JPH1096751A - Transmitting system characteristic measuring method for digital modulation signal - Google Patents

Transmitting system characteristic measuring method for digital modulation signal

Info

Publication number
JPH1096751A
JPH1096751A JP8271455A JP27145596A JPH1096751A JP H1096751 A JPH1096751 A JP H1096751A JP 8271455 A JP8271455 A JP 8271455A JP 27145596 A JP27145596 A JP 27145596A JP H1096751 A JPH1096751 A JP H1096751A
Authority
JP
Japan
Prior art keywords
measuring
spectrum distribution
frequency
digital modulation
channel leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8271455A
Other languages
Japanese (ja)
Inventor
Masaharu Tauchi
正治 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP8271455A priority Critical patent/JPH1096751A/en
Publication of JPH1096751A publication Critical patent/JPH1096751A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmitting system characteristic measuring method for a digital modulation signal in which a time for measuring the occupied zone width of transmitting system characteristic of the digital modulation signal and leakage electric power of an adjoining channel can be shortened without spoiling measuring accuracy. SOLUTION: The spectrum distribution data D11 of a signal to be tested Sin of digital modulation signal is seeked by a spectrum distribution measuring part 11, occupied zone width is seeked from the spectrum distribution data D11 by an occupied zone width detecting part 12 so as to obtain an occupied zone width measured result S12, and simultaneously adjoining channel leakage electric power is seeked from the spectrum distribution data D11 by an adjoining channel leakage electric power detecting part 13, so as to obtain an adjoining channel leakage electric power measured result S13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ディジタル変調
信号の占有帯域幅と隣接チャネル漏洩電力を測定する場
合に、ディジタル変調信号の占有帯域幅測定と隣接チャ
ネル漏洩電力測定を同時に行い、スペクトル分布データ
を求めるスペクトル分布測定部を共有することにより、
ディジタル変調信号の送信系特性測定の測定時間を短縮
するようにしたディジタル変調信号の送信系特性測定方
法に関する。
The present invention relates to a method for measuring the occupied bandwidth of a digital modulation signal and the adjacent channel leakage power when measuring the occupied bandwidth of a digital modulation signal and adjacent channel leakage power. By sharing the spectrum distribution measurement unit that calculates
The present invention relates to a method for measuring a transmission characteristic of a digital modulation signal, which shortens a measurement time for measuring a transmission characteristic of a digital modulation signal.

【0002】[0002]

【従来の技術】ディジタル方式自動車電話システム、第
2世代コードレス電話システム等のディジタル移動体通
信で採用されているπ/4シフトQPSK変調方式で
は、ディジタル変調信号の占有帯域幅と隣接チャネル漏
洩電力を測定するとき、図3に示すような占有帯域幅測
定装置と隣接チャネル漏洩電力測定装置とを有するディ
ジタル変調信号の送信系測定装置が用いられている。
2. Description of the Related Art In a π / 4 shift QPSK modulation system employed in digital mobile communication such as a digital car telephone system and a second generation cordless telephone system, the occupied bandwidth of a digital modulation signal and adjacent channel leakage power are reduced. At the time of measurement, a digital modulation signal transmission system measuring device having an occupied bandwidth measuring device and an adjacent channel leakage power measuring device as shown in FIG. 3 is used.

【0003】この図3のディジタル変調信号の送信系特
性測定装置は、ディジタル変調信号の占有帯域幅を測定
する占有帯域幅測定装置15と、隣接チャネル漏洩電力
測定装置16とから構成されており、ディジタル変調信
号の被試験信号Sinは占有帯域幅測定装置15内のスペ
クトル分布測定部11Aと隣接チャネル漏洩電力測定装
置16内のスペクトル分布測定部11Bとに入力される
ようになっている。
[0003] The digital modulation signal transmission system characteristic measuring device shown in FIG. 3 comprises an occupied bandwidth measuring device 15 for measuring the occupied bandwidth of the digital modulated signal, and an adjacent channel leakage power measuring device 16. The signal under test Sin of the digital modulation signal is input to the spectrum distribution measuring unit 11A in the occupied bandwidth measuring device 15 and the spectrum distribution measuring unit 11B in the adjacent channel leakage power measuring device 16.

【0004】スペクトル分布測定部11Aの出力は占有
帯域幅検出部12に送出するようになっており、スペク
トル分布測定部11Bの出力は隣接チャネル漏洩電力検
出部13に送出するようになっている。
The output of the spectrum distribution measuring unit 11A is sent to an occupied bandwidth detecting unit 12, and the output of the spectrum distribution measuring unit 11B is sent to an adjacent channel leakage power detecting unit 13.

【0005】次に、図3のディジタル変調信号の送信系
測定装置により従来のディジタル変調信号の送信系特性
測定方法について説明する。
Next, a description will be given of a conventional method for measuring the transmission system characteristics of a digitally modulated signal using the digitally modulated signal transmission system measuring apparatus of FIG.

