JP7254334B2 - マウスのてんかんバイオマーカー - Google Patents

マウスのてんかんバイオマーカー Download PDF

Info

Publication number
JP7254334B2
JP7254334B2 JP2018233113A JP2018233113A JP7254334B2 JP 7254334 B2 JP7254334 B2 JP 7254334B2 JP 2018233113 A JP2018233113 A JP 2018233113A JP 2018233113 A JP2018233113 A JP 2018233113A JP 7254334 B2 JP7254334 B2 JP 7254334B2
Authority
JP
Japan
Prior art keywords
epilepsy
methyl
butanone
dimethyl
vocs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233113A
Other languages
English (en)
Other versions
JP2020094910A (ja
Inventor
啓子 加藤
明子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Sangyo University
Original Assignee
Kyoto Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Sangyo University filed Critical Kyoto Sangyo University
Priority to JP2018233113A priority Critical patent/JP7254334B2/ja
Publication of JP2020094910A publication Critical patent/JP2020094910A/ja
Application granted granted Critical
Publication of JP7254334B2 publication Critical patent/JP7254334B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は,マウスのてんかんバイオマーカーなどに関する。
てんかんは,ヒト・ネコで1%,イヌで平均2~3%に発症する頻度の高い慢性神経疾患である。その原因は遺伝的素因に起因した突発性の場合と,ガン化・虚血・水頭症等も含めた二次的な素因に起因した症侯性の場合によるものが知られている。根本的な障害は,神経回路網の異常な同期性放電による。てんかん患者・患畜の約20~30%は,てんかん薬に対する抵抗性を獲得する難治てんかんへと進行し,複数の抗てんかん薬の調整や外科治療などの専門的なてんかん治療を必要とする場合がある。
てんかん患者は,小児では発達や就学,成人では就労や自動車運転,女性では妊娠と出産など,生活上のさまざまな問題に対する継続的なサポートを必要としている。てんかん発作が発症する可能性を簡便に検査できるキットがあれば,患者に多大な安心を与えると共に,福祉的ケアサポートの助けとなる。
イヌの死亡原因の第4位は,てんかん発作である。言葉でコミュニケーションをとることが難しい動物の場合,病気の発見が遅れることが多く,特にてんかん発作は,重篤化した後に見つけられることが多い。動物の場合,侵襲性のある検査は,麻酔を必要とすることが多く,てんかん診断のために脳波を測定する場合にも全身麻酔を必要とする。このため,非侵襲性の尿検査は,イヌやネコなどの伴侶動物のてんかん発症の早期診断を可能にする。
てんかんモデルマウスは,難治てんかん発症の50%が発火点となる扁桃体に微小電極を挿入し,1日1度微細な電流(450μA, 60Hz, 2秒)を与えると,約3週間後にてんかんを発症する扁桃体キンドリングモデルマウスである。このモデルは,1969年にラットで開発されたモデルである。イヌ,ネコ,サル等の哺乳類全般でも同様のてんかん発作を誘導するモデルであり,マウスにおいては2003年に本発明者が確立した(非特許文献20:先行技術文献については,末尾にまとめて示す)。すべてのモデル動物の症状はヒトの側頭葉てんかんと酷似している。
しかしながら,上記研究開発では,てんかん発作を評価できる代謝物質(バイオマーカー)は特定されておらず,更なる研究の余地が残されていた。
本発明は,上記した事情に鑑みてなされたものであり,その目的は,マウスのてんかんバイオマーカー等を提供することである。
本発明者は,てんかんの進行と尿中揮発性代謝物質(VOC)の変化とが相関するか否かを調べた。てんかんマウスのVOCプロファイリングを行った結果,側頭葉てんかんに関連する新規なバイオマーカーを見出した。
こうして,本発明に係る哺乳動物のてんかんバイオマーカーは,メチルアミン,N,N-ジメチル-(Methylamine, N,N-dimethyl-);メタンチオール(Methanethiol);2-ブタノン(2-Butanone);2-ペンタノン(2-Pentanone);ジスルフィド,ジメチル(Disulfide, dimethyl);メタン,ニトロ-(Methane, nitro-);2-ヘプタノン(2-Heptanone);RI1227;2-アセチル-1-ピロリン(2-Acetyl-1-pyrroline);ジメチル・トリスルフィド(Dimethyl trisulfide);7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エン(7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene);RI1449;アセトフェノン(Acetophenone);ジスルフィド,メチル(メチルチオ)メチル(Disulfide, methyl (methylthio)methyl);エタノン,1-(1H-ピロール-2-イル)-(Ethanone, 1-(1H-pyrrol-2-yl)-)からなる群から選択される少なくとも一つの化合物を含むことを特徴とする。
上記発明において,RI1227とRI1449を除いた13個の化合物を(a)エタノン,1-(1H-ピロール-2-イル)-;2-アセチル-1-ピロリン;アセトフェノン;2-ヘプタノン;ジスルフィド,メチル(メチルチオ)メチル;メタンチオール;(b)メチルアミン,N,N-ジメチル-;ジスルフィド,ジメチル;メタン,ニトロ- ;ジメチル・トリスルフィド;(c) 2-ブタノン;2-ペンタノン;7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エンの(a)~(c)の3群に分類し,各群から少なくとも一つの化合物を選択して含むことが好ましい。更に,(a)から選択される化合物がメタンチオール,(b)から選択される化合物がジスルフィド,ジメチル,(c)から選択される化合物が2-ブタノンであることが好ましい。
また,前記哺乳動物が,ヒト,サル,ゴリラ,オランウータン,チンパンジー,ウマ,サイ,バク,カバ,ラクダ,キリン,ウシ,ブタ,ヤギ,ヒツジ,サル,カモシカ,イノシシ,クマ,イヌ,ネコ,ウサギ,モルモット,ラット,マウス,リス,カピバラ,ナマケモノ,アリクイ,アルマジロ,コウモリ,オオカミ,クマ,パンダ,カワウソ,ラッコ,マングース,ハイエナ,ピューマ,ライオン,トラ,ジャガー,ヒョウ,チーター,カンガルー,コアラ,アシカ,アザラシ,ゾウ,クジラ,シャチ,イルカ及びジュゴンからなる群から選択される少なくとも一つであることが好ましい。
