JP7253182B2 - Air separation device and air separation method - Google Patents

Air separation device and air separation method Download PDF

Info

Publication number
JP7253182B2
JP7253182B2 JP2019022774A JP2019022774A JP7253182B2 JP 7253182 B2 JP7253182 B2 JP 7253182B2 JP 2019022774 A JP2019022774 A JP 2019022774A JP 2019022774 A JP2019022774 A JP 2019022774A JP 7253182 B2 JP7253182 B2 JP 7253182B2
Authority
JP
Japan
Prior art keywords
air
water
humidity
temperature
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022774A
Other languages
Japanese (ja)
Other versions
JP2020133907A (en
Inventor
彰大 樋口
保人 清水坊
悠 安達
信昭 梅田
章正 倉本
和弘 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
H Ikeuchi and Co Ltd
Taiyo Nippon Sanso Corp
Original Assignee
JFE Steel Corp
H Ikeuchi and Co Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, H Ikeuchi and Co Ltd, Taiyo Nippon Sanso Corp filed Critical JFE Steel Corp
Priority to JP2019022774A priority Critical patent/JP7253182B2/en
Publication of JP2020133907A publication Critical patent/JP2020133907A/en
Application granted granted Critical
Publication of JP7253182B2 publication Critical patent/JP7253182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/84Processes or apparatus using other separation and/or other processing means using filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、沸点差を利用して空気を分離し、酸素などのガスを製造する空気分離技術に関し、特に空気圧縮機が取り込む空気の性状調整に特徴を有する空気分離技術に関する。 TECHNICAL FIELD The present invention relates to an air separation technique for producing gases such as oxygen by separating air using a boiling point difference, and more particularly to an air separation technique characterized by adjusting the properties of air taken in by an air compressor.

空気分離装置は、バグフィルターで除塵後の空気を空気圧縮機で圧縮し、沸点差を利用して空気を分離することで酸素その他のガスを製造する。製造された酸素は、例えば精錬工場等に供給されて使用される。
ここで、夏場など、取り込む空気の温度が高いと空気圧縮機で圧縮される空気密度が低下することから、外気の気温が上昇すると空気分離装置で製造される酸素量が少なくなる。
The air separator compresses the air that has been dust-removed by the bag filter with an air compressor and separates the air using the difference in boiling points to produce oxygen and other gases. The produced oxygen is supplied to, for example, a refinery and the like for use.
Here, when the temperature of the air taken in is high, such as in summer, the density of the air compressed by the air compressor decreases, so when the temperature of the outside air rises, the amount of oxygen produced by the air separation device decreases.

このため、従来、外気温度が高い夏場での製造能力を高めるために、省電力型の酸素製造設備及びそれを用いた酸素製造方法として水冷塔を有する設備構成を採用する場合がある。この設備構成では、水冷塔の充填材槽の表面に形成された水膜と空気を接触させることで、空気圧縮機に供給する空気の温度を低減させることができる。しかし、この設備構成では、水冷塔の設置によるコスト増加や水冷塔の設置スペースの確保が困難なこと、取り込む空気に対し充填材槽で圧力損失が増大するため、省電力を実現する点で課題がある。 For this reason, conventionally, in order to increase the production capacity in summer when the outside air temperature is high, there is a case where a facility configuration having a water cooling tower is adopted as a power-saving oxygen production facility and an oxygen production method using the same. In this equipment configuration, the temperature of the air supplied to the air compressor can be reduced by bringing the air into contact with the water film formed on the surface of the packing material tank of the water cooling tower. However, with this equipment configuration, the cost of installing a water cooling tower increases, it is difficult to secure the installation space for the water cooling tower, and the pressure loss in the filler tank increases against the air taken in, which makes it difficult to achieve power saving. There is

これに対し、特許文献1には、空気圧縮機の前段に噴霧室を設けることが記載されている。噴霧室は、空気を取り込むダクト内に噴霧ノズルを設置して構成される。更に、ダクト内における噴霧ノズルの下流側に濾布を設けることで、噴霧室がバグフィルターも兼ねる構成となっている。特許文献1に記載した方法にあっては、バグフィルターを兼ねる噴霧室内に取り込まれた後の空気に水が噴霧されることで、当該空気が気化熱によって冷やされ、冷やされた空気が濾布で除塵された後に空気圧縮機に送られる。 On the other hand, Patent Literature 1 describes that a spray chamber is provided in the front stage of the air compressor. The spray chamber consists of a spray nozzle placed in a duct that takes in air. Furthermore, by providing a filter cloth downstream of the spray nozzle in the duct, the spray chamber also serves as a bag filter. In the method described in Patent Document 1, water is sprayed on the air taken into the spray chamber that also serves as a bag filter, so that the air is cooled by the heat of vaporization, and the cooled air is applied to the filter cloth. After being dust-removed, it is sent to the air compressor.

特開2007-255863号公報JP 2007-255863 A

しかし、特許文献1に記載の方法では、水噴霧装置を具備した噴霧室を設置することが必要となる。
また、特許文献1の構成は、バグフィルターを構成するダクト内における濾布の前側に噴霧ノズルを配置した構造となっている。この構造において、ダクト内で水を噴霧した場合、ダクトへの外気吸引によって空気の流速が早くなることから、そのことを考慮して、水の噴霧位置から濾布までの経路長を、噴霧した水が十分に蒸発させるだけの長さとして長く設定する必要がある。このように、特許文献1の構造を適用した場合、外気の取り込みから濾布までの経路(距離)を、噴霧ノズルを設けることで長めに設計する必要がある。
However, in the method described in Patent Document 1, it is necessary to install a spray chamber equipped with a water spray device.
Moreover, the configuration of Patent Document 1 has a structure in which the spray nozzle is arranged in front of the filter cloth in the duct that constitutes the bag filter. In this structure, when water is sprayed inside the duct, the flow speed of the air increases due to the suction of outside air into the duct. It needs to be set long enough for the water to evaporate sufficiently. As described above, when the structure of Patent Document 1 is applied, it is necessary to design a longer path (distance) from the intake of outside air to the filter cloth by providing a spray nozzle.

また、ダクト内で飽和水蒸気量以上の水が噴霧された場合には、蒸発ができなかった水滴が濾布に持ち込まれ、水滴付着により濾布の通気性が悪化して、圧力損失が増大する可能性がある。特に、外気の取り込みから濾布までの距離が短い場合には、十分に水分が気化しないで、取り込んだ空気の温度低下が十分に行われないと共に、濾布への水滴付着により通気性が悪化し、空気の圧力損失が増大する可能性がある。
本発明は、前記のような点に着目してなされたもので、既存の空気分離装置に適用しても、空気圧縮機に供給する空気の温度を低下できると共に、バグフィルターでの圧力損失の増大についても、より確実に抑制可能な空気分離技術を提供することを目的とする。
In addition, when water is sprayed in the duct in excess of the saturated steam content, the water droplets that cannot be evaporated are brought into the filter cloth, and the adhesion of the water droplets deteriorates the air permeability of the filter cloth and increases the pressure loss. there is a possibility. In particular, when the distance from the intake of outside air to the filter cloth is short, the moisture does not evaporate sufficiently, and the temperature of the taken-in air does not decrease sufficiently, and the air permeability deteriorates due to the adhesion of water droplets to the filter cloth. and air pressure loss may increase.
The present invention has been made by paying attention to the above-mentioned points, and even if it is applied to an existing air separation device, it is possible to lower the temperature of the air supplied to the air compressor and reduce the pressure loss in the bag filter. An object of the present invention is to provide an air separation technology that can more reliably suppress the increase.

課題を解決するために、本発明の一態様は、空気を圧縮する空気圧縮機と、外気に開放された空気吸込み口から空気を取り込み、濾布で除塵後の空気を前記空気圧縮機に供給するバグフィルターと、前記バグフィルターの空気吸込み口の周囲に存在する外気に対し水を噴霧して、前記空気吸込み口の周りに湿度が高い空気領域であるミスト領域を形成するミスト領域形成装置とを有し、前記ミスト領域形成装置は、前記外気に水を噴霧する水噴霧装置と、前記水を噴霧する位置とは異なる位置での外気の温度及び湿度を測定する温度・湿度測定装置と、前記温度・湿度測定装置が測定した温度及び湿度から、前記水を噴霧後の相対湿度が予め設定した第1の設定湿度となる噴霧水量を推定する噴霧水量推定部と、前記水噴霧装置から噴霧される水量を前記噴霧水量推定部が推定した噴霧水量となるように前記水噴霧装置に供給される水量の調整を行う水量調整部と、前記空気吸込み口の手前、又は前記空気吸込み口から前記濾布までの間に位置する通路内の温度及び湿度を測定する第2の温度・湿度測定装置と、前記第2の温度・湿度測定装置が測定した温度及び湿度に基づき前記空気吸込み口から吸い込まれる空気の相対湿度を算出し、その算出した相対湿度が予め設定した第2の設定湿度以上と判定したら、前記噴霧水量推定部に対し推定する噴霧水量をゼロに設定する停止指令を供給する噴霧停止判定部と、を備える。 In order to solve the problem, one aspect of the present invention provides an air compressor that compresses air, takes in air from an air suction port that is open to the outside air, and supplies the air after removing dust with a filter cloth to the air compressor. and a mist area forming device that sprays water onto the outside air existing around the air inlet of the bag filter to form a mist area that is an air area with high humidity around the air inlet. and the mist area forming device includes a water spraying device that sprays water into the outside air, a temperature/humidity measuring device that measures the temperature and humidity of the outside air at a position different from the position where the water is sprayed, a spray water amount estimating unit for estimating a spray water amount at which the relative humidity after spraying the water becomes a preset first set humidity from the temperature and humidity measured by the temperature/humidity measuring device; and spraying from the water spray device. a water amount adjustment unit that adjusts the amount of water supplied to the water spray device so that the amount of water supplied to the spray water amount estimating unit becomes the amount of spray water estimated by the water amount estimation unit; a second temperature/humidity measuring device for measuring the temperature and humidity in the passage located between the filter cloth and the temperature and humidity measured by the second temperature/humidity measuring device; When it is determined that the calculated relative humidity is equal to or higher than a preset second set humidity, a stop command for setting the estimated spray water amount to zero is supplied to the spray water amount estimating unit. and a stop determination unit.