【0006】スペクトル分布測定部11Aにおいては、
ディジタル変調された被試験信号Sinを入力すると、試
験周波数設定値ft を中心周波数として単掃引し、スペ
クトル分布を測定する。
In the spectrum distribution measuring section 11A,
When the digitally modulated signal under test Sin is input, a single sweep is performed with the test frequency set value ft as the center frequency, and the spectrum distribution is measured.

【0007】掃引周波数幅は占有帯域幅の3.5倍程度
とし、試験周波数設定値ft を中心とした掃引周波数幅
内の全サンプル点をスペクトル分布データD11Aとし
て占有帯域幅検出部12に取り込む。
The sweep frequency width is set to about 3.5 times the occupied bandwidth, and all sample points within the sweep frequency width centered on the test frequency set value ft are taken into the occupied bandwidth detector 12 as spectrum distribution data D11A.

【0008】試験周波数設定値(ft )−(掃引周波数
幅/2)を最低周波数(f1 )とし、試験周波数設定値
(ft )+(掃引周波数幅/2)を最高周波数(f4 )
とし、最低周波数f1 から最高周波数f4 までのサンプ
ル点を全サンプル点とする。
The test frequency set value (ft)-(sweep frequency width / 2) is the lowest frequency (f1), and the test frequency set value (ft) + (sweep frequency width / 2) is the highest frequency (f4).
And the sample points from the lowest frequency f1 to the highest frequency f4 are all sample points.

【0009】占有帯域幅検出部12では、取り込んだ掃
引周波数幅のスペクトル分布データD11Aの全サンプ
ル点Dinの総和を求め全電力とする。
The occupied bandwidth detector 12 calculates the total sum of all sample points Din of the acquired spectrum distribution data D11A of the sweep frequency width, and sets the sum as the total power.

【0010】次に、最低周波数f1 から順次上に電力加
算を行い、全電力の0.5%となる限界サンプル点を求
め、周波数に変換し、下限周波数f2 を得る。
Next, power addition is performed sequentially from the lowest frequency f1 to obtain a limit sampling point at which 0.5% of the total power is obtained, converted to a frequency, and a lower limit frequency f2 is obtained.

【0011】同様に、最高周波数f4 から順次下に電力
加算を行い、全電力の0.5%となる限界サンプル点を
求め、周波数に変換し、上限周波数f3 を得る。ここ
で、上限周波数(f3 )−下限周波数(f2 )が占有帯
域幅となる。
Similarly, power addition is sequentially performed downward from the highest frequency f4, a limit sampling point at which 0.5% of the total power is obtained is obtained, and converted to a frequency to obtain an upper limit frequency f3. Here, the occupied bandwidth is the upper limit frequency (f3) -the lower limit frequency (f2).

【0012】次に、隣接チャネル漏洩電力測定について
説明する。ディジタル変調された被試験信号Sinを隣接
チャネル漏洩電力測定装置16内のスペクトル分布測定
部11Bに入力し、試験周波数設定値ft を中心周波数
として単掃引し、スペクトル分布を測定し、その測定し
たスペクトル分布データD11Bを隣接チャネル漏洩電
力検出部13に送出する。
Next, measurement of adjacent channel leakage power will be described. The digitally modulated signal under test Sin is input to the spectrum distribution measuring unit 11B in the adjacent channel leakage power measuring device 16, and a single sweep is performed with the test frequency set value ft as the center frequency, and the spectrum distribution is measured. The distribution data D11B is sent to the adjacent channel leakage power detection unit 13.

【0013】隣接チャネル漏洩電力検出部13では、試
験周波数設定値ft を中心とした規定帯域幅のサンプル
点について電力総和を求め、全電力Pcとして記憶す
る。
The adjacent channel leakage power detector 13 calculates the total power at sample points of a specified bandwidth centered on the test frequency set value ft and stores it as the total power Pc.

【0014】次に、中心周波数を試験周波数設定値ft
+離調周波数=fとした規定帯域幅のサンプル点につい
て電力総和を求め、上側隣接チャネル漏洩電力Puとし
て記憶する。
Next, the center frequency is set to a test frequency set value ft.
The sum of powers is obtained for sample points of a specified bandwidth where + detuning frequency = f, and stored as upper adjacent channel leakage power Pu.

【0015】また、中心周波数を試験周波数設定値ft
−離調周波数=fとした規定帯域幅のサンプル点につい
て電力総和を求め、下側隣接チャネル漏洩電力Plとし
て記憶する。上側隣接チャネル漏洩電力比を10×log
(Pc/Pu)、下側隣接チャネル漏洩電力比を10×
log (Pc/Pl)として求めている。
The center frequency is set to a test frequency set value ft.
-A power sum is calculated for sample points of a specified bandwidth where detuning frequency = f, and stored as lower adjacent channel leakage power Pl. The upper adjacent channel leakage power ratio is 10 × log
(Pc / Pu), the lower adjacent channel leakage power ratio is 10 ×
log (Pc / Pl).

【0016】[0016]

【発明が解決しようとする課題】このような従来のディ
ジタル変調信号の送信系特性測定方法により、ディジタ
ル変調信号の送信特性を測定する場合、占有帯域幅測定
と隣接チャネル漏洩電力測定は一緒に測定されることが
多い。
When the transmission characteristics of a digital modulation signal are measured by such a conventional method for measuring the transmission characteristics of a digital modulation signal, the occupied bandwidth measurement and the adjacent channel leakage power measurement are measured together. Often done.