また,別の発明に係る哺乳動物のてんかん検査方法は,(1)哺乳動物由来の尿を検体として採取する採取ステップ,(2)前記検体から,メタンチオール,ジスルフィド,ジメチル及び2-ブタノンの濃度を測定する測定ステップを備える。
このとき,前記哺乳動物が,ヒト,サル,ゴリラ,オランウータン,チンパンジー,ウマ,サイ,バク,カバ,ラクダ,キリン,ウシ,ブタ,ヤギ,ヒツジ,サル,カモシカ,イノシシ,クマ,イヌ,ネコ,ウサギ,モルモット,ラット,マウス,リス,カピバラ,ナマケモノ,アリクイ,アルマジロ,コウモリ,オオカミ,クマ,パンダ,カワウソ,ラッコ,マングース,ハイエナ,ピューマ,ライオン,トラ,ジャガー,ヒョウ,チーター,カンガルー,コアラ,アシカ,アザラシ,ゾウ,クジラ,シャチ,イルカ及びジュゴンからなる群から選択される少なくとも一つであることが好ましい。
本発明によれば,哺乳動物に関するてんかんのバイオマーカーが提供される。これらのバイオマーカーは,扁桃体キンドリングモデルマウスの尿中に検出した揮発性有機化合物であり,哺乳類全般に通じるてんかん発作に連動した尿中揮発性有機化合物であることから,ヒト・犬・猫等の伴侶動物にも応用できる。本発明は,臨床現場の一次スクリーニングとして,運輸会社や公共施設に応用することで,事故を未然に防ぐことができる。また,マウスモデルを用いた創薬スクリーニングに利用できる。
てんかんマウスの調製と尿採取の説明を行う図である。 (A)てんかん発作を起こしたマウスの典型的な脳波を示すグラフ,(B)刺激直後のスパイク数を示すグラフ(横軸は試験開始後の日数(Day),縦軸はスパイク数),(C)刺激後の強直間代性発作の持続時間を示すグラフ(横軸は試験開始後の日数(Day),縦軸は発作の持続時間(秒)),(D)フリーズ状態の持続時間を示すグラフ(横軸は試験開始後の日数(Day),縦軸は持続時間(秒)),(E)試験開始後のマウスのステージを示すグラフ(横軸は試験開始後の日数(Day),縦軸はステージ。ここで「フリーズ状態」とは,全体の運動が停止すると共に,顔面のけいれんや手足の部分的なけいれんを起こしている状態を意味する。 但し,ステージ1~ステージ5については,次の通りとした。ステージ1:5秒以下のすくみ,顔面の痙攣,ステージ2:ステージ1の症状に加え,前肢のクローヌスおよび5秒以上のてんかん後発射(脳波)の持続,ステージ3:ステージ2の症状に加え,15秒以上のフリーズ状態の持続,ステージ4:ステージ3の症状に加え,強直間代発作および尾の緊張による挙上,ステージ5:強直間代発作と転倒(側頭葉てんかんモデル)である。グラフ(B)~グラフ(E)において,データは平均値±S.E.M.で示した。ステージ5の兆候を示すマウスをてんかんマウスとした。グラフ(B)中の矢印は,マウスがてんかん発作を完全に起こすに至った日の平均日数(18.9日)を示す。グラフ(E)において,尿は18.9日目~60日目に採取したことを示す。 手術後未刺激マウス(A)及びてんかんマウス(B)の尿中VOCの代表的なTICクロマトグラムを示す図である。TICクロマトグラムの取得方法は,<試験方法>に示した通りである。図中の番号は,85%以上のSIを示す代謝物を意味する。各番号の化合物は,下記の通りである。1) Carbon dioxide/Carbamic acid, monoammonium salt/dl-Alanyl-l-alanine; 2) Methylamine, N,N-dimethyl-; 3) Methanethiol; 4) Acetone; 5) 2-Butanone; 6) Butanal, 2-methyl-; 7) Ethanol; 8) 2-Hexenal, 2-ethyl-; 9) 2-Pentanone; 10) 2-Pentenal, 2,4,4-trimethyl-; 11) Disulfide, dimethyl; 12) Butanenitrile, 2-methyl-; 13) 3-Penten-2-one; 14) 1-Butanol; 15) RI1148; 16) Methane, nitro-; 17) 2-Heptanone; 18) 4-Hepten-2-one, (E)-; 19) 5-Oxohexanenitrile; 20) 2-Acetyl-1-pyrroline; 21) Dimethyl trisulfide; 22) 1-Nitro-2-methyl propene; 23) 7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene; 24) Benzaldehyde; 25) Butanoic acid, 3-methyl-; 26) Acetophenone; 27) Disulfide, methyl (methylthio)methyl; 28) Benzenamine, 3-methyl-; 29) Hexanoic acid, 2-ethyl-; 30) Ethanone, 1-(1H-pyrrol-2-yl)-; 31) Formamide, N-phenyl-。 VOCを主成分分析(PCA)及び樹状図で解析した結果を示す図である。(A)15個のVOCの絶対値を用いた相関行列から抽出された主成分スコアを3次元プロットした結果を示すグラフ,(B)13個のVOCの絶対値を用いた相関行列から抽出された主成分スコアを3次元プロットした結果を示すグラフ,(C)13個のVOCの絶対値を用いた主成分法において,カイザー正規化を用いたプロマックス回転(κ= 4)を行ったところ,5回の回転で収束した。その結果得られた各VOCのパターン行列の第1成分~第3成分をX,Y及びZ座標上にプロットした結果を示すグラフ,(D)13個のVOCについて,各VOCの相関行列から抽出された成分行列の第1主成分~第6主成分を使ったWard法によって解析した樹状図である(縦線は,降順にソートした絶対成分スコアの順序に関する番号を示す)。(B)の13個のVOCの主成分得点係数行列の3次元プロットが,てんかんマウス(赤)と手術後未刺激マウス(青)それぞれのプロットの間に収束していた。(C)と(D)において,主成分法で得られたパターン行列あるいは成分行列を用いることで,3グループに分けることができた。図中に示す化合物名の略号は,次の通りである。「2AP」は2-Acetyl-1-pyrrolineを,「2B」は2-Butanoneを,「2H」は2-Heptanoneを,「2P」は2-Pentanoneを,「7E」は7-Exo-ethyl-5-methyl-6,8-dioxabicyclo [3.2.1] oct-3-eneを,「Ac」はAcetophenoneを,「DMT」はDimethyl trisulfideを,「DSD」はDisulfide, dimethylを,「DSM」はDisulfide, methyl (methylthio) methylを「Et」はEthanone, 1-(1H-pyrrol-2-yl)-を,「MeN」はMethane, nitro-を,「MeT」はMethanethiolを「TMA」はMethylamine, N, N-dimethyl- (Trimethylamine)をそれぞれ示す。(B)の6VOCs は,2AP, 2H, Ac, DSM, Et, and MeT を含み,(A)の8VOCsは,(B)の 6VOCsに RI1227 and RI1449を加えたものである。 線形判別分析ステップワイズ法により,てんかん発作に連動したバイオマーカーとして3種のVOCsを抽出した。13個のVOCsの絶対値が,Wilksラムダを用いたステップワイズ判別分析に使われた。投入するためのFの有意確率の最大値を0.05とし,削除するためのFの有意確率の最小値を0.10とした。固有値が3.650となり,正準相関係数が0.886と高い値であったことからてんかん群と手術後未刺激群とをうまく識別することができる。また,Wilksラムダが0.215, カイ2乗が26.879, 自由度が3,有意確率が0.000006であったことから,てんかん群と手術後未刺激群の距離が十分離れていることがわかる。標準化された正準判別関数係数(てんかん群と手術後未刺激群とを分ける貢献度)は,Methanethiolが0.772, 2-Butanoneが-0.882, Disulfide, dimethylが0.677であった。また,元のグループ化は100%判別可能であり,交差確認済みのグループ化においては,判別的中率が95.2%となった。
