JP7252295B2 - Ophthalmic device and ophthalmic measurement method - Google Patents

Ophthalmic device and ophthalmic measurement method Download PDF

Info

Publication number
JP7252295B2
JP7252295B2 JP2021167605A JP2021167605A JP7252295B2 JP 7252295 B2 JP7252295 B2 JP 7252295B2 JP 2021167605 A JP2021167605 A JP 2021167605A JP 2021167605 A JP2021167605 A JP 2021167605A JP 7252295 B2 JP7252295 B2 JP 7252295B2
Authority
JP
Japan
Prior art keywords
measurement
eye
learning
situation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021167605A
Other languages
Japanese (ja)
Other versions
JP2022001308A (en
Inventor
央 塚田
亮輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020203811A external-priority patent/JP6961065B2/en
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2021167605A priority Critical patent/JP7252295B2/en
Publication of JP2022001308A publication Critical patent/JP2022001308A/en
Application granted granted Critical
Publication of JP7252295B2 publication Critical patent/JP7252295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、眼科装置及び眼科測定方法に関する。 The present invention relates to an ophthalmologic apparatus and an ophthalmologic measurement method.

眼科装置では、被検眼に対する測定光学系の位置を自動で調整するオートアライメントを行うものが提案されている(例えば、特許文献1参照)。この眼科装置は、オートアライメントされた測定光学系により、自動で被検眼の眼屈折力や角膜形状等の眼特性(光学特性)を測定(検査)する。 An ophthalmologic apparatus that performs auto-alignment for automatically adjusting the position of a measurement optical system with respect to an eye to be examined has been proposed (see, for example, Patent Document 1). This ophthalmologic apparatus automatically measures (inspects) eye characteristics (optical characteristics) such as eye refractive power and corneal shape of an eye to be examined by an auto-aligned measurement optical system.

特開2016-49283号公報JP 2016-49283 A

ところで、上記した従来の眼科装置では、疾病等により被検眼の状態が特殊である等によりオートアライメントが行えなかったり、オートアライメントは成功しても露光不足等を生じたりして、眼特性を自動で測定できない状況がある。ここで、従来の眼科装置は、予め定められた測定手順に沿って自動で測定を行っているので、上記した状況に対しては何度実行しても自動で測定できない可能性が高い。このため、従来の眼科装置では、被検眼の眼特性を自動で測定できる状況に制限が生じてしまう。 However, in the above-described conventional ophthalmologic apparatus, auto-alignment cannot be performed due to a special condition of the eye to be examined due to illness or the like, or even if auto-alignment succeeds, insufficient exposure may occur. There are situations where measurement is not possible with Here, since the conventional ophthalmologic apparatus automatically performs measurement according to a predetermined measurement procedure, there is a high possibility that automatic measurement cannot be performed in the above-described situation no matter how many times the measurement is performed. For this reason, conventional ophthalmologic apparatuses are limited in situations in which the ocular characteristics of an eye to be examined can be automatically measured.

本発明は、上記の事情に鑑みて為されたもので、被検眼の眼特定を自動で測定できる状況を拡げ、測定性能を向上させることを目的とするものである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to expand the conditions in which eye identification of an eye to be examined can be automatically measured, and to improve measurement performance.

上記の目的を達成するため、本願に係る眼科装置は、被検眼の眼特性を測定する眼特性測定部と、前記眼特性測定部で測定を行ったときの測定条件を取得する測定条件取得部と、予め定められた測定手順に沿って前記眼特性測定部を制御する制御部と、前記測定手順では眼特性の測定が行えない状況での前記測定条件、前記被検眼の状況に関する状況データ、及び眼科装置本体のモダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する学習部と、を備え、前記制御部は、前記測定手順では前記被検眼の眼特性の測定が行えない状況となったとき、前記学習部で作成した前記学習測定条件から前記状況に対応する学習測定条件を抽出し、該学習測定条件に基づいて前記眼特性測定部を制御して、前記被検眼の眼特性の測定を行うことを特徴とする。 In order to achieve the above object, an ophthalmologic apparatus according to the present application includes an eye characteristic measuring unit that measures the eye characteristics of an eye to be examined, and a measurement condition acquisition unit that acquires measurement conditions when the eye characteristics measuring unit performs measurement. a control unit that controls the eye characteristics measuring unit according to a predetermined measurement procedure; the measurement conditions in a situation where the eye characteristics cannot be measured in the measurement procedure; and a modality of an ophthalmologic apparatus main body, and learning measurement for avoiding a situation in which measurement cannot be performed based on the measurement conditions, the situation data, and the modality in a situation in which the eye characteristics are appropriately measured in the measurement procedure. a learning unit that generates a condition, and when a situation arises in which measurement of the eye characteristics of the subject eye cannot be performed in the measurement procedure, the control unit learns the situation from the learned measurement condition created by the learning unit. is extracted, and based on the learned measurement condition, the eye characteristics measuring unit is controlled to measure the eye characteristics of the subject's eye.

また、本願に係る眼科測定方法は、上記眼科装置で行われる眼科測定方法であって、予め定められた測定手順に沿って被検眼の眼特性を測定する工程と、前記眼特性を測定するときの測定条件を取得する工程と、前記被検眼の状況に関する状況データ、及び前記眼科装置本体のモダリティを取得する工程と、眼特性の測定が行えない状況での前記測定条件、前記状況データ、及び前記モダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する工程と、前記眼特性の測定が行えない状況となったときに、前記学習測定条件を生成する工程で生成された前記学習測定条件から、前記状況に対応した前記学習測定条件を抽出し、該学習測定条件に基づいて前記被検眼の眼特性を測定する工程と、を有することを特徴とする。 Further, an ophthalmologic measurement method according to the present application is an ophthalmologic measurement method performed by the ophthalmologic apparatus, comprising a step of measuring ocular characteristics of an eye to be examined according to a predetermined measurement procedure, and a step of measuring the ocular characteristics. a step of acquiring situation data relating to the condition of the eye to be examined and the modality of the ophthalmologic apparatus main body; and a step of acquiring the measurement conditions, the situation data, and Based on the modality, the measurement condition, the situation data, and the modality in a situation in which the eye characteristics are appropriately measured in the measurement procedure, a learned measurement condition is generated to avoid a situation in which measurement cannot be performed. and extracting the learning measurement condition corresponding to the situation from the learning measurement condition generated in the step of generating the learning measurement condition when the eye characteristic cannot be measured. and measuring the eye characteristics of the subject's eye based on the learned measurement conditions.

本発明によれば、被検眼の眼特定を自動で測定できる状況を拡げ、測定性能を向上させることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to expand the condition which can measure eye identification of a to-be-tested eye automatically, and to improve a measurement performance.

実施例1に係る眼科装置の全体構成を示す概略図である。1 is a schematic diagram showing the overall configuration of an ophthalmologic apparatus according to Example 1. FIG. 図1の眼科装置の機能構成の一例を示す機能ブロック図である。2 is a functional block diagram showing an example of the functional configuration of the ophthalmologic apparatus of FIG. 1; FIG. 図1の眼科装置本体のシステム構成の一例を示すブロック図である。2 is a block diagram showing an example of the system configuration of the ophthalmologic apparatus main body of FIG. 1; FIG. 図1の眼科装置本体の光学的な構成の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of the optical configuration of the main body of the ophthalmologic apparatus of FIG. 1; 図1の眼科装置本体で実行される眼特性測定処理(眼特性測定方法)の流れを示すフローチャートである。2 is a flowchart showing the flow of eye characteristic measurement processing (eye characteristic measurement method) executed by the ophthalmologic apparatus main body of FIG. 1; 図1のクラウドサーバで実行される学習処理(学習方法)の流れを示すフローチャートである。2 is a flow chart showing the flow of learning processing (learning method) executed by the cloud server of FIG. 1; 図6Aのデータ蓄積処理の流れを示すフローチャートである。6B is a flow chart showing the flow of data accumulation processing in FIG. 6A; 図6Aの学習処理の流れを示すフローチャートである。6B is a flow chart showing the flow of the learning process in FIG. 6A; 図6Aの人工知能エンジン配信処理の流れを示すフローチャートである。6B is a flow chart showing the flow of the artificial intelligence engine delivery process of FIG. 6A; ニューラルネットワークを応用して学習された人工知能エンジンの構成例を示す。A configuration example of an artificial intelligence engine learned by applying a neural network is shown.

以下に、本開示に係る眼科装置の実施の形態について図面を参照しつつ説明する。 An embodiment of an ophthalmologic apparatus according to the present disclosure will be described below with reference to the drawings.

実施例1に係る眼科装置100は、クラウドコンピューティングサービスを利用して構築され、図1に示すように、クラウド2上に設けられたクラウドサーバ3と、複数の眼科装置本体10とが、通信ネットワーク1を介して相互に接続されている。 The ophthalmologic apparatus 100 according to the first embodiment is constructed using a cloud computing service, and as shown in FIG. They are interconnected via a network 1 .

通信ネットワーク1は、クラウドサーバ3と眼科装置本体10との接続を制御するものであれば、特に限定されることはない。通信ネットワーク1として、例えば、インターネット等の公衆電話回線、専用電話回線、光通信回線、PAN(Personal Area Network)、LAN(Local Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、Wimax(Worldwide Interoperability for Microwave Access)、携帯電話網等の無線ネットワーク等を用いることができる。 The communication network 1 is not particularly limited as long as it controls connection between the cloud server 3 and the main body 10 of the ophthalmologic apparatus. As the communication network 1, for example, a public telephone line such as the Internet, a dedicated telephone line, an optical communication line, a PAN (Personal Area Network), a LAN (Local Area Network), a MAN (Metropolitan Area Network), a WAN (Wide Area Network), Wimax (Worldwide Interoperability for Microwave Access), a wireless network such as a mobile phone network, or the like can be used.

次に、クラウドサーバ3及び眼科装置本体10の機能について、図2の機能ブロック図を参照して説明する。この図2に示すように、クラウドサーバ3は、例えばデータセンター4に設置されている。 Next, functions of the cloud server 3 and the ophthalmologic apparatus main body 10 will be described with reference to the functional block diagram of FIG. As shown in FIG. 2, the cloud server 3 is installed in a data center 4, for example.

クラウドサーバ3は、記憶部5と学習部6とを有している。記憶部5は、眼科装置本体10から通信ネットワーク1を介して送信される測定条件データや状況データ等の眼科測定情報(エラーログデータ)を蓄積するデータ蓄積部7と、学習部6によってアップデートされた人工知能エンジンを記憶する人工知能エンジン記憶部8とを有している。 The cloud server 3 has a storage section 5 and a learning section 6 . The storage unit 5 is updated by a data accumulation unit 7 for accumulating ophthalmologic measurement information (error log data) such as measurement condition data and situation data transmitted from the ophthalmologic apparatus main body 10 via the communication network 1 and a learning unit 6 . and an artificial intelligence engine storage unit 8 for storing the artificial intelligence engine.

学習部6は、いわゆる人工知能(AI(Artificial Intelligence))から構成される。学習部6は、データ蓄積部7に蓄積されたエラーログデータに基づいて、エラーを回避するためのエラー回避データ(学習測定条件データ)を生成する。エラー回避情報は、予め定められた測定シーケンス(測定手順)では眼特性を測定できない状況での被検眼Eの眼特性を測定する方法(回避策)である。学習部6は、作成したエラー回避情報に基づいて、人工知能エンジン記憶部8に記憶された人工知能エンジンをアップデートする。アップデートされた人工知能エンジンは、眼科装置本体10からの更新要求により、又は定期的に自動で通信ネットワーク1を介して眼科装置本体10に送信される。 The learning unit 6 is composed of so-called artificial intelligence (AI). Based on the error log data accumulated in the data accumulation unit 7, the learning unit 6 generates error avoidance data (learning measurement condition data) for avoiding errors. The error avoidance information is a method (avoidance measure) for measuring the eye characteristics of the subject's eye E in a situation where the eye characteristics cannot be measured by a predetermined measurement sequence (measurement procedure). The learning unit 6 updates the artificial intelligence engine stored in the artificial intelligence engine storage unit 8 based on the created error avoidance information. The updated artificial intelligence engine is sent to the ophthalmologic device main body 10 via the communication network 1 automatically or periodically by an update request from the ophthalmologic device main body 10 .