【0017】占有帯域幅測定と隣接チャネル漏洩電力測
定はスペクトル解析を行った上の測定項目であり、1回
の送信特性試験において同じ処理を繰り返すことになる
ので、無駄が多く、測定時間が長くなる。
The measurement of the occupied bandwidth and the measurement of the adjacent channel leakage power are measurement items after spectrum analysis, and the same processing is repeated in one transmission characteristic test. Become.

【0018】すなわち、従来の占有帯域幅測定と隣接チ
ャネル漏洩電力測定は、それぞれ、個々の測定項目とし
て独立していたので、それぞれの測定においてスペクト
ル分布測定をしていた。
That is, the conventional measurement of the occupied bandwidth and the measurement of the adjacent channel leakage power are independent of each other as individual measurement items, so that the spectrum distribution is measured in each measurement.

【0019】送信系の特性測定には、占有帯域幅測定と
隣接チャネル漏洩電力測定は必ず実施されるため、1度
の送信系特性測定にスペクトル分布測定が2度測定され
ることになり、上述のように、測定時間が長くなる。
Since the measurement of the occupied bandwidth and the measurement of the adjacent channel leakage power are always performed in the measurement of the characteristics of the transmission system, the spectrum distribution measurement is performed twice in one measurement of the transmission system characteristics. The measurement time becomes longer as shown in FIG.

【0020】[0020]

【課題を解決するための手段】前記従来の課題を解決す
るために、この発明のディジタル変調信号の送信系特性
測定方法は、スペクトル分布測定部11によりディジル
変調信号の被試験信号Sinのスペクトル分布データD1
1を求める工程と、占有帯域幅検出部12により前記ス
ペクトル分布測定部11で求めたスペクトル分布データ
D11からディジタル変調信号の占有帯域幅を測定する
工程と、前記ディジタル変調信号の占有帯域幅の測定と
同時に隣接チャネル漏洩電力検出部13により前記スペ
クトル分布から隣接チャネル漏洩電力を測定する工程
と、よりなることを特徴とする。
In order to solve the above-mentioned conventional problems, a method for measuring the transmission system characteristics of a digitally modulated signal according to the present invention comprises the steps of: Data D1
1; measuring the occupied bandwidth of the digital modulation signal from the spectrum distribution data D11 obtained by the spectrum distribution measurement unit 11 by the occupied bandwidth detection unit 12; and measuring the occupied bandwidth of the digital modulation signal. And measuring the adjacent channel leakage power from the spectrum distribution by the adjacent channel leakage power detection unit 13 at the same time.

【0021】[0021]

【発明の実施の形態】この発明のディジタル変調信号の
送信系特性測定方法によれば、ディジタル変調信号の被
試験信号Sinをスペクトル分布測定部11に入力して、
試験周波数を中心周波数として、単掃引し、スペクトル
分布を測定して、スペクトル分布データD11を占有帯
域幅検出部12と隣接チャネル漏洩電力検出部13に送
出し、占有帯域幅検出部12でスペクトル分布データD
11から占有帯域幅を求め、これと同時に隣接チャネル
漏洩電力検出部13でスペクトル分布データD11から
隣接チャネル漏洩電力を求める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the transmission characteristic measurement method for digitally modulated signals of the present invention, a signal under test Sin of a digitally modulated signal is input to a spectrum distribution measuring section 11;
A single sweep is performed with the test frequency as the center frequency, the spectrum distribution is measured, and the spectrum distribution data D11 is transmitted to the occupied bandwidth detection unit 12 and the adjacent channel leakage power detection unit 13, and the occupied bandwidth detection unit 12 transmits the spectrum distribution data D11. Data D
11 and the adjacent channel leakage power detection unit 13 simultaneously calculates the adjacent channel leakage power from the spectrum distribution data D11.

【0022】次に、この発明のディジタル変調信号の送
信系特性測定方法の実施の形態について図面に基づき説
明する。図1はこの発明の一実施の形態に適用されるデ
ィジタル変調信号の送信系特性測定装置の構成を示すブ
ロック図である。
Next, an embodiment of the method of measuring the transmission system characteristics of a digital modulation signal according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a digital modulation signal transmission system characteristic measuring apparatus applied to an embodiment of the present invention.

【0023】この図1に示すディジタル変調信号の送信
系特性測定装置14は、ディジタル変調信号の被試験信
号Sinをスペクトル分布測定部11に入力して、試験周
波数設定値ftを中心周波数として単掃引することによ
りスペクトル分布を測定し、スペクトル分布データD1
1を占有帯域幅検出部12と隣接チャネル漏洩電力検出
部13とに同時に送出するようになっている。
The digital modulation signal transmission system characteristic measuring apparatus 14 shown in FIG. 1 inputs the signal under test Sin of the digital modulation signal to the spectrum distribution measuring section 11 and performs a single sweep using the test frequency set value ft as the center frequency. To measure the spectral distribution and obtain the spectral distribution data D1.
1 to the occupied bandwidth detector 12 and the adjacent channel leakage power detector 13 at the same time.