次に,本発明の実施形態について,図表を参照しつつ説明するが,本発明の技術的範囲は,これらの実施形態によって限定されるものではなく,発明の要旨を変更することなく様々な形態で実施することができる。
<試験方法>
1.実験動物
(1)動物倫理
全ての動物は,「動物実験の適正行動指針」(日本学術会議,2006年)に従って処理した。実験プロトコールは,京都産業大学の動物実験倫理委員会によって承認された(承認番号2017-08,2018-08)。
(2)てんかんモデルマウスの作製
8週齢のC57BL/6J系雄性マウス(日本クレア株式会社)を移動のストレスから解放するために1週間馴化した。既報に示すように(非特許文献19),全ての外科手順は,イソフルラン(ファイザー社製)を用いた麻酔下にて実施した。吸入麻酔下のマウスを脳固定台に固定し,扁桃体基底外側核(陰極:ブレグマから右3 mm, 後2 mm, 深 4.5 mm)にタングステン線電極(インターメディカル社, 0.1φ×200 mmコート付き)を挿入し,硬膜下(陽極:ブレグマから左2.0 mm, 前1.5 mm)に,幅1.0mm長さ3.0mmのスクリュー型陽電極(バイオテックス有限会社)を挿入した。脳波計測には,両側の硬膜下にφ1.0 mmステンレス線を挿入した。
手術10日後から無拘束で意識下のマウス(10週齢)に対し,電気刺激装置(SEN-3301,日本光電)とアイソレータ(SS-202J)を用いて,二相性方形波パルス(480μA,60Hz,200μ秒を2秒間)を1日に1回与えた。プレアンプおよび脳アンプ(BEMCT-21およびBH-3,Low cut = 0.5,High cut = 30。バイオテックス有限会社)とデータ取得ソフトウエアSleepSign ver.2.0(キッセイ・コムテック株式会社)を用いて,電気刺激前および電気刺激後の脳波記録を実施した。脳波スパイク数および後放電の持続時間は,SleepSign ver.2.0を用いて記録した脳波データに基づき,マニュアル計算した。てんかん発作は,基本的に修正Racine基準(非特許文献19)に従ってモニターした。電気刺激を毎日受けたマウスは,平均18.9日目にてんかん発作(ステージ5)を獲得した。てんかん発作獲得後4日目から60日目(18.5週齢)までの間,日々の刺激後の尿が採取された。採尿後の尿は液体窒素下で迅速に凍結され,使用直前まで窒素ガスタンクに貯蔵された。対照として,手術後未刺激マウスを用いた。
尿中クレアチニン濃度は,ヤッフェ法(Jaffe法)に基づくラボ・アッセイ・クレアチニン・比色定量キット(和光純薬工業株式会社)を用いて測定した。血漿中の全コレステロール,アルカリフォスファターゼ及び中性脂肪(トリグリセリド)は,ラボ・アッセイ比色定量キット(和光純薬株式会社)を用いて測定した。総タンパク質量は,ピアスBCAタンパク質アッセイキット(サーモフィッシャーサイエンティフィック株式会社)を用いて測定した。
2.試薬類
標品として,次のものを用いた。メチルアミン, N,N-ジメチル(純度25%エタノール溶液,カタログ番号T2892(東京化成工業株式会社)),2-ブタノン(純度99.0%以上(ガスクロマトグラフィ),カタログ番号E0140),2-ペンタノン(純度99.0%以上(ガスクロマトグラフィ),カタログ番号P0060),ジスルフィド,ジメチル(純度98.0%以上(ガスクロマトグラフィ),カタログ番号D0714),2-ヘプタノン(純度98.0%以上,カタログ番号H0037),ジメチル-トリスルフィド(純度98.0%以上,カタログ番号D3418),ブタン酸,3-メチル-(純度99.0%以上(ガスクロマトグラフィ),カタログ番号M0182),アセトフェノン(純度98.5%以上,カタログ番号A0061),エタノン,1-(1H-ピロール-2-イル)-(純度98.0%以上(ガスクロマトグラフィ),カタログ番号A0894),ホルムアミド,N-フェニル-(純度99%,カタログ番号F0047,東京化成工業株式会社),3-ペンテン,2-one(純度70%,カタログ番号145017(シグマ)),1-ニトロ-2-メチルプロペン(純度98.0%以上,カタログ番号sc-481890(サンタクルズ)),n-アルカン混合溶液(C9-C40: 50μg/mL; C10, 20, 30 and 40: 100μg/mL,カタログ番号102158321(ジーエルサイエンス社)であった。
3.固相マイクロ抽出(Solid-Phase Microextraction (SPME))
尿中物質の抽出には,50/30μM ジビニルベンゼン/カルボキセン/ポリジメチルシロキサン線維((SPME線維)米国スペルコ社製)を用いた。SPME線維を200μLの尿を含むバイアルに挿入し,45℃で60分間抽出した。その後,SPME線維をガスクロマトグラフィ(GC)注入口にSPME線維をガスクロマトグラフィ(GC)注入口に挿入し,スプリットレス法にて240℃にて3分間,揮発性化合物(VOC)の加熱脱着を行った。
4.ガスクロマトグラフィ・マススペクトロメトリ(GC-MS)解析
ガスクロマトグラフィ・マススペクトロメトリ(QP-2010 Ultra(島津社製))を使用し,これにProGuard及びT.L.カラムを付属したInertCap Pure-WAX(60m+10m pro-guardラインと2mトランスファーライン,内径0.25mm,フィルム厚さ0.5μm(ジーエルサイエンス社製))を用いてサンプル解析を行った。オーブンの温度は次の条件に依った。40℃にて10分間保持し,1分間あたり5℃の昇温条件で240℃まで加熱した後,240℃にて10分間保持した。ヘリウムをキャリアガスとして使用し,流速20 cm/秒の線速度一定で行った。
質量分析装置の処理パラメータは,次の通りであった。イオン源温度200℃,イオン化エネルギー70eV,スキャン頻度は30m/z~300m/zまでを1回あたり0.2秒,カラム長を65mとした。GCMSsolution ver.4.45ソフトウエア(島津製作所製)を使用してGC-MS生データをmzXML形式に変換し,バージョンRバージョン3.2.3(http://cran.r-project.org/)で実行されるXCMSソフトウェアパッケージ ver.1.3.2(http://masspec.scripps.edu)を,てんかんマウスと手術後未刺激マウスの間の差イオンピーク(m/z)を抽出するために使用した。GCMSsolutionを用いて危険率0.05未満で特定されたイオンピークについて,保持時間(retention time, RT)に基づいて24個の全イオン電流(TIC)を抽出した(表1)。抽出したTICから,質量スペクトルライブラリ(NIST/EPA/NIH mass spectral library, NIST14)を検索し,フラグメンテーションパターンの類似する候補代謝物を選出した。次いで,各代謝物の特定は,フラグメンテーションパターンとリテンション・インデックス(RI)を元に,公知の化合物または類似化合物のクロマトグラフィに関する文献値との比較によって行った。
