6に集まる凝縮水は、復水回収管14内でACCから運び去られる。 With reference to FIG. 2, the tubes 2 are arranged in a secondary tube bundle 4 . The longitudinal axis of tubes 2 is aligned parallel to the transverse axis of the tube bundle, with each tube generally oriented between 25° and 35°, preferably 30° from vertical. An integrated vapor distribution/condensation recovery manifold 6 is attached to the bottom of each of the two secondary tube bundles 4 which are joined at their tops in an A-frame configuration. Steam is distributed to the tubes 2 via the integrated steam distribution/condensate recovery manifold 6 where as the steam condenses it forms condensate in the tubes 2 and down the tubes 2 to the integrated steam distribution/condensate recovery manifold 6 . flow into A single non-condensate collection manifold 8 is attached to the top of both tube bundles 6 to collect the non-condensable gases that migrate to the top of the tubes 2 . Steam is supplied from steam duct 10 via riser 12 to integrated steam distribution/condensate recovery manifold 6 . Condensate that collects in the integrated steam distribution/condensate recovery manifold 6 is carried away from the ACC in condensate recovery pipes 14 .

図3は、図2の実施形態と非常に類似した実施形態を示しているが、ただし各管束4はその頂部で専用の非凝縮物回収マニホールドに取り付けられている。 Figure 3 shows an embodiment very similar to that of Figure 2, but each tube bundle 4 is attached at its top to a dedicated non-condensate collection manifold.

(全てが二次の管束を有するV字型ACC) (V-shaped ACC with all secondary bundles)

図4Aおよび図4Bを参照すると、管2は二次管束4に配置されている。管2の長手方向軸は、管束の横断方向軸と平行に、各管は概して垂直から25°~35°、好ましくは30°に配向されている。2つの二次管束4の底部には、V字構成で55°~65°、好ましくは60°の角度で結合された統合蒸気分配/復水回収マニホールド6が取り付けられている。蒸気は、統合蒸気分配/復水回収マニホールド6を介して管2に分配され、蒸気が凝縮して管2内に復水を形成し、管2を下降して統合蒸気分配/復水集合マニホールド6の中へと入る。非凝縮物回収マニホールド8が両方の管束6の頂部に取り付けられて、管2の頂部に移動する非凝縮性ガスを回収する。蒸気は、ライザー12を介して蒸気ダクト10から統合蒸気分配/復水回収マニホールド6に供給される。統合蒸気分配/復水回収マニホールド6に回収された凝縮水は、復水回収管14内でACCから運び去られる。 With reference to FIGS. 4A and 4B, tubes 2 are arranged in secondary tube bundles 4 . The longitudinal axis of tubes 2 is oriented parallel to the transverse axis of the tube bundle, with each tube generally oriented between 25° and 35°, preferably 30° from vertical. Attached to the bottom of the two secondary bundles 4 is an integrated steam distribution/condensate recovery manifold 6 joined at an angle of 55° to 65°, preferably 60° in a V-configuration. Steam is distributed to tubes 2 via an integrated steam distribution/condensate collection manifold 6 where the steam condenses to form condensate in tubes 2 and down tubes 2 to an integrated steam distribution/condensate collection manifold. Go inside 6. A non-condensate collection manifold 8 is attached to the top of both tube bundles 6 to collect non-condensable gases that migrate to the top of the tubes 2 . Steam is supplied from steam duct 10 via riser 12 to integrated steam distribution/condensate recovery manifold 6 . Condensate collected in the integrated steam distribution/condensate collection manifold 6 is carried away from the ACC in condensate collection pipes 14 .