【0024】占有帯域幅検出部12はスペクトル分布デ
ータD11から占有帯域幅を求めて、占有帯域幅測定結
果S12を出力するようになっており、同時に隣接チャ
ネル漏洩電力検出部13はスペクトル分布データD11
から隣接チャネル漏洩電力を求めて、隣接チャネル漏洩
電力測定結果S13を出力するようになっている。
The occupied bandwidth detector 12 obtains the occupied bandwidth from the spectrum distribution data D11 and outputs the occupied bandwidth measurement result S12. At the same time, the adjacent channel leakage power detector 13 outputs the occupied bandwidth power D11.
, The adjacent channel leakage power is obtained, and the adjacent channel leakage power measurement result S13 is output.

【0025】次に、このような構成をなすディジタル変
調信号の送信系特性測定装置14をこの発明の一実施の
形態に適用してディジタル変調信号の送信系特性測定方
法を説明する。
Next, a description will be given of a method for measuring the transmission system characteristics of a digital modulation signal by applying the digital modulation signal transmission system characteristic measuring device 14 having such a configuration to one embodiment of the present invention.

【0026】ディジタル変調信号を被試験信号Sinと
し、スペクトル分布測定部11に入力する。スペクトル
分布測定部11では、試験周波数設定値ftを中心周波
数として単掃引し、スペクトル分布を測定し、スペクト
ル分布データD11を得る。
The digitally modulated signal is used as the signal under test Sin and is input to the spectrum distribution measuring unit 11. The spectrum distribution measurement unit 11 performs a single sweep using the test frequency set value ft as a center frequency, measures the spectrum distribution, and obtains spectrum distribution data D11.

【0027】このスペクトル分布データD11を占有帯
域幅検出部12と隣接チャネル漏洩電力検出部13に同
時に送出し、そこでそれぞれ占有帯域幅と隣接チャネル
漏洩電力を求める。
The spectrum distribution data D11 is simultaneously sent to the occupied bandwidth detector 12 and the adjacent channel leakage power detector 13, where the occupied bandwidth and the adjacent channel leakage power are obtained.

【0028】占有帯域幅検出部12では、スペクトル分
布データD11の内、掃引周波数幅を占有帯域幅の3.
5倍程度として、試験周波数設定値ftを中心とした掃
引周波数幅のサンプル点を取り込む。
The occupied bandwidth detecting section 12 sets the sweep frequency width of the spectrum distribution data D11 to 3 times the occupied bandwidth.
A sample point having a sweep frequency width centered on the test frequency set value ft is taken as about five times.

【0029】試験周波数設定値ft−掃引周波数幅/2
を最低周波数f1とし、試験周波数設定値ft+掃引周
波数幅/2を最高周波数f4とし、最低周波数f1から
最高周波数f4までのサンプル点を全サンプル点とす
る。
Test frequency set value ft−sweep frequency width / 2
Is the lowest frequency f1, the test frequency set value ft + sweep frequency width / 2 is the highest frequency f4, and sample points from the lowest frequency f1 to the highest frequency f4 are all sample points.

【0030】占有帯域幅検出部12では、取り込んだ掃
引周波数幅の全サンプル点の総和を求め、全電力Pbと
する。次に、最低周波数f1から順次上に電力加算を行
い、全電力Pbの0.5%となる限界サンプル点を求
め、周波数に変換し下限周波数f2を得る。
The occupied bandwidth detector 12 calculates the total sum of all sample points of the acquired sweep frequency width and sets the sum as the total power Pb. Next, power addition is performed sequentially from the lowest frequency f1 to obtain a limit sample point at which 0.5% of the total power Pb is obtained, and the frequency is converted into a frequency to obtain a lower limit frequency f2.

【0031】同様に、最高周波数f4から順次下に電力
加算を行い、全電力の0.5%となる限界サンプル点を
求め、周波数に変換し、上限周波数f3を得る。ここ
で、上限周波数f3−下限周波数f2が占有帯域幅測定
結果S12となって出力される。
Similarly, power addition is sequentially performed downward from the highest frequency f4, a limit sample point at which 0.5% of the total power is obtained is obtained, and converted to a frequency to obtain an upper limit frequency f3. Here, the upper limit frequency f3 and the lower limit frequency f2 are output as the occupied bandwidth measurement result S12.

【0032】また、隣接チャネル漏洩電力検出部13で
は、スペクトル分布データD11の内、試験周波数設定
値ftを中心とした規定帯域幅のサンプル点について電
力総和を求め、全電力Pcとして記憶する。次に中心周
波数を試験周波数設定値ft+離調周波数=fとした規
定帯域幅のサンプル点について電力総和を求め、上側隣
接チャネル漏洩電力Puとして記憶する。
Further, the adjacent channel leakage power detection unit 13 obtains the power sum at sample points of a specified bandwidth centered on the test frequency set value ft in the spectrum distribution data D11 and stores the sum as the total power Pc. Next, the sum of the powers is obtained for the sample points of the specified bandwidth where the center frequency is the test frequency set value ft + the detuning frequency = f, and stored as the upper adjacent channel leakage power Pu.

