JPH10126217A - Decimation filter - Google Patents

Decimation filter

Info

Publication number
JPH10126217A
JPH10126217A JP27240996A JP27240996A JPH10126217A JP H10126217 A JPH10126217 A JP H10126217A JP 27240996 A JP27240996 A JP 27240996A JP 27240996 A JP27240996 A JP 27240996A JP H10126217 A JPH10126217 A JP H10126217A
Authority
JP
Japan
Prior art keywords
filter
decimation filter
signal
frequency
rbwn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27240996A
Other languages
Japanese (ja)
Inventor
Masao Nagano
昌生 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP27240996A priority Critical patent/JPH10126217A/en
Priority to DE1997145391 priority patent/DE19745391A1/en
Publication of JPH10126217A publication Critical patent/JPH10126217A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • G01R23/167Spectrum analysis; Fourier analysis using filters with digital filters

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for adjustment and temperature drift of a filter by increasing the processing speed of filter processing. SOLUTION: An intermediate frequency IF, (e.g. 21.4MHz that may be changed as required) used for a conventional spectrum analyzer, is mixed at a mixer Mix with a local oscillating frequency from a local oscillator Local 1, and its base band signal I passes sequentially through elements RBW1, RBW2,..., RBWn which are analog digital filters(ADF) and a filter of narrow band sequentially, and the base-band signal I passing through the element RBWn at the final stage is amplified by a logarithmic amplifier AMP. A detector DT is used to detect power, that is, a spectrum component and the result is converted into a digital signal by an A/D converter AD.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デシメーションフ
ィルタに関し、特にスペクトラム・アナライザ、ネット
ワーク・アナライザ、無線機テスター変調解析装置等、
高周波信号を周波数変換し、ベースバンドにて解析する
装置全般に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decimation filter, and more particularly to a spectrum analyzer, a network analyzer, a radio equipment tester modulation analyzer, and the like.
The present invention relates to an apparatus for converting a high-frequency signal into a frequency and analyzing the converted signal at a baseband.

【0002】[0002]

【従来の技術】図3はスペクトラムアナライザの従来例
のブロック図である。入力信号であるRF信号はミキサ
Mix11と局部発振器Local11によってIF周
波数IF1に変換され、バンドパスフィルタBPF1に
よって帯域制限される。同様にして、IF周波数IF1
はミキサMix12と局部発振器Local12によっ
てIF周波数IF2に変換され、バンドパスフィルタB
PF2によって帯域制限され、IF周波数IF2はミキ
サMix13と局部発振器Local13によってIF
周波数IF3に変換される。IF周波数IF3はいくつ
かのバンドパスフィルタBPF31,BPF32,…,B
PF3nを通過した後、対数アンプAMPによってダイ
ナミックレンジが拡大され、検波器DTで電力が検出さ
れる。検出された電力はビデオフィルタVFを通過した
後、A/D変換器ADにより数値化される。ここで、局
部発振器Local11を掃引すれば、掃引周波数幅に
応じたスペクトラムを測定できる。
2. Description of the Related Art FIG. 3 is a block diagram of a conventional example of a spectrum analyzer. An RF signal as an input signal is converted into an IF frequency IF1 by a mixer Mix11 and a local oscillator Local11, and band-limited by a bandpass filter BPF1. Similarly, IF frequency IF1
Is converted to an IF frequency IF2 by the mixer Mix12 and the local oscillator Local12, and the bandpass filter B
The band is limited by the PF2, and the IF frequency IF2 is controlled by the mixer Mix13 and the local oscillator Local13.
It is converted to the frequency IF3. IF frequency IF3 includes several band-pass filters BPF3 1 , BPF3 2 ,.
After passing through the PF 3n, the dynamic range is expanded by the logarithmic amplifier AMP, and the power is detected by the detector DT. After passing through the video filter VF, the detected power is digitized by the A / D converter AD. Here, if the local oscillator Local11 is swept, a spectrum corresponding to the sweep frequency width can be measured.

【0003】図4(1)、(2)は従来のデシメーショ
ンフィルタのブロック図である。
FIGS. 4A and 4B are block diagrams of a conventional decimation filter.

