JP7019612B2 - All secondary air-cooled industrial steam condenser - Google Patents

All secondary air-cooled industrial steam condenser Download PDF

Info

Publication number
JP7019612B2
JP7019612B2 JP2018566935A JP2018566935A JP7019612B2 JP 7019612 B2 JP7019612 B2 JP 7019612B2 JP 2018566935 A JP2018566935 A JP 2018566935A JP 2018566935 A JP2018566935 A JP 2018566935A JP 7019612 B2 JP7019612 B2 JP 7019612B2
Authority
JP
Japan
Prior art keywords
steam
tube
condenser
tube bundle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018566935A
Other languages
Japanese (ja)
Other versions
JP2019525109A (en
Inventor
トーマス・ダブリュー・バグラー
ジャン‐ピエール・リベール
マーク・フーバー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evapco Inc
Original Assignee
Evapco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evapco Inc filed Critical Evapco Inc
Publication of JP2019525109A publication Critical patent/JP2019525109A/en
Priority to JP2022014775A priority Critical patent/JP7254983B2/en
Application granted granted Critical
Publication of JP7019612B2 publication Critical patent/JP7019612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • F28B2001/065Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium with secondary condenser, e.g. reflux condenser or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media

Description

本発明は、大規模現場組立型空冷式産業用蒸気復水器に関する。 The present invention relates to a large-scale on-site assembly type air-cooled industrial steam condenser.

大部分の大規模現場組立型空冷式産業用蒸気復水器(「ACC」)に使用される現在のフィン付き管は、長さ約11メートル×幅200mm(「空気移動長さ」とも称される)で、半円形の前縁および後縁を有し、また18.8mmの内部高さ(空気移動長さに垂直)を有する平坦な管を使用する。管壁の厚さは1.35mmである。フィンは、各管の両側の平らな側面にろう付けされる。フィンは、通常18.5mmの高さで、1インチ(25.4mm)あたりフィンが11枚の間隔である。フィン表面は、熱伝達を促進し、フィン剛性を支援するために波状のパターンを有する。管の中心間の標準間隔は57.2mmである。管自体は、断面面積(cross sectional face area)(空気流れ方向に対して垂直な)の約3分の1を構成する一方、フィンは断面面積(cross section face area)のほぼ3分の2を占める。隣接するフィン先端の間に1.5mmの小さなスペースが存在する。夏季の周囲条件では、管を通過する最大蒸気速度は、典型的には28mpsほど高く、より典型的には23~25mpsである可能性がある。これらの管とフィンとを組み合わせた単一のA字型フレーム設計は、管の長さ、フィンの間隔、フィンの高さと形状、および空気移動長さに基づいて最適化されてきた。フィン付き管は、典型的には熱交換器管束あたり39本の管の熱交換器管束へと組み立てられ、ファンあたり10~14個の管束が単一のA字型フレーム内に一緒に配列された2つの熱交換器へと配置される。ファンは、典型的にはA字型フレームの下部に存在し、管束を通して上向きに空気を強制通風する。管とフィンの全体的な設計と、管とフィンの組み合わせによる空気圧低下も、200~250馬力で動作する大口径(36フィート(10.9メートル))のファンの空気移動能力に適合するように最適化されてきた。この最適化された配置は、20年以上も前に単列楕円管の概念が導入されて以来、多くの異なる製造業者にわたってあまり変化していない。 Current finned tubes used in most large on-site assembly air-cooled industrial steam condensers (“ACC”) are approximately 11 meters long x 200 mm wide (also known as “air transfer length”). Use a flat tube with semi-circular front and trailing edges and an internal height of 18.8 mm (perpendicular to the air transfer length). The thickness of the tube wall is 1.35 mm. The fins are brazed to the flat sides on either side of each tube. The fins are typically 18.5 mm high with 11 fins per inch (25.4 mm) apart. The fin surface has a wavy pattern to promote heat transfer and support fin stiffness. The standard spacing between the centers of the tubes is 57.2 mm. The tube itself constitutes about one-third of the cross-section face area (perpendicular to the air flow direction), while the fins make up approximately two-thirds of the cross-section face area. Occupy. There is a small space of 1.5 mm between the tips of adjacent fins. Under summer ambient conditions, the maximum steam velocity through the tube can be typically as high as 28 mps and more typically 23-25 mps. A single A-shaped frame design combining these tubes and fins has been optimized based on tube length, fin spacing, fin height and shape, and air transfer length. Finned tubes are typically assembled into a heat exchanger tube bundle of 39 tubes per heat exchanger tube bundle, with 10-14 tube bundles per fan arranged together in a single A-shaped frame. It is placed in two heat exchangers. The fan is typically located at the bottom of the A-shaped frame and forcibly ventilates air upwards through the bundle of tubes. The overall design of the tube and fins, as well as the air pressure drop due to the tube and fin combination, also fits into the air movement capacity of large caliber (36 feet (10.9 meters)) fans operating at 200-250 horsepower. It has been optimized. This optimized placement has not changed much across many different manufacturers since the concept of single-row elliptic tubes was introduced more than 20 years ago.

上述の典型的なA字型フレームACCは、第1段または「一次」復水器管束と第2段または「二次」管束との両方を含む。熱交換器管束の約80%~90%は第1段または一次復水器管束である。蒸気は一次復水器管束の頂部に入り、復水と一部の蒸気が底部から出される。第1段構成は熱効率が良好であるが、非凝縮性ガスを除去する手段が提供されない。第1段の管束を通る非凝縮性ガスを一掃するために、熱交換器管束の10%~20%は第2段または二次管束として構成され、典型的には一次管束の間に点在し、下部復水マニホールドからベイパーを吸引する。この配置では、蒸気および非凝縮性ガスは、それらが二次管束の底部に引き込まれるときに第1段の管束を通って進む。ガスの混合物が二次管束を通って上昇するにつれて、残りの蒸気は凝縮し、非凝縮性ガスを濃縮する。二次管束の頂部は、システムから非凝縮性ガスを除去する真空マニホールドに取り付けられる。 The typical A-shaped frame ACC described above includes both a first stage or "primary" condenser tube bundle and a second stage or "secondary" tube bundle. About 80% to 90% of the heat exchanger tube bundles are first stage or primary condenser tube bundles. Steam enters the top of the primary condenser tube bundle, and the condenser and some steam are ejected from the bottom. The first stage configuration has good thermal efficiency, but does not provide a means to remove the non-condensable gas. To clear the non-condensable gas passing through the first stage tube bundle, 10% to 20% of the heat exchanger tube bundle is configured as a second stage or secondary tube bundle, typically interspersed between the primary tube bundles. , Suction the vapor from the lower condensate manifold. In this arrangement, vapors and non-condensable gases travel through the first stage tube bundle as they are drawn into the bottom of the secondary tube bundle. As the gas mixture rises through the secondary tube bundle, the remaining vapor condenses, concentrating the non-condensable gas. The top of the secondary tube bundle is attached to a vacuum manifold that removes non-condensable gas from the system.