全てのサンプルを安定して測定するために,自動サンプラー・システム(Multifunctional autosampler system,島津製作所製)を使用した。代謝産物の濃度は,揮発性物質のイオンピーク面積比および限界希釈した外部標準品のピーク面積の比を計算することによって決定した。
5.統計解析
各イオンピークの絶対面積を示す記述統計は,平均値±標準誤差(S.E.M.)として示した。統計処理には,マンホイットニーU検定(Mann-Whitney U検定)を用い,危険率5%(p≦0.05)を統計的に有意とした(表1)。有意差を示す各VOCが,手術後未刺激マウスとてんかん発作を発症したマウスを分離するバイオマーカーとして有効であるかどうかを知るために,各VOCの精度を決定する必要がある。そこで,「感度」を縦軸に,「1-特異度」を横軸にプロットすることによる(GraphPad Prism 6),受信者動作特性曲線(Receiver Operating Characteristic curve:ROC曲線)を作製した。手術後未刺激の対照群とてんかん群との相違を調べ,バイオマーカー候補物質の正確性を調べるために,ROC曲線下面積(AUC)値を求めた。また,統計的相違を示すVOCを用いた探索的データ分析を主成分分析(PCA)により実施し(IBM SPSS Statistics 25),てんかん群または手術後未刺激対照群に属する予測確率を調べた。更に,VOCを用いた主成分法において,カイザー・ノーマライゼーション(Kaiser Normalization)によるプロマックス(Promax)回転をおこなった結果,抽出されたパターン行列の成分因子を用いて,VOCバイオマーカーをグループに分けた。また,回転をしない成分行列における主成分1~6のスコアで分析したワード(Ward)法を用いた樹状図を作成した。さらに,Box M検定のF値(F(6, 2540)=0.207, p = 0.975)が共分散行列の均質性を示したので,線形判別分析をステップワイズで行い,てんかん発作に連動したバイオマーカーを抽出した(IBM SPSS Statistics 25)。
Figure 0007254334000001
<試験結果及び考察>
本試験において,16匹のてんかんマウスと15匹の手術後未刺激マウス(対照群)を調べた。1日1回の扁桃体への刺激によって,てんかん後発射時のスパイク数の増加,てんかん後発射期間の延長,最終的にてんかん発作を誘発した(図1)。尿サンプルは,てんかん発作後,13.5週齢~18.5週齢で採取した。
1.SPME-GCMSによるてんかんマウスの尿中VOCの特定
てんかんマウス及び手術後未刺激マウスの尿中VOCをSPME-GCMS TICで調べたときの典型的なクロマトグラムを図2に示した。両群のVOCプロファイルは,非常に類似していた。
GC-MS(島津QP-2010ウルトラ,TQ-8040)を用いて解析したところ,両群のマウス尿中から135個の代謝物が特定された。代謝物の化学的構造としては,アルデヒド,ケトン,窒素化合物,テルペン,カルボン酸,アルコール,ベンゼン化合物,フラン,硫黄化合物などの多種類のものが含まれていた。表1に示すように,XCMSを用いた解析によって,両群のサンプルから得られた相異なるVOCのフラグメント・イオンm/z値から24個のVOCが特定された。次に,これら24個のVOCの各フラグメンテーションパターン内の最大の面積を持つVOCフラグメントイオンm/z値を2群間における面積の絶対値の比較のために選択し(表1の第3カラム),15個の潜在的なバイオマーカーを得た(p<0.05:表1の第16カラム)。得られた化合物のうち,文献値及び既知化合物データベース中に該当するものが見あたらない未知化合物については,リテンション・インデックス(RI)番号を用いて表示した。
2.受信者動作特性曲線(Receiver Operating Characteristic curve:ROC曲線)
15個のVOCのROC曲線を作製し,カットオフ値を設定した。てんかん発作における15個のバイオマーカー候補の能力を評価するために,カットオフ・ポイントのROC曲線下面積(AUC)の感度,特異度,正確度及び面積を計算した表2)。統計的に有意であった各化合物の統計解析を行ったところ,ジスルフィド・ジメチルについてのROC曲線のAUCは,0.8571の正確さ(感度(Sensitivity) = 0.8182,特異度(Specificity)= 0.9000)を伴って,良好な正確度(0.9091(95% CIは,0.7046~1.041))を示した。RI1227についてのAUCは,0.9071(95% CIは,0.7532~1.065)であり,0.9048の正確度(感度 = 0.9091,特異度 = 0.9000)であった。
これに対し,2-ブタノンについては,偽陰性は認められず感度は1,ジスルフィド,メチル(メチル・チオ)メチルについては,偽陽性は認められず感度は0.9091であった。15個のバイオマーカー候補物質のうち,7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エンを除く14個のVOCのAUCは0.8以上であり,てんかん発作の予見のためのバイオマーカーとして高い可能性を示した。更に,ニトロメタン(Methane, nitro-),7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エン,RI1227,RI1449を除く11個の化合物については,マウス及びヒトの両種について特定された(http://www.hmdb.ca)。
15個のVOCはバイオマーカーのグループとしては大きいので,いくつかの小さなグループに分類するように試みた。そこで,主成分分析(PCA)を行い,変数の数を減らし,樹状図を用いてVOCを分類し,線形判別分析を用いて数を絞り込んだ。
Figure 0007254334000002
3.主成分分析(PCA)と樹状図
てんかんマウスと手術後未刺激マウスの尿中において相違が認められた15個のVOCと,この15個から未知成分であるRI1227及びRI1449の2個を除いた13個のVOCについて,PCAを行った。15個の潜在的バイオマーカーは,3次元PCAスコアプロットによって分離できる傾向があった。15個のVOCと13個のVOCにおける相関行列の固有値のp変数は,第1主成分(PC1)では,58.85%と55.35%であった。第2主成分(PC2)では,16.03%および17.20%,第3主成分(PC3)では,10.99%および12.51%であった。累積的には,15個のVOCと13個のVOCで,それぞれ85.87%および85.06%であった。てんかんマウス(赤丸)の標準化された主成分(PC)スコアは,各VOCの主成分スコア係数マトリックスの成分スコア(透明円)によって,手術後未刺激マウスのスコア(青丸)から分離された。このとき,PC1~PC3上の15個および13個のVOCの成分スコアはそれぞれゼロ近くに集中した(透明円)(図3A,3B)。これらのことより,尿中VOCは,てんかんマウスと手術後未刺激マウスの間で分離できることがわかった。