上述の新規なACC設計は、長さ約11メートル、幅200mm(または「空気移動長さ」)で半円形の先端と後端を有し、且つ内部高さ(空気移動長さに垂直)が18.8mmで管壁の厚さが1.35mmであり、各管の両方の平らな側面にろう付けされたフィンであって、通常、18.5mmの高さで、1インチ(25.4mm)あたりフィンが11枚の間隔であるフィンを有する図5に示された管を含む任意の先行技術の管にも使用されてもよい。しかし、より好ましい実施形態によれば、本発明の新規なACC設計は、以下の特徴および寸法を有する:
一次管束はなく、全てが二次の管束(全ての管は底部から蒸気を受け、復水を底部から分配し、非凝縮性ガスを頂部から外へ分配する)、
セル/ファンあたり4つ、5つ(最も好ましい)または6つのV字型の管束の対、
管の外径4~10mm(好ましくは5~7mm、最も好ましくは6.0mm)×100~200mm(最も好ましくは125mm)の断面、
管中心間隔が20~29mm(最も好ましくは24.5mm)、
管壁の厚さ0.7~0.9mm(最も好ましくは0.8mm)
管束あたりの管数=40~60(最も好ましくは50)
管の長さ1,700~2,400mm(最も好ましくは2,044mm)
隣接する管の間にまたがり両方の管に熱的に接続されているアローヘッドフィン(好ましいが、要件ではない)
フィン高さ18.5mm(有効高さは管の片側あたり9.25mm)、
空気移動長さフィン95mm~195mm、最も好ましくは120mm。
この好ましい実施形態によれば、25~30%の容量増加が、一定のファン出力で単一のセルに対して、標準的な管を用いた先行技術のA字形フレーム設計を上回って提供される。
The novel ACC design described above is approximately 11 meters long, 200 mm wide (or "air movement length"), has semi-circular leading and trailing edges, and has an internal height (perpendicular to the air movement length) of Fins brazed to both flat sides of each tube, typically 18.5 mm high and 1 inch (25.4 mm ) may also be used with any prior art tube, including the tube shown in FIG. However, according to a more preferred embodiment, the novel ACC design of the present invention has the following features and dimensions:
no primary tube bundles, all secondary tube bundles (all tubes receive steam from the bottom, distribute condensate from the bottom, and distribute non-condensable gases from the top out);
4, 5 (most preferred) or 6 V-shaped tube bundle pairs per cell/fan;
cross-section of tube outer diameter 4-10 mm (preferably 5-7 mm, most preferably 6.0 mm) x 100-200 mm (most preferably 125 mm);
tube center spacing of 20 to 29 mm (most preferably 24.5 mm);
Tube wall thickness 0.7-0.9 mm (most preferably 0.8 mm)
Number of tubes per tube bundle = 40-60 (most preferably 50)
Tube length 1,700-2,400 mm (most preferably 2,044 mm)
Arrowhead fins spanning between adjacent tubes and thermally connected to both tubes (preferred but not a requirement)
fin height 18.5 mm (effective height 9.25 mm per side of tube),
Air moving length fins 95mm to 195mm, most preferably 120mm.
This preferred embodiment provides a 25-30% capacity increase for a single cell at constant fan power over prior art A-frame designs using standard tubes. .

図8~図10は、図4Aに示されたV字型の二次熱交換管束の対のみを有する、本発明の実施形態による代表的な大規模現場組立型空冷式産業用蒸気復水器を示す。図8~図10に示す装置は、36セル(6ストリート×6セル)のACCであり、セルあたり5つの管束対の最も好ましい実施形態であるが、本発明は、任意のサイズのACCで使用されてもよく、また1セルあたり任意の数の管束対を用いてもよい。 8-10 are representative large scale field assembled air cooled industrial steam condensers according to embodiments of the present invention having only the pair of V-shaped secondary heat exchange tube bundles shown in FIG. 4A. indicates The apparatus shown in FIGS. 8-10 is a 36 cell (6 streets by 6 cells) ACC and is the most preferred embodiment of 5 tube bundle pairs per cell, but the present invention may be used with any size ACC. and any number of tube bundle pairs per cell may be used.

