JP7251481B2 - Method for producing ethylene - Google Patents

Method for producing ethylene Download PDF

Info

Publication number
JP7251481B2
JP7251481B2 JP2019560575A JP2019560575A JP7251481B2 JP 7251481 B2 JP7251481 B2 JP 7251481B2 JP 2019560575 A JP2019560575 A JP 2019560575A JP 2019560575 A JP2019560575 A JP 2019560575A JP 7251481 B2 JP7251481 B2 JP 7251481B2
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
ethylene
less
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019560575A
Other languages
Japanese (ja)
Other versions
JPWO2019124519A1 (en
Inventor
雅寛 原
敬之 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2019124519A1 publication Critical patent/JPWO2019124519A1/en
Application granted granted Critical
Publication of JP7251481B2 publication Critical patent/JP7251481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、エチレンの製造方法に関する。詳しくは、主として、プロピレンを、反応器中で触媒と接触させてエチレンを製造する方法において、反応器にプロピレンを供給し、触媒と接触させてエチレンを生成させる工程(I)と、触媒を再生させる工程(II)と、を有するエチレンの製造方法に関する。また、プロピレンと触媒とを反応器中で接触してエチレンを製造する方法において、水素を含むガスに接触した触媒を用いる、エチレンの製造方法に関する。 The present invention relates to a method for producing ethylene. Specifically, in a method of producing ethylene by contacting propylene with a catalyst in a reactor, the step (I) of supplying propylene to the reactor and contacting it with the catalyst to produce ethylene, and regenerating the catalyst It relates to a method for producing ethylene having a step (II) of causing The present invention also relates to a method for producing ethylene by using a catalyst brought into contact with a hydrogen-containing gas in a method for producing ethylene by contacting propylene and a catalyst in a reactor.

従来、主なエチレンの製造方法としては、ナフサを原料とするスチーム分解法が知られている。しかし、ナフサのスチーム分解法では、プロピレンやブテン等のエチレン以外のオレフィンが多量に生成し、また各オレフィンの生成比率を大きく変えることは難しい。そこで、エチレン以外のオレフィンをエチレンに変換する技術が検討されている。特に、副生量の多いプロピレンからエチレンを製造する方法が望まれている。 Conventionally, a steam cracking method using naphtha as a raw material is known as a main method for producing ethylene. However, the naphtha steam cracking method produces a large amount of olefins other than ethylene such as propylene and butene, and it is difficult to greatly change the production ratio of each olefin. Therefore, techniques for converting olefins other than ethylene to ethylene are being studied. In particular, a method for producing ethylene from propylene, which is a large amount of by-products, is desired.

例えば特許文献1では、エチレン、プロピレン及びブテン等の各種のオレフィンをシリコアルミノリン酸塩と接触させ、別のオレフィンに変換する方法が検討されている。
例えば非特許文献1では、リン修飾MFI型ゼオライト触媒による、プロピレンを原料としたエチレンの製造方法が開示されている。
For example, Patent Document 1 discusses a method of contacting various olefins such as ethylene, propylene and butene with a silicoaluminophosphate to convert them into other olefins.
For example, Non-Patent Document 1 discloses a method for producing ethylene from propylene as a raw material using a phosphorus-modified MFI-type zeolite catalyst.

特開昭60-166639号公報JP-A-60-166639

Catalysis Today,303(2018),86-92Catalysis Today, 303 (2018), 86-92

しかしながら、特許文献1の技術は、シリコアルミノリン酸塩SAPO‐34触媒とプロピレンと反応させることで、エチレンを最高8%の収率で製造できるとしているが、触媒の活性低下が大きく、長時間にわたって安定にエチレンを製造することができず、実用に耐えうる製造方法ではない。
また、非特許文献1の技術は、MFI型ゼオライト触媒をリン酸により修飾することにより、プロピレン転化率36%において、エチレン選択率を70C‐mol%程度まで高められるとしているが、非常に低いプロピレン濃度(6.5mol%,窒素希釈)においても、継時的に触媒活性が低下していることが判明した。
However, the technique of Patent Document 1 claims that ethylene can be produced with a maximum yield of 8% by reacting a silicoaluminophosphate SAPO-34 catalyst with propylene, but the activity of the catalyst is greatly reduced, and the long-term It is not a production method that can withstand practical use because ethylene cannot be produced stably over a long period of time.
In addition, according to the technique of Non-Patent Document 1, by modifying the MFI-type zeolite catalyst with phosphoric acid, the ethylene selectivity can be increased to about 70 C-mol% at a propylene conversion rate of 36%, but the ethylene selectivity is very low. It was found that even at the concentration (6.5 mol %, diluted with nitrogen), the catalytic activity decreased over time.

本発明は、プロピレンを原料として、エチレンを製造するに際し、エチレン収率の低下を最小限に抑え、長時間にわたって、安定にエチレンを製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for stably producing ethylene over a long period of time while minimizing the reduction in ethylene yield when producing ethylene from propylene as a raw material.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、反応器にプロピレンを供給し、触媒と接触させてエチレンを製造する方法において、反応器にプロピレンを供給し、触媒と接触させてエチレンを生成させる工程(I)と、前記工程(I)を経た触媒を再生させる工程(II)を有することにより、長時間にわたって、安定にエチレンを製造することができることを見出し、本発明を達成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that in a method for producing ethylene by supplying propylene to a reactor and bringing it into contact with a catalyst, propylene is supplied to a reactor and brought into contact with a catalyst. The inventors have found that ethylene can be stably produced over a long period of time by comprising the step (I) of producing ethylene by allowing the achieved.

すなわち本発明の第1の要旨は、以下の通りである。
(A1)反応器にプロピレンを供給し、触媒と接触させてエチレンを生成させる工程(I)と、前記工程(I)を経てプロピレンの転化率が低下した触媒を再生させる工程(II)を有することを特徴とするエチレンの製造方法。
(A2)前記工程(II)において、酸素、水素、及び水蒸気から選択される少なくとも1種を含有するガスにより、前記プロピレンの転化率が低下した触媒を再生する、(A1)に記載のエチレンの製造方法。
(A3)前記工程(II)において、水素を含有するガスにより、前記プロピレンの転化率が低下した触媒を再生する、(A1)又は(A2)に記載のエチレンの製造方法。
(A4)前記工程(II)の温度が300℃以上800℃以下である、(A1)~(A3)のいずれかに記載のエチレンの製造方法。
(A5)前記工程(II)を経た触媒に蓄積されたコーク量が、触媒質量に対して0.1質量%以上30質量%以下である、(A1)~(A4)のいずれかに記載のエチレンの製造方法。
(A6)前記触媒が、ゼオライトである、(A1)~(A5)のいずれかに記載のエチレンの製造方法。
(A7)前記ゼオライトの細孔径が0.5nm未満である、(A6)に記載のエチレンの製造方法。
(A8)前記ゼオライトが、酸素8員環構造を有する、(A6)又は(A7)に記載のエチレンの製造方法。
(A9)前記ゼオライトが、少なくともアルミニウムを含有するアルミノケイ酸塩である、(A6)~(A8)のいずれかに記載のエチレンの製造方法。
(A10)前記工程(I)におけるプロピレンの転化率が、5%以上80%以下となるように、前記工程(II)を実施する、(A1)~(A9)のいずれかに記載のエチレンの製造方法。
That is, the first gist of the present invention is as follows.
(A1) It has a step (I) of supplying propylene to a reactor and bringing it into contact with a catalyst to produce ethylene, and a step (II) of regenerating the catalyst whose conversion rate of propylene has decreased through the step (I). A method for producing ethylene, characterized by:
(A2) The ethylene conversion according to (A1), wherein in the step (II), a gas containing at least one selected from oxygen, hydrogen, and water vapor is used to regenerate the catalyst with a reduced propylene conversion rate. Production method.
(A3) The method for producing ethylene according to (A1) or (A2), wherein in the step (II), the catalyst having a reduced propylene conversion rate is regenerated with a hydrogen-containing gas.
(A4) The method for producing ethylene according to any one of (A1) to (A3), wherein the temperature in step (II) is 300°C or higher and 800°C or lower.
(A5) The amount of coke accumulated in the catalyst that has undergone the step (II) is 0.1% by mass or more and 30% by mass or less with respect to the mass of the catalyst, according to any one of (A1) to (A4). A method for producing ethylene.
(A6) The method for producing ethylene according to any one of (A1) to (A5), wherein the catalyst is zeolite.
(A7) The method for producing ethylene according to (A6), wherein the zeolite has a pore size of less than 0.5 nm.
(A8) The method for producing ethylene according to (A6) or (A7), wherein the zeolite has an oxygen eight-membered ring structure.
(A9) The method for producing ethylene according to any one of (A6) to (A8), wherein the zeolite is an aluminosilicate containing at least aluminum.
(A10) The conversion of ethylene according to any one of (A1) to (A9), wherein the step (II) is performed such that the propylene conversion rate in the step (I) is 5% or more and 80% or less. Production method.

また、本発明の第2の要旨は以下のとおりである。
(B1)プロピレンと、触媒とを反応器中で接触してエチレンを製造する方法であって、前記触媒が、水素を含むガスに接触した触媒である、エチレンの製造方法。
(B2)前記触媒が、プロピレンとの接触により生成したコークを含む触媒と水素を含むガスとを接触した、触媒である、(B1)に記載のエチレンの製造方法。
(B3)前記触媒と、水素を含むガスとを、300℃以上の温度で接触した触媒である、(B1)又は(B2)に記載のエチレンの製造方法。
(B4)前記触媒が、水素分圧絶対圧で0.001MPa以上の水素を含むガスに接触した触媒である、(B1)~(B3)のいずれかに記載のエチレンの製造方法。
(B5)前記触媒がゼオライトを含む、(B1)~(B4)のいずれかに記載のエチレンの製造方法。
(B6)前記ゼオライトが、細孔径0.5nm未満の細孔を有する、(B5)に記載のエチレンの製造方法。
(B7)前記ゼオライトが、酸素8員環構造を有する、(B5)又は(B6)に記載のエチレンの製造方法。
(B8)前記ゼオライトが、少なくともアルミニウムを含有するアルミノケイ酸塩を含む、(B5)~(B7)のいずれかに記載のエチレンの製造方法。
(B9)プロピレンの転化率が5%以上80%以下となる条件で、プロピレンと、前記触媒とを接触させる、(B1)~(B8)のいずれかに記載のエチレンの製造方法。
Moreover, the second gist of the present invention is as follows.
(B1) A method for producing ethylene by contacting propylene with a catalyst in a reactor, wherein the catalyst is a catalyst brought into contact with a hydrogen-containing gas.
(B2) The method for producing ethylene according to (B1), wherein the catalyst is a catalyst obtained by contacting a coke-containing catalyst produced by contact with propylene and a hydrogen-containing gas.
(B3) The method for producing ethylene according to (B1) or (B2), wherein the catalyst is in contact with a hydrogen-containing gas at a temperature of 300°C or higher.
(B4) The method for producing ethylene according to any one of (B1) to (B3), wherein the catalyst is in contact with a gas containing hydrogen having an absolute hydrogen partial pressure of 0.001 MPa or more.
(B5) The method for producing ethylene according to any one of (B1) to (B4), wherein the catalyst contains zeolite.
(B6) The method for producing ethylene according to (B5), wherein the zeolite has pores with a pore diameter of less than 0.5 nm.
(B7) The method for producing ethylene according to (B5) or (B6), wherein the zeolite has an oxygen eight-membered ring structure.
(B8) The method for producing ethylene according to any one of (B5) to (B7), wherein the zeolite contains an aluminosilicate containing at least aluminum.
(B9) The method for producing ethylene according to any one of (B1) to (B8), wherein propylene is brought into contact with the catalyst under conditions such that the conversion of propylene is 5% or more and 80% or less.

また、本発明の第3の要旨は以下のとおりである。
(C1)炭化水素と触媒とを、原料導入口と生成ガス排出口とを有する反応器中で接触させてエチレンを製造する方法であって、
前記炭化水素が少なくともプロピレン及び炭素数4以上の炭化水素を含み、
前記炭化水素中に含まれる、プロピレンに対する炭素数4以上の炭化水素の質量比が、0.01以上10以下である、エチレンの製造方法。
(C2)前記炭素数4以上の炭化水素は、ブテンを含む、(C1)に記載のエチレンの製造方法。
(C3)前記炭素数4以上の炭化水素に含まれるブテンの割合が、前記炭素数4以上の炭化水素全量に対し10mol%以上である(C2)に記載のエチレンの製造方法。
(C4)前記ブテンは、直鎖ブテンを10mol%以上含む(C2)又は(C3)に記載のエチレンの製造方法。
(C5)前記反応器における反応温度が、300℃以上800℃以下である、(C1)~(C4)のいずれかに記載のエチレンの製造方法。
(C6)前記反応器の生成ガス排出口から排出される生成ガス中に含まれる炭素数4以上の炭化水素のうち、少なくとも10%を反応器に循環させる、(C1)~(C5)のいずれかに記載のエチレンの製造方法。
(C7)前記触媒がゼオライトを含む、(C1)~(C6)のいずれかに記載のエチレンの製造方法。
(C8)前記ゼオライトが、細孔径0.8nm以下の細孔を有する、(C7)に記載のエチレンの製造方法。
(C9)前記ゼオライトが、酸素8員環構造を有する、(C7)又は(C8)に記載のエチレンの製造方法。
(C10)前記ゼオライトが、少なくともアルミニウムを含有するアルミノケイ酸塩を含む、(C7)~(C9)のいずれかに記載のエチレンの製造方法。
(C11)前記ゼオライトのSiO/Alモル比が、5以上500以下である、(C10)に記載のエチレンの製造方法。
(C12)前記ゼオライトの構造が、International Zeolite Association(IZA)で規定されるコードでCHAである、(C7)~(C11)のいずれかに記載のエチレンの製造方法。
Moreover, the third gist of the present invention is as follows.
(C1) A method for producing ethylene by contacting a hydrocarbon and a catalyst in a reactor having a raw material inlet and a product gas outlet,
the hydrocarbon contains at least propylene and a hydrocarbon having 4 or more carbon atoms,
A method for producing ethylene, wherein the mass ratio of hydrocarbons having 4 or more carbon atoms to propylene contained in the hydrocarbon is 0.01 or more and 10 or less.
(C2) The method for producing ethylene according to (C1), wherein the hydrocarbon having 4 or more carbon atoms includes butene.
(C3) The method for producing ethylene according to (C2), wherein the proportion of butene contained in the hydrocarbon having 4 or more carbon atoms is 10 mol% or more relative to the total amount of the hydrocarbon having 4 or more carbon atoms.
(C4) The method for producing ethylene according to (C2) or (C3), wherein the butene contains 10 mol% or more of linear butene.
(C5) The method for producing ethylene according to any one of (C1) to (C4), wherein the reaction temperature in the reactor is 300°C or higher and 800°C or lower.
(C6) Any of (C1) to (C5), wherein at least 10% of hydrocarbons having 4 or more carbon atoms contained in the product gas discharged from the product gas outlet of the reactor are circulated to the reactor. The method for producing ethylene according to 1.
(C7) The method for producing ethylene according to any one of (C1) to (C6), wherein the catalyst contains zeolite.
(C8) The method for producing ethylene according to (C7), wherein the zeolite has pores with a pore diameter of 0.8 nm or less.
(C9) The method for producing ethylene according to (C7) or (C8), wherein the zeolite has an oxygen eight-membered ring structure.
(C10) The method for producing ethylene according to any one of (C7) to (C9), wherein the zeolite contains an aluminosilicate containing at least aluminum.
(C11) The method for producing ethylene according to (C10), wherein the zeolite has a SiO 2 /Al 2 O 3 molar ratio of 5 or more and 500 or less.
(C12) The method for producing ethylene according to any one of (C7) to (C11), wherein the structure of the zeolite is CHA under the code specified by the International Zeolite Association (IZA).

また、本発明の第4の要旨は以下のとおりである。
(D1)炭化水素と、ゼオライトを活性成分とする触媒と、を原料導入口と生成ガス排出口とを有する反応器中で接触させてエチレンを製造する方法であって、
前記炭化水素が少なくとも炭素数4以上の炭化水素を含み、かつ、
前記ゼオライトが少なくとも酸素8員環構造を有し、全酸量に対する外表面酸量の割合が3%以下である、エチレンの製造方法。
(D2)前記ゼオライトが、少なくともアルミニウムを含有するアルミノケイ酸塩を含む、(D1)に記載のエチレンの製造方法。
(D3)前記ゼオライトのSiO/Alモル比が、5以上500以下である(D1)又は(D2)に記載のエチレンの製造方法。
(D4)前記ゼオライトが、シリル化処理されている、(D1)~(D3)のいずれかに記載のエチレンの製造方法。
(D5)前記ゼオライトの構造が、International Zeolite Association(IZA)で規定されるコードでCHAである、(D1)~(D4)のいずれかに記載のエチレンの製造方法。
(D6)前記炭素数4以上の炭化水素として、少なくともブテンを含む、(D1)~(D5)のいずれかに記載のエチレンの製造方法。
(D7)前記ブテンに含まれる直鎖ブテンの割合が、10mol%以上である、(D6)に記載のエチレンの製造方法。
(D8)前記反応器における反応温度が、300℃以上800℃以下である、(D1)~(D7)のいずれかに記載のエチレンの製造方法。
(D9)前記反応器の生成ガス排出口から排出される生成ガス中に含まれる炭素数3以上の炭化水素のうち、少なくとも10%を反応器に循環させる、(D1)~(D8)のいずれかに記載のエチレンの製造方法。
Moreover, the fourth gist of the present invention is as follows.
(D1) A method for producing ethylene by contacting a hydrocarbon and a catalyst containing zeolite as an active ingredient in a reactor having a raw material inlet and a product gas outlet,
The hydrocarbon contains at least a hydrocarbon having 4 or more carbon atoms, and
A method for producing ethylene, wherein the zeolite has at least an eight-membered oxygen ring structure, and the ratio of the outer surface acid amount to the total acid amount is 3% or less.
(D2) The method for producing ethylene according to (D1), wherein the zeolite contains an aluminosilicate containing at least aluminum.
(D3) The method for producing ethylene according to (D1) or (D2), wherein the zeolite has a SiO 2 /Al 2 O 3 molar ratio of 5 or more and 500 or less.
(D4) The method for producing ethylene according to any one of (D1) to (D3), wherein the zeolite is silylated.
(D5) The method for producing ethylene according to any one of (D1) to (D4), wherein the structure of the zeolite is CHA under the code specified by the International Zeolite Association (IZA).
(D6) The method for producing ethylene according to any one of (D1) to (D5), wherein at least butene is included as the hydrocarbon having 4 or more carbon atoms.
(D7) The method for producing ethylene according to (D6), wherein the proportion of linear butene contained in the butene is 10 mol% or more.
(D8) The method for producing ethylene according to any one of (D1) to (D7), wherein the reaction temperature in the reactor is 300°C or higher and 800°C or lower.
(D9) Any of (D1) to (D8), wherein at least 10% of hydrocarbons having 3 or more carbon atoms contained in the product gas discharged from the product gas outlet of the reactor are circulated to the reactor. The method for producing ethylene according to 1.

本発明の第1の要旨によれば、反応器にプロピレンを供給し、触媒と接触させてエチレンを製造する方法において、エチレン収率の変動幅を最小限に抑えて、安定にエチレンを製造することができる。
また、本発明の第2の要旨によれば、プロピレンを触媒と接触させてエチレンを製造する方法において、前記触媒が水素を含むガスに接触させた触媒とプロピレンを反応させることにより、高い収率でエチレンを安定に製造することができる。
また、本発明の第3の要旨によれば、反応器にプロピレンを供給し、触媒と接触させてエチレンを製造する方法において、プロピレンとともに炭素数4以上の炭化水素を所定量供給することにより、生成物中のエチレン/プロピレン比率の変動幅を最小限に抑え、安定に高収率でエチレンを製造することができる。
また、本発明の第4の要旨によれば、炭素数4以上の炭化水素を原料としてエチレンを製造するに際し、原料としてのリサイクルに不向きな分岐オレフィンの副生量を増やすことなく、高いエチレン収率でエチレンを製造する方法を提供することができる。
According to the first gist of the present invention, in a method for producing ethylene by supplying propylene to a reactor and bringing it into contact with a catalyst, ethylene is stably produced by minimizing the fluctuation range of ethylene yield. be able to.
Further, according to the second gist of the present invention, in the method for producing ethylene by contacting propylene with a catalyst, the catalyst is brought into contact with a hydrogen-containing gas and the catalyst is reacted with propylene to achieve a high yield. can stably produce ethylene.
Further, according to the third gist of the present invention, in the method for producing ethylene by supplying propylene to a reactor and bringing it into contact with a catalyst, by supplying a predetermined amount of a hydrocarbon having 4 or more carbon atoms together with propylene, It is possible to stably produce ethylene at a high yield by minimizing the fluctuation range of the ethylene/propylene ratio in the product.
Further, according to the fourth gist of the present invention, when producing ethylene from a hydrocarbon having 4 or more carbon atoms as a raw material, it is possible to achieve a high ethylene yield without increasing the by-product amount of branched olefins that are unsuitable for recycling as a raw material. can provide a method of producing ethylene at a

実施例A-1及び比較例A-1により得られた累積時間に対するエチレン収率変化を示すグラフである。4 is a graph showing changes in ethylene yield with respect to cumulative time obtained in Example A-1 and Comparative Example A-1. 実施例A-2における、反応時間に対するプロピレン転化率の変化、およびプロピレン転化率-エチレン選択率の関係を示すグラフである。2 is a graph showing changes in propylene conversion with respect to reaction time and the relationship between propylene conversion and ethylene selectivity in Example A-2. 実施例A-3における、累積反応時間に対するエチレンの収率の変化を示すグラフである。4 is a graph showing changes in ethylene yield versus cumulative reaction time in Example A-3. 実施例A-4における、反応時間に対するプロピレン転化率およびエチレン選択率の変化をに示すグラフである。4 is a graph showing changes in propylene conversion and ethylene selectivity with respect to reaction time in Example A-4. 実施例B-1、比較例B-1、B-2のエチレン収率の結果を示すグラフである。2 is a graph showing the ethylene yield results of Example B-1, Comparative Examples B-1 and B-2.

以下に本発明を実施するための代表的な態様を具体的に説明するが、本発明は、その要旨を超えない限り、以下の態様に限定されるものではなく、種々変形して実施することができる。 Although typical embodiments for carrying out the present invention will be specifically described below, the present invention is not limited to the following embodiments as long as it does not exceed the gist thereof, and can be carried out in various modifications. can be done.

本発明の第1の実施形態は、反応器にプロピレンを供給し、触媒と接触させてエチレンを製造する方法において、反応器にプロピレンを供給し、触媒と接触させてエチレンを生成させる工程(I)と、前記工程(I)を経てプロピレンの転化率が低下した触媒を再生させる工程(II)の少なくとも2工程を有するエチレンの製造方法である。 A first embodiment of the present invention is a method for producing ethylene by supplying propylene to a reactor and bringing it into contact with a catalyst, wherein the step of supplying propylene to the reactor and bringing it into contact with a catalyst to produce ethylene (I ) and a step (II) of regenerating the catalyst whose propylene conversion rate has decreased through the step (I).

<A1.触媒>
本発明の第1の実施形態で用いる触媒について説明する。本実施形態に係る反応に用いられる触媒としては、ブレンステッド酸点を有する固体状のものであれば特に限定されず、従来公知の触媒が用いられ、例えば、カオリン等の粘土鉱物、酸性型イオン交換樹脂、ゼオライト、メソポーラスシリカアルミナ等の固体酸触媒が挙げられる。第1の実施形態においては、プロピレン転化率が低下した触媒を再生させる工程を導入することにより、プロピレンの転化によって蓄積したコーク成分の量を低減し、エチレンを安定した収率で製造することができる。
<A1. Catalyst>
A catalyst used in the first embodiment of the present invention will be described. The catalyst used in the reaction according to the present embodiment is not particularly limited as long as it is a solid having a Bronsted acid site, and conventionally known catalysts are used, for example, clay minerals such as kaolin, acidic ion Examples include solid acid catalysts such as exchange resins, zeolites, and mesoporous silica-alumina. In the first embodiment, by introducing a step of regenerating the catalyst whose propylene conversion rate has decreased, the amount of coke components accumulated by the conversion of propylene can be reduced, and ethylene can be produced at a stable yield. can.

これらの固体酸触媒のうちでも、分子篩効果を有するものが好ましく、ゼオライトがより好ましい。なお、上記触媒は公知の触媒を使用することができるが、以下、触媒として好ましい形態であるゼオライトについて詳細に説明する。 Among these solid acid catalysts, those having a molecular sieve effect are preferred, and zeolites are more preferred. A known catalyst can be used as the above catalyst, but zeolite, which is a preferred form of the catalyst, will be described in detail below.

ゼオライトとは、四面体構造をもつTO単位(Tは中心原子)がO原子を共有して三次元的に連結し、開かれた規則的なミクロ細孔を形成している結晶性物質を指す。具体的には国際ゼオライト学会(International Zeolite Association;以下これを「IZA」ということがある。)の構造委員会データ集に記載のあるケイ酸塩、リン酸塩、ゲルマニウム塩、ヒ酸塩等が含まれる。Zeolite is a crystalline substance in which 4 TO units (T is the central atom) with a tetrahedral structure are connected three-dimensionally by sharing O atoms to form regular open micropores. Point. Specifically, silicates, phosphates, germanium salts, arsenates, etc. listed in the data collection of the structure committee of the International Zeolite Association (hereinafter sometimes referred to as "IZA") included.

ここで、ケイ酸塩には、例えばアルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が含まれる。
リン酸塩には、例えばアルミノリン酸塩、ガロリン酸塩、ベリロリン酸塩等が含まれる。
ゲルマニウム塩には、例えばアルミノゲルマニウム塩等が、ヒ酸塩には、例えばアルミノヒ酸塩等が含まれる。
さらに、アルミノリン酸塩には、例えばT原子をSiで一部置換したシリコアルミノリン酸塩や、Ga、Mg、Mn、Fe、Co、Znなど2価や3価のカチオンを含むものが含まれる。
Here, silicates include, for example, aluminosilicates, gallosilicates, ferrisilicates, titanosilicates, borosilicates, and the like.
Phosphates include, for example, aluminophosphates, gallophosphates, beryllophosphates, and the like.
Germanium salts include, for example, aluminogermanium salts, and arsenates include, for example, aluminum arsenates.
Furthermore, aluminophosphates include, for example, silicoaluminophosphates in which the T atom is partially substituted with Si, and those containing divalent or trivalent cations such as Ga, Mg, Mn, Fe, Co, and Zn. .

ゼオライトの平均細孔径は特に限定されず、通常0.80nm以下、好ましくは0.55nm以下、より好ましくは0.50nm以下、さらに好ましくは0.45nm以下、特に好ましくは0.40nm以下であり、通常0.25nm以上、好ましくは0.30nm以上、より好ましくは0.33nm以上であり、さらに好ましくは0.35nm以上である。
ここで、平均細孔径とは、IZAが定める結晶学的なチャネル直径(Crystallographic free diameter of the channels)を示す。平均細孔径が0.55nm以下とは、細孔(チャネル)の形状が真円形の場合は、その平均直径が0.55nm以下であることをさすが、細孔の形状が楕円形の場合は、短径が0.55nm以下であることを意味する。
The average pore diameter of the zeolite is not particularly limited, and is usually 0.80 nm or less, preferably 0.55 nm or less, more preferably 0.50 nm or less, even more preferably 0.45 nm or less, and particularly preferably 0.40 nm or less, It is usually 0.25 nm or more, preferably 0.30 nm or more, more preferably 0.33 nm or more, and still more preferably 0.35 nm or more.
Here, the average pore diameter indicates the crystallographic free diameter of the channels defined by IZA. The average pore diameter of 0.55 nm or less means that the average diameter of pores (channels) is 0.55 nm or less when the shape of the pores (channels) is perfectly circular. It means that the minor axis is 0.55 nm or less.

ゼオライトを用いることにより、プロピレンを原料として、高収率でエチレンを製造することができる。すなわち、平均細孔径が上記範囲であれば、ゼオライト結晶内へのプロピレンの拡散を促進し、かつエチレンをより選択的に生成させることができる。さらに、水素を含むガスとの接触により、触媒に蓄積されたコーク成分の量を適度に低減しつつ、コーク成分の質を改質することができるためのより好ましいと考えられる。 By using zeolite, it is possible to produce ethylene at a high yield using propylene as a raw material. That is, if the average pore diameter is within the above range, diffusion of propylene into the zeolite crystals can be promoted and ethylene can be produced more selectively. Furthermore, contact with a hydrogen-containing gas is considered to be more preferable because the quality of the coke components can be modified while appropriately reducing the amount of the coke components accumulated in the catalyst.

上記の観点から、本実施形態において、ゼオライトは、酸素8員環構造ゼオライトであることが好ましい。 From the above viewpoint, in the present embodiment, the zeolite is preferably an oxygen 8-membered ring structure zeolite.

酸素8員環構造ゼオライトとしては、IZAが定める構造コード(Framework Type Code)で、例えば、好ましくはAEI、AFX、CHA、ERI、KFI、LEV、SAS、SAV、SZR、PAU、RHO、LTAなどが挙げられる。 As the oxygen 8-membered ring structure zeolite, the structure code (Framework Type Code) defined by IZA, for example, preferably AEI, AFX, CHA, ERI, KFI, LEV, SAS, SAV, SZR, PAU, RHO, LTA, etc. mentioned.

ゼオライトのフレームワーク密度(単位:T/nm)は特に限定されず、通常20.0以下、好ましくは18.0以下、より好ましくは17.0以下、さらに好ましくは16.0以下であり、通常12.0以上、好ましくは14.0以上、より好ましくは14.5以上である。
ここで、フレームワーク密度(単位:T/nm)とは、ゼオライトの単位体積(1nm)当たりに存在するT原子(ゼオライトの骨格を構成する原子のうち、酸素以外の原子)の個数を意味し、この値はゼオライトの構造により決まる。
The zeolite framework density (unit: T/nm 3 ) is not particularly limited, and is usually 20.0 or less, preferably 18.0 or less, more preferably 17.0 or less, and still more preferably 16.0 or less, It is usually 12.0 or higher, preferably 14.0 or higher, more preferably 14.5 or higher.
Here, the framework density (unit: T/nm 3 ) refers to the number of T atoms (atoms other than oxygen atoms constituting the zeolite skeleton) present per unit volume (1 nm 3 ) of the zeolite. This value is determined by the structure of the zeolite.

これらの観点から、酸素8員環構造ゼオライトは、International Zeolite Association(IZA)がcomposite building unitとして定めるd6rを骨格中に含むゼオライトであることが好ましく、さらに好ましくは、AEI、AFX、CHA、ERI、KFI、LEV、SAVであり、より好ましくはAEI、AFX、CHA、又はERIであり、殊更好ましくはAEI、CHA、又はERIであり、特に好ましくはCHA又はERIであり、最も好ましくは、CHAである。 From these viewpoints, the oxygen 8-membered ring structure zeolite is preferably a zeolite containing d6r in the skeleton defined as a composite building unit by the International Zeolite Association (IZA), more preferably AEI, AFX, CHA, ERI, KFI, LEV, SAV, more preferably AEI, AFX, CHA, or ERI, even more preferably AEI, CHA, or ERI, particularly preferably CHA or ERI, most preferably CHA .

酸素8員環構造ゼオライトとしては、具体的にはケイ酸塩とリン酸塩が挙げられる。上記のとおり、ケイ酸塩としては、例えば、アルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が、リン酸塩としては、アルミニウムと燐からなるアルミノリン酸塩、ケイ素とアルミニウムと燐からなるシリコアルミノリン酸塩等が挙げられる。これらの中で、アルミノケイ酸塩、シリコアルミノリン酸塩が好ましく、アルミノケイ酸塩がより好ましい。 Specific examples of 8-membered oxygen ring structure zeolites include silicates and phosphates. As described above, examples of silicates include aluminosilicates, gallosilicates, ferrisilicates, titanosilicates, and borosilicates, and examples of phosphates include aluminophosphates composed of aluminum and phosphorus, silicon and silicoaluminophosphates composed of aluminum and phosphorus. Among these, aluminosilicates and silicoaluminophosphates are preferred, and aluminosilicates are more preferred.

ゼオライトは、通常、そのイオン交換サイトがプロトン(H)のプロトン交換型が用いられるが、その一部がLi、Na、K、Rb、Cs等のアルカリ金属、Ca、Sr、Ba等のアルカリ土類金属、Cr、Cu、Ni、Fe、Mo、W、Pt、Re等の遷移金属に交換されていてもよい。なお、この場合、ゼオライトに後述するイオン交換処理を施せばよい。 A proton-exchanged type of zeolite whose ion-exchange sites are protons (H) is usually used. It may be exchanged with transition metals such as metals, Cr, Cu, Ni, Fe, Mo, W, Pt, and Re. In this case, the zeolite may be subjected to an ion exchange treatment, which will be described later.

これらイオン交換サイト以外に、Na、K等のアルカリ金属;Ca、Sr等のアルカリ土類金属;Cr、Cu、Ni、Fe、Mo、W、Pt、Re等の遷移金属に金属担持されていてもよい。ここで、金属担持は、通常、平衡吸着法、蒸発乾固法、ポアフィリング法等の含浸法で行うことができる。 In addition to these ion exchange sites, metals are supported on alkali metals such as Na and K; alkaline earth metals such as Ca and Sr; and transition metals such as Cr, Cu, Ni, Fe, Mo, W, Pt and Re. good too. Here, the metal loading can usually be carried out by an impregnation method such as equilibrium adsorption method, evaporation to dryness method, pore-filling method and the like.

ゼオライトがケイ酸塩の場合、SiO/M(ただし、前記モル比の分母はAl、Ga、BおよびFeの合計量を表す)モル比は通常5以上であり、好ましくは8以上、より好ましくは10以上、さらに好ましくは15以上であり、通常100未満、好ましくは80以下、より好ましくは60以下であり、さらに好ましくは40以下である。なお、前記の比率は、ゼオライト中のSi原子が全てSiOとして含まれ、ゼオライト中に含まれる前記MがすべてMとして含まれると仮定して求める値である。SiO/Mモル比が上記範囲にあることで、強酸点及び弱酸点由来の酸量が十分得られ、高いプロピレンの転化活性が得られる。またコーク付着による触媒の失活、ケイ素以外のT原子の骨格からの脱離、酸点当たりの酸強度の低下といった現象を防ぐことができる。本発明のゼオライトのSiO/Mモル比は、通常、ICP元素分析や蛍光X線分析で測定できる。蛍光X線分析は、標準試料中の分析元素の蛍光X線強度と分析元素の原子濃度との検量線を作成し、この検量線により、蛍光X線分析法(XRF)でゼオライト試料中のケイ素原子、アルミニウム、ガリウム、鉄原子の含有量を求めることができる。なお、ホウ素元素の蛍光X線強度は比較的小さいため、ホウ素原子の含有量はICP元素分析で測定することが好ましい。When the zeolite is a silicate, SiO 2 /M 2 O 3 (where the denominator of said molar ratio represents the total amount of Al 2 O 3 , Ga 2 O 3 , B 2 O 3 and Fe 2 O 3 ) mol The ratio is usually 5 or more, preferably 8 or more, more preferably 10 or more, still more preferably 15 or more, and usually less than 100, preferably 80 or less, more preferably 60 or less, and still more preferably 40 or less. be. The above ratio is a value obtained on the assumption that all Si atoms in the zeolite are contained as SiO 2 and all the M contained in the zeolite are contained as M 2 O 3 . When the SiO 2 /M 2 O 3 molar ratio is within the above range, a sufficient amount of acid derived from strong acid sites and weak acid sites can be obtained, and high propylene conversion activity can be obtained. It is also possible to prevent phenomena such as deactivation of the catalyst due to adhesion of coke, detachment of T atoms other than silicon from the skeleton, and a decrease in acid strength per acid site. The SiO 2 /M 2 O 3 molar ratio of the zeolite of the present invention can usually be measured by ICP elemental analysis or fluorescent X-ray analysis. In the fluorescent X-ray analysis, a calibration curve is created between the fluorescent X-ray intensity of the analytical element in the standard sample and the atomic concentration of the analytical element. Atoms, aluminum, gallium, iron atom content can be determined. Since the fluorescent X-ray intensity of boron element is relatively small, it is preferable to measure the content of boron atoms by ICP elemental analysis.

ゼオライトがリン酸塩の場合、シリコアルミノリン酸塩の(Al+P)/Siモル比あるいは2価の金属をもつメタロアルミノリン酸塩の(Al+P)/M(但し、Mは2価の金属を示す。)モル比は、通常は5以上、好ましくは10以上であり、通常500以下、好ましくは100以下である。なお、2価の金属は、具体的には、Ga、Mg、Mn、Fe、Co又はZnが挙げられる。前記下限以上とすることにより触媒の耐久性の低下を防ぐことができ、また前記上限以下以上とすることにより、触媒活性が低下を防ぐことができる。 When the zeolite is a phosphate, the (Al+P)/Si molar ratio of a silicoaluminophosphate or the (Al+P)/M of a metalloaluminophosphate having a divalent metal (where M represents a divalent metal ) The molar ratio is usually 5 or more, preferably 10 or more, and usually 500 or less, preferably 100 or less. Incidentally, the divalent metal specifically includes Ga, Mg, Mn, Fe, Co, or Zn. By adjusting the amount to be equal to or higher than the lower limit, deterioration of the durability of the catalyst can be prevented, and by adjusting the amount to be equal to or higher than the upper limit, deterioration of catalytic activity can be prevented.

本実施形態で用いられるゼオライトの全酸量(以下、全酸量という)は、ゼオライトの結晶細孔内に存在する酸点の量と、ゼオライトの結晶外表面酸点の量(以下、外表面酸量という)の総和である。全酸量は、特に限定されるものではないが、通常0.01mmol/g以上、好ましくは0.1mmol/g以上、より好ましくは0.3mmol/g以上、さらに好ましくは0.5mmol/g以上である。また、通常2.5mmol/g以下、好ましくは1.5mmol/g以下、より好ましくは1.2mmol/g以下、さらに好ましくは0.9mmol/g以下である。全酸量を上記の範囲とすることで、プロピレンの転化活性が担保されるとともに、ゼオライトの細孔内部におけるコーク生成が抑制され、エチレン生成を促進することができる。なお、ここでの全酸量は、アンモニア昇温脱離(NH-TPD)における脱離量から算出される。具体的には、前処理としてゼオライトを真空下500℃で30分間乾燥させた後、前処理したゼオライトを100℃で過剰量のアンモニアと接触させて、ゼオライトにアンモニアを吸着させる。得られたゼオライトを、100℃で真空乾燥、または、100℃で水蒸気と接触させることにより、該ゼオライトから余剰アンモニアを除く。次いでアンモニアの吸着したゼオライトを、ヘリウム雰囲気下、昇温速度10℃/分で加熱して、100-600℃におけるアンモニア脱離量を質量分析法で測定する。ゼオライト当たりのアンモニア脱離量を全酸量とする。但し、本発明における全酸量は、TPDプロファイルをガウス関数によって波形分離し、そのピークトップを240℃以上に有する波形の面積の合計とする。この「240℃」は、ピークトップの位置の判断のみに用いる指標であって、240℃以上の部分の面積を求めるという趣旨ではない。ピークトップが240℃以上の波形である限り、当該「波形の面積」は、240℃以外の部分も含む全面積を求める。240℃以上にピークトップを有する波形が複数ある場合には、それぞれの面積の和とする。なお、本実施形態の全酸量には、ピークトップを240℃未満に有する弱酸点由来の酸量は含めないものとする。これは、TPDプロファイルにおいて、弱酸点由来の吸着と物理吸着との区別が容易ではないためである。The total acid content of the zeolite used in the present embodiment (hereinafter referred to as the total acid content) includes the amount of acid sites present in the crystal pores of the zeolite and the amount of acid sites on the outer surface of the zeolite crystal (hereinafter referred to as the outer surface acid amount). The total acid content is not particularly limited, but is usually 0.01 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, and still more preferably 0.5 mmol/g or more. is. Also, it is usually 2.5 mmol/g or less, preferably 1.5 mmol/g or less, more preferably 1.2 mmol/g or less, and still more preferably 0.9 mmol/g or less. By setting the total acid amount within the above range, propylene conversion activity can be ensured, coke formation inside the pores of the zeolite can be suppressed, and ethylene production can be promoted. The total acid content here is calculated from the desorption amount in ammonia temperature programmed desorption (NH 3 -TPD). Specifically, after drying the zeolite under vacuum at 500° C. for 30 minutes as a pretreatment, the pretreated zeolite is brought into contact with an excess amount of ammonia at 100° C. to cause the zeolite to adsorb ammonia. Excess ammonia is removed from the obtained zeolite by vacuum drying at 100°C or contacting it with water vapor at 100°C. Next, the ammonia-adsorbed zeolite is heated in a helium atmosphere at a temperature elevation rate of 10°C/min, and the amount of ammonia desorbed at 100-600°C is measured by mass spectrometry. Let the amount of ammonia desorbed per zeolite be the total amount of acid. However, the total acid content in the present invention is the sum of the areas of the waveforms having the peak top at 240° C. or higher after separating the TPD profile into waveforms using a Gaussian function. This "240° C." is an index used only for determining the position of the peak top, and does not mean that the area of the portion above 240° C. is obtained. As long as the waveform has a peak top of 240°C or higher, the "waveform area" is the total area including portions other than 240°C. When there are a plurality of waveforms having peak tops at 240° C. or higher, the sum of the respective areas is used. In addition, the total acid amount in the present embodiment does not include the acid amount derived from weak acid sites having a peak top at less than 240°C. This is because it is not easy to distinguish between adsorption derived from weak acid sites and physical adsorption in the TPD profile.

ゼオライトの外表面酸量は、特に限定されるものではないが、通常、ゼオライトの全酸量に対して8%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、最も好ましくは0%である。外表面酸量が大きすぎる場合には、外表面酸点で起こる副反応によりエチレンの収率が低下する傾向がある。これは、外表面酸点で目的物以外の炭化水素を生成する反応が進行するためと推測される。また、前記ゼオライトの細孔内で生成したエチレンが外表面酸点で更に反応してしまうことも選択率低下の一因であると推測される。
なお、本実施形態で用いられるゼオライトの外表面酸量の値は、国際公開2010/128644号パンフレットに記載の方法で測定することができる。具体的には、前処理としてゼオライトを真空下500℃で1時間乾燥させた後、前処理したゼオライトを150℃でピリジン蒸気と接触させてゼオライトにピリジンを吸着させ、150℃で減圧排気及びヘリウムフローにより該ゼオライトから余剰ピリジンを除いて得られた、ピリジンを吸着したゼオライトの、昇温速度10℃/分の昇温脱離法による150~800℃におけるゼオライト単位重量当たりのピリジンの脱離量から決定される。
なお、前記ゼオライトの外表面酸量等は、特に限定はされないが、シリル化処理、水蒸気処理、熱処理、酸処理、イオン交換処理等により調整することができる。金属元素の担持処理等の方法が挙げられる。また、ゼオライトを成形する際にバインダーと前記ゼオライトの外表面酸点を結合させる、といった方法が挙げられる。
The outer surface acidity of zeolite is not particularly limited, but is usually 8% or less, preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less with respect to the total acidity of zeolite. , most preferably 0%. If the outer surface acidity is too large, the yield of ethylene tends to decrease due to side reactions occurring at the outer surface acid sites. This is presumed to be due to the progress of reactions that produce hydrocarbons other than the target product at the outer surface acid sites. In addition, it is presumed that the further reaction of the ethylene produced in the pores of the zeolite at the outer surface acid sites is also a factor in the decrease in selectivity.
The value of the outer surface acidity of the zeolite used in the present embodiment can be measured by the method described in International Publication No. 2010/128644. Specifically, after drying the zeolite under vacuum at 500° C. for 1 hour as a pretreatment, the pretreated zeolite is brought into contact with pyridine vapor at 150° C. to adsorb pyridine to the zeolite. Amount of pyridine desorbed per zeolite unit weight at 150 to 800°C by a temperature programmed desorption method at a temperature rising rate of 10°C/min from the pyridine-adsorbed zeolite obtained by removing surplus pyridine from the zeolite by flow determined from
Incidentally, the outer surface acidity and the like of the zeolite are not particularly limited, but can be adjusted by silylation treatment, steam treatment, heat treatment, acid treatment, ion exchange treatment, and the like. Methods such as carrying treatment of metal elements can be mentioned. In addition, there is a method of combining a binder with an acid site on the outer surface of the zeolite when molding the zeolite.

<シリル化処理>
ゼオライトをシリル化処理する方法は、特に限定されるものではなく、公知の方法を適宜用いることができ、具体的には液相シリル化や気相シリル化等を行うことができる。
<Silylation treatment>
The method of silylating the zeolite is not particularly limited, and a known method can be used as appropriate. Specifically, liquid-phase silylation, gas-phase silylation, and the like can be performed.

ゼオライトは、シリル化処理により、通常、外表面の酸点が被覆され、不活性化されることにより、外表面酸量が低下するものと考えられる。外表面酸量が低下すると、前記ゼオライトの外表面で起こる副反応が抑制される。具体的には、プロピレンの転化反応により、ゼオライト細孔内で生成したエチレン、ブテン類等の低級オレフィンがゼオライトの外表面の酸点と接触することで、目的物以外の成分が生成する反応を抑制する効果があると考えられる。また、外表面酸点のシリル化では、前記ゼオライトが有する細孔を構成する酸点にもシリル基が結合するため、外表面開口部の細孔径が僅かに縮小し、結晶外への分子拡散を抑制する効果もあると考えられる。これにより、より大きい分子である炭素数5以上の炭化水素の生成を抑制することができ、エチレンの選択率が向上するものと考える。
以下、シリル化処理を、液相シリル化を例に取り、具体的に説明する。
The silylation treatment of zeolite usually coats the acid sites on the outer surface of the zeolite and deactivates it, which is thought to reduce the acidity on the outer surface. When the outer surface acid amount is reduced, side reactions occurring on the outer surface of the zeolite are suppressed. Specifically, by the conversion reaction of propylene, lower olefins such as ethylene and butenes generated in the zeolite pores come into contact with the acid sites on the outer surface of the zeolite, resulting in the generation of components other than the target product. It is considered to have a suppressive effect. In addition, in the silylation of the outer surface acid sites, the silyl groups are also bound to the acid sites that constitute the pores of the zeolite, so the pore diameter of the outer surface openings is slightly reduced, and molecular diffusion out of the crystal occurs. is thought to have the effect of suppressing It is believed that this suppresses the production of hydrocarbons having 5 or more carbon atoms, which are larger molecules, and improves the ethylene selectivity.
The silylation treatment will be specifically described below by taking liquid-phase silylation as an example.