また、本発明の他の態様は、バグフィルターで除塵後の空気を空気圧縮機にて圧縮する工程を有する空気分離方法であって、前記バグフィルターの空気吸込み口を外気に開放し、前記空気吸込み口の周囲に存在する外気に対し水を噴霧することで湿度が高くなった外気を、前記空気吸込み口から吸い込む空気の少なくとも一部とし、前記外気に対する水の噴霧は、水を噴霧する位置とは異なる位置での外気の温度及び湿度を測定し、その測定した温度及び湿度から水を噴霧後の相対湿度が予め設定した第1の設定湿度となる噴霧水量を推定し、その推定した噴霧水量に調整され、更に、前記空気吸込み口の手前又は前記空気吸込み口から前記濾布までの間に位置する通路内の温度及び湿度を測定し、その測定した温度及び湿度に基づき前記空気吸込み口から吸い込まれる空気の相対湿度を算出し、その算出した相対湿度が予め設定した第2の設定湿度以上と判定したら、前記外気に対する水の噴霧を停止する。 Another aspect of the present invention is an air separation method comprising a step of compressing air after dust removal by a bag filter with an air compressor, wherein an air suction port of the bag filter is open to the outside air, and the air is Water is sprayed onto the outside air existing around the suction port, and the humidity of the outside air is increased, and the water is sprayed onto the outside air at a position where the water is sprayed. Measure the temperature and humidity of the outside air at a position different from the measured temperature and humidity, estimate the amount of spray water at which the relative humidity after spraying water becomes the preset first set humidity, and estimate the spray The temperature and humidity in a passage adjusted to the amount of water and further positioned in front of the air suction port or between the air suction port and the filter cloth are measured, and the air suction port is based on the measured temperature and humidity. The relative humidity of the air sucked in from the outside air is calculated, and when it is determined that the calculated relative humidity is equal to or higher than the preset second set humidity, spraying of water to the outside air is stopped.

本発明の態様によれば、空気吸込み口から取り込まれる前の空気(外気)に対し大気中で噴霧水を吹き付けることで、バグフィルターに取り込まれる前に空気の温度を下げることが出来ると共に、バグフィルターに取り込まれた空気中の水蒸気が濾布に到達するまでに蒸発することで、更に空気の温度を低下できる。また、本発明の態様によれば、空気圧縮機の前段に空気を冷却する水冷塔のような大掛かりな設備が不要となる。
以上のように、本発明の態様によれば、既存の空気分離装置に適用しても、簡易な構成によって、夏場であっても、空気圧縮機の供給する空気の温度を低下できると共に、バグフィルターでの圧力損失の増大をより確実に抑制することが出来る。
According to the aspect of the present invention, by spraying spray water in the atmosphere against the air (outside air) before it is taken in from the air suction port, the temperature of the air can be lowered before it is taken into the bag filter, and the bag The temperature of the air can be further lowered by evaporating the water vapor in the air taken into the filter before reaching the filter cloth. Further, according to the aspect of the present invention, large-scale equipment such as a water cooling tower for cooling air in the upstream stage of the air compressor becomes unnecessary.
As described above, according to the aspect of the present invention, even if it is applied to an existing air separation device, it is possible to reduce the temperature of the air supplied by the air compressor even in summer with a simple configuration, and at the same time, An increase in pressure loss in the filter can be suppressed more reliably.

本発明に基づく実施形態に係る空気分離装置の構成例を示す図である。It is a figure showing an example of composition of an air separation device concerning an embodiment based on the present invention. バグフィルター及びミスト領域形成装置を説明する図である。It is a figure explaining a bag filter and a mist field formation device. バグフィルター及びミスト領域形成装置を説明する概念図である。It is a conceptual diagram explaining a bag filter and a mist area|region formation apparatus. 噴霧水量推定部の処理例を示す図である。It is a figure which shows the example of a process of a spray water amount estimation part. 段数決定のためのマトリックスの例を示す図である。FIG. 10 is a diagram showing an example of a matrix for determining the number of stages; FIG. 噴霧停止判定部の処理例を示す図である。It is a figure which shows the example of a process of a spray stop determination part. 実施例の一例を説明する図である。It is a figure explaining an example of an Example.

次に、本発明の実施態様について図面を参照して説明する。
(構成)
本実施形態の空気分離装置は、例えば、図1に示すように、空気圧縮機1の前段にバグフィルター2が配置され、そのバグフィルター2の空気吸込み口21aの近傍に、ミスト領域形成装置の噴霧ノズル30が設けられる。
また空気圧縮機1の後段には、例えば冷却塔3、MS吸着器4、熱交換器5、及び精留塔7がこの順に配置されている。
Embodiments of the present invention will now be described with reference to the drawings.
(composition)
In the air separation device of this embodiment, for example, as shown in FIG. A spray nozzle 30 is provided.
After the air compressor 1, for example, a cooling tower 3, an MS adsorber 4, a heat exchanger 5, and a rectifying tower 7 are arranged in this order.

冷却塔3は、空気圧縮機1で圧縮されて温度が上昇した空気を冷却する。MS吸着器4は、不要なCO、CO、HO等を空気から吸着除去する。熱交換器5は、精留塔7で冷却分離した窒素ガスと酸素ガスを用いた熱交換によって、空気を冷却する。なお、この熱交換器5での熱バランスだけでは冷却が不十分となる場合、膨張タービン6により不足する冷却を補う。
精留塔7は、熱交換器5で冷却された空気を更に冷却(深冷)し、液化温度の差を利用して空気を窒素ガスと酸素ガスに精製分離する。精留塔7では、前記の精製分離と同時にアルゴンガスの原料となるガスが分離され、分離されたガスが粗アルゴン塔8に導入される。ここで、アルゴンの液化温度が酸素の液化温度と近いため、粗アルゴン塔8に導入されたガスには多量の酸素が含まれている。このため、アルゴン熱交換器9、アルゴン圧縮機10を介して、水素を添加した後に、アルゴン精製器11で更に精製される。
The cooling tower 3 cools the air that has been compressed by the air compressor 1 and raised in temperature. The MS adsorber 4 adsorbs and removes unnecessary CO, CO 2 , H 2 O, etc. from the air. The heat exchanger 5 cools the air by heat exchange using nitrogen gas and oxygen gas cooled and separated in the rectification tower 7 . If the heat balance in the heat exchanger 5 alone is insufficient for cooling, the expansion turbine 6 compensates for the insufficient cooling.
The rectification tower 7 further cools (deep-cools) the air cooled by the heat exchanger 5, and uses the difference in liquefaction temperature to separate the air into nitrogen gas and oxygen gas. In the rectifying column 7 , the raw material gas of argon gas is separated simultaneously with the purification and separation described above, and the separated gas is introduced into the crude argon column 8 . Here, since the liquefying temperature of argon is close to the liquefying temperature of oxygen, the gas introduced into the crude argon column 8 contains a large amount of oxygen. Therefore, after adding hydrogen through the argon heat exchanger 9 and the argon compressor 10 , the argon is further purified in the argon purifier 11 .

次に、本実施形態のバグフィルター2及びミスト領域形成装置12について説明する。
本実施形態のバグフィルター2は、図2に示すような原料空気吸入塔2Aからなる。
原料空気吸入塔2Aは、図2及び図3に示すように、空気取り入れ部21、空気室22、濾布収容室23、及び濾布収容室23内に配置された複数の濾布24を備える。
空気取り入れ部21は、吸入塔2Aの天板部2Aaから上方に突出する取込用ダクト21Aと、取込用ダクト21Aの上端開口部を覆うように同軸に配置され上面が閉じた円筒体21Bとを備える。円筒体21Bの内径は取込用ダクト21Aの外径よりも大きく且つ円筒体21Bの上端面が取込用ダクト21Aの上端開口部の高さよりも上方に配置されている。
Next, the bag filter 2 and the mist area forming device 12 of this embodiment will be described.
The bag filter 2 of this embodiment consists of a raw air intake tower 2A as shown in FIG.
2 and 3, the raw air intake tower 2A includes an air intake section 21, an air chamber 22, a filter cloth storage chamber 23, and a plurality of filter cloths 24 arranged in the filter cloth storage chamber 23. .
The air intake portion 21 includes an intake duct 21A projecting upward from the top plate portion 2Aa of the suction tower 2A, and a cylindrical body 21B having a closed top surface and coaxially arranged so as to cover the upper end opening of the intake duct 21A. and The inner diameter of the cylindrical body 21B is larger than the outer diameter of the intake duct 21A, and the upper end surface of the cylindrical body 21B is arranged above the height of the upper end opening of the intake duct 21A.

