JP7249707B1 - Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same - Google Patents

Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same Download PDF

Info

Publication number
JP7249707B1
JP7249707B1 JP2022171373A JP2022171373A JP7249707B1 JP 7249707 B1 JP7249707 B1 JP 7249707B1 JP 2022171373 A JP2022171373 A JP 2022171373A JP 2022171373 A JP2022171373 A JP 2022171373A JP 7249707 B1 JP7249707 B1 JP 7249707B1
Authority
JP
Japan
Prior art keywords
elongated
rectangular parallelepiped
sintered body
sintered
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022171373A
Other languages
Japanese (ja)
Inventor
伸也 池田
安春 福市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Gokin Co Ltd
Original Assignee
Kyoritsu Gokin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Gokin Co Ltd filed Critical Kyoritsu Gokin Co Ltd
Priority to JP2022171373A priority Critical patent/JP7249707B1/en
Application granted granted Critical
Publication of JP7249707B1 publication Critical patent/JP7249707B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】超硬合金で形成され、かつ均一な細長状貫通孔を有する新規な成形体を製造する。【解決手段】細長状貫通孔を長さ方向に横切って分割した直方体状である複数の焼結体を焼結接合し、少なくとも1つの細長状貫通孔を有する再焼結体を得る接合工程を経て、超硬合金で形成され、少なくとも1つの細長状貫通孔1a,1bを有する成形体1を製造する。得られた状成形体1において、前記細長状貫通孔1a,1bの平均孔径が200μm以下であり、かつ前記細長状貫通孔1a,1bの長さが前記平均孔径の30倍以上である。前記細長状貫通孔2の長さ方向において、孔径の分散度が平均孔径に対して20%以下であってもよい。前記細長状貫通孔1a,1bの平行度は30μm以下であってもよい。【選択図】図1A novel compact made of cemented carbide and having uniform elongated through-holes is manufactured. A joining step is performed to obtain a resintered body having at least one elongated through-hole by sintering and joining a plurality of rectangular parallelepiped sintered bodies obtained by dividing the elongated through-holes in the length direction. After that, a molded body 1 made of cemented carbide and having at least one elongated through-hole 1a, 1b is produced. In the obtained molded body 1, the elongated through holes 1a and 1b have an average hole diameter of 200 μm or less, and the length of the elongated through holes 1a and 1b is 30 times or more the average hole diameter. In the longitudinal direction of the elongated through-holes 2, the pore size distribution may be 20% or less with respect to the average pore size. The parallelism of the elongated through holes 1a and 1b may be 30 μm or less. [Selection drawing] Fig. 1

Description

本発明は、金型などに利用できる細長状貫通孔を有する超硬合金成形体およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a cemented carbide compact having elongated through holes that can be used for molds and the like, and a method for producing the same.

超硬合金は、硬質であり、耐摩耗性および耐久性に優れるため、各種成形体の金型として汎用されている。近年の技術革新により、光学機器や電子機器の小型化などに伴って、成形体の形状も微細な形状が増加しており、極細で直線状の成形体も存在する。しかし、超硬合金は、硬質であり、加工が困難であるためか、極細で直線状の成形体を成形するための金型として、超硬合金で形成された金型は知られていない。 Cemented carbide is hard and has excellent wear resistance and durability, so it is widely used as molds for various compacts. Due to recent technological innovations, along with the miniaturization of optical devices and electronic devices, the shape of molded products has increased in fine shapes, and there are also ultrafine and linear molded products. However, since cemented carbide is hard and difficult to process, a mold made of cemented carbide is not known as a mold for molding an ultra-thin and linear compact.

一方で、特開2022-1662号公報(特許文献1)には、切削工具、ノズル、キャピラリなどに利用できる超硬合金体として、炭化タングステンWCを主成分とする硬質相を含む超硬合金で構成され、直径100μm以下の極細孔を有する長尺超硬合金体が開示されている。この文献には、この長尺超硬合金体は、炭化タングステンWCを含む原料粉末を押し固めて得られた供給粉末を、通路内に直径100μm以下のタングステンワイヤが配置された口金を通じて押し出した成形品を焼結することにより得られ、前記極細孔が長手方向に同一直径であることが記載されている。 On the other hand, Japanese Patent Application Laid-Open No. 2022-1662 (Patent Document 1) describes a cemented carbide containing a hard phase containing tungsten carbide WC as a main component as a cemented carbide body that can be used for cutting tools, nozzles, capillaries, etc. An elongated cemented carbide body is disclosed having micropores configured and having diameters of 100 μm or less. In this document, this long cemented carbide body is formed by extruding a supply powder obtained by compacting a raw material powder containing tungsten carbide WC through a die having a tungsten wire having a diameter of 100 μm or less arranged in a passage. Obtained by sintering the article, said pores are said to be of the same diameter in the longitudinal direction.