標準的な先行技術のACC配置に対する変形例は、例えば米国特許出願公開第2015/0204611号および同第2015/0330709号に開示されている。これらの明細書は、同一のフィン付き管を示すが、管の長さが大幅に短縮されたもので、一連の小さなA字型フレーム、典型的にはファンあたり5つのA字型フレームに配置されている。この論理の一部は、蒸気圧力降下を低減することであり、夏季における全容量に及ぼす影響は小さいが、冬季の条件ではより大きな影響を与える。この論理の別の一部は、工場において管束の各々に頂部蒸気マニホールドダクトを溶接してこれらを一緒に出荷し、高価な現場での溶接作業を省くことである。工場で取り付けられ、管束と共に出荷される蒸気マニホールドを用いたこの配置の正味の効果は、標準的なハイキューブ輸送コンテナ内のマニホールドに適合するように管の長さを短縮することである。管がより短く、従って表面積の総量が減少するため、夏季の条件においては、類似の全体的な寸法の標準単一A字型フレーム設計に対する比較容量は約3%減少する。 Modifications of the standard prior art to the ACC arrangement are disclosed, for example, in US Patent Application Publication Nos. 2015/0204611 and 2015/0330709. These specifications show the same finned tube, but with a significantly shorter tube length, placed in a series of smaller A-shaped frames, typically 5 A-shaped frames per fan. Has been done. Part of this logic is to reduce the vapor pressure drop, which has a small effect on total capacity in summer but a greater effect in winter conditions. Another part of this logic is to weld the top steam manifold ducts to each of the tube bundles in the factory and ship them together, eliminating the expensive field welding work. The net effect of this arrangement with steam manifolds installed factory-installed and shipped with tube bundles is to reduce the length of the tubes to fit the manifolds in standard high cube shipping containers. In summer conditions, the comparative capacity for a standard single A-frame design with similar overall dimensions is reduced by about 3% because the tubes are shorter and therefore the total surface area is reduced.

本明細書に提示される発明は、1)大規模現場組立型産業用蒸気復水器を含むがこれに限定されない、熱交換器システムで使用するための新規な管設計と、2)発電所等のための大規模現場組立型産業用蒸気復水器の新規な設計とを含み、その両方とも、ACCの熱容量を著しく増大させる一方、いくつかの構成では材料を低減する。本発明の様々な態様および/または実施形態を以下に示す。 The inventions presented herein are 1) novel tube designs for use in heat exchanger systems, including but not limited to large on-site assembly industrial steam condensers, and 2) power plants. Including new designs for large on-site assembly industrial steam condensers for, etc., both significantly increase the heat capacity of the ACC, while reducing materials in some configurations. Various aspects and / or embodiments of the present invention are shown below.

管設計発明の様々な実施形態によれば、管は長さ2.044mであり、管の断面寸法は100~200mm幅、好ましくは125mm幅(空気移動長さ)であると共に、断面高さ(空気移動長さに垂直)は10mm未満、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mm、最も好ましくは6.0mmの高さ(「外側管幅」とも呼ばれる)であり、1インチ(25.4mm)あたりのフィンの数が9~12枚、好ましくは9.8枚で配置されたフィンを有する。さらに好ましい実施形態によれば、実際のフィンは、高さが17~20mm、好ましくは高さが18.5mmであり、2本の隣接する管の間の空間にまたがり、効果的に9.25mmのフィンを各管に対してそれぞれの側で利用できるようにする。 According to various embodiments of the pipe design invention, the pipe is 2.044 m in length, the cross-sectional dimensions of the pipe are 100-200 mm wide, preferably 125 mm wide (air transfer length), and the cross-sectional height (air movement length). The height (perpendicular to the air movement length) is less than 10 mm, preferably 4 to 10 mm, more preferably 5.0 to 9 mm, even more preferably 5.2 to 7 mm, most preferably 6.0 mm (“outer tube width”). The number of fins per inch (25.4 mm) is 9 to 12, preferably 9.8. According to a more preferred embodiment, the actual fins are 17-20 mm in height, preferably 18.5 mm in height, straddling the space between two adjacent tubes and effectively 9.25 mm. Make the fins available on each side for each tube.

より小さな断面の管(空気移動長さは同じであるが、高さが顕著により小さい)を製造することは、大規模な発電所によって出力される膨大な蒸気量に対応するために、できる限り大きな断面で管を製造する必要があり、管のサイズが大きくなるほどコストが下がるという当該技術分野における現行の支配的な見解に直接的に反している。この配置のコストは先行技術の管配置よりもはるかに大きいが、本発明者らは予期しないことに、より低い高さの管を用いることによる効率増加は(最も好ましい実施形態では、先行技術の管と比較して効率が30%超より高い)、コストの増加を埋め合わせるに留まらないことを発見した。この新規な管設計は、先行技術の大規模現場組立型産業用蒸気復水器(例えば、背景技術の項で説明したような)に使用されてもよく、または本明細書で後述する新規なACC設計と併せて使用されてもよい。 Manufacturing pipes with smaller cross sections (same air movement length, but significantly smaller in height) is as much as possible to accommodate the enormous amount of steam output by large power plants. It is directly contrary to the current predominant view in the art that pipes need to be manufactured in large cross sections and the larger the size of the pipe, the lower the cost. The cost of this arrangement is much higher than the prior art tube arrangement, but we unexpectedly find that the increased efficiency of using lower height tubes (in the most preferred embodiment, of the prior art). It is more than 30% more efficient than pipes), and we have found that it does more than offset the cost increase. This novel pipe design may be used in prior art large-scale on-site assembly industrial steam condensers (eg, as described in the Background Techniques section), or as described herein below. It may be used in conjunction with the ACC design.