この構成によって、空気取り入れ部21は、取込用ダクト21Aの外壁面と円筒体21Bの内壁面との間に形成された円環状の空間の下端部の位置(空気吸込み口21a)から外気を取り入れ、取り入れられた空気は、前記の円環状の空間に沿って上方に移動し取込用ダクト21A内に移動する。
空気室22は、吸入塔2Aの天板部2Aaの下方に形成され、この空気室22に取込用ダクト21Aの下端部が連通している。
空気室22の下方には濾布収容室23が設けられ、その濾布収容室23に複数の濾布24が配置されている。各濾布24は、軸を上下に向けた筒状となっていて、濾布24の上端開口部が空気室22に連通している。その濾布収容室23の壁面には、空気排出用の開口23Aが形成され、その空気排出用の開口23Aが空気圧縮機1の吸込み部に連通している。
なお、濾布収容室23の下側には集塵用ホッパー25が設けられている。
With this configuration, the air intake portion 21 draws outside air from the lower end position (air intake port 21a) of the annular space formed between the outer wall surface of the intake duct 21A and the inner wall surface of the cylindrical body 21B. The air that is taken in moves upward along the annular space and moves into the intake duct 21A.
The air chamber 22 is formed below the top plate portion 2Aa of the suction tower 2A, and the air chamber 22 communicates with the lower end of the intake duct 21A.
A filter cloth storage chamber 23 is provided below the air chamber 22 , and a plurality of filter cloths 24 are arranged in the filter cloth storage chamber 23 . Each filter cloth 24 has a cylindrical shape with its axis directed vertically, and the upper end opening of the filter cloth 24 communicates with the air chamber 22 . An air discharge opening 23A is formed in the wall surface of the filter cloth storage chamber 23, and the air discharge opening 23A communicates with the suction portion of the air compressor 1. As shown in FIG.
A dust collection hopper 25 is provided below the filter cloth storage chamber 23 .

このような構成によって、原料空気吸入塔2Aは、空気取り入れ部21から外気が取り入れられ、取り入れられた空気は、取込用ダクト21Aを通じて空気室22に供給される。空気室22に移動した空気は、各濾布24で除塵された後に、濾布収容室23の壁面に形成された空気排出用の開口を通じて空気圧縮機1に送られる。
ミスト領域形成装置12は、バグフィルター2の空気吸込み口21aの周りに位置する外気に対し水を噴霧することで、バグフィルター2の空気吸込み口21aの周りに湿度が高くなった空気からなるミスト領域MR(ミスト雰囲気状態の空気領域)を形成する装置である。
With such a configuration, the raw air intake tower 2A takes in outside air from the air intake section 21, and the taken-in air is supplied to the air chamber 22 through the intake duct 21A. The air moved to the air chamber 22 is dust-removed by each filter cloth 24 and then sent to the air compressor 1 through an air discharge opening formed in the wall surface of the filter cloth housing chamber 23 .
The mist area forming device 12 sprays water onto the outside air positioned around the air inlet 21a of the bag filter 2, so that mist of air with increased humidity around the air inlet 21a of the bag filter 2 is formed. This is an apparatus for forming a region MR (an air region in a mist atmosphere state).

ミスト領域形成装置12は、水噴霧装置、噴霧水量推定部37、水量調整部40、第2の温度・湿度測定装置36、及び噴霧停止判定部41を備える。
水噴霧装置は、外気に向けて水を噴霧する複数の噴霧ノズル30と、噴霧ノズル30に水を供給するポンプ33と、ポンプ33からの水を噴霧ノズル30に送る水配管32とを有する。複数の噴霧ノズル30は、ノズルヘッダ31によって連通されている。
本実施形態では、ポンプ33は、水の吐出圧(供給圧)が一定となるように駆動調整されている。なお、後述のように水配管32を複数列、配設する場合(図3参照)、各水配管32毎にポンプ33を設けても良い。本実施形態では、一つのポンプ33から回路的に並列に設けられた複数の水配管32に水を圧送する構成となっている。
The mist area forming device 12 includes a water spray device, a spray water amount estimating section 37 , a water amount adjusting section 40 , a second temperature/humidity measuring device 36 and a spray stop determining section 41 .
The water spray device has a plurality of spray nozzles 30 that spray water toward the outside air, a pump 33 that supplies water to the spray nozzles 30 , and a water pipe 32 that sends water from the pump 33 to the spray nozzles 30 . A plurality of spray nozzles 30 are communicated by nozzle headers 31 .
In this embodiment, the pump 33 is driven and adjusted so that the water discharge pressure (supply pressure) is constant. When a plurality of rows of water pipes 32 are arranged as described later (see FIG. 3), a pump 33 may be provided for each water pipe 32 . In this embodiment, water is pressure-fed from one pump 33 to a plurality of water pipes 32 provided in parallel in a circuit.

複数の噴霧ノズル30は、吸入塔2Aの天板部2Aaに、天板部2Aaの面に沿って並ぶように配置されている。具体的には、吸入塔2Aの天板部2Aa上に対し、平面視でみて、空気取り入れ部21の外周を囲むようにノズルヘッダ31が配置され、そのノズルヘッダ31に複数のノズルが間隔を開けて設けられている。各噴霧ノズル30は、水の噴射口を上方に向けて配置され、上方に位置する外気(空気)に向けて水を噴霧可能となっている。この水の噴霧によって、空気吸込み口21aの周りの外気(空気)をミスト領域MR(ミスト雰囲気状態)とする。なお、各噴霧ノズル30の水の噴霧方向は、空気吸込み口21a側や空気取り入れ部21側に向けない方が好ましい。 A plurality of spray nozzles 30 are arranged on the top plate portion 2Aa of the suction tower 2A so as to line up along the surface of the top plate portion 2Aa. Specifically, a nozzle header 31 is arranged on the top plate portion 2Aa of the suction tower 2A so as to surround the outer periphery of the air intake portion 21 in a plan view, and a plurality of nozzles are arranged in the nozzle header 31 at intervals. It is set open. Each of the spray nozzles 30 is arranged with the water injection port facing upward, and is capable of spraying water toward the outside air (air) positioned above. By spraying this water, the outside air (air) around the air suction port 21a is turned into a mist region MR (mist atmosphere state). It is preferable that the water spray direction of each spray nozzle 30 is not directed toward the air suction port 21a side or the air intake portion 21 side.

噴霧ノズル30は、例えば、内部に前記ポンプ33から供給された高圧水が衝突する壁部を有し、高圧水は、壁部への衝突によって噴射した水が霧状となる。高圧水の粒径を細かくする構造は、公知の構造を採用すればよい。例えば、特開2009-36316号公報などに記載の噴霧ノズルを採用する。
噴霧ノズル30への水圧にもよるが、噴霧ノズル30から噴霧される水の粒径は、例えば平均粒子径20.0μm以上23.0μm以下に設定する。
ここで、噴霧ノズル30に供給する高圧水の圧力を一定に設定することで、噴霧ノズル30から噴霧される噴霧水の水滴径を予め設定した仕様水滴径とすることができる。すなわち、安定した粒径の水を空気に与えることができて、空気の湿度のばらつきを小さく抑えることが可能となる。
The spray nozzle 30 has, for example, a wall on which the high-pressure water supplied from the pump 33 collides. A known structure may be adopted as the structure for reducing the particle size of the high-pressure water. For example, a spray nozzle described in Japanese Patent Application Laid-Open No. 2009-36316 is employed.
Although it depends on the water pressure to the spray nozzle 30, the particle size of the water sprayed from the spray nozzle 30 is set to, for example, an average particle size of 20.0 μm or more and 23.0 μm or less.
Here, by setting the pressure of the high-pressure water supplied to the spray nozzle 30 to be constant, the diameter of the droplets of the sprayed water sprayed from the spray nozzle 30 can be set to the preset specification droplet diameter. That is, water with a stable particle size can be supplied to the air, and variations in the humidity of the air can be suppressed.

噴霧ノズル30は、ノズルヘッダ31及び水配管32を介して、ポンプ33の吐出口に接続されている。
噴霧水量推定部37は、温度・湿度測定装置35が測定した吸入塔2A周りの外気の温度及び湿度に基づき、ミスト領域MRの相対湿度が予め設定した第1の設定湿度となる噴霧水量を推定する。但し、噴霧水量推定部37は、噴霧停止判定部から停止指令を入力したら、噴霧停止判定部から噴霧再開指令を入力するまで噴霧水量の演算を行わず、演算する噴霧水量をゼロに設定する。
The spray nozzle 30 is connected to a discharge port of a pump 33 via a nozzle header 31 and water pipe 32 .
Based on the temperature and humidity of the outside air around the suction tower 2A measured by the temperature/humidity measuring device 35, the spray water amount estimator 37 estimates the amount of spray water at which the relative humidity of the mist area MR becomes the preset first set humidity. do. However, when a stop command is input from the spray stop determination unit, the spray water amount estimation unit 37 does not calculate the spray water amount until a spray restart command is input from the spray stop determination unit, and sets the calculated spray water amount to zero.

