JPH0666852A - Spectrum measuring device - Google Patents

Spectrum measuring device

Info

Publication number
JPH0666852A
JPH0666852A JP10259392A JP10259392A JPH0666852A JP H0666852 A JPH0666852 A JP H0666852A JP 10259392 A JP10259392 A JP 10259392A JP 10259392 A JP10259392 A JP 10259392A JP H0666852 A JPH0666852 A JP H0666852A
Authority
JP
Japan
Prior art keywords
signal
condition
spectrum
spectrum analyzer
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10259392A
Other languages
Japanese (ja)
Inventor
Yukihiko Konishi
遊亀彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10259392A priority Critical patent/JPH0666852A/en
Publication of JPH0666852A publication Critical patent/JPH0666852A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To determine a measuring condition within a shorter time while ensuring sure reproducibility by fuzzy inference and neural net at the time of determining optimum measuring conditions such as the band width, sweep speed and video band of a spectrum analyzer. CONSTITUTION:A wireless equipment 1 is controlled, to be in the operating state with the operation control signal 105 of a control part 4 to provide a desired wireless output 102. A neural net 50 outputs a condition signal 102 according to a preliminarily learned network from a priority signal 104 weighted by the inspection system or inspection speed from the control part 4. Under the condition according to the condition signal 102, a spectrum analyzer 2 measures the spectrum of the wireless equipment 11 under an optimum measuring condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトラム測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrum measuring device.

【0002】[0002]

【従来の技術】従来のスペクトラム測定装置は無線機器
より出力される無線信号と自己の動作条件を定める条件
信号を入力するスペクトラムアナライザと、前記無線機
器に入力されその動作を決定する動作制御信号とレジス
タ指定信号を出力する制御部と、前記制御部より出力さ
れるレジスタ指定信号を入力し条件信号を出力するレジ
スタ部とにより構成されていた。
2. Description of the Related Art A conventional spectrum measuring apparatus includes a spectrum analyzer for inputting a radio signal output from a radio device and a condition signal for determining its own operating condition, and an operation control signal for inputting to the radio device to determine its operation. The control unit outputs a register designation signal, and the register unit outputs the condition signal by inputting the register designation signal output from the control unit.

【0003】次に従来のスペクトラム測定装置について
図面を参照して詳細に説明する。
Next, a conventional spectrum measuring apparatus will be described in detail with reference to the drawings.