次に、大規模現場組立型産業用蒸気復水器の新規な設計を検討してみるが、本発明の主な特徴は、本発明によるACCの全ての管束が二次管束として構築され、その中では蒸気は、底部から上向きに配向された管(管束の横断方向軸と平行に整列され、各管は概して25°~35°、好ましくは垂直から30°に配向される)に供給され、復水は管束からは底部から回収され、好ましくは管への蒸気の送達と管からの復水の回収との両方を行う統合/ハイブリッドマニホールドを使用して回収される。一実施形態によれば、統合/ハイブリッドマニホールドは、復水が蒸気送達ライザー(複数可)を下降するのを阻止し、その代わりに統合/ハイブリッドマニホールドに接続された復水回収管に送達されるように構築されてもよい。代替的な実施形態によれば、復水は蒸気送達ライザーを下降することができ、地面により近い蒸気送達ダクトから除去されるように、統合/ハイブリッドマニホールドが構築されてもよい。管の頂部は、非凝縮性ガスを回収するための別個のマニホールドに接続されている。この新規な「全てが二次の」ACC構成は、A字型フレームで、管から非凝縮性ガスを集める単一のマニホールドを有する頂部で結合された2つの二次管束を有して、または各管束の頂部に1つずつの2つの非凝縮性マニホールドを有して構成されてもよい。 Next, a new design of a large-scale on-site assembly type industrial steam condenser will be examined. The main feature of the present invention is that all the ACC tube bundles according to the present invention are constructed as secondary tube bundles. Inside, steam is fed from the bottom to upwardly oriented tubes (aligned parallel to the transverse axis of the tube bundle, with each tube generally oriented 25 ° to 35 °, preferably vertical to 30 °). Condensate is recovered from the bottom of the tube bundle, preferably using an integrated / hybrid manifold that both delivers steam to the tube and recovers the condensate from the tube. According to one embodiment, the integrated / hybrid manifold prevents the condensate from descending the steam delivery riser (s) and is instead delivered to the condensate recovery pipe connected to the integrated / hybrid manifold. It may be constructed as follows. According to an alternative embodiment, the condensate may be constructed so that the condensate can descend the steam delivery riser and is removed from the steam delivery duct closer to the ground. The top of the tube is connected to a separate manifold for recovering non-condensable gas. This new "all secondary" ACC configuration is an A-shaped frame with two secondary tube bundles joined at the top with a single manifold that collects non-condensable gas from the tube, or It may be configured with two non-condensable manifolds, one at the top of each tube bundle.

本明細書で使用される場合、用語「全てが二次の」および「一次がない」は、全ての管束が底部から水蒸気を受け取り、底部において復水を回収し、非凝縮性ガスを上部から送達する大規模現場組立型空冷式産業用蒸気復水器を指す。比較すると、大規模現場組立型空冷式産業用蒸気復水器における一次管束は上部で蒸気を受け取り、底部で復水を送達し、また底部で別個の二次復水器に非凝縮ガスを送達する。 As used herein, the terms "all secondary" and "no primary" mean that all tube bundles receive steam from the bottom, condensate at the bottom, and non-condensable gas from the top. Refers to a large-scale on-site assembly type air-cooled industrial steam condenser to be delivered. By comparison, the primary tube bundle in a large on-site assembly air-cooled industrial steam condenser receives steam at the top, delivers condenser at the bottom, and delivers non-condensable gas to a separate secondary condenser at the bottom. do.

しかし、好ましくは、本発明のACCはV字構成で配置されてもよく、その中で2つの二次専用コンデンサ束が底部で単一の統合蒸気分配マニホールド/復水回収マニホールドと接続され、別個の非凝縮物回収マニホールドを各管束の頂部に有している。 However, preferably, the ACC of the present invention may be arranged in a V-shape, in which two bundles of secondary dedicated capacitors are connected at the bottom to a single integrated steam distribution manifold / condensate recovery manifold and are separate. It has a non-condensate condensate recovery manifold at the top of each tube bundle.

好ましいV字構成の実施形態によれば、蒸気マニホールドは管束の底部に存在するため、2つ以上の位置でマニホールドに入ることでマニホールドのサイズが小さくなり、フィン付き管を少し長くすることができる。本明細書に記載のより小さい断面の管(200mm×高さ10mm未満、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mm、最も好ましくは6.0mm)と組み合わせると、システムは、上述した標準的なACC配置および構成に対して、少なくとも25%~30%の改善された性能を示し、ユニットは、床面積の点でも同様な量だけ小さくできる場合がある。 According to a preferred V-shaped configuration embodiment, the steam manifold resides at the bottom of the tube bundle, so entering the manifold in more than one position reduces the size of the manifold and allows the finned tube to be slightly longer. .. Tubes of smaller cross section described herein (200 mm x height less than 10 mm, preferably 4-10 mm, more preferably 5.0-9 mm, even more preferably 5.2-7 mm, most preferably 6.0 mm. ), The system shows at least 25% to 30% improved performance over the standard ACC placement and configuration described above, and the unit can be reduced by a similar amount in terms of floor space. There is.

さらなる代替的な実施形態によれば、本発明の新規なACC設計は、100mm×、好ましくは4~10mm、より好ましくは5.0~9mm、さらにより好ましくは5.2~7mmの寸法を有し、最も好ましくは6.0mmの高さの管と共に、オフセットフィンを有して、使用されてもよい。 According to a further alternative embodiment, the novel ACC design of the present invention has dimensions of 100 mm ×, preferably 4-10 mm, more preferably 5.0-9 mm, even more preferably 5.2-7 mm. Most preferably, it may be used with an offset fin, along with a pipe having a height of 6.0 mm.

さらなる実施形態によれば、本発明の新規なACC設計は、1インチ(25.4mm)あたりフィンが9.8枚配置された「アローヘッド」タイプのフィンを有する120mmまたは最大200mm×5mm~7mmの管で使用されてもよい。 According to a further embodiment, the novel ACC design of the invention has 120 mm or up to 200 mm x 5 mm-7 mm with "arrowhead" type fins with 9.8 fins per inch (25.4 mm). May be used in the tube.

さらに別の実施形態によれば、本発明の新規なACC設計は、オフセットフィンとほぼ同様に機能する「ルーバー」フィンを有する管と共に使用されてもよく、より容易に入手可能で製造が容易となる。 According to yet another embodiment, the novel ACC design of the invention may be used with a tube having "louver" fins that behave much like offset fins, making it more readily available and easier to manufacture. Become.