温度及び湿度を測定する外気は、水の噴霧に影響が小さいと考えられる外気である。本実施形態では、吸入塔2A下部周りの外気の温度・湿度を測定するようにしている。すなわち、温度・湿度測定装置35を吸入塔2A下部近傍に設置している。
第1の設定湿度は、例えば80%に設定する。最大の効果を得ようとした場合、第1の設定湿度を露点まで高く設定すればよい。しかし、湿度の目標値を100%に設定した場合、風などによる外気の外乱によって水蒸気の結露が多発して、濾布24の目詰まりによる急激なフィルター差圧上昇が引き起こされることが懸念され、長期操業継続が困難となるケースも考えられる。風向・風速等の外部影響によって湿度が変化することを考慮すると、目標値である第1の設定湿度は、例えば70%以上95%以下の範囲に設定する。好ましくは、75%以上90%以下、より好ましくは80%以上85%以下である。
The outside air whose temperature and humidity are measured is the outside air which is considered to have little influence on the spray of water. In this embodiment, the temperature and humidity of the outside air around the lower part of the suction tower 2A are measured. That is, the temperature/humidity measuring device 35 is installed near the bottom of the suction tower 2A.
The first set humidity is set to 80%, for example. To obtain the maximum effect, the first set humidity should be set as high as the dew point. However, if the target value of humidity is set to 100%, there is concern that water vapor condensation will occur frequently due to external disturbances such as wind, and that the filter cloth 24 will become clogged, causing a sudden increase in the differential pressure of the filter. In some cases, it may be difficult to continue long-term operation. Considering that humidity changes due to external influences such as wind direction and wind speed, the first set humidity, which is a target value, is set, for example, in the range of 70% or more and 95% or less. It is preferably 75% or more and 90% or less, more preferably 80% or more and 85% or less.

本実施形態では、風向・風速等の外部影響を小さくする意味でも、温度・湿度測定装置35を吸入塔2A下部近傍に設置している。
ここで、本実施形態では、ミスト領域MRを形成するための湿度の基本制御が、ミスト領域MR自体の温度と湿度を測定しその測定値によるフィードバック制御ではなく、ミスト領域MR以外の外気の温度・湿度に基づくフィードフォワード制御としている。
この理由は、外乱がある外気に噴霧水を供給してミスト領域MRを形成しているため、ミスト領域MR内の測定位置(高さ位置も含む三次元的な空間内の位置)によっても湿度が異なっていると共に、外気への風その他の外乱によって噴射した水の向きなどが変化して、同じ位置でも湿度の揺らぎが大きくなる可能性があることを考慮したものである。一方、水噴霧によって形成されたミスト領域MR以外における吸入塔2A周りの外気は、ミスト領域MRに比べると温度及び湿度が安定していることから、本実施形態の噴霧水量推定部37では、ミスト領域MR以外における吸入塔2A周りの外気の温度と湿度から、相対湿度が第1の設定湿度とするための噴霧水量を推定するようにしている。
In this embodiment, the temperature/humidity measuring device 35 is installed in the vicinity of the lower part of the suction tower 2A in order to reduce external influences such as wind direction and wind speed.
Here, in the present embodiment, the basic humidity control for forming the mist area MR is not the feedback control based on the measured temperature and humidity of the mist area MR itself, but the temperature of the outside air other than the mist area MR.・Feed-forward control based on humidity.
The reason for this is that since the mist area MR is formed by supplying spray water to the outside air with disturbance, the measurement position in the mist area MR (the position in the three-dimensional space including the height position) also affects the humidity. In addition, the direction of the sprayed water changes due to wind and other disturbances to the outside air, and the fluctuation of humidity may increase even at the same position. On the other hand, the outside air around the suction tower 2A outside the mist region MR formed by the water spray is more stable in temperature and humidity than in the mist region MR. From the temperature and humidity of the outside air around the suction tower 2A in areas other than the area MR, the amount of spray water for setting the relative humidity to the first set humidity is estimated.

次に、噴霧水量推定部37での噴霧水量の推定方法について説明する。
測定温度T0からその温度T0の飽和水蒸気量mx0を求める。飽和水蒸気量mx0は、湿り空気表などに基づく、公知の換算式や換算表データから算出すればよい。また、測定湿度H0(絶対湿度)に対応する水蒸気量をm0とする。
このとき、測定位置での相対湿度RH0(%)は、下記式で算出できる。
RH0 =m0/mx0 ×100 ・・・(1)式
ミスト領域MRの相対湿度も、水の噴霧がなければ、RH0に近い値となっている。しかし、水の噴霧によって温度低下が発生する。従って、噴霧後のミスト領域MRでの相対湿度RH1(%)については、例えば、下記のような考えから推定することが出来る。
Next, a method for estimating the amount of sprayed water in the sprayed water amount estimating section 37 will be described.
A saturated water vapor amount mx0 at the temperature T0 is obtained from the measured temperature T0. The saturated water vapor amount mx0 may be calculated from a known conversion formula or conversion table data based on a moist air table or the like. Let m0 be the amount of water vapor corresponding to the measured humidity H0 (absolute humidity).
At this time, the relative humidity RH0 (%) at the measurement position can be calculated by the following formula.
RH0=m0/mx0×100 (1) The relative humidity in the mist region MR is also close to RH0 if there is no spray of water. However, the water spray causes a temperature drop. Therefore, the relative humidity RH1 (%) in the mist region MR after spraying can be estimated, for example, from the following considerations.

すなわち、温度・湿度測定装置35が測定した測定温度T0から、噴霧により温度低下させた後の想定温度T1を想定し、その想定温度T1における飽和水蒸気量mx1を求める。また、温度・湿度測定装置35が測定した測定湿度H0(絶対湿度)に対応する水蒸気量をm0とし、水の噴霧により増加した増加分の水蒸気量をΔmとする。
すると、下記(2)式で、噴霧後の相対湿度RH1(%)を推定できる。
RH1(%) =(m0+Δm)/mx1 ×100 ・・・(2)式
そして、(2)式に基づき、噴霧後の相対湿度RH1が第1の設定湿度(例えば80%)となる、増加分の水蒸気量Δm、若しくは水蒸気量Δm分に応じた水量を、水噴霧量として求める。
That is, from the measured temperature T0 measured by the temperature/humidity measuring device 35, an assumed temperature T1 after the temperature is lowered by spraying is assumed, and the saturated water vapor amount mx1 at the assumed temperature T1 is obtained. Let m0 be the amount of water vapor corresponding to the measured humidity H0 (absolute humidity) measured by the temperature/humidity measuring device 35, and let Δm be the amount of water vapor increased by spraying water.
Then, the relative humidity RH1 (%) after spraying can be estimated by the following formula (2).
RH1 (%) = (m0 + Δm)/mx1 × 100 (2) Then, based on the formula (2), the relative humidity RH1 after spraying becomes the first set humidity (for example, 80%), the increase The amount of water vapor Δm or the amount of water corresponding to the amount of water vapor Δm is obtained as the water spray amount.

ここで、想定温度T1は、例えば次のようにして設定する。現在の測定湿度H0に対応する水蒸気量m0で、相対湿度RH0が第1の設定湿度(例えば80%)となる温度を、湿り空気表などに基づく公知の換算式や換算表データから算出し、その算出した温度を想定温度T1とする。この場合、想定温度T1が、実際の温度低下後の温度よりも低めに設定される可能性があるが、実際よりも低めの温度とすることで、より結露し難い水噴霧量を推定することができる。想定温度T1の想定方法は、これに限定されない。例えば、単純に、噴霧する水の温度に予め設定した係数(<1)を乗算した値を温度低下分ΔTとし、測定温度T0から温度低下分ΔTを減算した値を想定温度T1としても良い。また、後述の第2の温度・湿度測定装置36が測定した温度を想定温度T1として採用してもよい。 Here, the assumed temperature T1 is set, for example, as follows. Calculate the temperature at which the relative humidity RH0 becomes the first set humidity (for example, 80%) at the water vapor amount m0 corresponding to the current measured humidity H0 from a known conversion formula or conversion table data based on a humid air table, The calculated temperature is assumed temperature T1. In this case, there is a possibility that the assumed temperature T1 is set lower than the actual temperature after the temperature is lowered. can be done. The method for estimating the assumed temperature T1 is not limited to this. For example, the value obtained by simply multiplying the temperature of the water to be sprayed by a preset coefficient (<1) may be set as the temperature drop ΔT, and the value obtained by subtracting the temperature drop ΔT from the measured temperature T0 may be set as the assumed temperature T1. Also, a temperature measured by a second temperature/humidity measuring device 36, which will be described later, may be employed as the assumed temperature T1.

ここで、後述のように、本実施形態では、各水配管32を開閉することによって、噴霧ノズル30に供給する水量を階段状に変化するように調整している。
これを考慮して、本実施形態の噴霧水量推定部37は、噴霧水量を階段状に水量が増加する複数段数として設定しておく。段数TPは、供給する水配管32の本数に対応する。本実施形態では、階段状に増加する水量は等量として説明するが、各段に対応した設定水量(配管の径)が異なっていても良い。予め各段での水量が決まっていれば良い。
Here, as will be described later, in this embodiment, by opening and closing each water pipe 32, the amount of water supplied to the spray nozzle 30 is adjusted so as to change stepwise.
In consideration of this, the spray water amount estimator 37 of the present embodiment sets the spray water amount as a plurality of stages in which the water amount increases stepwise. The number of stages TP corresponds to the number of water pipes 32 to be supplied. In the present embodiment, the stepwise increase in water volume is assumed to be equal, but the set water volume (pipe diameter) corresponding to each step may be different. It suffices if the amount of water in each stage is determined in advance.