【0004】図4(1)のデシメーションフィルタで
は、入力信号であるRF信号をミキサMix11と局部
発振器Local12によって中間周波数IF1に変換
し、バンドパスフィルタBPF1によって帯域制限し、
さらにミキサMix12と局部発振器Local12に
よって中間周波数IF2に変換し、A/D変換器ADに
よってデジタル信号に変換し、直交検波、フィルタリン
グを行なってベースバンド・ベクトル信号I,Qを得て
復調、変調等の処理を行なう。
In the decimation filter shown in FIG. 4A, an RF signal, which is an input signal, is converted into an intermediate frequency IF1 by a mixer Mix11 and a local oscillator Local12, and band-limited by a band-pass filter BPF1.
Further, the signal is converted to an intermediate frequency IF2 by a mixer Mix12 and a local oscillator Local12, converted to a digital signal by an A / D converter AD, subjected to quadrature detection and filtering to obtain baseband vector signals I and Q, demodulated, modulated, etc. Is performed.

【0005】図4(2)のデシメーションフィルタで
は、中間周波数IF2を得るまでは図4(1)のデシメ
ーションフィルタと同じであるが、直交検波をアナログ
で実行し、A/D変換とフィルタリングをベースバンド
・ベクトル信号I,Q毎に実行する点が図4(1)のデ
シメーションフィルタと異なっている。
The decimation filter shown in FIG. 4 (2) is the same as the decimation filter shown in FIG. 4 (1) until the intermediate frequency IF2 is obtained. However, the quadrature detection is executed in analog, and the A / D conversion and the filtering are performed. It differs from the decimation filter of FIG. 4A in that the process is executed for each of the band vector signals I and Q.

【0006】[0006]

【発明が解決しようとする課題】図3に示した従来のス
ペクトラムアナライザは下記のような欠点があった。 (1)バンドパスフィルタBPF31,BPF32,…は
ひとつひとつアナログ回路にて構成しなくてはならない
ため、調整工数を要し、温度によるドリフトも発生す
る。また、100Hz以下の狭帯域フィルタは実現のた
めに非常に高い技術を要する。 (2)検波器と対数アンプは部品点数も多く、調整個数
も多く、電力消費が高い。また、対数アンプは7段程度
の直線アンプの組み合わせであり、厳密な対数演算では
なく、誤差がつきまとう。
The conventional spectrum analyzer shown in FIG. 3 has the following disadvantages. (1) Since each of the band-pass filters BPF3 1 , BPF3 2 ,... Must be constituted by an analog circuit, an adjustment man-hour is required, and drift due to temperature occurs. In addition, a narrow band filter of 100 Hz or less requires a very high technology for realization. (2) The detector and the logarithmic amplifier have a large number of parts, a large number of adjustments, and high power consumption. Further, the logarithmic amplifier is a combination of about seven stages of linear amplifiers, and is not a strict logarithmic operation but has an error.

【0007】また、図4に示した従来のデシメーション
フィルタは、 (1)図4(1)の場合、高速(1MHz以上)のA/
D変換器と、大容量のメモリが必要で、また高速でサン
プリングするため、フィルタリング等の処理の負荷が大
きい。 (2)図4(2)の場合、図4(1)の場合よりも低速
でサンプリングが可能であるが、A/D変換器が2個必
要で、装置が複雑であり、また直交検波をアナログで行
うため、直交検波部でのレベルがあっていないと、I,
Qの出力にレベル差が生じるという欠点がある。
The conventional decimation filter shown in FIG. 4 has the following problems: (1) In the case of FIG. 4A, a high-speed (1 MHz or more) A / D
Since a D converter and a large-capacity memory are required, and sampling is performed at high speed, the load of processing such as filtering is large. (2) In the case of FIG. 4 (2), sampling can be performed at a lower speed than in the case of FIG. 4 (1). However, two A / D converters are required, the apparatus is complicated, and quadrature detection is performed. Since the analog detection is performed, if the level in the quadrature detector does not match, I,
There is a disadvantage that a level difference occurs in the output of Q.

【0008】本発明の目的は、上記の問題点を解消した
デシメーションフィルタを提供することにある。
An object of the present invention is to provide a decimation filter which solves the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】本発明のデシメーション
フィルタは、中間周波数を帯域制限するフィルタ素子と
して、1個または多段に連結された、アナログ処理によ
るFIRフィルタを用いる。
The decimation filter according to the present invention uses a single or multi-stage FIR filter by analog processing as a filter element for band-limiting an intermediate frequency.