【0033】また、中心周波数を試験周波数設定値ft
−離調周波数=fとした規定帯域幅のサンプル点につい
て電力総和を求め、下側隣接チャネル漏洩電力Plとし
て記憶する。上側隣接チャネル漏洩電力比を10×log
(Pc/Pu)、下側隣接チャネル漏洩電力比を10×
log (Pc/Pl)として求めている。
The center frequency is set to a test frequency set value ft.
-A power sum is calculated for sample points of a specified bandwidth where detuning frequency = f, and stored as lower adjacent channel leakage power Pl. The upper adjacent channel leakage power ratio is 10 × log
(Pc / Pu), the lower adjacent channel leakage power ratio is 10 ×
log (Pc / Pl).

【0034】以上から明らかなように、ディジタル変調
信号の送信系特性測定において、占有帯域幅測定と隣接
チャネル漏洩電力測定を従来のように個々に測定するこ
とにより、スペクトル分布測定を2度測定することが不
可避的であることに要する測定時間が 700msであった
のに対して、この発明の一実施の形態においては、占有
帯域幅測定と隣接チャネル漏洩電力測定を同時に行うこ
とにより、スペクトル分布測定を1回で済ませることが
でき、同じスペクトル分布データD11を用いて占有帯
域幅測定と隣接チャネル漏洩電力測定とを実行している
から、測定時間を 400msに短縮する。
As is apparent from the above, in the measurement of the transmission characteristics of the digital modulation signal, the spectrum distribution measurement is performed twice by individually measuring the occupied bandwidth measurement and the adjacent channel leakage power measurement as in the related art. In contrast to the fact that the measurement time required to be unavoidable was 700 ms, in one embodiment of the present invention, the spectrum distribution measurement is performed by simultaneously performing the occupied bandwidth measurement and the adjacent channel leakage power measurement. Is performed only once, and the occupied bandwidth measurement and the adjacent channel leakage power measurement are performed using the same spectrum distribution data D11. Therefore, the measurement time is reduced to 400 ms.

【0035】次に、この発明のディジタル変調信号の送
信系特性測定方法を第二世代コードレス電話システムの
仕様(RCR−STD28)への適用例について図2に
より説明する。
Next, an example of applying the method of measuring the transmission system characteristics of the digital modulation signal of the present invention to the specification (RCR-STD28) of the second generation cordless telephone system will be described with reference to FIG.

【0036】この図2は第二世代コードレス電話システ
ムにおけるπ/4QPSK変調された信号を被試験信号
Sinとし、この被試験信号Sinの占有帯域幅と隣接チャ
ネル漏洩電力とを同時に測定するためのディジタル変調
信号の送信系測定装置の構成を示すブロック図である。
FIG. 2 shows a π / 4 QPSK modulated signal in the second generation cordless telephone system as a signal under test Sin, and a digital signal for simultaneously measuring the occupied bandwidth of the signal under test Sin and adjacent channel leakage power. FIG. 3 is a block diagram illustrating a configuration of a transmission signal measurement device for a modulated signal.

【0037】この図2において、π/4QPSK変調さ
れた信号を被試験信号SinとしてA/D(アナログ/デ
ィジタル)変換器17に入力され、このA/D変換器1
7の出力をディジタル・信号プロセッサ(以下、DSP
という)18に送出するようになっている。
In FIG. 2, a signal subjected to π / 4 QPSK modulation is input to an A / D (analog / digital) converter 17 as a signal under test Sin.
7 is output to a digital signal processor (hereinafter referred to as DSP).
18).

【0038】このDSP18は図1で示したディジタル
変調信号の送信系測定装置14と同一の内部構成をなす
ものである。したがって、以下の説明では、DSP18
の内部構成の説明に際しては、図1と同一部分には同一
符号を用いて説明する。
The DSP 18 has the same internal configuration as the digital modulation signal transmission system measuring apparatus 14 shown in FIG. Therefore, in the following description, the DSP 18
In the description of the internal configuration of FIG. 1, the same parts as those in FIG.

【0039】いま、試験周波数設定値ftを中間周波数
2.5MHZ とし、π/4QPSK変調された信号を被
試験信号Sinとし、この被試験信号SinをA/D変換器
17に入力する。
Now, the test frequency set value ft is set to the intermediate frequency 2.5 MHz, the π / 4 QPSK-modulated signal is used as the signal under test Sin, and the signal under test Sin is input to the A / D converter 17.

【0040】A/D変換器17では、被試験信号Sinを
10MHzでサンプリングして時系列データを得る。この
とき、時系列データ32,768個をDSP18に入力し、D
SP上のソフトウェアによって実現されるスペクトル分
布測定部11において、データ数32,768個の高速フーリ
エ変換をしてスペクトル分布D11を得る。
The A / D converter 17 converts the signal under test Sin into
Time-series data is obtained by sampling at 10 MHz. At this time, 32,768 pieces of time-series data are input to the DSP 18, and D
The spectrum distribution measuring unit 11 realized by software on the SP performs a fast Fourier transform of 32,768 data items to obtain a spectrum distribution D11.