Claims (11)

産業用蒸気製造設備に接続された全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器であって、
複数の列に配置された空冷式復水セルの矩形アレイであって、前記複数の列の各々は、複数の前記空冷式復水セルを含む、矩形アレイを備え、
各空冷式復水セルは、A字型またはV字型の構成に配置された複数の復水器管束の対を含み、各復水器管束は、互いに隣接して適合されたフィン付き扁平単一チャネル管の単一列を含み、前記復水器管束の各々は、前記フィン付き扁平管の長手方向軸が水平から55°~65°の角度で位置付けられるように配向され、
各復水器管束が底端部で取り付けられており、前記フィン付き扁平単一チャネル管の底部に蒸気を送給すること、および前記フィン付き扁平単一チャネル管内で冷却されると前記蒸気から形成される復水を回収することの両方のために構成された前記復水器管束の長さに沿って延在する、統合蒸気分配-復水回収マニホールドを備え、
各復水器管束がその頂端部で取り付けられており、前記統合蒸気分配-復水回収マニホールドの各々に対して平行な前記復水器管束の長さに沿って延在し、前記蒸気から非凝縮性ガスを回収するように構成される、非復水回収マニホールドを備え、
空冷式復水セルの各列は、前記列内の復水器管束の中間点の下方に延在する蒸気ダクトを含み、前記蒸気ダクトは、それぞれ前記列内の前記復水器管束の長手方向軸に対して垂直な長手方向軸を有し、前記列内の前記復水器管束の各統合蒸気分配-復水回収マニホールドの底面に接続され、
前記復水器管束に送給される蒸気の全てが前記統合蒸気分配-復水回収マニホールドから送給される、全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。
An all secondary tube bundle large scale field assembled air cooled industrial steam condenser connected to an industrial steam production facility comprising:
a rectangular array of air-cooled condensate cells arranged in a plurality of rows, each of said plurality of rows comprising a plurality of said air-cooled condensate cells;
Each air-cooled condensate cell includes a plurality of pairs of condenser tube bundles arranged in an A-shaped or V-shaped configuration, each condenser tube bundle being a finned flattened unit fitted adjacent to each other. comprising a single row of one-channel tubes, each of said condenser tube bundles oriented such that the longitudinal axis of said finned flattened tubes is positioned at an angle of 55° to 65° from the horizontal;
Each condenser tube bundle is attached at a bottom end for delivering steam to the bottom of said finned flattened single channel tubes, and cooling within said finned flattened single channel tubes from said steam. an integrated steam distribution-condensate recovery manifold extending along the length of said condenser tube bundle configured for both collecting condensate that forms;
Each condenser tube bundle is attached at its top end and extends along the length of said condenser tube bundle parallel to each of said integrated steam distribution-condensate recovery manifolds and is non-removable from said steam. comprising a non-condensate recovery manifold configured to recover condensable gases;
Each row of air-cooled condensate cells includes a steam duct extending below the midpoint of the condenser tube bundles in said row, said steam ducts each extending longitudinally of said condenser tube bundles in said row. having a longitudinal axis perpendicular to the axis and connected to the bottom surface of each integrated steam distribution-condensate recovery manifold of said condenser tube bundles in said row;
An all secondary bundle large scale air cooled industrial steam condenser where all of the steam delivered to the condenser tube bundle is delivered from the integrated steam distribution-condensate recovery manifold.
前記フィン付き扁平単一チャネル管から回収された復水の全てが前記統合蒸気分配-復水回収マニホールド内に回収される、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 2. The field assembled all secondary tube bundle of claim 1, wherein all of the condensate recovered from said finned flat single channel tubes is recovered within said integrated steam distribution-condensate recovery manifold. Air-cooled industrial steam condenser. 前記フィン付き扁平単一チャネル管の前記長手方向軸が、水平から60°の角度で配置される、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 2. The large scale field assembled air cooled industrial steam recovery all secondary tube bundle of claim 1 wherein said longitudinal axis of said finned flattened single channel tube is disposed at an angle of 60[deg.] from horizontal. water vessel. 前記フィン付き扁平単一チャネル管は、125mmの断面幅と5.2~7mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The all-secondary tube bundle large scale field assembled air-cooled industrial steam according to claim 1, wherein said finned flattened single channel tube has a cross-sectional width of 125 mm and a cross-sectional height of 5.2-7 mm. condenser. 前記フィン付き扁平単一チャネル管は、125mmの断面幅と6.0mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 2. The all-secondary tube bundle large scale field assembled air cooled industrial steam condensate according to claim 1, wherein said finned flattened single channel tube has a cross-sectional width of 125 mm and a cross-sectional height of 6.0 mm. vessel. 前記フィン付き扁平単一チャネル管は、前記管の平坦な側面に取り付けられたフィンを有し、前記フィンが10mmの高さを有し、1インチ(25.4mm)あたりフィンが9~12枚の間隔である、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The finned flattened single channel tube has fins attached to the flat side of the tube, the fins having a height of 10 mm and 9-12 fins per inch (25.4 mm). 2. The all-secondary tube bundle large scale field-assembled air cooled industrial steam condenser of claim 1 having a spacing of . 前記フィン付き扁平単一チャネル管は、200mmの断面幅と17~20mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The all-secondary tube bundle large scale field assembled air cooled industrial steam condensate according to claim 1, wherein said finned flattened single channel tube has a cross-sectional width of 200 mm and a cross-sectional height of 17-20 mm. vessel. 前記フィン付き扁平単一チャネル管は、200mmの断面幅と18.8mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 2. The all-secondary tube bundle large scale field assembled air cooled industrial steam condensate according to claim 1, wherein said finned flattened single channel tube has a cross-sectional width of 200 mm and a cross-sectional height of 18.8 mm. vessel. 前記フィン付き扁平単一チャネル管は、125mmの断面幅と4~10mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The large scale field assembled air cooled industrial steam condensate all secondary tube bundle of claim 1 wherein said finned flattened single channel tubes have a cross-sectional width of 125mm and a cross-sectional height of 4-10mm. vessel. 前記フィン付き扁平単一チャネル管は、1700mm~2400mmの長さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The all-secondary tube bundle large-scale field-assembled air-cooled industrial steam condenser of claim 1, wherein said finned flattened single-channel tubes have a length of 1700 mm to 2400 mm. 40~60本の前記フィン付き扁平単一チャネル管を備える、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The all secondary tube bundle large scale field assembled air cooled industrial steam condenser of claim 1 comprising 40 to 60 of said finned flattened single channel tubes.
JP2022014775A 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser Active JP7254983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023053055A JP7506217B2 (en) 2016-06-21 2023-03-29 All secondary air-cooled industrial steam condensers