次いで,13個のVOCを用いた主成分法により,カイザー正規化を伴うプロマックス(Promax)を用いた回転法を適用した結果,5回の反復で収束した。その結果得られた各VOCのパターン行列の因子において,エタノン,1-(1H-ピロール-2-イル)-(1.031),2-アセチル-1-ピロリン(0.994),アセトフェノン(0.915),2-ヘプタノン(0.904),ジスルフィド,メチル(メチルチオ)メチル(0.846)及びメタンチオール(0.804)の6個が第1因子において高負荷を示し(第2因子及び第3因子では低負荷),メチルアミン,N,N-ジメチル-(0.990),ジスルフィド,ジメチル(0.722),メタン,ニトロ- (0.623)及びジメチル・トリスルフィド(0.542)が第2因子において高負荷を示し(第1因子及び第3因子では低負荷),2-ブタノン(0.929),2-ペンタノン(0.863)が第3因子において高負荷を示し,7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エン(0.306, -0.991, 0.177)が第1因子及び第2因子では低負荷を示した。これらのスコアに基づき,13個のVOCは,3個のグループに分類された(図3C)。プロマックス法に加えて,PCAの13個のVOCの相関行列から抽出した6次元主成分のスコアを用いて階層的クラスタリング解析を行った結果,VOCについて3個のグループを得た(図3D)。この3個のグループに属する各VOCは,プロマックス法と樹状図との間で同様に分類された。
4.線形判別分析
ボックスM検定のF値(F(6, 2540)=0.207)が共分散行列の均質性を示したので,線形判別分析を行った。13個の既知VOCについて,ウイルクス(Wilks)のラムダを用いたステップワイズ法を最良の変数を自動的に選択しながら実施した。変数の選択条件として,F値の最大値が0.05であり,最小値が0.10とした。その結果,正準相関の固有値として0.886,ウイルクのラムダのカイ二乗値が26.897,fが3,pが0.000006の結果を得た。標準化された標準判別関数係数は,メタンチオールについて0.772,2-ブタノンについて-0.882,ジスルフィド,ジメチルについて0.677であった。得られた判別関数は,メタンチオールを[MeT],2-ブタノンを[2B],ジスルフィド,ジメチルを[DSM]と記すと,次の通りであった。
式1:-0.53887155117 + 0.00004396261 * [MeT] - 0.00000537535 * [2B] + 0.00004072790 * [DSM].
但し,式中のカッコ内の数値は,各VOCのイオンピークm/zの絶対面積を示す。
上記数式を用いることにより,てんかんマウス(黒丸:Kindling)と手術後未刺激マウス(白丸:Sham)の判別スコアを計算した(図4)。
メタンチオール,2-ブタノン及びジスルフィド・ジメチルの3個の最良のバイオマーカーを用いると,てんかんを起こすマウスと対照マウスとを100%判別可能にまで明確に分離できることがわかった。また,交差確認を行った結果,判別的中率は95.2%となった。これら3個のVOCのそれぞれは,プロマックス法(図3C)及び樹状図(図3D)において,分離されていた。
5.今回の試験結果及び本発明者の知見から,次のような結論を得た。
(1)てんかん発作に関連する尿中VOCのバイオマーカーとして,15個の化合物を得た。これらは,メチルアミン,N,N-ジメチル-(Methylamine, N,N-dimethyl-);メタンチオール(Methanethiol);2-ブタノン(2-Butanone);2-ペンタノン(2-Pentanone);ジスルフィド,ジメチル(Disulfide, dimethyl);メタン,ニトロ-(Methane, nitro-);2-ヘプタノン(2-Heptanone);RI1227;2-アセチル-1-ピロリン(2-Acetyl-1-pyrroline);ジメチル・トリスルフィド(Dimethyl trisulfide);7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エン(7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene);RI1449;アセトフェノン(Acetophenone);ジスルフィド,メチル(メチルチオ)メチル(Disulfide, methyl (methylthio)methyl);エタノン,1-(1H-ピロール-2-イル)-(Ethanone, 1-(1H-pyrrol-2-yl)-)の15個であった。なお,これら15個の化合物のうち,RI1227とRI1449は,未確定の化合物であるため,この2個を除いた13個の化合物をバイオマーカーとして用いても良い。
(2)上記15個のバイオマーカー物質のうち,未確定の物質であるRI1227とRI1449を除く13個のバイオマーカーについては,大きく下記(a)~(c)の3個のグループに分類された。すなわち,(a) エタノン,1-(1H-ピロール-2-イル)-,2-アセチル-1-ピロリン,アセトフェノン,2-ヘプタノン,ジスルフィド,メチル(メチルチオ)メチル,メタンチオール;(b) メチルアミン,N,N-ジメチル-,ジスルフィド,ジメチル,メタン,ニトロ- ,ジメチル・トリスルフィド;(c) 2-ブタノン,2-ペンタノン,7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エンであった。
(3)上記(a)~(c)のグループのうち,各グループから少なくとも1個ずつ(合計3個以上)のバイオマーカーを決めて,尿中濃度を測定することにより,てんかんの進行程度,てんかん発作が起こる可能性などを評価できる。
(4)上記3個以上のバイオマーカーの組み合わせとして最も良いものは,メタンチオール,ジスルフィド,ジメチル及び2-ブタノンであった。これらの3個をバイオマーカーとして用いた場合には,てんかん発作を起こす患者(患畜)と対照群との間で明確に分離できる。
(5)上記バイオマーカーについては,非侵襲的に採取できる尿から抽出できるので,ヒト及び/または動物を傷つける必要がない。
このように,本実施形態によれば,てんかんのバイオマーカーが提供できた。これらのバイオマーカーは,扁桃体キンドリングモデルマウスの尿中に検出した揮発性有機化合物であり,哺乳類全般に通じるてんかん発作に連動した尿中揮発性有機化合物であることから,ヒトや,犬や猫等の伴侶動物にも応用できる。本発明は,臨床現場の一次スクリーニングとして,運輸会社や公共施設に応用することで,事故を未然に防ぐことができる。また,マウスモデルを用いた創薬スクリーニングに利用できる。
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. Massachusetts Medical Society; 2000;342: 314-319. doi:10.1056/NEJM200002033420503 Browne T. R. and Holmes G. L. (2000) Handbook of Epilepsy, 2nd Edn, pp. 42-55, 91-94. Lippincott Williams & Wilkins, Philadelphia, PA. Nei M, Ngo L, Sirven JI, Sperling MR. Ketogenic diet in adolescents and adults with epilepsy. Seizure. 2014;23: 439-442. doi:10.1016/j.seizure.2014.02.015 Dressler A, Trimmel-Schwahofer P, Reithofer E, Groeppel G, Muhlebner A, Samueli S, et al. The ketogenic diet in infants--Advantages of early use. Epilepsy Research. 2015;116: 53-58. doi:10.1016/j.eplepsyres.2015.06.015 Hamed SA. Antiepileptic drugs influence on body weight in people with epilepsy. Expert Rev Clin Pharmacol. 