【0041】高速フーリエ変換処理における処理時間は
約 250msであり、占有帯域幅の測定時間である約 300
msの5/6を占める。占有帯域幅の掃引周波数幅は、
RCR−STD28で占有帯域幅の規格( 288kHz)
の3.5倍程度の1MHzとする。
The processing time in the fast Fourier transform processing is about 250 ms, and the processing time of the occupied bandwidth is about 300 ms.
occupies 5/6 ms. The sweep frequency width of the occupied bandwidth is
Standard of occupied bandwidth by RCR-STD28 (288kHz)
It is set to 1 MHz which is about 3.5 times.

【0042】また、隣接チャネル漏洩電力測定の掃引周
波数は、離調周波数fが± 900kHz、規定帯域幅は±
96kHzであるので、中心周波数から±( 900kHz+
96kHz)が掃引周波数となり、2MHz以上が必要で
ある。
The sweep frequency of the adjacent channel leakage power measurement is such that the detuning frequency f is ± 900 kHz, and the specified bandwidth is ± 900 kHz.
Since it is 96 kHz, ± (900 kHz +
96 kHz) becomes the sweep frequency, and 2 MHz or more is required.

【0043】以上のことから、スペクトル分布測定部1
1では、2MHzの掃引周波数幅のスペクトル分布デー
タD11を出力すれば、占有帯域幅測定と隣接チャネル
漏洩電力の条件を満足することになる。
From the above, the spectrum distribution measuring section 1
In the case of 1, if the spectrum distribution data D11 having a sweep frequency width of 2 MHz is output, the conditions of the occupied bandwidth measurement and the adjacent channel leakage power are satisfied.

【0044】次に、占有帯域幅検出部12では、スペク
トル分布データD11の内、試験周波数設定値ft を中
心周波数として掃引周波数幅1MHzのデータ(± 500
kHz)を配列に取り込む。
Next, in the occupied bandwidth detecting section 12, data having a sweep frequency width of 1 MHz (± 500%) with the test frequency set value ft as the center frequency among the spectrum distribution data D11.
kHz) into the array.

【0045】試験周波数値設定値ft が2.5MHzで
あるため、最低周波数f1 は2MHz、最高周波数f4
は3MHzとなり、2MHzから3MHzまでのスペク
トル配列の総和を全電力Pbとして求める。
Since the test frequency set value ft is 2.5 MHz, the lowest frequency f1 is 2 MHz and the highest frequency f4
Is 3 MHz, and the sum of the spectrum arrangement from 2 MHz to 3 MHz is obtained as the total power Pb.

【0046】下限周波数f2 は最低周波数f1 =2MH
zから上に順に電力を加算し、全電力Pbの0.5%に
なるポイントを求め、周波数変換する。また、上限周波
数f3 は最高周波数f4 =3MHzから下に順に電力を
加算し、全電力の0.5%になるポイントを求め周波数
変換する。占有帯域幅測定結果S12は下限周波数+上
限周波数/2で求められる。
The lower limit frequency f2 is the lowest frequency f1 = 2 MH
The power is added in order from z upward to find a point at which 0.5% of the total power Pb is obtained, and frequency conversion is performed. The power is added to the upper limit frequency f3 in order from the highest frequency f4 = 3 MHz and a point at which 0.5% of the total power is obtained is converted. The occupied bandwidth measurement result S12 is obtained by lower limit frequency + upper limit frequency / 2.

【0047】次に、隣接チャネル漏洩電力検出部13で
は、スペクトル分布データD11の内、試験周波数設定
値ft を中心周波数として規定帯域幅(±96kHz)の
データを配列に取り込む。試験周波数設定値ft が 2.5
MHzであるため、 2.404MHzから 2.596MHzのス
ペクトル配列の総和を求めて、全電力Pcとする。
Next, the adjacent channel leakage power detector 13 takes in data of a specified bandwidth (± 96 kHz) with the test frequency set value ft as the center frequency from the spectrum distribution data D11. Test frequency set value ft is 2.5
Since the frequency is MHz, the sum of the spectrum arrangement from 2.404 MHz to 2.596 MHz is obtained, and is set as the total power Pc.

【0048】次に、離調周波数fが 900MHzなので、
中心周波数を 2.5MHz+ 900MHz= 3.4MHzと
し、規定帯域幅(±96kHz)のデータを配列に取り込
む。
Next, since the detuning frequency f is 900 MHz,
The center frequency is set to 2.5 MHz + 900 MHz = 3.4 MHz, and data of a specified bandwidth (± 96 kHz) is taken into the array.

【0049】3.304MHzから 3.496kHzのスペクト
ル配列の総和を求め、上側隣接チャネル漏洩電力Puと
して記憶する。下側隣接チャネル漏洩電力測定は、中心
周波数を 2.5MHz− 900MHz= 1.6MHzとし、規
定帯域幅(±96kHz)のデータを配列に取り込む。
The sum of the spectrum arrangement from 3.304 MHz to 3.496 kHz is obtained and stored as the upper adjacent channel leakage power Pu. In the lower adjacent channel leakage power measurement, the center frequency is set to 2.5 MHz-900 MHz = 1.6 MHz, and data having a specified bandwidth (± 96 kHz) is taken into an array.