最も好ましいACC構成と最も好ましい管寸法とを組み合わせた本発明の好ましい実施形態および最も好ましい実施形態によれば、本発明のACCは、以下の特徴及び寸法を有する:
一次管束はなく、全てが二次の管束(全ての管は底部から蒸気を受け、復水を底部を通して分配し、非凝縮性ガスを頂部から外へ分配する)、
セル/ファンあたり4つ、5つ(最も好ましい)または6つのV字型の管束の対
管の外径4~10mm(好ましくは5~7mm、最も好ましくは6.0mm)×100~200mm(最も好ましくは125mm)の断面、
管中心間の間隔が20~29mm(最も好ましくは24.5mm)、
管壁の厚さ0.7~0.9mm(最も好ましくは0.8mm)、
管束あたりの管数=40~60(最も好ましくは50)、
管の長さ1,700~2,400mm(最も好ましくは2,044mm)、
隣接する管の間にまたがり両方の管に熱的に接続されているアローヘッドフィン(好ましいが、要件ではない)、
フィン高さ17~19(最も好ましくは18.5mm(有効高さは管の片側あたり9.25mm))、
空気移動長さのフィン95mm~195mm、最も好ましくは120mm。
According to preferred and most preferred embodiments of the invention combining the most preferred ACC configuration with the most preferred tube dimensions, the ACC of the invention has the following features and dimensions:
No primary tube bundle, all secondary tube bundles (all tubes receive steam from the bottom, condensate through the bottom, and non-condensable gas from the top to the outside),
Outer diameter 4-10 mm (preferably 5-7 mm, most preferably 6.0 mm) x 100-200 mm (most preferably) of a tube of 4, 5 (most preferred) or 6 V-shaped tube bundles per cell / fan A cross section of preferably 125 mm),
The distance between the centers of the tubes is 20-29 mm (most preferably 24.5 mm),
Tube wall thickness 0.7-0.9 mm (most preferably 0.8 mm),
Number of tubes per tube bundle = 40-60 (most preferably 50),
Tube length 1,700-2,400 mm (most preferably 2,044 mm),
Arrowhead fins (preferably, not a requirement) that straddle between adjacent tubes and are thermally connected to both tubes,
Fin height 17-19 (most preferably 18.5 mm (effective height is 9.25 mm per side of the tube)),
Air transfer length fins 95 mm to 195 mm, most preferably 120 mm.

この最も好ましい実施形態によれば、総ファン出力、蒸気量、および熱条件が同一である先行技術のACCに対する管束面の総面積は79%であり、同様に、この最も好ましい実施形態の総床面積は、総ファン出力、蒸気量、および熱条件が同一である先行技術のACCの面積の79%である。 According to this most preferred embodiment, the total area of the tube bundle surface relative to the prior art ACC with the same total fan output, steam volume, and thermal conditions is 79%, as well as the total floor of this most preferred embodiment. The area is 79% of the area of the prior art ACC with the same total fan output, steam volume, and thermal conditions.

さらに、本発明のACC設計は、より容易に設置することができ、発電所内の必要とされる全体のスペースをより小さくすることができる。 In addition, the ACC design of the present invention can be installed more easily and the overall space required within the power plant can be made smaller.

先行技術の大規模現場組立型空冷式産業用蒸気復水器の熱交換部分の斜視図である。It is a perspective view of the heat exchange part of the large-scale on-site assembly type air-cooled industrial steam condenser of the prior art. 蒸気分配マニホールドに対する管の配向を示す、先行技術の大規模現場組立型空冷式産業用蒸気復水器の熱交換部分を部分的に分解した拡大図である。It is an enlarged view of the heat exchange part of the large-scale on-site assembly type air-cooled industrial steam condenser of the prior art showing the orientation of the pipe with respect to the steam distribution manifold. 本発明の第1の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。FIG. 3 is a perspective view of a heat exchange portion of a large-scale on-site assembly type air-cooled industrial steam condenser (“ACC”) according to the first embodiment of the present invention. 本発明の第2の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。It is a perspective view of the heat exchange part of the large-scale on-site assembly type air-cooled industrial steam condenser (“ACC”) according to the 2nd Embodiment of this invention. 本発明の第3の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。FIG. 3 is a perspective view of a heat exchange portion of a large-scale on-site assembly type air-cooled industrial steam condenser (“ACC”) according to a third embodiment of the present invention. 本発明の第4の実施形態による、大規模現場組立型空冷式産業用蒸気復水器(「ACC」)の熱交換部分の斜視図である。It is a perspective view of the heat exchange part of the large-scale on-site assembly type air-cooled industrial steam condenser (“ACC”) according to the 4th Embodiment of this invention. 先行技術のACC管およびフィンの断面の斜視図である。It is a perspective view of the cross section of the ACC tube and fin of the prior art. 本発明の一実施形態によるミニ管およびフィンの斜視図である。It is a perspective view of the mini tube and fin by one Embodiment of this invention. 本発明の別の実施形態によるミニ管およびフィンの斜視図である。FIG. 3 is a perspective view of a mini tube and fins according to another embodiment of the present invention. 図4Aに示されたV字型の二次的な熱交換管束のみの対の配置を有する、本発明の一実施形態による、大規模現場組立型空冷式産業用蒸気復水器の1つのストリートの側面図である。One street of a large on-site assembly air-cooled industrial steam condenser according to an embodiment of the invention, having a paired arrangement of only V-shaped secondary heat exchange tube bundles shown in FIG. 4A. It is a side view of. 図8に示される大規模現場組立型空冷式産業用蒸気復水器の端面図である。FIG. 8 is an end view of a large-scale on-site assembly type air-cooled industrial steam condenser shown in FIG. それぞれ6つのセルの6つの縦蒸気ヘッダー(6つのストリート)に分割されている1つのタービン排気ダクトを示す、図8に示す大規模現場組立型空冷式産業用蒸気復水器の上面図である。FIG. 8 is a top view of the large on-site assembly air-cooled industrial steam condenser shown in FIG. 8, showing one turbine exhaust duct divided into six vertical steam headers (six streets) of six cells each. .. 本発明の一実施形態による二次復水器フィン付き管束の斜視図である。It is a perspective view of the tube bundle with a secondary condenser fin by one Embodiment of this invention. 図11に描かれた二次復水器フィン付き管束の斜視写真である。It is a perspective photograph of a tube bundle with a secondary condenser fin drawn in FIG.