シリル化剤としては、特に限定されるものではなく、通常はゼオライトの外表面をシリル化することができ、かつゼオライトの細孔内をシリル化することができないものを使用する。具体的には、シリコーン類、クロロシラン類、アルコキシシラン類、シロキサン類、シラザン類などが使用できる。これらのうち、気相シリル化には通常クロロシラン類、液相シリル化には通常アルコキシシラン類が用いられ、より好ましいシリル化剤は、反応性が高く、取り扱いが比較的容易であるという点で、アルコキシシラン類である。
シリコーン類としては、具体的にはジメチルシリコーン、ジエチルシリコーン、フェニルメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、フェニルハイドロジェンシリコーン、メチルエチルシリコーン、フェニルエチルシリコーン、ジフェニルシリコーン、メチルトリフルオロプロピルシリコーン、エチルトリフルオロプロピルシリコーン、テトラクロロフェニルメチルシリコーン、テトラクロロフェニルエチルシリコーン、テトラクロロフェニルハイドロジェンシリコーン、テトラクロロフェニルシリコーン、メチルビニルシリコーン及びエチルビニルシリコーン等が用いられる。
The silylating agent is not particularly limited, and usually one that can silylate the outer surface of the zeolite but cannot silylate the inside of the pores of the zeolite is used. Specifically, silicones, chlorosilanes, alkoxysilanes, siloxanes, silazanes and the like can be used. Among these, chlorosilanes are usually used for gas-phase silylation, and alkoxysilanes are usually used for liquid-phase silylation. More preferable silylating agents are highly reactive and relatively easy to handle. , alkoxysilanes.
Specific examples of silicones include dimethylsilicone, diethylsilicone, phenylmethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, phenylhydrogensilicone, methylethylsilicone, phenylethylsilicone, diphenylsilicone, and methyltrifluoropropylsilicone. , ethyltrifluoropropylsilicone, tetrachlorophenylmethylsilicone, tetrachlorophenylethylsilicone, tetrachlorophenylhydrogensilicone, tetrachlorophenylsilicone, methylvinylsilicone and ethylvinylsilicone.

クロロシラン類としては、具体的には、テトラクロロシラン、トリクロロシラン、トリクロロメチルシラン、ジクロロジメチルシラン、クロロトリメチルシラン、トリクロロエチルシラン、ジクロロジエチルシラン、クロロトリエチルシラン等が用いられる。
アルコキシシラン類としては、具体的には、テトラメトキシシラン、テトラエトキシシラン等;の4級アルコキシシラン、トリメトキシメチルシラン、トリメトキシエチルシラン、トリエトキシメチルシラン、トリエトキシエチルシラン等;の3級アルコキシシラン、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン等;の2級アルコキシシラン、メトキシトリメチルシラン、メトキシトリエチルシラン、エトキシトリメチルシラン、エトキシトリエチルシラン等;の1級アルコキシシランが用いられる。好ましくは2級以上のアルコキシシランであり、より好ましくは3級以上のアルコキシシランであり、さらに好ましくは4級アルコキシシランである。
Specific examples of chlorosilanes include tetrachlorosilane, trichlorosilane, trichloromethylsilane, dichlorodimethylsilane, chlorotrimethylsilane, trichloroethylsilane, dichlorodiethylsilane, and chlorotriethylsilane.
Specific examples of alkoxysilanes include tetramethoxysilane, tetraethoxysilane, etc.; quaternary alkoxysilane, trimethoxymethylsilane, trimethoxyethylsilane, triethoxymethylsilane, triethoxyethylsilane, etc.; alkoxysilane, dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, etc.; secondary alkoxysilane, methoxytrimethylsilane, methoxytriethylsilane, ethoxytrimethylsilane, ethoxytriethylsilane, etc.; is used. Secondary or higher class alkoxysilanes are preferred, tertiary or higher class alkoxysilanes are more preferred, and quaternary or higher class alkoxysilanes are even more preferred.

シロキサン類としては、具体的には、ヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ペンタメチルジシロキサン、テトラメチルジシロキサン等が挙げられ、ヘキサメチルジシロキサンが好ましい。
シラザン類としては、具体的には、ヘキサメチルジシラザン、ジプロピルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、テトラフェニルジメチルジシラザン等が挙げられ、ヘキサメチルジシラザンが好ましい。
Specific examples of siloxanes include hexamethyldisiloxane, hexaethyldisiloxane, pentamethyldisiloxane, tetramethyldisiloxane and the like, with hexamethyldisiloxane being preferred.
Specific examples of silazanes include hexamethyldisilazane, dipropyltetramethyldisilazane, diphenyltetramethyldisilazane, tetraphenyldimethyldisilazane and the like, with hexamethyldisilazane being preferred.

前記ゼオライトに対するシリル化剤の量は、特に限定されるものではないが、前記ゼオライト1モルに対して、通常0.001モル以上、好ましくは0.01モル以上、より好ましくは0.1モル以上である。また、通常5モル以下であり、好ましくは3モル以下、より好ましくは1モル以下である。シリル化剤の量を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつ過度なシリル化被覆による触媒活性低下を抑制できる点で好ましい。なお、上記シリル化剤の量は、シリル化剤に含まれるSi原子のモル数で表すこととし、分子内に複数のSi原子を有するシリル化剤では、そのSi原子の合計のモル数をシリル化剤のモル数として扱うことにする。 The amount of the silylating agent to the zeolite is not particularly limited, but is usually 0.001 mol or more, preferably 0.01 mol or more, more preferably 0.1 mol or more, relative to 1 mol of the zeolite. is. Also, it is usually 5 mol or less, preferably 3 mol or less, more preferably 1 mol or less. By setting the amount of the silylating agent within the above range, the silylation coating of the outer surface acid sites efficiently progresses, and it is possible to suppress the decrease in catalytic activity due to excessive silylation coating, which is preferable. The amount of the silylating agent is represented by the number of moles of Si atoms contained in the silylating agent. will be treated as the number of moles of the agent.

液相シリル化を行う場合、溶媒を使用することができ、溶媒としては、特に限定されないが、へキサン、ヘプタン、オクタン、ノナン、デカン、シクロペンタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素や水を使用することができる。また、水溶媒で液相シリル化を行なう場合は、シリル化反応を促進するために、硫酸や硝酸等の酸を添加した酸性水溶液を使用することができる。 When carrying out liquid phase silylation, a solvent can be used, and examples of the solvent include, but are not limited to, hydrocarbons such as hexane, heptane, octane, nonane, decane, cyclopentane, cyclohexane, benzene, toluene, and xylene. or water can be used. Further, when the liquid-phase silylation is performed using an aqueous solvent, an acidic aqueous solution to which an acid such as sulfuric acid or nitric acid is added can be used in order to promote the silylation reaction.

液相シリル化を行う場合、前記液相シリル化反応を行なう溶液中のシリル化剤の濃度は、特に限定されるものではないが、通常0.01質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上である。また、通常80質量%以下であり、好ましくは60質量%以下であり、より好ましくは40質量%以下である。シリル化剤の濃度を上記の範囲とすることで、シリル化剤同士の縮合を抑制し、かつシリル化速度を維持できる点で好ましい。 When liquid-phase silylation is performed, the concentration of the silylating agent in the solution in which the liquid-phase silylation reaction is performed is not particularly limited, but is usually 0.01% by mass or more, preferably 0.5% by mass. above, and more preferably at least 1% by mass. Moreover, it is usually 80% by mass or less, preferably 60% by mass or less, and more preferably 40% by mass or less. By setting the concentration of the silylating agent within the above range, it is preferable in that condensation between the silylating agents can be suppressed and the silylation rate can be maintained.

液相シリル化を行なう場合の前記ゼオライトに対する溶媒の量は、特に制限されるものではないが、前記ゼオライト1gに対して、通常1g以上、好ましくは3g以上、より好ましくは5g以上である。また、通常100g以下、好ましくは80g以下、より好ましくは50g以下である。溶媒の量を上記の範囲とすることで、スラリーの十分な撹拌効率を得るとともに、一定の生産性を確保することができる点で好ましい。 The amount of the solvent for the zeolite in liquid-phase silylation is not particularly limited, but is usually 1 g or more, preferably 3 g or more, more preferably 5 g or more, per 1 g of the zeolite. Also, it is usually 100 g or less, preferably 80 g or less, more preferably 50 g or less. By setting the amount of the solvent within the above range, it is possible to obtain sufficient stirring efficiency of the slurry and to ensure a certain level of productivity, which is preferable.

液相シリル化を行う場合、シリル化処理に供するゼオライトに特定の範囲の水分を付与しておいてもよい。前記ゼオライトが含有する水分は、ゼオライトが元々含有しているものであっても、人為的に水分を供給して、特定の範囲に調整してもよい。通常、本実施形態で用いられるゼオライトは水熱合成により得られたものを焼成し、さらに必要に応じてアンモニウム型へ変換してから焼成することによりプロトン型に変換したものを使用する。したがって、通常シリル化処理前のゼオライトの水分含有量は、通常非常に少ないと想定され、そのままシリル化処理に供してもよいし、ゼオライトに特定の水分含有量となるように水分を供給し、水分含有量を調整して使用してもよい(以下、調湿処理ということがある)。 When liquid-phase silylation is performed, the zeolite subjected to the silylation treatment may be provided with a specific range of moisture. The water contained in the zeolite may be originally contained in the zeolite, or may be adjusted to a specific range by artificially supplying water. Generally, the zeolite used in the present embodiment is obtained by hydrothermal synthesis, calcined, and if necessary, converted to the ammonium type and then calcined to convert to the proton type. Therefore, it is generally assumed that the water content of zeolite before silylation treatment is usually very low, and it may be subjected to silylation treatment as it is, or water is supplied to zeolite so that it has a specific water content, It may be used after adjusting the moisture content (hereinafter sometimes referred to as humidity conditioning treatment).

前記水分含有量は、特に制限されるものではないが、ゼオライト中に含まれる水分重量を乾燥ゼオライトの重量に対する質量%で表し、通常30質量%以下、好ましくは25質量%以下であり、下限としては完全乾燥状態の0質量%である。水分含有量を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつ過度なシリル化による細孔閉塞を防ぐことができる点で好ましい。 The water content is not particularly limited, but the weight of the water contained in the zeolite is represented by mass% with respect to the weight of the dry zeolite, and is usually 30% by mass or less, preferably 25% by mass or less, and the lower limit is is 0% by mass in a completely dry state. By setting the water content within the above range, the silylation coating of the outer surface acid sites proceeds efficiently and pore clogging due to excessive silylation can be prevented, which is preferable.

前記調湿処理方法は、所定の水分量に調整することができれば、特に限定されるものではない。例えば、ゼオライトを適当な相対湿度を有する大気中に放置する方法、ゼオライトを、密閉容器(デシケーター等)中に、水または無機塩の飽和水溶液とともに共存させ、飽和水蒸気雰囲気下で放置する方法、ゼオライトに、適当な水蒸気圧のガスを流通させる方法等が挙げられる。なお、前記の方法においては、より均一な調湿を行うために、ゼオライトを混合または攪拌しながら調湿処理を行ってもよい。 The humidity conditioning treatment method is not particularly limited as long as it can adjust the moisture content to a predetermined level. For example, a method of leaving the zeolite in an atmosphere having an appropriate relative humidity, a method of allowing the zeolite to coexist with water or a saturated aqueous solution of an inorganic salt in a closed container (desiccator, etc.), and a method of leaving the zeolite in a saturated steam atmosphere. Another example is a method of circulating a gas having an appropriate water vapor pressure. In the above method, the humidity conditioning treatment may be performed while mixing or stirring the zeolite in order to perform more uniform humidity conditioning.

シリル化処理をする温度は、使用するシリル化剤や溶媒の種類により適宜調整され、特に限定されるものではないが、通常20℃以上、好ましくは40℃以上、より好ましくは60℃以上である。また、通常140℃以下、好ましくは120℃以下であり、より好ましくは100℃以下である。シリル化処理温度を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつシリル化速度を維持できる点で好ましい。 The temperature for the silylation treatment is appropriately adjusted depending on the type of silylating agent and solvent used, and is not particularly limited, but is usually 20°C or higher, preferably 40°C or higher, more preferably 60°C or higher. . Also, it is usually 140° C. or lower, preferably 120° C. or lower, and more preferably 100° C. or lower. By setting the silylation treatment temperature within the above range, the silylation coating of the outer surface acid sites proceeds efficiently and the silylation rate can be maintained.

シリル化剤を添加してからシリル化温度まで昇温するのに要する時間は、特に限定されるものではなく、シリル化温度にてシリル化剤を添加してもよいが、通常0.01時間以上、好ましくは0.05時間以上、より好ましくは0.1時間以上であり、昇温に要する時間の上限は特にない。シリル化温度が高い場合、昇温に要する時間を上記の範囲とすることで、溶液中のシリル化剤の加水分解及び重合反応が抑制され、前記ゼオライトのシリル化が効率的に進行する点で好ましい。 The time required to raise the temperature from the addition of the silylation agent to the silylation temperature is not particularly limited, and the silylation agent may be added at the silylation temperature, but usually 0.01 hour. As mentioned above, it is preferably 0.05 hours or more, more preferably 0.1 hours or more, and there is no particular upper limit for the time required for temperature rise. When the silylation temperature is high, by setting the time required for temperature rise within the above range, the hydrolysis and polymerization reaction of the silylating agent in the solution are suppressed, and the silylation of the zeolite proceeds efficiently. preferable.

シリル化の処理時間は、反応温度にもよるが、通常0.1時間以上、好ましくは0.5時間以上であり、より好ましくは1時間以上であり、触媒の性能を阻害しない限りにおいて処理時間の上限は特にない。処理時間を上記の範囲とすることで、前記ゼオライトの外表面酸点のシリル化被覆が進行し、外表面酸量が十分に減少する点で好ましい。 The treatment time for silylation depends on the reaction temperature, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1 hour or longer, as long as the catalyst performance is not impaired. There is no upper limit for By setting the treatment time within the above range, the silylation coating of the outer surface acid sites of the zeolite proceeds, and the outer surface acid amount is sufficiently reduced, which is preferable.

<水蒸気処理>
水蒸気処理方法は、特に限定されるものではないが、本発明の効果を損なわない範囲において水蒸気を含む気体に接触させることができる。具体的には水蒸気、空気又は不活性ガスで希釈した水蒸気、エチレンやプロピレン等の低級オレフィンとともに水蒸気を含む反応雰囲気、または水蒸気を生成する反応雰囲気等に接触させる方法などが挙げられる。水蒸気を生成する反応とは、アルコールの脱水反応のように脱水が起こって水蒸気を生成する反応のことである。なお、条件によって水蒸気が部分的に液体の水として存在しても構わないが、前記ゼオライトに一様な水蒸気処理効果を与えるために、全体が水蒸気の状態で存在していることが好ましい。
<Steam treatment>
The method of water vapor treatment is not particularly limited, but the gas containing water vapor can be brought into contact within a range that does not impair the effects of the present invention. Specific examples include a method of contacting with a reaction atmosphere containing water vapor, water vapor diluted with air or an inert gas, water vapor together with a lower olefin such as ethylene or propylene, or a reaction atmosphere generating water vapor. A reaction that produces water vapor is a reaction in which dehydration occurs to produce water vapor, such as the dehydration reaction of alcohol. Depending on the conditions, the steam may partially exist as liquid water, but it is preferable that the entire zeolite exists in the form of steam in order to impart a uniform steam treatment effect to the zeolite.

前記ゼオライトは水蒸気処理により、その骨格を形成するケイ素以外のT原子の骨格からの脱離が結晶全体で起こるため、前記の外表面酸量だけでなく、前記全酸量も減少すると考えられる。この全酸量の減少により、ゼオライトの細孔内部におけるコーク生成が抑制され、分子の結晶内拡散性が向上する。このため、反応原料であるプロピレンの反応性が相対的に上昇するものと推測される。なお、過度な水蒸気処理を行うと、全酸量の低下に伴う活性低下、及び、分子の結晶内拡散性の過度な上昇により、ブテンやペンテン、ヘキセン等の炭素数4以上の炭化水素分子の生成量が増加する傾向がある。 By steaming the zeolite, T atoms other than silicon that form the skeleton of the zeolite are eliminated from the skeleton throughout the crystal. This reduction in total acidity suppresses coke formation inside the pores of the zeolite and improves the intracrystalline diffusibility of molecules. For this reason, it is presumed that the reactivity of propylene, which is a reaction raw material, is relatively increased. Excessive steam treatment may cause a decrease in activity due to a decrease in the total acid content, and an excessive increase in the diffusivity of molecules within crystals, resulting in the formation of hydrocarbon molecules with 4 or more carbon atoms such as butene, pentene, and hexene. The amount of production tends to increase.

水蒸気処理温度は、特に限定されるものではないが、通常400℃以上であり、好ましくは500℃以上、より好ましくは600℃以上である。また通常1000℃以下であり、好ましくは900℃以下、より好ましくは800℃以下である。水蒸気処理温度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的にケイ素以外のT原子を骨格から除去することができる点で好ましい。 The steam treatment temperature is not particularly limited, but is usually 400° C. or higher, preferably 500° C. or higher, more preferably 600° C. or higher. Also, it is usually 1000° C. or lower, preferably 900° C. or lower, more preferably 800° C. or lower. By setting the steam treatment temperature within the above range, T atoms other than silicon can be efficiently removed from the skeleton in a short treatment time without causing collapse of the skeleton structure, which is preferable.

水蒸気処理に用いる水蒸気(スチーム)は、空気や、ヘリウム、窒素等の不活性ガスで希釈して使用することができる。その際の水蒸気濃度は、特に限定されるものではないが、前記ゼオライトを水蒸気処理する際に用いる気体全体に対して通常5体積%以上、好ましくは10体積%以上、より好ましくは20体積%以上であり、さらに好ましくは30体積%以上であり、通常100体積%以下、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは70体積%以下である。上限は特に制限されず、100体積%の水蒸気を用いることができる。水蒸気濃度を上記範囲にすることで、短い処理時間で効率的に前記T原子を骨格から除去することができる点で好ましい。 Water vapor (steam) used for water vapor treatment can be used after being diluted with air or an inert gas such as helium or nitrogen. The steam concentration at that time is not particularly limited, but is usually 5% by volume or more, preferably 10% by volume or more, more preferably 20% by volume or more, relative to the entire gas used when steaming the zeolite. and more preferably 30% by volume or more, and usually 100% by volume or less, preferably 90% by volume or less, more preferably 80% by volume or less, and even more preferably 70% by volume or less. The upper limit is not particularly limited, and 100% by volume of water vapor can be used. By setting the water vapor concentration within the above range, the T atoms can be efficiently removed from the skeleton in a short treatment time, which is preferable.

水蒸気処理の圧力(希釈ガスを含む全圧)は特に制限されるものではないが、通常0.05MPa以上(絶対圧、以下同様)、好ましくは0.075MPa以上、より好ましくは0.1MPa以上であり、通常2MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下である。水蒸気処理の圧力を上記圧力範囲にすることで、短時間で効率的に前記T原子を骨格から除去することができる点で好ましい。 The pressure of steam treatment (total pressure including diluent gas) is not particularly limited, but is usually 0.05 MPa or higher (absolute pressure, hereinafter the same), preferably 0.075 MPa or higher, more preferably 0.1 MPa or higher. It is usually 2 MPa or less, preferably 1 MPa or less, more preferably 0.5 MPa or less. By setting the pressure of the steam treatment within the above pressure range, the T atoms can be efficiently removed from the skeleton in a short period of time, which is preferable.

水蒸気の分圧は特に制限されるものではないが、通常0.01MPa以上(絶対圧、以下同様)、好ましくは0.03MPa以上、より好ましくは0.05MPa以上であり、通常2MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下、さらに好ましくは0.2MPa以下である。水蒸気の分圧を上記圧力範囲にすることで、短時間で効率的に前記T原子を骨格から除去することができる点で好ましい。 Although the partial pressure of water vapor is not particularly limited, it is usually 0.01 MPa or more (absolute pressure, hereinafter the same), preferably 0.03 MPa or more, more preferably 0.05 MPa or more, and usually 2 MPa or less, preferably It is 1 MPa or less, more preferably 0.5 MPa or less, and still more preferably 0.2 MPa or less. By setting the partial pressure of water vapor within the above pressure range, the T atom can be efficiently removed from the skeleton in a short time, which is preferable.

水蒸気処理時間は、特に限定されるものではないが、通常0.1時間以上、好ましくは0.5時間以上であり、より好ましくは1時間以上である。また触媒活性を著しく阻害しない限りにおいては処理時間の上限はない。水蒸気処理温度及び水蒸気濃度により、処理時間は適宜調整することができる。 The steam treatment time is not particularly limited, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1 hour or longer. There is no upper limit to the treatment time as long as it does not significantly impair the catalytic activity. The treatment time can be appropriately adjusted depending on the steam treatment temperature and steam concentration.

水蒸気処理は、その細孔内部に有機物が存在している状態で行ってもよい。有機物が細孔内部に存在することで、特に強い水蒸気処理を行なった場合に、細孔内部の酸点の極端な減少を防ぎつつ、外表面酸点の大幅な減少をはかることができる。
前記有機物としては、特に限定されないが、ゼオライトの水熱合成時に使用する構造規定剤、及び反応によって生成するコーク等が挙げられる。これら有機物は、水熱合成後のゼオライト(以下、焼成前ゼオライトということがある)に水蒸気処理を行った後、空気焼成等の燃焼工程を経て除去することもでき、または空気等の酸素含有ガスで希釈した水蒸気で処理することにより、有機物を除去しながら水蒸気処理することもできる。
The steam treatment may be performed in a state in which organic substances are present inside the pores. The presence of the organic matter inside the pores prevents a drastic decrease in the acid sites inside the pores and significantly reduces the acid sites on the outer surface, especially when a strong steam treatment is performed.
Examples of the organic substance include, but are not particularly limited to, a structure-directing agent used during hydrothermal synthesis of zeolite, coke generated by reaction, and the like. These organic substances can be removed through a combustion process such as air calcination after the zeolite after hydrothermal synthesis (hereinafter sometimes referred to as zeolite before calcination) is subjected to steam treatment, or an oxygen-containing gas such as air can be removed. By treating with steam diluted with , the steam treatment can be performed while removing the organic matter.

<熱処理>
熱処理する方法は、特に限定されるものではないが、具体的には、前記ゼオライトを、空気及び不活性ガスから選ばれる少なくとも1つの雰囲気下で高温処理する方法などが挙げられる。これにより、ゼオライトの全酸量を減少させることができる。
<Heat treatment>
The heat treatment method is not particularly limited, but specific examples include a method of subjecting the zeolite to a high temperature treatment in at least one atmosphere selected from air and inert gas. This can reduce the total acid content of the zeolite.

熱処理温度は特に限定されるものではないが、通常500℃以上、好ましくは600℃以上、より好ましくは700℃以上であり、通常1200℃以下、好ましくは1000℃以下、より好ましくは900℃以下である。熱処理温度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的に前記T原子を骨格から除去することができる点で好ましい。 The heat treatment temperature is not particularly limited, but is usually 500° C. or higher, preferably 600° C. or higher, more preferably 700° C. or higher, and usually 1200° C. or lower, preferably 1000° C. or lower, more preferably 900° C. or lower. be. Setting the heat treatment temperature within the above range is preferable in that the T atoms can be efficiently removed from the skeleton in a short treatment time without collapsing the skeleton structure.

熱処理の際に使用するガス種としては、ヘリウム、窒素、空気等を使用することができる。
熱処理も水蒸気処理同様に、細孔内部に有機物が存在している状態で行ってもよい。ヘリウムや窒素等の不活性ガスを用いた場合、熱処理により有機物が炭化する場合があるが、空気での焼成により、除去することができる。
Helium, nitrogen, air, or the like can be used as the gas species used in the heat treatment.
The heat treatment may also be performed in a state where organic substances are present inside the pores, similarly to the steam treatment. When an inert gas such as helium or nitrogen is used, the organic substance may be carbonized by heat treatment, but it can be removed by firing in air.

なお、熱処理は上記のゼオライトを製造する際に行われる焼成と同時に行っても別個に分けて行ってもよい。熱処理は骨格内の前記T原子の脱離等を目的とするため比較的高温で行われ、特に限定はされないが、具体的には、上記の焼成と熱処理を別個に行なう場合であれば、熱処理は、通常、焼成よりも高い温度で行なわれる。
熱処理の時間は、特に限定されるものではないが、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1.0時間以上である。また触媒活性を著しく阻害しない限りにおいては処理時間の上限はなく、熱処理温度により、処理時間は適宜調整することができる。
The heat treatment may be performed simultaneously with the calcination performed when producing the zeolite, or may be performed separately. The heat treatment is performed at a relatively high temperature for the purpose of removing the T atoms in the skeleton, etc., and is not particularly limited. is usually performed at a higher temperature than calcination.
The heat treatment time is not particularly limited, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1.0 hour or longer. There is no upper limit to the treatment time as long as it does not significantly impair the catalytic activity, and the treatment time can be appropriately adjusted depending on the heat treatment temperature.

<酸処理>
本実施形態で用いられるゼオライトの酸処理の方法は、特に限定されるものではないが、具体的には、酸性水溶液を用いる方法が挙げられる。
前記酸性水溶液に用いる酸の種類としては、特に限定されるものではないが、硫酸、硝酸、塩酸、リン酸などの無機酸、ギ酸、酢酸、プロピオン酸などのカルボン酸、シュウ酸、マロン酸などのジカルボン酸などを使用することができる。これらのうち好ましいのは、硫酸、硝酸、塩酸である。
<Acid treatment>
The method of acid-treating zeolite used in the present embodiment is not particularly limited, but a specific example is a method using an acidic aqueous solution.
The type of acid used in the acidic aqueous solution is not particularly limited, but inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; carboxylic acids such as formic acid, acetic acid and propionic acid; oxalic acid and malonic acid. and the like can be used. Sulfuric acid, nitric acid and hydrochloric acid are preferred among these.

前記酸性水溶液の酸の濃度としては、特に限定されるものではないが、通常0.01M以上、好ましくは0.1M以上、より好ましくは1M以上であり、通常10M以下であり、好ましくは8M以下であり、より好ましくは6M以下である。酸の濃度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的に全酸量を低減することができる点で好ましい。 The acid concentration of the acidic aqueous solution is not particularly limited, but is usually 0.01 M or more, preferably 0.1 M or more, more preferably 1 M or more, and usually 10 M or less, preferably 8 M or less. and more preferably 6M or less. By setting the acid concentration within the above range, it is possible to efficiently reduce the total acid amount in a short treatment time without causing the collapse of the skeleton structure, which is preferable.

ゼオライトに対する酸性水溶液の量としては、特に制限されるものではないが、ゼオライト1gに対して、酸性水溶液の総量で通常3g以上、好ましくは5g以上、より好ましくは10g以上であり、通常100g以下、好ましくは80g以下、より好ましくは50g以下である。酸性水溶液の量を上記の範囲とすることで、スラリーの十分な撹拌効率を得るとともに、一定の生産性を確保することができる点で好ましい。 The amount of the acidic aqueous solution relative to the zeolite is not particularly limited, but the total amount of the acidic aqueous solution is usually 3 g or more, preferably 5 g or more, more preferably 10 g or more, and usually 100 g or less, relative to 1 g of zeolite. It is preferably 80 g or less, more preferably 50 g or less. By setting the amount of the acidic aqueous solution within the above range, it is possible to obtain a sufficient stirring efficiency of the slurry and to ensure a certain level of productivity, which is preferable.

酸処理の温度としては、特に限定されるものではないが、常圧においては通常室温から100℃、耐圧容器内では100℃以上で行うことも可能であり、通常40℃以上、好ましく60℃以上、より好ましくは80℃以上であり、通常200℃以下、好ましくは180℃以下、より好ましくは160℃以下である。酸処理の温度を上記の範囲とすることで、骨格構造の崩壊を抑制しながら、短い処理時間で効率的に全酸量を低減することができる点で好ましい。 The temperature of the acid treatment is not particularly limited, but it is usually room temperature to 100° C. under normal pressure, and can be carried out at 100° C. or higher in a pressure vessel, usually 40° C. or higher, preferably 60° C. or higher. , more preferably 80° C. or higher, and usually 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower. By setting the acid treatment temperature within the above range, it is possible to efficiently reduce the total amount of acid in a short treatment time while suppressing the collapse of the skeleton structure, which is preferable.

酸処理の処理時間は、特に限定されるものではなく、酸の濃度や反応温度にもよるが、通常0.01時間以上、好ましくは0.1時間以上であり、触媒の性能を阻害しない限りにおいて処理時間の上限は特にない。酸の濃度や反応温度により、処理時間は適宜調整することができる。
酸性水溶液中に、シリル化剤を添加することにより、酸処理とシリル化処理を同時に行うこともできる。その際に用いるシリル化剤は、前記シリル化剤と同じである。
The treatment time of the acid treatment is not particularly limited and depends on the concentration of the acid and the reaction temperature, but it is usually 0.01 hour or more, preferably 0.1 hour or more, as long as it does not impair the performance of the catalyst. There is no particular upper limit for the processing time. The treatment time can be appropriately adjusted depending on the concentration of the acid and the reaction temperature.
Acid treatment and silylation treatment can be performed simultaneously by adding a silylating agent to the acidic aqueous solution. The silylating agent used at that time is the same as the silylating agent described above.

<イオン交換処理>
ゼオライトのカウンターカチオンは、通常、ナトリウム等のアルカリ金属、アルカリ土類金属、アンモニウム(NH)あるいはプロトン(H)である。これらのカウンターカチオンはイオン交換可能であり、適宜、金属イオン交換して使用することができる。交換する金属としては、特に限定されるものではないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属が挙げられる。好ましくはナトリウム、カリウム、カルシウム、ストロンチウムであり、より好ましくはナトリウム、カリウム、カルシウムであり、さらに好ましくはカルシウムである。
<Ion exchange treatment>
The counter cations of zeolites are usually alkali metals such as sodium, alkaline earth metals, ammonium ( NH4 ) or protons (H). These counter cations are ion-exchangeable and can be used after metal ion exchange as appropriate. Metals to be exchanged include, but are not limited to, alkali metals such as lithium, sodium, potassium, rubidium and cesium, and alkaline earth metals such as calcium, strontium and barium. Preferred are sodium, potassium, calcium and strontium, more preferred are sodium, potassium and calcium, and still more preferred is calcium.

イオン交換することで、ゼオライトの酸量を調整することができ、さらには、ケージ空間容積を調整することができるため、反応時のコーク蓄積を抑制することができる。また熱的/水熱的安定性が高くなり劣化を抑制することができる点でも好ましい。金属イオン交換の方法は、特に限定されるものではないが、既知のイオン交換法によって行うことができる。イオン交換法に用いる際の、ゼオライトのカチオンは特に限定されず、通常、ナトリウム型、アンモニウム型、あるいはプロトン型が用いられる。 By ion exchange, the acid amount of the zeolite can be adjusted, and furthermore, the cage space volume can be adjusted, so coke accumulation during the reaction can be suppressed. It is also preferable in that thermal/hydrothermal stability is enhanced and deterioration can be suppressed. Although the method of metal ion exchange is not particularly limited, it can be carried out by a known ion exchange method. The cation of the zeolite used in the ion exchange method is not particularly limited, and sodium type, ammonium type, or proton type is usually used.

金属源としては、通常、硝酸塩、硫酸塩、酢酸塩、炭酸塩、塩化物塩、臭化物塩、ヨウ化物塩等が用いられ、好ましくは硝酸塩、硫酸塩、塩化物塩であり、より好ましくは硝酸塩である。用いる溶媒としては、金属源が溶解するものであれば、特に限定されるものではないが、通常、水が用いられる。 As metal sources, nitrates, sulfates, acetates, carbonates, chloride salts, bromide salts, iodide salts and the like are usually used, with nitrates, sulfates and chloride salts being preferred, and nitrates being more preferred. is. The solvent to be used is not particularly limited as long as it dissolves the metal source, but water is usually used.

金属源溶液の濃度は、特に限定されるものではないが、通常0.1M以上、好ましくは0.5M以上、より好ましくは1M以上であり、また上限は、通常10M以下、好ましくは8M以下、より好ましくは6M以下である。金属源の溶解度見合いで濃度を調整することが望ましい。 The concentration of the metal source solution is not particularly limited, but is usually 0.1 M or more, preferably 0.5 M or more, more preferably 1 M or more, and the upper limit is usually 10 M or less, preferably 8 M or less. More preferably, it is 6M or less. It is desirable to adjust the concentration according to the solubility of the metal source.

イオン交換を行う温度は、室温から溶媒の沸点程度である。処理時間は、イオン交換が十分平衡に達する時間であればよく、通常1~6時間程度である。金属の交換率を高めるため、イオン交換を複数回繰り返すことも可能である。 The temperature for ion exchange is from room temperature to about the boiling point of the solvent. The treatment time may be sufficient as long as the ion exchange reaches a sufficient equilibrium, and is usually about 1 to 6 hours. It is also possible to repeat the ion exchange multiple times in order to increase the metal exchange rate.

イオン交換後のゼオライトを乾燥する際の雰囲気は特に限定されず、例えば空気中、不活性ガス中、真空中などで行われる。乾燥温度は、通常、室温から溶媒の沸点程度である。イオン交換後のゼオライトは、適宜焼成を行って使用する。焼成温度は金属源の分解温度よりも高温であればよく、通常200℃~600℃、好ましくは300℃~500℃である。焼成温度が低すぎると金属源が残留しやすく、焼成温度が高すぎるとゼオライトの構造崩壊や、金属のシンタリングが進行し易くなる。 The atmosphere in which the ion-exchanged zeolite is dried is not particularly limited. The drying temperature is usually from room temperature to about the boiling point of the solvent. The ion-exchanged zeolite is appropriately calcined before use. The firing temperature may be higher than the decomposition temperature of the metal source, usually 200°C to 600°C, preferably 300°C to 500°C. If the sintering temperature is too low, the metal source tends to remain, and if the sintering temperature is too high, structural collapse of the zeolite and sintering of the metal tend to proceed.

また、上記以外にも、金属元素の担持処理、又はゼオライトを成形する際にバインダーと前記ゼオライトの外表面酸点を結合させる、といった方法により外表面酸量を調整することもできる。 In addition to the above, it is also possible to adjust the outer surface acidity by carrying out a metal element support treatment, or by combining a binder with the outer surface acid points of the zeolite when molding the zeolite.

本実施形態で用いられるゼオライトの平均一次粒子径は、特に限定されるものではないが、通常0.01μm以上、好ましくは0.03μm以上、より好ましくは0.05μm以上であり、通常10μm以下、好ましくは5μm以下、より好ましくは1μm以下、さらに好ましくは0.5μm以下、特に好ましくは0.3μm以下である。上記範囲とすることで、触媒反応におけるゼオライト結晶内の拡散性及び触媒有効係数が十分高くなり、ゼオライト結晶性が十分なものとなり、耐水熱安定性が高い点で好ましい。
なお、本明細書における平均一次粒子径とは、一次粒子の粒子径に相当する。したがって、光散乱法などで測定される凝集体の粒子径とは異なる。平均一次粒子径は、走査型電子顕微鏡(以降、「SEM」と略記する。)又は透過型電子顕微鏡(以降、「TEM」と略記する。)による粒子の観察において、粒子を任意に20個以上測定し、その一次粒子の粒子径を平均して求められる。該粒子が長方形の場合、該粒子の長辺・短辺を計測して(奥行は計測せず)、その和の平均、つまり(長辺+短辺)÷2を算出して、該粒子の一次粒子径とする。
The average primary particle size of the zeolite used in the present embodiment is not particularly limited, but is usually 0.01 μm or more, preferably 0.03 μm or more, more preferably 0.05 μm or more, usually 10 μm or less, It is preferably 5 µm or less, more preferably 1 µm or less, even more preferably 0.5 µm or less, and particularly preferably 0.3 µm or less. The above range is preferable because the diffusivity in the zeolite crystal and the catalyst effectiveness factor in the catalytic reaction are sufficiently high, the zeolite crystallinity is sufficient, and the hydrothermal stability is high.
In addition, the average primary particle size in this specification corresponds to the particle size of the primary particles. Therefore, it differs from the particle size of aggregates measured by a light scattering method or the like. The average primary particle diameter is determined by observing particles with a scanning electron microscope (hereinafter abbreviated as "SEM") or a transmission electron microscope (hereinafter abbreviated as "TEM"), and arbitrarily 20 or more particles. It is obtained by measuring and averaging the particle diameters of the primary particles. When the particle is rectangular, the long side and short side of the particle are measured (the depth is not measured), and the average of the sums, that is, (long side + short side) / 2, is calculated. Primary particle size.

(BET比表面積)
本実施形態で用いられるゼオライトのBET比表面積は、特に限定されるものではないが、通常300m/g以上、好ましくは400m/g以上、より好ましくは500m/g以上であり、通常1000m/g以下、好ましくは800m/g以下、より好ましくは750m/g以下である。上記範囲にあることで、細孔内表面に存在する活性点が十分多く、触媒活性が高くなるため好ましい。なお、BET比表面積は、JIS8830(ガス吸着による粉体(固体)の比表面積測定方法)に準じた測定方法によって測定できる。吸着ガスとして窒素を使用し、1点法(相対圧:p/p0=0.30)でBET比表面積を求められる。
(BET specific surface area)
The BET specific surface area of the zeolite used in the present embodiment is not particularly limited, but is usually 300 m 2 /g or more, preferably 400 m 2 /g or more, more preferably 500 m 2 /g or more, and usually 1000 m 2 /g or more. 2 /g or less, preferably 800 m 2 /g or less, more preferably 750 m 2 /g or less. Within the above range, there are sufficiently many active sites on the inner surfaces of the pores, and the catalytic activity is increased, which is preferable. The BET specific surface area can be measured by a measurement method according to JIS8830 (Method for measuring specific surface area of powder (solid) by gas adsorption). Nitrogen is used as the adsorption gas, and the BET specific surface area is determined by the one-point method (relative pressure: p/p0=0.30).

本実施形態で用いられるゼオライトの細孔容積は、特に限定されるものではないが、通常0.1ml/g以上、好ましくは0.2ml/g以上であり、通常3ml/g以下、好ましくは2ml/g以下である。上記範囲にあることで、細孔内表面に存在する活性点が十分多く、触媒活性が高くなるため好ましい。細孔容積は相対圧法により得られる窒素の吸着等温線から求める値であることが好ましい。 The pore volume of the zeolite used in the present embodiment is not particularly limited, but is usually 0.1 ml/g or more, preferably 0.2 ml/g or more, and usually 3 ml/g or less, preferably 2 ml. / g or less. Within the above range, there are sufficiently many active sites on the inner surfaces of the pores, and the catalytic activity is increased, which is preferable. The pore volume is preferably a value obtained from a nitrogen adsorption isotherm obtained by a relative pressure method.

本実施形態で用いられるゼオライトは、一般的に水熱合成法により調製することが可能である。例えば、ケイ酸塩であれば、水にアルミニウム源、ガリウム源、ホウ素源、及び鉄源から選ばれる少なくとも1種類と、ケイ素源やアルカリ水溶液等を加えて均一なゲルを生成させ、これに必要に応じて構造規定剤を加えて攪拌し、原料ゲルを調製する。得られた前記原料ゲルを、密閉容器中で加熱し、自圧下反応させることにより、結晶化させる。このときの反応温度は特に限定されないが、通常100~200℃に保持して結晶化させる。結晶化の際に、必要に応じて種結晶を添加してもよく、製造性の面では種結晶を添加する方が、反応時間を短縮できる点や結晶粒子を微粒子化できる点で好ましい。次いで結晶化した固形成分を濾過および洗浄した後、固形分を乾燥し、引き続き焼成することによって、アルカリ(土類)金属型のゼオライトとして得ることができる。前記の乾燥温度は限定されないが、通常100~200℃である。また前記の焼成温度は限定されないが、通常400~700℃である。その後、酸性溶液やアンモニウム塩溶液でイオン交換し、焼成することにより、H型のゼオライトを得ることができる。 The zeolite used in this embodiment can generally be prepared by a hydrothermal synthesis method. For example, in the case of silicates, at least one selected from an aluminum source, a gallium source, a boron source, and an iron source, a silicon source, an alkaline aqueous solution, etc. are added to water to form a uniform gel, and the necessary A structure-directing agent is added and stirred to prepare a raw material gel. The raw material gel thus obtained is heated in a closed container and reacted under autogenous pressure to crystallize. Although the reaction temperature at this time is not particularly limited, it is usually held at 100 to 200° C. for crystallization. During crystallization, seed crystals may be added as necessary, and from the standpoint of manufacturability, addition of seed crystals is preferable in that reaction time can be shortened and crystal grains can be made into fine particles. After filtration and washing of the crystallized solid component, the solid component is dried and subsequently calcined to obtain an alkali (earth) metal type zeolite. Although the drying temperature is not limited, it is usually 100 to 200°C. Although the firing temperature is not limited, it is usually 400 to 700°C. After that, ion exchange is performed with an acidic solution or an ammonium salt solution, followed by calcination to obtain an H-type zeolite.

具体的に、CHA型ゼオライトとしては、米国特許第4544538号公報に記載の方法等の公知の方法で製造することができる。また、ERI型ゼオライトとしては、米国特許第7344694号公報に記載の方法等の公知の方法で製造することができる。 Specifically, CHA-type zeolite can be produced by known methods such as the method described in US Pat. No. 4,544,538. ERI zeolite can be produced by known methods such as the method described in US Pat. No. 7,344,694.

前記構造規定剤として用いられるカチオンは、本実施形態のゼオライトの形成を阻害しないアニオンを伴うものである。前記アニオンは、特に限定はされないが、具体的には、Cl、Br、Iなどのハロゲンイオンや水酸化物イオン、酢酸塩、硫酸塩、カルボン酸塩が含まれる。中でも、水酸化物イオンは特に好適に用いられる。The cation used as the structure-directing agent is accompanied by an anion that does not inhibit the formation of the zeolite of this embodiment. The anion is not particularly limited, but specifically includes halogen ions such as Cl , Br and I , hydroxide ions, acetates, sulfates and carboxylates. Among them, hydroxide ions are particularly preferably used.

また、構造規定剤として、リン含有系構造規定剤又は窒素系構造規定剤を使用することもできる。リン含有系構造規定剤としては、例えばテトラエチルホスホニウム水酸化物、テトラエチルホスホニウムブロミドのような物質が挙げられる。しかし、リン化合物は、合成ゼオライトから焼成により構造規定剤を除去する際に、有害物質である五酸化二リン等を発生する可能性があるため、好ましくは窒素系構造規定剤である。 As the structure-directing agent, a phosphorus-containing structure-directing agent or a nitrogen-based structure directing agent can also be used. Phosphorus-containing structure-directing agents include, for example, substances such as tetraethylphosphonium hydroxide and tetraethylphosphonium bromide. However, when the structure-directing agent is removed from the synthetic zeolite by calcination, the phosphorus compound may generate harmful substances such as diphosphorus pentoxide, so the nitrogen-based structure-directing agent is preferable.

水熱合成及び焼成後、得られたゼオライトに適宜、上述したような、シリル化処理、水蒸気処理、熱処理、酸処理及びイオン交換から選ばれる少なくとも1つの処理を施すことが好ましい。このうち、好ましくはシリル化処理、水蒸気処理、熱処理、イオン交換から選ばれる少なくとも1つの処理を施したものであり、より好ましくはシリル化処理、水蒸気処理、イオン交換から選ばれる少なくとも1つの処理を施したものであり、さらに好ましくはシリル化処理、水蒸気処理から選ばれる少なくとも1つの処理を施したものであり、特に好ましくはシリル化処理を施したものである。 After hydrothermal synthesis and calcination, the obtained zeolite is preferably subjected to at least one treatment selected from silylation treatment, steam treatment, heat treatment, acid treatment and ion exchange as described above. Among these, it is preferably subjected to at least one treatment selected from silylation treatment, steam treatment, heat treatment, and ion exchange, and more preferably at least one treatment selected from silylation treatment, steam treatment, and ion exchange. More preferably, at least one treatment selected from silylation treatment and steam treatment is performed, and particularly preferably, silylation treatment is performed.

ゼオライトは触媒活性成分であるために、ゼオライトをそのままゼオライト触媒として反応に用いてよいし、反応に不活性な物質やバインダーを用いて、造粒・成型して、或いはこれらを混合して反応に用いてもよい。
該反応に不活性な物質やバインダーとしては、アルミナまたはアルミナゾル、シリカ、シリカゾル、石英、およびこれらの混合物等が挙げられる。
Since zeolite is a catalytically active component, zeolite may be used as it is for the reaction as a zeolite catalyst. may be used.
Substances and binders inert to the reaction include alumina, alumina sol, silica, silica sol, quartz, and mixtures thereof.