そして、本実施形態の噴霧水量推定部37では、測定した外気の温度T0と湿度H0の二つをパラメータとして、測定湿度を第1の設定湿度若しくは第1の設定湿度近傍となる段数TPを予め実験や理論式で求めて、その外気の測定温度と測定湿度の2つパラメータから段数TPを換算する換算式若しくはマトリックス表のデータを求め記憶しておく。例えば、測定した温度と湿度の2つのパラメータから相対湿度RHが第1の設定湿度までに低減可能な温度を算出し、それに応じた段数TPを実験値による噴霧水の有効蒸発率と、理論式(水噴霧前後空気の保有する熱量差と水の蒸発潜熱)で求められる温度低下に要する噴霧水量で予め推定して、マトリックスの段数TPを決定する。 Then, in the spray water amount estimating unit 37 of the present embodiment, the temperature T0 and the humidity H0 of the measured outside air are used as parameters, and the stage number TP at which the measured humidity is the first set humidity or near the first set humidity is set in advance. A conversion formula or matrix table data for converting the number of stages TP from the two parameters of the measured temperature and the measured humidity of the outside air is obtained by experiments or theoretical formulas and stored. For example, from the two parameters of measured temperature and humidity, the temperature at which the relative humidity RH can be reduced to the first set humidity is calculated. The stage number TP of the matrix is determined by estimating in advance the amount of sprayed water required for the temperature reduction obtained by (the difference in the amount of heat held by the air before and after the water spray and the latent heat of vaporization of water).

そして、噴霧水量推定部37は、実際に測定した外気の温度T0と湿度H0を入力し(図4:ステップS20)、入力した外気の温度T0と湿度H0をパラメータとして、設定した換算式若しくはマトリックス表のデータを参照して噴霧水量の対応する段数TPを求める(図4:ステップS30)。
例えば、段数TPを3段としたマトリックス表の例を図5に示す。
図5示すマトリックス表から分かるように、気温が高いほど、且つ測定湿度が低いほど、段数TPが高くなるように設定する。段数TPは4段以上であってもよい。
Then, the spray water amount estimating unit 37 inputs the actually measured outside air temperature T0 and humidity H0 ( FIG. 4 : step S20), and uses the entered outside air temperature T0 and humidity H0 as parameters to set a conversion formula or matrix. The data in the table is referred to and the number of stages TP corresponding to the amount of spray water is obtained (FIG. 4: step S30).
For example, FIG. 5 shows an example of a matrix table in which the number of stages TP is three.
As can be seen from the matrix table shown in FIG. 5, the higher the temperature and the lower the measured humidity, the higher the step number TP. The number of stages TP may be four or more.

また、噴霧水量推定部37は、噴霧停止判定部41から噴霧停止指令を入力すると(図4:ステップS10)、推定した噴霧水量をゼロ(段数TP=0)とし、噴霧停止判定部41から噴霧再開指令を入力するまで、推定した噴霧水量をゼロ(段数TP=0)に設定する(図4:ステップS40)。
水量調整部40は、水噴霧装置の噴霧ノズル30から噴霧される水量が、噴霧水量推定部37が推定した水量(例えば段数TPに対応する水量)となるように水量調整を行う。水量調整部40は、流量調整弁と流量制御部38とを備える。すなわち、水量調整部40は、水配管32に設けられた流量調整弁を有し、流量制御部38が、噴霧水量推定部37が求めた水量となる開度指令を流量調整弁に供給し、流量調整弁がその開度指令の開度となる。
Further, when a spray stop command is input from the spray stop determination unit 41 ( FIG. 4 : step S10), the spray water amount estimation unit 37 sets the estimated spray water amount to zero (step number TP=0), and the spray stop determination unit 41 The estimated amount of spray water is set to zero (step number TP=0) until a restart command is input ( FIG. 4 : step S40).
The water amount adjusting unit 40 adjusts the amount of water sprayed from the spray nozzle 30 of the water spray device so that the water amount estimated by the spray water amount estimating unit 37 (for example, the water amount corresponding to the number of stages TP). The water volume adjustment section 40 includes a flow rate adjustment valve and a flow rate control section 38 . That is, the water amount adjustment unit 40 has a flow rate adjustment valve provided in the water pipe 32, and the flow rate control unit 38 supplies the flow rate adjustment valve with an opening degree command corresponding to the amount of water obtained by the spray water amount estimation unit 37, The flow regulating valve becomes the opening of the opening instruction.

本実施形態では、図3に示すように、ノズルヘッダ31に接続する水配管32を回路的に2本並列に設け、各水配管32にそれぞれ開閉弁34を設け、その複数の開閉弁34で流量調整弁を構成させた例である。なお、ポンプ33からの各水配管32への水圧は同じ圧に設定されていて、その水配管32による水の供給量が一定となるように設定されている。これによって、その開閉弁34を開閉操作することで、噴霧ノズル30への水の供給量が変化しても水圧が一定となるように設定される。 In this embodiment, as shown in FIG. 3, two water pipes 32 connected to the nozzle header 31 are provided in parallel in a circuit, each water pipe 32 is provided with an on-off valve 34, and the plurality of on-off valves 34 It is an example in which a flow control valve is configured. The water pressure from the pump 33 to each water pipe 32 is set to the same pressure, and the water supply amount of the water pipe 32 is set to be constant. Thus, by opening and closing the on-off valve 34, the water pressure is set to be constant even if the amount of water supplied to the spray nozzle 30 changes.

そして、流量制御部38は、噴霧水量推定部37が求めた水量に対応する段数TP分に応じた数の開閉弁34に開指令を供給する。開閉弁34は閉を初期値とする。すなわち、降雨などによって湿度が高く段数TPが「0」であれば、2つの開閉弁34に共に閉指令を供給する。段数TPが「1」であれば、一方の開閉弁34にだけ開指令を供給し、段数TPが2以上であれば、2つの開閉弁34に共に開指令を供給する。ここで、2つの開閉弁34に共に閉指令を供給する場合には、水の噴霧を行わないのでポンプ33にも駆動停止指令を供給しても良い。
また、本実施形態では、過剰に水噴霧を行わないように、段数TPが3以上でも段数TPを2とみなして、2つの開閉弁34を開とするように設定している。水配管32を3本以上並列に配置すると共に各水配管32に開閉弁34を設けておき、段数TP分の数だけ開閉弁34を開とするように制御しても良い。
Then, the flow rate control unit 38 supplies open commands to the on-off valves 34 of the number corresponding to the stage number TP corresponding to the water amount obtained by the spray water amount estimating unit 37 . The on-off valve 34 is closed as an initial value. That is, when the humidity is high due to rainfall or the like and the step number TP is "0", both of the two on-off valves 34 are supplied with the closing command. If the stage number TP is "1", the open command is supplied to only one of the on-off valves 34, and if the stage number TP is 2 or more, the open commands are supplied to both the on-off valves 34. Here, when the close command is supplied to both the two on-off valves 34, the drive stop command may be supplied also to the pump 33 because water is not sprayed.
Further, in this embodiment, even if the stage number TP is 3 or more, the stage number TP is regarded as 2 and the two on-off valves 34 are set to be opened so as not to spray water excessively. Three or more water pipes 32 may be arranged in parallel, each water pipe 32 may be provided with an on-off valve 34, and control may be performed so that the on-off valves 34 are opened by the number corresponding to the number of stages TP.

図3のように、第2の温度・湿度測定装置36が、バグフィルター2の空気吸込み口21aの手前に設置されて、バグフィルター2に吸い込まれる空気の温度及び湿度を測定する。例えば第2の温度・湿度測定装置36を、取込用ダクト21Aの外壁面と円筒体21Bの内壁面との間に形成された円環状の空間より下方に位置する取込用ダクト21Aの外壁面に取り付ける。 As shown in FIG. 3, the second temperature/humidity measuring device 36 is installed in front of the air inlet 21a of the bag filter 2 to measure the temperature and humidity of the air sucked into the bag filter 2. FIG. For example, the second temperature/humidity measuring device 36 is positioned outside the intake duct 21A below the annular space formed between the outer wall surface of the intake duct 21A and the inner wall surface of the cylindrical body 21B. Attach to wall.

第2の温度・湿度測定装置36で、バグフィルター2の空気吸込み口21aから濾布24までの間に位置する通路内の温度及び湿度を測定するようにしても良い。すなわち、第2の温度・湿度測定装置36を、取込用ダクト21Aの外壁面と円筒体21Bの内壁面との間に形成された円環状の空間、取込用ダクト21A内、若しくは空気室22に設けても良い。但し、早めに温度及び湿度を取得することが好ましいため、バグフィルター2の空気吸込み口21aの手前で測定することが好ましい。第2の温度・湿度測定装置36をバグフィルター2の空気吸込み口21aから濾布24までの間に位置する通路に設ける場合であっても、取込用ダクト21Aの外壁面と円筒体21Bの内壁面との間に形成された円環状の空間に第2の温度・湿度測定装置36を設置することが好ましい。
そして、第2の温度・湿度測定装置36は、空気吸込み口21aから吸い込まれる空気の実際の温度及び湿度を測定する。
The second temperature/humidity measuring device 36 may measure the temperature and humidity in the passage located between the air inlet 21 a of the bag filter 2 and the filter cloth 24 . That is, the second temperature/humidity measuring device 36 is placed in an annular space formed between the outer wall surface of the intake duct 21A and the inner wall surface of the cylindrical body 21B, inside the intake duct 21A, or in an air chamber. 22 may be provided. However, since it is preferable to acquire the temperature and humidity early, it is preferable to measure before the air inlet 21 a of the bag filter 2 . Even if the second temperature/humidity measuring device 36 is provided in the passage located between the air suction port 21a of the bag filter 2 and the filter cloth 24, the outer wall surface of the intake duct 21A and the cylindrical body 21B It is preferable to install the second temperature/humidity measuring device 36 in an annular space formed between the inner wall surface.
Then, the second temperature/humidity measuring device 36 measures the actual temperature and humidity of the air sucked from the air suction port 21a.