【0004】図5は従来の一例を示すブロック図であ
る。無線機器1は制御部4より出力される動作制御信号
105により送信機の出力制御やチャンネル指定を受け
検査可能な状況に設定される。検査可能な状況に設定さ
れた無線機器1は無線信号101を出力する。スペクト
ラムアナライザ2はレジスタ部3より出力される条件信
号102により指定されるスイープ速度、分解バンド
幅、ビデオ帯域を設定する。一方、制御部4は予め熟練
者の試行錯誤により得た情報に従って、最適の測定条件
を決定し、その測定条件を選択するレジスタ指定信号1
03を出力する。レジスタ部3はレジスタ指定信号10
3によりレジスタ部3に予め保持してあるスイープ速
度、分解バンド幅、ビデオ帯域等の条件信号102を出
力する。このようにして前述のスペクトラムアナライザ
2は無線信号101に存在する送信スプリアスを測定す
る。ここで前述のように無線機器1のスペクトラム測定
を最も効率的に行う、言い替えればスプリアスを見落と
すことなく高速に測定を完了させるためには最適なスイ
ープ速度、分解バンド幅、ビデオ帯域を組み合わせる必
要がある。しかし従来のスペクトラム測定装置ではこの
決定に当たって熟練者のノウハウに期待し、試行錯誤の
中でその測定条件を決定する必要があり、測定の開始ま
でに時間がかかるという問題があった。また、熟練者個
人間ノウハウによる違いが避けられず、それぞれの判断
がバラツキ結果としてスプリアス測定の条件の安定に問
題が生じていた。また熟練者個人のノウハウ、言い替え
れば個人の判断にまかされている部分が多く、この面か
らも検査品質のバラツキの恐れがあった。
FIG. 5 is a block diagram showing a conventional example. The wireless device 1 is set to an inspectable state by receiving output control of the transmitter and channel designation by the operation control signal 105 output from the control unit 4. The wireless device 1 set to the inspectable state outputs the wireless signal 101. The spectrum analyzer 2 sets the sweep speed, the decomposition bandwidth, and the video bandwidth specified by the condition signal 102 output from the register unit 3. On the other hand, the control unit 4 determines the optimum measurement condition according to information obtained by trial and error by an expert in advance, and the register designation signal 1 for selecting the optimum measurement condition.
03 is output. The register unit 3 has a register designation signal 10
3 outputs a condition signal 102 such as a sweep speed, a decomposition bandwidth, a video band, which is held in the register unit 3 in advance. In this way, the spectrum analyzer 2 described above measures the transmission spurious present in the radio signal 101. Here, as described above, the spectrum measurement of the wireless device 1 is performed most efficiently, in other words, in order to complete the measurement at high speed without overlooking the spurious, it is necessary to combine the optimum sweep speed, decomposition bandwidth, and video bandwidth. is there. However, in the conventional spectrum measuring apparatus, it is necessary to expect the know-how of a skilled person to make this determination, and to determine the measurement condition through trial and error, which causes a problem that it takes time to start the measurement. Moreover, the difference due to the know-how among the individual experts is unavoidable, and each judgment varies, resulting in a problem in the stability of the spurious measurement conditions. In addition, there are many parts that are left to the expert's individual know-how, in other words, the individual's judgment, and there is a risk of variations in inspection quality from this aspect as well.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のスペク
トラム測定装置は無線機器の特性に応じて様々に変化す
るスプリアスを検出するためにスイープ速度、分解バン
ド幅、ビデオ帯域を最適に設定する必要があったが、熟
練者のノウハウを基に試行錯誤の中から最適の組合せを
発見するため、その設定に時間がかかり、検査の能率向
上の要求に応えられないという欠点があった。また、そ
の条件の決定にあたっても熟練者の個人間のノウハウの
差により同じ条件が規定されるとは限らず検査の品質を
確保する上でも問題となっていた。
The above-described conventional spectrum measuring apparatus needs to optimally set the sweep speed, the decomposition bandwidth, and the video band in order to detect spurious that varies variously according to the characteristics of the radio equipment. However, there is a drawback that the optimum combination is found from trial and error based on the know-how of the skilled person, so that it takes time to set it and it is not possible to meet the demand for improving the efficiency of the inspection. In determining the condition, the same condition is not always defined due to the difference in know-how between skilled persons, and there is a problem in ensuring the quality of the inspection.

【0006】[0006]

【課題を解決するための手段】第1の発明のスペクトラ
ム測定装置は、無線機器より出力される無線信号と自己
の動作条件を定める条件信号を入力するスペクトラムア
ナライザと、前記無線機器に入力されその動作を決定す
る動作制御信号と優先信号を出力する制御部と、前記優
先信号を入力し、条件信号を出力する推論部とを含んで
構成される。
A spectrum measuring apparatus according to a first aspect of the present invention includes a spectrum analyzer for inputting a radio signal output from a radio device and a condition signal for determining its own operating condition, and a spectrum analyzer input to the radio device. The control unit includes an operation control signal for determining an operation and a priority signal, and a reasoning unit for inputting the priority signal and outputting a condition signal.

【0007】第2の発明のスペクトラム測定装置は、無
線機器より出力される無線信号と自己の動作条件を定め
る条件信号を入力するスペクトラムアナライザと、前記
無線機器に入力されその動作を決定する動作制御信号と
優先信号を出力する制御部と、前記優先信号を入力し、
条件信号を出力する推論部とを含んで構成される。
The spectrum measuring apparatus of the second invention comprises a spectrum analyzer for inputting a radio signal output from a wireless device and a condition signal for determining its own operating condition, and operation control for inputting to the wireless device and determining its operation. A control unit for outputting a signal and a priority signal, and inputting the priority signal,
And an inference unit that outputs a condition signal.