ゼオライト触媒全体の全酸量及び外表面酸量は、上述のゼオライトの全酸量及び外表面酸量と同様の方法にて測定することができる。ゼオライト触媒の全酸量は、特に限定されるものではないが、通常0.01mmol/g以上、好ましくは0.1mmol/g以上、より好ましくは0.3mmol/g以上、さらに好ましくは0.5mmol/g以上である。また、通常2.5mmol/g以下、好ましくは1.5mmol/g以下、より好ましくは1.2mmol/g以下、さらに好ましくは0.9mmol/g以下である。ゼオライト触媒の全酸量を上記の範囲とすることで、プロピレンの転化活性が担保されるとともに、ゼオライトの細孔内部におけるコーク生成が抑制され、エチレンの生成を促進することができる点で好ましい。 The total acid content and outer surface acid content of the zeolite catalyst as a whole can be measured by the same methods as those for the above-described total acid content and outer surface acid content of zeolite. The total acid amount of the zeolite catalyst is not particularly limited, but is usually 0.01 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, and still more preferably 0.5 mmol/g. / g or more. Also, it is usually 2.5 mmol/g or less, preferably 1.5 mmol/g or less, more preferably 1.2 mmol/g or less, and still more preferably 0.9 mmol/g or less. By setting the total acid amount of the zeolite catalyst within the above range, the propylene conversion activity can be secured, coke formation inside the pores of the zeolite can be suppressed, and ethylene production can be promoted.

ゼオライト触媒の外表面酸量は、特に限定されるものではないが、通常、触媒の全酸量に対して8%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、最も好ましくは0%である。外表面酸量が大きすぎる場合には、外表面酸点で起こる副反応によりエチレンの選択率が著しく低下する傾向がある。
なお、ゼオライト触媒の全酸量及び外表面酸量を調整するには、酸点を有さないシリカやアルミナ等バインダーとして用いることが好ましい。なお、アルミナ等の、酸点を有するバインダーを使用した場合には、触媒の全酸量及び外表面酸量の測定方法では、ゼオライトの酸量と共にバインダーの酸量も含んだ合計値として測定される。その場合はバインダー由来の酸量を別法により求め、触媒の酸量からその値を差し引くことによって、バインダー由来の酸量を含まないゼオライトのみの酸量を求めることが可能である。前記バインダーの酸量は、27Al-NMRにおいてゼオライトの酸点に由来する4配位Alのピーク強度からゼオライトの酸量を求め、アンモニア昇温脱離法により求まる触媒の酸量からその値を差し引く方法で求められる。
Although the amount of acid on the outer surface of the zeolite catalyst is not particularly limited, it is usually 8% or less, preferably 5% or less, more preferably 3% or less, and still more preferably 1% with respect to the total acid amount of the catalyst. Below, it is most preferably 0%. If the outer surface acidity is too large, the ethylene selectivity tends to be significantly reduced due to side reactions occurring at the outer surface acid sites.
In addition, in order to adjust the total acid amount and the outer surface acid amount of the zeolite catalyst, it is preferable to use silica, alumina, or the like having no acid sites as a binder. When a binder having acid sites such as alumina is used, the total acidity of the catalyst and the acidity of the outer surface of the catalyst are measured as a total value including the acidity of the zeolite and the acidity of the binder. be. In that case, it is possible to obtain the acid content of the zeolite without the binder-derived acid content by obtaining the acid content derived from the binder by another method and subtracting this value from the acid content of the catalyst. The acid amount of the binder is obtained from the acid amount of the zeolite obtained from the peak intensity of tetracoordinated Al derived from the acid sites of the zeolite in 27 Al-NMR, and the acid amount of the catalyst obtained by the ammonia temperature programmed desorption method. Calculated by subtraction.

ゼオライト触媒に含有されるリン化合物の量としては、特に限定されるものではないが、通常10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0.01質量%以下である。なお、ここでのリン化合物とは、リン酸化物等の物質を指し、アルミノリン酸塩やガロリン酸塩等のゼオライト自体そのものを意味するものではない。 The amount of the phosphorus compound contained in the zeolite catalyst is not particularly limited, but is usually 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably 0.1% by mass. % or less, particularly preferably 0.01 mass % or less. The phosphorus compound here refers to a substance such as phosphorus oxide, and does not mean zeolite itself such as aluminophosphate or gallophosphate.

ゼオライト触媒の平均粒子径は、ゼオライトの合成条件、特には造粒・成型条件により異なるが、通常、平均粒子径として、通常0.01μm~500μmであり、好ましくは0.1~100μmである。ゼオライト触媒の平均粒子径が大きくなり過ぎると、触媒の有効係数が低下する傾向があり、小さすぎると取り扱い性が劣るものとなる。この平均粒子径は、SEM観察等により求めることができる。 The average particle size of the zeolite catalyst varies depending on zeolite synthesis conditions, particularly granulation/molding conditions, but the average particle size is usually 0.01 μm to 500 μm, preferably 0.1 to 100 μm. If the average particle size of the zeolite catalyst is too large, the effective coefficient of the catalyst will tend to decrease, and if it is too small, the handleability will be poor. This average particle size can be determined by SEM observation or the like.

<A2.エチレンの製造方法>
エチレンの製造方法は、触媒と接触させてエチレンを生成させる工程(I)と、工程(I)を経た触媒を再生させる工程(II)と、を有する。以下に各工程について詳細に説明する。
<A2. Method for producing ethylene>
A method for producing ethylene includes a step (I) of contacting with a catalyst to produce ethylene, and a step (II) of regenerating the catalyst that has passed through step (I). Each step will be described in detail below.

<A2-1.工程(I)>
上述の通り、プロピレンを、ゼオライトなどの触媒と接触させることで、エチレンを生成することができる。
<A2-1. Step (I)>
As noted above, ethylene can be produced by contacting propylene with a catalyst such as a zeolite.

原料であるプロピレンの製造由来は特に限定されない。例えば、スチーム分解法または接触分解法によりナフサの分解により得られるもの(以下、ナフサ分解物という)、エタン、プロパン、n‐ブタン、常圧軽油(AGO)、減圧軽油(VGO)、天然ガス液(NGL)等の熱分解により製造されるもの(以下、熱分解物という)、減圧軽油や残油の流動接触分解法(FCC)により製造されるもの、MTO(Methanol to Olefin)反応により製造されるもの、ETO(Ethylene/Ethanol to Olefin)反応により製造されるもの、プロパン等のアルカンの脱水素反応により製造されるもの、石炭のガス化により得られる水素/一酸化炭素混合ガスを原料としてフィッシャートロプシュ合成を行うことにより製造されるもの等が挙げられる。このうち上記ナフサ分解物および上記熱分解物が好ましく、ナフサ分解物がより好ましい。 The production origin of propylene, which is a raw material, is not particularly limited. For example, those obtained by cracking naphtha by steam cracking or catalytic cracking (hereinafter referred to as naphtha cracked product), ethane, propane, n-butane, atmospheric gas oil (AGO), vacuum gas oil (VGO), natural gas liquid (NGL) produced by thermal decomposition (hereinafter referred to as thermal decomposition product), produced by fluidized catalytic cracking (FCC) of vacuum gas oil or residual oil, produced by MTO (Methanol to Olefin) reaction , those produced by the ETO (Ethylene/Ethanol to Olefin) reaction, those produced by the dehydrogenation reaction of alkanes such as propane, and the Fischer process using a hydrogen/carbon monoxide mixed gas obtained by the gasification of coal as a raw material. Examples thereof include those produced by Tropsch synthesis. Of these, the naphtha decomposition product and the thermal decomposition product are preferred, and the naphtha decomposition product is more preferred.

なお、原料は、プロピレンに加えて、プロピレン以外の炭化水素(以下、「その他の炭化水素」ということがある。)を含有していてもよい。すなわち、プロピレンを含む原料であればよい。プロピレン以外の化合物としては、例えばエチレン、ブテン、ペンテン、ヘキセン等の、プロピレン以外のオレフィン類;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のパラフィン類;アセチレン、メチルアセチレン等のアルキン類;プロパジエン、ブタジエン、ペンタジエン、ヘキサジエン等のジエン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を含んでいてもよい。上記のオレフィン類、パラフィン類、アルキン類、ジエン類は、直鎖状構造でも環状構造でもよく、また分岐状の異性体を任意の比率で含んでいてもよい。また、プロピレン以外に、メタノールやジメチルエーテルを含んでいても良く、その混合割合に制限はない。 In addition to propylene, the raw material may contain hydrocarbons other than propylene (hereinafter sometimes referred to as "other hydrocarbons"). That is, any raw material may be used as long as it contains propylene. Examples of compounds other than propylene include olefins other than propylene such as ethylene, butene, pentene, and hexene; paraffins such as methane, ethane, propane, butane, pentane, and hexane; alkynes such as acetylene and methylacetylene; , butadiene, pentadiene, and hexadiene; and aromatic hydrocarbons such as benzene, toluene, and xylene. The above olefins, paraffins, alkynes, and dienes may have a linear structure or a cyclic structure, and may contain branched isomers in any ratio. In addition to propylene, it may contain methanol or dimethyl ether, and there is no restriction on the mixing ratio.

通常、プロピレンからのエチレン製造において、目的生成物であるエチレンは、触媒との接触によりブテンやヘキセン等の別のオレフィンに変換されやすいため、エチレンを分離した状態のプロピレンを原料として用いることが好ましい。原料中に含まれるエチレンに対するプロピレンの質量比は、特に限定されるものではないが、通常1以上、好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上であり、特に好ましくは30以上であり、大きければ大きいほどよい。
また、ブテン以上の炭素数の多いオレフィン類は、同一の触媒との接触により、一部エチレンに変換され、エチレン収率を向上させることができるため、原料中にプロピレンとともに含まれていてもよく、本反応により生成したブテンをリサイクルして利用することができる。原料中に含まれるブテンに対するプロピレンの質量比は、特に限定されるものではないが、通常1以上、好ましくは5以上、より好ましくは10以上であり、通常1000以下、好ましくは100以下、より好ましくは50以下である。
Generally, in the production of ethylene from propylene, the target product, ethylene, is easily converted to other olefins such as butene and hexene upon contact with a catalyst. Therefore, it is preferable to use propylene from which ethylene has been separated as a raw material. . The mass ratio of propylene to ethylene contained in the raw material is not particularly limited, but is usually 1 or more, preferably 5 or more, more preferably 10 or more, still more preferably 15 or more, and particularly preferably 30 or more. and the larger the better.
In addition, olefins with a large number of carbon atoms of butene or more can be partially converted to ethylene by contact with the same catalyst, and the ethylene yield can be improved, so they may be contained together with propylene in the raw material. , the butene produced by this reaction can be recycled and used. The mass ratio of propylene to butene contained in the raw material is not particularly limited, but is usually 1 or more, preferably 5 or more, more preferably 10 or more, and usually 1000 or less, preferably 100 or less, more preferably. is 50 or less.

エチレン製造に使用する反応器としては、プロピレン供給原料が反応域において気相であれば特に限定されないが、固定床反応器、移動床反応器や流動床反応器が選ばれる。プロピレン転化率の変動が大きい場合には、一定のエチレン収率で製造するために、流動床反応器が好ましい。
また、バッチ式、半連続式または連続式のいずれの形態でも行われ得るが、連続式で行うのが好ましく、その方法は、単一の反応器を用いた方法でもよいし、直列または並列に配置された複数の反応器を用いた方法でもよい。
なお、流動床反応器に前述の触媒を充填する際、触媒層の温度分布を小さく抑えるために、石英砂、アルミナ、シリカ、シリカ-アルミナ等の反応に不活性な粒状物を、触媒と混合して充填してもよい。この場合、石英砂等の反応に不活性な粒状物の使用量には特に限定されない。なお、粒状物は、触媒との均一混合性の面から、触媒と同程度の粒径であることが好ましい。
また、反応器には、反応に伴う発熱を分散させることを目的に、反応基質(反応原料)を分割して供給してもよい。
The reactor used for ethylene production is not particularly limited as long as the propylene feedstock is in the gaseous phase in the reaction zone, but fixed bed reactors, moving bed reactors and fluidized bed reactors are selected. Fluidized bed reactors are preferred for production of constant ethylene yields when the propylene conversion is highly variable.
In addition, it can be carried out in any form of batch, semi-continuous or continuous, but is preferably carried out in a continuous mode. A method using a plurality of arranged reactors may also be used.
When filling the fluidized bed reactor with the above-mentioned catalyst, in order to keep the temperature distribution of the catalyst layer small, granules that are inert to the reaction, such as quartz sand, alumina, silica, and silica-alumina, are mixed with the catalyst. can be filled with In this case, there is no particular limitation on the amount of the granular material that is inert to the reaction, such as quartz sand. From the viewpoint of uniform mixing with the catalyst, the particulate matter preferably has a particle size approximately the same as that of the catalyst.
In addition, the reaction substrate (reaction raw material) may be divided and supplied to the reactor for the purpose of dispersing the heat generated by the reaction.

(基質濃度)
反応器に供給する全供給成分中の、プロピレンの濃度は特に制限されないが、全供給成分中、通常3モル%以上、好ましくは5モル%以上、より好ましくは10モル%以上、さら好ましくは20モル%以上であり、通常100モル%以下、好ましくは80モル%以下、より好ましくは60モル%以下、さらに好ましくは40モル%以下である。基質濃度を上記範囲にすることで、芳香族化合物やパラフィン類の生成を抑制することができ、エチレン収率を向上させることができる。また反応速度を維持できるため、触媒量を抑制することができ、反応器の大きさも抑制可能となる。
従って、このような好ましい基質濃度となるように、必要に応じて以下に記載する希釈剤で反応基質を希釈することが好ましい。
(substrate concentration)
The concentration of propylene in all feed components supplied to the reactor is not particularly limited, but is usually 3 mol% or more, preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, in all feed components. mol % or more, and usually 100 mol % or less, preferably 80 mol % or less, more preferably 60 mol % or less, still more preferably 40 mol % or less. By setting the substrate concentration within the above range, the production of aromatic compounds and paraffins can be suppressed, and the yield of ethylene can be improved. Moreover, since the reaction rate can be maintained, the amount of catalyst can be suppressed, and the size of the reactor can also be suppressed.
Therefore, it is preferable to dilute the reaction substrate with a diluent described below, if necessary, so as to obtain such a preferable substrate concentration.

(希釈剤)
反応器内には、プロピレンを含む原料の他に、ヘリウム、アルゴン、窒素、一酸化炭素、二酸化炭素、水素、水、パラフィン類、メタン等の炭化水素類、芳香族化合物類、および、それらの混合物などを存在させることができるが、この中でも水素、ヘリウム、窒素、水(水蒸気)が共存しているのが好ましく、エチレン収率を高められる点で、水素が共存していることが最も好ましい。このような希釈剤は、反応原料に含まれている不純物をそのまま希釈剤として使用してもよいし、別途調製した希釈剤を反応原料と混合して用いてもよい。また、希釈剤は反応器に入れる前に反応原料と混合してもよいし、反応原料とは別に反応器に供給してもよい。
(diluent)
In the reactor, in addition to raw materials containing propylene, helium, argon, nitrogen, carbon monoxide, carbon dioxide, hydrogen, water, paraffins, hydrocarbons such as methane, aromatic compounds, and their A mixture or the like can be present, but among these, the coexistence of hydrogen, helium, nitrogen, and water (steam) is preferred, and the coexistence of hydrogen is most preferred in terms of increasing the yield of ethylene. . As such a diluent, an impurity contained in the reaction raw material may be used as it is, or a separately prepared diluent may be used by mixing it with the reaction raw material. Further, the diluent may be mixed with the reaction raw materials before entering the reactor, or may be supplied to the reactor separately from the reaction raw materials.

(重量空間速度)
ここで言う重量空間速度とは、触媒(触媒活性成分)の重量当たりの反応原料であるプロピレンの流量(重量/時間)であり、ここで触媒の重量とは触媒の造粒・成形に使用する不活性成分やバインダーを含まない触媒活性成分の重量である。
(weight space velocity)
The weight hourly space velocity referred to here is the flow rate (weight/time) of propylene, which is a reaction raw material, per weight of the catalyst (catalytically active component), and the weight of the catalyst here is used for granulating and molding the catalyst. It is the weight of catalytically active components without inert components or binders.

重量空間速度は、特に限定されるものではないが、通常0.01Hr-1以上、好ましくは0.1Hr-1以上、より好ましくは0.2Hr-1以上、さらに好ましくは0.5Hr-1以上であり、通常50Hr-1以下、好ましくは10Hr-1以下、より好ましくは5Hr-1以下、さらに好ましくは3Hr-1以下である。重量空間速度を前記範囲に設定することで、反応器出口ガス中の未反応のプロピレンの割合を減らすことができ、芳香族化合物やパラフィン類等の副生成物を減らすことができるため、エチレン収率を向上させることができる点で好ましい。また、一定の生産量を得るのに必要な触媒量を抑えることができ、反応器の大きさを抑えられるため好ましい。The weight hourly space velocity is not particularly limited, but is usually 0.01 Hr -1 or more, preferably 0.1 Hr -1 or more, more preferably 0.2 Hr -1 or more, further preferably 0.5 Hr -1 or more. and is usually 50 Hr −1 or less, preferably 10 Hr −1 or less, more preferably 5 Hr −1 or less, still more preferably 3 Hr −1 or less. By setting the weight hourly space velocity within the above range, the ratio of unreacted propylene in the reactor outlet gas can be reduced, and by-products such as aromatic compounds and paraffins can be reduced. It is preferable in that the rate can be improved. In addition, it is possible to reduce the amount of catalyst required to obtain a certain amount of production, which is preferable because the size of the reactor can be reduced.

(反応温度)
反応温度は、プロピレンが触媒と接触してエチレンを生成する温度であれば、特に制限されるものではないが、通常300℃以上、好ましくは400℃以上、より好ましくは425℃以上、さらに好ましくは450℃以上、特に好ましくは475℃以上、最も好ましくは500℃以上であり、通常800℃以下、好ましくは700℃以下、より好ましくは650℃以下、さらに好ましくは600℃以下である。反応温度を上記範囲にすることで、芳香族化合物やパラフィン類の生成を抑制することができるため、ワンパスのエチレンの収率を向上させることができる。また、プロピレンの転化活性を高いレベルで維持することができ、さらに反応ガス中にプロピレンとともに水素を含む場合、その接触効果を最大限に高めることができるため、長時間にわたって高いエチレン収率で製造することができる。さらに、ゼオライトがケイ酸塩の場合、ゼオライト骨格からの脱アルミニウムが抑制されるため、触媒寿命を維持できる点で好ましい。なお、ここでの反応温度とは、触媒層出口の温度をさす。
(reaction temperature)
The reaction temperature is not particularly limited as long as it is a temperature at which propylene is brought into contact with the catalyst to produce ethylene. 450° C. or higher, particularly preferably 475° C. or higher, most preferably 500° C. or higher, and usually 800° C. or lower, preferably 700° C. or lower, more preferably 650° C. or lower, further preferably 600° C. or lower. By setting the reaction temperature within the above range, the production of aromatic compounds and paraffins can be suppressed, so that the yield of ethylene in one pass can be improved. In addition, the propylene conversion activity can be maintained at a high level, and when hydrogen is included in the reaction gas together with propylene, the contact effect can be maximized. can do. Furthermore, when the zeolite is a silicate, dealumination from the zeolite skeleton is suppressed, which is preferable in that the catalyst life can be maintained. In addition, the reaction temperature here refers to the temperature at the outlet of the catalyst layer.

(反応圧力)
反応圧力(全圧)は特に制限されるものではないが、通常0.01MPa(絶対圧、以下同様)以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上、さらに好ましくは0.2MPa以上であり、通常5MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.4MPa以下である。反応圧力を上記範囲にすることで芳香族化合物やパラフィン類等の副生成物の生成を抑制することができ、エチレンの収率を向上させることができる。また反応速度も維持できる。
(reaction pressure)
Although the reaction pressure (total pressure) is not particularly limited, it is usually 0.01 MPa (absolute pressure, hereinafter the same) or higher, preferably 0.05 MPa or higher, more preferably 0.1 MPa or higher, and still more preferably 0.2 MPa. That is, it is usually 5 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, and still more preferably 0.4 MPa or less. By setting the reaction pressure within the above range, the production of by-products such as aromatic compounds and paraffins can be suppressed, and the yield of ethylene can be improved. Also, the reaction rate can be maintained.

(プロピレン分圧)
プロピレンの分圧は特に制限されるものではないが、通常0.001MPa以上(絶対圧、以下同様)、好ましくは0.005MPa以上、より好ましくは0.0075MPa以上、さらに好ましくは0.010MPa以上、特に好ましくは0.015MPa以上、最も好ましくは0.020MPa以上であり、通常1MPa以下、好ましくは0.5MPa以下、より好ましくは0.2MPa以下、さらに好ましくは0.1MPa以下である。原料の分圧を上記範囲にすることでコーキングを抑制することができ、エチレンの収率を向上させることができる。
(Propylene partial pressure)
Although the partial pressure of propylene is not particularly limited, it is usually 0.001 MPa or higher (absolute pressure, hereinafter the same), preferably 0.005 MPa or higher, more preferably 0.0075 MPa or higher, further preferably 0.010 MPa or higher, It is particularly preferably 0.015 MPa or more, most preferably 0.020 MPa or more, and usually 1 MPa or less, preferably 0.5 MPa or less, more preferably 0.2 MPa or less, and still more preferably 0.1 MPa or less. By setting the partial pressure of the raw material within the above range, coking can be suppressed and the yield of ethylene can be improved.

(コーク成分)
プロピレンの転化によって、その一部が結晶の内部/外表面に、再生処理による除去が必要なコーク(多環芳香族などの重質成分)として蓄積し、触媒活性が低下する傾向がある。そのため、前記のコークの含有量(コーク含有量)としては、適度な触媒活性と高いエチレン選択率を得るためには、活性成分である触媒に対して、通常30質量%以下であり、20質量%以下に保つことが好ましく、15質量%以下に保つことがより好ましく、また通常0.1質量%以上であり、1.0質量%以上に保つことが好ましく、3.0質量%以上に保つことがより好ましく、5.0質量%以上に保つことがさらに好ましい。触媒中コーク含有量が上記下限値以上であれば、触媒内の分子拡散を抑制することができ、炭素数4以上のオレフィンからのエチレンへのクラッキングを促進することができ、エチレン製造の際に、エチレン選択率を高く維持することができるため、触媒は上記下限値以上のコーク含有量を維持することが好ましい。一方、触媒に蓄積されたコーク量が上記上限値以上になると触媒活性が低下する傾向がある。したがって、後述の再生方法により、触媒に蓄積されたコーク量を上記の範囲内となるよう、再生条件を調整することが好ましい。
なお、本実施形態において触媒に蓄積されたコーク量とは、プロピレンの転化反応によりコークが蓄積した触媒を、ヘリウム等の不活性ガス流通下(50cc/min)、550℃まで昇温速度10℃/分で加熱し、30分間保持することで、吸着水及び軽沸炭化水素成分を除去し、続いて、空気流通に切り替え(50cc/min)、600℃まで昇温速度10℃/分で加熱し、60分間保持し、このときの550℃以上の温度領域での酸化燃焼による重量減少を求めることで算出することができる。
(Coke component)
Propylene conversion tends to accumulate some of it on the inner/outer surfaces of the crystals as coke (heavy components such as polyaromatics) that must be removed by regeneration, reducing catalytic activity. Therefore, the coke content (coke content) is usually 30% by mass or less and 20% by mass with respect to the catalyst, which is the active component, in order to obtain moderate catalytic activity and high ethylene selectivity. % or less, more preferably 15% by mass or less, and usually 0.1% by mass or more, preferably 1.0% by mass or more, and 3.0% by mass or more. It is more preferable to keep it at 5.0% by mass or more. If the coke content in the catalyst is at least the above lower limit, molecular diffusion in the catalyst can be suppressed, cracking of olefins having 4 or more carbon atoms into ethylene can be promoted, and ethylene production can be improved. Since the ethylene selectivity can be maintained high, the catalyst preferably maintains a coke content equal to or higher than the above lower limit. On the other hand, when the amount of coke accumulated in the catalyst exceeds the above upper limit, the catalytic activity tends to decrease. Therefore, it is preferable to adjust the regeneration conditions so that the amount of coke accumulated in the catalyst is within the above range by the regeneration method described later.
In this embodiment, the amount of coke accumulated in the catalyst means that the catalyst in which coke has accumulated due to the conversion reaction of propylene is heated to 550 ° C. at a rate of 10 ° C. under an inert gas such as helium (50 cc / min). /min and held for 30 minutes to remove adsorbed water and light boiling hydrocarbon components, then switch to air flow (50 cc/min) and heat up to 600 ° C. at a heating rate of 10 ° C./min. and held for 60 minutes, and the weight loss due to oxidative combustion in the temperature range of 550° C. or higher at this time is calculated.

(転化率)
本実施形態において、プロピレンの転化率は特に制限されるものではないが、通常転化率は5%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上であり、通常100%以下、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下である。本実施形態では、プロピレンの転化率が上記範囲になるように調整することで、ブテン類や芳香族化合物やパラフィン類の副生、および細孔内へのコークの蓄積を抑制することができ、エチレンの収率を向上させることができる。また、生成物中からのエチレンやプロピレン等の成分の分離効率を高めることができる。すなわち、本実施形態においては、プロピレンの転化率が上述の範囲となるように、触媒に再生工程を施すことが好ましい。
(Conversion rate)
In the present embodiment, the conversion rate of propylene is not particularly limited, but the conversion rate is usually 5% or higher, preferably 20% or higher, more preferably 30% or higher, and still more preferably 40% or higher. It is 100% or less, preferably 80% or less, more preferably 60% or less, still more preferably 50% or less. In the present embodiment, by adjusting the propylene conversion rate to be within the above range, it is possible to suppress the by-production of butenes, aromatic compounds, and paraffins, and the accumulation of coke in the pores. Ethylene yield can be improved. In addition, the separation efficiency of components such as ethylene and propylene from the product can be enhanced. That is, in the present embodiment, the catalyst is preferably subjected to a regeneration step so that the conversion of propylene is within the range described above.

通常、反応時間の経過とともにコークの蓄積が進行し、プロピレンの転化率は、低下する傾向にあるため、後述の通り、触媒に蓄積されたコーク量が増加した段階で、該触媒を再生工程に供することが好ましい。また、上記の転化率の範囲で運転する方法としては、特に制限されない。 Normally, coke accumulation progresses with the passage of reaction time, and the propylene conversion rate tends to decrease. Therefore, as described later, when the amount of coke accumulated in the catalyst increases, the catalyst is put into the regeneration process. preferably provided. Moreover, the method of operating within the range of the above conversion rate is not particularly limited.

(収率)
本実施形態において、エチレンの収率は特に制限されるものではないが、通常収率は5%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上であり、通常100%以下、好ましくは80%以下、より好ましくは60%以下である。エチレンの収率が上記範囲にあることで、反応器出口における目的生成物の割合が十分なものとなり、原料コスト及び分離・精製の負荷を低減することができる点で好ましい。
副生物であるブテン類の収率としては特に制限されるものではないが、通常50%以下、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは10%以下、特に好ましくは5%以下、少なければ少ないほどよい。ブテン類の収率が上記範囲にあることで、ブテン成分の分離及びリサイクル負荷を低減することができる点で好ましい。
(yield)
In the present embodiment, the yield of ethylene is not particularly limited, but the yield is usually 5% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and usually It is 100% or less, preferably 80% or less, more preferably 60% or less. When the yield of ethylene is within the above range, the ratio of the target product at the reactor outlet is sufficient, which is preferable in that the cost of raw materials and the load of separation and purification can be reduced.
The yield of butenes, which are by-products, is not particularly limited, but is usually 50% or less, preferably 30% or less, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5%. Below, the less the better. It is preferable that the yield of butenes is within the above range, since the burden of separation and recycling of butene components can be reduced.

転化率は次の式により算出される値である。
プロピレン転化率(%)=〔[反応器入口プロピレン(mol/Hr)-反応器出口プロピレン(mol/Hr)]/反応器入口プロピレン(mol/Hr)〕×100
The conversion rate is a value calculated by the following formula.
Propylene conversion rate (%)=[[reactor inlet propylene (mol/Hr)−reactor outlet propylene (mol/Hr)]/reactor inlet propylene (mol/Hr)]×100

本明細書における選択率とは、以下の各式により算出される値である。下記の各式において、エチレン、ブテン、C5+、パラフィンおよび芳香族化合物等の炭化水素の「由来カーボン流量(mol/Hr)」とは、各炭化水素を構成する炭素原子のモル流量を意味する。尚、パラフィンは炭素数1から4のパラフィンの合計、芳香族化合物はベンゼン、トルエン、キシレンの合計、C5+は前記芳香族化合物を除いた炭素数5以上の炭化水素の合計である。
・エチレン選択率(%)=〔反応器出口エチレン由来カーボンモル流量(mol/Hr)/[反応器出口総カーボンモル流量(mol/Hr)-反応器出口プロピレン由来カーボンモル流量(mol/Hr)]〕×100
・ブテン選択率(%)=〔反応器出口ブテン由来カーボンモル流量(mol/Hr)/[反応器出口総カーボンモル流量(mol/Hr)-反応器出口プロピレン由来カーボンモル流量(mol/Hr)]〕×100
・C5+選択率(%)=〔反応器出口C5+由来カーボンモル流量(mol/Hr)/[反応器出口総カーボンモル流量(mol/Hr)-反応器出口プロピレン由来カーボンモル流量(mol/Hr)]〕×100
・パラフィン選択率(%)=〔反応器出口パラフィン由来カーボンモル流量(mol/Hr)/[反応器出口総カーボンモル流量(mol/Hr)-反応器出口プロピレン由来カーボンモル流量(mol/Hr)]〕×100
・芳香族化合物選択率(%)=〔反応器出口芳香族化合物由来カーボンモル流量(mol/Hr)/[反応器出口総カーボンモル流量(mol/Hr)-反応器出口プロピレン由来カーボンモル流量(mol/Hr)]〕×100
なお、本明細書における収率とは、前記原料転化率と、生成した各成分の選択率の積により求められ、具体的にエチレン収率、ブテン収率は、それぞれ次の式で表される。
・エチレン収率(%)=プロピレン転化率(%)×エチレン選択率(%)/100
・ブテン収率(%)=プロピレン転化率(%)×ブテン選択率(%)/100
The selectivity in this specification is a value calculated by the following formulas. In each formula below, the “derived carbon flow rate (mol/Hr)” of hydrocarbons such as ethylene, butene, C5+, paraffin and aromatic compounds means the molar flow rate of carbon atoms constituting each hydrocarbon. Paraffins are the sum of paraffins having 1 to 4 carbon atoms, aromatic compounds are the sum of benzene, toluene and xylene, and C5+ is the sum of hydrocarbons having 5 or more carbon atoms excluding the aromatic compounds.
Ethylene selectivity (%) = [reactor outlet ethylene-derived carbon molar flow rate (mol/Hr) / [reactor outlet total carbon molar flow rate (mol/Hr) - reactor outlet propylene-derived carbon molar flow rate (mol/Hr) ]]×100
・Butene selectivity (%) = [reactor outlet butene-derived carbon molar flow rate (mol/Hr) / [reactor outlet total carbon molar flow rate (mol/Hr) - reactor outlet propylene-derived carbon molar flow rate (mol/Hr) ]]×100
・C5+ selectivity (%) = [reactor outlet C5+ derived carbon molar flow rate (mol/Hr)/[reactor outlet total carbon molar flow rate (mol/Hr) - reactor outlet propylene-derived carbon molar flow rate (mol/Hr) ]]×100
Paraffin selectivity (%) = [reactor outlet paraffin-derived carbon molar flow rate (mol/Hr) / [reactor outlet total carbon molar flow rate (mol/Hr) - reactor outlet propylene-derived carbon molar flow rate (mol/Hr) ]]×100
Aromatic compound selectivity (%) = [reactor outlet aromatic compound-derived carbon molar flow rate (mol/Hr) / [reactor outlet total carbon molar flow rate (mol/Hr) - reactor outlet propylene-derived carbon molar flow rate ( mol/Hr)]]×100
The yield in the present specification is obtained by multiplying the raw material conversion rate and the selectivity of each component produced. Specifically, the ethylene yield and butene yield are respectively represented by the following equations. .
Ethylene yield (%) = Propylene conversion rate (%) x Ethylene selectivity (%)/100
・Butene yield (%) = propylene conversion rate (%) x butene selectivity (%) / 100

(反応生成物)
反応器出口ガス(反応器流出物)としては、反応生成物であるエチレン、原料であるプロピレン、副生物であるブテン類、パラフィン、芳香族化合物、及び希釈剤を含む混合ガスが得られる。前記混合ガス中のエチレンの濃度は、特に限定されないが、通常5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、通常95質量%以下、好ましくは90質量%以下である。
反応条件によっては反応生成物中に未反応原料としてプロピレンが含まれるが、エチレンの選択率が低い場合、すなわち、副生物の選択率が高い場合には、原料ロスにつながり、製造コストが高くなるため、プロピレンの転化率を下げた条件でも、エチレンの選択率が高くなる条件で運転することが好ましいケースもある。本実施形態では、所望により、エチレン以外の成分を分離・回収してもよい。所望の成分を分離・回収した残分には、軽質パラフィン、軽質オレフィン、芳香族化合物等を含む。この残分の少なくとも一部を、前述した原料ガスの一部に混合して、いわゆるリサイクルガスとして用いることができる。
(reaction product)
As the reactor outlet gas (reactor effluent), a mixed gas containing ethylene as a reaction product, propylene as a raw material, butenes as by-products, paraffin, an aromatic compound and a diluent is obtained. The concentration of ethylene in the mixed gas is not particularly limited, but is usually 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, and is usually 95% by mass or less, preferably 90% by mass or less. is.
Depending on the reaction conditions, the reaction product may contain propylene as an unreacted raw material. However, if the selectivity for ethylene is low, that is, if the selectivity for by-products is high, it will lead to loss of raw materials and increase production costs. Therefore, in some cases, it is preferable to operate under conditions in which the ethylene selectivity is high even under conditions in which the propylene conversion rate is low. In this embodiment, if desired, components other than ethylene may be separated and recovered. The residue from which desired components have been separated and recovered contains light paraffins, light olefins, aromatic compounds and the like. At least part of this residue can be mixed with part of the raw material gas described above and used as so-called recycled gas.

(生成物の分離)
反応器出口ガスとしての、反応生成物であるエチレン、未反応原料、副生成物及び希釈剤を含む混合ガスは、公知の分離・精製設備に導入し、それぞれの成分に応じて回収、精製、リサイクル、排出の処理を行えばよい。
(Separation of product)
A mixed gas containing ethylene, which is a reaction product, unreacted raw materials, by-products, and a diluent, as a reactor outlet gas, is introduced into a known separation/purification facility, and is recovered, purified, and purified according to each component. Recycling and disposal may be carried out.

(リサイクル)
エチレン以外の成分(オレフィン、パラフィン等)、特に炭素数3以上の炭化水素の一部または全ては、上記分離・精製された後に反応原料と混合するか、または直接反応器に供給することでリサイクルしてもよい。また、副生成物のうち、反応に不活性な成分は希釈剤として再利用することができる。
(recycling)
Components other than ethylene (olefins, paraffins, etc.), especially some or all of the hydrocarbons with 3 or more carbon atoms, are recycled by mixing with the reaction raw materials after being separated and purified, or by directly supplying them to the reactor. You may In addition, among the by-products, components that are inert to the reaction can be reused as a diluent.

<A2-2.工程(II)>
工程(I)を経てプロピレンの転化率が低下した触媒を再生させることにより、エチレン収率の変動幅を最小限に抑えて、安定にエチレンを製造することができる。なお、本実施形態において、触媒の再生とは、プロピレン転化率の低下した状態の触媒を、再生処理前よりも高いプロピレン転化率を示す状態にすることを意味するものとする。
<A2-2. Step (II)>
By regenerating the catalyst whose propylene conversion rate has decreased through the step (I), ethylene can be stably produced while minimizing the fluctuation range of the ethylene yield. Note that, in the present embodiment, regeneration of the catalyst means to bring the catalyst in a state in which the propylene conversion rate has decreased into a state in which the propylene conversion rate is higher than that before the regeneration treatment.

プロピレンの転化に伴い、触媒に蓄積されたコーク成分の量が増加する。該コーク成分の蓄積量が増加した触媒を、触媒を再生させる工程(II)に供する際の、触媒に蓄積されたコーク成分の量としては、通常0質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1.0質量%以上、特に好ましくは3.0質量%以上、特に好ましくは5.0質量%以上であり、通常30質量%以下、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であり、特に好ましくは10質量%以下である。触媒に蓄積されたコーク成分の量が上記下限値以上であれば、触媒活性が低下した状態にあり、再生工程において効果的に触媒活性を回復できるため好ましい。一方、触媒に蓄積されたコーク成分の量が上記上限値を超えると、再生工程における再生ガス及び分解ガスの触媒中の拡散が阻害され、再生効率が著しく低下する傾向にあるため、上記上限値以下で再生ガスと接触させることが好ましい。この再生工程では、触媒に蓄積されたコーク成分の量を適度に低減しつつ、触媒活性を回復させることができるため、エチレンを高い収率で安定的に製造することができる。 As propylene is converted, the amount of coke components accumulated on the catalyst increases. The amount of the coke component accumulated in the catalyst when the catalyst with an increased accumulated amount of the coke component is subjected to the step (II) of regenerating the catalyst is usually 0% by mass or more, preferably 0.01% by mass. above, more preferably 0.1% by mass or more, still more preferably 1.0% by mass or more, particularly preferably 3.0% by mass or more, particularly preferably 5.0% by mass or more, and usually 30% by mass or less, It is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less. If the amount of the coke component accumulated in the catalyst is equal to or more than the above lower limit, the catalytic activity is in a state of being lowered, and the catalytic activity can be effectively recovered in the regeneration step, which is preferable. On the other hand, if the amount of coke components accumulated in the catalyst exceeds the above upper limit, the diffusion of the regeneration gas and cracked gas in the catalyst in the regeneration process is hindered, and the regeneration efficiency tends to decrease significantly. It is preferred to contact with the regeneration gas below. In this regeneration step, the amount of coke components accumulated in the catalyst can be moderately reduced while the catalytic activity can be recovered, so that ethylene can be stably produced at a high yield.

触媒を再生させる工程(II)に特段の制限はない。例えば、プロピレンからエチレンを製造する際に、触媒のコーク含有量が増加した段階で、プロピレンの供給を停止した後に、反応器内に再生に用いるガス(以後、再生ガスということがある)を供給することにより、コーク含量が増加した触媒を、再生ガスに接触させることができる。また、コーク含量が増加した触媒を、プロピレンを触媒と接触させる工程(I)の反応器から取り出して、触媒を再生させる工程(II)の反応器に移動させ、該触媒に再生に用いるガスを供給して触媒を再生させてもよい。 There are no particular restrictions on the step (II) of regenerating the catalyst. For example, when producing ethylene from propylene, at the stage when the coke content of the catalyst increases, after stopping the supply of propylene, the gas used for regeneration (hereinafter sometimes referred to as regeneration gas) is supplied into the reactor. By doing so, the catalyst with increased coke content can be brought into contact with the regeneration gas. In addition, the catalyst with an increased coke content is removed from the reactor in step (I) in which propylene is brought into contact with the catalyst, transferred to the reactor in step (II) for regenerating the catalyst, and the gas used for regeneration is supplied to the catalyst. It may be supplied to regenerate the catalyst.

特に、固定床反応器を使用して上記工程(I)を行う場合、触媒に蓄積されたコーク量が上記の上限値以上となった場合に、プロピレンの供給を停止した後に、反応器内に再生ガスを供給して該触媒と接触させることができる。また、触媒を、上記反応器から抜きだして、反応器とは別の反応器に該触媒を充填してから再生ガスに接触させてもよい。 In particular, when the above step (I) is performed using a fixed bed reactor, when the amount of coke accumulated in the catalyst reaches or exceeds the above upper limit, after stopping the supply of propylene, A regeneration gas may be supplied to contact the catalyst. Alternatively, the catalyst may be extracted from the above reactor, charged into a reactor other than the reactor, and then brought into contact with the regeneration gas.

また、移動床反応器又は流動床反応器を使用して工程(I)を行う場合、前記反応器とは別に再生ガスと触媒を接触させるための装置を付設し、該反応器から抜き出した触媒を連続的に該装置に送り、該装置において触媒を再生ガスに接触させて、その後、再生ガスに接触させた触媒を連続的に反応器に戻しながらエチレン製造の反応を行うことが好ましい。 When the step (I) is carried out using a moving bed reactor or a fluidized bed reactor, a device for contacting the regenerated gas with the catalyst is provided separately from the reactor, and the catalyst extracted from the reactor is is continuously sent to the apparatus, the catalyst is brought into contact with the regeneration gas in the apparatus, and then the reaction for producing ethylene is preferably carried out while the catalyst contacted with the regeneration gas is continuously returned to the reactor.

なお、触媒を再生させる工程(II)に用いるガスとしては特段の制限はないが、好適な例として、酸素、水素、及び水蒸気から選択される少なくとも1種を含有するガスが挙げられる。具体的な再生方法としては、酸素を含む再生ガスとして用いる燃焼再生、水蒸気(水)を再生ガスとして用いる水蒸気改質再生、水素を再生ガスとして用いる水素化クラッキングなどが挙げられる。これらの中でも、再生ガスとして、好ましくは、酸素又は水素を含むガスであり、より好ましくは水素を含むガスである。 The gas used in step (II) for regenerating the catalyst is not particularly limited, but preferred examples thereof include gases containing at least one selected from oxygen, hydrogen, and water vapor. Specific regeneration methods include combustion regeneration using a regeneration gas containing oxygen, steam reforming regeneration using steam (water) as a regeneration gas, and hydrocracking using hydrogen as a regeneration gas. Among these, the regeneration gas is preferably a gas containing oxygen or hydrogen, and more preferably a gas containing hydrogen.

酸素の製造方法としては特に限定されず、大気中の空気から深冷分離された酸素、過酸化水素より生成した酸素などが挙げられ、大気中の空気から回収されたものが好ましい。 The method for producing oxygen is not particularly limited, and examples include oxygen cryogenically separated from air in the atmosphere, oxygen produced from hydrogen peroxide, etc., and oxygen recovered from air in the atmosphere is preferred.

水蒸気(水)の製造方法としては特に限定されず、通常の水を蒸発させたものを使用することができる。水道水、脱塩水、プラントのプロセスウォーター等、各種の製造方法により得られる水を任意に用いることができる。 The method for producing steam (water) is not particularly limited, and one obtained by evaporating ordinary water can be used. Water obtained by various production methods, such as tap water, desalted water, and plant process water, can be arbitrarily used.

水素を含むガスに含まれる水素の製造方法は特に限定されず、例えば、メタンおよびメタノールの水蒸気改質による得られるもの、炭化水素の部分酸化で得られるもの、炭化水素を二酸化炭素で改質することにより得られるもの、石炭のガス化によって得られるもの、IS(Iodine-Sulfur)プロセスに代表される水の熱分解によって得られるもの、光電気化学反応より得られるもの並びに水の電気分解で得られるもの等、各種の製造方法により得られるものを任意に用いることができる。 The method for producing the hydrogen contained in the hydrogen-containing gas is not particularly limited, and examples include those obtained by steam reforming of methane and methanol, those obtained by partial oxidation of hydrocarbons, and those obtained by reforming hydrocarbons with carbon dioxide. obtained by gasification of coal, obtained by thermal decomposition of water typified by the IS (Iodine-Sulfur) process, obtained by photoelectrochemical reaction, and obtained by electrolysis of water Any of those obtained by various production methods can be used.

これら以外のガスが任意に混合されているものを用いてもよく、精製した水素を用いてもよい。 Any mixture of gases other than these may be used, or purified hydrogen may be used.

酸素、水素、水蒸気を含むガスに含まれるこれら以外のガスとしては、安全上問題のない場合には、例えば、ヘリウム、アルゴン、窒素、一酸化炭素、二酸化炭素、パラフィン類、メタン等の炭化水素類等が含まれていても良い。このうち、反応性が低い点で、ヘリウム、窒素、二酸化炭素、およびパラフィン類、メタンが好ましい。 Gases other than these contained in gases containing oxygen, hydrogen, and water vapor include hydrocarbons such as helium, argon, nitrogen, carbon monoxide, carbon dioxide, paraffins, and methane, if there is no safety problem. It may include such as. Among these, helium, nitrogen, carbon dioxide, paraffins, and methane are preferred because of their low reactivity.

再生ガス全体の圧力(全圧)は、特に限定されるものではないが、絶対圧で、通常0.01MPa(絶対圧、以下同様)以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上、さらに好ましくは0.2MPa以上であり、通常5MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下である。圧力を上記範囲にすることで、再生効率を高めつつ、処理ガス中の炭化水素成分の分圧を低く抑えることができるため、高い触媒活性を維持することができる。 The pressure of the entire regeneration gas (total pressure) is not particularly limited, but the absolute pressure is usually 0.01 MPa (absolute pressure, hereinafter the same) or more, preferably 0.05 MPa or more, more preferably 0.1 MPa. Above, more preferably 0.2 MPa or more, usually 5 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, still more preferably 0.5 MPa or less. By setting the pressure within the above range, the partial pressure of the hydrocarbon component in the treated gas can be kept low while enhancing the regeneration efficiency, so that high catalytic activity can be maintained.

(水素分圧)
再生ガス中に、水素を含むガスは、特に限定されるものではないが、水素分圧が絶対圧で、通常0.001MPa以上、好ましくは0.01MPa以上であるが、より好ましくは0.03MPa以上、さらに好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、通常4MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下、特に好ましくは0.3MPa以下である。水素分圧を上記の範囲とすることにより、触媒に蓄積されたコーク成分の除去・再形成が速やかに進行するため、高いプロピレン転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。また、高圧水素を製造するための設備・エネルギーを削減することができる。
(hydrogen partial pressure)
The gas containing hydrogen in the regeneration gas is not particularly limited, but the hydrogen partial pressure in absolute pressure is usually 0.001 MPa or more, preferably 0.01 MPa or more, and more preferably 0.03 MPa. Above, more preferably 0.05 MPa or more, particularly preferably 0.1 MPa or more, usually 4 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, still more preferably 0.5 MPa or less, particularly preferably 0.1 MPa or less. 3 MPa or less. By setting the hydrogen partial pressure within the above range, the removal and reformation of the coke components accumulated in the catalyst proceed rapidly, so that the catalyst is efficiently brought into a state that provides high propylene conversion activity and high ethylene selectivity. be able to. In addition, equipment and energy for producing high-pressure hydrogen can be reduced.