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662353030P 2016-06-21 2016-06-21
US62/353,030 2016-06-21
US201662430345P 2016-12-05 2016-12-05
US62/430,345 2016-12-05
JP2018566935A JP7019612B2 (en) 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser
US15/629,205 2017-06-21
PCT/US2017/038514 WO2017223185A1 (en) 2016-06-21 2017-06-21 All-secondary air cooled industrial steam condenser
US15/629,205 US20170363358A1 (en) 2016-06-21 2017-06-21 All-secondary air cooled industrial steam condenser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018566935A Division JP7019612B2 (en) 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023053055A Division JP7506217B2 (en) 2016-06-21 2023-03-29 All secondary air-cooled industrial steam condensers

Publications (2)

Publication Number Publication Date
JP2022078027A JP2022078027A (en) 2022-05-24
JP7254983B2 true JP7254983B2 (en) 2023-04-10

Family

ID=60660107

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018566935A Active JP7019612B2 (en) 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser
JP2022014775A Active JP7254983B2 (en) 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser
JP2023053055A Active JP7506217B2 (en) 2016-06-21 2023-03-29 All secondary air-cooled industrial steam condensers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018566935A Active JP7019612B2 (en) 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023053055A Active JP7506217B2 (en) 2016-06-21 2023-03-29 All secondary air-cooled industrial steam condensers

Country Status (14)