【0008】[0008]

【実施例】次に、本発明の実施例について、図面を参照
して詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】図1は本発明の第1の実施例を示すブロッ
ク図である。無線機器1は制御部4より出力される動作
制御信号105により送信機の出力制御やチャンネル指
定を受け検査可能な状況に設定される。検査可能な状況
に設定された無線機器1は無線信号101を出力する。
スペクトラムアナライザ2は推論部5より出力される条
件信号102により指定されるスイープ速度、分解バン
ド幅、ビデオ帯域を設定する。一方、制御部4は確実に
スプリアスを検出することに重点を置いた場合と高速に
測定を完了する場合とにそれぞれ重みずけされた優先信
号を推論部5に出力する。推論部5は入力した優先信号
104に対してファジィ推論を行い前述の条件信号02
を出力する。このようにして前述のスペクトラムアナラ
イザ2は無線信号101に存在する送信スプリアスを測
定する。
FIG. 1 is a block diagram showing a first embodiment of the present invention. The wireless device 1 is set to an inspectable state by receiving output control of the transmitter and channel designation by the operation control signal 105 output from the control unit 4. The wireless device 1 set to the inspectable state outputs the wireless signal 101.
The spectrum analyzer 2 sets the sweep speed, the decomposition bandwidth, and the video bandwidth specified by the condition signal 102 output from the inference unit 5. On the other hand, the control unit 4 outputs the weighted priority signals to the inference unit 5 when the emphasis is placed on detecting spurious reliably and when the measurement is completed at high speed. The inference unit 5 performs a fuzzy inference on the input priority signal 104 and outputs the above-mentioned condition signal 02.
Is output. In this way, the spectrum analyzer 2 described above measures the transmission spurious present in the radio signal 101.

【0010】ファジイ推論を実行するにあたっては予め
定められているマンバシップ関数によりファジィ推論が
行われる。マンバシップ関数としては図2に示すように
それぞれのファジィ集合に対して、L、M、Hの関数を
準備すればよい。また、ファジー推論に使用される優先
信号、具体的には検査速度優先信号、検査制度優先信号
や条件信号、具体的にはスイープ速度、分解バンド幅、
ビデオ帯域の決定についてのファジィルールは標準的に
指定する大小概念に従って準備されておりそれを図3
(a)〜(c)に示す。ここで、SL、SM、SHは速
度優先信号、PL、PM、PHは分解バンド幅、WS、
WM、WHはスイープ速度、DL、DM、DH、ビデオ
帯域、つまり条件信号のファジー集合である。さらに条
件信号の最終的な決定にあたっては重心法などを使用す
ればよい。
When executing the fuzzy inference, the fuzzy inference is performed by a predetermined manbassian function. As the Mambassian function, as shown in FIG. 2, L, M, and H functions may be prepared for each fuzzy set. Also, priority signals used for fuzzy inference, specifically inspection speed priority signals, inspection system priority signals and condition signals, specifically sweep speed, decomposition bandwidth,
The fuzzy rules for determining the video bandwidth are prepared according to the standardized large and small concept, and are shown in FIG.
It shows in (a)-(c). Here, SL, SM, SH are speed priority signals, PL, PM, PH are decomposition bandwidths, WS,
WM and WH are fuzzy sets of sweep rate, DL, DM, DH, video band, that is, a condition signal. Furthermore, the final method of determining the condition signal may be performed by using the center of gravity method or the like.

【0011】このように熟練者の試行錯誤に依存するこ
となく、スプリアス測定時の具体的な要求に対して最適
の条件信号をファジィ推論を利用することにより常に決
定する事ができる。
As described above, the optimum condition signal can be always determined by using fuzzy reasoning with respect to a specific request at the time of spurious measurement, without depending on trial and error of an expert.

【0012】図4は本発明の第2の実施例を示すブロッ
ク図である。無線機器1は制御部4より出力される動作
制御信号105により送信機の出力制御やチャンネル指
定を受け検査可能な状況に設定される。検査可能な状況
に設定された無線機器1は無線信号101を出力する。
スペクトラムアナライザ2はニューラルネット5より出
力される条件信号102により指定されるスイープ速
度、分解バンド幅、ビデオ帯域を設定する。一方、制御
部4は確実にスプリアスを検出することに重点を置いた
場合と高速に測定を完了する場合とにそれぞれ重みずけ
された優先信号を推論部5に出力する。ニューラルネッ
ト50は入力した優先信号104に対してファジィ推論
104を行い前述の条件信号102を出力する。このよ
うにして前述のスペクトラムアナライザ2は無線信号1
01に存在する送信スプリアスを測定する。
FIG. 4 is a block diagram showing a second embodiment of the present invention. The wireless device 1 is set to an inspectable state by receiving output control of the transmitter and channel designation by the operation control signal 105 output from the control unit 4. The wireless device 1 set to the inspectable state outputs the wireless signal 101.
The spectrum analyzer 2 sets the sweep speed, the decomposition bandwidth, and the video bandwidth specified by the condition signal 102 output from the neural network 5. On the other hand, the control unit 4 outputs the weighted priority signals to the inference unit 5 when the emphasis is placed on detecting spurious reliably and when the measurement is completed at high speed. The neural network 50 performs fuzzy inference 104 on the input priority signal 104 and outputs the above-mentioned condition signal 102. In this way, the above-mentioned spectrum analyzer 2 operates as the radio signal 1
Measure the transmit spurious present in 01.