眼科装置100がまだ使用されていない初期状態においては、測定ができない状況が発生しておらず、エラーログデータの作成や送信が行われていないため、学習部6では学習が行われておらず、エラー回避情報は蓄積されていない。眼科装置100が使用されて、眼特性が測定できない状況が発生してエラーログデータが送信されることで、学習が開始され、様々な状況に対応したエラー回避情報が蓄積されていく。しかしながら、予めいくつかの測定できない状況を想定して学習部6に学習させ、エラー回避情報を蓄積した人工知能エンジンを生成して人工知能エンジン記憶部8に記憶し、眼科装置本体10に配信しておくこともできる。 In the initial state where the ophthalmologic apparatus 100 is not yet in use, a situation in which measurement is not possible has not occurred, and error log data has not been created or transmitted, so learning is not performed by the learning unit 6. , error avoidance information is not accumulated. When the ophthalmologic apparatus 100 is used and a situation occurs in which eye characteristics cannot be measured and error log data is transmitted, learning is started, and error avoidance information corresponding to various situations is accumulated. However, the learning unit 6 is caused to learn in advance by assuming several situations in which measurement is not possible, and an artificial intelligence engine that accumulates error avoidance information is generated, stored in the artificial intelligence engine storage unit 8, and delivered to the ophthalmologic apparatus main body 10. You can also keep

データ蓄積部7と人工知能エンジン記憶部8とは、例えば、接続される眼科装置本体10の機種ごとに設けることができる。この場合、学習部6が、機種ごとのデータ蓄積部7のエラーログデータに基づいて、機種ごとに人工知能エンジンをアップデートする。これにより、同機種の各眼科装置本体10での様々な眼特性が測定できない状況に対する学習結果を共有することができる。また、様々な状況でのエラーログデータに基づいて学習するため、学習部6の学習性能が向上し、生成される人工知能エンジンの性能も向上させることができる。このような人工知能エンジンを各眼科装置本体10で使用することで、被検眼Eの眼特定を自動で測定できる状況を拡げ、測定性能を向上させることができる。 The data accumulation unit 7 and the artificial intelligence engine storage unit 8 can be provided, for example, for each model of the connected ophthalmologic apparatus main body 10 . In this case, the learning unit 6 updates the artificial intelligence engine for each model based on the error log data in the data storage unit 7 for each model. As a result, it is possible to share learning results for situations in which various eye characteristics cannot be measured in each ophthalmologic apparatus main body 10 of the same model. In addition, since learning is performed based on error log data in various situations, the learning performance of the learning unit 6 is improved, and the performance of the artificial intelligence engine generated can also be improved. By using such an artificial intelligence engine in each ophthalmologic apparatus main body 10, it is possible to expand the situation in which the eye identification of the subject's eye E can be automatically measured, and improve the measurement performance.

また、データ蓄積部7と人工知能エンジン記憶部8とを、眼科装置本体10ごとに設けることもできる。この場合、学習部6は、眼科装置本体10ごとに、エラーログデータを解析して学習し、それぞれの人工知能エンジンをアップデートする構成とすることもできる。 Also, the data storage unit 7 and the artificial intelligence engine storage unit 8 can be provided for each ophthalmologic apparatus main body 10 . In this case, the learning unit 6 can be configured to analyze and learn the error log data for each ophthalmologic apparatus main body 10 and update the respective artificial intelligence engines.

なお、このような記憶部5と学習部6とを有する装置が、クラウドサーバ3に限定されることはなく、眼科装置本体10と通信ネットワーク1やケーブル等を介して接続された汎用大型コンピュータ(メインフレーム)や自社サーバを用いることもできるし、より簡素化するためにパーソナルコンピュータを用いることもできる。また、眼科装置本体10内に、一体に記憶部5と学習部6とを設けることもできる。 Note that the device having the storage unit 5 and the learning unit 6 is not limited to the cloud server 3, and may be a general-purpose large-scale computer connected to the ophthalmologic apparatus main body 10 via the communication network 1, cable, or the like. A mainframe) or in-house server can be used, or a personal computer can be used for further simplification. Also, the storage unit 5 and the learning unit 6 can be integrally provided in the ophthalmologic apparatus main body 10 .

眼科装置本体10は、図2に示すように、測定部20と、ユーザインタフェース部30と、制御部40と、データ処理部50と、記憶部60とを備えて構成される。 The ophthalmologic apparatus main body 10 includes a measuring section 20, a user interface section 30, a control section 40, a data processing section 50, and a storage section 60, as shown in FIG.

測定部20は、被検眼Eの眼特性(光学特性)を測定する機能を有している。測定部20は、各種光学系により眼特性の測定や被検眼Eの画像を撮影する眼特性測定部16と、測定条件データを取得する測定条件取得部17とを備えている。 The measurement unit 20 has a function of measuring the eye characteristics (optical characteristics) of the eye E to be examined. The measurement unit 20 includes an eye characteristic measurement unit 16 that measures eye characteristics and captures an image of the eye E to be examined using various optical systems, and a measurement condition acquisition unit 17 that acquires measurement condition data.

測定条件データは、アライメントや眼特性の測定等、眼特性測定部16が動作するときのパラメータである。例えば、アライメント時の架台の移動速度等の制御パラメータ(動作履歴データ)、光学系の焦点距離、ゲイン、計測位置、露光量等の測定パラメータ等が挙げられる。また、測定条件データとして、測定モードも挙げられる。測定モードとは、眼特性の測定部位や測定目的等に応じて、焦点距離、ゲイン、計測位置、露光量等の各種測定パラメータ等が予め決められて一つにまとめられたデータセットのことである。測定モードとして、例えば、視神経乳頭の測定モードや黄斑測定モード等がある。眼特性の測定時に測定モードを指定すれば、各種測定パラメータが自動で設定され、測定が実行される。また、測定モードを指定せずに、個々に測定パラメータを入力して眼特性の測定をすることもできる。眼科装置本体10では、ユーザインタフェース部30で行われる操作や入力された各種パラメータに従って、制御部40の制御下で、光学系や駆動部材が動作してアライメントや測定を行うため、このような測定条件データの取得が可能である。 The measurement condition data are parameters for the operation of the eye characteristic measuring unit 16, such as alignment and eye characteristic measurement. For example, there are control parameters (operation history data) such as the moving speed of the gantry during alignment, and measurement parameters such as the focal length, gain, measurement position, and exposure amount of the optical system. The measurement condition data also includes a measurement mode. A measurement mode is a set of data in which various measurement parameters such as focal length, gain, measurement position, and exposure amount are determined in advance according to the measurement site of eye characteristics and the purpose of measurement. be. The measurement modes include, for example, an optic disc measurement mode and a macular measurement mode. If a measurement mode is specified when measuring eye characteristics, various measurement parameters are automatically set and measurement is performed. It is also possible to measure eye characteristics by individually inputting measurement parameters without specifying a measurement mode. In the ophthalmologic apparatus main body 10, alignment and measurement are performed by operating the optical system and driving members under the control of the control unit 40 according to various parameters input and operations performed on the user interface unit 30. Acquisition of condition data is possible.

ユーザインタフェース部30は、各種データの入力や出力を行う機能を有し、測定部20を操作するための操作部31と、測定部20で撮影した画像等を表示する表示部32と、測定に用いるパラメータ等の各種データを入力する入力部33とを備えている。 The user interface unit 30 has a function of inputting and outputting various data, an operation unit 31 for operating the measurement unit 20, a display unit 32 for displaying images taken by the measurement unit 20, and an input unit 33 for inputting various data such as parameters to be used.

記憶部60は、ROM、RAM等の内部メモリや、HDD、フラッシュメモリ等の外部メモリから構成されている。記憶部60には、眼科装置本体10を動作させるプログラムや測定に用いられる各種データが記憶される。この他にも、記憶部60は、エラーログデータが記憶されるエラーログデータ記憶部61と、クラウドサーバ3から配信されたアップデート用の人工知能エンジンが記憶される人工知能エンジン記憶部62とを備えている。 The storage unit 60 includes internal memory such as ROM and RAM, and external memory such as HDD and flash memory. The storage unit 60 stores a program for operating the ophthalmologic apparatus main body 10 and various data used for measurement. In addition, the storage unit 60 includes an error log data storage unit 61 that stores error log data, and an artificial intelligence engine storage unit 62 that stores an update artificial intelligence engine distributed from the cloud server 3. I have.

制御部40は、記憶部60に記憶されたプログラムに基づき、眼科装置本体10の動作を統括的に制御する。制御部40は、図2に示すように、入出力制御部41と、測定シーケンス制御部42と、エラー処理部43とを備えている。 The control unit 40 comprehensively controls the operation of the ophthalmologic apparatus main body 10 based on the programs stored in the storage unit 60 . The control unit 40 includes an input/output control unit 41, a measurement sequence control unit 42, and an error processing unit 43, as shown in FIG.

入出力制御部41は、眼科装置本体10内でのデータの入出力と、眼科装置本体10とクラウドサーバ3のデータの入出力を制御する。入出力制御部41は、操作部31での操作データや入力部33からの入力データを受付け、測定シーケンス制御部42やエラー処理部43に送信する。また、入出力制御部41は、エラーログデータを人工知能エンジン51に入力する。さらに入出力制御部41は、通信ネットワーク1を介してクラウドサーバ3と通信し、エラー処理部43からのエラーログデータをクラウドサーバ3に送信する。また、所定のタイミングでクラウドサーバ3に対して人工知能エンジンの更新要求を送信し、この更新要求に対してクラウドサーバ3から配信されるアップデートされた人工知能エンジンを受信し、人工知能エンジン記憶部62に記憶する。 The input/output control unit 41 controls data input/output within the ophthalmologic apparatus main body 10 and data input/output between the ophthalmologic apparatus main body 10 and the cloud server 3 . The input/output control unit 41 receives operation data from the operation unit 31 and input data from the input unit 33 and transmits the data to the measurement sequence control unit 42 and the error processing unit 43 . The input/output control unit 41 also inputs the error log data to the artificial intelligence engine 51 . Further, the input/output control unit 41 communicates with the cloud server 3 via the communication network 1 and transmits error log data from the error processing unit 43 to the cloud server 3 . In addition, a request for updating the artificial intelligence engine is transmitted to the cloud server 3 at a predetermined timing, an updated artificial intelligence engine distributed from the cloud server 3 is received in response to the update request, and an artificial intelligence engine storage unit 62.

エラーログデータの送信は、例えば、眼科装置本体10の電源をオフするタイミングで行うことができる。また、エラーログデータが作成される度に行うこともできるし、所定時間ごとや予め定められた時間に送信することもできる。また、入力部33で送信を指示することもできる。アップデートされた人工知能エンジンの更新要求と受信は、例えば、眼科装置本体10の電源がオンされたときに行うことができるし、所定時間ごとや予め定められた時間に行うこともできる。また、入力部33で更新要求を指示することもできる。 The transmission of the error log data can be performed, for example, at the timing when the power of the ophthalmologic apparatus main body 10 is turned off. Also, it can be sent each time error log data is created, or it can be sent every predetermined time or at a predetermined time. Also, the input unit 33 can be used to instruct transmission. The update request and reception of the updated artificial intelligence engine can be performed, for example, when the power of the ophthalmologic apparatus main body 10 is turned on, or can be performed at predetermined time intervals or predetermined times. Also, the input unit 33 can be used to issue an update request.

測定シーケンス制御部42は、操作部31からの操作データ、入力部33からの入力データに基づき、記憶部60に記憶された予め定められた測定シーケンスに従って、測定部20を制御し、アライメントや被検眼Eの眼特性測定を実行させる。また、測定シーケンス制御部42は、所定の測定シーケンスでは眼特性の測定できない状況が生じた場合、その状況での測定条件データや状況データ等の眼科測定情報をデータ処理部50に入力し、データ処理部50から出力された学習測定シーケンスに従って、測定部20を制御し、測定処理を再度実行させる。 The measurement sequence control unit 42 controls the measurement unit 20 in accordance with a predetermined measurement sequence stored in the storage unit 60 based on the operation data from the operation unit 31 and the input data from the input unit 33, and performs alignment and alignment. The eye characteristic measurement of optometry E is executed. In addition, when a situation arises in which eye characteristics cannot be measured by a predetermined measurement sequence, the measurement sequence control unit 42 inputs ophthalmologic measurement information such as measurement condition data and situation data in that situation to the data processing unit 50 to obtain data. According to the learning measurement sequence output from the processing section 50, the measurement section 20 is controlled to execute the measurement process again.