【0010】ここで、アナログ処理によるFIRフィル
タとはアナログデジタルフィルタ(ADF)(参考文
献:(株)鷹山発行「ニューロン素子への道程」より
「ニューロン素子技術資料:アナログデジタルフィルタ
(ADF)の動作原理」)である。このADFはニュー
ロン素子により構成され、入力信号はアナログ入力信号
とデジタル制御信号、出力信号はアナログ出力信号であ
り、内部にサンプル・ホールド回路を有し、サンプル・
ホールド回路の時間間隔はそれに与えるサンプリングク
ロックで決まる。サンプル・ホールド回路の各段の出力
はアナログ乗算器につながり、アナログ乗算器のもう一
方の入力に8ビット等の分解能を持つD/A変換器の出
力を加える。D/A変換器の値に適当な係数を与えれ
ば、サンプル・ホールド回路の段数に応じたFIRフィ
ルタが形成される。上記係数は動作中でも書き換え可能
である。
[0010] Here, the FIR filter by analog processing is an analog digital filter (ADF) (reference: published by Takayama Co., Ltd., “A Path to Neuron Devices”, “Technical Data of Neuron Devices: Operation of Analog Digital Filter (ADF)”). Principle)). The ADF is composed of neuron elements, the input signal is an analog input signal and a digital control signal, the output signal is an analog output signal, and has an internal sample and hold circuit.
The time interval of the hold circuit is determined by the sampling clock applied thereto. The output of each stage of the sample and hold circuit is connected to an analog multiplier, and the output of a D / A converter having a resolution of 8 bits or the like is applied to the other input of the analog multiplier. If an appropriate coefficient is given to the value of the D / A converter, an FIR filter corresponding to the number of stages of the sample and hold circuit is formed. The above coefficients can be rewritten during operation.

【0011】従来、デジタル信号処理で実現したフィル
タ処理をアナログ処理で行なうため、処理速度が格段に
早くなる、配線数、部品点数が少なくて済む、消費電力
が減る、フィルタの調整が不要、温度ドリフトがなくな
る。
Conventionally, since filter processing realized by digital signal processing is performed by analog processing, the processing speed is significantly increased, the number of wires and components is reduced, power consumption is reduced, filter adjustment is unnecessary, and temperature is reduced. Drift disappears.

【0012】本発明の実施態様によれば、前記中間周波
数の同相成分、直交成分の各々に対して前記FIRフィ
ルタを用いる。
According to an embodiment of the present invention, the FIR filter is used for each of the in-phase component and the quadrature component of the intermediate frequency.

【0013】本発明の実施態様によれば、各FIRフィ
ルタに与えられるクロックを出力する分周器を有する。
According to an embodiment of the present invention, there is provided a frequency divider for outputting a clock applied to each FIR filter.

【0014】本発明の実施態様によれば、デシメーショ
ンフィルタがスペクトラム・アナライザ、ネットワーク
・アナライザ、無線機テスター変調解析装置等の測定装
置である。
According to an embodiment of the present invention, the decimation filter is a measuring device such as a spectrum analyzer, a network analyzer, a radio equipment tester modulation analyzer, and the like.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本発明の第1の実施形態で、スペク
トラムアナライザのブロック図である。
FIG. 1 is a block diagram of a spectrum analyzer according to a first embodiment of the present invention.

【0017】本実施形態のスペクトラムアナライザで
は、従来のスペクトラムアナライザの中間周波数IF
(例:21.4MHz,必要に応じて変えてもよい)を
ミキサMixと局部発振器LocalでIF周波数とミ
キシングし、そのベースバンド信号Iを、前述したAD
Fである素子RBW1,RBW2,…,RBWnと順
次、狭帯域のフィルタを通過させ、最終段の素子RBW
nを通過したベースバンド信号Iを対数アンプAMPで
増幅し、検波器DTで電力、すなわちスペクトラム成分
を抽出した後、A/D変換器ADでデジタル化する。こ
こで、各素子RBW2,…,RBWnに与えるクロック
は各段の、局部発振器Local0の出力を分周する分
周器FD1,FD2,…,で得られる。また、ADF素
子の接続段数は必要とする分解能に応じて決められる。
In the spectrum analyzer of the present embodiment, the intermediate frequency IF of the conventional spectrum analyzer is used.
(Example: 21.4 MHz, which may be changed as necessary) is mixed with the IF frequency by the mixer Mix and the local oscillator Local, and the baseband signal I is converted to the above-mentioned AD.
RBWn are sequentially passed through a narrow band filter, and the final stage element RBW
The baseband signal I having passed through n is amplified by the logarithmic amplifier AMP, and the power, that is, the spectrum component is extracted by the detector DT, and then digitized by the A / D converter AD. .., RBWn are obtained by frequency dividers FD1, FD2,... At each stage for dividing the output of local oscillator Local0. Further, the number of connection stages of the ADF element is determined according to the required resolution.