【0013】第2の実施例のスペクトラム測定装置で
は、条件信号102を出力するにはニューラルネット6
にあらかじめ配置された評価関数を実現する必要があ
る。多数の測定条件の組合せの中で、言い替えれば様々
な優先信号104の組合せに対して、出力される条件信
号102を評価する。評価は熟練作業者により行う。こ
のようにして熟練者の判断規準が本スペクトラム測定装
置のニューラルネットに実現される。
In the spectrum measuring apparatus of the second embodiment, the neural network 6 is used to output the condition signal 102.
It is necessary to realize the evaluation function that is placed in advance. Of the many combinations of measurement conditions, in other words, the output condition signal 102 is evaluated with respect to various combinations of priority signals 104. Evaluation is performed by a skilled worker. In this way, the judgment criteria of the expert are realized in the neural network of this spectrum measuring apparatus.

【0014】このように熟練者の試行錯誤に依存するこ
となく、スプリアス測定時の具体的な要求に対して最適
の条件信号をニューラルネットにより常に決定する事が
できる。
As described above, the neural network can always determine the optimum condition signal for a specific request at the time of spurious measurement, without depending on the trial and error of an expert.

【0015】[0015]

【発明の効果】本発明のスペクトラム測定装置は、個々
の無線機の特性に合わせて最適の測定条件を規定する場
合に、熟練した作業者のノウハウにより試行錯誤でその
測定条件を決定する替わりに、ファジィ推論および予め
学習をさせてあるニューラルネットによりその測定条件
を決定するので、個人の技能レベルに影響されずにその
条件決定のための試行錯誤の時間を浪費せずに、短時間
で検査が開始できる効果がある。また、個人の感覚に埋
もれることのない再現性のある明確な条件でスプリアス
の測定検査が行われるので検査ミスが発生することがな
いという効果がある。
According to the spectrum measuring apparatus of the present invention, when the optimum measurement condition is specified according to the characteristics of each radio, instead of determining the measurement condition by trial and error by the know-how of a skilled worker. Since the measurement conditions are determined by a fuzzy reasoning and a pre-learned neural network, the inspection can be performed in a short time without wasting the trial and error time for determining the conditions without being influenced by the skill level of the individual. There is an effect that can start. In addition, since spurious measurement and inspection are performed under clear and reproducible conditions that are not buried in the senses of the individual, there is an effect that an inspection error does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】メンバシップ関数の一例を示す図である。FIG. 2 is a diagram showing an example of a membership function.

【図3】(a)〜(c)はファジィルールの一例を示す
図である。
3A to 3C are diagrams showing an example of a fuzzy rule.

【図4】本発明の第2の実施例を示すブロック図であ
る。
FIG. 4 is a block diagram showing a second embodiment of the present invention.

【図5】従来の一例を示すブロック図である。FIG. 5 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 無線機器 2 スペクトラムアナライザ 3 レジスタ部 4 制御部 50 ニューラルネット 101 無線信号 102 条件信号 103 レジスタ指定信号 104 優先信号 105 動作制御信号 1 wireless device 2 spectrum analyzer 3 register unit 4 control unit 50 neural network 101 wireless signal 102 condition signal 103 register designation signal 104 priority signal 105 operation control signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無線機器より出力される無線信号と自己
の動作条件を定める条件信号を入力するスペクトラムア
ナライザと、前記無線機器に入力されその動作を決定す
る動作制御信号と優先信号を出力する制御部と、前記優
先信号を入力し、条件信号を出力する推論部とを含むこ
とを特徴とするスペクトラム測定装置。
1. A spectrum analyzer for inputting a radio signal output from a wireless device and a condition signal for determining its own operating condition, and control for outputting an operation control signal and a priority signal input to the wireless device for determining its operation. A spectrum measuring apparatus comprising: a unit and an inference unit that inputs the priority signal and outputs a condition signal.
【請求項2】 無線機器より出力される無線信号と自己
の動作条件を定める条件信号を入力するスペクトラムア
ナライザと、前記無線機器に入力されその動作を決定す
る動作制御信号と優先信号を出力する制御部と、前記優
先信号を入力し、条件信号を出力するニューラルネット
とを含むことを特徴とするスペクトラム測定装置。
2. A spectrum analyzer for inputting a radio signal output from a wireless device and a condition signal for determining its own operating condition, and a control for outputting an operation control signal and a priority signal input to the wireless device for determining its operation. A spectrum measuring apparatus comprising: a unit and a neural network which inputs the priority signal and outputs a condition signal.
JP10259392A 1992-04-22 1992-04-22 Spectrum measuring device Withdrawn JPH0666852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259392A JPH0666852A (en) 1992-04-22 1992-04-22 Spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259392A JPH0666852A (en) 1992-04-22 1992-04-22 Spectrum measuring device