噴霧停止判定部41は、第2の温度・湿度測定装置36が測定した温度と湿度を入力し(図6:ステップS100)、入力した温度と湿度に基づき、バグフィルター2の空気吸込み口21aから吸い込まれる空気の相対湿度RH2を算出する(図6:ステップS110)。更に、算出した相対湿度RH2が、予め設定した第2の設定湿度以上と判定したら(図6:ステップS120)、噴霧水量推定部37に噴霧停止指令を供給する(図6:ステップS130)。第2の設定湿度は、第1の設定湿度よりも高く、例えば90%に設定する。 The spray stop determination unit 41 inputs the temperature and humidity measured by the second temperature/humidity measuring device 36 (FIG. 6: step S100), and based on the input temperature and humidity, the air inlet 21a of the bag filter 2 A relative humidity RH2 of the sucked air is calculated ( FIG. 6 : step S110). Further, when it is determined that the calculated relative humidity RH2 is equal to or higher than the preset second set humidity (FIG. 6: step S120), a spray stop command is supplied to the spray water amount estimator 37 (FIG. 6: step S130). The second set humidity is higher than the first set humidity, and is set to 90%, for example.

更に、噴霧停止判定部41は、第2の温度・湿度測定装置36が測定した温度と湿度から算出した相対湿度RH2が予め設定した第3の設定湿度以下と判定したら(図6:ステップS140)、噴霧水量推定部37に噴霧再開指令を供給する(図6:ステップS150)。第3の設定湿度は、第2の設定湿度よりも低い値とし、例えば第1の設定湿度と同じ80%に設定する。
ここで、相対湿度RH2(%)は、例えば測定した温度からその温度の飽和水蒸気量MX2を公知の換算式や換算表データから算出し、算出した飽和水蒸気量MX2と測定湿度(絶対湿度)に対応する水蒸気量M2から、下記の式に基づき求める。
RH2(%) =(M2/MX2)×100
Furthermore, when the spray stop determination unit 41 determines that the relative humidity RH2 calculated from the temperature and humidity measured by the second temperature/humidity measuring device 36 is equal to or less than the preset third set humidity ( FIG. 6 : step S140). , to the spray water amount estimator 37 ( FIG. 6 : step S150). The third set humidity is set to a value lower than the second set humidity, for example, set to 80%, which is the same as the first set humidity.
Here, the relative humidity RH2 (%) is, for example, calculated from the measured temperature to the saturated water vapor amount MX2 at that temperature from a known conversion formula or conversion table data, and the calculated saturated water vapor amount MX2 and the measured humidity (absolute humidity) From the corresponding water vapor content M2, it is obtained based on the following formula.
RH2 (%) = (M2/MX2) x 100

(動作その他)
本実施形態では、バグフィルター2の上流に水冷塔を配置することなく、バグフィルター2の空気吸込み口21aを外気に開放した構成としている。そして、空気圧縮機1を駆動することで、空気(外気)が、バグフィルター2を介して空気圧縮機1に吸引される。
このとき、本実施形態では、バグフィルター2の空気吸込み口21aから吸引される空気のうちの少なくとも一部の空気が、噴霧水を噴霧してミスト領域MRを形成する湿度が高い空気(外気)となっている。バグフィルター2の空気吸込み口21aから吸引される空気の50%以上好ましくは90%以上が、ミスト領域MRを形成する湿度が高い空気であることが好ましい。
(Other operations)
In this embodiment, a water cooling tower is not arranged upstream of the bag filter 2, and the air suction port 21a of the bag filter 2 is open to the outside air. By driving the air compressor 1 , air (outside air) is sucked into the air compressor 1 through the bag filter 2 .
At this time, in the present embodiment, at least part of the air sucked from the air suction port 21a of the bag filter 2 is high humidity air (outside air) that sprays the spray water to form the mist region MR. It has become. It is preferable that 50% or more, preferably 90% or more of the air sucked from the air suction port 21a of the bag filter 2 is high humidity air that forms the mist region MR.

ミスト領域MRを形成する空気(外気)は、水の噴霧によって温度が低下すると共に、湿度が高い空気の状態で空気吸込み口21aからバグフィルター2内に取り込まれる。このとき、吸い込まれる空気は、バグフィルター2内に取り込まれる前にも気化熱によって温度低下すると共に、バグフィルター2内に取り込まれた後も当該空気が濾布24に到達するまでの移動中に、当該空気内の水蒸気が蒸発する際の気化熱によって空気の温度が低下する。水蒸気の蒸発は、空気の流速や気温が高いほど、また圧力が高いほど促進する。従って、外気温が高いほどミスト領域MRが目標とする相対湿度を高くなるように設定してもよい。 The air (outside air) that forms the mist region MR is taken into the bag filter 2 from the air inlet 21a in a state of high-humidity air while the temperature is lowered by spraying water. At this time, the temperature of the sucked air decreases due to the heat of vaporization before it is taken into the bag filter 2, and even after it is taken into the bag filter 2, the air moves until it reaches the filter cloth 24. , the temperature of the air decreases due to the heat of vaporization when the water vapor in the air evaporates. Evaporation of water vapor is accelerated by higher air velocity, higher temperature, and higher pressure. Therefore, the target relative humidity of the mist area MR may be set to be higher as the outside air temperature is higher.

ミスト領域MRの空気(外気)を取り込むことで、外気温よりも温度が低い空気が濾布24で除塵された後に、空気圧縮機1に供給される。すなわち、既存のバグフィルターを使用しても、空気圧縮機1に取り込まれる空気を効率的に冷やすことができる。
ここで、従来のようにバグフィルター2内に噴霧用のノズルを設置した場合、バグフィルター2内は、空気の吸引によって空気の流速が早くなっていることから、水蒸気の十分な蒸発を確保しようとすると、バグフィルター2内におけるノズル設置位置から濾布24までの経路が長くなるように設計するか、濾布24までの経路に応じてノズルの噴霧を抑える必要がある。
By taking in the air (outside air) in the mist area MR, air having a temperature lower than the outside air temperature is supplied to the air compressor 1 after dust is removed by the filter cloth 24 . That is, even if an existing bag filter is used, the air taken into the air compressor 1 can be efficiently cooled.
Here, when a nozzle for spraying is installed in the bag filter 2 as in the past, the flow velocity of the air inside the bag filter 2 increases due to the suction of air, so sufficient evaporation of water vapor should be ensured. Therefore, it is necessary to design the path from the nozzle installation position in the bag filter 2 to the filter cloth 24 to be long, or to suppress the nozzle spray according to the path to the filter cloth 24 .

これに対し、本実施形態では、バグフィルター2の外に存在する外気(空気)に対し水を噴霧することで、流速が遅い空気吸込み口21aまでの移動の間にも空気中の水蒸気の蒸発が発生し、更に、空気吸込み口21aに取り入れられるときから水蒸気の蒸発が発生する。このため、濾布24までに確実に空気中の水蒸気が十分に蒸発させるように設計することができる。なお、バグフィルター2内に噴霧ノズルを配置する発想の場合には、空気吸込み口21aから所定長さだけ濾布24側の位置にノズルを配置するため、空気吸込み口21aからノズル設置位置までの経路を蒸発用の経路として使用されない。 On the other hand, in the present embodiment, by spraying water onto the outside air (air) existing outside the bag filter 2, water vapor in the air evaporates even during movement to the air suction port 21a where the flow velocity is slow. is generated, and vaporization of water vapor occurs from the time it is taken into the air suction port 21a. Therefore, the filter cloth 24 can be designed to ensure that the water vapor in the air is sufficiently evaporated. In the case of the idea of arranging the spray nozzle inside the bag filter 2, since the nozzle is arranged at a position on the filter cloth 24 side by a predetermined length from the air suction port 21a, the distance from the air suction port 21a to the nozzle installation position is Do not use the path as a path for evaporation.

このように、バグフィルター2の空気吸込み口21aの手前など、空気吸込み口21aの周りに噴霧ノズル30を設置することで、水蒸気の十分な蒸発に必要な経路スペースが、既設のバグフィルター2のスペースで実現可能となる。更に、空気の気化熱による温度低下分をバグフィルター2内に設ける場合よりも大きく設計できて、より空気圧縮機1に取り込む空気を効率的に冷やすことが出来る。なお、噴霧ノズル30の噴霧方向は、噴霧した水が空気吸込み口21aに掛からないように、空気吸込み口21a側とは異なる方向に向けることが好ましい。このため、本実施形態では、噴霧ノズル30の噴霧方向を上方に設定している。なお、吸入塔2Aの天板部2Aaに屋根を設け、その屋根に噴霧ノズル30を支持させて、下方に向けて水を噴霧させるようにしても良い。屋根を設けた場合、吸い込む外気に対する風などによる外乱を抑制することに繋がる。 Thus, by installing the spray nozzle 30 around the air inlet 21a, such as in front of the air inlet 21a of the bag filter 2, the path space required for sufficient vaporization of water vapor can be reduced to the existing bag filter 2. available in space. Furthermore, the temperature drop due to the heat of vaporization of the air can be designed to be greater than in the case where the bag filter 2 is provided, and the air taken into the air compressor 1 can be cooled more efficiently. The spray direction of the spray nozzle 30 is preferably directed in a direction different from the side of the air inlet 21a so that the sprayed water does not splash on the air inlet 21a. Therefore, in this embodiment, the spray direction of the spray nozzle 30 is set upward. A roof may be provided on the top plate portion 2Aa of the suction tower 2A, and the roof may support the spray nozzle 30 to spray water downward. When a roof is provided, it leads to suppression of disturbance due to wind or the like to the outside air that is sucked in.