再生ガスの空間速度は、特に限定されるものではないが、通常0.001Hr-1以上、好ましくは0.01Hr-1以上、より好ましくは0.1Hr-1以上であり、通常20Hr-1以下、好ましくは10Hr-1以下、より好ましくは5Hr-1以下である。重量空間速度を前記範囲に設定することで、触媒中に含まれる炭化水素成分や水蒸気の濃度を低減することができるため、プロピレン転化活性を高いレベルで維持することが可能となる。さらに、触媒に蓄積されたコーク成分の分布を均一にすることができるため、触媒内での不均一な反応を抑制することができ、エチレン選択率を高めることが可能となる。The space velocity of the regeneration gas is not particularly limited, but is usually 0.001 Hr -1 or more, preferably 0.01 Hr -1 or more, more preferably 0.1 Hr -1 or more, and usually 20 Hr -1 or less. , preferably 10 Hr −1 or less, more preferably 5 Hr −1 or less. By setting the weight hourly space velocity within the above range, the concentration of hydrocarbon components and water vapor contained in the catalyst can be reduced, so that the propylene conversion activity can be maintained at a high level. Furthermore, since the distribution of coke components accumulated in the catalyst can be made uniform, uneven reactions within the catalyst can be suppressed, and ethylene selectivity can be increased.

空間速度とは、触媒(触媒活性成分)の重量当たりの再生ガスの流量である。また、触媒の重量とは、触媒の造粒・成型に使用する不活性成分やバインダーを含まない活性成分(ゼオライト)の重量である。 Space velocity is the flow rate of regeneration gas per weight of catalyst (catalytically active components). The weight of the catalyst is the weight of the active ingredient (zeolite) that does not contain any inert ingredients or binders used in the granulation/molding of the catalyst.

再生工程(II)の供給ガス中の再生ガスの濃度としては、特に限定されるものではないが、通常5体積%以上、好ましくは10体積%以上、より好ましくは30体積%以上であり、通常100体積%以下、好ましくは90体積%以下、より好ましくは80体積%以下である。再生ガス濃度は高い方が好ましく、通常5体積%以上、好ましくは30体積%以上、より好ましくは60体積%以上であり、通常100体積%以下である。再生ガス濃度を前記範囲とすることで、触媒と再生ガスとの接触が十分なものとなり、コーク成分の除去・再形成が速やかに進行するため、高いプロピレン転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。 The concentration of the regeneration gas in the supply gas for the regeneration step (II) is not particularly limited, but is usually 5% by volume or more, preferably 10% by volume or more, more preferably 30% by volume or more, and is usually It is 100% by volume or less, preferably 90% by volume or less, more preferably 80% by volume or less. The regeneration gas concentration is preferably as high as possible, usually 5% by volume or more, preferably 30% by volume or more, more preferably 60% by volume or more, and usually 100% by volume or less. By setting the regeneration gas concentration within the above range, the contact between the catalyst and the regeneration gas becomes sufficient, and the removal and reformation of coke components proceeds rapidly, resulting in high propylene conversion activity and high ethylene selectivity. It can be made efficient in a catalytic state.

触媒と再生ガスとを接触させる温度(以下、「再生温度」と称することがある)としては、特に限定されるものではないが、通常300℃以上、好ましくは400℃以上、より好ましくは500℃以上、さらに好ましくは525℃以上、特に好ましくは550℃以上であり、通常800℃以下、好ましくは700℃以下、より好ましくは650℃以下、さらに好ましくは600℃以下である。再生度を前記の範囲とすることで、コーク成分の除去が速やかに進行するため、触媒活性を高い状態で保つことができる。さらに、触媒の構造崩壊が抑制されるため、触媒寿命を維持できる点で好ましい。 The temperature at which the catalyst is brought into contact with the regeneration gas (hereinafter sometimes referred to as "regeneration temperature") is not particularly limited, but is usually 300°C or higher, preferably 400°C or higher, more preferably 500°C. Above, more preferably 525° C. or higher, particularly preferably 550° C. or higher, and usually 800° C. or lower, preferably 700° C. or lower, more preferably 650° C. or lower, still more preferably 600° C. or lower. By setting the degree of regeneration within the above range, the removal of the coke component proceeds rapidly, so that the catalytic activity can be maintained at a high level. Furthermore, since structural collapse of the catalyst is suppressed, it is preferable in that the life of the catalyst can be maintained.

再生ガスと接触させる時間としては、特に限定されるものではないが、通常1秒以上、好ましくは10秒以上、より好ましくは1分以上、さらに好ましくは5分以上であり、通常5時間以下、好ましくは2時間以下、より好ましくは1時間以下である。再生ガスの濃度や処理温度によっても適切な時間は変わるため、適宜調整することが好ましい。再生ガスと接触させる装置が流動床装置である場合には、上記の処理時間は、該装置内の触媒の滞留時間を意味する。 The contact time with the regeneration gas is not particularly limited, but is usually 1 second or longer, preferably 10 seconds or longer, more preferably 1 minute or longer, still more preferably 5 minutes or longer, and usually 5 hours or shorter. It is preferably 2 hours or less, more preferably 1 hour or less. Since the appropriate time varies depending on the concentration of the regeneration gas and the processing temperature, it is preferable to adjust the time as appropriate. When the apparatus to be brought into contact with the regeneration gas is a fluidized bed apparatus, the treatment time mentioned above means the residence time of the catalyst in the apparatus.

本発明の第2の実施形態は、プロピレンを、反応器中で触媒と接触させてエチレンを製造する方法において、前記触媒として水素を含むガスに接触させた触媒を用いてエチレンを製造する方法である。以下、本実施形態について詳細に説明するが、第1の実施形態と異なる点を説明し、その他は第1の実施形態の説明を適宜参照できる。 A second embodiment of the present invention is a method of producing ethylene by contacting propylene with a catalyst in a reactor, wherein the catalyst is brought into contact with a gas containing hydrogen as the catalyst to produce ethylene. be. Although the present embodiment will be described in detail below, differences from the first embodiment will be described, and the description of the first embodiment can be appropriately referred to for the rest.

<B1.触媒>
本実施形態に係る反応に用いられる触媒としては、ブレンステッド酸点を有する固体状のものであれば特に限定されず、従来公知の触媒が用いられ、例えば、カオリン等の粘土鉱物、酸性型イオン交換樹脂、ゼオライト、メソポーラスシリカアルミナ等の固体酸触媒が挙げられる。なお、プロピレンからエチレンを製造する際に、触媒にベンゼン、ナフタレン、アントラセン等の骨格を有する芳香族化合物等のコーク成分が蓄積されるが、該触媒と、水素を含むガスとを接触させることにより、触媒に蓄積されたコーク成分である上記芳香族化合物等が分解し、再反応が進行することで、触媒に蓄積されたコーク量を適度に低減させつつ、コーク成分の質を改質することができる。これにより、触媒が再生され、効率よくプロピレンからエチレンを製造することができる。
<B1. Catalyst>
The catalyst used in the reaction according to the present embodiment is not particularly limited as long as it is a solid having a Bronsted acid site, and conventionally known catalysts are used, for example, clay minerals such as kaolin, acidic ion Examples include solid acid catalysts such as exchange resins, zeolites, and mesoporous silica-alumina. When producing ethylene from propylene, coke components such as aromatic compounds having a skeleton such as benzene, naphthalene, and anthracene are accumulated in the catalyst. , The above aromatic compounds, which are coke components accumulated in the catalyst, are decomposed and the re-reaction proceeds, so that the amount of coke accumulated in the catalyst is moderately reduced, and the quality of the coke components is improved. can be done. As a result, the catalyst is regenerated, and ethylene can be efficiently produced from propylene.

これらの固体酸触媒のうちでも、分子篩効果を有するものが好ましく、ゼオライトがより好ましい。なお、上記触媒は公知の触媒を使用することができるが、触媒として好ましい形態であるゼオライトについては、第1の実施形態の説明<A1.触媒>を参照できる。
なお、非特許文献1には、MFI型ゼオライト触媒をリン酸により修飾することにより、エチレン選択率を向上させることが記載されているが、本実施形態においては、触媒を水素を含むガスに接触することにより、触媒をリン酸等により修飾しなくても、高収率でエチレンを得ることができる。従って、本実施形態においては、触媒中のリン化合物の量を第1の実施形態の説明で記載する上限値以下とすることで、リン化合物による反応器の腐食を抑制しつつ、高収率でエチレンを得ることができる。
Among these solid acid catalysts, those having a molecular sieve effect are preferred, and zeolites are more preferred. A known catalyst can be used as the above catalyst, but zeolite, which is a preferred form of the catalyst, is described in the description of the first embodiment <A1. Catalyst>.
Non-Patent Document 1 describes that the ethylene selectivity is improved by modifying the MFI-type zeolite catalyst with phosphoric acid. By doing so, ethylene can be obtained in high yield without modifying the catalyst with phosphoric acid or the like. Therefore, in the present embodiment, by setting the amount of the phosphorus compound in the catalyst to be equal to or less than the upper limit value described in the description of the first embodiment, the corrosion of the reactor due to the phosphorus compound is suppressed, and the yield is high. Ethylene can be obtained.

<B2.エチレンの製造方法>
プロピレンを含む原料を、ゼオライト触媒と接触させることで、エチレンを生成することができる。本実施形態は、エチレン製造及び直鎖ブテン製造において適した方法であり、特に、エチレン製造に適した方法である。エチレンの製造方法に関しても、第1の実施形態の説明<A2-1.エチレンの製造方法>を参照できる。
<B2. Method for producing ethylene>
Ethylene can be produced by contacting a feed containing propylene with a zeolite catalyst. This embodiment is a suitable method for ethylene production and linear butene production, and is particularly suitable for ethylene production. Regarding the method for producing ethylene, the description of the first embodiment <A2-1. Production method of ethylene>.

本実施形態においては、第1の実施形態の説明で記載するプロピレンの転化率となるよう、触媒を、水素を含むガスに接触させて使用することが好ましい。通常、反応時間の経過とともにコークの蓄積が進行し、プロピレンの転化率は、低下する傾向にあるため、触媒に蓄積されたコーク量が増加した段階で、該触媒を水素と接触させて該触媒を再生することが好ましい。なお、当該方法以外の再生方法を併用して用いてもよい。 In the present embodiment, the catalyst is preferably brought into contact with a hydrogen-containing gas so as to achieve the conversion rate of propylene described in the description of the first embodiment. Normally, coke accumulation progresses with the passage of reaction time, and the conversion rate of propylene tends to decrease. Therefore, when the amount of coke accumulated in the catalyst increases, the catalyst is brought into contact with hydrogen to is preferably played. In addition, you may use together and use the reproduction|regeneration methods other than the said method.

<B3.触媒の水素を含むガスとの接触方法>
本実施形態では、プロピレンを反応器中で触媒と接触させてエチレンを製造する方法において、前記触媒として、水素を含むガスに接触させた触媒を用いることにより、エチレンを高い選択率かつ高い収率で安定に製造することができる。
<B3. Method of Contacting Catalyst with Gas Containing Hydrogen>
In the present embodiment, in the method of producing ethylene by contacting propylene with a catalyst in a reactor, a catalyst contacted with a hydrogen-containing gas is used as the catalyst to achieve high selectivity and high yield of ethylene. can be produced stably.

なお、公知の日本国特許第5545114号を参照すると、エチレンを原料としてプロピレンを製造する反応において、触媒を水素により処理することで触媒を再生することは知られている。しかしながら、エチレンに比べて、反応性及び吸着能の高いプロピレンを原料とする本実施形態においては、逐次反応が進みやすいため、生成するコーク成分はより重質化した成分であり、水素処理により容易にコーク成分が除去されるとは考えにくい。また、プロピレンが共存する条件においては、触媒と水素の吸着が相対的に抑制されるため(触媒とプロピレンの吸着が優先)、水素と接触させる効果は十分に得られないと考えられる。しかしながら、驚くことに、本実施形態のように、プロピレンからエチレンを製造する方法においても、触媒に水素を含むガスを接触させることにより触媒が再生されて、エチレンを収率高く製造できることが判明した。この理由は明らかではないが、触媒を、水素を含むガスと接触させることにより、触媒に蓄積されたコーク成分である上記芳香族化合物等が分解し、再反応が進行することで、触媒に蓄積されたコーク量を適度に低減させつつ、コーク成分の質を改質することができたものと考えられ、この結果、触媒が再生され、収率高くプロピレンからエチレンを製造することができたものと考えられる。 Incidentally, referring to the well-known Japanese Patent No. 5545114, it is known to regenerate the catalyst by treating it with hydrogen in the reaction of producing propylene from ethylene as a raw material. However, in the present embodiment, in which propylene, which has higher reactivity and adsorptive capacity than ethylene, is used as a raw material, sequential reactions tend to proceed easily, so the coke component produced is a heavier component, and can be easily treated by hydrogen treatment. It is unlikely that the coke component would be removed in the In addition, under conditions where propylene coexists, adsorption of the catalyst and hydrogen is relatively suppressed (adsorption of the catalyst and propylene takes precedence), so it is considered that the effect of contacting with hydrogen cannot be obtained sufficiently. Surprisingly, however, it was found that even in the method of producing ethylene from propylene as in the present embodiment, the catalyst can be regenerated by contacting the catalyst with a hydrogen-containing gas, and ethylene can be produced at a high yield. . The reason for this is not clear, but by contacting the catalyst with a hydrogen-containing gas, the aromatic compounds, etc., which are coke components accumulated in the catalyst, are decomposed, and the re-reaction proceeds, so that they accumulate in the catalyst. It is considered that the quality of the coke component could be improved while moderately reducing the amount of coke produced. As a result, the catalyst was regenerated and ethylene could be produced from propylene at a high yield. it is conceivable that.

とりわけ、プロピレンの転化に伴い、使用した触媒にはコーク成分の含有量が増加するが、該コーク成分の含有量が増加した触媒を、水素を含むガスに接触させることで、コーク成分の含有量を適度に低減しつつ、コーク成分の質を改質し、その結果、エチレンを高い収率で安定的に製造することができる。したがって、触媒と水素を含むガスとの接触は、触媒がコーク成分を含有する状態で行うことが好ましく、水素ガスと接触するときの触媒に蓄積されたコーク成分の量としては、通常0質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1.0質量%以上、特に好ましくは3.0質量%以上、特に好ましくは5.0質量%以上であり、通常30質量%以下、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であり、特に好ましくは10質量%以下である。触媒に蓄積されたコーク成分の量が上記下限値以上であれば、触媒活性が低下した状態にあり、水素接触により効果的に触媒活性を回復できるため好ましい。一方、触媒に蓄積されたコーク成分の量が上記上限値を超えると、水素ガス及び分解ガスの触媒中の拡散が阻害され、再生効率が著しく低下する傾向にあるため、上記上限値以下で水素ガスと接触させることが好ましい。 In particular, with the conversion of propylene, the content of coke components in the catalyst used increases. is moderately reduced, the quality of the coke component is modified, and as a result, ethylene can be stably produced at a high yield. Therefore, the contact between the catalyst and hydrogen-containing gas is preferably carried out in a state where the catalyst contains coke components, and the amount of coke components accumulated in the catalyst when contacting with hydrogen gas is usually 0% by mass. Above, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 1.0% by mass or more, particularly preferably 3.0% by mass or more, particularly preferably 5.0% by mass or more and is usually 30% by mass or less, preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less. If the amount of the coke component accumulated in the catalyst is equal to or higher than the above lower limit, the catalytic activity is in a state of being lowered, and the catalytic activity can be effectively recovered by hydrogen contact, which is preferable. On the other hand, when the amount of coke components accumulated in the catalyst exceeds the above upper limit, the diffusion of hydrogen gas and cracked gas in the catalyst tends to be hindered, and the regeneration efficiency tends to decrease significantly. Contact with gas is preferred.

なお、水素を含むガスに触媒を接触させる方法に特段の制限はない。例えば、プロピレンからエチレンを製造する際に、触媒のコーク含有量が増加した段階で、反応器内にプロピレンと同時に水素を含むガスとを供給してコークが増加した触媒を、水素を含むガスに接触させることができる。また、プロピレンの供給を停止した後に、反応器内に水素を含むガスを供給することにより、コーク含量が増加した触媒を、水素を含むガスに接触させることができる。さらには、コーク含量が増加した触媒を、該反応器から取り出して、水素に接触させてもよい。 There is no particular limitation on the method of bringing the catalyst into contact with the hydrogen-containing gas. For example, when producing ethylene from propylene, at a stage when the coke content of the catalyst has increased, a gas containing hydrogen is supplied into the reactor at the same time as propylene, and the catalyst with increased coke is converted into a gas containing hydrogen. can be contacted. Further, by supplying a hydrogen-containing gas into the reactor after stopping the supply of propylene, the catalyst with an increased coke content can be brought into contact with the hydrogen-containing gas. Additionally, the coke-enriched catalyst may be removed from the reactor and contacted with hydrogen.

特に、固定床反応器を使用してプロピレンからエチレンを製造する場合は、エチレン製造用反応器から触媒を抜き出さずに、プロピレンと、水素を含むガスを、同時又は別に、供給する方法が好ましく用いられる。すなわち、触媒に蓄積されたコーク量が上記の上限値以上となった場合に、水素を含むガスを、プロピレンと同時、又はプロピレンの供給を停止した後に、反応器内に供給してコーク量が増加した触媒と水素を含むガスとを接触させることができる。
また、触媒を、上記反応器から抜きだして、反応器とは別の反応器に該触媒を充填してから水素ガスに接触させることが好ましい。
In particular, when producing ethylene from propylene using a fixed bed reactor, it is preferable to supply propylene and a gas containing hydrogen simultaneously or separately without extracting the catalyst from the reactor for producing ethylene. Used. That is, when the amount of coke accumulated in the catalyst reaches the above upper limit value or more, a gas containing hydrogen is supplied into the reactor at the same time as propylene or after the supply of propylene is stopped, and the amount of coke is reduced. The increased catalyst can be contacted with a gas containing hydrogen.
Moreover, it is preferable to extract the catalyst from the above reactor, fill the catalyst in a reactor other than the reactor, and then bring the catalyst into contact with the hydrogen gas.

また、プロピレンからエチレンを製造する際に、移動床反応器又は流動床反応器を使用する場合、前記反応器とは別に水素を含むガスと触媒を接触させるための装置を付設し、該反応器から抜き出した触媒を連続的に該装置に送り、該装置において触媒を水素ガスに接触させて、その後、水素を含むガスに接触させた触媒を連続的に反応器に戻しながらエチレン製造の反応を行うことが好ましい。 When a moving bed reactor or a fluidized bed reactor is used in the production of ethylene from propylene, a device for contacting a hydrogen-containing gas with a catalyst may be provided separately from the reactor. The catalyst extracted from the reactor is continuously sent to the device, the catalyst is brought into contact with hydrogen gas in the device, and then the catalyst that has been contacted with the hydrogen-containing gas is continuously returned to the reactor to perform the ethylene production reaction. preferably.

なお、触媒に水素を含むガスを接触させる時間は、特段の制限はなく、触媒に蓄積されたコーク量を考慮して適宜選択すればよい。 The time for which the gas containing hydrogen is brought into contact with the catalyst is not particularly limited, and may be appropriately selected in consideration of the amount of coke accumulated in the catalyst.

本発明の水素を含むガスに含まれる水素の製造方法は特に限定されず、例えば、メタンおよびメタノールの水蒸気改質による得られるもの、炭化水素の部分酸化で得られるもの、炭化水素を二酸化炭素で改質することにより得られるもの、石炭のガス化によって得られるもの、IS(Iodine-Sulfur)プロセスに代表される水の熱分解によって得られるもの、光電気化学反応より得られるもの並びに水の電気分解で得られるもの等、各種の製造方法により得られるものを任意に用いることができる。 The method for producing the hydrogen contained in the hydrogen-containing gas of the present invention is not particularly limited, and examples include those obtained by steam reforming of methane and methanol, those obtained by partial oxidation of hydrocarbons, Those obtained by reforming, those obtained by gasification of coal, those obtained by thermal decomposition of water represented by the IS (Iodine-Sulfur) process, those obtained by photoelectrochemical reaction, and water electricity Those obtained by various production methods such as those obtained by decomposition can be arbitrarily used.

水素以外のガスが任意に混合されているものを用いてもよく、精製した水素を用いてもよい。 Any mixture of gas other than hydrogen may be used, or purified hydrogen may be used.

水素以外のガスとしては、例えば、ヘリウム、アルゴン、窒素、酸素、一酸化炭素、二酸化炭素、パラフィン類、メタン等の炭化水素類等が含まれていても良い。このうち、反応性が低い点で、ヘリウム、窒素、二酸化炭素、およびパラフィン類、メタンが好ましい。 Gases other than hydrogen may include, for example, helium, argon, nitrogen, oxygen, carbon monoxide, carbon dioxide, paraffins, and hydrocarbons such as methane. Among these, helium, nitrogen, carbon dioxide, paraffins, and methane are preferred because of their low reactivity.

水素を含むガスによる処理に用いた後のガスには、水素の他に、炭化水素成分(オレフィン、パラフィン等)が含まれるが、これをそのままリサイクル使用してもよいし、水素以外のガスを一部または全部除去したものをリサイクル使用してもよい。 The gas used for treatment with a gas containing hydrogen contains hydrocarbon components (olefins, paraffins, etc.) in addition to hydrogen. You may recycle and use what was partially or wholly removed.

プロピレンとともに水素を含むガスを供給する場合、水素を含むガス全体の圧力(全圧)は、特に限定されるものではないが、絶対圧で、通常0.01MPa(絶対圧、以下同様)以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上、さらに好ましくは0.2MPa以上であり、通常5MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下である。圧力を上記範囲にすることで、水素ガスとの接触効率を高めつつ、処理ガス中の炭化水素成分の分圧を低く抑えることができるため、高い触媒活性を維持することができる。 When supplying a gas containing hydrogen together with propylene, the pressure of the entire gas containing hydrogen (total pressure) is not particularly limited, but is usually 0.01 MPa (absolute pressure, hereinafter the same) or more in absolute pressure, It is preferably 0.05 MPa or more, more preferably 0.1 MPa or more, still more preferably 0.2 MPa or more, and is usually 5 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, further preferably 0.5 MPa or less. be. By setting the pressure within the above range, the partial pressure of the hydrocarbon component in the treated gas can be kept low while increasing the contact efficiency with the hydrogen gas, so that high catalytic activity can be maintained.

プロピレンと同時に水素を含むガスを反応器中に供給する場合、水素を含むガスの圧力は、特に限定されるものではないが、水素分圧が絶対圧で、通常0.001MPa以上、好ましくは0.01MPa以上であるが、より好ましくは0.03MPa以上、さらに好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、通常4MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下、特に好ましくは0.3MPa以下である。水素分圧を上記の範囲とすることにより、触媒に蓄積されたコーク成分の除去・再形成が速やかに進行するため、高いプロピレン転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。また、高圧水素を製造するための設備・エネルギーを削減することができる。 When the gas containing hydrogen is supplied to the reactor at the same time as propylene, the pressure of the gas containing hydrogen is not particularly limited, but the hydrogen partial pressure is usually 0.001 MPa or more, preferably 0.001 MPa or more in absolute pressure. 0.01 MPa or more, more preferably 0.03 MPa or more, still more preferably 0.05 MPa or more, particularly preferably 0.1 MPa or more, usually 4 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, More preferably 0.5 MPa or less, particularly preferably 0.3 MPa or less. By setting the hydrogen partial pressure within the above range, the removal and reformation of the coke components accumulated in the catalyst proceed rapidly, so that the catalyst is efficiently brought into a state that provides high propylene conversion activity and high ethylene selectivity. be able to. In addition, equipment and energy for producing high-pressure hydrogen can be reduced.

水素を含むガスの空間速度は、特に限定されるものではないが、通常0.001Hr-1以上、好ましくは0.01Hr-1以上、より好ましくは0.1Hr-1以上であり、通常20Hr-1以下、好ましくは10Hr-1以下、より好ましくは5Hr-1以下である。重量空間速度を前記範囲に設定することで、触媒中に含まれる炭化水素成分の濃度を低減することができるため、プロピレン転化活性を高いレベルで維持することが可能となる。さらに、触媒に蓄積されたコーク成分の分布を均一にすることができるため、触媒内での不均一な反応を抑制することができ、エチレン選択率を高めることが可能となる。また、水素を含むガスを回収する場合、その分離精製負荷を抑えることができる。また、水素ガスの使用量を抑えることができるため、製造コストを低減することができる。The space velocity of the hydrogen-containing gas is not particularly limited, but is usually 0.001 Hr -1 or more, preferably 0.01 Hr -1 or more, more preferably 0.1 Hr -1 or more, and usually 20 Hr -1 or more. 1 or less, preferably 10 Hr −1 or less, more preferably 5 Hr −1 or less. By setting the weight hourly space velocity within the above range, the concentration of hydrocarbon components contained in the catalyst can be reduced, so that the propylene conversion activity can be maintained at a high level. Furthermore, since the distribution of coke components accumulated in the catalyst can be made uniform, uneven reactions within the catalyst can be suppressed, and ethylene selectivity can be increased. Moreover, when recovering gas containing hydrogen, the separation and purification load can be suppressed. Moreover, since the amount of hydrogen gas used can be suppressed, the manufacturing cost can be reduced.

空間速度とは、触媒(触媒活性成分)の重量当たりの水素の流量である。また、触媒の重量とは、触媒の造粒・成型に使用する不活性成分やバインダーを含まない活性成分(ゼオライト)の重量である。 Space velocity is the flow rate of hydrogen per weight of catalyst (catalytically active component). The weight of the catalyst is the weight of the active ingredient (zeolite) that does not contain any inert ingredients or binders used in the granulation/molding of the catalyst.

水素を含むガス中の水素濃度としては、特に限定されるものではないが、通常5体積%以上、好ましくは10体積%以上、より好ましくは30体積%以上であり、通常100体積%以下、好ましくは90体積%以下、より好ましくは80体積%以下である。触媒と水素を含むガスを接触させる工程が、反応器中で触媒とプロピレンとを接触させてエチレンを製造する方法する工程の前段あるいは後段にある場合には、水素濃度は特に高い方が好ましく、通常5体積%以上、好ましくは30体積%以上、より好ましくは60体積%以上であり、通常100体積%以下である。水素濃度を前記範囲とすることで、触媒と水素分子との接触が十分なものとなり、コーク成分の除去・再形成が速やかに進行するため、高いプロピレン転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。また、水素ガスの使用量を低減することができ、かつ分離精製負荷を抑えることができる。 The hydrogen concentration in the hydrogen-containing gas is not particularly limited, but is usually 5% by volume or more, preferably 10% by volume or more, more preferably 30% by volume or more, and usually 100% by volume or less, preferably is 90% by volume or less, more preferably 80% by volume or less. When the step of contacting the catalyst with a hydrogen-containing gas is before or after the step of contacting the catalyst with propylene in a reactor to produce ethylene, the hydrogen concentration is preferably particularly high. It is usually 5% by volume or more, preferably 30% by volume or more, more preferably 60% by volume or more, and usually 100% by volume or less. By setting the hydrogen concentration in the above range, the contact between the catalyst and hydrogen molecules becomes sufficient, and the removal and reformation of coke components proceeds rapidly, so that the catalyst provides high propylene conversion activity and high ethylene selectivity. state to be efficient. In addition, the amount of hydrogen gas used can be reduced, and the separation and purification load can be suppressed.

触媒と水素を含むガスとを接触させる温度(以下、「水素接触温度」と称することがある)としては、特に限定されるものではないが、通常300℃以上、好ましくは400℃以上、より好ましくは450℃以上、さらに好ましくは500℃以上、特に好ましくは525℃以上であり、通常800℃以下、好ましくは700℃以下、より好ましくは650℃以下、さらに好ましくは600℃以下である。水素接触温度を前記の範囲とすることで、コーク成分の除去が速やかに進行するため、触媒活性を高い状態で保つことができる。さらに、触媒の構造崩壊が抑制されるため、触媒寿命を維持できる点で好ましい。 The temperature at which the catalyst is brought into contact with the hydrogen-containing gas (hereinafter sometimes referred to as "hydrogen contact temperature") is not particularly limited, but is usually 300° C. or higher, preferably 400° C. or higher, more preferably 400° C. or higher. is 450° C. or higher, more preferably 500° C. or higher, particularly preferably 525° C. or higher, and usually 800° C. or lower, preferably 700° C. or lower, more preferably 650° C. or lower, further preferably 600° C. or lower. By setting the hydrogen contact temperature within the above range, the removal of the coke component proceeds rapidly, so that the catalytic activity can be maintained at a high level. Furthermore, since structural collapse of the catalyst is suppressed, it is preferable in that the life of the catalyst can be maintained.

水素を含むガスと接触させる時間としては、特に限定されるものではないが、通常1秒以上、好ましくは10秒以上、より好ましくは1分以上、さらに好ましくは5分以上であり、通常5時間以下、好ましくは2時間以下、より好ましくは1時間以下である。水素ガスの濃度や処理温度によっても適切な時間は変わるため、適宜調整することが好ましい。水素を含むガスと接触させる装置が流動床装置である場合には、上記の処理時間は、該装置内の触媒の滞留時間を意味する。 The contact time with the hydrogen-containing gas is not particularly limited, but is usually 1 second or longer, preferably 10 seconds or longer, more preferably 1 minute or longer, still more preferably 5 minutes or longer, and usually 5 hours. Thereafter, it is preferably 2 hours or less, more preferably 1 hour or less. Since the appropriate time varies depending on the concentration of hydrogen gas and the treatment temperature, it is preferable to adjust the time as appropriate. When the apparatus for contacting the hydrogen-containing gas is a fluidized bed apparatus, the treatment time means the residence time of the catalyst in the apparatus.

本発明の第3の実施形態は、炭化水素と、触媒とを、反応器中で接触させてエチレンを製造する方法であって、前記炭化水素が少なくともプロピレン及び炭素数4以上の炭化水素を含み、該炭化水素中に含まれる、プロピレンに対する炭素数4以上の炭化水素の質量比が、0.01以上10以下である。 A third embodiment of the present invention is a method for producing ethylene by contacting a hydrocarbon and a catalyst in a reactor, wherein the hydrocarbon contains at least propylene and a hydrocarbon having 4 or more carbon atoms. , the mass ratio of hydrocarbons having 4 or more carbon atoms to propylene contained in the hydrocarbons is 0.01 or more and 10 or less.

<C1.触媒>
本実施形態で用いる触媒について説明する。本実施形態に係る反応に用いられる触媒としては、プロピレンを含む炭化水素からエチレンを製造できるものであり、ブレンステッド酸点を有する固体状のものであれば特に限定されず、従来公知の触媒が用いられる。例えば、カオリン等の粘土鉱物、酸性型イオン交換樹脂、ゼオライト、メソポーラスシリカアルミナ等の固体酸触媒が挙げられる。本実施形態においては、プロピレン及び炭素数4以上の炭化水素の転化率が低下した触媒を再生させる工程を導入してもよく、当該再生工程の導入により、原料転化によって蓄積したコーク成分の量を低減し、エチレンを安定した収率で製造することができる。
<C1. Catalyst>
The catalyst used in this embodiment will be described. The catalyst used in the reaction according to the present embodiment is not particularly limited as long as it can produce ethylene from a hydrocarbon containing propylene and has a Bronsted acid point and is in a solid state. Conventionally known catalysts can be used. Used. Examples thereof include clay minerals such as kaolin, acidic ion exchange resins, zeolite, solid acid catalysts such as mesoporous silica alumina. In the present embodiment, a step of regenerating a catalyst having a reduced conversion rate of propylene and hydrocarbons having 4 or more carbon atoms may be introduced. By introducing the regeneration step, the amount of coke components accumulated by raw material conversion is reduced can be reduced and ethylene can be produced with a stable yield.

これらの固体酸触媒のうちでも、分子篩効果を有するものが好ましく、ゼオライトがより好ましい。なお、上記触媒は公知の触媒を使用することができるが、以下、触媒として好ましい形態であるゼオライトについて詳細に説明する。 Among these solid acid catalysts, those having a molecular sieve effect are preferred, and zeolites are more preferred. A known catalyst can be used as the above catalyst, but zeolite, which is a preferred form of the catalyst, will be described in detail below.

ゼオライトとは、四面体構造をもつTO単位(Tは中心原子)がO原子を共有して三次元的に連結し、開かれた規則的なミクロ細孔を形成している結晶性物質を指す。具体的には国際ゼオライト学会(International Zeolite Association;以下これを「IZA」ということがある。)の構造委員会データ集に記載のあるケイ酸塩、リン酸塩、ゲルマニウム塩、ヒ酸塩等が含まれる。Zeolite is a crystalline substance in which 4 TO units (T is the central atom) with a tetrahedral structure are connected three-dimensionally by sharing O atoms to form regular open micropores. Point. Specifically, silicates, phosphates, germanium salts, arsenates, etc. listed in the data collection of the structure committee of the International Zeolite Association (hereinafter sometimes referred to as "IZA") included.

ここで、ケイ酸塩には、例えばアルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が含まれる。
リン酸塩には、例えばアルミノリン酸塩、ガロリン酸塩、ベリロリン酸塩等が含まれる。
ゲルマニウム塩には、例えばアルミノゲルマニウム塩等が、ヒ酸塩には、例えばアルミノヒ酸塩等が含まれる。
さらに、アルミノリン酸塩には、例えばT原子をSiで一部置換したシリコアルミノリン酸塩や、Ga、Mg、Mn、Fe、Co、Znなど2価や3価のカチオンを含むものが含まれる。
Here, silicates include, for example, aluminosilicates, gallosilicates, ferrisilicates, titanosilicates, borosilicates, and the like.
Phosphates include, for example, aluminophosphates, gallophosphates, beryllophosphates, and the like.
Germanium salts include, for example, aluminogermanium salts, and arsenates include, for example, aluminum arsenates.
Furthermore, aluminophosphates include, for example, silicoaluminophosphates in which the T atom is partially substituted with Si, and those containing divalent or trivalent cations such as Ga, Mg, Mn, Fe, Co, and Zn. .

ゼオライトの平均細孔径は特に限定されず、通常0.80nm以下、好ましくは0.55nm以下、より好ましくは0.50nm以下、さらに好ましくは0.45nm以下、特に好ましくは0.40nm以下であり、通常0.25nm以上、好ましくは0.30nm以上、より好ましくは0.33nm以上であり、さらに好ましくは0.35nm以上である。
ここで、平均細孔径とは、IZAが定める結晶学的なチャネル直径(Crystallographic free diameter of the channels)を示す。平均細孔径が0.55nm以下とは、細孔(チャネル)の形状が真円形の場合は、その平均直径が0.55nm以下であることをさすが、細孔の形状が楕円形の場合は、短径が0.55nm以下であることを意味する。
The average pore diameter of the zeolite is not particularly limited, and is usually 0.80 nm or less, preferably 0.55 nm or less, more preferably 0.50 nm or less, even more preferably 0.45 nm or less, and particularly preferably 0.40 nm or less, It is usually 0.25 nm or more, preferably 0.30 nm or more, more preferably 0.33 nm or more, and still more preferably 0.35 nm or more.
Here, the average pore diameter means the crystallographic free diameter of the channels defined by IZA. The average pore diameter of 0.55 nm or less means that the average diameter of pores (channels) is 0.55 nm or less when the shape of the pores (channels) is perfectly circular. It means that the minor axis is 0.55 nm or less.

上記平均細孔径を有するゼオライトを用いることにより、プロピレンを原料として、高収率でエチレンを製造することができる。すなわち、平均細孔径が上記範囲であれば、ゼオライト結晶内へのプロピレンの拡散を促進し、かつエチレンをより選択的に生成させることができる。
上記の観点から、本発明において、ゼオライトは、酸素8員環構造ゼオライトであることが好ましい。
By using a zeolite having the above average pore diameter, ethylene can be produced at a high yield using propylene as a raw material. That is, if the average pore diameter is within the above range, diffusion of propylene into the zeolite crystals can be promoted and ethylene can be produced more selectively.
From the above viewpoint, in the present invention, the zeolite is preferably an oxygen 8-membered ring structure zeolite.

酸素8員環構造ゼオライトとしては、IZAが定める構造コード(Framework Type Code)で、例えば、好ましくはAEI、AFX、CHA、ERI、KFI、LEV、SAS、SAV、SZR、PAU、RHO、RTH、LTA、UFIなどが挙げられる。 As the oxygen 8-membered ring structure zeolite, the structure code (Framework Type Code) defined by IZA, for example, preferably AEI, AFX, CHA, ERI, KFI, LEV, SAS, SAV, SZR, PAU, RHO, RTH, LTA , UFI, and the like.

ゼオライトのフレームワーク密度(単位:T/nm)は特に限定されず、通常20.0以下、好ましくは18.0以下、より好ましくは17.0以下、さらに好ましくは16.0以下であり、通常12.0以上、好ましくは14.0以上、より好ましくは14.5以上である。
ここで、フレームワーク密度(単位:T/nm)とは、ゼオライトの単位体積(1nm)当たりに存在するT原子(ゼオライトの骨格を構成する原子のうち、酸素以外の原子)の個数を意味し、この値はゼオライトの構造により決まる。
The zeolite framework density (unit: T/nm 3 ) is not particularly limited, and is usually 20.0 or less, preferably 18.0 or less, more preferably 17.0 or less, and still more preferably 16.0 or less, It is usually 12.0 or higher, preferably 14.0 or higher, more preferably 14.5 or higher.
Here, the framework density (unit: T/nm 3 ) refers to the number of T atoms (atoms other than oxygen atoms constituting the zeolite skeleton) present per unit volume (1 nm 3 ) of the zeolite. This value is determined by the structure of the zeolite.

これらの観点から、酸素8員環構造ゼオライトは、International Zeolite Association(IZA)がcomposite building unitとして定めるd6rを骨格中に含むゼオライトであることが好ましく、さらに好ましくは、AEI、AFX、CHA、ERI、KFI、LEV、SAVであり、より好ましくはAEI、AFX、CHA、又はERIであり、殊更好ましくはAEI、CHA、又はERIであり、特に好ましくはCHA又はERIであり、最も好ましくは、CHAである。 From these viewpoints, the oxygen 8-membered ring structure zeolite is preferably a zeolite containing d6r in the skeleton defined as a composite building unit by the International Zeolite Association (IZA), more preferably AEI, AFX, CHA, ERI, KFI, LEV, SAV, more preferably AEI, AFX, CHA, or ERI, even more preferably AEI, CHA, or ERI, particularly preferably CHA or ERI, most preferably CHA .

酸素8員環構造ゼオライトとしては、具体的にはケイ酸塩とリン酸塩が挙げられる。上記のとおり、ケイ酸塩としては、例えば、アルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が、リン酸塩としては、アルミニウムと燐からなるアルミノリン酸塩、ケイ素とアルミニウムと燐からなるシリコアルミノリン酸塩等が挙げられる。これらの中で、アルミノケイ酸塩、シリコアルミノリン酸塩が好ましく、アルミノケイ酸塩がより好ましい。 Specific examples of 8-membered oxygen ring structure zeolites include silicates and phosphates. As described above, examples of silicates include aluminosilicates, gallosilicates, ferrisilicates, titanosilicates, and borosilicates, and examples of phosphates include aluminophosphates composed of aluminum and phosphorus, silicon and silicoaluminophosphates composed of aluminum and phosphorus. Among these, aluminosilicates and silicoaluminophosphates are preferred, and aluminosilicates are more preferred.

ゼオライトは、通常、そのイオン交換サイトがプロトン(H)のプロトン交換型が用いられるが、その一部がLi、Na、K、Rb、Cs等のアルカリ金属、Ca、Sr、Ba等のアルカリ土類金属、Cr、Cu、Ni、Fe、Mo、W、Pt、Re等の遷移金属に交換されていてもよい。なお、このようなゼオライトは、ゼオライトに後述するイオン交換処理を施せば調製することができる。 A proton-exchanged type of zeolite whose ion-exchange sites are protons (H) is usually used. It may be exchanged with transition metals such as metals, Cr, Cu, Ni, Fe, Mo, W, Pt, and Re. Such a zeolite can be prepared by subjecting the zeolite to an ion-exchange treatment, which will be described later.

これらイオン交換サイト以外に、Na、K等のアルカリ金属;Ca、Sr等のアルカリ土類金属;Cr、Cu、Ni、Fe、Mo、W、Pt、Re等の遷移金属に金属担持されていてもよい。ここで、金属担持は、通常、平衡吸着法、蒸発乾固法、ポアフィリング法等の含浸法で行うことができる。 In addition to these ion exchange sites, metals are supported on alkali metals such as Na and K; alkaline earth metals such as Ca and Sr; and transition metals such as Cr, Cu, Ni, Fe, Mo, W, Pt and Re. good too. Here, the metal loading can usually be carried out by an impregnation method such as equilibrium adsorption method, evaporation to dryness method, pore-filling method and the like.

ゼオライトがケイ酸塩の場合、SiO/M(ただし、前記モル比の分母はAl、Ga、BおよびFeの合計量を表す)モル比は通常5以上であり、好ましくは8以上、より好ましくは10以上、さらに好ましくは15以上であり、通常500以下、好ましくは100以下、より好ましくは80以下、さらに好ましくは60以下であり、特に好ましくは40以下である。なお、前記の比率は、ゼオライト中のSi原子が全てSiOとして含まれ、ゼオライト中に含まれる前記MがすべてMとして含まれると仮定して求める値である。SiO/Mモル比が上記範囲にあることで、強酸点及び弱酸点由来の酸量が十分得られ、プロピレンの転化活性がより高くなる。また、コーク付着による触媒の失活、ケイ素以外のT原子の骨格からの脱離、ならびに酸点当たりの酸強度の低下等を抑制できる傾向がある理由からSiO/Mモル比が上記範囲にあることが好ましい。ゼオライトのSiO/Mモル比は、通常、ICP元素分析や蛍光X線分析で決定される。蛍光X線分析は、標準試料中の分析元素の蛍光X線強度と分析元素の原子濃度との検量線を作成し、この検量線により、蛍光X線分析法(XRF)でゼオライト試料中のケイ素原子、アルミニウム、ガリウム、鉄原子の含有量を求めることができる。なお、ホウ素元素の蛍光X線強度は比較的小さいため、ホウ素原子の含有量はICP元素分析で測定することが好ましい。When the zeolite is a silicate, SiO 2 /M 2 O 3 (where the denominator of said molar ratio represents the total amount of Al 2 O 3 , Ga 2 O 3 , B 2 O 3 and Fe 2 O 3 ) mol the ratio is usually 5 or more, preferably 8 or more, more preferably 10 or more, still more preferably 15 or more, usually 500 or less, preferably 100 or less, more preferably 80 or less, further preferably 60 or less, Especially preferably, it is 40 or less. The above ratio is a value obtained on the assumption that all Si atoms in the zeolite are contained as SiO 2 and all the M contained in the zeolite are contained as M 2 O 3 . When the SiO 2 /M 2 O 3 molar ratio is within the above range, a sufficient amount of acid derived from strong acid sites and weak acid sites can be obtained, and the propylene conversion activity becomes higher. In addition, the SiO 2 /M 2 O 3 molar ratio tends to be able to suppress the deactivation of the catalyst due to adhesion of coke, the detachment of T atoms other than silicon from the skeleton, and the decrease in acid strength per acid site. It is preferably within the above range. The SiO 2 /M 2 O 3 molar ratio of zeolite is usually determined by ICP elemental analysis or fluorescent X-ray analysis. In the fluorescent X-ray analysis, a calibration curve is created between the fluorescent X-ray intensity of the analytical element in the standard sample and the atomic concentration of the analytical element. Atoms, aluminum, gallium, iron atom content can be determined. Since the fluorescent X-ray intensity of boron element is relatively small, it is preferable to measure the content of boron atoms by ICP elemental analysis.

ゼオライトがリン酸塩の場合、シリコアルミノリン酸塩の(Al+P)/Siモル比あるいは2価の金属をもつメタロアルミノリン酸塩の(Al+P)/M(但し、Mは2価の金属を示す。)モル比は、通常は5以上、好ましくは10以上であり、通常500以下、好ましくは100以下である。なお、2価の金属は、具体的には、Ga、Mg、Mn、Fe、Co又はZnが挙げられる。前記下限以上とすることにより触媒の耐久性を向上させることができ、また前記上限以下とすることにより、触媒活性高く保つことができる。 When the zeolite is a phosphate, the (Al+P)/Si molar ratio of a silicoaluminophosphate or the (Al+P)/M of a metalloaluminophosphate having a divalent metal (where M represents a divalent metal ) The molar ratio is usually 5 or more, preferably 10 or more, and usually 500 or less, preferably 100 or less. Incidentally, the divalent metal specifically includes Ga, Mg, Mn, Fe, Co, or Zn. By setting the content to the lower limit or more, the durability of the catalyst can be improved, and by setting the content to the upper limit or less, the catalytic activity can be kept high.