状況データは、被検眼Eの状況を示すものであり、一例として被検者(被検眼E)データや、測定部20で取得された被検眼Eの画像(静止画および動画)等があげられる。被検者データは、例えば、被検者の年齢、性別、被検者ID、人種、被検眼Eの既往症(緑内障、白内障等)、被検眼Eの眼特性(円錐角膜、角膜頂点の荒れ等)等が挙げられる。これらは操作部31や入力部33を用いて入力したり、眼科装置本体10に接続した外部機器等から取得したりすることができる。画像は、眼特性測定部16で撮影された前眼部画像E′、眼底画像、眼底断層像(OCT画像)等が挙げられる。 The situation data indicates the situation of the subject's eye E, and examples thereof include subject (subject's eye E) data and images (still images and moving images) of the subject's eye E acquired by the measuring unit 20. . The subject data includes, for example, subject's age, sex, subject ID, race, medical history of subject eye E (glaucoma, cataract, etc.), ocular characteristics of subject eye E (keratoconus, roughness of corneal apex, etc.). etc.). These can be input using the operation unit 31 and the input unit 33, or acquired from an external device or the like connected to the ophthalmologic apparatus main body 10. FIG. Examples of images include an anterior segment image E′ captured by the eye characteristic measuring unit 16, a fundus image, a fundus tomographic image (OCT image), and the like.

エラー処理部43は、所定の測定シーケンスでは眼特性を測定できない状況となったときの各種データを収集してエラーログデータを作成し、エラーログデータ記憶部61に記憶する。エラーログデータとしては、例えば、測定できない状況でのアライメント時の架台13やヘッド部14の移動速度等の制御パラメータ(動作履歴データ)、眼特性測定時の光学系の測定パラメータ等の測定条件データと、前眼部画像E′等の画像、被検者データ等の状況データ、測定モードとが、モダリティ(眼科装置本体10を識別するためのデバイス情報)やエラーコード等と紐付けられたデータである。また、エラー処理部43は、作成したエラーログデータを入出力制御部41に送信する。 The error processing unit 43 collects various data when eye characteristics cannot be measured in a predetermined measurement sequence, creates error log data, and stores the error log data in the error log data storage unit 61 . The error log data includes, for example, control parameters (operation history data) such as the moving speed of the pedestal 13 and the head unit 14 during alignment in situations where measurement is not possible, and measurement condition data such as optical system measurement parameters during eye characteristic measurement. , an image such as the anterior segment image E′, situation data such as subject data, and measurement mode are linked with modality (device information for identifying the ophthalmologic apparatus main body 10), error code, and the like. is. Also, the error processing unit 43 transmits the created error log data to the input/output control unit 41 .

データ処理部50は、眼特性測定部16の動作を制御する制御部の一つとして機能し、人工知能エンジン51と、エラー回避処理部52とを備えている。人工知能エンジン51には、人工知能エンジン記憶部62に記憶された最新の人工知能エンジンがアップロードされている。人工知能エンジン51は、所定の測定シーケンスで測定できない状況でのエラーログデータを解析し、その状況を回避する可能性の高い学習測定条件(エラー回避情報)を抽出する。エラー回避情報としては、例えば、状況データに応じた測定モード(以下、「エラー回避測定モード」という)、アライメントのための架台13の移動速度等の制御パラメータ(以下、「エラー回避制御パラメータ」という)、眼特性測定のための焦点距離、ゲイン、計測位置、露光量等の測定パラメータ(以下、「エラー回避測定パラメータ」という)等が挙げられる。エラー回避処理部52は、抽出されたエラー回避情報を、制御部40の測定シーケンス制御部42に出力する。 The data processing unit 50 functions as one of the control units that control the operation of the eye characteristic measurement unit 16 and includes an artificial intelligence engine 51 and an error avoidance processing unit 52 . The latest artificial intelligence engine stored in the artificial intelligence engine storage unit 62 is uploaded to the artificial intelligence engine 51 . The artificial intelligence engine 51 analyzes error log data in situations where measurement cannot be performed with a predetermined measurement sequence, and extracts learning measurement conditions (error avoidance information) that are highly likely to avoid such situations. The error avoidance information includes, for example, a measurement mode according to the situation data (hereinafter referred to as "error avoidance measurement mode"), a control parameter such as the movement speed of the gantry 13 for alignment (hereinafter referred to as "error avoidance control parameter"). ), focal length, gain, measurement position, exposure amount, and other measurement parameters (hereinafter referred to as “error avoidance measurement parameters”) for eye characteristic measurement. The error avoidance processing section 52 outputs the extracted error avoidance information to the measurement sequence control section 42 of the control section 40 .

上述のような眼科装置本体10としては、例えば、眼屈折力や眼の曲率半径を測定する眼特性測定装置(オートケラトレクレクトメータ等)、眼圧を測定する眼圧測定装置、視力を測定する検眼装置、眼底観察や眼底像を撮影する眼底カメラ装置、眼底像を3次元で撮影する3次元眼底像撮影装置等が挙げられる。これらの眼科装置本体10は、1種類のものを1台又は複数台用いることもできるし、複数種類のものをそれぞれ1台又は複数台用いることもできる。 Examples of the ophthalmologic apparatus main body 10 as described above include an eye characteristic measuring device (such as an autokeratometer) that measures eye refractive power and the radius of curvature of the eye, an intraocular pressure measuring device that measures intraocular pressure, and a visual acuity measuring device. an optometric apparatus for observing the fundus, a fundus camera apparatus for observing the fundus and photographing the fundus image, and a three-dimensional fundus image photographing apparatus for photographing the fundus image in three dimensions. For these ophthalmologic apparatus main bodies 10, one type or a plurality of types can be used, and a plurality of types can also be used for each one or a plurality of types.

以下では、眼科装置本体10の一例として、眼屈折力や眼の曲率半径を測定する眼特性測定装置について説明する。この眼科装置本体10は、図1、図3、図4に示すように、ベース11と駆動部12と架台13とヘッド部14と顔受け部15と、ユーザインタフェース部30としての操作部31、表示部32及び入力部33とを有する。この眼科装置本体10では、駆動部12を介してベース11に架台13が設けられ、駆動部12によりベース11に対して架台13が前後左右上下に移動可能とされる。 As an example of the ophthalmologic apparatus main body 10, an eye characteristic measuring apparatus for measuring eye refractive power and eye curvature radius will be described below. As shown in FIGS. 1, 3, and 4, the ophthalmologic apparatus main body 10 includes a base 11, a drive section 12, a pedestal 13, a head section 14, a face receiving section 15, an operation section 31 as a user interface section 30, It has a display section 32 and an input section 33 . In this ophthalmologic apparatus main body 10 , a pedestal 13 is provided on a base 11 via a drive section 12 , and the pedestal 13 can be moved forward, backward, left, right, up and down with respect to the base 11 by the drive section 12 .

ベース11には、被検者の顔を固定する顔受け部15が設けられる。架台13には、ヘッド部14が設けられる。操作部31は架台13に設けられ、傾倒されるとヘッド部14の前後左右方向への移動操作となり、軸線を回転中心として回転されるとヘッド部14の上下方向への移動操作となる。表示部32は、ヘッド部14に設けられ、一例として液晶表示装置(LCDモニタ)で構成してタッチパネル式の表示画面32a(図4参照)を有する。この表示画面32aは、被検者データ等を入力する入力部33として機能する。 The base 11 is provided with a face receiving portion 15 for fixing the subject's face. A head portion 14 is provided on the base 13 . The operation unit 31 is provided on the pedestal 13, and when it is tilted, it moves the head unit 14 in the front, rear, left, and right directions, and when it rotates around the axis, it moves the head unit 14 in the vertical direction. The display unit 32 is provided in the head unit 14, and has a touch panel type display screen 32a (see FIG. 4) configured by, for example, a liquid crystal display device (LCD monitor). This display screen 32a functions as an input unit 33 for inputting subject data and the like.

ヘッド部14には、前述の制御部40、データ処理部50、記憶部60が設けられる。制御部40は、接続された記憶装置や内部メモリ等からなる記憶部60に記憶されたプログラムに基づき、眼科装置本体10の動作を統括的に制御する。制御部40には、後述する各光学系の光源(視標光源22a、グレア光源22n、レフ測定光源23g、アライメント光源25a、アライメント光源26aおよびケラトリング光源27b)が接続され、適宜それらを点灯および消灯させる。制御部40には、後述の各光学系の動作部(撮像素子21g、ターレット部22d、合焦レンズ22h、VCCレンズ22k、レフ光源ユニット部23aおよび合焦レンズ23tの駆動部)が接続され、適宜それらを駆動(移動も含む)させる。 The head unit 14 is provided with the aforementioned control unit 40 , data processing unit 50 and storage unit 60 . The control unit 40 comprehensively controls the operation of the ophthalmologic apparatus main body 10 based on a program stored in a storage unit 60 including a connected storage device, internal memory, and the like. The control unit 40 is connected with the light sources of the respective optical systems (target light source 22a, glare light source 22n, reflector measurement light source 23g, alignment light source 25a, alignment light source 26a, and keratling light source 27b), which will be described later. turn off the light. The control unit 40 is connected to operation units of each optical system (imaging element 21g, turret unit 22d, focusing lens 22h, VCC lens 22k, driving unit for the reflex light source unit 23a and focusing lens 23t), which will be described later. They are driven (including movement) as appropriate.

また制御部40には、駆動部12、操作部31、表示部32および入力部33が接続され、操作部31の操作や入力部33での入力や上記のプログラムに従い、撮像素子21gで取得した画像を表示部32の表示画面32aに適宜表示させる。 The drive unit 12, the operation unit 31, the display unit 32, and the input unit 33 are connected to the control unit 40, and according to the operation of the operation unit 31, the input from the input unit 33, and the above program, the image captured by the imaging device 21g The image is displayed on the display screen 32a of the display unit 32 as appropriate.

ヘッド部14には、被検眼の検査を行うための光学系が設けられる。この光学系が、被検眼Eの眼特性を測定する眼特性測定部16として機能する。この眼特性測定部16としての光学系は、図3に示すように、観察系21と視標投影系22と眼屈折力測定系23と自覚式検査系24とアライメント系25、26とケラト系27とを有して構成される。なお、観察系21、視標投影系22、眼屈折力測定系23、自覚式検査系24、アライメント系25、アライメント系26およびケラト系27等の構成や、眼屈折力(レフ)、自覚検査および角膜形状(ケラト)の測定原理等は、公知であるので、詳細な説明は省略し、以下では簡単に説明する。 The head unit 14 is provided with an optical system for examining an eye to be examined. This optical system functions as an eye characteristic measuring unit 16 that measures the eye characteristic of the eye E to be examined. As shown in FIG. 3, the optical system as the eye characteristics measurement unit 16 includes an observation system 21, a target projection system 22, an eye refractive power measurement system 23, a subjective examination system 24, alignment systems 25 and 26, and a keratometric system. 27. The structures of the observation system 21, target projection system 22, eye refractive power measurement system 23, subjective inspection system 24, alignment system 25, alignment system 26, kerato system 27, etc., eye refractive power (ref), and subjective inspection Since the principle of measuring the corneal shape (keratometry) and the like are well known, a detailed description thereof will be omitted and will be briefly described below.