2015;8: 103-114. doi:10.1586/17512433.2015.991716 Chandler K. Canine epilepsy: What can we learn from human seizure disorders? The Veterinary Journal. 2006;172: 207-217. doi:10.1016/j.tvjl.2005.07.001 Kato K. Introduction of a Novel Molecular Mechanism of Epilepsy Progression: Roles of Growth Hormone Signaling in a Mouse Model of Temporal Lobe Epilepsy. Underlying Mechanisms of Epilepsy. InTech; 2011. doi:10.5772/18922 Stanciu GD, Musteata M, Armasu M, Solcan G. Comparative Aspects in Interictal, Intraictal and Postictal Electroencephalogram in Dogs with Idiopathic Epilepsy. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Veterinary Medicine. 2015;72: 254-259. doi:10.15835/buasvmcn-vm:11358 Kline KL. Feline epilepsy. Clin Tech Small Anim Pract. 1998;13: 152-158. doi:10.1016/S1096-2867(98)80036-4 D'Angelo A, Bellino C, Bertone I, Cagnotti G, Iulini B, Miniscalco B, et al. Seizure disorders in 43 cattle. J Vet Intern Med. 4 ed. Wiley/Blackwell (10.1111); 2015;29: 967-971. doi:10.1111/jvim.12592 Chigerwe M, Aleman M. Seizure Disorders in Goats and Sheep. J Vet Intern Med. 2nd ed. Wiley/Blackwell (10.1111); 2016;30: 1752-1757. doi:10.1111/jvim.14566 Lacombe VA, Mayes M, Mosseri S, Reed SM, Fenner WR, Ou HT. Epilepsy in horses: aetiological classification and predictive factors. Equine Vet J. American Medical Association (AMA); 2012;44: 646-651. doi:10.1111/j.2042-3306.2011.00527.x Gerlach T, Clyde VL, Morris GL, Bell B, Wallace RS. Alternative therapeutic options for medical management of epilepsy in apes. J Zoo Wildl Med. American Association of Zoo Veterinarians; 2011;42: 291-294. doi:10.1638/2010-0184.1 Spencer SS. When should temporal-lobe epilepsy be treated surgically? The Lancet Neurology. 2002;1: 375-382. doi:10.1016/S1474-4422(02)00163-1 Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25: 295-330. Thompson ME, Galosy RA. Electrical brain activity and cardiovascular function during amygdaloid kindling in the dog. Exp Neurol. 1983;82: 505-520. Adamec RE, Stark-Adamec C. Partial kindling and emotional bias in the cat: lasting aftereffects of partial kindling of the ventral hippocampus. Behavioral and Neural Biology. 1983;38: 205-222. doi:10.1016/S0163-1047(83)90212-1. Wada JA. Genetic Predisposition and Kindling Susceptibility in Primates. Kindling 5. Boston, MA: Springer US; 1998. pp. 1-14. doi:10.1007/978-1-4615-5375-5_1. Kato K, Masa T, Tawara Y, Kobayashi K, Oka T, Okabe A, et al. Dendritic aberrations in the hippocampal granular layer and the amygdalohippocampal area following kindled-seizures. Brain Research. 2001;901: 281-295. Matsuhashi H, Horii Y, kato K. Region-specific and epileptogenic-dependent expression of six subtypes of α2,3-sialyltransferase in the adult mouse brain. J Neurochem. Blackwell Science Ltd; 2002;84: 53-66. doi:10.1046/j.1471-4159.2003.01257.x Kato K, Suzuki M, Hiroki Kanno H, Sekino S, Kusakabe K, Okada T, Mori T, Yoshida K, and Hirabayashi Y Distinct Role of Growth Hormone on Epilepsy Progression in a Model of Temporal Lobe Epilepsy (2009) J Neurochem. 110:509-519. Srimontri P, Endo S, Sakamoto T, Nakayama Y, Kurosaka A, Itohara S, et al. Sialyltransferase ST3Gal IV deletion protects against temporal lobe epilepsy. J Neurochem. 2014;131: 675-687. doi:10.1111/jnc.12838 Kobow K, Blumcke I. Epigenetics in epilepsy. Neuroscience Letters. 2018;667: 40-46. doi:10.1016/j.neulet.2017.01.012.