【0018】本実施形態によれば、(1)非常に少ない
配線で多段のフィルタ群を形成でき、(2)部品点数が
大幅に減り、(3)消費電力も大幅に減り、(4)さら
にフィルタ素子の調整が不要で、温度ドリフトも無くな
る。
According to the present embodiment, (1) a multi-stage filter group can be formed with very few wirings, (2) the number of parts is significantly reduced, (3) the power consumption is significantly reduced, and (4) further. No adjustment of the filter element is required, and there is no temperature drift.

【0019】なお、検波器、対数アンプもADF素子を
用いて構成することができる。
Note that the detector and the logarithmic amplifier can also be configured using ADF elements.

【0020】図2は本発明の第2の実施形態で、デシメ
ーションフィルタのブロック図である。
FIG. 2 is a block diagram of a decimation filter according to a second embodiment of the present invention.

【0021】本実施形態では、従来のデシメーションフ
ィルタの中間周波IF(例21.4MHz、必要に応じ
て変えてもよい)を、ミキサMix1とMix2、局部
発振器Local1、移相器PSを用いてアナログ信号
のまま同相成分Iと直交成分Qに直交検波し、同相成分
Iを、前述したADFである素子RBW11,RBW
1,…,RBWn1と順次、狭帯域のフィルタ素子を通
過させ、A/D変換器AD1でデジタル信号に変換し、
同様に直交成分Qを、前述したADFである素子RBW
2,RBW22,…,RBWn2と順次、狭帯域のフィ
ルタ素子を通過させ、A/D変換器AD2でデジタル信
号に変換し、最後に、ベクトル信号処理回路VCでベク
トル信号処理を行なって変調解析等を行う。なお、AD
F素子RBW21と22,…,RBWn1とRBWn2に与
えるクロックはそれぞれ分周器FD1,FD2,…で得
られる。また、ADF素子の接続段数は必要とする分解
能に応じて決められる。また、ダイナミックレンジが足
らない場合、直交検波の前にステップアンプをおいても
よい。
In the present embodiment, the intermediate frequency IF (eg, 21.4 MHz, which may be changed as necessary) of the conventional decimation filter is converted into an analog signal using mixers Mix1 and Mix2, a local oscillator Local1, and a phase shifter PS. The signals are subjected to quadrature detection to the in-phase component I and the quadrature component Q, and the in-phase component I is converted into the ADF elements RBW1 1 and RBW.
2 1, ..., RBWn 1 sequentially passes a narrow band of the filter element, into a digital signal by the A / D converter AD1,
Similarly, the orthogonal component Q is replaced with the element RBW which is the above-described ADF.
1 2, RBW2 2, ..., sequentially and RBWn 2, passed through a narrow band filter element, into a digital signal by the A / D converter AD2, finally, by performing vector signal processing by the vector signal processing circuit VC Perform modulation analysis. Note that AD
The clocks applied to the F elements RBW2 1 and 2 2 ,..., RBWn 1 and RBWn 2 are obtained by frequency dividers FD1, FD2,. Further, the number of connection stages of the ADF element is determined according to the required resolution. If the dynamic range is insufficient, a step amplifier may be provided before quadrature detection.

【0022】本実施形態によれば、(1)従来、デジタ
ル信号処理で実現していたフィルタ処理をアナログ処理
で行なうため、処理スピードが格段に早くなり、(2)
A/D変換器は最初からデシメーションした信号を扱え
ばよいので、扱うデータ量の少なく、処理スピードが格
段に早くなり、(3)メモリが最小構成で済み、コス
ト、サイズともに小さくなり、(4)非常に少ない配線
で、多段のフィルタ群を形成でき、(5)部品点数が大
幅に減り、(6)消費電力も大幅に減り、(7)フィル
タ素子の調整が不要で、温度ドリフトもない。
According to the present embodiment, (1) the filtering processing which has conventionally been realized by digital signal processing is performed by analog processing, so that the processing speed is significantly increased, and (2)
Since the A / D converter only has to handle the signal decimated from the beginning, the amount of data to be handled is small, the processing speed is much faster, (3) the memory has the minimum configuration, the cost and size are reduced, and (4) ) A multi-stage filter group can be formed with very few wires, (5) the number of components is greatly reduced, (6) the power consumption is significantly reduced, and (7) there is no need to adjust the filter element and there is no temperature drift. .