観察系21は、被検眼Eの前眼部を観察する機能を有し、対物レンズ21aとダイクロイックフィルタ21bとハーフミラー21cとリレーレンズ21dとダイクロイックフィルタ21eと結像レンズ21fと撮像素子(CCD)21gとを有する。観察系21は、被検眼E(前眼部)で反射された光束を撮像素子21g上に結像する。制御部40は、撮像素子21gから出力される画像信号に基づく前眼部画像E′等を表示部32の表示画面32aに表示させる。この対物レンズ21aの前方に、ケラト系27を設ける。 The observation system 21 has a function of observing the anterior segment of the subject's eye E, and includes an objective lens 21a, a dichroic filter 21b, a half mirror 21c, a relay lens 21d, a dichroic filter 21e, an imaging lens 21f, and an imaging device (CCD). 21 g. The observation system 21 forms an image of the luminous flux reflected by the subject's eye E (anterior segment) on the imaging device 21g. The control unit 40 causes the display screen 32a of the display unit 32 to display an anterior segment image E′ based on the image signal output from the imaging device 21g. A kerat system 27 is provided in front of the objective lens 21a.

視標投影系22は、被検眼Eに視標を呈示する機能を有する。自覚式検査系24は、自覚検査を行い、被検眼Eに視標を呈示する機能を有し、光学系を構成する光学素子を視標投影系22と共用する。 The visual target projection system 22 has a function of presenting a visual target to the eye E to be examined. The subjective examination system 24 has a function of performing a subjective examination and presenting an optotype to the eye E to be examined, and shares an optical element constituting an optical system with the optotype projection system 22 .

視標投影系22及び自覚式検査系24は、視標光源22aと色補正フィルタ22bとコリメータレンズ22cとターレット部22dとハーフミラー22eとリレーレンズ22fと反射ミラー22gと合焦レンズ22hとリレーレンズ22iとフィールドレンズ22jとバリアブルクロスシリンダレンズ(VCCレンズ)22kと反射ミラー22lとダイクロイックフィルタ22mとを有する。視標投影系22及び自覚式検査系24は、ダイクロイックフィルタ21bおよび対物レンズ21aを観察系21と共用する。また、自覚式検査系24は、視標光源22aからの光路とは別の光路に、被検眼Eにグレア光を照射する少なくとも2つのグレア光源22nを有する。 The visual target projection system 22 and the subjective inspection system 24 include a visual target light source 22a, a color correction filter 22b, a collimator lens 22c, a turret section 22d, a half mirror 22e, a relay lens 22f, a reflecting mirror 22g, a focusing lens 22h, and a relay lens. 22i, a field lens 22j, a variable cross cylinder lens (VCC lens) 22k, a reflecting mirror 22l, and a dichroic filter 22m. The visual target projection system 22 and the subjective inspection system 24 share the dichroic filter 21b and the objective lens 21a with the observation system 21 . In addition, the subjective examination system 24 has at least two glare light sources 22n for irradiating the subject's eye E with glare light on an optical path different from the optical path from the target light source 22a.

ターレット部22dは、視標投影系22が被検眼Eの眼底Efに投影(被検眼Eに呈示)する視標を切り替える。視標投影系22は、上記した光学部材を経てターレット部22dが示す固視標を被検眼Eの眼底Efに投影する。検者または制御部40は、呈示した固視標を被検者に固視させた状態でアライメントを行い、被検眼Eの遠点に合焦レンズ22hを移動させた後にさらに雲霧状態として、調節休止時の眼屈折力を測定する。 The turret unit 22d switches the target projected by the target projection system 22 onto the fundus Ef of the eye E to be examined (presented to the eye E to be examined). The visual target projection system 22 projects the fixation target indicated by the turret portion 22d onto the fundus oculi Ef of the subject's eye E via the optical member described above. The examiner or the control unit 40 performs alignment with the examinee fixating the presented fixation target, moves the focusing lens 22h to the far point of the eye E to be examined, and then adjusts the cloudy state. Resting ocular refractive power is measured.

自覚式検査系24は、制御部40の制御下で、合焦レンズ22hおよびVCCレンズ22kが適宜設定され、上記した光学部材を経て測定内容に応じるターレット部22dが示す視標を被検眼Eの眼底Efに投影する。検者または制御部40は、呈示した視標の見え方を被検者に質問し、その応答に応じた視標の選択と質問とを繰り返すことで処方値を決定する。ここで、グレア検査(グレアテスト)を行う場合には、制御部40の制御下でグレア光源22nを点灯させる。 In the subjective examination system 24, the focusing lens 22h and the VCC lens 22k are appropriately set under the control of the control unit 40, and the target indicated by the turret unit 22d according to the measurement content is directed to the subject's eye E via the optical members described above. Project on the fundus Ef. The examiner or the control unit 40 asks the examinee how the presented optotype looks, and repeats the selection of the optotype according to the response and the question, thereby determining the prescription value. Here, when performing a glare inspection (glare test), the glare light source 22n is turned on under the control of the control section 40 .

眼屈折力測定系23は、眼屈折力の測定を行う機能を有する。眼屈折力測定系23は、被検眼Eの眼底Efにリング状の測定パターンを投影するリング状光束投影系23Aと、その眼底Efからのリング状の測定パターンの反射光を検出(受像)するリング状光束受光系23Bと、を有する。 The eye refractive power measurement system 23 has a function of measuring eye refractive power. The eye refractive power measurement system 23 detects (receives) a ring-shaped light beam projection system 23A that projects a ring-shaped measurement pattern onto the fundus Ef of the eye to be examined E, and the reflected light of the ring-shaped measurement pattern from the fundus Ef. and a ring-shaped light receiving system 23B.

リング状光束投影系23Aは、レフ光源ユニット部23aとリレーレンズ23bと瞳リング絞り23cとフィールドレンズ23dと穴開きプリズム23eとロータリープリズム23fとを有する。リング状光束投影系23Aは、ダイクロイックフィルタ22mを視標投影系22(自覚式検査系24)と共用し、ダイクロイックフィルタ21bおよび対物レンズ21aを観察系21と共用する。レフ光源ユニット部23aは、LEDを用いたレフ測定用のレフ測定光源23gとコリメータレンズ23hと円錐プリズム23iとリングパターン形成板23jとを有し、それらが制御部40の制御下で眼屈折力測定系23の光軸上を一体的に移動可能とされる。リング状光束投影系23Aは、レフ光源ユニット部23aがリング状の測定パターンを出射し、上記した光学部材を経て対物レンズ21aに導くことで、被検眼Eの眼底Efにリング状の測定パターンを投影する。 The ring-shaped luminous flux projection system 23A has a reflector light source unit 23a, a relay lens 23b, a pupil ring diaphragm 23c, a field lens 23d, a perforated prism 23e, and a rotary prism 23f. Ring-shaped beam projection system 23A shares dichroic filter 22m with target projection system 22 (subjective inspection system 24), and shares dichroic filter 21b and objective lens 21a with observation system 21. The reflector light source unit 23a has a reflector measuring light source 23g for reflector measurement using an LED, a collimator lens 23h, a conical prism 23i, and a ring pattern forming plate 23j. The measurement system 23 is integrally movable along the optical axis. In the ring-shaped light beam projection system 23A, the reflector light source unit 23a emits a ring-shaped measurement pattern, which is guided to the objective lens 21a via the above-described optical members, thereby projecting the ring-shaped measurement pattern on the fundus Ef of the eye E to be examined. Project.

リング状光束受光系23Bは、穴開きプリズム23eの穴部23pとフィールドレンズ23qと反射ミラー23rとリレーレンズ23sと合焦レンズ23tと反射ミラー23uとを有する。リング状光束受光系23Bは、対物レンズ21a、ダイクロイックフィルタ21b、ダイクロイックフィルタ21e、結像レンズ21fおよび撮像素子21gを観察系21と共用し、ダイクロイックフィルタ22mを視標投影系22(自覚式検査系24)と共用し、ロータリープリズム23fおよび穴開きプリズム23eをリング状光束投影系23Aと共用する。リング状光束受光系23Bは、眼底Efに形成されたリング状の測定パターンを、上記した光学部材を経て撮像素子21gに結像させる。これにより、撮像素子21gがリング状の測定パターンの像を検出し、制御部40は、その測定パターンの像を表示画面32aに表示させ、その画像(撮像素子21g)からの画像信号に基づき、眼屈折力としての球面度数、円柱度数、軸角度を周知の手法により測定する。 The ring-shaped light receiving system 23B has a hole 23p of a holed prism 23e, a field lens 23q, a reflecting mirror 23r, a relay lens 23s, a focusing lens 23t, and a reflecting mirror 23u. The ring-shaped light receiving system 23B shares the objective lens 21a, the dichroic filter 21b, the dichroic filter 21e, the imaging lens 21f, and the imaging device 21g with the observation system 21, and the dichroic filter 22m is used as the target projection system 22 (a subjective inspection system). 24), and the rotary prism 23f and perforated prism 23e are shared with the ring beam projection system 23A. The ring-shaped light receiving system 23B causes the ring-shaped measurement pattern formed on the fundus oculi Ef to form an image on the imaging device 21g via the optical member described above. As a result, the image sensor 21g detects the image of the ring-shaped measurement pattern, and the control unit 40 displays the image of the measurement pattern on the display screen 32a. Spherical power, cylindrical power, and axial angle as eye refractive power are measured by well-known methods.

ケラト系27は、ケラト板27aとケラトリング光源27bとを有する。ケラト系27は、角膜形状の測定のためのケラトリング光束(角膜曲率測定用リング状指標)を被検眼Eの角膜Ecに投影する。ケラトリング光束は、角膜Ecで反射され、観察系21により撮像素子21g上に結像される。それに基づき角膜形状(曲率半径)を周知の手法により測定する。ケラト系27の後方に、アライメント系25を設ける。 The kerat system 27 has a kerat plate 27a and a kerat ring light source 27b. The keratometric system 27 projects a keratling light flux (a ring-shaped index for corneal curvature measurement) for measuring the shape of the cornea onto the cornea Ec of the eye E to be examined. The keratling luminous flux is reflected by the cornea Ec and is imaged by the observation system 21 on the imaging element 21g. Based on this, the corneal shape (curvature radius) is measured by a well-known technique. An alignment system 25 is provided behind the kerato system 27 .

アライメント系25、26は、被検眼Eに対する光学系のアライメント(位置合わせ)を行う機能を有する。アライメント系25は、観察系21の光軸に沿う方向(前後方向)のアライメントを行い、アライメント系26は、その光軸に直交する方向(上下方向、左右方向)のアライメントを行う。 The alignment systems 25 and 26 have a function of aligning the optical system with the eye E to be examined. The alignment system 25 performs alignment along the optical axis of the observation system 21 (vertical direction), and the alignment system 26 performs alignment in directions perpendicular to the optical axis (vertical direction and lateral direction).

アライメント系25は、一対のアライメント光源25aと投影レンズ25bとを有し、各アライメント光源25aからの光束を各投影レンズ25bで平行光束として角膜Ecに投影し、その様子を観察系21により撮像素子21g上に結像させる。制御部40または検者は、撮像素子21g上のアライメント光源25aによる2個の点像の間隔とケラトリング像の直径の比を所定範囲内とするように、ヘッド部14を前後方向に移動させることで、観察系21の光軸に沿う方向(前後方向)のアライメントを行う。なお、前後方向のアライメントは、後述するアライメント光源26aによる輝点像Brのピントが合うようにヘッド部14の位置を調整することで行ってもよい。 The alignment system 25 has a pair of alignment light sources 25a and a projection lens 25b. A light beam from each alignment light source 25a is projected onto the cornea Ec as a parallel light beam by each projection lens 25b. Image on 21g. The control unit 40 or the examiner moves the head unit 14 in the front-rear direction so that the ratio of the distance between the two point images by the alignment light source 25a on the imaging element 21g and the diameter of the keratling image is within a predetermined range. Thus, alignment in the direction (front-rear direction) along the optical axis of the observation system 21 is performed. Note that the alignment in the front-rear direction may be performed by adjusting the position of the head section 14 so that the bright point image Br is focused by the alignment light source 26a, which will be described later.