Publications (1)

Publication Number Publication Date
JPH0666852A true JPH0666852A (en) 1994-03-11

Family

ID=14331539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259392A Withdrawn JPH0666852A (en) 1992-04-22 1992-04-22 Spectrum measuring device

Country Status (1)

Country Link
JP (1) JPH0666852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883382A (en) * 1996-06-07 1999-03-16 Nihon Shingo Kabushiki Kaisha Photo-detecting device having optical axis orienting variable direction
JP2006285489A (en) * 2005-03-31 2006-10-19 Kddi Corp Associative memory device and software thereof
JP2022001308A (en) * 2020-12-09 2022-01-06 株式会社トプコン Ophthalmologic apparatus and ophthalmologic measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883382A (en) * 1996-06-07 1999-03-16 Nihon Shingo Kabushiki Kaisha Photo-detecting device having optical axis orienting variable direction
JP2006285489A (en) * 2005-03-31 2006-10-19 Kddi Corp Associative memory device and software thereof
JP2022001308A (en) * 2020-12-09 2022-01-06 株式会社トプコン Ophthalmologic apparatus and ophthalmologic measuring method
JP2022001309A (en) * 2020-12-09 2022-01-06 株式会社トプコン Ophthalmologic apparatus and ophthalmologic measuring method

Similar Documents

Publication Publication Date Title
RU2003114431A (en) METHOD AND DEVICE FOR CARRYING OUT MONITORING AND FORECASTING OF MULTI-THREAD LOAD
CA2165229A1 (en) Method and Apparatus for Characterizing an Input Signal
WO2002034571A3 (en) Method and apparatus for vehicle operator performance assessment and improvement
JPH08274821A (en) Method and equipment for testing digital radio frequency system
WO1994005097A1 (en) Method for estimating c/i density and interference probability in the uplink
US7181367B2 (en) Off-line diagnosis system
GB2277151A (en) Machine monitoring using neural network
US6021314A (en) Free channel selector for selecting an optimal channel
JPH0666852A (en) Spectrum measuring device
US6876965B2 (en) Reduced complexity voice activity detector
US20040023629A1 (en) Receiving unit for searching for at least one unused transmission channel in a communications device, and a method for use
US6711515B1 (en) Robust and efficient method for smoothing measurement results
CA2131488A1 (en) Computationally Efficient Data Decoder and Method Used Therein
CA2489541A1 (en) Fcd system using beacons and facilities
CA2121002A1 (en) Apparatus and Method for Determining a Point in Time for Detecting a Sampled Signal in a Receiver
US5555552A (en) Apparatus for quickly capturing cordless telephone channel to be measured
US6097710A (en) Method for detecting strength of receiving signals of users in a code division multiple access system
US7228274B2 (en) Recognition of identification patterns
Millstrom et al. A hybrid neural-fuzzy approach to VHF frequency management
JP2877076B2 (en) Method and apparatus for evaluating voice merit in transmission path
JPH09211039A (en) Apparatus for identifying/evaluating radio device
SU1502969A1 (en) Method of vibration diagnosis of mechanism operability
JPH0730469A (en) Verification system for transmission characteristic of communication utilizing distribution line
SU938180A1 (en) Radio receiving equipment noise immunity determination method
JPH10126302A (en) Band end frequency detecting device for specific bandwidth of filter, and ssb transmitter and ssb receiver using the same device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706