【0023】[0023]

【発明の効果】以上説明したように、本発明は下記のよ
うな効果がある。 (1)フィルタ処理の処理スピードが早くなる。 (2)A/D変換器の扱うデータ量が少なく、処理スピ
ードが早くなる。 (3)メモリが最小構成ですみ、コスト、サイズとも小
さくなる。 (4)非常に少なく配線で多段のフィルタ群を形成でき
る。 (5)フィルタ処理の部品点数が減る。 (6)消費電力が減る。 (7)フィルタの調整が不要で、温度ドリフトもない。
As described above, the present invention has the following effects. (1) The processing speed of the filter processing is increased. (2) The amount of data handled by the A / D converter is small, and the processing speed is increased. (3) The memory requires a minimum configuration, and both cost and size are reduced. (4) A multistage filter group can be formed with very few wirings. (5) The number of components for the filtering process is reduced. (6) Power consumption is reduced. (7) No filter adjustment is required and there is no temperature drift.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態で、スペクトラムアナ
ライザのブロック図である。
FIG. 1 is a block diagram of a spectrum analyzer according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態で、デシメーションフ
ィルタのブロック図である。
FIG. 2 is a block diagram of a decimation filter according to a second embodiment of the present invention.

【図3】スペクトラムアナライザの従来例のブロック図
である。
FIG. 3 is a block diagram of a conventional example of a spectrum analyzer.

【図4】デシメーションフィルタの従来例のブロック図
である。
FIG. 4 is a block diagram of a conventional example of a decimation filter.

【符号の説明】[Explanation of symbols]

Mix,Mix1,Mix2 ミキサ Local0、Local1 局部発振器 RBW1,RBW2,…RBWn,RBW11,RBW
1,…,RBWn1,RBW12,RBW22,…,RB
Wn2 ADF素子 FD1,FD2 分周器 AD,AD1,AD2 A/D変換器 DT 検波器 AMP 対数アンプ VC ベクトル信号処理回路
Mix, Mix1, Mix2 mixer Local0, Local1 local oscillator RBW1, RBW2, ... RBWn, RBW1 1, RBW
2 1, ..., RBWn 1, RBW1 2, RBW2 2, ..., RB
Wn 2 ADF element FD1, FD2 frequency divider AD, AD1, AD2 A / D converter DT detector AMP Logarithmic amplifier VC Vector signal processing circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 デシメーションフィルタにおいて、中間
周波数を帯域制限するフィルタ素子として、1個または
多段に連結された、アナログ処理によるFIRフィルタ
を用いることを特徴とするデシメーションフィルタ。
1. A decimation filter in which a single or multi-stage FIR filter by analog processing is used as a filter element for band-limiting an intermediate frequency.
【請求項2】 前記中間周波数の同相成分、直交成分の
各々に対して前記FIRフィルタを用いる、請求項1記
載のデシメーションフィルタ。
2. The decimation filter according to claim 1, wherein the FIR filter is used for each of an in-phase component and a quadrature component of the intermediate frequency.
【請求項3】 各FIRフィルタに与えられるクロック
を出力する分周器を有する、請求項1または2記載のデ
シメーションフィルタ。
3. The decimation filter according to claim 1, further comprising a frequency divider for outputting a clock applied to each FIR filter.
【請求項4】 前記デシメーションフィルタが、スペク
トラム・アナライザ、ネットワーク・アナライザ、無線
機テスター変調解析装置等の測定装置である、請求項1
から3のいずれか1項記載のデシメーションフィルタ。
4. The decimation filter according to claim 1, wherein said decimation filter is a measuring device such as a spectrum analyzer, a network analyzer, and a radio equipment tester modulation analyzer.
4. The decimation filter according to any one of claims 1 to 3.
JP27240996A 1996-10-15 1996-10-15 Decimation filter Withdrawn JPH10126217A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27240996A JPH10126217A (en) 1996-10-15 1996-10-15 Decimation filter
DE1997145391 DE19745391A1 (en) 1996-10-15 1997-10-14 Decimating filter arrangement with analogue processing FIR filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27240996A JPH10126217A (en) 1996-10-15 1996-10-15 Decimation filter