ゼオライトの全酸量(以下、全酸量という)は、ゼオライトの結晶細孔内に存在する酸点の量と、ゼオライトの結晶外表面酸点の量(以下、外表面酸量という)の総和である。全酸量は、特に限定されるものではないが、通常0.01mmol/g以上、好ましくは0.1mmol/g以上、より好ましくは0.3mmol/g以上、さらに好ましくは0.5mmol/g以上である。また、通常2.5mmol/g以下、好ましくは1.5mmol/g以下、より好ましくは1.2mmol/g以下、さらに好ましくは0.9mmol/g以下である。全酸量を上記の範囲とすることで、プロピレンの転化活性が高く維持され、且つゼオライトの細孔内部におけるコーク生成が抑制され、エチレン生成を促進することができる。なお、ここでの全酸量は、アンモニア昇温脱離(NH-TPD)におけるアンモニアの脱離量から算出される。具体的には、前処理としてゼオライトを真空下500℃で30分間乾燥させた後、前処理したゼオライトを100℃で過剰量のアンモニアと接触させて、ゼオライトにアンモニアを吸着させる。得られたゼオライトを、100℃で真空乾燥、または、100℃で水蒸気と接触させることにより、該ゼオライトから余剰アンモニアを除く。次いでアンモニアの吸着したゼオライトを、ヘリウム雰囲気下、昇温速度10℃/分で加熱して、100-600℃におけるアンモニア脱離量を質量分析法で測定し、ゼオライト当たりのアンモニア脱離量を全酸量とする。但し、全酸量は、TPDプロファイルをガウス関数によって波形分離し、そのピークトップを240℃以上に有する波形の面積の合計とする。この「240℃」は、ピークトップの位置の判断のみに用いる指標であって、240℃以上の部分の面積を求めるという趣旨ではない。ピークトップが240℃以上の波形である限り、当該「波形の面積」は、前記波形分離した波形の全面積とする。240℃以上にピークトップを有する波形が複数ある場合には、それぞれの面積の和とする。なお、本発明の全酸量には、ピークトップを240℃未満に有する弱酸点由来の酸量は含めないものとする。これは、TPDプロファイルにおいて、弱酸点由来の吸着と物理吸着との区別が容易ではないためである。The total acidity of zeolite (hereinafter referred to as the total acidity) is the sum of the amount of acid sites present in the zeolite crystal pores and the amount of acid sites on the outer surface of the zeolite crystal (hereinafter referred to as the outer surface acidity). is. The total acid content is not particularly limited, but is usually 0.01 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, and still more preferably 0.5 mmol/g or more. is. Also, it is usually 2.5 mmol/g or less, preferably 1.5 mmol/g or less, more preferably 1.2 mmol/g or less, and still more preferably 0.9 mmol/g or less. By setting the total acid amount within the above range, the propylene conversion activity can be maintained at a high level, coke formation inside the pores of the zeolite can be suppressed, and ethylene production can be promoted. The total acid amount here is calculated from the desorption amount of ammonia in ammonia temperature programmed desorption (NH 3 -TPD). Specifically, after drying the zeolite under vacuum at 500° C. for 30 minutes as a pretreatment, the pretreated zeolite is brought into contact with an excess amount of ammonia at 100° C. to cause the zeolite to adsorb ammonia. Excess ammonia is removed from the obtained zeolite by vacuum drying at 100°C or contacting it with water vapor at 100°C. Next, the ammonia-adsorbed zeolite was heated in a helium atmosphere at a temperature increase rate of 10°C/min, and the amount of ammonia desorbed at 100-600°C was measured by mass spectrometry, and the total amount of ammonia desorbed per zeolite was measured. Let it be the amount of acid. However, the total acid content is obtained by separating the waveform of the TPD profile using a Gaussian function, and determining the total area of the waveform having the peak top at 240° C. or higher. This "240° C." is an index used only for determining the position of the peak top, and does not mean that the area of the portion above 240° C. is obtained. As long as the waveform has a peak top of 240° C. or more, the “area of the waveform” is the total area of the waveform separated from the waveform. When there are a plurality of waveforms having peak tops at 240° C. or higher, the sum of the respective areas is used. Incidentally, the total acid amount in the present invention does not include the acid amount derived from weak acid sites having a peak top at less than 240°C. This is because it is not easy to distinguish between adsorption derived from weak acid sites and physical adsorption in the TPD profile.

ゼオライトの外表面酸量は、特に限定されるものではないが、通常、ゼオライトの全酸量に対して8%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、最も好ましくは0%である。外表面酸量をこれら上限値以下にすることにより、目的外炭化水素を発生させる副反応を減らし、エチレンの収率をより向上させることができる。 The outer surface acidity of zeolite is not particularly limited, but is usually 8% or less, preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less with respect to the total acidity of zeolite. , most preferably 0%. By keeping the outer surface acid amount at or below these upper limits, it is possible to reduce side reactions that generate unintended hydrocarbons and further improve the yield of ethylene.

ゼオライトの外表面酸量の値は、国際公開2010/128644号パンフレットに記載の方法で決定される。
具体的には、前処理としてゼオライトを真空下500℃で1時間乾燥させた後、前処理したゼオライトを150℃でピリジン蒸気と接触させてゼオライトにピリジンを吸着させ、150℃で減圧排気及びヘリウムフローにより該ゼオライトから余剰ピリジンを除いて得られた、ピリジンを吸着したゼオライトの、昇温速度10℃/分の昇温脱離法による150~800℃におけるゼオライト単位重量当たりのピリジンの脱離量から決定される。
なお、前記ゼオライトの外表面酸量等は、特に限定はされないが、シリル化処理、水蒸気処理、熱処理、酸処理、イオン交換処理等により調整することができる。また、金属元素の担持処理等の方法でも調整できる。更に、ゼオライトを成型する際にバインダーと前記ゼオライトの外表面酸点を結合させる、といった方法でも調整できる。
The value of the outer surface acidity of zeolite is determined by the method described in WO 2010/128644 pamphlet.
Specifically, after drying the zeolite under vacuum at 500° C. for 1 hour as a pretreatment, the pretreated zeolite is brought into contact with pyridine vapor at 150° C. to adsorb pyridine to the zeolite. Amount of pyridine desorbed per zeolite unit weight at 150 to 800°C by a temperature programmed desorption method at a temperature rising rate of 10°C/min from the pyridine-adsorbed zeolite obtained by removing surplus pyridine from the zeolite by flow determined from
Incidentally, the outer surface acidity and the like of the zeolite are not particularly limited, but can be adjusted by silylation treatment, steam treatment, heat treatment, acid treatment, ion exchange treatment, and the like. Moreover, it can also be adjusted by a method such as carrying treatment of a metal element. Furthermore, it can also be adjusted by a method of binding the outer surface acid sites of the zeolite with a binder when molding the zeolite.

ゼオライトがアルミノケイ酸塩を含む場合、XPSより求められる結晶表面層のSiO/Alは特に限定されるものではないが、通常、ICP元素分析より求められる結晶全体のSiO/Alの1.0倍以上であり、好ましくは1.5倍以上、より好ましくは2.0倍以上、さらに好ましくは3.0倍以上、最も好ましくは5.0倍以上である。この範囲にすることで、結晶表面層での副反応を抑制し、ゼオライト結晶内部でのエチレン生成を促進することができる。When the zeolite contains an aluminosilicate, the SiO 2 /Al 2 O 3 ratio of the crystal surface layer determined by XPS is not particularly limited, but usually the SiO 2 /Al 2 ratio of the entire crystal determined by ICP elemental analysis. It is 1.0 times or more, preferably 1.5 times or more, more preferably 2.0 times or more, still more preferably 3.0 times or more, and most preferably 5.0 times or more that of O3 . Within this range, it is possible to suppress side reactions in the crystal surface layer and promote ethylene production inside the zeolite crystal.

ゼオライト結晶表面層のSiO/Al比は、X線光電子分光法(XPS)により得られる数値である。XPSは結晶表面の情報を得る分析法であり、この分析法により、結晶表面層のSiO/Alを求めることができる。測定方法は特に限定されるものではないが、通常、Si、Alの含有量は、それぞれSi2pスペクトル、Al2pスペクトルより算出することができる。The SiO 2 /Al 2 O 3 ratio of the zeolite crystal surface layer is a numerical value obtained by X-ray photoelectron spectroscopy (XPS). XPS is an analysis method for obtaining information on the crystal surface, and this analysis method can determine SiO 2 /Al 2 O 3 of the crystal surface layer. Although the measuring method is not particularly limited, the contents of Si and Al can usually be calculated from Si2p spectrum and Al2p spectrum, respectively.

ゼオライトは、特段の処理をせずにそのまま用いてもよいが、シリル化、水蒸気処理、熱処理、酸処理及びイオン交換から選ばれる少なくとも1つの処理により全酸量、外表面酸量及び/又は外表面開口部の細孔径を適切に調整したゼオライトを用いると、生成物中のエチレン/プロピレン比率の変動幅を最小限に抑え、安定して高収率でエチレンを製造できる場合がある。これらのうち、ゼオライトの全酸量を調整する為には、水蒸気処理、熱処理、イオン交換から選ばれる少なくとも1つの処理を施す方法が好ましく、その中でも水蒸気処理、イオン交換から選ばれる少なくとも1つの処理を施す方法、特に水蒸気処理を施す方法は処理が簡便である理由から好ましい場合がある。一方、外表面酸量を調整する為にはシリル化処理、水蒸気処理から選ばれる少なくとも1つの処理を施すと効果的である場合がある。また、外表面開口部の細孔径を調整する為にはシリル化処理を施すと効果的である場合がある。このように、上記の処理を適宜組み合わせて行うと、ゼオライトの全酸量、外表面酸量及び/又は外表面開口部の細孔径を適切に調整できるため好ましい場合がある。
以下、これらの処理方法について述べる。
The zeolite may be used as it is without any particular treatment. Using a zeolite in which the pore size of the surface openings is appropriately adjusted can minimize the range of fluctuations in the ethylene/propylene ratio in the product, and can stably produce ethylene at a high yield. Among these, in order to adjust the total acidity of zeolite, a method of performing at least one treatment selected from steam treatment, heat treatment, and ion exchange is preferable, and among these, at least one treatment selected from steam treatment and ion exchange is preferable. The method of applying, especially the method of applying steam treatment, may be preferred for the reason that the treatment is simple. On the other hand, in order to adjust the amount of acid on the outer surface, it may be effective to apply at least one treatment selected from silylation treatment and steam treatment. Moreover, in order to adjust the pore size of the openings on the outer surface, it may be effective to perform silylation treatment. In this way, when the above treatments are appropriately combined, the total acid content of the zeolite, the outer surface acid content, and/or the pore size of the outer surface openings can be appropriately adjusted, which may be preferable in some cases.
These processing methods will be described below.

<シリル化処理>
ゼオライトをシリル化処理する方法は、特に限定されるものではなく、公知の方法を適宜用いることができ、具体的には液相シリル化や気相シリル化等を行うことができる。
<Silylation treatment>
The method of silylating the zeolite is not particularly limited, and a known method can be used as appropriate. Specifically, liquid-phase silylation, gas-phase silylation, and the like can be performed.

ゼオライトは、シリル化処理により、通常、外表面の酸点が被覆され、不活性化されることにより、外表面酸量が低下するものと考えられる。外表面酸量が低下すると、前記ゼオライトの外表面で起こる副反応が抑制される。具体的には、プロピレンの転化反応により、ゼオライト細孔内で生成したエチレン、ブテン等の低級オレフィンがゼオライトの外表面の酸点と接触することで、目的物以外の成分が生成する反応を抑制する効果があると考えられる。また、外表面酸点のシリル化では、前記ゼオライトが有する細孔を構成する酸点にもシリル基が結合するため、外表面開口部の細孔径が僅かに縮小し、結晶外への分子拡散を抑制する効果もあると考えられる。これにより、より大きい分子である炭素数5以上の炭化水素の生成を抑制することができ、エチレンの選択率が向上するものと考える。
以下、シリル化処理を、液相シリル化を例に取り、具体的に説明する。
The silylation treatment of zeolite usually coats the acid sites on the outer surface of the zeolite and deactivates it, which is thought to reduce the acidity on the outer surface. When the outer surface acid amount is reduced, side reactions occurring on the outer surface of the zeolite are suppressed. Specifically, due to the conversion reaction of propylene, lower olefins such as ethylene and butene generated in the zeolite pores come into contact with the acid sites on the outer surface of the zeolite, suppressing reactions that generate components other than the target product. It is thought that there is an effect to do. In addition, in the silylation of the outer surface acid sites, the silyl groups are also bound to the acid sites that constitute the pores of the zeolite, so the pore diameter of the outer surface openings is slightly reduced, and molecular diffusion out of the crystal occurs. is thought to have the effect of suppressing It is believed that this suppresses the production of hydrocarbons having 5 or more carbon atoms, which are larger molecules, and improves the ethylene selectivity.
The silylation treatment will be specifically described below by taking liquid-phase silylation as an example.

シリル化剤としては、特に限定されるものではなく、通常はゼオライトの外表面をシリル化することができ、かつゼオライトの細孔内をシリル化することができないものを使用する。具体的には、シリコーン類、クロロシラン類、アルコキシシラン類、シロキサン類、シラザン類などが使用できる。これらのうち、気相シリル化には通常クロロシラン類、液相シリル化には通常アルコキシシラン類が用いられ、より好ましいシリル化剤は、反応性が高く、取り扱いが比較的容易であるという点で、アルコキシシラン類である。
シリコーン類としては、具体的にはジメチルシリコーン、ジエチルシリコーン、フェニルメチルシリコーン、メチルハイドロジェンシリコーン、エチルハイドロジェンシリコーン、フェニルハイドロジェンシリコーン、メチルエチルシリコーン、フェニルエチルシリコーン、ジフェニルシリコーン、メチルトリフルオロプロピルシリコーン、エチルトリフルオロプロピルシリコーン、テトラクロロフェニルメチルシリコーン、テトラクロロフェニルエチルシリコーン、テトラクロロフェニルハイドロジェンシリコーン、テトラクロロフェニルシリコーン、メチルビニルシリコーン及びエチルビニルシリコーン等が用いられる。
The silylating agent is not particularly limited, and usually one that can silylate the outer surface of the zeolite but cannot silylate the inside of the pores of the zeolite is used. Specifically, silicones, chlorosilanes, alkoxysilanes, siloxanes, silazanes and the like can be used. Among these, chlorosilanes are usually used for gas-phase silylation, and alkoxysilanes are usually used for liquid-phase silylation. More preferable silylating agents are highly reactive and relatively easy to handle. , alkoxysilanes.
Specific examples of silicones include dimethylsilicone, diethylsilicone, phenylmethylsilicone, methylhydrogensilicone, ethylhydrogensilicone, phenylhydrogensilicone, methylethylsilicone, phenylethylsilicone, diphenylsilicone, and methyltrifluoropropylsilicone. , ethyltrifluoropropylsilicone, tetrachlorophenylmethylsilicone, tetrachlorophenylethylsilicone, tetrachlorophenylhydrogensilicone, tetrachlorophenylsilicone, methylvinylsilicone and ethylvinylsilicone.

クロロシラン類としては、具体的には、テトラクロロシラン、トリクロロシラン、トリクロロメチルシラン、ジクロロジメチルシラン、クロロトリメチルシラン、トリクロロエチルシラン、ジクロロジエチルシラン、クロロトリエチルシラン等が用いられる。
アルコキシシラン類としては、具体的には、テトラメトキシシラン、テトラエトキシシラン等;の4級アルコキシシラン、トリメトキシメチルシラン、トリメトキシエチルシラン、トリエトキシメチルシラン、トリエトキシエチルシラン等;の3級アルコキシシラン、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン等;の2級アルコキシシラン、メトキシトリメチルシラン、メトキシトリエチルシラン、エトキシトリメチルシラン、エトキシトリエチルシラン等;の1級アルコキシシランが用いられる。好ましくは2級以上のアルコキシシランであり、より好ましくは3級以上のアルコキシシランであり、さらに好ましくは4級アルコキシシランである。
Specific examples of chlorosilanes include tetrachlorosilane, trichlorosilane, trichloromethylsilane, dichlorodimethylsilane, chlorotrimethylsilane, trichloroethylsilane, dichlorodiethylsilane, and chlorotriethylsilane.
Specific examples of alkoxysilanes include tetramethoxysilane, tetraethoxysilane, etc.; quaternary alkoxysilane, trimethoxymethylsilane, trimethoxyethylsilane, triethoxymethylsilane, triethoxyethylsilane, etc.; alkoxysilane, dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, etc.; secondary alkoxysilane, methoxytrimethylsilane, methoxytriethylsilane, ethoxytrimethylsilane, ethoxytriethylsilane, etc.; is used. Secondary or higher class alkoxysilanes are preferred, tertiary or higher class alkoxysilanes are more preferred, and quaternary or higher class alkoxysilanes are even more preferred.

シロキサン類としては、具体的には、ヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ペンタメチルジシロキサン、テトラメチルジシロキサン等が挙げられ、ヘキサメチルジシロキサンが好ましい。
シラザン類としては、具体的には、ヘキサメチルジシラザン、ジプロピルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、テトラフェニルジメチルジシラザン等が挙げられ、ヘキサメチルジシラザンが好ましい。
Specific examples of siloxanes include hexamethyldisiloxane, hexaethyldisiloxane, pentamethyldisiloxane, tetramethyldisiloxane and the like, with hexamethyldisiloxane being preferred.
Specific examples of silazanes include hexamethyldisilazane, dipropyltetramethyldisilazane, diphenyltetramethyldisilazane, tetraphenyldimethyldisilazane and the like, with hexamethyldisilazane being preferred.

前記ゼオライトに対するシリル化剤の量は、特に限定されるものではないが、前記ゼオライト1モルに対して、通常0.001モル以上、好ましくは0.01モル以上、より好ましくは0.1モル以上である。また、通常5モル以下であり、好ましくは3モル以下、より好ましくは1モル以下である。シリル化剤の量を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつ過度なシリル化被覆による触媒活性低下を抑制できる点で好ましい。なお、上記シリル化剤の量は、シリル化剤に含まれるSi原子のモル数で表すこととし、分子内に複数のSi原子を有するシリル化剤では、そのSi原子の合計のモル数をシリル化剤のモル数として扱うことにする。 The amount of the silylating agent to the zeolite is not particularly limited, but is usually 0.001 mol or more, preferably 0.01 mol or more, more preferably 0.1 mol or more, relative to 1 mol of the zeolite. is. Also, it is usually 5 mol or less, preferably 3 mol or less, more preferably 1 mol or less. By setting the amount of the silylating agent within the above range, the silylation coating of the outer surface acid sites efficiently progresses, and it is possible to suppress the decrease in catalytic activity due to excessive silylation coating, which is preferable. The amount of the silylating agent is represented by the number of moles of Si atoms contained in the silylating agent. will be treated as the number of moles of the agent.

液相シリル化を行う場合、溶媒を使用することができ、溶媒としては、特に限定されないが、へキサン、ヘプタン、オクタン、ノナン、デカン、シクロペンタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素や水を使用することができる。また、水溶媒で液相シリル化を行なう場合は、シリル化反応を促進するために、硫酸や硝酸等の酸を添加した酸性水溶液を使用することができる。 When carrying out liquid phase silylation, a solvent can be used, and examples of the solvent include, but are not limited to, hydrocarbons such as hexane, heptane, octane, nonane, decane, cyclopentane, cyclohexane, benzene, toluene, and xylene. or water can be used. Further, when the liquid-phase silylation is performed using an aqueous solvent, an acidic aqueous solution to which an acid such as sulfuric acid or nitric acid is added can be used in order to promote the silylation reaction.

液相シリル化を行う場合、前記液相シリル化反応を行なう溶液中のシリル化剤の濃度は、特に限定されるものではないが、通常0.01質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上である。また、通常80質量%以下であり、好ましくは60質量%以下であり、より好ましくは40質量%以下である。シリル化剤の濃度を上記の範囲とすることで、シリル化剤同士の縮合を抑制し、かつシリル化速度を維持できる点で好ましい。 When liquid-phase silylation is performed, the concentration of the silylating agent in the solution in which the liquid-phase silylation reaction is performed is not particularly limited, but is usually 0.01% by mass or more, preferably 0.5% by mass. above, and more preferably at least 1% by mass. Moreover, it is usually 80% by mass or less, preferably 60% by mass or less, and more preferably 40% by mass or less. By setting the concentration of the silylating agent within the above range, it is preferable in that condensation between the silylating agents can be suppressed and the silylation rate can be maintained.

液相シリル化を行なう場合の前記ゼオライトに対する溶媒の量は、特に制限されるものではないが、前記ゼオライト1gに対して、通常1g以上、好ましくは3g以上、より好ましくは5g以上である。また、通常100g以下、好ましくは80g以下、より好ましくは50g以下である。溶媒の量を上記の範囲とすることで、スラリーの十分な撹拌効率を得るとともに、一定の生産性を確保することができる点で好ましい。 The amount of the solvent for the zeolite in liquid-phase silylation is not particularly limited, but is usually 1 g or more, preferably 3 g or more, more preferably 5 g or more, per 1 g of the zeolite. Also, it is usually 100 g or less, preferably 80 g or less, more preferably 50 g or less. By setting the amount of the solvent within the above range, it is possible to obtain sufficient stirring efficiency of the slurry and to ensure a certain level of productivity, which is preferable.

液相シリル化を行う場合、シリル化処理に供するゼオライトに特定の範囲の水分を付与しておいてもよい。前記ゼオライトが含有する水分は、ゼオライトが元々含有しているものであっても、人為的に水分を供給して、特定の範囲に調整してもよい。通常、本発明のゼオライトは水熱合成により得られたものを焼成し、さらに必要に応じてアンモニウム型へ変換してから焼成することによりプロトン型に変換したものを使用する。したがって、通常シリル化処理前のゼオライトの水分含有量は、通常非常に少ないと想定され、そのままシリル化処理に供してもよいし、ゼオライトに特定の水分含有量となるように水分を供給し、水分含有量を調整して使用してもよい(以下、調湿処理ということがある)。 When liquid-phase silylation is performed, the zeolite subjected to the silylation treatment may be provided with a specific range of moisture. The water contained in the zeolite may be originally contained in the zeolite, or may be adjusted to a specific range by artificially supplying water. Usually, the zeolite of the present invention is obtained by calcining the zeolite obtained by hydrothermal synthesis, and if necessary, converting it to the ammonium type and then calcining it to convert it to the proton type. Therefore, it is generally assumed that the water content of zeolite before silylation treatment is usually very low, and it may be subjected to silylation treatment as it is, or water is supplied to zeolite so that it has a specific water content, It may be used after adjusting the moisture content (hereinafter sometimes referred to as humidity conditioning treatment).

前記水分含有量は、特に制限されるものではないが、ゼオライト中に含まれる水分重量を乾燥ゼオライトの重量に対する質量%で表し、通常30質量%以下、好ましくは25質量%以下であり、下限としては完全乾燥状態の0質量%である。水分含有量を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつ過度なシリル化による細孔閉塞を防ぐことができる点で好ましい。 The water content is not particularly limited, but the weight of the water contained in the zeolite is represented by mass% with respect to the weight of the dry zeolite, and is usually 30% by mass or less, preferably 25% by mass or less, and the lower limit is is 0% by mass in a completely dry state. By setting the water content within the above range, the silylation coating of the outer surface acid sites proceeds efficiently and pore clogging due to excessive silylation can be prevented, which is preferable.

前記調湿処理方法は、所定の水分量に調整することができれば、特に限定されるものではない。例えば、ゼオライトを適当な相対湿度を有する大気中に放置する方法、ゼオライトを、密閉容器(デシケーター等)中に、水または無機塩の飽和水溶液とともに共存させ、飽和水蒸気雰囲気下で放置する方法、ゼオライトに、適当な水蒸気圧のガスを流通させる方法等が挙げられる。なお、前記の方法においては、より均一な調湿を行うために、ゼオライトを混合または攪拌しながら調湿処理を行ってもよい。 The humidity conditioning treatment method is not particularly limited as long as it can adjust the moisture content to a predetermined level. For example, a method of leaving the zeolite in an atmosphere having an appropriate relative humidity, a method of allowing the zeolite to coexist with water or a saturated aqueous solution of an inorganic salt in a closed container (desiccator, etc.), and a method of leaving the zeolite in a saturated steam atmosphere. Another example is a method of circulating a gas having an appropriate water vapor pressure. In the above method, the humidity conditioning treatment may be performed while mixing or stirring the zeolite in order to perform more uniform humidity conditioning.

シリル化処理をする温度は、使用するシリル化剤や溶媒の種類により適宜調整され、特に限定されるものではないが、通常20℃以上、好ましくは40℃以上、より好ましくは60℃以上である。また、通常140℃以下、好ましくは120℃以下であり、より好ましくは100℃以下である。シリル化処理温度を上記の範囲とすることで、外表面酸点のシリル化被覆が効率的に進行し、かつシリル化速度を維持できる点で好ましい。 The temperature for the silylation treatment is appropriately adjusted depending on the type of silylating agent and solvent used, and is not particularly limited, but is usually 20°C or higher, preferably 40°C or higher, more preferably 60°C or higher. . Also, it is usually 140° C. or lower, preferably 120° C. or lower, and more preferably 100° C. or lower. By setting the silylation treatment temperature within the above range, the silylation coating of the outer surface acid sites proceeds efficiently and the silylation rate can be maintained.

シリル化剤を添加してからシリル化温度まで昇温するのに要する時間は、特に限定されるものではなく、シリル化温度にてシリル化剤を添加してもよいが、通常0.01時間以上、好ましくは0.05時間以上、より好ましくは0.1時間以上であり、昇温に要する時間の上限は特にない。シリル化温度が高い場合、昇温に要する時間を上記の範囲とすることで、溶液中のシリル化剤の加水分解及び重合反応が抑制され、前記ゼオライトのシリル化が効率的に進行する点で好ましい。 The time required to raise the temperature from the addition of the silylation agent to the silylation temperature is not particularly limited, and the silylation agent may be added at the silylation temperature, but usually 0.01 hour. As mentioned above, it is preferably 0.05 hours or more, more preferably 0.1 hours or more, and there is no particular upper limit for the time required for temperature rise. When the silylation temperature is high, by setting the time required for temperature rise within the above range, the hydrolysis and polymerization reaction of the silylating agent in the solution are suppressed, and the silylation of the zeolite proceeds efficiently. preferable.

シリル化の処理時間は、反応温度にもよるが、通常0.1時間以上、好ましくは0.5時間以上であり、より好ましくは1時間以上であり、触媒の性能を阻害しない限りにおいて処理時間の上限は特にない。処理時間を上記の範囲とすることで、前記ゼオライトの外表面酸点のシリル化被覆が進行し、外表面酸量が十分に減少する点で好ましい。なお、かかるシリル化や次に述べ水蒸気処理に関しては、ゼオライト単体の紛体の時点で処理してもよいし、バインダー等により成形されてゼオライト触媒として用いられる状態になったものに対して行ってもよい。 The treatment time for silylation depends on the reaction temperature, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1 hour or longer, as long as the catalyst performance is not impaired. There is no upper limit for By setting the treatment time within the above range, the silylation coating of the outer surface acid sites of the zeolite proceeds, and the outer surface acid amount is sufficiently reduced, which is preferable. Regarding such silylation and steam treatment, which will be described below, the zeolite itself may be treated at the time of powder, or it may be applied to the zeolite catalyst that has been molded with a binder or the like and is in a state to be used as a zeolite catalyst. good.

<水蒸気処理>
水蒸気処理方法は、特に限定されるものではないが、本発明の効果を損なわない範囲において水蒸気を含む気体に接触させることができる。具体的には水蒸気、空気又は不活性ガスで希釈した水蒸気、エチレンやプロピレン等の低級オレフィンとともに水蒸気を含む反応雰囲気、または水蒸気を生成する反応雰囲気等に接触させる方法などが挙げられる。水蒸気を生成する反応とは、アルコールの脱水反応のように脱水が起こって水蒸気を生成する反応のことである。なお、条件によって水蒸気が部分的に液体の水として存在しても構わないが、前記ゼオライトに一様な水蒸気処理効果を与えるために、全体が水蒸気の状態で存在していることが好ましい。
<Steam treatment>
The method of water vapor treatment is not particularly limited, but the gas containing water vapor can be brought into contact within a range that does not impair the effects of the present invention. Specific examples include a method of contacting with a reaction atmosphere containing water vapor, water vapor diluted with air or an inert gas, water vapor together with a lower olefin such as ethylene or propylene, or a reaction atmosphere generating water vapor. A reaction that produces water vapor is a reaction in which dehydration occurs to produce water vapor, such as the dehydration reaction of alcohol. Depending on the conditions, the steam may partially exist as liquid water, but it is preferable that the entire zeolite exists in the form of steam in order to impart a uniform steam treatment effect to the zeolite.

前記ゼオライトは水蒸気処理により、その骨格を形成するケイ素以外のT原子の骨格からの脱離が結晶全体で起こるため、前記の外表面酸量だけでなく、前記全酸量も減少すると考えられる。この全酸量の減少により、ゼオライトの細孔内部におけるコーク生成が抑制され、分子の結晶内拡散性が向上する。このため、反応原料であるプロピレンの反応性が相対的に上昇するものと推測される。なお、過度な水蒸気処理を行うと、全酸量の低下に伴う活性低下、及び、分子の結晶内拡散性の過度な上昇により、ブテンやペンテン、ヘキセン等の炭素数4以上の炭化水素分子の生成量が増加する傾向がある。 By steaming the zeolite, T atoms other than silicon that form the skeleton of the zeolite are eliminated from the skeleton throughout the crystal. This reduction in total acidity suppresses coke formation inside the pores of the zeolite and improves the intracrystalline diffusibility of molecules. For this reason, it is presumed that the reactivity of propylene, which is a reaction raw material, is relatively increased. Excessive steam treatment may cause a decrease in activity due to a decrease in the total acid content, and an excessive increase in the diffusivity of molecules within crystals, resulting in the formation of hydrocarbon molecules with 4 or more carbon atoms such as butene, pentene, and hexene. The amount of production tends to increase.

水蒸気処理温度は、特に限定されるものではないが、通常400℃以上であり、好ましくは500℃以上、より好ましくは600℃以上である。また通常1000℃以下であり、好ましくは900℃以下、より好ましくは800℃以下である。水蒸気処理温度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的にケイ素以外のT原子を骨格から除去し、全酸量及び外表面酸量を低減することができる点で好ましい。 The steam treatment temperature is not particularly limited, but is usually 400° C. or higher, preferably 500° C. or higher, more preferably 600° C. or higher. Also, it is usually 1000° C. or lower, preferably 900° C. or lower, more preferably 800° C. or lower. By setting the steam treatment temperature within the above range, the T atoms other than silicon are efficiently removed from the skeleton in a short treatment time without causing the collapse of the skeleton structure, and the total acid content and the outer surface acid content are reduced. It is preferable in that it can

水蒸気処理に用いる水蒸気(スチーム)は、空気や、ヘリウム、窒素等の不活性ガスで希釈して使用することができる。その際の水蒸気濃度は、特に限定されるものではないが、前記ゼオライトを水蒸気処理する際に用いる気体全体に対して通常5体積%以上、好ましくは10体積%以上、より好ましくは20体積%以上であり、さらに好ましくは30体積%以上であり、通常100体積%以下、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは70体積%以下である。上限は特に制限されず、100体積%の水蒸気を用いることができる。水蒸気濃度を上記範囲にすることで、短い処理時間で効率的に前記T原子を骨格から除去し、全酸量及び外表面酸量を低減することができる点で好ましい。 Water vapor (steam) used for water vapor treatment can be used after being diluted with air or an inert gas such as helium or nitrogen. The steam concentration at that time is not particularly limited, but is usually 5% by volume or more, preferably 10% by volume or more, more preferably 20% by volume or more, relative to the entire gas used when steaming the zeolite. and more preferably 30% by volume or more, and usually 100% by volume or less, preferably 90% by volume or less, more preferably 80% by volume or less, and even more preferably 70% by volume or less. The upper limit is not particularly limited, and 100% by volume of water vapor can be used. By setting the water vapor concentration within the above range, the T atoms can be efficiently removed from the skeleton in a short treatment time, and the total acid amount and the outer surface acid amount can be reduced.

水蒸気処理の圧力(希釈ガスを含む全圧)は特に制限されるものではないが、通常0.05MPa以上(絶対圧、以下同様)、好ましくは0.075MPa以上、より好ましくは0.1MPa以上であり、通常2MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下である。水蒸気処理の圧力を上記圧力範囲にすることで、短時間で効率的に前記T原子を骨格から除去し、全酸量及び外表面酸量を低減することができる点で好ましい。 The pressure of steam treatment (total pressure including diluent gas) is not particularly limited, but is usually 0.05 MPa or higher (absolute pressure, hereinafter the same), preferably 0.075 MPa or higher, more preferably 0.1 MPa or higher. It is usually 2 MPa or less, preferably 1 MPa or less, more preferably 0.5 MPa or less. By setting the pressure of the steam treatment within the above pressure range, the T atoms can be efficiently removed from the skeleton in a short time, and the total acid amount and the outer surface acid amount can be reduced, which is preferable.

水蒸気の分圧は特に制限されるものではないが、通常0.01MPa以上(絶対圧、以下同様)、好ましくは0.03MPa以上、より好ましくは0.05MPa以上であり、通常2MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下、さらに好ましくは0.2MPa以下である。水蒸気の分圧を上記圧力範囲にすることで、短時間で効率的に前記T原子を骨格から除去し、全酸量及び外表面酸量を低減することができる点で好ましい。 Although the partial pressure of water vapor is not particularly limited, it is usually 0.01 MPa or more (absolute pressure, hereinafter the same), preferably 0.03 MPa or more, more preferably 0.05 MPa or more, and usually 2 MPa or less, preferably It is 1 MPa or less, more preferably 0.5 MPa or less, and still more preferably 0.2 MPa or less. By setting the partial pressure of water vapor within the above pressure range, it is possible to efficiently remove the T atoms from the skeleton in a short period of time, thereby reducing the total acid amount and the outer surface acid amount.

水蒸気処理時間は、特に限定されるものではないが、通常0.1時間以上、好ましくは0.5時間以上であり、より好ましくは1時間以上である。また触媒活性を著しく阻害しない限りにおいては処理時間の上限はない。水蒸気処理温度及び水蒸気濃度により、処理時間は適宜調整することができる。 The steam treatment time is not particularly limited, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1 hour or longer. There is no upper limit to the treatment time as long as it does not significantly impair the catalytic activity. The treatment time can be appropriately adjusted depending on the steam treatment temperature and steam concentration.

水蒸気処理は、その細孔内部に有機物が存在している状態で行ってもよい。有機物が細孔内部に存在することで、特に強い水蒸気処理を行なった場合には、細孔内部の酸点の極端な減少を防ぎつつ、外表面酸点の大幅な減少をはかることができる。
前記有機物としては、特に限定されないが、ゼオライトの水熱合成時に使用する構造規定剤、及び反応によって生成するコーク等が挙げられる。これら有機物は、水熱合成後のゼオライト(以下、焼成前ゼオライトということがある)に水蒸気処理を行った後、空気焼成等の燃焼工程を経て除去することもでき、または空気等の酸素含有ガスで希釈した水蒸気で処理することにより、有機物を除去しながら水蒸気処理することもできる。
The steam treatment may be performed in a state in which organic substances are present inside the pores. The presence of the organic matter inside the pores prevents an extreme decrease in the acid sites inside the pores, and can significantly reduce the acid sites on the outer surface, especially when a strong steam treatment is performed.
Examples of the organic substance include, but are not particularly limited to, a structure-directing agent used during hydrothermal synthesis of zeolite, coke generated by reaction, and the like. These organic substances can be removed by subjecting the zeolite after hydrothermal synthesis (hereinafter sometimes referred to as pre-calcined zeolite) to steam treatment, followed by a combustion process such as air calcination, or by removing an oxygen-containing gas such as air. By treating with steam diluted with , the steam treatment can be performed while removing the organic matter.

<熱処理>
熱処理する方法は、特に限定されるものではないが、具体的には、前記ゼオライトを、空気及び不活性ガスから選ばれる少なくとも1つの雰囲気下で高温処理する方法などが挙げられる。これにより、ゼオライトの全酸量及び外表面酸量を減少させることができる。
<Heat treatment>
The heat treatment method is not particularly limited, but specific examples include a method of subjecting the zeolite to a high temperature treatment in at least one atmosphere selected from air and inert gas. This can reduce the total acid content and outer surface acid content of the zeolite.

熱処理温度は特に限定されるものではないが、通常500℃以上、好ましくは600℃以上、より好ましくは700℃以上であり、通常1200℃以下、好ましくは1000℃以下、より好ましくは900℃以下である。熱処理温度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的に前記T原子を骨格から除去することができる点で好ましい。 The heat treatment temperature is not particularly limited, but is usually 500° C. or higher, preferably 600° C. or higher, more preferably 700° C. or higher, and usually 1200° C. or lower, preferably 1000° C. or lower, more preferably 900° C. or lower. be. Setting the heat treatment temperature within the above range is preferable in that the T atoms can be efficiently removed from the skeleton in a short treatment time without collapsing the skeleton structure.

熱処理の際に使用するガス種としては、ヘリウム、窒素、空気等を使用することができる。
熱処理も水蒸気処理同様に、細孔内部に有機物が存在している状態で行ってもよい。ヘリウムや窒素等の不活性ガスを用いた場合、熱処理により有機物が炭化する場合があるが、空気での焼成により、除去することができる。
Helium, nitrogen, air, or the like can be used as the gas species used in the heat treatment.
The heat treatment may also be performed in a state where organic substances are present inside the pores, similarly to the steam treatment. When an inert gas such as helium or nitrogen is used, the organic substance may be carbonized by heat treatment, but it can be removed by firing in air.

なお、熱処理は上記のゼオライトを製造する際に行われる焼成と同時に行っても別個に分けて行ってもよい。熱処理は骨格内の前記T原子の脱離等を目的とするため比較的高温で行われ、特に限定はされないが、具体的には、上記の焼成と熱処理を別個に行なう場合であれば、熱処理は、通常、焼成よりも高い温度で行なわれる。
熱処理の時間は、特に限定されるものではないが、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1.0時間以上である。また触媒活性を著しく阻害しない限りにおいては処理時間の上限はなく、熱処理温度により、処理時間は適宜調整することができる。
The heat treatment may be performed simultaneously with the calcination performed when producing the zeolite, or may be performed separately. The heat treatment is performed at a relatively high temperature for the purpose of removing the T atoms in the skeleton, etc., and is not particularly limited. is usually performed at a higher temperature than calcination.
The heat treatment time is not particularly limited, but is usually 0.1 hour or longer, preferably 0.5 hour or longer, and more preferably 1.0 hour or longer. There is no upper limit to the treatment time as long as it does not significantly impair the catalytic activity, and the treatment time can be appropriately adjusted depending on the heat treatment temperature.

<酸処理>
ゼオライトの酸処理の方法は、特に限定されるものではないが、具体的には、酸性水溶液を用いる方法が挙げられる。
前記酸性水溶液に用いる酸の種類としては、特に限定されるものではないが、硫酸、硝酸、塩酸、リン酸などの無機酸、ギ酸、酢酸、プロピオン酸などのカルボン酸、シュウ酸、マロン酸などのジカルボン酸などを使用することができる。これらのうち好ましいのは、硫酸、硝酸、塩酸である。
<Acid treatment>
The method of acid-treating zeolite is not particularly limited, but a specific example is a method using an acidic aqueous solution.
The type of acid used in the acidic aqueous solution is not particularly limited, but inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; carboxylic acids such as formic acid, acetic acid and propionic acid; oxalic acid and malonic acid. and the like can be used. Sulfuric acid, nitric acid and hydrochloric acid are preferred among these.

前記酸性水溶液の酸の濃度としては、特に限定されるものではないが、通常0.01M以上、好ましくは0.1M以上、より好ましくは1M以上であり、通常10M以下であり、好ましくは8M以下であり、より好ましくは6M以下である。酸の濃度を上記の範囲とすることで、骨格構造の崩壊を起こさずに、短い処理時間で効率的に全酸量及び外表面酸量を低減することができる点で好ましい。 The acid concentration of the acidic aqueous solution is not particularly limited, but is usually 0.01 M or more, preferably 0.1 M or more, more preferably 1 M or more, and usually 10 M or less, preferably 8 M or less. and more preferably 6M or less. By setting the concentration of the acid within the above range, it is possible to efficiently reduce the total acid amount and the outer surface acid amount in a short treatment time without collapsing the skeleton structure, which is preferable.

ゼオライトに対する酸性水溶液の量としては、特に制限されるものではないが、ゼオライト1gに対して、酸性水溶液の総量で通常3g以上、好ましくは5g以上、より好ましくは10g以上であり、通常100g以下、好ましくは80g以下、より好ましくは50g以下である。酸性水溶液の量を上記の範囲とすることで、スラリーの十分な撹拌効率を得るとともに、一定の生産性を確保することができる点で好ましい。 The amount of the acidic aqueous solution relative to the zeolite is not particularly limited, but the total amount of the acidic aqueous solution is usually 3 g or more, preferably 5 g or more, more preferably 10 g or more, and usually 100 g or less, relative to 1 g of zeolite. It is preferably 80 g or less, more preferably 50 g or less. By setting the amount of the acidic aqueous solution within the above range, it is possible to obtain a sufficient stirring efficiency of the slurry and to ensure a certain level of productivity, which is preferable.

酸処理の温度としては、特に限定されるものではないが、常圧においては通常室温から100℃、耐圧容器内では100℃以上で行うことも可能であり、通常40℃以上、好ましく60℃以上、より好ましくは80℃以上であり、通常200℃以下、好ましくは180℃以下、より好ましくは160℃以下である。酸処理の温度を上記の範囲とすることで、骨格構造の崩壊を抑制しながら、短い処理時間で効率的に全酸量及び外表面酸量を低減することができる点で好ましい。 The temperature of the acid treatment is not particularly limited, but it is usually room temperature to 100° C. under normal pressure, and can be carried out at 100° C. or higher in a pressure vessel, usually 40° C. or higher, preferably 60° C. or higher. , more preferably 80° C. or higher, and usually 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower. By setting the acid treatment temperature within the above range, it is possible to efficiently reduce the total acid amount and the outer surface acid amount in a short treatment time while suppressing the collapse of the skeletal structure.

酸処理の処理時間は、特に限定されるものではなく、酸の濃度や反応温度にもよるが、通常0.01時間以上、好ましくは0.1時間以上であり、触媒の性能を阻害しない限りにおいて処理時間の上限は特にない。酸の濃度や反応温度により、処理時間は適宜調整することができる。
酸性水溶液中に、シリル化剤を添加することにより、酸処理とシリル化処理を同時に行うこともできる。その際に用いるシリル化剤は、前記シリル化剤と同じである。
The treatment time of the acid treatment is not particularly limited and depends on the concentration of the acid and the reaction temperature, but it is usually 0.01 hour or more, preferably 0.1 hour or more, as long as it does not impair the performance of the catalyst. There is no particular upper limit for the processing time. The treatment time can be appropriately adjusted depending on the concentration of the acid and the reaction temperature.
Acid treatment and silylation treatment can be performed simultaneously by adding a silylating agent to the acidic aqueous solution. The silylating agent used at that time is the same as the silylating agent described above.

<イオン交換処理>
ゼオライトのカウンターカチオンは、通常、ナトリウム等のアルカリ金属、アルカリ土類金属、アンモニウム(NH)あるいはプロトン(H)である。これらのカウンターカチオンはイオン交換可能であり、適宜、金属イオン交換して使用することができる。交換する金属としては、特に限定されるものではないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属が挙げられる。好ましくはナトリウム、カリウム、カルシウム、ストロンチウムであり、より好ましくはナトリウム、カリウム、カルシウムであり、さらに好ましくはカルシウムである。
<Ion exchange treatment>
The counter cations of zeolites are usually alkali metals such as sodium, alkaline earth metals, ammonium ( NH4 ) or protons (H). These counter cations are ion-exchangeable and can be used after metal ion exchange as appropriate. Metals to be exchanged include, but are not limited to, alkali metals such as lithium, sodium, potassium, rubidium and cesium, and alkaline earth metals such as calcium, strontium and barium. Preferred are sodium, potassium, calcium and strontium, more preferred are sodium, potassium and calcium, and still more preferred is calcium.

イオン交換することで、ゼオライトの酸量を調整することができ、さらには、ケージ空間容積を調整することができるため、反応時のコーク蓄積を抑制することができる。また熱的/水熱的安定性が高くなり劣化を抑制することができる点でも好ましい。金属イオン交換の方法は、特に限定されるものではないが、既知のイオン交換法によって行うことができる。イオン交換法に用いる際の、ゼオライトのカチオンは特に限定されず、通常、ナトリウム型、アンモニウム型、あるいはプロトン型が用いられる。 By ion exchange, the acid amount of the zeolite can be adjusted, and furthermore, the cage space volume can be adjusted, so coke accumulation during the reaction can be suppressed. It is also preferable in that thermal/hydrothermal stability is enhanced and deterioration can be suppressed. Although the method of metal ion exchange is not particularly limited, it can be carried out by a known ion exchange method. The cation of the zeolite used in the ion exchange method is not particularly limited, and sodium type, ammonium type, or proton type is usually used.

金属源としては、通常、硝酸塩、硫酸塩、酢酸塩、炭酸塩、塩化物塩、臭化物塩、ヨウ化物塩等が用いられ、好ましくは硝酸塩、硫酸塩、塩化物塩であり、より好ましくは硝酸塩である。用いる溶媒としては、金属源が溶解するものであれば、特に限定されるものではないが、通常、水が用いられる。 As metal sources, nitrates, sulfates, acetates, carbonates, chloride salts, bromide salts, iodide salts and the like are usually used, with nitrates, sulfates and chloride salts being preferred, and nitrates being more preferred. is. The solvent to be used is not particularly limited as long as it dissolves the metal source, but water is usually used.

金属源溶液の濃度は、特に限定されるものではないが、通常0.1M以上、好ましくは0.5M以上、より好ましくは1M以上であり、また上限は、通常10M以下、好ましくは8M以下、より好ましくは6M以下である。金属源の溶解度見合いで濃度を調整することが望ましい。 The concentration of the metal source solution is not particularly limited, but is usually 0.1 M or more, preferably 0.5 M or more, more preferably 1 M or more, and the upper limit is usually 10 M or less, preferably 8 M or less. More preferably, it is 6M or less. It is desirable to adjust the concentration according to the solubility of the metal source.

イオン交換を行う温度は、室温から溶媒の沸点程度である。処理時間は、イオン交換が十分平衡に達する時間であればよく、通常1~6時間程度である。金属の交換率を高めるため、イオン交換を複数回繰り返すことも可能である。 The temperature for ion exchange is from room temperature to about the boiling point of the solvent. The treatment time may be sufficient as long as the ion exchange reaches a sufficient equilibrium, and is usually about 1 to 6 hours. It is also possible to repeat the ion exchange multiple times in order to increase the metal exchange rate.