アライメント系26は、観察系21に設けられている。アライメント系26は、アライメント光源26aと投影レンズ26bとを有し、ハーフミラー21c、ダイクロイックフィルタ21bおよび対物レンズ21aを観察系21と共用する。アライメント系26は、アライメント光源26aからの光束を平行光束として角膜Ecに投影し、その様子を観察系21により撮像素子21g上に結像させる。制御部40または検者は、角膜Ecに投影された輝点(輝点像)に基づき、ヘッド部14を上下左右方向に移動させることで、観察系21の光軸に直交する方向(上下方向、左右方向)のアライメントを行う。このとき、制御部40は、輝点像Brが形成された前眼部画像E′に加えて、アライメントマークの目安となるアライメントマークALを表示画面32aに表示させる。 Alignment system 26 is provided in observation system 21 . The alignment system 26 has an alignment light source 26a and a projection lens 26b, and shares the half mirror 21c, the dichroic filter 21b and the objective lens 21a with the observation system 21. The alignment system 26 projects the luminous flux from the alignment light source 26a as a parallel luminous flux onto the cornea Ec, and the observation system 21 forms an image on the imaging element 21g. The control unit 40 or the examiner moves the head unit 14 in the vertical and horizontal directions based on the luminescent spots (luminescent spot images) projected on the cornea Ec, thereby moving the head unit 14 in a direction orthogonal to the optical axis of the observation system 21 (vertical direction). , horizontal direction). At this time, the control unit 40 causes the display screen 32a to display an alignment mark AL, which serves as a guide for the alignment mark, in addition to the anterior segment image E′ formed with the bright spot image Br.

以上のような構成の実施例1に係る眼科装置100で行われる眼科測定処理(眼科測定方法)について説明する。眼科装置100では、眼科装置本体10で眼特性測定処理が行われ、クラウドサーバ3で学習処理が行われる。 An ophthalmologic measurement process (ophthalmologic measurement method) performed by the ophthalmologic apparatus 100 according to the first embodiment configured as described above will be described. In the ophthalmologic apparatus 100 , the ophthalmologic apparatus body 10 performs eye characteristic measurement processing, and the cloud server 3 performs learning processing.

まず、眼科装置本体10で行われる眼特性測定処理の一例を、図5のフローチャートを用いて具体的に説明する。この図5のフローチャートは、眼科装置本体10において眼特性の測定を開始する旨の操作がなされることにより開始される。 First, an example of eye characteristic measurement processing performed by the ophthalmologic apparatus main body 10 will be specifically described with reference to the flowchart of FIG. The flowchart of FIG. 5 is started when an operation is performed in the ophthalmologic apparatus main body 10 to start measurement of eye characteristics.

まず、ステップS1で、測定条件取得部17は、眼特性測定部16での眼特性測定処理における測定条件データの取得を開始する。次に、ステップS2で、入出力制御部41は、検者が操作部31や入力部33等から入力した年齢等の被検者データや測定モードを取得する。 First, in step S<b>1 , the measurement condition acquisition unit 17 starts acquisition of measurement condition data in the eye characteristics measurement process in the eye characteristics measurement unit 16 . Next, in step S2, the input/output control unit 41 acquires subject data such as age input by the examiner from the operation unit 31, the input unit 33, or the like, and the measurement mode.

次に、ステップS3に進み、制御部40の測定シーケンス制御部42が、被検者データや測定モードに応じて、予め定められた測定シーケンスに従って、アライメント用の制御パラメータや、眼特性測定用の測定パラメータ等を設定して、眼特性測定部16の初期設定を行う。 Next, in step S3, the measurement sequence control unit 42 of the control unit 40 controls alignment control parameters and eye characteristics measurement according to a predetermined measurement sequence according to subject data and measurement mode. The initial setting of the eye characteristic measuring unit 16 is performed by setting measurement parameters and the like.

その後、ステップS4に進み、眼特性測定部16のアライメント系25,36によってアライメントを行う。測定条件データとして、このアライメント時の架台13の移動速度や移動座標等の制御パラメータ(動作履歴データ)が測定条件取得部17によって取得される。また、状況データとして被検眼Eの前眼部画像E′、眼底画像、眼底断層像等が観察系21の撮像素子21gで取得される。 After that, the process proceeds to step S4, and alignment is performed by the alignment systems 25 and 36 of the eye characteristic measurement unit 16. FIG. As the measurement condition data, the measurement condition acquisition unit 17 acquires control parameters (operation history data) such as the movement speed and movement coordinates of the gantry 13 at the time of alignment. In addition, an anterior segment image E′ of the subject's eye E, a fundus image, a fundus tomographic image, and the like are acquired by the imaging element 21g of the observation system 21 as situation data.

なお、アライメント系25,26によって自動でアライメントできなかった場合には、検者による手動でのアライメントに移行してもよい。このときの手動での制御パラメータ(動作履歴データ)も、測定条件データとして測定条件取得部17によって取得される。 If the alignment systems 25 and 26 cannot perform the automatic alignment, the examiner may perform manual alignment. Manual control parameters (operation history data) at this time are also acquired by the measurement condition acquisition unit 17 as measurement condition data.

アライメントが終了すると、ステップS5に進む。ステップS5では、測定シーケンス制御部42が、所定の測定シーケンスに従って、眼特性測定部16を制御することで、眼特性測定部16が上述したような動作で被検眼Eの眼特性を測定する。このときの焦点距離、ゲイン、計測位置、露光量等の測定パラメータが、測定条件データとして測定条件取得部17によって取得される。 After the alignment is completed, the process proceeds to step S5. In step S5, the measurement sequence control section 42 controls the eye characteristic measuring section 16 according to a predetermined measurement sequence, so that the eye characteristic measuring section 16 measures the eye characteristic of the subject's eye E by the operation described above. Measurement parameters such as focal length, gain, measurement position, and exposure amount at this time are acquired by the measurement condition acquisition unit 17 as measurement condition data.

次のステップS6では、眼特性が適切に測定できたか否かを判断する。適切に測定が行われ、YESと判定された場合には、ステップS7進み、測定条件データの取得を終了して、眼特性測定処理を終了する。このときの測定条件データは、適切に測定が行われた状況を示すものとして記憶部60に記憶し、成功例として学習に使用することもできるし、学習に用いる必要がない場合は記憶せずに破棄することもできる。 In the next step S6, it is determined whether or not the eye characteristics have been properly measured. If the measurement is properly performed and the determination is YES, the process proceeds to step S7, the acquisition of the measurement condition data is terminated, and the eye characteristic measurement process is terminated. The measurement condition data at this time is stored in the storage unit 60 as data indicating the situation in which the measurement was properly performed, and can be used for learning as a successful example. can also be discarded.

これに対して、ステップS6でNOと判定され、眼特性を適切に測定できない状況の場合には、ステップS8に進む。このような状況としては、例えば、被検眼Eにおいて、瞼や睫毛が前眼部(角膜Ec)に掛かっていたり、眼球振盪(眼振)が生じていたり、瞬きが頻繁であったり、円錐角膜となっていたりすること等により、アライメントが自動又は手動で適切に行なえず、その結果、眼特性を適切に測定できない状況が挙げられる。また、アライメントはできたが、光学系での露光不足、ピンボケ等によって眼特性を適切に測定できない状況が挙げられる。また、画像信号に基づいて球面度数等の測定値を算出する際に、オーバーフロー等により数値を算出できなくなった状況等も挙げられる。 On the other hand, if it is determined NO in step S6 and the eye characteristics cannot be appropriately measured, the process proceeds to step S8. Such situations include, for example, eyelids and eyelashes covering the anterior segment (cornea Ec) of the subject's eye E, ocular tremor (nystagmus), frequent blinking, and keratoconus. As a result, the alignment cannot be properly performed automatically or manually, and as a result, the eye characteristics cannot be measured properly. In addition, there is a situation in which the eye characteristics cannot be properly measured due to insufficient exposure in the optical system, out-of-focus, or the like, even though the alignment has been completed. In addition, there is a situation in which, when calculating a measurement value such as a spherical power based on an image signal, the numerical value cannot be calculated due to an overflow or the like.

ステップS8では、エラー処理部43がエラーログデータ(眼科測定情報)を作成する。エラーログデータは、本実施例では、眼科装置本体10のモダリティ、測定モード、エラーコード、測定パラメータや制御パラメータ等からなる測定条件データ、前眼部画像E′等の画像、年齢、性別、人種、既往歴等の被検者データからなる状況データである。 In step S8, the error processing unit 43 creates error log data (ophthalmologic measurement information). In this embodiment, the error log data includes the modality of the ophthalmologic apparatus main body 10, measurement mode, error code, measurement condition data including measurement parameters and control parameters, images such as the anterior ocular segment image E′, age, sex, and person. Circumstance data consisting of subject data such as species, medical history, and the like.

次のステップS9で、エラー処理部43が、作成したエラーログデータをエラーログデータ記憶部61に記憶するとともに、入出力制御部41に出力する。入出力制御部41は、所定のタイミングで、エラーログデータをクラウドサーバ3に送信し、ステップS10に進む。 In the next step S<b>9 , the error processing unit 43 stores the created error log data in the error log data storage unit 61 and outputs it to the input/output control unit 41 . The input/output control unit 41 transmits the error log data to the cloud server 3 at a predetermined timing, and proceeds to step S10.

そして、ステップS10で1回目の測定か否かを判定し、YES(1回目の測定)と判定された場合は、ステップS11へ進む。 Then, in step S10, it is determined whether or not it is the first measurement, and if it is determined as YES (first measurement), the process proceeds to step S11.

ステップS11では、所定の測定シーケンスでは眼特性を測定できない状況を回避するべく、入出力制御部41が、エラーログデータ(眼科測定情報)人工知能エンジン51に入力する。次のステップS12で人工知能エンジン51が、エラーログデータを解析し、その状況を回避する可能性の高いエラー回避測定モード、エラー回避測定パラメータ、エラー回避制御パラメータ等のエラー回避情報を抽出する。抽出されたエラー回避情報は、エラー回避処理部52によって測定シーケンス制御部42へ出力される。 In step S<b>11 , the input/output control unit 41 inputs error log data (ophthalmic measurement information) to the artificial intelligence engine 51 in order to avoid situations in which eye characteristics cannot be measured in a predetermined measurement sequence. In the next step S12, the artificial intelligence engine 51 analyzes the error log data and extracts error avoidance information such as an error avoidance measurement mode, an error avoidance measurement parameter, and an error avoidance control parameter with a high possibility of avoiding the situation. The extracted error avoidance information is output to the measurement sequence controller 42 by the error avoidance processor 52 .

このエラー回避情報を受け付けた測定シーケンス制御部42は、ステップS13でエラー回避測定モード、エラー回避測定パラメータ、エラー回避制御パラメータに基づいて、眼特性測定部16の初期設定を行う。その後、ステップS4に戻り、初期設定に基づいて、ステップS4のアライメント、ステップS5の眼特性測定を実行する。眼特性を適切に測定できた場合は(ステップS6の判定がYES)、測定条件データの取得を終了して(ステップS8)、測定処理を終了する。このように、エラー回避情報の抽出によって、眼特性を適切に測定することができ、眼科装置本体10の測定性能を向上させることができる。 Upon receiving the error avoidance information, the measurement sequence control unit 42 initializes the eye characteristic measurement unit 16 based on the error avoidance measurement mode, error avoidance measurement parameters, and error avoidance control parameters in step S13. After that, the process returns to step S4, and the alignment in step S4 and the eye characteristic measurement in step S5 are performed based on the initial settings. If the eye characteristics can be appropriately measured (YES in step S6), acquisition of measurement condition data ends (step S8), and the measurement process ends. By extracting the error avoidance information in this way, the eye characteristics can be appropriately measured, and the measurement performance of the ophthalmologic apparatus main body 10 can be improved.

なお、このようにエラー回避情報によって適切に測定ができた場合、エラー回避情報やその際の眼科測定情報等をクラウドサーバ3へ送信してもよい。これにより、クラウドサーバ3で、回避策での成功例の事例を収集することができ、学習性能をより向上させることができる。 In addition, when the measurement can be properly performed by the error avoidance information in this way, the error avoidance information, the ophthalmologic measurement information at that time, and the like may be transmitted to the cloud server 3 . As a result, the cloud server 3 can collect examples of successful workarounds, and the learning performance can be further improved.