【0050】1.504MHzから 1.696kHzのスペクト
ル配列の総和を求め、下側隣接チャネル漏洩電力Plと
して記憶する。上側隣接チャネル漏洩電力比を10×lo
g (Pc/Pu)、下側隣接チャネル漏洩電力比を10
×log (Pc/Pl)として求める。これにより、スペ
クトル分布測定にかかる1回の処理時間が 250msに短
縮することができる。
The sum of the spectrum arrangement from 1.504 MHz to 1.696 kHz is obtained and stored as the lower adjacent channel leakage power Pl. Upper adjacent channel leakage power ratio is 10 × lo
g (Pc / Pu), the lower adjacent channel leakage power ratio is 10
× log (Pc / Pl) As a result, the processing time for one spectrum distribution measurement can be reduced to 250 ms.

【0051】[0051]

【発明の効果】以上のように、この発明のディジタル変
調信号の送信系特性測定方法によれば、ディジタル変調
信号の被試験信号のスペクトル分布データをスペクトル
分布測定部で1回求め、このスペクトル分布データから
占有帯域幅検出部でディジタル変調信号の占有帯域幅を
求めると同時に、同じスペクトル分布データから隣接チ
ャネル漏洩電力検出部で隣接チャネル漏洩電力を求める
ようにしたので、従来の測定精度をそのまま保ちなが
ら、測定時間を短縮することができる。
As described above, according to the method for measuring the transmission characteristics of a digitally modulated signal according to the present invention, the spectrum distribution data of the signal under test of the digitally modulated signal is obtained once by the spectrum distribution measuring section. The occupied bandwidth detector detects the occupied bandwidth of the digital modulation signal from the data, and the adjacent channel leakage power detector calculates the adjacent channel leakage power from the same spectrum distribution data. Meanwhile, the measurement time can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のディジタル変調信号の送信系特性測
定方法の一実施の形態に適用されるディジタル変調信号
の送信系特性測定装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a digital modulation signal transmission system characteristic measuring apparatus applied to an embodiment of a digital modulation signal transmission system characteristic measuring method according to an embodiment of the present invention.

【図2】この発明のディジタル変調信号の送信系特性測
定方法を第二世代コードレス電話システムのRCR−S
TD28仕様に基づいたπ/4QPSK変調された被測
定信号の占有帯域幅と隣接チャネル漏洩電力を測定する
場合に適用するディジタル変調信号の送信系特性測定装
置の構成を示すブロック図である。
FIG. 2 shows a method of measuring transmission system characteristics of a digitally modulated signal according to the present invention using an RCR-S of a second generation cordless telephone system.
FIG. 3 is a block diagram showing a configuration of a digital modulation signal transmission system characteristic measuring apparatus applied when measuring an occupied bandwidth of a signal under measurement and adjacent channel leakage power that have been subjected to π / 4 QPSK modulation based on the TD28 specification.

【図3】従来のディジタル変調信号の送信系特性測定方
法に適用するディジタル変調信号の送信系特性測定装置
の構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a digital modulation signal transmission system characteristic measuring apparatus applied to a conventional digital modulation signal transmission system characteristic measuring method.

【符号の説明】[Explanation of symbols]

11 スペクトル分布測定部 12 占有帯域幅検出部 13 隣接チャネル漏洩電力検出部 14 ディジタル変調信号の送信系特性測定装置 17 A/D変換器 18 DSP(ディジタル信号プロセッサ) Sin 被試験信号 S12 占有帯域幅測定結果 S13 隣接チャネル漏洩電力測定結果 Din サンプリング・データ D11 スペクトル分布データ 11 Spectrum Distribution Measurement Unit 12 Occupied Bandwidth Detection Unit 13 Adjacent Channel Leakage Power Detection Unit 14 Digital Modulation Signal Transmission System Characteristics Measurement Device 17 A / D Converter 18 DSP (Digital Signal Processor) Sin Signal Under Test S12 Occupied Bandwidth Measurement Result S13 Adjacent channel leakage power measurement result Din sampling data D11 Spectrum distribution data