イオン交換後のゼオライトを乾燥する際の雰囲気は特に限定されず、例えば空気中、不活性ガス中、真空中などで行われる。乾燥温度は、通常、室温から溶媒の沸点程度である。イオン交換後のゼオライトは、適宜焼成を行って使用する。焼成温度は金属源の分解温度よりも高温であればよく、通常200℃~600℃、好ましくは300℃~500℃である。焼成温度が低すぎると金属源が残留しやすく、焼成温度が高すぎるとゼオライトの構造崩壊や、金属のシンタリングが進行し易くなる。 The atmosphere in which the ion-exchanged zeolite is dried is not particularly limited. The drying temperature is usually from room temperature to about the boiling point of the solvent. The ion-exchanged zeolite is appropriately calcined before use. The firing temperature may be higher than the decomposition temperature of the metal source, usually 200°C to 600°C, preferably 300°C to 500°C. If the sintering temperature is too low, the metal source tends to remain, and if the sintering temperature is too high, structural collapse of the zeolite and sintering of the metal tend to proceed.

また、上記以外にも、金属元素の担持処理、又はゼオライトを成形する際にバインダーと前記ゼオライトの外表面酸点を結合させる、といった方法により外表面酸量を調整することもできる。 In addition to the above, it is also possible to adjust the outer surface acidity by carrying out a metal element support treatment, or by combining a binder with the outer surface acid points of the zeolite when molding the zeolite.

ゼオライトの平均一次粒子径は、特に限定されるものではないが、通常0.01μm以上、好ましくは0.03μm以上、より好ましくは0.05μm以上であり、通常10μm以下、好ましくは5μm以下、より好ましくは1μm以下、さらに好ましくは0.5μm以下、特に好ましくは0.3μm以下である。上記範囲とすることで、触媒反応におけるゼオライト結晶内の拡散性及び触媒有効係数が十分高くなり、ゼオライト結晶性が十分なものとなり、耐水熱安定性が高い点で好ましい。
なお、本実施形態における平均一次粒子径とは、一次粒子の粒子径に相当する。したがって、光散乱法などで測定される凝集体の粒子径とは異なる。平均一次粒子径は、走査型電子顕微鏡(以降、「SEM」と略記する。)又は透過型電子顕微鏡(以降、「TEM」と略記する。)による粒子の観察において、粒子を任意に20個以上測定し、その一次粒子の粒子径を平均して求められる。該粒子が長方形の場合、該粒子の長辺・短辺を計測して(奥行は計測せず)、その和の平均、つまり(長辺+短辺)÷2を算出して、該粒子の一次粒子径とする。
Although the average primary particle size of zeolite is not particularly limited, it is usually 0.01 μm or more, preferably 0.03 μm or more, more preferably 0.05 μm or more, and usually 10 μm or less, preferably 5 μm or less, or more. It is preferably 1 μm or less, more preferably 0.5 μm or less, and particularly preferably 0.3 μm or less. The above range is preferable because the diffusivity in the zeolite crystal and the catalyst effectiveness factor in the catalytic reaction are sufficiently high, the zeolite crystallinity is sufficient, and the hydrothermal stability is high.
The average primary particle size in the present embodiment corresponds to the particle size of primary particles. Therefore, it differs from the particle size of aggregates measured by a light scattering method or the like. The average primary particle diameter is determined by observing particles with a scanning electron microscope (hereinafter abbreviated as "SEM") or a transmission electron microscope (hereinafter abbreviated as "TEM"), and arbitrarily 20 or more particles. It is obtained by measuring and averaging the particle diameters of the primary particles. When the particle is rectangular, the long side and short side of the particle are measured (the depth is not measured), and the average of the sums, that is, (long side + short side) / 2, is calculated. Primary particle size.

(BET比表面積)
ゼオライトのBET比表面積は、特に限定されるものではないが、通常300m/g以上、好ましくは400m/g以上、より好ましくは500m/g以上であり、通常1000m/g以下、好ましくは800m/g以下、より好ましくは750m/g以下である。上記範囲にあることで、細孔内表面に存在する活性点が十分多く、触媒活性が高くなるため好ましい。なお、BET比表面積は、JIS8830(ガス吸着による粉体(固体)の比表面積測定方法)に準じた測定方法によって測定できる。吸着ガスとして窒素を使用し、1点法(相対圧:p/p0=0.30)でBET比表面積を求められる。
(BET specific surface area)
The BET specific surface area of zeolite is not particularly limited, but is usually 300 m 2 /g or more, preferably 400 m 2 /g or more, more preferably 500 m 2 /g or more, and usually 1000 m 2 /g or less, preferably is 800 m 2 /g or less, more preferably 750 m 2 /g or less. Within the above range, there are sufficiently many active sites on the inner surfaces of the pores, and the catalytic activity is increased, which is preferable. The BET specific surface area can be measured by a measurement method according to JIS8830 (Method for measuring specific surface area of powder (solid) by gas adsorption). Nitrogen is used as the adsorption gas, and the BET specific surface area is determined by the one-point method (relative pressure: p/p0=0.30).

ゼオライトの細孔容積は、特に限定されるものではないが、通常0.1ml/g以上、好ましくは0.2ml/g以上であり、通常3ml/g以下、好ましくは2ml/g以下である。上記範囲にあることで、細孔内表面に存在する活性点が十分多く、触媒活性が高くなるため好ましい。細孔容積は相対圧法により得られる窒素の吸着等温線から求める値であることが好ましい。 Although the pore volume of zeolite is not particularly limited, it is usually 0.1 ml/g or more, preferably 0.2 ml/g or more, and usually 3 ml/g or less, preferably 2 ml/g or less. Within the above range, there are sufficiently many active sites on the inner surfaces of the pores, and the catalytic activity is increased, which is preferable. The pore volume is preferably a value obtained from a nitrogen adsorption isotherm obtained by a relative pressure method.

ゼオライトは、一般的に水熱合成法により調製することが可能である。例えば、ケイ酸塩であれば、水にアルミニウム源、ガリウム源、ホウ素源、及び鉄源から選ばれる少なくとも1種類と、ケイ素源やアルカリ水溶液等を加えて均一なゲルを生成させ、これに必要に応じて構造規定剤を加えて攪拌し、原料ゲルを調製する。得られた前記原料ゲルを、密閉容器中で加熱し、自圧下反応させることにより、結晶化させる。このときの反応温度は特に限定されないが、通常100~200℃に保持して結晶化させる。結晶化の際に、必要に応じて種結晶を添加してもよく、製造性の面では種結晶を添加する方が、反応時間を短縮できる点や結晶粒子を微粒子化できる点で好ましい。次いで結晶化した固形成分を濾過および洗浄した後、固形分を乾燥し、引き続き焼成することによって、アルカリ(土類)金属型のゼオライトとして得ることができる。前記の乾燥温度は限定されないが、通常100~200℃である。また前記の焼成温度は限定されないが、通常400~700℃である。その後、酸性溶液やアンモニウム塩溶液でイオン交換し、焼成することにより、H型のゼオライトを得ることができる。 Zeolites can generally be prepared by hydrothermal synthesis. For example, in the case of a silicate, at least one selected from an aluminum source, a gallium source, a boron source, and an iron source, a silicon source, an alkaline aqueous solution, etc. are added to water to form a uniform gel. A structure-directing agent is added and stirred to prepare a raw material gel. The raw material gel thus obtained is heated in a closed container and reacted under autogenous pressure to crystallize. Although the reaction temperature at this time is not particularly limited, it is usually held at 100 to 200° C. for crystallization. During crystallization, seed crystals may be added as necessary, and from the standpoint of manufacturability, addition of seed crystals is preferable in that reaction time can be shortened and crystal grains can be made into fine particles. Then, after filtering and washing the crystallized solid component, the solid component is dried and subsequently calcined to obtain an alkali (earth) metal type zeolite. Although the drying temperature is not limited, it is usually 100 to 200°C. Although the firing temperature is not limited, it is usually 400 to 700°C. After that, ion exchange is performed with an acidic solution or an ammonium salt solution, followed by calcination, whereby an H-type zeolite can be obtained.

具体的に、CHA型ゼオライトとしては、米国特許第4544538号公報に記載の方法等の公知の方法で製造することができる。また、ERI型ゼオライトとしては、米国特許第7344694号公報に記載の方法等の公知の方法で製造することができる。 Specifically, CHA-type zeolite can be produced by known methods such as the method described in US Pat. No. 4,544,538. ERI zeolite can be produced by known methods such as the method described in US Pat. No. 7,344,694.

前記構造規定剤として用いられるカチオンは、ゼオライトの形成を阻害しないアニオンを伴うものである。前記アニオンは、特に限定はされないが、具体的には、Cl、Br、Iなどのハロゲンイオンや水酸化物イオン、酢酸塩、硫酸塩、カルボン酸塩が含まれる。中でも、水酸化物イオンは特に好適に用いられる。The cations used as structure-directing agents are accompanied by anions that do not inhibit zeolite formation. The anion is not particularly limited, but specifically includes halogen ions such as Cl , Br and I , hydroxide ions, acetates, sulfates and carboxylates. Among them, hydroxide ions are particularly preferably used.

また、構造規定剤として、リン含有系構造規定剤又は窒素系構造規定剤を使用することもできる。リン含有系構造規定剤としては、例えばテトラエチルホスホニウム水酸化物、テトラエチルホスホニウムブロミドのような物質が挙げられる。しかし、リン化合物は、合成ゼオライトから焼成により構造規定剤を除去する際に、有害物質である五酸化二リン等を発生する可能性があるため、好ましくは窒素系構造規定剤である。 As the structure-directing agent, a phosphorus-containing structure-directing agent or a nitrogen-based structure directing agent can also be used. Phosphorus-containing structure-directing agents include, for example, substances such as tetraethylphosphonium hydroxide and tetraethylphosphonium bromide. However, when the structure-directing agent is removed from the synthetic zeolite by calcination, the phosphorus compound may generate harmful substances such as diphosphorus pentoxide, so the nitrogen-based structure-directing agent is preferable.

ゼオライトは触媒活性成分であるために、ゼオライトをそのままゼオライト触媒として反応に用いてよいし、反応に不活性な物質やバインダーを用いて、造粒・成型して、或いはこれらを混合して反応に用いてもよい。
該反応に不活性な物質やバインダーとしては、アルミナまたはアルミナゾル、シリカ、シリカゾル、石英、およびこれらの混合物等が挙げられる。
ゼオライトを、ゼオライト単体で使用するのではなく、バインダー等を用いて成形して使用するような場合であっても、全酸量や外表面酸量の測定方法は前述と同じ方法で測定することができ、好ましい範囲もまた同じ値になる。
以下、上述のようにゼオライト単体で使用するのではなく、バインダー等を用いて成形して使用するような場合の好ましい態様を、ゼオライト触媒という言葉を用いて説明する。
Since zeolite is a catalytically active component, zeolite may be used as it is for the reaction as a zeolite catalyst. may be used.
Substances and binders inert to the reaction include alumina, alumina sol, silica, silica sol, quartz, and mixtures thereof.
Even if the zeolite is not used as a single zeolite, but is molded using a binder, etc., the total acid content and the outer surface acid content should be measured in the same manner as described above. and the preferred range will also be the same value.
Hereinafter, a preferred embodiment in which the zeolite is not used alone as described above but is used after being molded using a binder or the like will be described using the term zeolite catalyst.

ゼオライト触媒全体の全酸量及び外表面酸量は、上述のゼオライトの全酸量及び外表面酸量と同様の方法にて測定することができる。ゼオライト触媒の全酸量は、特に限定されるものではないが、通常0.01mmol/g以上、好ましくは0.1mmol/g以上、より好ましくは0.3mmol/g以上、さらに好ましくは0.5mmol/g以上である。また、通常2.5mmol/g以下、好ましくは1.5mmol/g以下、より好ましくは1.2mmol/g以下、さらに好ましくは0.9mmol/g以下である。ゼオライト触媒の全酸量を上記の範囲とすることで、プロピレンの転化活性が高いレベルで維持され、ゼオライトの細孔内部におけるコーク生成が抑制され、エチレンの生成をより促進することができる点で好ましい。 The total acid content and outer surface acid content of the zeolite catalyst as a whole can be measured by the same methods as those for the above-described total acid content and outer surface acid content of zeolite. The total acid amount of the zeolite catalyst is not particularly limited, but is usually 0.01 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, and still more preferably 0.5 mmol/g. / g or more. Also, it is usually 2.5 mmol/g or less, preferably 1.5 mmol/g or less, more preferably 1.2 mmol/g or less, and still more preferably 0.9 mmol/g or less. By setting the total acid amount of the zeolite catalyst within the above range, the propylene conversion activity is maintained at a high level, coke formation inside the pores of the zeolite is suppressed, and ethylene production can be further promoted. preferable.

ゼオライト触媒の外表面酸量は、特に限定されるものではないが、通常、触媒の全酸量に対して8%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、最も好ましくは0%である。前記上限値以下とすることで、副反応を抑制しエチレンの選択率を高い状態で維持しやすい。
なお、ゼオライト触媒の全酸量及び外表面酸量を調整するには、酸点を有さないシリカやアルミナ等バインダーとして用いることが好ましい。なお、アルミナ等の、酸点を有するバインダーを使用した場合には、触媒の全酸量及び外表面酸量の測定方法では、ゼオライトの酸量と共にバインダーの酸量も含んだ合計値として測定される。その場合はバインダー由来の酸量を別法により求め、触媒の酸量からその値を差し引くことによって、バインダー由来の酸量を含まないゼオライトのみの酸量を求めることが可能である。前記バインダーの酸量は、27Al-NMRにおいてゼオライトの酸点に由来する4配位Alのピーク強度からゼオライトの酸量を求め、アンモニア昇温脱離法により求まる触媒の酸量からその値を差し引く方法で求められる。
Although the amount of acid on the outer surface of the zeolite catalyst is not particularly limited, it is usually 8% or less, preferably 5% or less, more preferably 3% or less, and still more preferably 1% with respect to the total acid amount of the catalyst. Below, it is most preferably 0%. By making it below the said upper limit, it is easy to suppress a side reaction and to maintain the selectivity of ethylene in a high state.
In addition, in order to adjust the total acid amount and the outer surface acid amount of the zeolite catalyst, it is preferable to use silica, alumina, or the like having no acid sites as a binder. When a binder having acid sites such as alumina is used, the total acidity of the catalyst and the acidity of the outer surface of the catalyst are measured as a total value including the acidity of the zeolite and the acidity of the binder. be. In that case, it is possible to obtain the acid content of the zeolite without the binder-derived acid content by obtaining the acid content derived from the binder by another method and subtracting this value from the acid content of the catalyst. The acid amount of the binder is obtained from the acid amount of the zeolite obtained from the peak intensity of tetracoordinated Al derived from the acid sites of the zeolite in 27 Al-NMR, and the acid amount of the catalyst obtained by the ammonia temperature programmed desorption method. Calculated by subtraction.

ゼオライト触媒に含有され得るリン化合物の量としては、特に限定されるものではないが、通常10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0.01質量%以下である。なお、ここでのリン化合物とは、リン酸化物等の物質を指し、アルミノリン酸塩やガロリン酸塩等のゼオライト自体そのものを意味するものではない。 The amount of the phosphorus compound that can be contained in the zeolite catalyst is not particularly limited, but is usually 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably 0.1% by mass. % or less, particularly preferably 0.01 mass % or less. The phosphorus compound here refers to a substance such as phosphorus oxide, and does not mean zeolite itself such as aluminophosphate or gallophosphate.

ゼオライト触媒の平均粒子径は、ゼオライトの合成条件、特には造粒・成型条件により異なるが、通常、平均粒子径として、通常0.01μm~500μmであり、好ましくは0.1~100μmである。ゼオライト触媒の平均粒子径が大きくなり過ぎると、触媒の有効係数が低下する傾向があり、小さすぎると取り扱い性が劣るものとなる。この平均粒子径は、SEM観察等により求めることができる。 The average particle size of the zeolite catalyst varies depending on zeolite synthesis conditions, particularly granulation/molding conditions, but the average particle size is usually 0.01 μm to 500 μm, preferably 0.1 to 100 μm. If the average particle size of the zeolite catalyst is too large, the effective coefficient of the catalyst will tend to decrease, and if it is too small, the handleability will be poor. This average particle size can be determined by SEM observation or the like.

<C2.エチレンの製造方法>
本実施形態のエチレンの製造方法は、少なくともプロピレンと炭素数4以上の炭化水素を含む原料炭化水素を、触媒と接触させてエチレンを製造する方法であり、原料炭化水素において、前記プロピレンに対する炭素数4以上の炭化水素の質量比が0.01以上10以下の範囲である。以下に各工程について詳細に説明する。
<C2. Method for producing ethylene>
The method for producing ethylene of the present embodiment is a method for producing ethylene by bringing a raw material hydrocarbon containing at least propylene and a hydrocarbon having 4 or more carbon atoms into contact with a catalyst. The mass ratio of 4 or more hydrocarbons is in the range of 0.01 to 10. Each step will be described in detail below.

原料であるプロピレンの製造由来は特に限定されない。例えば、スチーム分解法または接触分解法によりナフサの分解により得られるもの(以下、ナフサ分解物という)、エタン、プロパン、n-ブタン、常圧軽油(AGO)、減圧軽油(VGO)、天然ガス液(NGL)等の熱分解により製造されるもの(以下、熱分解物という)、減圧軽油や残油の流動接触分解法(FCC)により製造されるもの、MTO(Methanol to Olefin)反応により製造されるもの、ETO(Ethylene/Ethanol to Olefin)反応により製造されるもの、プロパン等のアルカンの脱水素反応により製造されるもの、石炭のガス化により得られる水素/一酸化炭素混合ガスを原料としてフィッシャートロプシュ合成を行うことにより製造されるもの等が挙げられる。このうち上記ナフサ分解物および上記熱分解物、MTO反応生成物が好ましく、ナフサ分解物がより好ましい。 The production origin of propylene, which is a raw material, is not particularly limited. For example, those obtained by cracking naphtha by steam cracking or catalytic cracking (hereinafter referred to as naphtha cracked product), ethane, propane, n-butane, atmospheric gas oil (AGO), vacuum gas oil (VGO), natural gas liquid (NGL) produced by thermal decomposition (hereinafter referred to as thermal decomposition product), produced by fluidized catalytic cracking (FCC) of vacuum gas oil or residual oil, produced by MTO (Methanol to Olefin) reaction , those produced by the ETO (Ethylene/Ethanol to Olefin) reaction, those produced by the dehydrogenation reaction of alkanes such as propane, and the Fischer process using a hydrogen/carbon monoxide mixed gas obtained by the gasification of coal as a raw material. Examples thereof include those produced by Tropsch synthesis. Of these, the above naphtha decomposition products, the above thermal decomposition products, and MTO reaction products are preferred, and naphtha decomposition products are more preferred.

炭素数4以上の炭化水素としては、ブテン、ペンテン、ヘキセン等のオレフィン類;ブタン、ペンタン、ヘキサン等のパラフィン類、ブチン、ペンチン、ヘキシン等のアルキン類;ブタジエン、ペンタジエン、ヘキサジエン等のジエン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を含んでいてもよい。上記のオレフィン類、パラフィン類、アルキン類、ジエン類は、直鎖状構造でも分岐状構造、環状構造の異性体を含んでいてもよいが、反応性の点で、直鎖状構造が好ましい。また、反応性の点で、オレフィン類であることが好ましく、好ましくは炭素数8以下(ブテン、ペンテン、ヘキセン、ヘプテン、オクテン)、より好ましくは炭素数6以下(ブテン、ペンテン、ヘキセン)、さらに好ましく炭素数5以下(ブテン、ペンテン)、最も好ましくは炭素数4のブテンである。ブテンとしては、4種の異性体のいずれもが使用可能である。 Examples of hydrocarbons having 4 or more carbon atoms include olefins such as butene, pentene and hexene; paraffins such as butane, pentane and hexane; alkynes such as butyne, pentyne and hexyne; dienes such as butadiene, pentadiene and hexadiene; It may contain aromatic hydrocarbons such as benzene, toluene, and xylene. The olefins, paraffins, alkynes, and dienes described above may contain isomers of straight-chain structures, branched structures, and cyclic structures, but straight-chain structures are preferred in terms of reactivity. In terms of reactivity, olefins are preferable, preferably 8 or less carbon atoms (butene, pentene, hexene, heptene, octene), more preferably 6 or less carbon atoms (butene, pentene, hexene), and further C5 or less (butene, pentene) is preferred, and C4 butene is most preferred. Any of the four isomers can be used as butene.

なお、原料である炭化水素は、プロピレン及び炭素数4以上の炭化水素以外の炭化水素(以下、「その他の炭化水素」ということがある。)を含有していてもよく、例えばメタン、エタン、エチレン、アセチレン、プロパン、メチルアセチレン等の炭素数3以下の炭化水素を含んでいてもよい。また、プロピレン以外に、メタノールやジメチルエーテルを含んでいてもよく、その混合割合に制限はない。 The raw material hydrocarbon may contain hydrocarbons other than propylene and hydrocarbons having 4 or more carbon atoms (hereinafter sometimes referred to as "other hydrocarbons"), such as methane, ethane, It may contain hydrocarbons having 3 or less carbon atoms such as ethylene, acetylene, propane, and methylacetylene. In addition to propylene, it may contain methanol or dimethyl ether, and the mixing ratio is not limited.

通常、プロピレンからのエチレン製造において、目的生成物であるエチレンは、原料である炭化水素中に含まれていてもよいが、触媒との接触によりブテンやヘキセン等の別のオレフィンに変換されやすいため、エチレンを分離した状態のプロピレンを原料として用いることが好ましい。原料である炭化水素中に含まれる、エチレンに対するプロピレンの質量比は、特に限定されるものではないが、通常1以上、好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上であり、特に好ましくは30以上であり、大きければ大きいほどよい。上記比率が高いほど、目的生成物であるエチレンの消費を抑えることができ、効率的にエチレンを製造することができる。 Normally, in the production of ethylene from propylene, the target product, ethylene, may be contained in the raw material hydrocarbon, but it is easily converted to other olefins such as butene and hexene by contact with the catalyst. , propylene from which ethylene is separated is preferably used as a raw material. The mass ratio of propylene to ethylene contained in the raw material hydrocarbon is not particularly limited, but is usually 1 or more, preferably 5 or more, more preferably 10 or more, and still more preferably 15 or more, It is particularly preferably 30 or more, and the larger the better. The higher the above ratio, the more the consumption of ethylene, which is the target product, can be suppressed, and the more efficiently ethylene can be produced.

エチレン製造に使用する反応器としては、原料導入口と生成ガス排出口とを有する反応器であって、プロピレン供給原料が反応域において気相であれば特に限定されないが、固定床反応器、移動床反応器や流動床反応器が選ばれ得る。プロピレン転化率の変動が大きい場合には、一定のエチレン収率で製造するために、流動床反応器が好ましい。
また、バッチ式、半連続式または連続式のいずれの形態でも行われ得るが、連続式で行うのが好ましく、その方法は、単一の反応器を用いた方法でもよいし、直列または並列に配置された複数の反応器を用いた方法でもよい。
なお、流動床反応器に前述の触媒を充填する際、触媒層の温度分布を小さく抑えるために、石英砂、アルミナ、シリカ、シリカ-アルミナ等の反応に不活性な粒状物を、触媒と混合して充填してもよい。この場合、石英砂等の反応に不活性な粒状物の使用量には特に限定されない。なお、粒状物は、触媒との均一混合性の面から、触媒と同程度の粒径であることが好ましい。
また、反応器には、反応に伴う発熱を分散させることを目的に、反応基質(反応原料)を分割して供給してもよい。
The reactor used for ethylene production is not particularly limited as long as it is a reactor having a raw material inlet and a product gas outlet, and the propylene feedstock is in the gas phase in the reaction zone. Bed reactors and fluidized bed reactors can be chosen. Fluidized bed reactors are preferred for production of constant ethylene yields when the propylene conversion is highly variable.
Further, it can be carried out in any form of batch type, semi-continuous type or continuous type, but it is preferable to carry out in continuous type, and the method may be a method using a single reactor, serial or parallel A method using a plurality of arranged reactors may also be used.
When filling the fluidized bed reactor with the above-mentioned catalyst, in order to keep the temperature distribution of the catalyst layer small, granules that are inert to the reaction, such as quartz sand, alumina, silica, and silica-alumina, are mixed with the catalyst. can be filled with In this case, there is no particular limitation on the amount of the granular material that is inert to the reaction, such as quartz sand. From the viewpoint of uniform mixing with the catalyst, the particulate matter preferably has a particle size approximately the same as that of the catalyst.
In addition, the reaction substrate (reaction raw material) may be divided and supplied to the reactor for the purpose of dispersing the heat generated by the reaction.

(基質濃度)
反応器に供給する全供給成分中の、プロピレン及び炭素数4以上の炭化水素の合計の濃度は特に制限されないが、全供給成分中、通常3モル%以上、好ましくは5モル%以上、より好ましくは10モル%以上、さら好ましくは20モル%以上であり、通常100モル%以下、好ましくは80モル%以下、より好ましくは60モル%以下、さらに好ましくは40モル%以下である。基質濃度を上記範囲にすることで、芳香族化合物やパラフィン類の生成をより低く抑制し、エチレン収率を向上させることができる。また反応速度を高く維持できるため、触媒量を減らすことができ、反応器の大きさも小さくできる。
従って、このような好ましい基質濃度となるように、必要に応じて以下に記載する希釈剤で反応基質を希釈することが好ましい。
(substrate concentration)
The total concentration of propylene and hydrocarbons having 4 or more carbon atoms in all feed components supplied to the reactor is not particularly limited, but is usually 3 mol% or more, preferably 5 mol% or more, more preferably 5 mol% or more, in all feed components. is 10 mol % or more, more preferably 20 mol % or more, and usually 100 mol % or less, preferably 80 mol % or less, more preferably 60 mol % or less, and still more preferably 40 mol % or less. By setting the substrate concentration within the above range, the production of aromatic compounds and paraffins can be suppressed to a lower level, and the yield of ethylene can be improved. In addition, since the reaction rate can be maintained high, the amount of catalyst can be reduced and the size of the reactor can be reduced.
Therefore, it is preferable to dilute the reaction substrate with a diluent described below, if necessary, so as to obtain such a preferable substrate concentration.

(希釈剤)
反応器内には、プロピレンを含む原料の他に、ヘリウム、アルゴン、窒素、一酸化炭素、二酸化炭素、水素、水、パラフィン類、メタン等の炭化水素類、芳香族化合物類、および、それらの混合物などを存在させることができるが、この中でも水素、ヘリウム、窒素、水(水蒸気)が共存しているのが好ましく、エチレン収率を高められる点で、水素が共存していることが最も好ましい。このような希釈剤は、反応原料に含まれている不純物をそのまま希釈剤として使用してもよいし、別途調製した希釈剤を反応原料と混合して用いてもよい。また、希釈剤は反応器に入れる前に反応原料と混合してもよいし、反応原料とは別に反応器に供給してもよい。
(diluent)
In the reactor, in addition to raw materials containing propylene, helium, argon, nitrogen, carbon monoxide, carbon dioxide, hydrogen, water, paraffins, hydrocarbons such as methane, aromatic compounds, and their A mixture or the like can be present, but among these, the coexistence of hydrogen, helium, nitrogen, and water (steam) is preferred, and the coexistence of hydrogen is most preferred in terms of increasing the yield of ethylene. . As such a diluent, an impurity contained in the reaction raw material may be used as it is, or a separately prepared diluent may be used by mixing it with the reaction raw material. Further, the diluent may be mixed with the reaction raw materials before entering the reactor, or may be supplied to the reactor separately from the reaction raw materials.

(重量空間速度)
本明細書で言う重量空間速度とは、触媒(触媒活性成分)の重量当たりの反応原料であるプロピレン及び炭素数4以上の炭化水素の合計流量(重量/時間)であり、ここで触媒の重量とは触媒の造粒・成型に使用する不活性成分やバインダーを含まない触媒活性成分の重量である。
(weight space velocity)
The weight hourly space velocity referred to in this specification is the total flow rate (weight/time) of propylene and hydrocarbons having 4 or more carbon atoms, which are reaction raw materials, per weight of the catalyst (catalytically active component), where the weight of the catalyst is the weight of catalytically active components that do not contain inert components or binders used for granulating and molding the catalyst.

重量空間速度は、特に限定されるものではないが、通常0.01Hr-1以上、好ましくは0.1Hr-1以上、より好ましくは0.2Hr-1以上、さらに好ましくは0.5Hr-1以上であり、通常50Hr-1以下、好ましくは10Hr-1以下、より好ましくは5Hr-1以下、さらに好ましくは3Hr-1以下である。重量空間速度を前記範囲に設定することで、反応器の生成ガス排出口から排出される生成ガス中の未反応のプロピレンの割合をより減らすことができ、芳香族化合物やパラフィン類等の副生成物をも減らすことができ、エチレン収率を向上させることができるため好ましい。また、一定の生産量を得るのに必要な触媒量を抑えることができ、反応器の大きさを抑えることができる。The weight hourly space velocity is not particularly limited, but is usually 0.01 Hr -1 or more, preferably 0.1 Hr -1 or more, more preferably 0.2 Hr -1 or more, further preferably 0.5 Hr -1 or more. and is usually 50 Hr −1 or less, preferably 10 Hr −1 or less, more preferably 5 Hr −1 or less, still more preferably 3 Hr −1 or less. By setting the weight hourly space velocity within the above range, the ratio of unreacted propylene in the product gas discharged from the product gas outlet of the reactor can be further reduced, and by-products such as aromatic compounds and paraffins can be reduced. It is preferable because it can also reduce the amount of waste and improve the ethylene yield. In addition, the amount of catalyst required to obtain a certain production volume can be suppressed, and the size of the reactor can be suppressed.

(反応温度)
反応温度は、プロピレン及び炭素数4以上の炭化水素が触媒と接触してエチレンを生成する温度であれば、特に制限されるものではないが、通常300℃以上、好ましくは400℃以上、より好ましくは425℃以上、さらに好ましくは450℃以上、特に好ましくは475℃以上、最も好ましくは500℃以上であり、通常800℃以下、好ましくは700℃以下、より好ましくは650℃以下、さらに好ましくは600℃以下である。反応温度を上記範囲にすることで、芳香族化合物やパラフィン類の生成を抑制することができるため、ワンパスのエチレンの収率を向上させることができる。また、プロピレンの転化活性を高いレベルで維持することができ、さらに反応ガス中にプロピレン及び炭素数4以上の炭化水素とともに水素を含む場合、その接触効果を最大限に高めることができるため、長時間にわたって高いエチレン収率で製造することができる。さらに、ゼオライトがケイ酸塩の場合、ゼオライト骨格からの脱アルミニウムが抑制されるため、触媒寿命を維持できる点で好ましい。なお、ここでの反応温度とは、触媒層出口の温度をさす。
(reaction temperature)
The reaction temperature is not particularly limited as long as it is a temperature at which propylene and hydrocarbons having 4 or more carbon atoms come into contact with the catalyst to produce ethylene, but is usually 300° C. or higher, preferably 400° C. or higher, more preferably 400° C. or higher. is 425°C or higher, more preferably 450°C or higher, particularly preferably 475°C or higher, most preferably 500°C or higher, and usually 800°C or lower, preferably 700°C or lower, more preferably 650°C or lower, further preferably 600°C or lower. ℃ or less. By setting the reaction temperature within the above range, the production of aromatic compounds and paraffins can be suppressed, so that the yield of ethylene in one pass can be improved. In addition, the propylene conversion activity can be maintained at a high level, and when hydrogen is contained in the reaction gas together with propylene and hydrocarbons having 4 or more carbon atoms, the contact effect can be maximized. High ethylene yields can be produced over time. Furthermore, when the zeolite is a silicate, dealumination from the zeolite skeleton is suppressed, which is preferable in terms of maintaining the life of the catalyst. The reaction temperature here means the temperature at the outlet of the catalyst layer.

(反応圧力)
反応圧力(全圧)は特に制限されるものではないが、通常0.01MPa(絶対圧、以下同様)以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上、さらに好ましくは0.2MPa以上であり、通常5MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.4MPa以下である。反応圧力を上記範囲にすることで芳香族化合物やパラフィン類等の副生成物の生成を抑制することができ、エチレンの収率を向上させることができる。また反応速度も維持できる。
(reaction pressure)
Although the reaction pressure (total pressure) is not particularly limited, it is usually 0.01 MPa (absolute pressure, hereinafter the same) or higher, preferably 0.05 MPa or higher, more preferably 0.1 MPa or higher, and still more preferably 0.2 MPa. That is, it is usually 5 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, further preferably 0.4 MPa or less. By setting the reaction pressure within the above range, the production of by-products such as aromatic compounds and paraffins can be suppressed, and the yield of ethylene can be improved. Also, the reaction rate can be maintained.

(反応原料分圧)
プロピレン及び炭素数4以上の炭化水素の分圧は特に制限されるものではないが、通常0.001MPa以上(絶対圧、以下同様)、好ましくは0.005MPa以上、より好ましくは0.0075MPa以上、さらに好ましくは0.010MPa以上、特に好ましくは0.015MPa以上、最も好ましくは0.020MPa以上であり、通常1MPa以下、好ましくは0.5MPa以下、より好ましくは0.2MPa以下、さらに好ましくは0.1MPa以下である。原料の分圧を上記範囲にすることでコーキングを抑制することができ、エチレンの収率を向上させることができる。
(Reactant partial pressure)
Although the partial pressure of propylene and hydrocarbons having 4 or more carbon atoms is not particularly limited, it is usually 0.001 MPa or more (absolute pressure, hereinafter the same), preferably 0.005 MPa or more, more preferably 0.0075 MPa or more, More preferably 0.010 MPa or more, particularly preferably 0.015 MPa or more, most preferably 0.020 MPa or more, usually 1 MPa or less, preferably 0.5 MPa or less, more preferably 0.2 MPa or less, further preferably 0.2 MPa or less. It is 1 MPa or less. By setting the partial pressure of the raw material within the above range, coking can be suppressed and the yield of ethylene can be improved.

(プロピレンに対する炭素数4以上の炭化水素成分の比)
原料である炭化水素中に含まれる、プロピレンに対する炭素数4以上の炭化水素の質量比は、0.01以上10以下である。好ましくは0.1以上、より好ましくは0.2以上、さらに好ましくは0.5以上であり、好ましくは5以下であり、より好ましくは2以下であり、さらに好ましくは1以下である。
炭化水素中における、プロピレンに対する炭素数4以上の炭化水素の質量比を前記範囲とすると原料プロピレンからのエチレンへの転換効率を高め、反応器生成ガス排出口のエチレン/プロピレン比の経時的な変化を軽減することができる理由は、未だ詳らかではないが、以下のように推察される。本発明のようなオレフィン間の熱力学的平衡制約を受ける高温触媒反応においては、プロピレンは、エチレンや炭素数4以上の炭化水素へ転換される。一方、炭素数4以上の炭化水素もまたその一部が、プロピレン及びエチレンへ転換される。触媒活性が高まると、オレフィン間の熱力学平衡組成に近づく傾向にあるため、原料プロピレン中に炭素数4以上の炭化水素を前記範囲で供給炭化水素中に混合させておくと、反応平衡の制約から、プロピレンからの炭素数4以上の炭化水素への転換が抑制され、また、炭素数4以上の炭化水素からのプロピレンへの転換が抑制されるため、プロピレンならびに炭素数4以上の炭化水素からのエチレンへの転換がより効果的に促進される傾向があるため、エチレンへの転換効率を相乗的に高めることができ、高いエチレン/プロピレン比でエチレンを製造することができる。
なお、上記の効果が得られる触媒は限定されないが、細孔径による形状選択性が効き易いゼオライトが好ましく、目的生成物の分子サイズに近い細孔径の小さい酸素8員環構造を有するゼオライトがより好ましい。
(Ratio of hydrocarbon component having 4 or more carbon atoms to propylene)
The mass ratio of hydrocarbons having 4 or more carbon atoms to propylene contained in the raw material hydrocarbons is 0.01 or more and 10 or less. It is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.5 or more, preferably 5 or less, more preferably 2 or less, and still more preferably 1 or less.
When the mass ratio of hydrocarbons having 4 or more carbon atoms to propylene in the hydrocarbons is within the above range, the conversion efficiency from raw material propylene to ethylene is increased, and the ethylene/propylene ratio at the reactor product gas outlet changes over time. Although the reason why it is possible to reduce is not yet clear, it is presumed as follows. In a high-temperature catalytic reaction subject to thermodynamic equilibrium constraints between olefins, such as in the present invention, propylene is converted to ethylene and hydrocarbons having 4 or more carbon atoms. On the other hand, some of the hydrocarbons with 4 or more carbon atoms are also converted to propylene and ethylene. As the catalyst activity increases, the composition tends to approach the thermodynamic equilibrium composition between olefins. Therefore, the conversion from propylene to hydrocarbons with 4 or more carbon atoms is suppressed, and the conversion from hydrocarbons with 4 or more carbon atoms to propylene is suppressed, so from propylene and hydrocarbons with 4 or more carbon atoms conversion to ethylene tends to be promoted more effectively, so the conversion efficiency to ethylene can be synergistically increased, and ethylene can be produced at a high ethylene/propylene ratio.
Although the catalyst for obtaining the above effect is not limited, zeolite is preferable because the shape selectivity due to the pore size is likely to be effective, and zeolite having an oxygen eight-membered ring structure with a small pore size close to the molecular size of the target product is more preferable. .

(ブテンの割合)
炭素数4以上の炭化水素に含まれるブテンの割合としては、特に限定されるものではないが、前記のように反応平衡制約からプロピレンからエチレン変換を効率的に進行させるためには、通常10mol%以上、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは80mol%以上、上限は100mol%である。
(Proportion of butene)
The proportion of butene contained in hydrocarbons having 4 or more carbon atoms is not particularly limited, but is usually 10 mol % in order to efficiently proceed with the conversion of propylene to ethylene due to reaction equilibrium constraints as described above. Above, it is preferably 30 mol % or more, more preferably 50 mol % or more, still more preferably 80 mol % or more, and the upper limit is 100 mol %.

(直鎖ブテンの割合)
ブテンに含まれる直鎖ブテン(1-ブテン、2-ブテン)の割合としては、特に限定されるものではないが、通常10mol%以上、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは80mol%以上、上限は100mol%である。ゼオライト細孔内への拡散性の観点から、直鎖ブテンの割合が大きい方が、エチレン収率が向上しやすく、好ましい。
(Proportion of linear butene)
The ratio of linear butenes (1-butene, 2-butene) contained in butene is not particularly limited, but is usually 10 mol% or more, preferably 30 mol% or more, more preferably 50 mol% or more, and still more preferably. is 80 mol % or more, and the upper limit is 100 mol %. From the viewpoint of diffusibility into the zeolite pores, a higher proportion of straight-chain butenes is preferable because the yield of ethylene is likely to be improved.

(コーク成分)
プロピレン及び炭素数4以上の炭化水素の転化によって、その一部が結晶の内部/外表面に、再生処理による除去が必要なコーク(多環芳香族などの重質成分)として蓄積し、触媒活性が低下する傾向がある。そのため、前記のコークの含有量(コーク含有量)としては、適度な触媒活性と高いエチレン選択率を得るためには、活性成分である触媒に対して、通常30質量%以下であり、20質量%以下に保つことが好ましく、15質量%以下に保つことがより好ましく、通常少なければ少ないほど好ましいが、前述の酸素8員環構造を有し、かつInternational Zeolite Association(IZA)がcomposite building unitとして定めるd6rを骨格中に含むゼオライト(例えば、AEI、AFX、CHA、ERI、KFI、LEV、SAV)においては、細孔内部の広い空間(ケージ空間)を一定量のコークで占有される程、細孔内空間を狭めることができるため、高いエチレン選択性を発現する場合があり、通常0.1質量%以上であり、1.0質量%以上に保つことが好ましく、3.0質量%以上に保つことがより好ましく、5.0質量%以上に保つことがさらに好ましい。触媒中コーク含有量が上記下限値以上にすることにより、触媒内の分子拡散をより抑制することができ、また、炭素数4以上の炭化水素からのエチレンへの転換を促進することができ、エチレン製造の際に、エチレン選択率を高く維持することができるため、触媒は上記下限値以上のコーク含有量を維持することが好ましい。一方、触媒に蓄積されたコーク量が上記上限値以上になると触媒活性が低下する傾向がある。したがって、後述の再生方法により、触媒に蓄積されたコーク量を上記の範囲内となるよう、再生条件を調整することが好ましい。
(Coke component)
Through the conversion of propylene and hydrocarbons with 4 or more carbon atoms, some of it accumulates on the inner/outer surfaces of the crystals as coke (heavy components such as polycyclic aromatics) that must be removed by regeneration, reducing catalytic activity. tends to decrease. Therefore, the coke content (coke content) is usually 30% by mass or less and 20% by mass with respect to the catalyst, which is the active component, in order to obtain moderate catalytic activity and high ethylene selectivity. % or less, more preferably 15% by mass or less, and usually the less the more, the more preferably it has the above-mentioned oxygen eight-membered ring structure and is designated by the International Zeolite Association (IZA) as a composite building unit. In zeolites containing defined d6r in the framework (e.g., AEI, AFX, CHA, ERI, KFI, LEV, SAV), the fineness is such that the wide space inside the pores (cage space) is occupied by a certain amount of coke. Since the pore space can be narrowed, high ethylene selectivity may be expressed, and it is usually 0.1% by mass or more, preferably 1.0% by mass or more, and 3.0% by mass or more. It is more preferable to keep it, and more preferably to keep it at 5.0% by mass or more. By making the coke content in the catalyst equal to or higher than the above lower limit, molecular diffusion in the catalyst can be further suppressed, and conversion of hydrocarbons having 4 or more carbon atoms to ethylene can be promoted, It is preferable that the coke content of the catalyst be maintained at the above lower limit value or more, since a high ethylene selectivity can be maintained during ethylene production. On the other hand, when the amount of coke accumulated in the catalyst exceeds the above upper limit, the catalytic activity tends to decrease. Therefore, it is preferable to adjust the regeneration conditions so that the amount of coke accumulated in the catalyst is within the above range by the regeneration method described later.

なお、本発明において触媒に蓄積されたコーク量とは、コークが蓄積した触媒を、ヘリウム等の不活性ガス流通下(50cc/min)、550℃まで昇温速度10℃/分で加熱し、30分間保持することで、吸着水及び軽沸炭化水素成分を除去し、続いて、空気流通に切り替え(50cc/min)、600℃まで昇温速度10℃/分で加熱し、60分間保持し、このときの550℃以上の温度領域での酸化燃焼による重量減少を求めることで算出することができる。 In the present invention, the amount of coke accumulated in the catalyst means that the catalyst in which coke is accumulated is heated to 550 ° C. at a temperature increase rate of 10 ° C./min under the flow of an inert gas such as helium (50 cc / min), By holding for 30 minutes, adsorbed water and low-boiling hydrocarbon components were removed, followed by switching to air flow (50 cc/min), heating to 600°C at a temperature increase rate of 10°C/min, and holding for 60 minutes. , can be calculated by determining the weight reduction due to oxidative combustion in the temperature range of 550° C. or higher at this time.

(転化率)
本発明において、プロピレンおよび炭素数4以上の炭化水素の転化率は特に制限されるものではないが、通常転化率は5%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上であり、通常100%以下、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下である。プロピレンの転化率が上記範囲になるように調整することで、ブテンや芳香族化合物やパラフィン類の副生、および細孔内へのコークの蓄積を抑制することができ、エチレンの収率を向上させることができるため好ましい。また、生成物中からのエチレンやプロピレン等の成分の分離効率を高めることができる。すなわち、本発明においては、プロピレンの転化率が上述の範囲となるように、触媒に再生工程を施すことが好ましい。
(Conversion rate)
In the present invention, the conversion rate of propylene and hydrocarbons having 4 or more carbon atoms is not particularly limited, but the conversion rate is usually 5% or more, preferably 20% or more, more preferably 30% or more, and still more preferably It is 40% or more, and usually 100% or less, preferably 80% or less, more preferably 60% or less, further preferably 50% or less. By adjusting the propylene conversion rate to be within the above range, it is possible to suppress the by-production of butene, aromatic compounds, and paraffins, and the accumulation of coke in the pores, thereby improving the yield of ethylene. It is preferable because it can be In addition, the separation efficiency of components such as ethylene and propylene from the product can be enhanced. That is, in the present invention, it is preferable to regenerate the catalyst so that the conversion of propylene is within the above range.

通常、反応時間の経過とともにコークの蓄積が進行し、プロピレン及び炭素数4以上の炭化水素の転化率は、低下する傾向にあるため、後述の通り、触媒に蓄積されたコーク量が増加した段階で、該触媒を再生工程に供することが好ましい。また、上記の転化率の範囲で運転する方法としては、特に制限されない。 Normally, coke accumulation progresses with the passage of reaction time, and the conversion rate of propylene and hydrocarbons having 4 or more carbon atoms tends to decrease, so as described later, the stage when the amount of coke accumulated in the catalyst increases. and preferably subjecting the catalyst to a regeneration step. Moreover, the method of operating within the range of the above conversion rate is not particularly limited.

(収率)
本発明において、エチレンの収率は特に制限されるものではないが、通常収率は5%以上、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上であり、通常100%以下、好ましくは80%以下、より好ましくは60%以下である。エチレンの収率が上記範囲にあることで、反応器出口における目的生成物の割合が十分なものとなり、原料コスト及び分離・精製の負荷を低減することができる点で好ましい。
(yield)
In the present invention, the yield of ethylene is not particularly limited, but the yield is usually 5% or more, preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, and usually 100%. % or less, preferably 80% or less, more preferably 60% or less. When the yield of ethylene is within the above range, the ratio of the target product at the reactor outlet is sufficient, which is preferable in terms of reducing the cost of raw materials and the load of separation and purification.