一方、エラー回避情報を用いても、眼特性を適切に測定できなかった場合(ステップS6の判定がNO)、ステップS8のエラーログデータの作成と、ステップS9のエラーログデータの記憶、クラウドサーバ3への送信を実行する。この記憶と送信の際に、エラー回避情報を用いた2回目の測定でも眼特性を測定できない状況のエラーログデータであるという情報を付加してもよい。これにより、クラウドサーバ3での学習の幅を拡げることができ、学習性能を向上させることができる。 On the other hand, even if the error avoidance information is used, if the eye characteristics cannot be properly measured (determination in step S6 is NO), the error log data is created in step S8, the error log data is stored in step S9, and the cloud server Send to 3. At the time of this storage and transmission, information may be added indicating that the error log data is in a situation where the eye characteristics cannot be measured even in the second measurement using the error avoidance information. As a result, the range of learning in the cloud server 3 can be expanded, and the learning performance can be improved.

その後、ステップS10へ進むことで、1回目の測定か否かが判定される。今回の測定は2回目であるため、ステップS10ではNOと判定され、ステップS7に進み、測定条件データの取得を終了し、測定処理を終了する。 After that, by proceeding to step S10, it is determined whether or not it is the first measurement. Since this measurement is the second time, NO is determined in step S10, and the process advances to step S7 to end acquisition of the measurement condition data and end the measurement process.

次に、クラウドサーバ3で行われる眼科測定学習処理の一例を、図6A~図6Dのフローチャートを用いて説明する。図6Aに示すように、クラウドサーバ3では、ステップS20のデータ蓄積処理、ステップS30の学習処理、ステップS40の人工知能エンジン配信処理が、クラウドサーバ3が起動している間に、それぞれ独立して所定条件で繰り返し実行される。 Next, an example of the ophthalmologic measurement learning process performed by the cloud server 3 will be described with reference to the flowcharts of FIGS. 6A to 6D. As shown in FIG. 6A, in the cloud server 3, the data accumulation process in step S20, the learning process in step S30, and the artificial intelligence engine delivery process in step S40 are performed independently while the cloud server 3 is running. It is executed repeatedly under a predetermined condition.

ステップS20のデータ蓄積処理について、図6Bのフローチャートを用いて説明する。データ蓄積処理は、眼科装置本体10からエラーログデータを受信したタイミングで実行される。この図6Bに示すように、クラウドサーバ3では、ステップS21で、眼科装置本体10から送信されたエラーログデータを受信する。次に、ステップS22で、受信したエラーログデータを、項目ごとに分離する。項目としては、実施例1では、眼科装置本体10のモダリティ、測定モード、エラーコード、測定条件データの測定パラメータや制御パラメータ、状況データの前眼部画像E′や被検者データ等が挙げられる。 The data accumulation processing in step S20 will be described using the flowchart of FIG. 6B. The data accumulation process is executed at the timing when error log data is received from the ophthalmologic apparatus main body 10 . As shown in FIG. 6B, the cloud server 3 receives the error log data transmitted from the ophthalmologic apparatus main body 10 in step S21. Next, in step S22, the received error log data is separated for each item. In the first embodiment, the items include the modality of the ophthalmologic apparatus main body 10, the measurement mode, the error code, the measurement parameters and control parameters of the measurement condition data, the anterior ocular segment image E' of the situation data, the subject data, and the like. .

クラウドサーバ3は、分離したデータを、例えばモダリティ別にデータ蓄積部7に記憶する(ステップS23)。 The cloud server 3 stores the separated data in the data storage unit 7 by modality, for example (step S23).

次に、ステップS30の学習処理について、図6Cのフローチャートを用いて説明する。学習処理は、データ蓄積部7に所定量のデータが蓄積したとき、例えば、所定期間ごとに実行される。また、学習処理は、モダリティをキーとして、眼科装置本体10の機種ごとにそれぞれ実行して、同機種の複数の眼科装置本体10で学習結果を共有することができる。 Next, the learning process of step S30 will be described using the flowchart of FIG. 6C. The learning process is executed, for example, every predetermined period when a predetermined amount of data is accumulated in the data accumulation unit 7 . Further, the learning process can be executed for each model of the ophthalmologic apparatus main body 10 using modality as a key, and the learning result can be shared by a plurality of ophthalmologic apparatus main bodies 10 of the same model.

まず、ステップS31で、データ蓄積部7から、所定期間に蓄積されたエラーログデータを取得する。取得したエラーログデータを、人工知能エンジンである学習部6に入力することで(ステップS32)、人工知能による学習が実行される(ステップS33)。 First, in step S31, error log data accumulated for a predetermined period is obtained from the data accumulation unit 7. FIG. By inputting the acquired error log data to the learning unit 6, which is an artificial intelligence engine (step S32), learning by artificial intelligence is executed (step S33).

学習部6では、例えば、ディープラーニングアルゴリズムを利用して、測定できない状況に対する回避策(エラー回避情報)を生成する。図7に、ニューラルネットワークを応用して学習された人工知能エンジンの構成例を示す。この図7に示すように、人工知能は、入力データに基づいて、学習によってノードを接続し、その接続強度を変化させてノード数を最適化し、最終的に、エラー回避測定モード、エラー回避測定パラメータ、エラー回避制御パラメータ等のエラー回避情報(学習測定条件データ)を出力する。 The learning unit 6 uses, for example, a deep learning algorithm to generate workarounds (error avoidance information) for situations where measurement is impossible. FIG. 7 shows a configuration example of an artificial intelligence engine learned by applying a neural network. As shown in FIG. 7, artificial intelligence connects nodes by learning based on input data, changes the connection strength to optimize the number of nodes, and finally selects an error avoidance measurement mode and an error avoidance measurement mode. Output error avoidance information (learning measurement condition data) such as parameters and error avoidance control parameters.

なお、人工知能による学習法が、実施例1の学習法に限定されることはなく、エキスパートシステム、事例ベース推論、ベイジアンネットワーク等の機械学習法、ファジー理論、進化的計算等、いずれのものを用いてもよい。 In addition, the learning method by artificial intelligence is not limited to the learning method of Example 1, and any of machine learning methods such as expert systems, case-based reasoning, Bayesian networks, fuzzy theory, evolutionary calculation, etc. may be used.

次に、ステップS34に進み、所定の機能が発揮されたかを判定する。所定の性能の発揮とは、ここでは学習が進んで眼特性を適切に測定できない状況を回避する回避策(エラー回避情報)が、ある程度取得できたことを意味する。 Next, in step S34, it is determined whether or not the predetermined function has been exhibited. Exhibiting a predetermined performance here means that a workaround (error avoidance information) for avoiding a situation in which learning progresses and eye characteristics cannot be measured appropriately has been acquired to some extent.

このステップS34で、YESと判定された場合は、十分に学習がされたとしてステップS35に進む。これに対して、NOと判定された場合は、学習が不十分であるとして、ステップS33に戻って人工知能による学習を続行する。 If the determination in step S34 is YES, it is determined that the learning has been sufficiently performed, and the process proceeds to step S35. On the other hand, if the determination is NO, it is determined that the learning is insufficient, and the process returns to step S33 to continue the learning by the artificial intelligence.

このステップS34の判定は、人工知能がシミュレーション等により自動で判定することもできる。または、眼科装置本体10の開発業者等が、人工知能での学習結果を用いて実機で試験を実施し、適切に測定できたとき、或いは成功率が所定以上となったときに、機能が発揮された旨の入力をクラウドサーバ3に対して行うこともできる。この入力を受けたときに、クラウドサーバ3がステップS34の判定をYESと判定し、ステップS35に進むようにすることができる。 The determination in step S34 can also be automatically determined by artificial intelligence through simulation or the like. Alternatively, the developer or the like of the ophthalmologic device main body 10 conducts a test on an actual device using the learning results of artificial intelligence, and the function is exhibited when the measurement is performed appropriately or when the success rate reaches or exceeds a predetermined value. It is also possible to make an input to the cloud server 3 to the effect that it has been done. When receiving this input, the cloud server 3 can determine YES in step S34 and proceed to step S35.

ステップS35では、このように十分な学習がなされた人工知能エンジンを、最新バージョンの人工知能エンジンとして、人工知能エンジン記憶部8に記憶する。 In step S35, the artificial intelligence engine that has undergone sufficient learning in this manner is stored in the artificial intelligence engine storage unit 8 as the latest version of the artificial intelligence engine.

最後に、ステップS40の人工知能エンジン配信処理について、図6Dのフローチャートを用いて説明する。クラウドサーバ3には、通信ネットワーク1を介して、複数の眼科装置本体10から人工知能エンジンの更新要求が送信される。図6Dに示すように、ステップS41で、クラウドサーバ3が、この人工知能エンジンの更新要求を受信すると、ステップS42で、モダリティ等をキーとして、各眼科装置本体10に対応する最新の人工知能エンジンを人工知能エンジン記憶部8から取得する。そして、ステップS43で、取得した各人工知能エンジンを、要求元の眼科装置本体10へそれぞれ配信する。これにより、各眼科装置本体10では、最新の人工知能エンジンを利用することができ、眼特性を自動で測定できる可能性が拡がり、測定性能を向上させることができる。なお、配信した人工知能エンジンのバージョンを管理しておき、前回の更新要求時から人工知能エンジンがアップデートされていない場合には、その旨を返信して人工知能エンジンを配信しない構成とすることもできる。または、バージョンの管理を省いて、更新要求のたびに、自動的に人工知能エンジン記憶部8の人工知能エンジンを眼科装置本体10に配信する構成とすることもできる。 Finally, the artificial intelligence engine distribution processing in step S40 will be described using the flowchart of FIG. 6D. Update requests for the artificial intelligence engine are sent to the cloud server 3 from a plurality of ophthalmologic apparatus main bodies 10 via the communication network 1 . As shown in FIG. 6D, in step S41, when the cloud server 3 receives the update request of this artificial intelligence engine, in step S42, the latest artificial intelligence engine corresponding to each ophthalmologic apparatus main body 10 is updated using modality or the like as a key. is obtained from the artificial intelligence engine storage unit 8. Then, in step S43, each of the acquired artificial intelligence engines is delivered to the main body 10 of the ophthalmologic apparatus that made the request. As a result, the latest artificial intelligence engine can be used in each ophthalmologic apparatus main body 10, the possibility of automatically measuring eye characteristics is expanded, and the measurement performance can be improved. In addition, it is also possible to manage the version of the distributed AI engine, and if the AI engine has not been updated since the last update request, reply to that effect and not distribute the AI engine. can. Alternatively, it is also possible to omit version management and automatically deliver the artificial intelligence engine of the artificial intelligence engine storage unit 8 to the ophthalmologic apparatus main body 10 each time an update request is made.

以上のように、実施例1の眼科装置100では、眼特性測定部16で予め定められた測定シーケンスでは眼特性が適切に測定できない状況となったときに、その状況データ及び測定条件データからなるエラーログデータ(眼科測定情報)を記憶して蓄積し、人工知能である学習部6で回避策(学習測定条件)を学習させる。学習された回避策(学習測定条件)は、眼科装置本体10へ反映される。このため、眼科装置本体10は、所定の測定シーケンスで眼特性を適切に測定ができない状況であっても、学習された回避策の中から、その状況に対応した回避策を抽出することで、適切に測定できる可能性を拡げることができる。そのため、自動で被検眼Eの眼特性を測定できる状況を拡げることができ、眼科装置100の測定性能を向上させることができる。 As described above, in the ophthalmologic apparatus 100 of the first embodiment, when the eye characteristics cannot be appropriately measured by the predetermined measurement sequence in the eye characteristics measuring unit 16, the situation data and the measurement condition data Error log data (ophthalmic measurement information) is stored and accumulated, and workarounds (learning measurement conditions) are learned by the learning unit 6, which is artificial intelligence. The learned workaround (learned measurement condition) is reflected in the ophthalmologic apparatus main body 10 . Therefore, even in a situation where eye characteristics cannot be appropriately measured in a predetermined measurement sequence, the ophthalmologic apparatus main body 10 extracts a workaround corresponding to the situation from the learned workarounds. The possibility of being able to measure appropriately can be expanded. Therefore, the situation in which the eye characteristics of the eye to be examined E can be automatically measured can be expanded, and the measurement performance of the ophthalmologic apparatus 100 can be improved.