Claims (6)

  1. トリメチルアミン(Trimethylamine);メタンチオール(Methanethiol);2-ブタノン(2-Butanone);2-ペンタノン(2-Pentanone);ジメチルジスルフィド(Dimethyl disulfide)ニトロメタン(Nitro methane);2-ヘプタノン(2-Heptanone);2-アセチル-1-ピロリン(2-Acetyl-1-pyrroline);ジメチル・トリスルフィド(Dimethyl trisulfide);7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エン(7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene);アセトフェノン(Acetophenone);2,3,5-トリチアヘキサン(2,3,5-Trithiahexane)2-アセチルピロール (2-Acetylpyrrole)からなる群から選択される少なくとも一つの化合物を含むことを特徴とする哺乳動物の尿中におけるてんかんバイオマーカー。
  2. 請求項1に記載のバイオマーカーにおいて,13個の化合物を(a)2-アセチルピロール(2-Acetylpyrrole);2-アセチル-1-ピロリン;アセトフェノン;2-ヘプタノン;2,3,5-トリチアヘキサン;メタンチオール;(b)トリメチルアミン;ジメチルジスルフィド;ニトロメタン;ジメチル・トリスルフィド;(c)2-ブタノン;2-ペンタノン;7-エキソ-エチル-5-メチル-6,8-ジオキサビシクロ[3.2.1]オクト-3-エンの(a)~(c)の3群に分類し,各群から少なくとも一つの化合物を選択して含む請求項1に記載の哺乳動物の尿中におけるてんかんバイオマーカー。
  3. 請求項2に記載のバイオマーカーにおいて,(a)から選択される化合物がメタンチオール,(b)から選択される化合物がジメチルジスルフィド,(c)から選択される化合物が2-ブタノンである請求項2に記載の哺乳動物の尿中におけるてんかんバイオマーカー。
  4. 前記哺乳動物が,ヒト,サル,ゴリラ,オランウータン,チンパンジー,ウマ,サイ,バク,カバ,ラクダ,キリン,ウシ,ブタ,ヤギ,ヒツジ,サル,カモシカ,イノシシ,クマ,イヌ,ネコ,ウサギ,モルモット,ラット,マウス,リス,カピバラ,ナマケモノ,アリクイ,アルマジロ,コウモリ,オオカミ,クマ,パンダ,カワウソ,ラッコ,マングース,ハイエナ,ピューマ,ライオン,トラ,ジャガー,ヒョウ,チーター,カンガルー,コアラ,アシカ,アザラシ,ゾウ,クジラ,シャチ,イルカ及びジュゴンからなる群から選択される少なくとも一つである請求項1~3のいずれか一つに記載の哺乳動物の尿中におけるてんかんバイオマーカー。
  5. (1)哺乳動物由来の尿を検体として採取する採取ステップ,(2)前記検体から,メタンチオール,ジメチルジスルフィド及び2-ブタノンの濃度を測定する測定ステップを備える哺乳動物のてんかん検査方法。
  6. 前記哺乳動物が,ヒト,サル,ゴリラ,オランウータン,チンパンジー,ウマ,サイ,バク,カバ,ラクダ,キリン,ウシ,ブタ,ヤギ,ヒツジ,サル,カモシカ,イノシシ,クマ,イヌ,ネコ,ウサギ,モルモット,ラット,マウス,リス,カピバラ,ナマケモノ,アリクイ,アルマジロ,コウモリ,オオカミ,クマ,パンダ,カワウソ,ラッコ,マングース,ハイエナ,ピューマ,ライオン,トラ,ジャガー,ヒョウ,チーター,カンガルー,コアラ,アシカ,アザラシ,ゾウ,クジラ,シャチ,イルカ及びジュゴンからなる群から選択される少なくとも一つである請求項5に記載の哺乳動物のてんかん検査方法。
JP2018233113A 2018-12-13 2018-12-13 マウスのてんかんバイオマーカー Active JP7254334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233113A JP7254334B2 (ja) 2018-12-13 2018-12-13 マウスのてんかんバイオマーカー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233113A JP7254334B2 (ja) 2018-12-13 2018-12-13 マウスのてんかんバイオマーカー