本明細書における収率は、以下の各式により算出される値である。下記の各式において、エチレン、プロピレン、ブテン、C5+、パラフィンおよび芳香族化合物等の炭化水素の「由来カーボン流量(mol/Hr)」とは、各炭化水素を構成する炭素原子のモル流量を意味する。尚、パラフィンは炭素数1から4のパラフィンの合計、芳香族化合物はベンゼン、トルエン、キシレンの合計、C5+は前記芳香族化合物を除いた炭素数5以上の炭化水素の合計である。
・エチレン収率(%)=反応器生成ガス排出口エチレン由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
・プロピレン収率(%)=反応器生成ガス排出口プロピレン由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
・ブテン収率(%)=反応器生成ガス排出口ブテン由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
ここでのブテン由来カーボンモル流量は、異性体を区別せずに扱うこととする。
・C5+収率(%)=反応器生成ガス排出口C5+由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
・パラフィン収率(%)=反応器生成ガス排出口パラフィン由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
・芳香族化合物収率(%)=反応器生成ガス排出口芳香族化合物由来カーボンモル流量(mol/Hr)/反応器生成ガス排出口総カーボンモル流量(mol/Hr)×100
Yield in the present specification is a value calculated by each of the following formulas. In each formula below, the “derived carbon flow rate (mol/Hr)” of hydrocarbons such as ethylene, propylene, butene, C5+, paraffins and aromatic compounds means the molar flow rate of carbon atoms that make up each hydrocarbon. do. Paraffins are the sum of paraffins having 1 to 4 carbon atoms, aromatic compounds are the sum of benzene, toluene and xylene, and C5+ is the sum of hydrocarbons having 5 or more carbon atoms excluding the aromatic compounds.
Ethylene yield (%) = Reactor generated gas outlet ethylene-derived carbon molar flow rate (mol/Hr) / Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100
・Propylene yield (%) = Reactor generated gas outlet propylene-derived carbon molar flow rate (mol/Hr)/Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100
・Butene yield (%) = Reactor generated gas outlet butene-derived carbon molar flow rate (mol/Hr) / Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100
Here, the butene-derived carbon molar flow rate is treated without distinguishing between isomers.
・C5+ yield (%) = Reactor generated gas outlet C5+ derived carbon molar flow rate (mol/Hr)/Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100
· Paraffin yield (%) = Reactor generated gas outlet paraffin-derived carbon molar flow rate (mol/Hr) / Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100
Aromatic compound yield (%) = Reactor generated gas outlet aromatic compound-derived carbon molar flow rate (mol/Hr) / Reactor generated gas outlet total carbon molar flow rate (mol/Hr) x 100

(反応生成ガス)
反応器生成ガス排出口ガス(反応器排出ガス)としては、反応生成物であるエチレン、原料であるプロピレン、炭素数4以上の炭化水素、パラフィン、芳香族化合物、及び希釈剤を含む混合ガスが得られる。前記混合ガス中のエチレンの濃度は、特に限定されないが、通常5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、通常95質量%以下、好ましくは90質量%以下である。前記混合ガス中のエチレン濃度が上記範囲にあることで、分離・精製の負荷を低減することができる点で好ましい。
反応条件によっては反応生成ガス中に未反応原料としてプロピレンが含まれるが、エチレンの選択率が低い場合、すなわち、副生物の選択率が高い場合には、原料ロスにつながり、製造コストが高くなるため、プロピレンの転化率を下げた条件でも、エチレンの選択率が高くなる条件で運転することが好ましいケースもある。本発明では、所望により、エチレン以外の成分を分離・回収してもよい。所望の成分を分離・回収した残分には、軽質パラフィン、軽質オレフィン、芳香族化合物等を含む。この残分の少なくとも一部を、前述した原料ガスの一部に混合して、いわゆるリサイクルガスとして用いることができる。
(reaction product gas)
The reactor product gas outlet gas (reactor exhaust gas) is a mixed gas containing ethylene, which is a reaction product, propylene, which is a raw material, hydrocarbons having 4 or more carbon atoms, paraffin, aromatic compounds, and a diluent. can get. The concentration of ethylene in the mixed gas is not particularly limited, but is usually 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, and is usually 95% by mass or less, preferably 90% by mass or less. is. It is preferable that the ethylene concentration in the mixed gas is within the above range, since the load of separation and purification can be reduced.
Depending on the reaction conditions, the reaction product gas may contain propylene as an unreacted raw material. However, if the selectivity for ethylene is low, that is, if the selectivity for by-products is high, it will lead to loss of raw materials and increase production costs. Therefore, in some cases, it is preferable to operate under conditions in which the ethylene selectivity is high even under conditions in which the propylene conversion rate is low. In the present invention, if desired, components other than ethylene may be separated and recovered. The residue from which desired components have been separated and recovered contains light paraffins, light olefins, aromatic compounds and the like. At least part of this residue can be mixed with part of the raw material gas described above and used as so-called recycled gas.

(反応生成ガスの分離)
反応器出口ガスとしての、反応生成物であるエチレン、未反応原料、副生成物及び希釈剤を含む混合ガスは、公知の分離・精製設備に導入し、それぞれの成分に応じて回収、精製、リサイクル、排出の処理を行えばよい。
(Separation of reaction product gas)
A mixed gas containing ethylene, which is a reaction product, unreacted raw materials, by-products, and a diluent, as a reactor outlet gas, is introduced into a known separation/purification facility, and is recovered, purified, and purified according to each component. Recycling and disposal may be carried out.

(リサイクル)
エチレン以外の成分(オレフィン、パラフィン等)、特に炭素数4以上の炭化水素の一部または全ては、上記分離・精製された後に反応原料と混合するか、または直接反応器に供給することでリサイクルしてもよい。好ましくは、反応器の生成ガス排出口から排出される生成ガス中に含まれる炭素数4以上の炭化水素のうち、少なくとも10%を、反応器に循環させることが好ましく、20%以上がより好ましく、30%以上が更に好ましい。また、副生成物のうち、反応に不活性な成分は希釈剤として再利用することができる。
(recycling)
Components other than ethylene (olefins, paraffins, etc.), especially part or all of hydrocarbons having 4 or more carbon atoms, are recycled by mixing with the reaction raw materials after being separated and purified, or by directly supplying them to the reactor. You may Preferably, at least 10%, more preferably 20% or more, of the hydrocarbons having 4 or more carbon atoms contained in the produced gas discharged from the produced gas outlet of the reactor are circulated to the reactor. , more preferably 30% or more. In addition, among the by-products, components that are inert to the reaction can be reused as a diluent.

(触媒再生)
前記のプロピレン及び炭素数4以上の炭化水素(C4+とも称する。)の転化を経て、転化率が低下した触媒を再生させることにより、エチレン収率の変動幅を最小限に抑えて、安定にエチレンを製造することができる。なお、本発明において、触媒の再生とは、プロピレン及びC4+の転化率の低下した状態の触媒を、再生処理前よりも高い転化率を示す状態にすることを意味するものとする。
(catalyst regeneration)
Through the conversion of propylene and hydrocarbons having 4 or more carbon atoms (also referred to as C4+), by regenerating the catalyst whose conversion rate has decreased, the fluctuation range of ethylene yield is minimized and ethylene is stably produced. can be manufactured. In the present invention, regeneration of the catalyst means to bring the catalyst in a state in which the conversion rate of propylene and C4+ has decreased into a state in which the conversion rate is higher than before the regeneration treatment.

プロピレン及び炭素数4以上の炭化水素の転化に伴い、触媒に蓄積されたコーク成分の量が増加する。該コーク成分の蓄積量が増加した触媒を、触媒を再生させる工程に供する際の、触媒に蓄積されたコーク成分の量としては、通常0質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1.0質量%以上、特に好ましくは3.0質量%以上、特に好ましくは5.0質量%以上であり、通常30質量%以下、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であり、特に好ましくは10質量%以下である。再生工程に供する触媒に蓄積されたコーク成分の量が前記範囲にあることで、再生工程において、再生ガス及び分解ガスの触媒中の拡散を担保することができ、効果的に触媒活性を回復できるため好ましい。この再生工程では、触媒に蓄積されたコーク成分の量を適度に低減しつつ、触媒活性を回復させることができるため、エチレンを高い収率で安定的に製造することができる。 As propylene and hydrocarbons with 4 or more carbon atoms are converted, the amount of coke components accumulated on the catalyst increases. The amount of the coke component accumulated in the catalyst when the catalyst in which the accumulated amount of the coke component has increased is subjected to the step of regenerating the catalyst is usually 0% by mass or more, preferably 0.01% by mass or more, or more. It is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, particularly preferably 3.0% by mass or more, particularly preferably 5.0% by mass or more, and usually 30% by mass or less, preferably 25% by mass. % by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less. When the amount of the coke component accumulated in the catalyst to be subjected to the regeneration process is within the above range, diffusion of the regeneration gas and the cracked gas in the catalyst can be ensured in the regeneration process, and the catalytic activity can be effectively recovered. Therefore, it is preferable. In this regeneration step, the amount of coke components accumulated in the catalyst can be moderately reduced while the catalytic activity can be recovered, so that ethylene can be stably produced at a high yield.

触媒を再生させる工程に特段の制限はない。例えば、プロピレン及び炭素数4以上の炭化水素からエチレンを製造する際に、触媒のコーク含有量が増加した段階で、プロピレン及び炭素数4以上の炭化水素の供給を停止した後に、反応器内に再生に用いるガス(以後、再生ガスということがある)を供給することにより、コーク含量が増加した触媒を、再生ガスに接触させることができる。また、コーク含量が増加した触媒を、プロピレン及び炭素数4以上の炭化水素を触媒と接触させる工程の反応器から取り出して、触媒を再生させる工程の反応器に移動させ、該触媒に再生に用いるガスを供給して触媒を再生させてもよい。 There are no particular restrictions on the process of regenerating the catalyst. For example, when producing ethylene from propylene and a hydrocarbon having 4 or more carbon atoms, at the stage when the coke content of the catalyst increases, after stopping the supply of propylene and the hydrocarbon having 4 or more carbon atoms, By supplying the gas used for regeneration (hereinafter sometimes referred to as regeneration gas), the catalyst with an increased coke content can be brought into contact with the regeneration gas. In addition, the catalyst with increased coke content is removed from the reactor in the step of contacting propylene and hydrocarbons having 4 or more carbon atoms with the catalyst, transferred to the reactor in the step of regenerating the catalyst, and used for regeneration of the catalyst. Gas may be supplied to regenerate the catalyst.

特に、固定床反応器を使用して上記のプロピレン及び炭素数4以上の炭化水素の転化工程を行う場合、触媒に蓄積されたコーク量が上記の上限値以上となった場合に、原料の供給を停止した後に、反応器内に再生ガスを供給して該触媒と接触させることができる。また、触媒を、上記反応器から抜きだして、反応器とは別の反応器に該触媒を充填してから再生ガスに接触させてもよい。 In particular, when the above-mentioned conversion step of propylene and hydrocarbons having 4 or more carbon atoms is performed using a fixed bed reactor, when the amount of coke accumulated in the catalyst exceeds the above-mentioned upper limit, the feedstock is supplied is stopped, regeneration gas can be fed into the reactor to contact the catalyst. Alternatively, the catalyst may be extracted from the above reactor, charged into a reactor other than the reactor, and then brought into contact with the regeneration gas.

また、移動床反応器又は流動床反応器を使用して、プロピレン及び炭素数4以上の炭化水素の転化工程を行う場合、前記反応器とは別に再生ガスと触媒を接触させるための装置を付設し、該反応器から抜き出した触媒を連続的に該装置に送り、該装置において触媒を再生ガスに接触させて、その後、再生ガスに接触させた触媒を連続的に反応器に戻しながらエチレン製造の反応を行うことが好ましい。 When a moving bed reactor or a fluidized bed reactor is used to convert propylene and hydrocarbons having 4 or more carbon atoms, a device for contacting the regenerated gas with the catalyst is installed separately from the reactor. Then, the catalyst extracted from the reactor is continuously sent to the device, the catalyst is brought into contact with the regeneration gas in the device, and then the catalyst contacted with the regeneration gas is continuously returned to the reactor to produce ethylene. It is preferable to carry out the reaction of

なお、触媒を再生させる工程に用いるガスとしては特段の制限はないが、好適な例として、酸素、水素、及び水蒸気から選択される少なくとも1種を含有するガスが挙げられる。具体的な再生方法としては、酸素を含む再生ガスとして用いる燃焼再生、水蒸気(水)を再生ガスとして用いる水蒸気改質再生、水素を再生ガスとして用いる水素化クラッキングなどが挙げられる。これらの中でも、再生ガスとして、好ましくは、酸素又は水素を含むガスであり、より好ましくは水素を含むガスである。 The gas used in the step of regenerating the catalyst is not particularly limited, but a preferred example is a gas containing at least one selected from oxygen, hydrogen and water vapor. Specific regeneration methods include combustion regeneration using a regeneration gas containing oxygen, steam reforming regeneration using steam (water) as a regeneration gas, and hydrocracking using hydrogen as a regeneration gas. Among these, the regeneration gas is preferably a gas containing oxygen or hydrogen, and more preferably a gas containing hydrogen.

酸素の製造方法としては特に限定されず、大気中の空気から深冷分離された酸素、過酸化水素より生成した酸素などが挙げられ、大気中の空気から回収されたものが好ましい。酸素を含有するガスとして、大気中の空気をそのまま使用してもよい。 The method for producing oxygen is not particularly limited, and examples include oxygen cryogenically separated from air in the atmosphere, oxygen produced from hydrogen peroxide, etc., and oxygen recovered from air in the atmosphere is preferred. Atmospheric air may be used as it is as the oxygen-containing gas.

水蒸気(水)の製造方法としては特に限定されず、通常の水を蒸発させたものを使用することができる。水道水、脱塩水、プラントのプロセスウォーター等、各種の製造方法により得られる水を任意に用いることができる。 The method for producing steam (water) is not particularly limited, and one obtained by evaporating ordinary water can be used. Water obtained by various production methods, such as tap water, desalted water, and plant process water, can be arbitrarily used.

水素を含むガスに含まれる水素の製造方法は特に限定されず、例えば、メタンおよびメタノールの水蒸気改質による得られるもの、炭化水素の部分酸化で得られるもの、炭化水素を二酸化炭素で改質することにより得られるもの、石炭のガス化によって得られるもの、IS(Iodine-Sulfur)プロセスに代表される水の熱分解によって得られるもの、光電気化学反応より得られるもの並びに水の電気分解で得られるもの等、各種の製造方法により得られるものを任意に用いることができる。 The method for producing the hydrogen contained in the hydrogen-containing gas is not particularly limited, and examples include those obtained by steam reforming of methane and methanol, those obtained by partial oxidation of hydrocarbons, and those obtained by reforming hydrocarbons with carbon dioxide. obtained by gasification of coal, obtained by thermal decomposition of water typified by the IS (Iodine-Sulfur) process, obtained by photoelectrochemical reaction, and obtained by electrolysis of water Any of those obtained by various production methods can be used.

これら以外のガスが任意に混合されているものを用いてもよく、精製した水素を用いてもよい。 Any mixture of gases other than these may be used, or purified hydrogen may be used.

酸素、水素、水蒸気を含むガスに含まれるこれら以外のガスとしては、安全上問題のない場合には、例えば、ヘリウム、アルゴン、窒素、一酸化炭素、二酸化炭素、パラフィン類、メタン等の炭化水素類等が含まれていても良い。このうち、反応性が低い点で、ヘリウム、窒素、二酸化炭素、およびパラフィン類、メタンが好ましい。 Gases other than these contained in gases containing oxygen, hydrogen, and water vapor include hydrocarbons such as helium, argon, nitrogen, carbon monoxide, carbon dioxide, paraffins, and methane, if there is no safety problem. It may include such as. Among these, helium, nitrogen, carbon dioxide, paraffins, and methane are preferred because of their low reactivity.

再生ガス全体の圧力(全圧)は、特に限定されるものではないが、絶対圧で、通常0.01MPa(絶対圧、以下同様)以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上、さらに好ましくは0.2MPa以上であり、通常5MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下である。圧力を上記範囲にすることで、再生効率を高めつつ、処理ガス中の炭化水素成分の分圧を低く抑えることができるため、高い触媒活性を維持することができる。 The pressure of the entire regeneration gas (total pressure) is not particularly limited, but the absolute pressure is usually 0.01 MPa (absolute pressure, hereinafter the same) or more, preferably 0.05 MPa or more, more preferably 0.1 MPa. Above, more preferably 0.2 MPa or more, usually 5 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, still more preferably 0.5 MPa or less. By setting the pressure within the above range, the partial pressure of the hydrocarbon component in the treated gas can be kept low while enhancing the regeneration efficiency, so that high catalytic activity can be maintained.

(水素分圧)
再生ガス中に、水素を含むガスは、特に限定されるものではないが、水素分圧が絶対圧で、通常0.001MPa以上、好ましくは0.01MPa以上であるが、より好ましくは0.03MPa以上、さらに好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、通常4MPa以下、好ましくは1MPa以下、より好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下、特に好ましくは0.3MPa以下である。水素分圧を上記の範囲とすることにより、触媒に蓄積されたコーク成分の除去・再形成が速やかに進行するため、高い原料転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。また、高圧水素を製造するための設備・エネルギーを削減することができる。
(hydrogen partial pressure)
The gas containing hydrogen in the regeneration gas is not particularly limited, but the hydrogen partial pressure in absolute pressure is usually 0.001 MPa or more, preferably 0.01 MPa or more, and more preferably 0.03 MPa. Above, more preferably 0.05 MPa or more, particularly preferably 0.1 MPa or more, usually 4 MPa or less, preferably 1 MPa or less, more preferably 0.7 MPa or less, still more preferably 0.5 MPa or less, particularly preferably 0.1 MPa or less. 3 MPa or less. By setting the hydrogen partial pressure within the above range, the removal and reformation of the coke components accumulated in the catalyst proceed rapidly, so that the catalyst is efficiently brought into a state that provides high raw material conversion activity and high ethylene selectivity. be able to. In addition, equipment and energy for producing high-pressure hydrogen can be reduced.

再生ガスの空間速度は、特に限定されるものではないが、通常0.001Hr-1以上、好ましくは0.01Hr-1以上、より好ましくは0.1Hr-1以上であり、通常20Hr-1以下、好ましくは10Hr-1以下、より好ましくは5Hr-1以下である。重量空間速度を前記範囲に設定することで、触媒中に含まれる炭化水素成分や水蒸気の濃度を低減することができるため、原料転化活性を高いレベルで維持することが可能となる。さらに、触媒に蓄積されたコーク成分の分布を均一にすることができるため、触媒内での不均一な反応を抑制することができ、エチレン選択率を高めることが可能となる。The space velocity of the regeneration gas is not particularly limited, but is usually 0.001 Hr -1 or more, preferably 0.01 Hr -1 or more, more preferably 0.1 Hr -1 or more, and usually 20 Hr -1 or less. , preferably 10 Hr −1 or less, more preferably 5 Hr −1 or less. By setting the weight hourly space velocity within the above range, the concentration of hydrocarbon components and water vapor contained in the catalyst can be reduced, so that the feedstock conversion activity can be maintained at a high level. Furthermore, since the distribution of coke components accumulated in the catalyst can be made uniform, uneven reactions within the catalyst can be suppressed, and ethylene selectivity can be increased.

空間速度とは、触媒(触媒活性成分)の重量当たりの再生ガスの流量である。また、触媒の重量とは、触媒の造粒・成型に使用する不活性成分やバインダーを含まない活性成分(ゼオライト)の重量である。 Space velocity is the flow rate of regeneration gas per weight of catalyst (catalytically active components). The weight of the catalyst is the weight of the active ingredient (zeolite) that does not contain any inert ingredients or binders used in the granulation/molding of the catalyst.

再生工程の供給ガス中の再生ガスの濃度としては、特に限定されるものではないが、通常5体積%以上、好ましくは10体積%以上、より好ましくは30体積%以上であり、通常100体積%以下、好ましくは90体積%以下、より好ましくは80体積%以下である。再生ガス濃度は高い方が好ましく、通常5体積%以上、好ましくは30体積%以上、より好ましくは60体積%以上であり、通常100体積%以下である。再生ガス濃度を前記範囲とすることで、触媒と再生ガスとの接触が十分なものとなり、コーク成分の除去・再形成が速やかに進行するため、高い原料転化活性、及び高いエチレン選択率を与える触媒状態に効率的にすることができる。 The concentration of the regeneration gas in the supply gas for the regeneration step is not particularly limited, but is usually 5% by volume or more, preferably 10% by volume or more, more preferably 30% by volume or more, and usually 100% by volume. Below, preferably 90% by volume or less, more preferably 80% by volume or less. The regeneration gas concentration is preferably as high as possible, usually 5% by volume or more, preferably 30% by volume or more, more preferably 60% by volume or more, and usually 100% by volume or less. By setting the regeneration gas concentration within the above range, the contact between the catalyst and the regeneration gas becomes sufficient, and the removal and reformation of the coke component proceeds rapidly, resulting in high raw material conversion activity and high ethylene selectivity. It can be made efficient in a catalytic state.

触媒と再生ガスとを接触させる温度(以下、「再生温度」と称することがある)としては、特に限定されるものではないが、通常300℃以上、好ましくは400℃以上、より好ましくは500℃以上、さらに好ましくは525℃以上、特に好ましくは550℃以上であり、通常800℃以下、好ましくは700℃以下、より好ましくは650℃以下、さらに好ましくは600℃以下である。再生度を前記の範囲とすることで、コーク成分の除去が速やかに進行するため、触媒活性を高い状態で保つことができる。さらに、触媒の構造崩壊が抑制されるため、触媒寿命を維持できる点で好ましい。 The temperature at which the catalyst is brought into contact with the regeneration gas (hereinafter sometimes referred to as "regeneration temperature") is not particularly limited, but is usually 300°C or higher, preferably 400°C or higher, more preferably 500°C. Above, more preferably 525° C. or higher, particularly preferably 550° C. or higher, and usually 800° C. or lower, preferably 700° C. or lower, more preferably 650° C. or lower, still more preferably 600° C. or lower. By setting the degree of regeneration within the above range, the removal of the coke component proceeds rapidly, so that the catalytic activity can be maintained at a high level. Furthermore, since structural collapse of the catalyst is suppressed, it is preferable in that the life of the catalyst can be maintained.

再生ガスと接触させる時間としては、特に限定されるものではないが、通常1秒以上、好ましくは10秒以上、より好ましくは1分以上、さらに好ましくは5分以上であり、通常5時間以下、好ましくは2時間以下、より好ましくは1時間以下である。再生ガスの濃度や処理温度によっても適切な時間は変わるため、適宜調整することが好ましい。再生ガスと接触させる装置が流動床装置である場合には、上記の処理時間は、該装置内の触媒の滞留時間を意味する。 The contact time with the regeneration gas is not particularly limited, but is usually 1 second or longer, preferably 10 seconds or longer, more preferably 1 minute or longer, still more preferably 5 minutes or longer, and usually 5 hours or shorter. It is preferably 2 hours or less, more preferably 1 hour or less. Since the appropriate time varies depending on the concentration of the regeneration gas and the processing temperature, it is preferable to adjust the time as appropriate. When the apparatus to be brought into contact with the regeneration gas is a fluidized bed apparatus, the treatment time mentioned above means the residence time of the catalyst in the apparatus.

本発明の第4の実施形態は、炭化水素と、ゼオライトを活性成分とする触媒と、を反応器中で接触させてエチレンを製造する方法であって、前記炭化水素が少なくとも炭素数4以上の炭化水素を含み、かつ、前記ゼオライトが少なくとも酸素8員環構造を有し、全酸量に対する外表面酸量の割合が3%以下である。以下、本実施形態について詳細に説明するが、第3の実施形態と異なる点を説明し、その他は第3の実施形態の説明を適宜参照できる。 A fourth embodiment of the present invention is a method for producing ethylene by contacting a hydrocarbon and a catalyst containing zeolite as an active ingredient in a reactor, wherein the hydrocarbon has at least 4 or more carbon atoms. It contains hydrocarbons, the zeolite has at least an oxygen eight-membered ring structure, and the ratio of the outer surface acid amount to the total acid amount is 3% or less. Although the present embodiment will be described in detail below, differences from the third embodiment will be described, and the description of the third embodiment can be referred to as appropriate.

<D1.触媒>
本実施形態で用いる触媒について説明する。本実施形態に係る反応に用いられる触媒としては、炭化水素からエチレンを製造できるものであり、少なくとも酸素8員環構造を有するゼオライトであり、かつ、全酸量に対する外表面酸量の割合が3%以下であれば、特に限定されない。ゼオライトについては、第3の実施形態での説明を参照できる。
<D1. Catalyst>
The catalyst used in this embodiment will be described. The catalyst used in the reaction according to the present embodiment is one that can produce ethylene from hydrocarbons, is a zeolite having at least an oxygen eight-membered ring structure, and has a ratio of the outer surface acid amount to the total acid amount of 3. % or less is not particularly limited. As for the zeolite, the description in the third embodiment can be referred to.

本実施形態では、ゼオライトの外表面酸量は、ゼオライトの全酸量に対して3%以下である。ゼオライトの全酸量に対する外表面酸量の割合は、小さければ小さいほど好ましく、好ましくは2%以下、より好ましくは1%以下、さらに好ましくは0.5%、最も好ましくは0%である。外表面酸量の割合を上記の範囲とすることで、原料として用いる炭素数4以上の炭化水素中に含まれる直鎖オレフィンが、酸素8員環細孔の形状選択性が発現するゼオライト結晶内部でのみ反応することで、分子サイズの小さいエチレン(動的分子径:0.39nm)、プロピレン(動的分子径:0.45nm)が高選択的に得られ易く、イソブテン(動的分子径:0.50nm)のような分子サイズの大きい分岐オレフィンは酸素8員環細孔を拡散し難いため、副生を抑制することができる。また、同様に、反応点が結晶内部に制限されるため、原料である炭素数4以上の炭化水素中に含まれる直鎖オレフィン(直鎖ブテン、直鎖ペンテンなど)の分岐オレフィン(イソブテン、イソペンテンなど)への異性化を抑制することができる。さらに、結晶内部で生成したエチレンやプロピレンが、ゼオライトの形状選択性が効かない外表面酸点での副反応により消費されることを抑制することができるため、高いエチレン選択率を維持してエチレンを製造することができる。 In this embodiment, the zeolite has an outer surface acidity of 3% or less with respect to the total acidity of the zeolite. The ratio of the outer surface acid content to the total acid content of the zeolite is preferably as small as possible, preferably 2% or less, more preferably 1% or less, still more preferably 0.5%, and most preferably 0%. By setting the ratio of the outer surface acid amount to the above range, the linear olefin contained in the hydrocarbon having 4 or more carbon atoms used as the raw material is inside the zeolite crystal where the shape selectivity of the oxygen 8-membered ring pores is expressed. By reacting only with , ethylene (dynamic molecular diameter: 0.39 nm) and propylene (dynamic molecular diameter: 0.45 nm) with small molecular sizes are easily obtained with high selectivity, and isobutene (dynamic molecular diameter: A branched olefin having a large molecular size such as 0.50 nm) is difficult to diffuse through the oxygen 8-membered ring pores, so that by-products can be suppressed. Similarly, since the reaction point is restricted to the inside of the crystal, branched olefins (isobutene, isopentene, etc.) of straight-chain olefins (straight-chain butene, straight-chain pentene, etc.) contained in hydrocarbons having 4 or more carbon atoms as raw materials etc.) can be suppressed. In addition, ethylene and propylene produced inside the crystal can be suppressed from being consumed by side reactions at the outer surface acid sites where the shape selectivity of zeolite does not work, so high ethylene selectivity can be maintained and ethylene can be manufactured.

<D2.エチレンの製造方法>
本実施形態のエチレンの製造方法は、炭化水素と、ゼオライトを活性成分とする触媒とを反応器中で接触させてエチレンを製造する方法であって、前記炭化水素が少なくとも炭素数4以上の炭化水素を含み、かつ、前記ゼオライトが少なくとも酸素8員環構造を有し、全酸量に対する外表面酸量の割合が3%以下である。以下に各工程について詳細に説明するが、第3の実施形態と異なる点を説明し、その他は第3の実施形態の説明を適宜参照できる。
<D2. Method for producing ethylene>
The method for producing ethylene of the present embodiment is a method for producing ethylene by contacting a hydrocarbon with a catalyst containing zeolite as an active component in a reactor, wherein the hydrocarbon has at least 4 or more carbon atoms. The zeolite contains hydrogen, has at least an 8-membered oxygen ring structure, and the ratio of the outer surface acid amount to the total acid amount is 3% or less. Each step will be described in detail below, but differences from the third embodiment will be described, and the description of the third embodiment can be referred to as appropriate.

炭素数4以上の炭化水素原料の製造方法についても限定されるものではなく、例えば、石油供給原料から接触分解法または蒸気分解法等により製造されるもの(C4ラフィネート-1、C4ラフィネート-2等)、石炭のガス化により得られる水素/CO混合ガスを原料としてFT(フィッシャートロプシュ)合成を行うことにより得られるもの、エチレンの二量化反応を含むオリゴマー化反応により得られるもの、炭素数4以上のパラフィンの脱水素法または酸化脱水素法により得られるもの、MTO反応によって得られるもの、アルコールの脱水反応によって得られるもの、炭素数4以上のジエン化合物の水素化反応により得られるもの等の、公知の各種方法により得られるものを使用することができる。このとき各製造方法に起因する炭素数4以上のオレフィン以外の化合物が任意に混合した状態のものをそのまま用いてもよいし、精製したものを用いてもよい。 The method for producing hydrocarbon feedstocks having 4 or more carbon atoms is not limited, either. ), obtained by FT (Fischer-Tropsch) synthesis using a hydrogen / CO mixed gas obtained by gasification of coal as a raw material, obtained by oligomerization reaction including dimerization reaction of ethylene, carbon number 4 or more Those obtained by dehydrogenation or oxidative dehydrogenation of paraffin, those obtained by MTO reaction, those obtained by dehydration reaction of alcohol, those obtained by hydrogenation reaction of diene compounds having 4 or more carbon atoms, Those obtained by various known methods can be used. At this time, compounds other than olefins having 4 or more carbon atoms resulting from each production method may be used as they are, or may be used after purification.

なお、原料である炭化水素は、炭素数4以上の炭化水素以外の炭化水素(以下、「その他の炭化水素」ということがある。)を含有していてもよく、例えばメタン、エタン、エチレン、アセチレン、プロパン、プロピレン、メチルアセチレン等の炭素数3以下の炭化水素を含んでいてもよい。また、メタノールやジメチルエーテルを含んでいてもよく、その混合割合に制限はない。 The raw material hydrocarbon may contain hydrocarbons other than hydrocarbons having 4 or more carbon atoms (hereinafter sometimes referred to as "other hydrocarbons"), such as methane, ethane, ethylene, It may contain hydrocarbons having 3 or less carbon atoms such as acetylene, propane, propylene and methylacetylene. In addition, it may contain methanol or dimethyl ether, and there is no limitation on the mixing ratio thereof.

通常、炭素数4以上の炭化水素からのエチレン製造において、目的生成物であるエチレンは、原料である炭化水素中に含まれていてもよいが、触媒との接触によりプロピレン、ブテンやヘキセン等の別のオレフィンに変換されやすいため、エチレンを分離した状態の原料として用いることが好ましい。原料である炭化水素中に含まれるエチレンに対する炭素数4以上の炭化水素の質量比は、特に限定されるものではないが、通常1以上、好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上であり、特に好ましくは30以上であり、大きければ大きいほどよい。上記比率が高いほど、目的生成物であるエチレンの消費を抑えることができ、効率的にエチレンを製造することができる。 Generally, in the production of ethylene from hydrocarbons having 4 or more carbon atoms, ethylene, which is the target product, may be contained in the raw material hydrocarbon, but contact with the catalyst causes propylene, butene, hexene, and the like to be decomposed. Ethylene is preferably used as a separate feedstock because it is easily converted to other olefins. The mass ratio of hydrocarbons having 4 or more carbon atoms to ethylene contained in the raw material hydrocarbon is not particularly limited, but is usually 1 or more, preferably 5 or more, more preferably 10 or more, and still more preferably It is 15 or more, particularly preferably 30 or more, and the larger the better. The higher the above ratio, the more the consumption of ethylene, which is the target product, can be suppressed, and the more efficiently ethylene can be produced.

また、プロピレンは、同一の触媒との接触により、一部エチレンに変換され、エチレン収率を向上させることができるため、原料中に含まれていてもよく、本反応により生成したプロピレンをリサイクルして利用することもできる。原料である炭化水素中に含まれる炭素数4以上の炭化水素に対するプロピレンの質量比は、特に限定されるものではないが、通常0以上、好ましくは0.01以上、より好ましくは0.1以上、さらに好ましくは0.2以上であり、通常1000以下、好ましくは100以下、より好ましくは10以下、さらに好ましくは5以下である。 In addition, propylene can be partially converted to ethylene by contact with the same catalyst and can improve the ethylene yield, so it may be contained in the raw material, and the propylene produced by this reaction can be recycled. You can also use The mass ratio of propylene to hydrocarbons having 4 or more carbon atoms contained in the raw material hydrocarbon is not particularly limited, but is usually 0 or more, preferably 0.01 or more, and more preferably 0.1 or more. , more preferably 0.2 or more, and usually 1000 or less, preferably 100 or less, more preferably 10 or less, still more preferably 5 or less.

本実施形態において、転化率は次の式により算出される値である。なお、C4+成分とは、炭素数4以上の炭化水素の合計を示す。
炭素数4以上の炭化水素(C4+成分)転化率(%)=〔[反応器原料投入口C4+成分(mol/Hr)-反応器生成ガス排出口C4+成分(mol/Hr)]/反応器原料投入口C4+成分(mol/Hr)〕×100
なお、ここでの転化率の算出は、炭素数4以上の炭化水素として導入した成分を基準として算出することとし、その異性体については同一成分として扱うことにする。例えば、1-ブテンのみを原料として用いた場合、上記の転化率は、以下の通り算出する。このとき、ブテン以外の炭素数4以上の炭化水素は、「原料以外の炭素数4以上の炭化水素」として生成物として扱うこととする。
炭素数4以上の炭化水素(C4+成分)転化率(%)=〔[反応器原料投入口1-ブテン(mol/Hr)-反応器生成ガス排出口ブテン(異性体混合物)(mol/Hr)]/反応器原料投入口1-ブテン(mol/Hr)〕×100
In this embodiment, the conversion rate is a value calculated by the following formula. In addition, the C4+ component indicates the total amount of hydrocarbons having 4 or more carbon atoms.
Conversion rate (%) of hydrocarbons having 4 or more carbon atoms (C4+ component) = [[Reactor raw material inlet C4+ component (mol/Hr) - Reactor generated gas outlet C4+ component (mol/Hr)]/Reactor raw material Input port C4 + component (mol / Hr)] × 100
Here, the conversion rate is calculated based on the components introduced as hydrocarbons having 4 or more carbon atoms, and the isomers thereof are treated as the same component. For example, when only 1-butene is used as a raw material, the above conversion rate is calculated as follows. At this time, hydrocarbons having 4 or more carbon atoms other than butene are treated as products as "hydrocarbons having 4 or more carbon atoms other than raw materials".
Conversion rate (%) of hydrocarbons having 4 or more carbon atoms (C4+ component) = [[reactor raw material inlet 1-butene (mol/Hr) - reactor product gas outlet butene (isomer mixture) (mol/Hr) ]/reactor raw material inlet 1-butene (mol/Hr)] × 100

本実施形態における選択率とは、以下の各式により算出される値である。下記の各式において、エチレン、プロピレン、原料以外の炭素数4以上の炭化水素(原料以外C4+)、パラフィンおよび芳香族化合物等の炭化水素の「由来カーボン流量(mol/Hr)」とは、各炭化水素を構成する炭素原子のモル流量を意味する。尚、パラフィンは炭素数1から4のパラフィンの合計、芳香族化合物はベンゼン、トルエン、キシレンの合計、原料以外のC4+は、原料及び前記芳香族化合物を除いた炭素数4以上の炭化水素の合計である。
・エチレン選択率(%)=〔反応器生成ガス排出口エチレン由来カーボンモル流量(mol/Hr)/[反応器生成ガス排出口総カーボンモル流量(mol/Hr)-反応器出口C4+成分由来カーボンモル流量(mol/Hr)]〕×100
・プロピレン選択率(%)=〔反応器生成ガス排出口プロピレン由来カーボンモル流量(mol/Hr)/[反応器生成ガス排出口総カーボンモル流量(mol/Hr)-反応器生成ガス排出口C4+成分由来カーボンモル流量(mol/Hr)]〕×100
・原料以外のC4+選択率(%)=〔反応器生成ガス排出口原料以外のC4+由来カーボンモル流量(mol/Hr)/[反応器生成ガス排出口総カーボンモル流量(mol/Hr)-反応器生成ガス排出口C4+成分由来カーボンモル流量(mol/Hr)]〕×100
・パラフィン選択率(%)=〔反応器生成ガス排出口パラフィン由来カーボンモル流量(mol/Hr)/[反応器生成ガス排出口総カーボンモル流量(mol/Hr)-反応器生成ガス排出口C4+成分由来カーボンモル流量(mol/Hr)]〕×100
・芳香族化合物選択率(%)=〔反応器生成ガス排出口芳香族化合物由来カーボンモル流量(mol/Hr)/[反応器生成ガス排出口総カーボンモル流量(mol/Hr)-反応器生成ガス排出口C4+成分由来カーボンモル流量(mol/Hr)]〕×100
なお、本実施形態における収率とは、前記原料転化率と、生成した各成分の選択率の積により求められ、具体的にエチレン収率、プロピレン収率は、それぞれ次の式で表される。
・エチレン収率(%)=C4+成分転化率(%)×エチレン選択率(%)/100
・プロピレン収率(%)=C4+成分転化率(%)×プロピレン選択率(%)/100
The selectivity in this embodiment is a value calculated by the following equations. In the following formulas, the "derived carbon flow rate (mol/Hr)" of hydrocarbons such as ethylene, propylene, hydrocarbons with 4 or more carbon atoms other than raw materials (C4+ other than raw materials), paraffins and aromatic compounds are each It means the molar flow rate of carbon atoms that make up the hydrocarbon. Paraffin is the sum of paraffins with 1 to 4 carbon atoms, aromatic compounds are the sum of benzene, toluene, and xylene, and C4+ other than raw materials is the sum of hydrocarbons with 4 or more carbon atoms excluding raw materials and the above aromatic compounds. is.
Ethylene selectivity (%) = [reactor generated gas outlet ethylene-derived carbon molar flow rate (mol/Hr) / [reactor generated gas outlet total carbon molar flow rate (mol/Hr) - reactor outlet C4 + component-derived carbon Molar flow rate (mol/Hr)]] × 100
Propylene selectivity (%) = [reactor generated gas outlet propylene-derived carbon molar flow rate (mol/Hr) / [reactor generated gas outlet total carbon molar flow rate (mol/Hr) - reactor produced gas outlet C4+ Component-derived carbon molar flow rate (mol/Hr)]] × 100
・ C4+ selectivity (%) other than raw material = [reactor generated gas outlet C4+ derived carbon molar flow rate other than raw material (mol / Hr) / [reactor generated gas outlet total carbon molar flow rate (mol / Hr) - reaction Device-generated gas outlet C4+ component-derived carbon molar flow rate (mol/Hr)]]×100
Paraffin selectivity (%) = [reactor generated gas outlet paraffin-derived carbon molar flow rate (mol/Hr) / [reactor generated gas outlet total carbon molar flow rate (mol/Hr) - reactor produced gas outlet C4+ Component-derived carbon molar flow rate (mol/Hr)]] × 100
Aromatic compound selectivity (%) = [reactor generated gas outlet aromatic compound-derived carbon molar flow rate (mol/Hr) / [reactor generated gas outlet total carbon molar flow rate (mol/Hr) - reactor produced Gas outlet C4+ component-derived carbon molar flow rate (mol/Hr)]] × 100
The yield in the present embodiment is obtained by multiplying the raw material conversion rate and the selectivity of each component produced. Specifically, the ethylene yield and propylene yield are respectively represented by the following equations. .
Ethylene yield (%) = C4+ component conversion rate (%) x ethylene selectivity (%)/100
・Propylene yield (%) = C4+ component conversion rate (%) x propylene selectivity (%)/100

以下に実施例A~D(それぞれ第1の実施形態~第4の実施形態に対応)を示して、本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 Examples A to D (corresponding to the first to fourth embodiments, respectively) are shown below to describe the present invention more specifically. The examples are not intended to be limiting.

(実施例A)
<触媒調製例A1>
水酸化ナトリウム(キシダ化学製)2.09gおよび25重量%のN,N,N-トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製、25質量%)47.3gを順次、水89.6gに溶解し、次に水酸化アルミニウム(Aldrich製、酸化アルミニウム換算で50~57重量%)4.27gを加え混合した後に、シリカ源としてコロイダルシリカSI-30(SiO 30重量%、Na 0.3重量%、日揮触媒化成製)111gを加えて十分攪拌した。さらに加えたSiOに対して10重量%のCHA型ゼオライト(SiO/Al比25、平均一次粒子径約200nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを1000mlのオートクレーブに仕込み、自圧下、250rpmで攪拌しながら、160℃で20時間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は22であった。ゼオライトの平均一次粒子径は、SEM(JSM-6010LV)より、約100nmであった。
(Example A)
<Catalyst Preparation Example A1>
2.09 g of sodium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 47.3 g of a 25% by weight aqueous solution of N,N,N-trimethyl-1-adamantane ammonium hydroxide (manufactured by Seichem, 25% by weight) were sequentially added to 89.6 g of water. Then, after adding 4.27 g of aluminum hydroxide (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide) and mixing, colloidal silica SI-30 (SiO 2 30% by weight, Na 0.2% by weight) was added as a silica source. 3% by weight, manufactured by Nikki Shokubai Kasei) (111 g) was added and thoroughly stirred. Further, 10% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 25, average primary particle size: about 200 nm) was added as seed crystals to the added SiO 2 , and the mixture was further stirred. Then, this gel was put into a 1000 ml autoclave and hydrothermally synthesized at 160° C. for 20 hours while stirring at 250 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 22 by XRF analysis. The average primary particle size of zeolite was about 100 nm by SEM (JSM-6010LV).

水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た。 The CHA-type zeolite obtained by hydrothermal synthesis is calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. and calcined at 500° C. for 6 hours under air flow to obtain a proton-type CHA-type zeolite.

上記プロトン型のCHA型ゼオライト2.0gに対して、溶媒としてトルエン20ml、シリル化剤としてテトラエトキシシラン5mlを加えて、攪拌しながら70℃で4時間加熱処理を行った。反応終了後、濾過によって固液を分離し、固形分を100℃で乾燥させることにより、シリル化されたプロトン型のCHA型ゼオライトを得た(触媒A)。このゼオライトの全酸量は0.66mmol/g、外表面酸量は0.002mmol/gであった。さらに、650℃で、常圧にて50%水蒸気(水蒸気/空気=50/50(体積/体積))流通下、5時間処理することにより、水蒸気処理及びシリル化されたプロトン型のCHA型ゼオライトを得た(触媒A1)。 20 ml of toluene as a solvent and 5 ml of tetraethoxysilane as a silylating agent were added to 2.0 g of the proton-type CHA-type zeolite, and the mixture was heated at 70° C. for 4 hours while stirring. After completion of the reaction, a solid-liquid was separated by filtration, and the solid content was dried at 100° C. to obtain a silylated proton-type CHA-type zeolite (catalyst A). This zeolite had a total acid content of 0.66 mmol/g and an outer surface acid content of 0.002 mmol/g. Furthermore, the proton-type CHA-type zeolite that was steam-treated and silylated was further treated at 650 ° C. for 5 hours under normal pressure with 50% steam (steam/air = 50/50 (volume/volume)) flowing. was obtained (catalyst A1).

<触媒調製例A2>
水酸化ナトリウム(キシダ化学製)0.570gおよび25重量%のN,N,N-トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製、25質量%)13.5gを順次、水15.8gに溶解し、次に水酸化アルミニウム(Aldrich製、酸化アルミニウム換算で50~57重量%)0.152gを加え混合した後に、シリカ源としてコロイダルシリカST-40(SiO 40重量%、Na 0.4重量%、日産化学工業製)12.0gを加えて十分攪拌した。さらに加えたSiOに対して5重量%のCHA型ゼオライト(SiO/Al比25、平均一次粒子径約200nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを100mlのオートクレーブに仕込み、自圧下、15rpmで攪拌しながら、140℃で6日間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は53であった。ゼオライトの平均一次粒子径は、約300nmであった。
<Catalyst Preparation Example A2>
0.570 g of sodium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 13.5 g of a 25% by weight aqueous solution of N,N,N-trimethyl-1-adamantane ammonium hydroxide (manufactured by Seichem, 25% by weight) were sequentially added to 15.8 g of water. Then, after adding 0.152 g of aluminum hydroxide (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide) and mixing, colloidal silica ST-40 (SiO 2 40% by weight, Na 0.1% by weight) was added as a silica source. 4% by weight, manufactured by Nissan Chemical Industries) was added and thoroughly stirred. Further, 5% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 25, average primary particle size: about 200 nm) was added as seed crystals to the added SiO 2 , and the mixture was further stirred. Then, this gel was put into a 100 ml autoclave and hydrothermally synthesized at 140° C. for 6 days while stirring at 15 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 53 by XRF analysis. The average primary particle size of zeolite was about 300 nm.

上記水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た(触媒A2)。 The CHA-type zeolite obtained by the above hydrothermal synthesis was calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. After that, it was calcined at 500° C. for 6 hours under air circulation to obtain a proton-type CHA-type zeolite (catalyst A2).