ここで、フィードフォワード制御で噴霧すると、ミスト領域MRを形成する空気(外気)に、飽和水蒸気量以上の水が噴霧される可能性がある。
飽和水蒸気量以上の水が噴霧されたとしても、本実施形態では、バグフィルター2の外である外気に対して水を噴霧するため、結露した水の一部はバグフィルター2の外で落下して、空気吸込み口21aからバグフィルター2内へ取り込まれる結露した水分の取込量を抑えることが出来る。
更に、本実施形態では、空気吸込み口21aから取り込む空気が、円環状の空間を一旦上昇させてから取込用ダクト21Aの上端開口部に移動して空気室22に向かう設計となっている。空気が、円環状の空間を上方に移動する際にも、結露した水滴のうち、取込用ダクト21A内への移動量が抑制されるようになっている。
Here, if spraying is performed by feedforward control, there is a possibility that the air (outside air) that forms the mist region MR will be sprayed with water that is equal to or greater than the saturated water vapor amount.
Even if the amount of water that is equal to or greater than the saturated water vapor is sprayed, in this embodiment, since the water is sprayed against the outside air outside the bag filter 2, part of the condensed water falls outside the bag filter 2. Therefore, the amount of condensed water taken into the bag filter 2 from the air inlet 21a can be suppressed.
Furthermore, in the present embodiment, the air taken in from the air suction port 21a is designed to move upward in the annular space, move to the upper end opening of the intake duct 21A, and flow toward the air chamber 22. As shown in FIG. Even when the air moves upward in the annular space, the amount of condensed water droplets moving into the intake duct 21A is suppressed.

ここで、バグフィルター2への空気取込までの気化熱による温度低下分や、飽和水蒸気量以上の水が噴霧された場合における結露した水の取込防止などの観点を考えると、平面視における、空気吸込み口21aから噴霧ノズル30の位置までの距離は、例えば、好ましくは50cm以上、より好ましくは1m以上離す方が良い。但し、余り離すとミスト領域MRを形成した空気の空気吸込み口21aからの取込量が十分でないおそれもあるため、平面視における、空気吸込み口21aからノズル位置までの距離は、例えば5m以下、より好ましくは3m以下とする方が良い。 Here, considering the temperature drop due to the heat of vaporization when air is taken into the bag filter 2, and the prevention of the intake of condensed water when the amount of water above the saturated water vapor is sprayed, The distance from the air suction port 21a to the position of the spray nozzle 30 is, for example, preferably 50 cm or more, more preferably 1 m or more. However, if the distance is too large, the intake amount of the air forming the mist region MR from the air suction port 21a may not be sufficient. More preferably, it should be 3 m or less.

また、蒸発ができなかった水滴がバグフィルター2へ持ち込まれ、濾布24に水滴が付着すると、通気性悪化による圧力損失が増大する。これに対し、本実施形態では、外気の温度・湿度から求められる相対湿度が第1の設定湿度となるように噴霧水の水量を調整している。これによって、ミスト領域MRに飽和水蒸気量以上の水を供給されることが抑制される。更に、バグフィルター2の空気吸込み直近に第2の温度・湿度測定装置36を設け、第2の温度・湿度測定装置36の測定値に基づく相対湿度が第2の設定湿度以上となったら、水の噴霧を停止するフィードバック制御によって、バグフィルター2内の空気が結露することを防止している。なお、第2の温度・湿度測定装置36の測定値に基づく相対湿度が、第2の設定湿度以上となった後に、バグフィルター2内に取り込まれる空気の相対湿度が第3の設定湿度以下となって、バグフィルター2内の湿度雰囲気が低下したら、外気への水噴霧を再開する。 Moreover, when the water droplets that have not been evaporated are carried into the bag filter 2 and adhere to the filter cloth 24, the pressure loss increases due to deterioration of air permeability. In contrast, in the present embodiment, the amount of spray water is adjusted so that the relative humidity obtained from the temperature and humidity of the outside air becomes the first set humidity. This suppresses the supply of water in excess of the saturated water vapor amount to the mist region MR. Furthermore, a second temperature/humidity measuring device 36 is provided in the vicinity of the air intake of the bag filter 2, and when the relative humidity based on the measured value of the second temperature/humidity measuring device 36 becomes equal to or higher than the second set humidity, the water is The feedback control to stop the spraying prevents the air in the bag filter 2 from condensing. After the relative humidity based on the measured value of the second temperature/humidity measuring device 36 becomes equal to or higher than the second set humidity, the relative humidity of the air taken into the bag filter 2 becomes equal to or less than the third set humidity. Then, when the humidity atmosphere inside the bag filter 2 is lowered, the spraying of water to the outside air is resumed.

ここで、第2の温度・湿度測定装置36の測定値に基づく相対湿度だけで水噴霧の制御することも可能ではあるが、制御の切替えが頻繁に起こる可能性があり、また取り込まれる空気の湿度自体の変動も大きくなる可能性がある。
また、本実施形態では、水配管32を複数並列状態として、各水配管32へのポンプ33の吐出圧を一定に設定しつつ、各水配管32の流路のオンオフによって、ノズルへの高圧水の圧力が一定となるように調整している。
これによって、水噴霧時の水滴径を所定の粒径の範囲に安定させることが可能となる。
Here, although it is possible to control the water spray only based on the relative humidity measured by the second temperature/humidity measuring device 36, there is a possibility that control switching will occur frequently, and the amount of air that is taken in will increase. Humidity itself can also vary greatly.
Further, in this embodiment, a plurality of water pipes 32 are arranged in parallel, and while the discharge pressure of the pump 33 to each water pipe 32 is set constant, the flow path of each water pipe 32 is turned on and off to supply high-pressure water to the nozzle. It is adjusted so that the pressure of is constant.
As a result, it becomes possible to stabilize the water droplet diameter during water spraying within a predetermined particle diameter range.

ここで、噴霧水の仕様粒子径により算出された蒸発時間を確保するように噴霧ノズル30の位置を決定するが、粒子径が仕様値より大きくなると、濾布24に到達するまでに空気中の水蒸気が十分に蒸発できない可能性がある。
これに対し、本実施形態では、水噴霧時の水滴径を安定させることで、より確実に、濾布24に到達するまでに空気中の水蒸気を十分に蒸発させることが可能となる。
またこの構成によれば、調整弁等での水量制御が不要となり、減圧ロスが生じないか小さい。
Here, the position of the spray nozzle 30 is determined so as to ensure the evaporation time calculated from the specified particle size of the spray water. Water vapor may not evaporate sufficiently.
On the other hand, in the present embodiment, by stabilizing the water droplet diameter during water spraying, it becomes possible to sufficiently evaporate the water vapor in the air before reaching the filter cloth 24 more reliably.
Further, according to this configuration, there is no need to control the amount of water using a regulating valve or the like, and there is no or little decompression loss.

ここで、前記構成の空気分離装置において、外気温度、バグフィルター2における第2の温度・湿度測定装置36の測定に基づくバグフィルター2に取り込まれる空気の相対湿度と、第2の温度・湿度測定装置36が測定した温度である吸込温度の変化について求めてみた。その結果を図7に示す。なお、この例は夏期に実施したものである。
図7から分かるように、本実施形態を採用すると、バグフィルター2に取り込まれた空気の相対湿度が約80%~90%の範囲に制御されて、結露を起こしていなかった。また、外気温度に対して吸い込み温度が低くなっているので、夏季の製造能力を高めることができ、更に空気圧縮機1の電力使用量を削減することができた。
Here, in the air separation device having the above configuration, the outside air temperature, the relative humidity of the air taken into the bag filter 2 based on the measurement of the second temperature/humidity measuring device 36 in the bag filter 2, and the second temperature/humidity measurement A change in the intake temperature, which is the temperature measured by the device 36, was sought. The results are shown in FIG. It should be noted that this example was carried out in the summer.
As can be seen from FIG. 7, when this embodiment is employed, the relative humidity of the air taken into the bag filter 2 is controlled within a range of about 80% to 90%, and dew condensation does not occur. In addition, since the suction temperature is lower than the outside air temperature, the production capacity in summer can be increased, and the power consumption of the air compressor 1 can be reduced.

1 空気圧縮機
2 バグフィルター
2A 原料空気吸入塔
2Aa 天板部
21 空気取り入れ部
21A 取込用ダクト
21B 円筒体
21a 空気吸込み口
22 空気室
23 濾布収容室
23A 開口
24 濾布
25 集塵用ホッパー
30 噴霧ノズル
31 ノズルヘッダ
32 水配管
33 ポンプ
34 開閉弁
35 温度・湿度測定装置
36 第2の温度・湿度測定装置
37 噴霧水量推定部
38 流量制御部
40 水量調整部
41 噴霧停止判定部
MR ミスト領域
1 Air Compressor 2 Bag Filter 2A Raw Air Intake Tower 2Aa Top Plate Part 21 Air Intake Part 21A Intake Duct 21B Cylindrical Body 21a Air Intake Port 22 Air Chamber 23 Filter Cloth Storage Chamber 23A Opening 24 Filter Cloth 25 Dust Collection Hopper 30 Spray nozzle 31 Nozzle header 32 Water pipe 33 Pump 34 On-off valve 35 Temperature/humidity measuring device 36 Second temperature/humidity measuring device 37 Spray water amount estimation unit 38 Flow control unit 40 Water amount adjustment unit 41 Spray stop determination unit MR Mist region

Claims (4)