また、実施例1の眼科装置100では、眼科装置本体10を複数備え、これらと学習部6を通信ネットワーク1で接続している。さらに実施例1では、学習部6をクラウドサーバ3に設けている。そして、学習部6は、複数の眼科装置本体10からのエラーログデータに基づいて学習し、エラー回避情報を生成している。そのため、各眼科装置本体10で、所定の測定シーケンスでは測定できない様々な状況に対する学習結果を共有することができ、学習性能を向上させることができる。また、クラウドサーバ3でより多くのエラーログデータを収集することができるため、学習部6での学習性能を高めることができる。そのため、各眼科装置本体10での被検眼Eの眼特定を自動で測定できる状況を拡げ、測定性能をより向上させることができる。 Further, the ophthalmologic apparatus 100 of the first embodiment includes a plurality of ophthalmologic apparatus main bodies 10 , which are connected to the learning unit 6 via the communication network 1 . Furthermore, in Example 1, the learning unit 6 is provided in the cloud server 3 . The learning unit 6 learns based on error log data from a plurality of ophthalmologic apparatus main bodies 10 and generates error avoidance information. Therefore, each ophthalmologic apparatus main body 10 can share learning results for various situations that cannot be measured by a predetermined measurement sequence, and learning performance can be improved. Further, since more error log data can be collected by the cloud server 3, the learning performance of the learning unit 6 can be improved. Therefore, it is possible to expand the situation in which the eye identification of the subject's eye E can be automatically measured in each ophthalmologic apparatus main body 10, and to further improve the measurement performance.

また、同機種の複数の眼科装置本体10で学習結果を共有することができるため、例えば、高齢者の眼特性の測定を主に行う眼科装置本体10と、子供の眼特性を主に行う眼科装置本体10でのエラーログデータを収集して人工知能エンジンを生成することができる。この人工知能エンジンを各眼科装置本体10に配信することで、各眼科装置本体10でのエラー経験とその回避策を共有することができ、いずれの眼特性を眼科装置本体10で、いずれの被検眼Eの眼特性を測定する場合でも、様々な状況に対応するエラー回避情報に基づいて測定することで、自動で測定することができる可能性を拡げることができ、測定性能を向上させることができる。 In addition, since learning results can be shared by a plurality of ophthalmic apparatus main bodies 10 of the same model, for example, an ophthalmologic apparatus main body 10 that mainly measures the eye characteristics of elderly people and an ophthalmological device main body 10 that mainly measures the eye characteristics of children An artificial intelligence engine can be generated by collecting error log data in the device body 10 . By distributing this artificial intelligence engine to each ophthalmologic apparatus main body 10, it is possible to share experience of errors in each ophthalmologic apparatus main body 10 and workarounds therefor, so that which ocular characteristics can be used by the ophthalmologic apparatus main body 10 and which patient Even when measuring the eye characteristics of optometry E, by measuring based on the error avoidance information corresponding to various situations, the possibility of automatic measurement can be expanded, and the measurement performance can be improved. can.

また、実施例1の眼科装置100では、測定条件データとして、被検眼Eに対して眼特性測定部16を移動させるときの移動速度、移動座標等の制御パラメータと、眼特性測定部16が眼特性を測定するときの焦点距離、ゲイン、計測位置、露光量等の測定パラメータのいずれかを含めている。学習部6では、これらの測定条件データに基づいて、状況に応じて測定できる可能性の高いエラー回避制御パラメータ、エラー回避測定パラメータを生成して、各眼科装置本体10に返すことができる。そのため、各眼科装置本体10で、眼特性を測定できない状況となったときに、これらのパラメータを設定して測定を行うことで、自動で測定することができる可能性を拡げることができるとともに、自動測定をより迅速に行うことができる。 In addition, in the ophthalmologic apparatus 100 of the first embodiment, the measurement condition data includes control parameters such as a movement speed and movement coordinates for moving the eye characteristics measuring unit 16 with respect to the eye to be examined E, and It includes any of the measurement parameters such as focal length, gain, measurement position, and exposure when measuring the characteristics. Based on these measurement condition data, the learning unit 6 can generate error avoidance control parameters and error avoidance measurement parameters that are highly likely to be measured depending on the situation, and can return them to each ophthalmologic apparatus main body 10 . Therefore, when the ocular characteristics cannot be measured by each ophthalmologic apparatus main body 10, the possibility of automatic measurement can be expanded by setting these parameters and performing the measurement. Automated measurements can be made more quickly.

また、実施例1の眼科装置100は、被検眼Eの状況(状況データ)に前眼部の露出度合や、被検眼Eの眼特性を含めている。このため、眼科装置本体10は、例えば瞼や睫毛が前眼部(角膜Ec)に掛かっていて露出度合が低い状況や、被検眼Eが円錐角膜となっている状況や角膜頂点が荒れている状況でも、エラー回避情報に基づいて測定することで、自動で測定することができる可能性を拡げることができる。 Further, the ophthalmologic apparatus 100 of the first embodiment includes the degree of exposure of the anterior segment and the ocular characteristics of the eye E to be examined in the situation (situation data) of the eye E to be examined. For this reason, the ophthalmologic apparatus main body 10 may be used in a situation where the eyelid or eyelashes are covered with the anterior segment (cornea Ec) and the degree of exposure is low, a situation where the subject's eye E has keratoconus, or a corneal vertex is rough. Even in situations, the possibility of automatic measurement can be expanded by measuring based on the error avoidance information.

以上、本願の眼科装置及びを実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The ophthalmic apparatus of the present application has been described above based on Example 1, but the specific configuration is not limited to Example 1, and does not depart from the gist of the invention according to each claim. Design changes, additions, etc. are permitted as long as

例えば、実施例1では、眼特性測定部16として、観察系21と視標投影系22と眼屈折力測定系23と自覚式検査系24とケラト系27とが設けられている。しかしながら、眼特性測定部16は、自動で被検眼Eに対するアライメントを行った後に、自動で被検眼Eの眼特性を測定できるものであればよく、実施例1の構成に限定されない。 For example, in Example 1, an observation system 21 , a target projection system 22 , an eye refractive power measurement system 23 , a subjective examination system 24 , and a keratometry system 27 are provided as the eye characteristic measurement unit 16 . However, the eye characteristic measurement unit 16 is not limited to the configuration of the first embodiment as long as it can automatically measure the eye characteristics of the eye to be examined E after automatically performing alignment with the eye to be examined E.

また、実施例1では、予め定められた測定シーケンスに従ってアライメントや眼特性の測定をまずは実行し、測定できない場合に人工知能エンジンによって回避策を抽出し、その回避策に基づいて再度アライメントや眼特性の測定を実行している。しかしながら、本願がこれに限定されることはなく、入力された被検者データや撮影された前眼部画像E′等の状況データを予め分析して、適切な測定ができるか否かを判断し、測定できない状況であると判断した場合に、人工知能エンジンによって回避策を抽出し、測定を実行するような構成とすることもできる。そのため、自動測定に要する時間を短縮することができる。これは、状況に拘わらず所定の測定シーケンスで測定を行い、それでは測定が出来ない場合に回避策を抽出して測定を行う場合と比較すると、無駄に測定することを防止できることによる。 Further, in the first embodiment, alignment and eye characteristics are first measured according to a predetermined measurement sequence, and if the measurement is not possible, a workaround is extracted by the artificial intelligence engine, and based on the workaround, alignment and eye characteristics are again measured. are performing measurements. However, the present application is not limited to this, and situation data such as the input subject data and the captured anterior segment image E′ is analyzed in advance to determine whether or not appropriate measurement can be performed. However, if it is determined that the situation cannot be measured, the artificial intelligence engine can extract workarounds and perform measurement. Therefore, the time required for automatic measurement can be shortened. This is because measurement can be prevented in vain as compared to the case where measurement is performed according to a predetermined measurement sequence regardless of the situation, and a workaround is extracted when measurement cannot be performed.

また、ユーザインタフェース部30として、スピーカ等を設け、回避策として、瞬きを我慢する旨や、瞼を開けるタイミングを音声によって被検者に知らせることもできる。これにより、例えば瞼や睫毛が前眼部に掛かって測定できない状況や、瞬きによって測定できない状況を回避することができる。 Further, a speaker or the like may be provided as the user interface unit 30, and as a workaround, the subject may be notified by voice that he/she should refrain from blinking or the timing of opening the eyelids. As a result, it is possible to avoid a situation in which the eyelids or eyelashes overlap the anterior segment of the eye and cannot be measured, or a situation in which measurement is impossible due to blinking.

6 学習部 10 眼科装置本体 16 眼特性測定部 17 測定条件取得部
40 制御部 50 データ処理部(制御部) 100 眼科装置
6 Learning Unit 10 Ophthalmic Apparatus Main Body 16 Eye Characteristic Measuring Unit 17 Measurement Condition Acquisition Unit 40 Control Unit 50 Data Processing Unit (Control Unit) 100 Ophthalmic Apparatus

Claims (4)