Country Link
US (1) US20170363358A1 (en)
EP (1) EP3472545B1 (en)
JP (3) JP7019612B2 (en)
KR (3) KR102597977B1 (en)
CN (1) CN109328290A (en)
AU (2) AU2017280203B2 (en)
BR (1) BR112018076415B1 (en)
CA (1) CA3027566A1 (en)
ES (1) ES2904829T3 (en)
MX (2) MX2018015799A (en)
PL (1) PL3472545T3 (en)
RU (1) RU2734089C2 (en)
WO (1) WO2017223185A1 (en)
ZA (1) ZA201900139B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551532B2 (en) 2012-05-23 2017-01-24 Spx Dry Cooling Usa Llc Modular air cooled condenser apparatus and method
EP3465062B1 (en) 2016-05-25 2021-02-24 SPG Dry Cooling Belgium Air-cooled condenser apparatus and method
US10982904B2 (en) * 2018-09-07 2021-04-20 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
US12018891B2 (en) * 2016-06-21 2024-06-25 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
BE1024229B1 (en) * 2017-10-31 2019-05-27 Hamon Thermal Europe S.A. Cooling unit, installation and process
EP3480548B1 (en) * 2017-11-07 2020-05-27 SPG Dry Cooling Belgium Three-stage heat exchanger for an air-cooled condenser
EP3847402A4 (en) * 2018-09-07 2022-05-18 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
USD903071S1 (en) * 2018-09-17 2020-11-24 Mi Rea Seo Condenser for vehicles
CN110440278A (en) * 2019-09-10 2019-11-12 佛山科学技术学院 A kind of flue gas purification system of thermal power generation power plant
BR112022004589A2 (en) * 2019-09-13 2022-06-14 Evapco Inc Air-cooled industrial steam condenser and installed in large-scale advanced field
AU2022228565A1 (en) * 2021-03-02 2023-09-21 Evapco, Inc. Stacked panel heat exchanger for air cooled industrial steam condenser
CN114272714A (en) * 2021-12-29 2022-04-05 司少龙 Benzene vapor condensation cooling system of debenzolization tower by using air cooler
CN114636319B (en) * 2022-05-17 2022-08-19 杭州国能汽轮工程有限公司 Water-saving composite evaporative air-cooled condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167093A1 (en) 2003-12-22 2005-08-04 Schaefer Hermanus G. Condenser
JP2006284171A (en) 2005-04-04 2006-10-19 Spx-Cooling Technologies Gmbh Air-cooled condenser
US20150027679A1 (en) 2012-01-18 2015-01-29 Holtec International Finned tube assemblies for heat exchangers
US20150345166A1 (en) 2013-05-28 2015-12-03 Spx Cooling Technologies, Inc. Modular Air Cooled Condenser Apparatus and Method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT234736B (en) 1962-07-24 1964-07-27 Friedrich Dr Ing Hermann Air-cooled condenser, especially for the condensation of exhaust steam from steam engines
US3707185A (en) * 1971-03-25 1972-12-26 Modine Mfg Co Modular air cooled condenser
IL40295A (en) * 1972-09-05 1974-06-30 Ormat Turbines Closed rankine cycle power plant and condenser therefor
US3976126A (en) * 1973-12-26 1976-08-24 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Kg Air cooled surface condenser
JPS51123402A (en) * 1975-04-21 1976-10-28 Mitsubishi Heavy Ind Ltd Air-cooled condenser
IT1135516B (en) * 1981-02-18 1986-08-27 Nuovo Pignone Spa PERFECTED STEAM CONDENSER WITH AIR COOLING
US4518035A (en) * 1983-02-14 1985-05-21 Hudson Products Corporation Air-cooled, vacuum steam condenser
DE68913233T2 (en) * 1988-06-13 1994-09-08 Michael William Larinoff Air-cooled steam condenser with vacuum.
US4995055A (en) * 1988-06-16 1991-02-19 Hughes Aircraft Company Time shared very small aperture satellite terminals
US4926931A (en) * 1988-11-14 1990-05-22 Larinoff Michael W Freeze protected, air-cooled vacuum steam condensers
EP0369298A1 (en) * 1988-11-14 1990-05-23 Michael William Larinoff Freeze protected, air-cooled, vacuum steam condenser
US4949543A (en) * 1989-09-12 1990-08-21 Modine Manufacturing Company Tube and fin assembly for heat exchangers in power plants
JPH09280752A (en) * 1996-04-10 1997-10-31 Abb Kk One-pipe air-cooled steam condenser
HU225331B1 (en) * 2003-04-24 2006-09-28 Egi Energiagazdalkodasi Reszve Air cooler system
US7096666B2 (en) * 2004-10-21 2006-08-29 Gea Power Cooling Systems, Llc Air-cooled condensing system and method
US7926555B2 (en) * 2006-06-27 2011-04-19 Gea Power Cooling, Inc. Series-parallel condensing system
RU102251U1 (en) * 2010-08-27 2011-02-20 Открытое акционерное общество "Калориферный завод" HEAT EXCHANGE SECTION
RU2598504C2 (en) * 2011-07-15 2016-09-27 Стелленбосский Университет Reflux
US9551532B2 (en) * 2012-05-23 2017-01-24 Spx Dry Cooling Usa Llc Modular air cooled condenser apparatus and method
DE202014104666U1 (en) * 2014-09-29 2014-11-19 Gea Energietechnik Gmbh Plant for the condensation of steam
WO2017031494A1 (en) * 2015-08-20 2017-02-23 Holtec International Dry cooling system for powerplants
US10161683B2 (en) * 2015-08-20 2018-12-25 Holtec International Dry cooling system for powerplants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167093A1 (en) 2003-12-22 2005-08-04 Schaefer Hermanus G. Condenser
JP2006284171A (en) 2005-04-04 2006-10-19 Spx-Cooling Technologies Gmbh Air-cooled condenser
US20150027679A1 (en) 2012-01-18 2015-01-29 Holtec International Finned tube assemblies for heat exchangers
US20150345166A1 (en) 2013-05-28 2015-12-03 Spx Cooling Technologies, Inc. Modular Air Cooled Condenser Apparatus and Method