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スペクトル分布測定部(11)によりディジ
タル変調信号の被試験信号(Sin)のスペクトル分布デー
タ(D11) を求める工程と、 占有帯域幅検出部(12)により前記スペクトル分布測定部
(11)で求めたスペクトル分布データ(D11) からディジタ
ル変調信号の占有帯域幅を測定する工程と、 前記ディジタル変調信号の占有帯域幅の測定と同時に隣
接チャネル漏洩電力検出部(13)により前記スペクトル分
布から隣接チャネル漏洩電力を測定する工程と、 よりなることを特徴とするディジタル変調信号の送信系
特性測定方法。
A step of obtaining spectrum distribution data (D11) of a signal under test (Sin) of a digitally modulated signal by a spectrum distribution measuring section (11); and a step of measuring said spectrum distribution measuring section by an occupied bandwidth detecting section (12).
Measuring the occupied bandwidth of the digital modulation signal from the spectrum distribution data (D11) obtained in (11), and measuring the occupied bandwidth of the digital modulation signal and simultaneously measuring the occupied bandwidth of the digital modulation signal by the adjacent channel leakage power detection unit (13). Measuring the adjacent channel leakage power from the distribution; and measuring the transmission characteristic of the digital modulation signal.
【請求項2】 請求項1記載のディジタル変調信号の送
信系特性測定方法において、 前記スペクトル分布測定部(11)は、π/4QPSK変調
された被試験信号(Sin)をアナログ/ディジタル変換器
(17)でディジタル変換した信号のスペクトル分布データ
を求めることを特徴とするディジタル変調信号の送信系
特性測定方法。
2. The method according to claim 1, wherein the spectrum distribution measuring section (11) converts the signal under test (Sin) modulated by π / 4 QPSK to an analog / digital converter.
A method for measuring transmission system characteristics of a digitally modulated signal, characterized by obtaining spectrum distribution data of the signal digitally converted in (17).
JP8271455A 1996-09-20 1996-09-20 Transmitting system characteristic measuring method for digital modulation signal Withdrawn JPH1096751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271455A JPH1096751A (en) 1996-09-20 1996-09-20 Transmitting system characteristic measuring method for digital modulation signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271455A JPH1096751A (en) 1996-09-20 1996-09-20 Transmitting system characteristic measuring method for digital modulation signal

Publications (1)

Publication Number Publication Date
JPH1096751A true JPH1096751A (en) 1998-04-14

Family

ID=17500279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271455A Withdrawn JPH1096751A (en) 1996-09-20 1996-09-20 Transmitting system characteristic measuring method for digital modulation signal

Country Status (1)

Country Link
JP (1) JPH1096751A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313160A (en) * 2005-05-04 2006-11-16 Advantest Corp Device and method for jitter measuring
JP2008026330A (en) * 2000-06-02 2008-02-07 Tektronix Inc Method of identifying signal type
JP2009031253A (en) * 2008-02-01 2009-02-12 Advantest Corp Waveform generating apparatus, waveform creating apparatus, testing apparatus, and program
KR102209905B1 (en) * 2019-12-24 2021-02-01 한양대학교 에리카산학협력단 Spectral leakage-driven loopback method for prediction of mixed-signal circuit specifications, and the system thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026330A (en) * 2000-06-02 2008-02-07 Tektronix Inc Method of identifying signal type
JP2006313160A (en) * 2005-05-04 2006-11-16 Advantest Corp Device and method for jitter measuring
JP2009031253A (en) * 2008-02-01 2009-02-12 Advantest Corp Waveform generating apparatus, waveform creating apparatus, testing apparatus, and program
KR102209905B1 (en) * 2019-12-24 2021-02-01 한양대학교 에리카산학협력단 Spectral leakage-driven loopback method for prediction of mixed-signal circuit specifications, and the system thereof
WO2021132894A1 (en) * 2019-12-24 2021-07-01 한양대학교 에리카산학협력단 Spectral leakage-based loopback method for predicting performance of mixed-signal circuit, and system therefor
US11852681B2 (en) 2019-12-24 2023-12-26 Industry-University Cooperation Foundation Hanyang University Erica Campus Spectral leakage-based loopback method for predicting performance of mixed-signal circuit, and system therefor

Similar Documents

Publication Publication Date Title
US5995914A (en) Method and apparatus for asynchronously measuring frequency shifted signals
US5808463A (en) Method and apparatus for measuring adjacent channel power using complex fourier transform
US5706202A (en) Frequency spectrum analyzing apparatus and transmitter characteristics measuring apparatus using the same
US6526260B1 (en) Cross-channel interference
WO2002029426A1 (en) Frequency conversion sweep measuring method
EP0216941A1 (en) Apparatus for analysing two-channel transmission/reflection characteristics
US5420501A (en) Frequency spectrum analyzer
HU220726B1 (en) Method and arrangement for detecting service
CN111337746A (en) Radio frequency signal detection positioning method
JPH1096751A (en) Transmitting system characteristic measuring method for digital modulation signal
EP0795755A2 (en) Method of non-harmonic analysis of waveforms for synthesis, interpolation and extrapolation
JP3116813B2 (en) Frequency deviation measuring device
CA2277027C (en) Method for measuring the attenuation in transmission lines
JP3433724B2 (en) Signal analyzer
US6891904B1 (en) Modulation signal analysis apparatus
JPH10126217A (en) Decimation filter
JPH1082812A (en) S/n power ratio measuring device
US20150012265A1 (en) Enhanced Speech Transmission Index measurements through combination of indirect and direct MTF estimation
JP3416330B2 (en) Adjacent channel leakage power measurement device for wireless devices
JP3369700B2 (en) Burst wave rise / fall characteristics evaluation device
JPH05157781A (en) Device for measuring standing wave ratio
JPH08105928A (en) Partial discharge strength measuring device
US6181745B1 (en) Process for monitoring the quantization quality in digital radio or television transmission systems
JP2001237901A (en) Waveform analysis method and device therefor
KR960014670B1 (en) Cdma receiver

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050404