被検眼の眼特性を測定する眼特性測定部と、
前記眼特性測定部で測定を行ったときの測定条件を取得する測定条件取得部と、
予め定められた測定手順に沿って前記眼特性測定部を制御する制御部と、
前記測定手順では眼特性の測定が行えない状況での前記測定条件、前記被検眼の状況に関する状況データ、及び眼科装置本体のモダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する学習部と、を備え、
前記制御部は、前記測定手順では前記被検眼の眼特性の測定が行えない状況となったとき、前記学習部で作成した前記学習測定条件から前記状況に対応する学習測定条件を抽出し、当該学習測定条件に基づいて前記眼特性測定部を制御して、前記被検眼の眼特性の測定を行い、
前記制御部が前記学習測定条件に基づいて前記眼特性測定部を制御することで、眼特性の測定が適切に行われたときに、前記学習部は、眼特性の測定が適切に行われたときの当該学習測定条件を成功例の事例として収集し、測定が行えない状況を回避する学習測定条件を生成する際に参照することを特徴とする眼科装置。
an eye characteristic measuring unit that measures the eye characteristic of the subject's eye;
a measurement condition acquisition unit that acquires measurement conditions when the measurement is performed by the eye characteristic measurement unit;
a control unit that controls the eye characteristic measurement unit according to a predetermined measurement procedure;
Said measurement conditions in a situation in which eye characteristics cannot be measured in said measurement procedure, situation data relating to the condition of said eye to be examined, modality of an ophthalmologic apparatus main body, and a situation in which eye characteristics are properly measured in said measurement procedure a learning unit that generates a learning measurement condition that avoids a situation in which measurement cannot be performed, based on the measurement condition, the situation data, and the modality in
The control unit extracts a learning measurement condition corresponding to the situation from the learning measurement conditions created by the learning unit when the measurement procedure cannot measure the eye characteristics of the eye to be examined. controlling the eye characteristics measuring unit based on the learning measurement conditions to measure the eye characteristics of the eye to be inspected ;
When the control unit controls the eye characteristic measurement unit based on the learning measurement condition, and the eye characteristic measurement is appropriately performed, the learning unit determines whether the eye characteristic measurement is properly performed. 1. An ophthalmologic apparatus, characterized in that the learned measurement conditions are collected as examples of successful cases, and referred to when generating the learned measurement conditions for avoiding a situation in which measurement cannot be performed.
被検眼の眼特性を測定する眼特性測定部と、
前記眼特性測定部で測定を行ったときの測定条件を取得する測定条件取得部と、
予め定められた測定手順に沿って前記眼特性測定部を制御する制御部と、
前記測定手順では眼特性の測定が行えない状況での前記測定条件、前記被検眼の状況に関する状況データ、及び眼科装置本体のモダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する学習部と、を備え、
前記制御部は、前記測定手順では前記被検眼の眼特性の測定が行えない状況となったとき、前記学習部で作成した前記学習測定条件から前記状況に対応する学習測定条件を抽出し、当該学習測定条件に基づいて前記眼特性測定部を制御して、前記被検眼の眼特性の測定を行い、
前記制御部は、前記学習測定条件に基づいて前記眼特性測定部を制御しても、眼特性の測定が行えない状況となったとき、当該学習測定条件に対して、測定が行えない状況のエラー測定条件であるとの付加情報を付与し、前記学習部は、前記エラー測定条件であるとの付加情報が付与された前記学習測定条件を、測定が行えない状況を回避する学習測定条件を生成する際に参照することを特徴とする眼科装置。
an eye characteristic measuring unit that measures the eye characteristic of the subject's eye;
a measurement condition acquisition unit that acquires measurement conditions when the measurement is performed by the eye characteristic measurement unit;
a control unit that controls the eye characteristic measurement unit according to a predetermined measurement procedure;
Said measurement conditions in a situation in which eye characteristics cannot be measured in said measurement procedure, situation data relating to the condition of said eye to be examined, modality of an ophthalmologic apparatus main body, and a situation in which eye characteristics are properly measured in said measurement procedure a learning unit that generates a learning measurement condition that avoids a situation in which measurement cannot be performed, based on the measurement condition, the situation data, and the modality in
The control unit extracts a learning measurement condition corresponding to the situation from the learning measurement conditions created by the learning unit when the measurement procedure cannot measure the eye characteristics of the eye to be examined. controlling the eye characteristics measuring unit based on the learning measurement conditions to measure the eye characteristics of the eye to be inspected;
When the eye characteristics cannot be measured even if the eye characteristics measuring unit is controlled based on the learning measurement conditions, the control unit changes the conditions in which the measurement cannot be performed under the learning measurement conditions. Additional information indicating that it is an error measurement condition is added, and the learning unit converts the learning measurement condition to which the additional information indicating that it is an error measurement condition is a learning measurement condition that avoids a situation in which measurement cannot be performed. An ophthalmologic device that is referred to when generating.
被検眼の眼特性を測定する眼特性測定部と、
前記眼特性測定部で測定を行ったときの測定条件を取得する測定条件取得部と、
予め定められた測定手順に沿って前記眼特性測定部を制御する制御部とを有する複数の眼科装置本体、及び、前記測定手順では眼特性の測定が行えない状況での前記測定条件、前記被検眼の状況に関する状況データ、及び眼科装置本体のモダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する学習部と、前記測定条件と前記状況データが前記モダリティと紐づけられて記憶される記憶部とを有するサーバ、を備え、
各眼科装置本体と、前記サーバとが通信ネットワークを介して互いに接続され、
前記制御部は、前記測定手順では前記被検眼の眼特性の測定が行えない状況となったとき、前記学習部で作成した前記学習測定条件から前記状況に対応する学習測定条件を抽出し、当該学習測定条件に基づいて前記眼特性測定部を制御して、前記被検眼の眼特性の測定を行い、
各眼科装置本体は、前記測定手順では眼特性の測定が行えない状況での前記測定条件及び前記モダリティ、前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件及び前記モダリティ、前記学習測定条件で眼特性の測定が適切に行われた状況での前記測定条件及び前記モダリティ、並びに、前記学習測定条件で眼特性の測定が行えない状況での前記測定条件及び前記モダリティを、前記通信ネットワークを介して前記サーバへ送信し、
前記サーバは、前記モダリティをキーとして、前記通信ネットワークを介して前記眼科装置本体又は外部機器から前記状況データを取得し、取得した前記状況データ及び複数の前記眼科装置本体の前記測定条件取得部から受信した前記測定条件を、前記モダリティと紐づけて前記記憶部に記憶し、
前記学習部は、前記モダリティをキーとして前記記憶部から前記測定条件及び前記状況データを取得し、前記モダリティごとに前記学習測定条件を生成し、生成された前記学習測定条件を、前記通信ネットワークを介して各眼科装置本体へ送信することを特徴とする眼科装置。
an eye characteristic measuring unit that measures the eye characteristic of the subject's eye ;
a measurement condition acquisition unit that acquires measurement conditions when the measurement is performed by the eye characteristic measurement unit ;
a plurality of ophthalmologic apparatus main bodies each having a control unit that controls the eye characteristics measuring unit according to a predetermined measurement procedure; The measurement can be performed based on the situation data related to the optometry situation, the modality of the main body of the ophthalmologic apparatus, and the measurement conditions, the situation data, and the modality in the situation where the eye characteristics are appropriately measured in the measurement procedure. a server having a learning unit that generates a learning measurement condition for avoiding a situation where the modality does not exist, and a storage unit that stores the measurement condition and the situation data in association with the modality;
each ophthalmologic apparatus body and the server are connected to each other via a communication network,
The control unit extracts a learning measurement condition corresponding to the situation from the learning measurement conditions created by the learning unit when the measurement procedure cannot measure the eye characteristics of the eye to be examined. controlling the eye characteristics measuring unit based on the learning measurement conditions to measure the eye characteristics of the eye to be inspected;
Each ophthalmologic apparatus main body has the measurement conditions and the modality in a situation in which the eye characteristics cannot be measured in the measurement procedure, and the measurement conditions and the modality in a situation in which the eye characteristics are appropriately measured in the measurement procedure. , the measurement conditions and the modalities in a situation where the eye characteristics are appropriately measured under the learning measurement conditions, and the measurement conditions and the modalities in a situation where the eye characteristics cannot be measured under the learning measurement conditions. , through the communication network to the server;
The server acquires the situation data from the main body of the ophthalmologic apparatus or an external device via the communication network using the modality as a key, storing the received measurement conditions in the storage unit in association with the modality;
The learning unit acquires the measurement condition and the situation data from the storage unit using the modality as a key, generates the learning measurement condition for each modality, and transmits the generated learning measurement condition to the communication network. An ophthalmologic device characterized by transmitting to each ophthalmologic device main body via.
請求項1に記載の眼科装置で行われる眼科測定方法であって、
予め定められた測定手順に沿って被検眼の眼特性を測定する工程と、
前記眼特性を測定するときの測定条件を取得する工程と、
前記被検眼の状況に関する状況データ、及び前記眼科装置本体のモダリティを取得する工程と、
眼特性の測定が行えない状況での前記測定条件、前記状況データ、及び前記モダリティ、並びに前記測定手順で眼特性の測定が適切に行われた状況での前記測定条件、前記状況データ、及び前記モダリティに基づいて、測定が行えない状況を回避する学習測定条件を生成する工程と、
前記眼特性の測定が行えない状況となったときに、前記学習測定条件を生成する工程で生成された前記学習測定条件から、前記状況に対応した前記学習測定条件を抽出し、該学習測定条件に基づいて前記被検眼の眼特性を測定する工程と、を有し、
前記測定が行えない状況を回避する学習測定条件を生成する工程は、前記学習測定条件に基づいて前記被検眼の眼特性を測定する工程が適切に行われたときに、眼特性の測定が適切に行われたときの当該学習測定条件を成功例の事例として収集し、前記学習測定条件を生成する際に参照する工程を含む、
ことを特徴とする眼科測定方法。
An ophthalmologic measurement method performed by the ophthalmologic apparatus according to claim 1 ,
a step of measuring ocular characteristics of an eye to be examined according to a predetermined measurement procedure;
obtaining measurement conditions for measuring the eye characteristics;
a step of obtaining situation data about the situation of the eye to be examined and the modality of the ophthalmologic apparatus main body;
The measurement conditions, the situation data, and the modality in a situation in which the eye characteristics cannot be measured, and the measurement conditions, the situation data, and the above in a situation in which the eye characteristics are appropriately measured in the measurement procedure. generating learning measurement conditions that avoid situations in which measurements cannot be performed, based on the modality;
When a situation arises in which the eye characteristics cannot be measured, the learning measurement condition corresponding to the situation is extracted from the learning measurement conditions generated in the step of generating the learning measurement condition, and the learning measurement condition is extracted. and measuring the ocular characteristics of the subject eye based on
The step of generating a learning measurement condition for avoiding a situation in which the measurement cannot be performed includes measuring the eye characteristics appropriately when the step of measuring the eye characteristics of the subject's eye is appropriately performed based on the learning measurement conditions. Collecting the learning measurement conditions when performed at the time as examples of successful cases, and referring to when generating the learning measurement conditions,
An ophthalmologic measurement method characterized by:
JP2021167605A 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method Active JP7252295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021167605A JP7252295B2 (en) 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020203811A JP6961065B2 (en) 2017-02-14 2020-12-09 Ophthalmic equipment and ophthalmic measurement method
JP2021167605A JP7252295B2 (en) 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020203811A Division JP6961065B2 (en) 2017-02-14 2020-12-09 Ophthalmic equipment and ophthalmic measurement method

Publications (2)

Publication Number Publication Date
JP2022001308A JP2022001308A (en) 2022-01-06
JP7252295B2 true JP7252295B2 (en) 2023-04-04

Family

ID=79244688

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021167694A Active JP7252296B2 (en) 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method
JP2021167605A Active JP7252295B2 (en) 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021167694A Active JP7252296B2 (en) 2020-12-09 2021-10-12 Ophthalmic device and ophthalmic measurement method

Country Status (1)

Country Link
JP (2) JP7252296B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306417A (en) 2001-02-09 2002-10-22 Topcon Corp Eye characteristics measuring instrument
JP2004037941A (en) 2002-07-04 2004-02-05 Ricoh Co Ltd Image forming apparatus management system
JP2005168856A (en) 2003-12-12 2005-06-30 National Institute Of Advanced Industrial & Technology Instrument and method for measuring fatigue degree
WO2008120552A1 (en) 2007-03-29 2008-10-09 Nec Corporation Diagnostic system
US20150338915A1 (en) 2014-05-09 2015-11-26 Eyefluence, Inc. Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863937B2 (en) * 1989-12-29 1999-03-03 株式会社トプコン Perimeter measurement device
JPH0666852A (en) * 1992-04-22 1994-03-11 Nec Corp Spectrum measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306417A (en) 2001-02-09 2002-10-22 Topcon Corp Eye characteristics measuring instrument
JP2004037941A (en) 2002-07-04 2004-02-05 Ricoh Co Ltd Image forming apparatus management system
JP2005168856A (en) 2003-12-12 2005-06-30 National Institute Of Advanced Industrial & Technology Instrument and method for measuring fatigue degree
WO2008120552A1 (en) 2007-03-29 2008-10-09 Nec Corporation Diagnostic system
US20150338915A1 (en) 2014-05-09 2015-11-26 Eyefluence, Inc. Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects

Also Published As

Publication number Publication date
JP2022001309A (en) 2022-01-06
JP7252296B2 (en) 2023-04-04
JP2022001308A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6900647B2 (en) Ophthalmic device and IOL power determination program
JP5286446B2 (en) Eye examination equipment
WO2018021561A1 (en) Ophthalmologic device and iol power determination program
US10702145B2 (en) Ophthalmologic apparatus
US11013400B2 (en) Ophthalmic apparatus
JP7106728B2 (en) ophthalmic equipment
JP2023009257A (en) Ophthalmologic information processing apparatus, ophthalmologic imaging apparatus, ophthalmologic information processing method, and program
JP6808527B2 (en) Ophthalmic equipment and ophthalmic measurement method
JP2003225205A (en) Fully corrected vision characteristics measuring apparatus and method, contrast sensitivity measuring apparatus and method and contrast sensitivity target presentation device
JP6764805B2 (en) Ophthalmic equipment
JP2019208852A (en) Ophthalmologic image processing apparatus and ophthalmologic image processing program
JP6772412B2 (en) Ophthalmic equipment
JP7252295B2 (en) Ophthalmic device and ophthalmic measurement method
US11219363B2 (en) Ophthalmic apparatus and ophthalmic optical coherence tomography method
JP6392408B2 (en) Ophthalmic equipment
JP6961065B2 (en) Ophthalmic equipment and ophthalmic measurement method
JP7201855B2 (en) Ophthalmic device and ophthalmic information processing program
WO2016129499A1 (en) Ocular refractivity measuring device
JP2019013391A (en) Ophthalmologic device and ophthalmologic device control program
JP7116572B2 (en) Ophthalmic device and ophthalmic information processing program
JP2017164521A (en) Ophthalmologic device
JP2017127731A (en) Program and ophthalmologic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7252295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150