Publications (1)

Publication Number Publication Date
JPH10126217A true JPH10126217A (en) 1998-05-15

Family

ID=17513508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27240996A Withdrawn JPH10126217A (en) 1996-10-15 1996-10-15 Decimation filter

Country Status (2)

Country Link
JP (1) JPH10126217A (en)
DE (1) DE19745391A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606126B1 (en) 2003-05-12 2006-07-28 삼성전자주식회사 Device and Method for canceling narrow-band interference in mobile communication systems
JP2008520120A (en) * 2004-11-10 2008-06-12 株式会社アドバンテスト Image cancellation in frequency converters for spectrum analyzers.
CN102879644A (en) * 2012-11-01 2013-01-16 南京国睿安泰信科技股份有限公司 System for realizing resolution bandwidth of spectrum analyzer by utilizing pre-switching of analog bandwidth
CN102928665A (en) * 2012-11-01 2013-02-13 南京国睿安泰信科技股份有限公司 Intermediate frequency digital spectrum analyzer and method thereof
KR101539114B1 (en) * 2008-06-27 2015-07-23 삼성전자 주식회사 No decimation FIR filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844715B2 (en) * 2002-09-05 2005-01-18 Honeywell International Inc. Synthetic RF detection system and method
DE102004020278A1 (en) * 2004-04-26 2005-11-10 Rohde & Schwarz Gmbh & Co. Kg Spectrum analyzer with high speed and high resolution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606126B1 (en) 2003-05-12 2006-07-28 삼성전자주식회사 Device and Method for canceling narrow-band interference in mobile communication systems
JP2008520120A (en) * 2004-11-10 2008-06-12 株式会社アドバンテスト Image cancellation in frequency converters for spectrum analyzers.
KR101539114B1 (en) * 2008-06-27 2015-07-23 삼성전자 주식회사 No decimation FIR filter
CN102879644A (en) * 2012-11-01 2013-01-16 南京国睿安泰信科技股份有限公司 System for realizing resolution bandwidth of spectrum analyzer by utilizing pre-switching of analog bandwidth
CN102928665A (en) * 2012-11-01 2013-02-13 南京国睿安泰信科技股份有限公司 Intermediate frequency digital spectrum analyzer and method thereof

Also Published As

Publication number Publication date
DE19745391A1 (en) 1998-04-23

Similar Documents

Publication Publication Date Title
US6700366B2 (en) Very fast swept spectrum analyzer
JP5631628B2 (en) Multi-rate processing for plasma RF source measurement
US7688058B2 (en) Integrated spectrum analyzer circuits and methods for providing on-chip diagnostics
WO2018032645A1 (en) Wideband wide-frequency agile signal measurement instrument and measurement method
Michal et al. A high performance digital receiver for home-built nuclear magnetic resonance spectrometers
JPH08248070A (en) Frequency spectrum analyzer
JP2016008972A (en) Test measurement device and noise reduction method
JP5465380B2 (en) Device for measuring phase jitter of high-frequency signals
JPH04221777A (en) Signal analyzing apparatus
JP4782502B2 (en) Frequency component measuring device
US20080205557A1 (en) Systems and Methods for Performing External Correction
JPH10126217A (en) Decimation filter
JP3122144B2 (en) How to get the intermediate frequency response of an instrument
JP3381109B2 (en) Transfer function measurement device
JP2007003458A (en) Digital orthogonal lock-in detecting method and device
JP2001141764A (en) Signal analyzer
US7444250B2 (en) Measuring or test device comprising interchangeable functional units
JPH1168444A (en) Method and device for measuring amplitude/phase of many inputs
JPH0247563A (en) Spectrum analyzer
JPH08146062A (en) Phase jitter analyzer
JPH10142273A (en) Net work analyzer
Stikvoort Digital distortion analyzer
Shenghua et al. Evaluation and measurement of digital receiver for DBF radar
Nagano Theory and Experimental Evaluation of the Super Sweep Spectrum Analyze
長野昌生 et al. Theory and Experimental Evaluation of the Super Sweep Spectrum Analyze

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106