<実施例A1>
触媒A1を用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒200mgと石英砂300mgの混合物を充填した。プロピレンと窒素を、プロピレンの重量空間速度が0.12Hr-1で、プロピレン10体積%と窒素90体積%となるように反応器に供給し、500℃、0.1MPa(絶対圧)でエチレンの合成反応を3.33時間実施した。次いで、100体積%の水素ガスを、空間速度25mmol/(Hr・g-cat)で反応器に供給し、525℃、0.1MPa(絶対圧)の条件で1.00時間処理した(触媒再生工程)。再び上記の反応条件にて、エチレンの合成反応を1.58時間実施した。この反応工程と再生工程を繰り返すことで、エチレンの合成反応を累積6.50時間実施した。反応器出口ガスは、ガスクロマトグラフィーにより分析した。エチレンの合成反応の反応成績を表1に示した。また、累積反応時間に対するエチレンの収率の変化を図1に示す。反応工程後の触媒に蓄積されたコーク量は17質量%であり、再生工程後の触媒に蓄積されたコーク量は14質量%であった。
<Example A1>
Using catalyst A1 and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 200 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and nitrogen were fed to the reactor such that the weight hourly space velocity of propylene was 0.12 Hr −1 and the propylene content was 10% by volume and nitrogen was 90% by volume. The synthesis reaction was run for 3.33 hours. Next, 100% by volume of hydrogen gas was supplied to the reactor at a space velocity of 25 mmol/(Hr g-cat), and treated for 1.00 hours under conditions of 525° C. and 0.1 MPa (absolute pressure) (catalyst regeneration process). Again under the above reaction conditions, the synthesis reaction of ethylene was carried out for 1.58 hours. By repeating this reaction step and regeneration step, the synthesis reaction of ethylene was carried out for a total of 6.50 hours. Reactor outlet gas was analyzed by gas chromatography. Table 1 shows the reaction results of the synthesis reaction of ethylene. Also, FIG. 1 shows the change in ethylene yield with respect to the cumulative reaction time. The amount of coke accumulated in the catalyst after the reaction step was 17% by mass, and the amount of coke accumulated in the catalyst after the regeneration step was 14% by mass.

Figure 0007251481000001
Figure 0007251481000001

<比較例A1>
実施例A1の反応条件にて、触媒再生工程を経ることなく、エチレンの合成反応を7.08時間実施した以外は、実施例A1と同様の操作を行った。反応成績を表2に示した。また、累積反応時間に対するエチレンの収率の変化を図1に示す。
<Comparative Example A1>
The same operation as in Example A1 was carried out, except that the synthesis reaction of ethylene was carried out for 7.08 hours under the reaction conditions of Example A1 without passing through the catalyst regeneration step. Table 2 shows the reaction results. Also, FIG. 1 shows the change in ethylene yield with respect to the cumulative reaction time.

Figure 0007251481000002
Figure 0007251481000002

<実施例A2>
触媒A2を用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒90mgと石英砂300mgの混合物を充填した。プロピレンと窒素を、プロピレンの重量空間速度が5.0Hr-1で、プロピレン40体積%と窒素60体積%となるように反応器に供給し、550℃、0.1MPa(絶対圧)でエチレンの合成反応を30分間実施した。次いで、室温まで降温した後、空気ガスを、0.1MPa(絶対圧)の条件で、空間速度100mmol/(Hr・g-cat)で反応器に供給し、昇温速度20℃/分で500℃まで昇温して、1分間保持した後、放冷した(触媒再生工程)。再び上記の反応条件にて、エチレンの合成反応を5分間実施した。反応器出口ガスは、ガスクロマトグラフィーにより分析した。エチレンの合成反応における、反応時間に対するプロピレン転化率の変化、およびプロピレン転化率-エチレン選択率の関係を図2に示す。反応工程後の触媒に蓄積されたコーク量は18質量%であり、再生工程後の触媒に蓄積されたコーク量は13質量%であった。なお、図2中、白抜き丸プロットは、エチレンの合成反応を30分間実施した後、触媒を再生させ、再度5分間反応を行った時の結果を示す。
<Example A2>
Using catalyst A2 and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 90 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and nitrogen were supplied to the reactor such that the weight hourly space velocity of propylene was 5.0 Hr −1 and the propylene content was 40% by volume and nitrogen was 60% by volume. Synthesis reactions were carried out for 30 minutes. Then, after cooling to room temperature, air gas was supplied to the reactor at a space velocity of 100 mmol/(Hr g-cat) under the condition of 0.1 MPa (absolute pressure), and the temperature was raised to 500 at a rate of 20 ° C./min. C., held for 1 minute, and then allowed to cool (catalyst regeneration step). The synthesis reaction of ethylene was carried out again for 5 minutes under the above reaction conditions. Reactor outlet gas was analyzed by gas chromatography. FIG. 2 shows the change in propylene conversion with respect to reaction time and the relationship between propylene conversion and ethylene selectivity in the ethylene synthesis reaction. The amount of coke accumulated in the catalyst after the reaction step was 18% by mass, and the amount of coke accumulated in the catalyst after the regeneration step was 13% by mass. In FIG. 2, the open circle plots show the results when the ethylene synthesis reaction was performed for 30 minutes, the catalyst was regenerated, and the reaction was performed again for 5 minutes.

<実施例A3>
触媒Aを用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒200mgと石英砂300mgの混合物を充填した。プロピレンと窒素を、プロピレンの重量空間速度が1.0Hr-1で、プロピレン20体積%と窒素80体積%となるように反応器に供給し、550℃、0.1MPa(絶対圧)でエチレンの合成反応を5分間実施した(反応工程)。次いで、100体積%の水素ガスを、空間速度100mmol/(Hr・g-cat)で反応器に供給し、550℃、0.1MPa(絶対圧)の条件で20分間処理した(触媒再生工程)。この反応工程と再生工程を繰り返すことで、エチレンの合成反応を累積18時間実施した。反応器出口ガスは、ガスクロマトグラフィーにより分析した。累積反応時間に対するエチレンの収率の変化を図3に示す。
<Example A3>
Using Catalyst A and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 200 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and nitrogen were supplied to the reactor such that the weight hourly space velocity of propylene was 1.0 Hr −1 , propylene was 20% by volume and nitrogen was 80% by volume, and ethylene was added at 550° C. and 0.1 MPa (absolute pressure). The synthesis reaction was carried out for 5 minutes (reaction step). Next, 100% by volume of hydrogen gas was supplied to the reactor at a space velocity of 100 mmol/(Hr g-cat), and treated for 20 minutes under conditions of 550° C. and 0.1 MPa (absolute pressure) (catalyst regeneration step). . By repeating this reaction step and regeneration step, the synthesis reaction of ethylene was carried out for a total of 18 hours. Reactor outlet gas was analyzed by gas chromatography. FIG. 3 shows the change in ethylene yield versus cumulative reaction time.

<実施例A4>
触媒Aを用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒200mgと石英砂300mgの混合物を充填した。プロピレンと窒素を、プロピレンの重量空間速度が5.0Hr-1で、プロピレン20体積%と水素50体積%と窒素80体積%となるように反応器に供給し、650℃、0.1MPa(絶対圧)でエチレンの合成反応を3分間実施した(反応工程)。次いで、100体積%の水素ガスを、空間速度500mmol/(Hr・g-cat)で反応器に供給し、650℃、0.1MPa(絶対圧)の条件で40分間処理した(触媒再生工程)。この反応工程と再生工程を繰り返すことで、エチレンの合成反応を累積6時間実施した。反応器出口ガスは、ガスクロマトグラフィーにより分析した。エチレンの合成反応における、反応時間に対するプロピレン転化率およびエチレン選択率の変化を表3及び図4に示す。反応工程後の触媒に蓄積されたコーク量は16質量%であった。
<Example A4>
Using Catalyst A and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 200 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and nitrogen were supplied to the reactor so that the weight hourly space velocity of propylene was 5.0 Hr −1 , propylene was 20% by volume, hydrogen was 50% by volume, and nitrogen was 80% by volume. pressure), the synthesis reaction of ethylene was carried out for 3 minutes (reaction step). Next, 100% by volume of hydrogen gas was supplied to the reactor at a space velocity of 500 mmol/(Hr·g-cat), and treated at 650° C. and 0.1 MPa (absolute pressure) for 40 minutes (catalyst regeneration step). . By repeating this reaction step and regeneration step, the synthesis reaction of ethylene was carried out for a total of 6 hours. Reactor outlet gas was analyzed by gas chromatography. Table 3 and FIG. 4 show changes in propylene conversion rate and ethylene selectivity with respect to reaction time in the ethylene synthesis reaction. The amount of coke accumulated in the catalyst after the reaction step was 16% by mass.

Figure 0007251481000003
Figure 0007251481000003

実施例A1~A4では、触媒とプロピレンとの接触工程(I)でエチレン収率の低下した触媒を触媒再生工程(II)に供することにより、長時間にわたって、高いエチレン収率を維持してエチレンを製造することができることが分かった。一方、工程(II)を経ない比較例A1では、エチレン収率を維持することができず、エチレン収率は5%まで低下した。これより、プロピレンからのエチレンの製造方法において、プロピレンとの接触工程(I)と、触媒再生工程(II)を有することで、安定に効率的にエチレンを製造することができることが分かった。 In Examples A1 to A4, the catalyst with a reduced ethylene yield in the step (I) of contacting the catalyst with propylene was subjected to the catalyst regeneration step (II), thereby maintaining a high ethylene yield over a long period of time and producing ethylene. was found to be able to produce On the other hand, in Comparative Example A1 that did not undergo the step (II), the ethylene yield could not be maintained and the ethylene yield decreased to 5%. From this, it was found that ethylene can be produced stably and efficiently by including the contacting step (I) with propylene and the catalyst regeneration step (II) in the method for producing ethylene from propylene.

(実施例B)
<触媒調製例B1>
水酸化ナトリウム(キシダ化学製)2.09gおよび25重量%のN,N,N-トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製、25質量%)47.3gを順次、水89.6gに溶解し、次に水酸化アルミニウム(Aldrich製、酸化アルミニウム換算で50~57重量%)4.27gを加え混合した後に、シリカ源としてコロイダルシリカSI-30(SiO 30重量%、Na 0.3重量%、日揮触媒化成製)111gを加えて十分攪拌した。さらに加えたSiOに対して10重量%のCHA型ゼオライト(SiO/Al比25、平均一次粒子径約200nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを1000mlのオートクレーブに仕込み、自圧下、250rpmで攪拌しながら、160℃で20時間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は22であった。ゼオライトの平均一次粒子径は、約100nmであった。
(Example B)
<Catalyst Preparation Example B1>
2.09 g of sodium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 47.3 g of a 25% by weight aqueous solution of N,N,N-trimethyl-1-adamantane ammonium hydroxide (manufactured by Seichem, 25% by weight) were sequentially added to 89.6 g of water. Then, after adding 4.27 g of aluminum hydroxide (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide) and mixing, colloidal silica SI-30 (SiO 2 30% by weight, Na 0.2% by weight) was added as a silica source. 3% by weight, manufactured by Nikki Shokubai Kasei) (111 g) was added and thoroughly stirred. Further, 10% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 25, average primary particle size: about 200 nm) was added as seed crystals to the added SiO 2 , and the mixture was further stirred. Then, this gel was put into a 1000 ml autoclave and hydrothermally synthesized at 160° C. for 20 hours while stirring at 250 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 22 by XRF analysis. The average primary particle size of zeolite was about 100 nm.

水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た。 The CHA-type zeolite obtained by hydrothermal synthesis is calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. and calcined at 500° C. for 6 hours under air flow to obtain a proton-type CHA-type zeolite.

上記プロトン型のCHA型ゼオライト2.0gに対して、溶媒としてトルエン20ml、シリル化剤としてテトラエトキシシラン5mlを加えて、攪拌しながら70℃で4時間加熱処理を行った。反応終了後、濾過によって固液を分離し、固形分を100℃で乾燥させることにより、シリル化されたプロトン型のCHA型ゼオライトを得た。さらに、650℃で、常圧にて50%水蒸気(水蒸気/空気=50/50(体積/体積))流通下、5時間処理することにより、水蒸気処理及びシリル化されたプロトン型のCHA型ゼオライトを得た(触媒B1)。 20 ml of toluene as a solvent and 5 ml of tetraethoxysilane as a silylating agent were added to 2.0 g of the proton-type CHA-type zeolite, and the mixture was heated at 70° C. for 4 hours while stirring. After completion of the reaction, a solid-liquid was separated by filtration, and the solid content was dried at 100° C. to obtain a silylated proton-type CHA-type zeolite. Furthermore, the proton-type CHA-type zeolite that was steam-treated and silylated was further treated at 650 ° C. for 5 hours under normal pressure with 50% steam (steam/air = 50/50 (volume/volume)) flowing. was obtained (catalyst B1).

<触媒調製例B2>
触媒B1を650℃で、常圧にて50%水蒸気(水蒸気/空気=50/50(体積/体積))流通下、5時間処理することにより、水蒸気処理及びシリル化されたプロトン型のCHA型ゼオライトを得た(触媒B2)。
<Catalyst Preparation Example B2>
Catalyst B1 is treated at 650° C. for 5 hours under normal pressure with 50% steam (steam/air=50/50 (volume/volume)) flowing to obtain steam-treated and silylated proton-type CHA type. A zeolite was obtained (catalyst B2).

<実施例B1>
触媒B1を用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒200mgと石英砂300mgの混合物を充填した。プロピレンと水素を、プロピレンの重量空間速度が0.23Hr-1で、プロピレン10体積%と水素90体積%となるように反応器に供給し、500℃、0.1MPa(絶対圧)でエチレンの合成反応を実施し、反応器出口ガスをガスクロマトグラフィーにより分析を行った。反応成績を表4に示した。反応後の触媒に蓄積されたコーク量は12質量%であった。
<Example B1>
Using catalyst B1 and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 200 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and hydrogen were supplied to the reactor so that the weight hourly space velocity of propylene was 0.23 Hr −1 , propylene was 10% by volume and hydrogen was 90% by volume. A synthesis reaction was carried out, and the reactor outlet gas was analyzed by gas chromatography. Table 4 shows the reaction results. The amount of coke accumulated in the catalyst after the reaction was 12% by mass.

<比較例B1>
水素の代わりに窒素を用いて、プロピレン10体積%、窒素90体積%とした以外は、実施例B1と同様の操作を行った。反応成績を表4に示した。反応後の触媒に蓄積されたコーク量は18質量%であった。
<Comparative Example B1>
The same operation as in Example B1 was performed except that nitrogen was used instead of hydrogen, and propylene was 10% by volume and nitrogen was 90% by volume. Table 4 shows the reaction results. The amount of coke accumulated in the catalyst after the reaction was 18% by mass.

<比較例B2>
水素の代わりに、水蒸気及び窒素の混合ガスを用い、プロピレン10体積%、水蒸気40体積%、窒素50体積%とした以外は、実施例B1と同様の操作を行った。反応成績を表4及び図5に示した。
<Comparative Example B2>
The same operation as in Example B1 was performed except that a mixed gas of water vapor and nitrogen was used instead of hydrogen, and propylene was 10% by volume, water vapor was 40% by volume, and nitrogen was 50% by volume. The reaction results are shown in Table 4 and FIG.

Figure 0007251481000004
Figure 0007251481000004

<実施例B2>
触媒B2を用いて、プロピレンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒200mgと石英砂300mgの混合物を充填した。プロピレンと窒素を、プロピレンの重量空間速度が0.12Hr-1で、プロピレン10体積%と窒素90体積%となるように反応器に供給し、500℃、0.1MPa(絶対圧)でエチレンの合成反応を3.33時間実施した。このときのプロピレン転化率は28.9%、エチレン選択率は55.7%、ブテン選択率は27.0%、エチレン収率は16.1%であった。上記反応後の触媒(以下これを「触媒B2A」という)に対して、100体積%の水素ガスを、水素の空間速度25mmol/(Hr・g-cat)で反応器に供給し、525℃、0.1MPa(絶対圧)の条件で1.00時間処理した。次いで、水素と接触させた触媒を用いて、再び上記の反応条件にて、エチレンの合成反応を実施した。0.33時間後の反応成績を表5に示した。
<Example B2>
Using catalyst B2 and propylene as a raw material, a synthesis reaction of ethylene was carried out. For the reaction, an atmospheric pressure fixed bed flow reactor was used, and a mixture of 200 mg of the above catalyst and 300 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. Propylene and nitrogen were fed to the reactor such that the weight hourly space velocity of propylene was 0.12 Hr −1 and the propylene content was 10% by volume and nitrogen was 90% by volume. The synthesis reaction was run for 3.33 hours. At this time, the propylene conversion rate was 28.9%, the ethylene selectivity was 55.7%, the butene selectivity was 27.0%, and the ethylene yield was 16.1%. 100% by volume of hydrogen gas was supplied to the reactor at a hydrogen space velocity of 25 mmol/(Hr g-cat) with respect to the catalyst after the above reaction (hereinafter referred to as "catalyst B2A"), The treatment was performed for 1.00 hours under the condition of 0.1 MPa (absolute pressure). Then, using the catalyst brought into contact with hydrogen, the synthesis reaction of ethylene was carried out again under the above reaction conditions. Table 5 shows the reaction results after 0.33 hours.

<比較例B3>
触媒B2Aに対して、100体積%の水素ガスの代わりに、100体積%の窒素ガスを用いて、窒素の空間速度25mmol/(Hr・g-cat)で反応器に供給した以外は実施例B2と同様の操作を行った。反応成績を表5に示した。
<Comparative Example B3>
Example B2 except that 100% by volume of nitrogen gas was used for catalyst B2A instead of 100% by volume of hydrogen gas and supplied to the reactor at a nitrogen space velocity of 25 mmol / (Hr g-cat). performed the same operation. Table 5 shows the reaction results.

<比較例B4>
触媒B2Aに対して、100体積%の水素ガスの代わりに、50%水蒸気ガス(水蒸気/窒素=50/50(体積/体積))を、空間速度25mmol/(Hr・g-cat)で反応器に供給した以外は実施例B2と同様の操作を行った。反応成績を表5に示した。
<Comparative Example B4>
Instead of 100% by volume hydrogen gas, 50% water vapor gas (water vapor/nitrogen = 50/50 (volume/volume)) was added to catalyst B2A at a space velocity of 25 mmol/(Hr g-cat) in the reactor. The same operation as in Example B2 was performed, except that the solution was supplied to . Table 5 shows the reaction results.

Figure 0007251481000005
Figure 0007251481000005

実施例B1より、キャリアガスとして水素を含むガスを用いて、プロピレンを触媒と接触させてエチレンを製造することにより、コーキング劣化が大きく抑制されたことで、触媒活性が安定し、比較例B1の窒素ガス、比較例B2の水蒸気/窒素ガスを希釈ガスとして用いた場合と比較して、高い収率で安定してエチレンを製造できることが分かった。
また、実施例B2では、プロピレン転化により継時的にエチレン収率の低下した触媒に対して水素ガスを接触させることで、窒素ガスを用いた比較例B3や水蒸気/窒素ガスを用いた比較例B4に対して、エチレン選択率を低下させることなく、効率的にエチレン収率を大幅に回復させることができることが分かった。
From Example B1, by using a gas containing hydrogen as a carrier gas to produce ethylene by bringing propylene into contact with the catalyst, coking deterioration was greatly suppressed, and the catalyst activity was stabilized. It was found that ethylene can be stably produced at a high yield compared to the case of using nitrogen gas and steam/nitrogen gas of Comparative Example B2 as the diluent gas.
Further, in Example B2, by bringing hydrogen gas into contact with the catalyst whose ethylene yield decreased over time due to propylene conversion, Comparative Example B3 using nitrogen gas and Comparative Example using steam / nitrogen gas It was found that the ethylene yield can be recovered to a large extent efficiently without reducing the ethylene selectivity for B4.

(実施例C)
<触媒調製例C1>
水酸化ナトリウム(キシダ化学製)2.09gおよび25重量%のN,N,N-トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製、25質量%)47.3gを順次、水89.6gに溶解し、次に水酸化アルミニウム(Aldrich製、酸化アルミニウム換算で50~57重量%)4.27gを加え混合した後に、シリカ源としてコロイダルシリカSI‐30(SiO 30重量%、Na 0.3重量%、日揮触媒化成製)111gを加えて十分攪拌した。さらに加えたSiOに対して10重量%のCHA型ゼオライト(SiO/Al比25、平均一次粒子径約200nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを1000mlのオートクレーブに仕込み、自圧下、250rpmで攪拌しながら、160℃で20時間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は22であった。ゼオライトの平均一次粒子径は、約100nmであった。
(Example C)
<Catalyst Preparation Example C1>
2.09 g of sodium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 47.3 g of a 25% by weight aqueous solution of N,N,N-trimethyl-1-adamantane ammonium hydroxide (manufactured by Seichem, 25% by weight) were sequentially added to 89.6 g of water. Then, after adding and mixing 4.27 g of aluminum hydroxide (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide), colloidal silica SI-30 (SiO 2 30% by weight, Na 0.2% by weight) was added as a silica source. 3% by weight, manufactured by Nikki Shokubai Kasei) (111 g) was added and thoroughly stirred. Further, 10% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 25, average primary particle size: about 200 nm) was added as seed crystals to the added SiO 2 , and the mixture was further stirred. Then, this gel was put into a 1000 ml autoclave and hydrothermally synthesized at 160° C. for 20 hours while stirring at 250 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 22 by XRF analysis. The average primary particle size of zeolite was about 100 nm.

水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た。
上記プロトン型のCHA型ゼオライト2.0gに対して、溶媒としてトルエン20ml、シリル化剤としてテトラエトキシシラン5mlを加えて、攪拌しながら70℃で4時間加熱処理を行った。反応終了後、濾過によって固液を分離し、固形分を100℃で乾燥させることにより、シリル化されたプロトン型のCHA型ゼオライトを得た(触媒C1)。このゼオライトの全酸量は0.66mmol/g、外表面酸量は0.002mmol/gであった。
The CHA-type zeolite obtained by hydrothermal synthesis is calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. and calcined at 500° C. for 6 hours under air flow to obtain a proton-type CHA-type zeolite.
20 ml of toluene as a solvent and 5 ml of tetraethoxysilane as a silylating agent were added to 2.0 g of the proton-type CHA-type zeolite, and the mixture was heated at 70° C. for 4 hours while stirring. After completion of the reaction, a solid-liquid was separated by filtration, and the solid content was dried at 100° C. to obtain a silylated proton-type CHA-type zeolite (catalyst C1). This zeolite had a total acid content of 0.66 mmol/g and an outer surface acid content of 0.002 mmol/g.

<実施例C1>
触媒C1を用いて、プロピレン及びtrans-2-ブテンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒90mgと石英砂400mgの混合物を充填した。プロピレンの重量空間速度4.2Hr-1、trans-2-ブテンの重量空間速度0.8Hr-1、プロピレン35体積%、trans-2-ブテン5体積%、窒素60体積%となるよう反応器に供給し、500℃、0.1MPa(絶対圧)でエチレンの合成反応を10‐12分間実施した。反応器から排出される生成ガスは、ガスクロマトグラフィーにより分析した。エチレンの合成反応の反応成績を表6に示した。
<Example C1>
Ethylene synthesis reaction was carried out using propylene and trans-2-butene as raw materials using catalyst C1. For the reaction, a normal pressure fixed bed flow reactor was used, and a mixture of 90 mg of the above catalyst and 400 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. The reactor was filled so that the weight hourly space velocity of propylene was 4.2 Hr −1 , the weight hourly space velocity of trans-2-butene was 0.8 Hr −1 , propylene was 35% by volume, trans-2-butene was 5% by volume, and nitrogen was 60% by volume. The synthesis reaction of ethylene was carried out at 500° C. and 0.1 MPa (absolute pressure) for 10-12 minutes. The product gas discharged from the reactor was analyzed by gas chromatography. Table 6 shows the reaction results of the synthesis reaction of ethylene.

<実施例C2>
プロピレンの重量空間速度3.5Hr-1、trans-2-ブテンの重量空間速度1.5Hr-1、プロピレン30体積%、trans-2-ブテン10体積%となるよう反応器に供給した以外は、実施例C1と同様の操作を行った。反応成績を表6に示した。
<Example C2>
Propylene weight hourly space velocity of 3.5 Hr −1 , trans-2-butene weight hourly space velocity of 1.5 Hr −1 , propylene of 30% by volume, and trans-2-butene of 10% by volume were supplied to the reactor, The same operation as in Example C1 was performed. Table 6 shows the reaction results.

<実施例C3>
プロピレンの重量空間速度2.1Hr-1、trans-2-ブテンの重量空間速度2.9Hr-1、プロピレン20体積%、trans-2-ブテン20体積%となるよう反応器に供給した以外は、実施例C1と同様の操作を行った。反応成績を表6に示した。
<Example C3>
Propylene weight hourly space velocity of 2.1 Hr −1 , trans-2-butene weight hourly space velocity of 2.9 Hr −1 , propylene of 20% by volume and trans-2-butene of 20% by volume were supplied to the reactor, The same operation as in Example C1 was performed. Table 6 shows the reaction results.

<実施例C4>
プロピレンの重量空間速度1.0Hr-1、trans-2-ブテンの重量空間速度4.0Hr-1、プロピレン10体積%、trans-2-ブテン30体積%となるよう反応器に供給した以外は、実施例C1と同様の操作を行った。反応成績を表6に示した。
<Example C4>
Propylene weight hourly space velocity of 1.0 Hr −1 , trans-2-butene weight hourly space velocity of 4.0 Hr −1 , 10% by volume of propylene, and 30% by volume of trans-2-butene were supplied to the reactor, except that The same operation as in Example C1 was performed. Table 6 shows the reaction results.

<比較例C1>
プロピレンのみを原料として、プロピレンの重量空間速度5.0Hr-1、プロピレン40体積%となるよう反応器に供給した以外は、実施例C1と同様の操作を行った。反応成績を表6に示した。
これらの実施例より、プロピレンとともに、特定量の炭素数4以上の炭化水素としてブテンを含む原料を用いると高いエチレン/プロピレン比率を安定して維持してエチレンを製造することができることが分かった。これらの結果は、炭素数4以上の炭化水素としてブテンを特定の割合含む原料を用いることにより、エチレン‐プロピレン‐ブテン間の平衡組成がエチレン側にシフトしたことに起因することを示唆する結果である。すなわち、プロピレン及び炭素数4以上の炭化水素を含む原料を用いることで、プロピレンからエチレンへの転換効率を高めることができ、かつ高いエチレン/プロピレン比の変動を緩和し、安定にエチレンを製造することができたものと考えられる。
<Comparative Example C1>
The same operation as in Example C1 was performed, except that only propylene was used as a raw material and supplied to the reactor so that the weight hourly space velocity of propylene was 5.0 Hr −1 and propylene was 40% by volume. Table 6 shows the reaction results.
From these examples, it was found that ethylene can be produced while stably maintaining a high ethylene/propylene ratio by using a raw material containing propylene and a specific amount of butene as a hydrocarbon having 4 or more carbon atoms. These results suggest that the equilibrium composition between ethylene-propylene-butene shifted to the ethylene side by using a raw material containing a specific proportion of butene as a hydrocarbon having 4 or more carbon atoms. be. That is, by using a raw material containing propylene and a hydrocarbon having 4 or more carbon atoms, it is possible to increase the conversion efficiency from propylene to ethylene, alleviate fluctuations in the high ethylene / propylene ratio, and stably produce ethylene. It is thought that it was possible.

Figure 0007251481000006
Figure 0007251481000006

本実施形態により、プロピレン原料からの高い収率でエチレンを製造することができる。また、安定して高いエチレン/プロピレン比率を維持することができるため、プロセスの煩雑さや分離・精製の負荷を軽減することができる。 According to this embodiment, it is possible to produce ethylene at a high yield from a propylene raw material. In addition, since a high ethylene/propylene ratio can be stably maintained, the complexity of the process and the load of separation/purification can be reduced.

(実施例D)
<物性測定>
なお、以下の調製例において、合成で得られたゼオライトの結晶のX線回折(XRD)パターンは、PANalytical社製のX’Pert Pro MPDを用いて得た。X線源はCuKαであり(X線出力:40kV、30mA)、読込幅は0.016°である。
蛍光X線分析(XRF)は、島津製作所社製Rayny EDX-700を用いた。
ICP法による組成分析においては、フッ酸で試料を溶解して試料溶液を調製した。当該試料溶液を誘導結合プラズマ発光分光分析(ICP-AES)で測定した。得られたSi、Alの測定値から、試料のSiO/Al比を求めた。
ゼオライトの平均一次粒子径は、日本電子社製SEM(走査型電子顕微鏡)JSM-6010LVを用いて行った。
ゼオライト結晶表面のXPS(X線光電子分光法)測定は、PHI社製 Quantum2000を用いて、下記の条件にて行った。X線源:単色化Al-Kα、出力 16kV-34W(X線発生面積170μmφ)、帯電中和:電子銃(2μA)、イオン銃(1V)併用、分光系:パルスエネルギー 187.85eV@ワイドスペクトル,29.35eV@ナロースペクトル(C1s、Al2p),11.75eV@ナロースペクトル(O1s、Si2p)、測定領域:照射面積300μm□、取り出し角:45°(表面より)。
得られたSi、Alの測定値から、ゼオライト結晶表面のSiO/Al比を求めた。
(Example D)
<Physical property measurement>
In the preparation examples below, X-ray diffraction (XRD) patterns of zeolite crystals obtained by synthesis were obtained using X'Pert Pro MPD manufactured by PANalytical. The X-ray source is CuKα (X-ray output: 40 kV, 30 mA) and the read width is 0.016°.
Rayny EDX-700 manufactured by Shimadzu Corporation was used for X-ray fluorescence analysis (XRF).
In composition analysis by the ICP method, a sample solution was prepared by dissolving a sample with hydrofluoric acid. The sample solution was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). From the measured values of Si and Al obtained, the SiO 2 /Al 2 O 3 ratio of the sample was determined.
The average primary particle size of zeolite was measured using a SEM (scanning electron microscope) JSM-6010LV manufactured by JEOL Ltd.
XPS (X-ray photoelectron spectroscopy) measurement of the zeolite crystal surface was performed under the following conditions using Quantum 2000 manufactured by PHI. X-ray source: monochromatic Al-Kα, output 16 kV-34 W (X-ray generation area 170 μmφ), charge neutralization: electron gun (2 μA), ion gun (1 V) combined, spectroscopic system: pulse energy 187.85 eV @ wide spectrum , 29.35 eV @ narrow spectrum (C1s, Al2p), 11.75 eV @ narrow spectrum (O1s, Si2p), measurement area: irradiation area 300 μm square, take-off angle: 45° (from the surface).
From the measured values of Si and Al obtained, the SiO 2 /Al 2 O 3 ratio of the zeolite crystal surface was obtained.

<触媒調製例D1>
水酸化ナトリウム(キシダ化学製)2.09gおよび25重量%のN,N,N‐トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製,25質量%)47.3gを順次、水89.6gに溶解し、次に水酸化アルミニウム(Aldrich製,酸化アルミニウム換算で50~57重量%)4.27gを加え混合した後に、シリカ源としてコロイダルシリカSI‐30(SiO 30重量%,Na 0.3重量%,日揮触媒化成製)111gを加えて十分攪拌した。さらに加えたSiOに対して10重量%のCHA型ゼオライト(SiO/Al比25、平均一次粒子径約200nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを1000mlのオートクレーブに仕込み、自圧下、250rpmで攪拌しながら、160℃で20時間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は22であった。ゼオライトの平均一次粒子径は、約100nmであった。
<Catalyst Preparation Example D1>
2.09 g of sodium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 47.3 g of a 25% by weight aqueous solution of N,N,N-trimethyl-1-adamantane ammonium hydroxide (manufactured by Seichem, 25% by weight) were sequentially added to 89.6 g of water. Then, after adding 4.27 g of aluminum hydroxide (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide) and mixing, colloidal silica SI-30 (SiO 2 30% by weight, Na 0.2% by weight) was added as a silica source. 3% by weight, manufactured by Nikki Shokubai Kasei) (111 g) was added and sufficiently stirred. Further, 10% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 25, average primary particle size: about 200 nm) was added as seed crystals to the added SiO 2 , and the mixture was further stirred. Then, this gel was put into a 1000 ml autoclave and hydrothermally synthesized at 160° C. for 20 hours while stirring at 250 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 22 by XRF analysis. The average primary particle size of zeolite was about 100 nm.

水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た(触媒DA)。
上記プロトン型のCHA型ゼオライト2.0gに対して、溶媒としてトルエン20ml、シリル化剤としてテトラエトキシシラン5mlを加えて、攪拌しながら70℃で4時間加熱処理を行った。反応終了後、濾過によって固液を分離し、固形分を100℃で乾燥させることにより、シリル化されたプロトン型のCHA型ゼオライトを得た(触媒D1)。
The CHA-type zeolite obtained by hydrothermal synthesis is calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. and calcined at 500° C. for 6 hours in an air stream to obtain a proton-type CHA-type zeolite (catalyst DA).
20 ml of toluene as a solvent and 5 ml of tetraethoxysilane as a silylating agent were added to 2.0 g of the proton-type CHA-type zeolite, and the mixture was heated at 70° C. for 4 hours while stirring. After completion of the reaction, a solid-liquid was separated by filtration, and the solid content was dried at 100° C. to obtain a silylated proton-type CHA-type zeolite (catalyst D1).

<触媒調製例D2>
N,N,N‐トリメチル-1-アダマンタンアンモニウムハイドロキサイド水溶液(セイケム製,25質量%)59.2g及び1M水酸化ナトリウム水溶液145.6gを順次、水371gに溶解し、次に水酸化アルミニウム(Aldrich製,酸化アルミニウム換算で50~57重量%)8.90gを加え攪拌した後に、シリカ源としてフュームドシリカ42.1gを加えて2時間攪拌した。さらに加えたシリカ源由来のSiOに対して10重量%のCHA型ゼオライト(SiO/Al比15、平均一次粒子径約100nm)を種結晶として加えてさらに攪拌した。次いで、このゲルを1000mlのオートクレーブに仕込み、自圧下、150rpmで攪拌しながら、160℃で42時間、水熱合成を行った。生成物を濾過、水洗した後、乾燥させた。生成物のXRDパターンから、得られた生成物がCHA相であることを確認した。XRF分析より、SiO/Al比は14であった。ゼオライトの平均一次粒子径は、約100nmであった。
<Catalyst Preparation Example D2>
59.2 g of N,N,N-trimethyl-1-adamantane ammonium hydroxide aqueous solution (manufactured by Seichem, 25% by mass) and 145.6 g of 1M sodium hydroxide aqueous solution were successively dissolved in 371 g of water, followed by aluminum hydroxide. (manufactured by Aldrich, 50 to 57% by weight in terms of aluminum oxide) was added and stirred, and then 42.1 g of fumed silica as a silica source was added and stirred for 2 hours. Furthermore, 10% by weight of CHA-type zeolite (SiO 2 /Al 2 O 3 ratio: 15, average primary particle size: about 100 nm) was added as seed crystals to the SiO 2 derived from the silica source, and the mixture was further stirred. Then, this gel was put into a 1000 ml autoclave and hydrothermally synthesized at 160° C. for 42 hours while stirring at 150 rpm under autogenous pressure. The product was filtered, washed with water and dried. The XRD pattern of the product confirmed that the obtained product was the CHA phase. The SiO 2 /Al 2 O 3 ratio was 14 by XRF analysis. The average primary particle size of zeolite was about 100 nm.

水熱合成により得られたCHA型ゼオライトを、空気流通下580℃で6時間焼成を行い、次いで、1Mの硝酸アンモニウム水溶液で80℃、1時間のイオン交換を2回行い、100℃で乾燥した後、空気流通下、500℃で6時間焼成し、プロトン型のCHA型ゼオライトを得た(触媒DB)。
上記プロトン型のCHA型ゼオライト1.0gに対して、溶媒としてヘキサメチルジシロキサン10ml、シリル化剤としてテトラエトキシシラン2.5mlを加えて、攪拌しながら100℃で6時間加熱処理を行った。反応終了後、濾過によって固液を分離し、固形分を100℃で乾燥させることにより、シリル化されたプロトン型のCHA型ゼオライトを得た(触媒D2)。ICP分析より結晶全体のSiO/Al比は14であり、XPS分析より結晶表面のSiO/Al比は30であった。また、走査型電子顕微鏡の測定により、平均一次粒子径はおよそ100nmであった。
The CHA-type zeolite obtained by hydrothermal synthesis is calcined at 580°C for 6 hours under air flow, then ion-exchanged twice with a 1 M ammonium nitrate aqueous solution at 80°C for 1 hour, and dried at 100°C. and calcined at 500° C. for 6 hours under air flow to obtain a proton-type CHA-type zeolite (catalyst DB).
10 ml of hexamethyldisiloxane as a solvent and 2.5 ml of tetraethoxysilane as a silylating agent were added to 1.0 g of the proton-type CHA-type zeolite, and the mixture was heated at 100° C. for 6 hours while stirring. After completion of the reaction, a solid-liquid was separated by filtration, and the solid content was dried at 100° C. to obtain a silylated proton-type CHA-type zeolite (catalyst D2). The SiO 2 /Al 2 O 3 ratio of the entire crystal was 14 by ICP analysis, and the SiO 2 /Al 2 O 3 ratio of the crystal surface was 30 by XPS analysis. Also, the average primary particle size was about 100 nm as measured by a scanning electron microscope.

<実施例D1>
触媒D1を用いて、trans-2-ブテンを原料として、エチレンの合成反応を行った。反応には、常圧固定床流通反応装置を用い、内径6mmの石英反応管に、上記触媒90mgと石英砂400mgの混合物を充填した。trans-2-ブテンと窒素を、trans-2-ブテンの重量空間速度が5Hr-1で、trans-2-ブテン40体積%と窒素60体積%となるように反応器に供給し、500℃、0.1MPa(絶対圧)でエチレンの合成反応を8-10分間実施した。反応器から排出される生成ガスは、ガスクロマトグラフィーにより分析した。エチレンの合成反応の反応成績を表7に示した。
<Example D1>
Ethylene synthesis reaction was carried out using catalyst D1 and trans-2-butene as a raw material. For the reaction, a normal pressure fixed bed flow reactor was used, and a mixture of 90 mg of the above catalyst and 400 mg of quartz sand was filled in a quartz reaction tube with an inner diameter of 6 mm. trans-2-butene and nitrogen were fed to the reactor such that the weight hourly space velocity of trans-2-butene was 5 Hr −1 and 40% by volume of trans-2-butene and 60% by volume of nitrogen were heated at 500° C., The synthesis reaction of ethylene was carried out for 8-10 minutes at 0.1 MPa (absolute pressure). The product gas discharged from the reactor was analyzed by gas chromatography. Table 7 shows the reaction results of the synthesis reaction of ethylene.

<実施例D2>
触媒D2を用いた以外は、実施例D1と同様の方法にて、エチレンの合成反応を10分間実施した。エチレンの合成反応の反応成績を表7に示した。
<Example D2>
An ethylene synthesis reaction was carried out for 10 minutes in the same manner as in Example D1, except that catalyst D2 was used. Table 7 shows the reaction results of the synthesis reaction of ethylene.

<比較例D1>
触媒DAを用いた以外は、実施例1と同様の方法にて、エチレンの合成反応を10分間実施した。エチレンの合成反応の反応成績を表1に示した。
触媒として、形状選択性が効かない外表面酸点の割合を3%以下に低下させたゼオライトを使用したことにより、エチレン選択率が高く、エチレン収率自体は同等以上であり、かつイソブテン、すなわち原料としてリサイクルの難しい分岐オレフィンになってしまう割合は、大きく低下していることがわかる。
<Comparative Example D1>
An ethylene synthesis reaction was carried out for 10 minutes in the same manner as in Example 1, except that catalyst DA was used. Table 1 shows the reaction results of the synthesis reaction of ethylene.
As a catalyst, by using zeolite in which the ratio of outer surface acid sites where shape selectivity does not work is reduced to 3% or less, the ethylene selectivity is high, the ethylene yield itself is equal or higher, and isobutene, that is, It can be seen that the ratio of branched olefins, which are difficult to recycle as raw materials, has greatly decreased.

Figure 0007251481000007
Figure 0007251481000007

本実施形態により、炭素数4以上の炭化水素、特にブテンやペンテン類を原料としてエチレンを製造する際、副反応を抑えて、高いエチレン選択率で製造することができ、かつ、原料炭化水素の分岐オレフィンへの異性化を抑制することができるエチレンの製造方法を提供する。これにより、直鎖オレフィンと分岐オレフィンの分離・精製に要する設備やエネルギーを削減することができ、炭素数4以上の炭化水素のリサイクル利用を容易にすることができる。 According to the present embodiment, when ethylene is produced using hydrocarbons having 4 or more carbon atoms, particularly butenes and pentenes, as raw materials, side reactions can be suppressed and ethylene can be produced with high ethylene selectivity. Provided is a method for producing ethylene capable of suppressing isomerization to branched olefins. As a result, equipment and energy required for separating and refining straight-chain olefins and branched olefins can be reduced, and the recycling of hydrocarbons having 4 or more carbon atoms can be facilitated.

Claims (5)

反応器にプロピレンを供給し、触媒と接触させてエチレンを生成させる工程(I)と、前記工程(I)を経た触媒を、水素を含むガスに接触させることにより、再生させる工程(II)を有し、前記触媒がCHA型ゼオライトを含む、エチレンの製造方法。 A step (I) of supplying propylene to a reactor and contacting it with a catalyst to produce ethylene, and a step (II) of regenerating the catalyst that has undergone step (I) by contacting it with a gas containing hydrogen. and wherein the catalyst comprises a CHA-type zeolite . プロピレンと、触媒と、を反応器中で接触させてエチレンを製造する方法であって、
前記触媒が、水素を含むガスに接触させた触媒であり、且つCHA型ゼオライトを含む、エチレンの製造方法。
A method for producing ethylene by contacting propylene and a catalyst in a reactor, comprising:
A method for producing ethylene, wherein the catalyst is a catalyst contacted with a hydrogen-containing gas and contains a CHA-type zeolite .
前記触媒が、プロピレンとの接触により生成したコークを含む触媒と、水素を含むガスと、を接触させた触媒である、請求項2に記載のエチレンの製造方法。 3. The method for producing ethylene according to claim 2, wherein the catalyst is a catalyst obtained by contacting a catalyst containing coke produced by contact with propylene and a gas containing hydrogen. 前記触媒と、水素を含むガスと、を、300℃以上の温度で接触させた触媒である、請求項2又は3に記載のエチレンの製造方法。 4. The method for producing ethylene according to claim 2, wherein the catalyst is a catalyst obtained by contacting the catalyst with a gas containing hydrogen at a temperature of 300[deg.] C. or higher. 前記触媒が、水素分圧絶対圧で0.001MPa以上の水素を含むガスに接触させた触媒である、請求項2~4のいずれか1項に記載のエチレンの製造方法。
The method for producing ethylene according to any one of claims 2 to 4, wherein the catalyst is in contact with a gas containing hydrogen at a hydrogen partial pressure absolute pressure of 0.001 MPa or more.
JP2019560575A 2017-12-20 2018-12-20 Method for producing ethylene Active JP7251481B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2017244103 2017-12-20
JP2017244104 2017-12-20
JP2017244104 2017-12-20
JP2017244103 2017-12-20
JP2018078463 2018-04-16
JP2018078463 2018-04-16
JP2018078494 2018-04-16
JP2018078494 2018-04-16
PCT/JP2018/047090 WO2019124519A1 (en) 2017-12-20 2018-12-20 Method for producing ethylene

Publications (2)

Publication Number Publication Date
JPWO2019124519A1 JPWO2019124519A1 (en) 2020-12-10
JP7251481B2 true JP7251481B2 (en) 2023-04-04

Family

ID=66993515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019560575A Active JP7251481B2 (en) 2017-12-20 2018-12-20 Method for producing ethylene

Country Status (2)

Country Link
JP (1) JP7251481B2 (en)
WO (1) WO2019124519A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078962A (en) 2009-08-11 2011-04-21 Mitsubishi Chemicals Corp Method for regenerating catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072348B2 (en) * 1997-12-16 2000-07-31 工業技術院長 Method for producing lower olefin
US8314280B2 (en) * 2009-03-20 2012-11-20 Lummus Technology Inc. Process for the production of olefins
JP2015131778A (en) * 2014-01-10 2015-07-23 三菱化学株式会社 Method for producing propylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078962A (en) 2009-08-11 2011-04-21 Mitsubishi Chemicals Corp Method for regenerating catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Catalysis Today,2017年10月04日,Vol.303,p.86-92,(Supplementary Information p.1-27を含む)
Journal of Catalysis,2014年,Vol.314,p.10-20,(Supplementary Information p.1-9を含む)

Also Published As

Publication number Publication date
WO2019124519A1 (en) 2019-06-27
JPWO2019124519A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
US10449528B2 (en) High charge density silicometallophosphate molecular sieves
JP5545114B2 (en) Catalyst regeneration method
CA2562905C (en) Uzm-8 and uzm-8hs crystalline aluminosilicate zeolitic compositions and processes using the compositions
JP4315679B2 (en) Improved zeolite and use thereof
JP7087636B2 (en) Zeolite catalyst treatment method and lower olefin production method
CA2934153A1 (en) Catalyst and process for the conversion of oxygenates to olefins
WO2017204993A1 (en) High charge density metallophosphate molecular sieves
WO2017151864A1 (en) High charge density silicometallophosphate molecular sieves sapo-69
WO2007145724A1 (en) Treatment of cha-type molecular sieves and their use in the conversion of oxygenates to olefins
JP6699336B2 (en) Method for producing AEI type aluminosilicate, method for producing propylene and linear butene using the AEI type aluminosilicate
JP7156455B2 (en) Method for producing propylene and linear butene
WO2017205243A1 (en) High charge density metallophosphate molecular sieves
US10556229B2 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin and method for regenerating composite catalyst
JP2011079815A (en) Method of producing p-xylene
CN113646081A (en) Mesoporous catalyst compounds and uses thereof
WO2016140839A1 (en) Enhanced propylene production in oto process with modified zeolites
JP6977251B2 (en) AEI-type metallosilicate, a method for producing the same, and a method for producing propylene and linear butene using the same.
US5397561A (en) Zeolite-type material
JP7251481B2 (en) Method for producing ethylene
JP6641705B2 (en) Method for producing propylene and linear butene
KR100326413B1 (en) Modified MCM-22 Catalyst Composition
JP2011079818A (en) Method of producing propylene
JPH06346062A (en) Catalytic conversion of light hydrocarbon
CN114929652A (en) Catalyst for producing lower olefins by catalytic cracking of hydrocarbons having 4 to 7 carbon atoms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151