(全てが二次の管束を有するAフレームACC) (A-frame ACC, all with secondary tube bundles)

図2を参照すると、管2は二次管束4に配置されている。管2の長手方向軸は、管束の横断方向軸と平行に整列され、各管は概して垂直から25°~35°、好ましくは30°に配向されている。統合蒸気分配/凝縮回収マニホールド6は、Aフレーム構成でその頂部で結合されている2つの二次管束4の各々の底部に取り付けられている。蒸気は、統合蒸気分配/復水回収マニホールド6を介して管2に分配され、蒸気が凝縮すると管2内に復水を形成し、管2を下降して統合蒸気分配/復水回収マニホールド6に流入する。単一の非凝縮物回収マニホールド8が、管2の頂部に移動する非凝縮性ガスを集めるために、両方の管束6の頂部に取り付けられている。蒸気は、ライザー12を介して蒸気ダクト10から統合蒸気分配/復水回収マニホールド6に供給される。統合蒸気分配/復水回収マニホールド6に集まる凝縮水は、復水回収管14内でACCから運び去られる。 Referring to FIG. 2, the tube 2 is arranged in the secondary tube bundle 4. The longitudinal axis of the tube 2 is aligned parallel to the transverse axis of the tube bundle, and each tube is generally oriented 25 ° to 35 °, preferably 30 ° from the vertical. The integrated steam distribution / condensation recovery manifold 6 is attached to the bottom of each of the two secondary tube bundles 4 coupled at the top of the A-frame configuration. The steam is distributed to the pipe 2 via the integrated steam distribution / condensate recovery manifold 6, and when the steam condenses, condensate is formed in the pipe 2 and descends the pipe 2 to the integrated steam distribution / condensate recovery manifold 6. Inflow to. A single non-condensable recovery manifold 8 is attached to the tops of both tube bundles 6 to collect the non-condensable gas that travels to the tops of the tubes 2. The steam is supplied from the steam duct 10 to the integrated steam distribution / condensate recovery manifold 6 via the riser 12. The condensed water collected in the integrated steam distribution / condensate recovery manifold 6 is carried away from the ACC in the condensate recovery pipe 14.

図3は、図2の実施形態と非常に類似した実施形態を示しているが、ただし各管束4はその頂部で専用の非凝縮物回収マニホールドに取り付けられている。 FIG. 3 shows an embodiment very similar to the embodiment of FIG. 2, where each tube bundle 4 is attached at its top to a dedicated non-condensate recovery manifold.

(全てが二次の管束を有するV字型ACC) (V-shaped ACC, all with secondary tube bundles)

図4Aおよび図4Bを参照すると、管2は二次管束4に配置されている。管2の長手方向軸は、管束の横断方向軸と平行に、各管は概して垂直から25°~35°、好ましくは30°に配向されている。2つの二次管束4の底部には、V字構成で55°~65°、好ましくは60°の角度で結合された統合蒸気分配/復水回収マニホールド6が取り付けられている。蒸気は、統合蒸気分配/復水回収マニホールド6を介して管2に分配され、蒸気が凝縮して管2内に復水を形成し、管2を下降して統合蒸気分配/復水集合マニホールド6の中へと入る。非凝縮物回収マニホールド8が両方の管束6の頂部に取り付けられて、管2の頂部に移動する非凝縮性ガスを回収する。蒸気は、ライザー12を介して蒸気ダクト10から統合蒸気分配/復水回収マニホールド6に供給される。統合蒸気分配/復水回収マニホールド6に回収された凝縮水は、復水回収管14内でACCから運び去られる。 With reference to FIGS. 4A and 4B, the tube 2 is arranged in the secondary tube bundle 4. The longitudinal axis of the tube 2 is parallel to the transverse axis of the tube bundle, and each tube is generally oriented 25 ° to 35 °, preferably 30 ° from the vertical. At the bottom of the two secondary tube bundles 4, an integrated steam distribution / condensate recovery manifold 6 coupled at an angle of 55 ° to 65 °, preferably 60 ° in a V-shape is attached. The steam is distributed to the pipe 2 via the integrated steam distribution / condensate recovery manifold 6, and the steam condenses to form condensate in the pipe 2 and descends the pipe 2 to the integrated steam distribution / condensate collective manifold. Enter into 6. A non-condensable recovery manifold 8 is attached to the tops of both tube bundles 6 to recover the non-condensable gas moving to the top of the tube 2. The steam is supplied from the steam duct 10 to the integrated steam distribution / condensate recovery manifold 6 via the riser 12. The condensed water recovered in the integrated steam distribution / condensate recovery manifold 6 is carried away from the ACC in the condensate recovery pipe 14.

上述の新規なACC設計は、長さ約11メートル、幅200mm(または「空気移動長さ」)で半円形の先端と後端を有し、且つ内部高さ(空気移動長さに垂直)が18.8mmで管壁の厚さが1.35mmであり、各管の両方の平らな側面にろう付けされたフィンであって、通常、18.5mmの高さで、1インチ(25.4mm)あたりフィンが11枚の間隔であるフィンを有する図5に示された管を含む任意の先行技術の管にも使用されてもよい。しかし、より好ましい実施形態によれば、本発明の新規なACC設計は、以下の特徴および寸法を有する:
一次管束はなく、全てが二次の管束(全ての管は底部から蒸気を受け、復水を底部から分配し、非凝縮性ガスを頂部から外へ分配する)、
セル/ファンあたり4つ、5つ(最も好ましい)または6つのV字型の管束の対、
管の外径4~10mm(好ましくは5~7mm、最も好ましくは6.0mm)×100~200mm(最も好ましくは125mm)の断面、
管中心間隔が20~29mm(最も好ましくは24.5mm)、
管壁の厚さ0.7~0.9mm(最も好ましくは0.8mm)
管束あたりの管数=40~60(最も好ましくは50)
管の長さ1,700~2,400mm(最も好ましくは2,044mm)
隣接する管の間にまたがり両方の管に熱的に接続されているアローヘッドフィン(好ましいが、要件ではない)
フィン高さ18.5mm(有効高さは管の片側あたり9.25mm)、
空気移動長さフィン95mm~195mm、最も好ましくは120mm。
この好ましい実施形態によれば、25~30%の容量増加が、一定のファン出力で単一のセルに対して、標準的な管を用いた先行技術のA字形フレーム設計を上回って提供される。
The novel ACC design described above is approximately 11 meters long, 200 mm wide (or "air transfer length"), has a semi-circular tip and rear end, and has an internal height (perpendicular to the air transfer length). 18.8 mm, tube wall thickness 1.35 mm, fins brazed to both flat sides of each tube, typically 18.5 mm high, 1 inch (25.4 mm). ) May be used in any prior art tube, including the tube shown in FIG. 5 having fins with 11 spaced fins per. However, according to a more preferred embodiment, the novel ACC design of the present invention has the following features and dimensions:
No primary tube bundle, all secondary tube bundles (all tubes receive steam from the bottom, condensate from the bottom, non-condensable gas from the top),
A pair of 4, 5 (most preferred) or 6 V-shaped tube bundles per cell / fan,
A cross section of a tube with an outer diameter of 4 to 10 mm (preferably 5 to 7 mm, most preferably 6.0 mm) x 100 to 200 mm (most preferably 125 mm).
Tube center spacing 20-29 mm (most preferably 24.5 mm),
Tube wall thickness 0.7-0.9 mm (most preferably 0.8 mm)
Number of tubes per tube bundle = 40-60 (most preferably 50)
Tube length 1,700-2,400 mm (most preferably 2,044 mm)
Arrowhead fins that straddle adjacent tubes and are thermally connected to both tubes (preferably, not a requirement)
Fin height 18.5 mm (effective height is 9.25 mm per side of tube),
Air transfer length fins 95 mm to 195 mm, most preferably 120 mm.
According to this preferred embodiment, a 25-30% increase in capacity is provided for a single cell with a constant fan output, surpassing the prior art A-shaped frame design with standard tubes. ..