Publications (2)

Publication Number Publication Date
JP2020094910A JP2020094910A (ja) 2020-06-18
JP7254334B2 true JP7254334B2 (ja) 2023-04-10

Family

ID=71084799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233113A Active JP7254334B2 (ja) 2018-12-13 2018-12-13 マウスのてんかんバイオマーカー

Country Status (1)

Country Link
JP (1) JP7254334B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120166A1 (en) 2016-01-04 2017-07-13 Evogen, Inc. Biomarkers and methods for detection of seizures and epilepsy
US20180052177A1 (en) 2015-03-03 2018-02-22 Universita' Degli Studi Di Cagliari Method for the in vitro identification of drug-resistant epilepsy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180052177A1 (en) 2015-03-03 2018-02-22 Universita' Degli Studi Di Cagliari Method for the in vitro identification of drug-resistant epilepsy
WO2017120166A1 (en) 2016-01-04 2017-07-13 Evogen, Inc. Biomarkers and methods for detection of seizures and epilepsy

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HASEGAWA Tetsuya et al.,Gas Chromatography-Mass Spectrometry-Based Metabolic Profiling of Cerebrospinal Fluid from Epileptic Dogs,The Journal of Veterinary Medical Science,2013年12月13日,2014, Vol.76, No.4,,pp.517-522
HEISCHMANN Svenja et al.,Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis,Scientific Reports,2016年08月16日,Vol.6,Article No.31424
MURGIA Federica et al.,Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy,Frontiers in Neurology,2017年09月04日,Vol.8,Article 459
PRICE K. E. et al.,Effects of Valproic Acid on Organic Acid Metabolism in Children: A Metabolic Profiling Study,Clinical Pharmacology & Therapeutics,2011年05月04日
WU Helen C. et al.,Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy,Epilepsia,2017年07月17日,Vol.58, No.9,pp.1626-1636

Also Published As

Publication number Publication date
JP2020094910A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
Shirasu et al. The scent of disease: volatile organic compounds of the human body related to disease and disorder
Herberth et al. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients
Kaddurah-Daouk et al. Metabolomic changes in autopsy-confirmed Alzheimer's disease
Hu et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment
Whittle et al. Human breath odors and their use in diagnosis
Novotny et al. Chemical identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative proportions of major chemosignals
WO2021184412A1 (zh) 基于肠道微生物的双相情感障碍生物标志物及其筛选应用
Zarrouk et al. Fatty acid profiles in demented patients: identification of hexacosanoic acid (C26: 0) as a blood lipid biomarker of dementia
CN106605146B (zh) 用于中枢神经系统的急性、亚急性和慢性创伤性损伤的蛋白质标志物
US20170097362A1 (en) Systems and methods for analyzing persistent homeostatic perturbations
JP2012531578A (ja) メタボローム解析における内因性の参照代謝産物を用いた標準化方法
JP2010507075A5 (ja)
Hough et al. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME
Fujita et al. Urinary volatile metabolites of amygdala-kindled mice reveal novel biomarkers associated with temporal lobe epilepsy
Hamzic et al. Large-scale investigation of the parameters in response to Eimeria maxima challenge in broilers
Piqueret et al. Ants detect cancer cells through volatile organic compounds
Piras et al. LAP-MALDI MS coupled with machine learning: an ambient mass spectrometry approach for high-throughput diagnostics
JP7254334B2 (ja) マウスのてんかんバイオマーカー
Rodríguez-Hernández et al. Application of volatilome analysis to the diagnosis of mycobacteria infection in livestock
JP2020085451A (ja) マウスのてんかんバイオマーカー
JP5068819B2 (ja) 溶血性貧血を検査するための手段および方法
Raftogianni et al. Effects of an early experience of reward through maternal contact or its denial on laterality of protein expression in the developing rat hippocampus
Barbosa et al. A volatolomic approach using cerumen as biofluid to diagnose bovine intoxication by Stryphnodendron rotundifolium
Uzan-Yulzari et al. Aggression: A gut reaction? The effects of gut microbiome on aggression
WO2008125805A1 (en) Metabolic profiling of fatty acid amides and its use in the diagnosis of and screening of drugs for schizophrenia

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

R150 Certificate of patent or registration of utility model

Ref document number: 7254334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150