空気を圧縮する空気圧縮機と、
外気に開放された空気吸込み口から空気を取り込み、濾布で除塵後の空気を前記空気圧縮機に供給するバグフィルターと、
前記バグフィルターの空気吸込み口の周囲に存在する外気に対し水を噴霧して、前記空気吸込み口の周りに湿度が高い空気領域であるミスト領域を形成するミスト領域形成装置とを有し、
前記ミスト領域形成装置は、
前記外気に水を噴霧する水噴霧装置と、
前記水を噴霧する位置とは離れた位置での前記水噴霧装置による水の噴霧に影響が小さいと考えられる外気の温度及び湿度を測定する温度・湿度測定装置と、
前記温度・湿度測定装置が測定した温度及び湿度から、前記水を噴霧後の相対湿度が予め設定した第1の設定湿度となる噴霧水量を推定する噴霧水量推定部と、
前記水噴霧装置から噴霧される水量を前記噴霧水量推定部が推定した噴霧水量となるように前記水噴霧装置に供給される水量の調整を行う水量調整部と、
前記空気吸込み口の手前、又は前記空気吸込み口から前記濾布までの間に位置する通路内の温度及び湿度を測定する第2の温度・湿度測定装置と、
前記第2の温度・湿度測定装置が測定した温度及び湿度に基づき前記空気吸込み口から吸い込まれる空気の相対湿度を算出し、その算出した相対湿度が予め設定した第2の設定湿度以上と判定したら、前記噴霧水量推定部に対し推定する噴霧水量をゼロに設定する停止指令を供給する噴霧停止判定部と、
を備えることを特徴とする空気分離装置。
an air compressor for compressing air;
a bag filter that takes in air from an air suction port that is open to the outside air and supplies the air after removing dust with a filter cloth to the air compressor;
a mist area forming device that sprays water onto the outside air existing around the air inlet of the bag filter to form a mist area that is an air area with high humidity around the air inlet;
The mist area forming device is
a water spray device for spraying water to the outside air;
a temperature/humidity measuring device for measuring the temperature and humidity of the outside air , which is considered to have little effect on the spraying of water by the water spraying device at a position distant from the position where the water is sprayed;
a spray water amount estimating unit for estimating a spray water amount at which the relative humidity after spraying the water becomes a preset first set humidity from the temperature and humidity measured by the temperature/humidity measuring device;
a water amount adjustment unit that adjusts the amount of water supplied to the water spray device so that the amount of water sprayed from the water spray device becomes the spray water amount estimated by the spray water amount estimation unit;
a second temperature/humidity measuring device for measuring the temperature and humidity in a passage positioned in front of the air suction port or between the air suction port and the filter cloth;
Calculate the relative humidity of the air sucked from the air inlet based on the temperature and humidity measured by the second temperature/humidity measuring device, and determine that the calculated relative humidity is equal to or higher than the preset second set humidity , a spray stop determination unit that supplies a stop command for setting the estimated spray water amount to zero to the spray water amount estimation unit;
An air separation device comprising:
前記水噴霧装置は、前記空気吸込み口の周囲に存在する外気に向けて水を噴霧する噴霧ノズルと、その噴霧ノズルに水を圧送するポンプと、を備え、
前記水量調整部は、前記噴霧ノズルと前記ポンプとの間に並列に配置された複数の水配管と、各水配管にそれぞれ介装された複数の開閉弁と、前記噴霧水量推定部が推定した噴霧水量となるように前記複数の開閉弁の各開閉を制御する流量制御部と、を備えることを特徴とする請求項1に記載した空気分離装置。
The water spray device includes a spray nozzle that sprays water toward the outside air existing around the air inlet, and a pump that pumps water to the spray nozzle,
The water amount adjusting unit includes a plurality of water pipes arranged in parallel between the spray nozzle and the pump, a plurality of on-off valves respectively interposed in each water pipe, and the spray water amount estimating unit estimated 2. The air separation apparatus according to claim 1, further comprising a flow rate control unit that controls opening and closing of each of the plurality of on-off valves so that the amount of spray water is obtained.
前記ポンプの吐出圧を一定に設定したことを特徴とする請求項2に記載した空気分離装置。 3. The air separation apparatus according to claim 2, wherein the discharge pressure of said pump is set constant. バグフィルターの濾布で除塵後の空気を空気圧縮機にて圧縮する工程を有する空気分離方法であって、
前記バグフィルターの空気吸込み口を外気に開放し、
前記空気吸込み口の周囲に存在する外気に対し水を噴霧することで湿度が高くなった外気を、前記空気吸込み口から吸い込む空気の少なくとも一部とし、
前記外気に対する水の噴霧は、水を噴霧する位置とは離れた位置での前記水の噴霧に影響が小さいと考えられる外気の温度及び湿度を測定し、その測定した温度及び湿度から水を噴霧後の相対湿度が予め設定した第1の設定湿度となる噴霧水量を推定し、その推定した噴霧水量に調整され、
更に、前記空気吸込み口の手前又は前記空気吸込み口から前記濾布までの間に位置する通路内の温度及び湿度を測定し、その測定した温度及び湿度に基づき前記空気吸込み口から吸い込まれる空気の相対湿度を算出し、その算出した相対湿度が予め設定した第2の設定湿度以上と判定したら、前記外気に対する水の噴霧を停止することを特徴とする空気分離方法。
An air separation method comprising a step of compressing air after dust removal with a filter cloth of a bag filter with an air compressor,
opening the air intake port of the bag filter to the outside air;
At least a part of the air sucked from the air suction port is used as the outside air whose humidity is increased by spraying water on the outside air existing around the air suction port;
The spraying of water to the outside air is performed by measuring the temperature and humidity of the outside air , which are considered to have little effect on the spraying of water at a position distant from the position where the water is sprayed, and spraying water from the measured temperature and humidity. After estimating the amount of spray water at which the relative humidity is the preset first set humidity, the amount of spray water is adjusted to the estimated amount,
Furthermore, the temperature and humidity in a passage located in front of the air suction port or between the air suction port and the filter cloth are measured, and the temperature and humidity of the air sucked from the air suction port are measured based on the measured temperature and humidity. An air separation method, comprising: calculating a relative humidity, and stopping spraying water to the outside air when the calculated relative humidity is determined to be equal to or higher than a preset second set humidity.
JP2019022774A 2019-02-12 2019-02-12 Air separation device and air separation method Active JP7253182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022774A JP7253182B2 (en) 2019-02-12 2019-02-12 Air separation device and air separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022774A JP7253182B2 (en) 2019-02-12 2019-02-12 Air separation device and air separation method

Publications (2)

Publication Number Publication Date
JP2020133907A JP2020133907A (en) 2020-08-31
JP7253182B2 true JP7253182B2 (en) 2023-04-06

Family

ID=72262764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022774A Active JP7253182B2 (en) 2019-02-12 2019-02-12 Air separation device and air separation method

Country Status (1)

Country Link
JP (1) JP7253182B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255863A (en) 2006-03-27 2007-10-04 Jfe Steel Kk Oxygen producing equipment and method
JP2010236724A (en) 2009-03-30 2010-10-21 Ikeuchi:Kk Method for controlling spraying of nozzle
US20170211578A1 (en) 2013-12-10 2017-07-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas compression process with introduction of excess refrigerant at compressor inlet
JP2018525556A (en) 2015-06-24 2018-09-06 エーエーエフ・リミテッド System that lowers the intake air temperature of the device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948097B2 (en) * 2006-09-12 2012-06-06 能美防災株式会社 Temperature drop spray system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255863A (en) 2006-03-27 2007-10-04 Jfe Steel Kk Oxygen producing equipment and method
JP2010236724A (en) 2009-03-30 2010-10-21 Ikeuchi:Kk Method for controlling spraying of nozzle
US20170211578A1 (en) 2013-12-10 2017-07-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas compression process with introduction of excess refrigerant at compressor inlet
JP2018525556A (en) 2015-06-24 2018-09-06 エーエーエフ・リミテッド System that lowers the intake air temperature of the device

Also Published As

Publication number Publication date
JP2020133907A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP4311415B2 (en) COOLING DEVICE, GAS TURBINE SYSTEM USING COOLING DEVICE, HEAT PUMP SYSTEM USING COOLING MECHANISM, COOLING METHOD, COOLING DEVICE OPERATION METHOD
JP5097852B1 (en) Air conditioning method and air conditioning apparatus
JP6330138B2 (en) Dehumidifier
US8490416B2 (en) Method of cooling a metal strip traveling through a cooling section of a continuous heat treatment line, and an installation for implementing said method
JP2020521098A5 (en)
US8371560B2 (en) Method and device for exchanging mass and energy between gas and liquid
JP2013213616A (en) Evaporative cooling device and method of controlling the same
JP2009236370A (en) Intake air cooling device for air cooled type condenser
JPH0861844A (en) Method and equipment for restarting sub-column for separating argon and oxygen by distilation
KR100924960B1 (en) A vaporization humidification device
JP2008175149A (en) Suction air spray device for compressor
JP7253182B2 (en) Air separation device and air separation method
KR20110069253A (en) A vaporization humidification device
JP2009133318A (en) System having compressor equipped with multiple middle coolers, and cooling method
JP2002322916A (en) Cooling apparatus of gas turbine suction air
US20160003508A1 (en) Evaporator distribution system and method
KR20110107571A (en) Cooling tower
US20140112834A1 (en) System and method for controlling scale build-up in a wfgd
JP2009300049A (en) Temperature and humidity adjusting device
JPS605269Y2 (en) Fully evaporative gas cooling tower
KR102020501B1 (en) Cooling Tower of air separation plant for ironworks and Driving Method thereof
CN113062799B (en) Humidification and emission reduction device of gas turbine and control method thereof
CN111744956B (en) Hot rolling mill and hot rolling unit
JPH0733862Y2 (en) Gas supply device for vacuum chamber
JP2010227864A (en) Method for operating dust collector, and dust collector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7253182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150