図8~図10は、図4Aに示されたV字型の二次熱交換管束の対のみを有する、本発明の実施形態による代表的な大規模現場組立型空冷式産業用蒸気復水器を示す。図8~図10に示す装置は、36セル(6ストリート×6セル)のACCであり、セルあたり5つの管束対の最も好ましい実施形態であるが、本発明は、任意のサイズのACCで使用されてもよく、また1セルあたり任意の数の管束対を用いてもよい。 8 to 10 show a typical large-scale on-site assembly air-cooled industrial steam condenser according to an embodiment of the present invention, which has only a pair of V-shaped secondary heat exchange tubes shown in FIG. 4A. Is shown. The apparatus shown in FIGS. 8-10 is a 36-cell (6 streets x 6 cells) ACC, which is the most preferred embodiment of 5 tube bundle pairs per cell, but the present invention is used in any size ACC. Or any number of tube bundle pairs per cell may be used.

Claims (11)

産業用蒸気製造設備に接続された全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器であって、
複数の列に配置された空冷式復水セルの長方形アレイを備え、前記複数の列の各々は、複数の前記空冷式復水セルを含み、
各空冷式復水セルは、単一のファンおよび、A字型構成またはV字型構成で配置された複数の復水器管束ペアを含み、各復水器管束は、互いに隣接して取り付けられたフィン付き単一チャネル扁平管の単一列を含み、前記復水器管束の各々は、前記フィン付き扁平管の長手方向軸が水平から55°~65°の角度で位置付けられるように配向され、
前記単一チャネル扁平管は、100mm~200mmの前記管束の横断方向軸および長手方向軸に対して垂直な断面幅および、4~10mmの前記管束の長手方向軸に対して平行な一定の断面高さを有し、
各復水器管束は、底部に取り付けられ、前記フィン付き単一チャネル扁平管の底部に蒸気を配給し、そして前記フィン付き単一チャネル扁平管内で冷却時に前記蒸気から形成される復水を回収するように構成され、前記復水器管束の長さに沿って延在する統合蒸気分配-復水回収マニホールドを有し、
各復水器管束は、その頂部に取り付けられ、前記統合蒸気分配-復水回収マニホールドの各々1つに対して平行な前記管束の長さに沿って延在し、前記蒸気から非凝縮性ガスを回収するように構成される、非復水回収マニホールドを有し、
空冷式復水セルの各列は、前記列での復水器管束の中間点の下方に延在する蒸気ダクトを備え、前記蒸気ダクトは、前記列での前記復水器管束の長手方向軸に対して垂直な長手方向軸を有し、ライザーダクトによって前記列での前記復水器管束の各統合蒸気分配-復水回収マニホールドの裏面に接続され、各前記蒸気ダクトは、一端で各蒸気ダクトに対して垂直な長手方向軸を有するタービン排気ダクトに接続され、
前記復水器管束に配給される蒸気の全てが、前記統合蒸気分配-復水回収マニホールドから配給される、全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。
All connected to the industrial steam production facility are large-scale on-site assembly air-cooled industrial steam condensers with secondary tube bundles.
A rectangular array of air-cooled condensate cells arranged in a plurality of rows is provided, and each of the plurality of rows includes a plurality of the air-cooled condensate cells.
Each air-cooled condenser cell contains a single fan and multiple condenser tube bundle pairs arranged in an A-shaped or V-shaped configuration, with each condenser tube bundle mounted adjacent to each other. Each of the condenser tube bundles comprises a single row of finned single channel flat tubes, each of which is oriented such that the longitudinal axis of the finned flat tube is positioned at an angle of 55 ° to 65 ° from the horizontal.
The single channel flat tube has a cross-sectional width perpendicular to the transverse and longitudinal axes of the bundle of 100 mm to 200 mm and a constant cross-sectional height parallel to the longitudinal axis of the bundle of 4-10 mm. Have
Each condenser tube bundle is attached to the bottom, distributes steam to the bottom of the finned single channel flat tube, and recovers the condensate formed from the steam during cooling within the finned single channel flat tube. It has an integrated steam distribution-condensation recovery manifold that is configured to extend along the length of the condenser tube bundle.
Each condenser tube bundle is attached to its top and extends along the length of the tube bundle parallel to each one of the integrated steam distribution-condensation recovery manifolds and is a non-condensable gas from the steam. Has a non-condensate recovery manifold, configured to recover
Each row of air-cooled condenser cells comprises a steam duct extending below the midpoint of the condenser tube bundle in the row, where the steam duct is the longitudinal axis of the condenser tube bundle in the row. It has a longitudinal axis perpendicular to, and is connected by a riser duct to the back of each integrated steam distribution-condenser recovery manifold of the condenser tube bundle in said row, with each said steam duct having each steam at one end. Connected to a turbine exhaust duct with a longitudinal axis perpendicular to the duct,
A large-scale on-site assembly air-cooled industrial steam condenser with all secondary steam bundles, in which all of the steam distributed to the condenser tube bundle is distributed from the integrated steam distribution-condensation recovery manifold .