Also Published As

Publication number Publication date
KR102417605B1 (en) 2022-07-05
RU2018144943A (en) 2020-07-23
WO2017223185A1 (en) 2017-12-28
JP7019612B2 (en) 2022-02-15
EP3472545A1 (en) 2019-04-24
ES2904829T3 (en) 2022-04-06
JP2023098904A (en) 2023-07-11
KR20220100094A (en) 2022-07-14
CN109328290A (en) 2019-02-12
JP7506217B2 (en) 2024-06-25
EP3472545B1 (en) 2021-12-15
US20170363358A1 (en) 2017-12-21
RU2018144943A3 (en) 2020-08-17
MX2018015799A (en) 2019-03-21
CA3027566A1 (en) 2017-12-28
AU2017280203A1 (en) 2019-01-17
EP3472545A4 (en) 2020-03-18
KR102597977B1 (en) 2023-11-02
AU2022252840A1 (en) 2022-11-10
AU2017280203B2 (en) 2022-07-14
BR112018076415A2 (en) 2019-06-25
JP2022078027A (en) 2022-05-24
KR20190020739A (en) 2019-03-04
JP2019525109A (en) 2019-09-05
KR20230156160A (en) 2023-11-13
ZA201900139B (en) 2019-08-28
RU2734089C2 (en) 2020-10-12
BR112018076415B1 (en) 2022-10-18
MX2023005241A (en) 2023-05-18
PL3472545T3 (en) 2022-02-21

Similar Documents

Publication Publication Date Title
JP7254983B2 (en) All-secondary air-cooled industrial steam condenser
US10648740B2 (en) Mini-tube air cooled industrial steam condenser
US9551532B2 (en) Modular air cooled condenser apparatus and method
CN110494712B (en) Air cooling type industrial steam condensing device of microtube
CN111373219B (en) Three-stage heat exchanger of air-cooled condenser
AU2022228565A1 (en) Stacked panel heat exchanger for air cooled industrial steam condenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150