前記フィン付き単一チャネル扁平管から回収された復水の全てが、前記統合蒸気分配-復水回収マニホールドに回収される、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The large-scale on-site assembly type of all secondary tube bundles according to claim 1, wherein all of the condensate recovered from the finned single channel condensate is recovered in the integrated steam distribution-condensation recovery manifold. Air-cooled industrial steam condenser. 前記フィン付き単一チャネル扁平管の長手方向軸は、水平から60°の角度で位置決めされる、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The longitudinal axis of the finned single channel flat tube is positioned at an angle of 60 ° from the horizontal, all of which is claimed in claim 1 for large on-site assembly air-cooled industrial steam condensate. vessel. 前記フィン付き単一チャネル扁平管は、125mmの断面幅および5.2~7mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single-channel flat tube with fins has a cross-sectional width of 125 mm and a cross-sectional height of 5.2 to 7 mm, all of which is described in claim 1 as a large-scale on-site assembly air-cooled industrial steam of a secondary tube bundle. Condenser. 前記フィン付き単一チャネル扁平管は、125mmの断面幅および6.0mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single-channel flat tube with fins has a cross-sectional width of 125 mm and a cross-sectional height of 6.0 mm, all of which according to claim 1 is a large-scale on-site assembly air-cooled industrial steam condensate of a secondary tube bundle. vessel. 前記フィン付き単一チャネル扁平管は、前記管の平坦側面に取り付けられたフィンを有し、前記フィンは、10mmの高さを有し、1インチ(25.4mm)あたりフィンが9~12枚の間隔である、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The finned single channel flat tube has fins attached to the flat side of the tube, the fins having a height of 10 mm and 9-12 fins per inch (25.4 mm). A large-scale on-site assembly type air-cooled industrial steam condenser in which all of the claims 1 are secondary tube bundles. 前記フィン付き単一チャネル扁平管は、200mmの断面幅および17~20mmのフィン高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single channel flat tube with fins has a cross-sectional width of 200 mm and a fin height of 17 to 20 mm, all of which according to claim 1 is a large-scale on-site assembly air-cooled industrial steam condensate of a secondary tube bundle. vessel. 前記フィン付き単一チャネル扁平管は、200mmの断面幅および18.8mmのフィン高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single-channel flat tube with fins has a cross-sectional width of 200 mm and a fin height of 18.8 mm, all of which according to claim 1 is a large-scale on-site assembly air-cooled industrial steam condensate of a secondary tube bundle. vessel. 前記フィン付き単一チャネル扁平管は、125mmの断面幅および4~10mmの断面高さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single channel flat tube with fins has a cross-sectional width of 125 mm and a cross-sectional height of 4 to 10 mm, all of which according to claim 1 is a large-scale on-site assembly type air-cooled industrial steam condensate of a secondary tube bundle. vessel. 前記フィン付き単一チャネル扁平管は、1700mm~2400mmの長さを有する、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The single-channel flat tube with fins is a large-scale on-site assembly air-cooled industrial steam condenser, all of which is a secondary tube bundle, having a length of 1700 mm to 2400 mm. 40~60本の前記フィン付き単一チャネル扁平管を備える、請求項1に記載の全てが二次の管束の大規模現場組立型空冷式産業用蒸気復水器。 The large-scale on-site assembly air-cooled industrial steam condenser, all of which are secondary tube bundles, comprising 40 to 60 of the finned single channel flat tubes.
JP2018566935A 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser Active JP7019612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022014775A JP7254983B2 (en) 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662353030P 2016-06-21 2016-06-21
US62/353,030 2016-06-21
US201662430345P 2016-12-05 2016-12-05
US62/430,345 2016-12-05
US15/629,205 US20170363358A1 (en) 2016-06-21 2017-06-21 All-secondary air cooled industrial steam condenser
US15/629,205 2017-06-21
PCT/US2017/038514 WO2017223185A1 (en) 2016-06-21 2017-06-21 All-secondary air cooled industrial steam condenser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022014775A Division JP7254983B2 (en) 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser

Publications (2)

Publication Number Publication Date
JP2019525109A JP2019525109A (en) 2019-09-05
JP7019612B2 true JP7019612B2 (en) 2022-02-15

Family

ID=60660107

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018566935A Active JP7019612B2 (en) 2016-06-21 2017-06-21 All secondary air-cooled industrial steam condenser
JP2022014775A Active JP7254983B2 (en) 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser
JP2023053055A Pending JP2023098904A (en) 2016-06-21 2023-03-29 All-secondary air cooled industrial steam condenser

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022014775A Active JP7254983B2 (en) 2016-06-21 2022-02-02 All-secondary air-cooled industrial steam condenser
JP2023053055A Pending JP2023098904A (en) 2016-06-21 2023-03-29 All-secondary air cooled industrial steam condenser

Country Status (14)

Country Link
US (1) US20170363358A1 (en)
EP (1) EP3472545B1 (en)
JP (3) JP7019612B2 (en)
KR (3) KR102417605B1 (en)
CN (1) CN109328290A (en)
AU (2) AU2017280203B2 (en)
BR (1) BR112018076415B1 (en)
CA (1) CA3027566A1 (en)
ES (1) ES2904829T3 (en)
MX (2) MX2018015799A (en)
PL (1) PL3472545T3 (en)
RU (1) RU2734089C2 (en)
WO (1) WO2017223185A1 (en)
ZA (1) ZA201900139B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551532B2 (en) 2012-05-23 2017-01-24 Spx Dry Cooling Usa Llc Modular air cooled condenser apparatus and method
ES2873973T3 (en) 2016-05-25 2021-11-04 Spg Dry Cooling Belgium Air-cooled condenser apparatus and method
BE1024229B1 (en) * 2017-10-31 2019-05-27 Hamon Thermal Europe S.A. Cooling unit, installation and process
ES2812153T3 (en) * 2017-11-07 2021-03-16 Spg Dry Cooling Belgium Three-stage heat exchanger for an air condenser
CN117091427A (en) * 2018-09-07 2023-11-21 艾威普科公司 Advanced large-scale on-site erection air cooling industrial steam condenser
US10982904B2 (en) * 2018-09-07 2021-04-20 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
USD903071S1 (en) * 2018-09-17 2020-11-24 Mi Rea Seo Condenser for vehicles
CN110440278A (en) * 2019-09-10 2019-11-12 佛山科学技术学院 A kind of flue gas purification system of thermal power generation power plant
WO2021050105A1 (en) * 2019-09-13 2021-03-18 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
CA3210812A1 (en) * 2021-03-02 2022-09-09 Mark Huber Stacked panel heat exchanger for air cooled industrial steam condenser
CN114272714A (en) * 2021-12-29 2022-04-05 司少龙 Benzene vapor condensation cooling system of debenzolization tower by using air cooler
CN114636319B (en) * 2022-05-17 2022-08-19 杭州国能汽轮工程有限公司 Water-saving composite evaporative air-cooled condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167093A1 (en) 2003-12-22 2005-08-04 Schaefer Hermanus G. Condenser
JP2006284171A (en) 2005-04-04 2006-10-19 Spx-Cooling Technologies Gmbh Air-cooled condenser
US20150027679A1 (en) 2012-01-18 2015-01-29 Holtec International Finned tube assemblies for heat exchangers
US20150345166A1 (en) 2013-05-28 2015-12-03 Spx Cooling Technologies, Inc. Modular Air Cooled Condenser Apparatus and Method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT234736B (en) * 1962-07-24 1964-07-27 Friedrich Dr Ing Hermann Air-cooled condenser, especially for the condensation of exhaust steam from steam engines
US3707185A (en) * 1971-03-25 1972-12-26 Modine Mfg Co Modular air cooled condenser
IL40295A (en) * 1972-09-05 1974-06-30 Ormat Turbines Closed rankine cycle power plant and condenser therefor
US3976126A (en) * 1973-12-26 1976-08-24 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Kg Air cooled surface condenser
JPS51123402A (en) * 1975-04-21 1976-10-28 Mitsubishi Heavy Ind Ltd Air-cooled condenser
IT1135516B (en) * 1981-02-18 1986-08-27 Nuovo Pignone Spa PERFECTED STEAM CONDENSER WITH AIR COOLING
US4518035A (en) * 1983-02-14 1985-05-21 Hudson Products Corporation Air-cooled, vacuum steam condenser
DE68913233T2 (en) * 1988-06-13 1994-09-08 Michael William Larinoff Air-cooled steam condenser with vacuum.
US4995055A (en) * 1988-06-16 1991-02-19 Hughes Aircraft Company Time shared very small aperture satellite terminals
EP0369298A1 (en) * 1988-11-14 1990-05-23 Michael William Larinoff Freeze protected, air-cooled, vacuum steam condenser
US4926931A (en) 1988-11-14 1990-05-22 Larinoff Michael W Freeze protected, air-cooled vacuum steam condensers
US4949543A (en) 1989-09-12 1990-08-21 Modine Manufacturing Company Tube and fin assembly for heat exchangers in power plants
JPH09280752A (en) * 1996-04-10 1997-10-31 Abb Kk One-pipe air-cooled steam condenser
HU225331B1 (en) * 2003-04-24 2006-09-28 Egi Energiagazdalkodasi Reszve Air cooler system
WO2006047209A1 (en) * 2004-10-21 2006-05-04 Gea Power Cooling Systems, Inc. Air-cooled condensing system and method
US7926555B2 (en) * 2006-06-27 2011-04-19 Gea Power Cooling, Inc. Series-parallel condensing system
RU102251U1 (en) * 2010-08-27 2011-02-20 Открытое акционерное общество "Калориферный завод" HEAT EXCHANGE SECTION
CA2842020A1 (en) * 2011-07-15 2013-01-24 Stellenbosch University Dephlegmator
US9551532B2 (en) * 2012-05-23 2017-01-24 Spx Dry Cooling Usa Llc Modular air cooled condenser apparatus and method
DE202014104666U1 (en) * 2014-09-29 2014-11-19 Gea Energietechnik Gmbh Plant for the condensation of steam
US10132568B2 (en) * 2015-08-20 2018-11-20 Holtec International Dry cooling system for powerplants
US10161683B2 (en) * 2015-08-20 2018-12-25 Holtec International Dry cooling system for powerplants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167093A1 (en) 2003-12-22 2005-08-04 Schaefer Hermanus G. Condenser
JP2006284171A (en) 2005-04-04 2006-10-19 Spx-Cooling Technologies Gmbh Air-cooled condenser
US20150027679A1 (en) 2012-01-18 2015-01-29 Holtec International Finned tube assemblies for heat exchangers
US20150345166A1 (en) 2013-05-28 2015-12-03 Spx Cooling Technologies, Inc. Modular Air Cooled Condenser Apparatus and Method

Also Published As

Publication number Publication date
ES2904829T3 (en) 2022-04-06
JP2019525109A (en) 2019-09-05
KR102597977B1 (en) 2023-11-02
KR102417605B1 (en) 2022-07-05
EP3472545A4 (en) 2020-03-18
PL3472545T3 (en) 2022-02-21
JP2022078027A (en) 2022-05-24
KR20190020739A (en) 2019-03-04
AU2017280203A1 (en) 2019-01-17
RU2018144943A3 (en) 2020-08-17
KR20230156160A (en) 2023-11-13
WO2017223185A1 (en) 2017-12-28
US20170363358A1 (en) 2017-12-21
RU2018144943A (en) 2020-07-23
EP3472545B1 (en) 2021-12-15
JP2023098904A (en) 2023-07-11
MX2023005241A (en) 2023-05-18
EP3472545A1 (en) 2019-04-24
CN109328290A (en) 2019-02-12
MX2018015799A (en) 2019-03-21
RU2734089C2 (en) 2020-10-12
ZA201900139B (en) 2019-08-28
JP7254983B2 (en) 2023-04-10
BR112018076415A2 (en) 2019-06-25
AU2017280203B2 (en) 2022-07-14
BR112018076415B1 (en) 2022-10-18
CA3027566A1 (en) 2017-12-28
KR20220100094A (en) 2022-07-14
AU2022252840A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP7019612B2 (en) All secondary air-cooled industrial steam condenser
KR102330021B1 (en) Mini-Tube Air-Cooled Industrial Steam Condensers
US9551532B2 (en) Modular air cooled condenser apparatus and method
CN111373219B (en) Three-stage heat exchanger of air-cooled condenser
CN110494712B (en) Air cooling type industrial steam condensing device of microtube
JP2024509545A (en) Laminated panel heat exchanger for air cooled industrial steam condenser
KR20220056870A (en) State-of-the-art large-scale field-installed air-cooled industrial steam condensers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7019612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150