特開2022-1662号公報Japanese Patent Application Laid-Open No. 2022-1662

しかし、特許文献1には、極細孔の具体的な長さや形状の均一性について記載されていない。さらに、特許文献1に記載されている長尺超硬合金体は、押出成形で製造されるため、押し出される過程において、長尺状の極細孔が撓むことが予測され、直線状の貫通孔を製造するのが困難である上に、製造過程における貫通孔の撓みによって孔径も変化し易い。従って、特許文献1の長尺超硬合金体の極細孔は、直線状ではなく、同心度(または端面における平行度)の数値が大きい上に、孔径についても不均一であり、特許文献1に記載されている流体を供給または噴出させるための切削工具やノズル、ワイヤボンディングに用いられるキャピラリなどの用途では許容できる範囲であっても、高い精密性が要求される電子部品としての直線状成形体を形成するための金型などの用途では許容できない範囲である。特に、精密性が要求される用途では、微細な形状を精密に形成するために、仕上げ工程として、貫通孔に対して電極を用いた細孔放電加工またはWE放電加工(ワイヤー放電加工またはワイヤーカット放電加工)が必要となる。細孔放電加工またはWE放電加工では、電極と被加工体との間には隙間(放電代)が必要となるが、同心度の数値が大きい特許文献1のような貫通孔では、電極が貫通孔の内壁と接触するために、放電加工が実施できない。さらに、特許文献1の製造方法では、シリンダーを備えた押出機を用いる必要があり、簡便に製造できない。 However, Patent Document 1 does not describe the specific length of the micropores or the uniformity of their shape. Furthermore, since the long cemented carbide body described in Patent Document 1 is manufactured by extrusion molding, it is expected that the long micropores will be bent in the process of being extruded, and the straight through holes is difficult to manufacture, and the hole diameter is likely to change due to bending of the through hole during the manufacturing process. Therefore, the micropores of the long cemented carbide body of Patent Document 1 are not straight, have a large concentricity (or parallelism at the end face), and have non-uniform pore diameters. Linear molded products as electronic components that require high precision even if they are within the permissible range for applications such as cutting tools and nozzles for supplying or ejecting the described fluid, capillaries used for wire bonding, etc. It is an unacceptable range for applications such as molds for forming. In particular, for applications that require precision, in order to precisely form a fine shape, the finishing process is pore electrical discharge machining or WE electrical discharge machining (wire electrical discharge machining or wire cutting) using electrodes for through holes. electrical discharge machining) is required. In hole electric discharge machining or WE electric discharge machining, a gap (discharge allowance) is required between the electrode and the workpiece. Electrical discharge machining cannot be performed due to contact with the inner wall of the hole. Furthermore, in the manufacturing method of Patent Document 1, it is necessary to use an extruder equipped with a cylinder, which makes manufacturing difficult.

従って、本発明の目的は、超硬合金で形成され、かつ均一な細長状貫通孔を有する新規な成形体およびその製造方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a novel compact made of cemented carbide and having uniform elongated through-holes, and a method for producing the same.

本発明者等は、前記課題を達成するため鋭意検討した結果、細長状貫通孔を有する直方体状焼結体を、前記細長状貫通孔を長さ方向に横切って分割した形状の複数の焼結体を位置合わせして接合する方法により、超硬合金で形成され、かつ均一で微細な細長状貫通孔を有する新規な成形体を製造できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have found that a rectangular parallelepiped sintered body having an elongated through hole is divided into a plurality of sintered bodies having a shape that is divided across the elongated through hole in the length direction. The inventors have found that a novel molded body made of cemented carbide and having uniform fine elongated through-holes can be produced by a method of aligning and joining bodies, and completed the present invention.

すなわち、本発明の態様[1]としての製造方法は、
超硬合金で形成され、少なくとも1つの細長状貫通孔を有する成形体の製造方法であって、
接合面に形成された少なくとも1つの細長状溝部同士を位置合わせして複数の焼結体を焼結接合し、少なくとも1つの細長状貫通孔を有する直方体状再焼結体を得る接合工程を含み、
前記複数の焼結体が、前記直方体状再焼結体の細長状貫通孔を長さ方向に横切って分割した形状である。
That is, the manufacturing method as aspect [1] of the present invention is
A method for producing a molded body made of cemented carbide and having at least one elongated through hole, comprising:
A joining step of aligning at least one elongated groove formed on the joint surface and sintering and joining a plurality of sintered bodies to obtain a cuboid re-sintered body having at least one elongated through hole. ,
The plurality of sintered bodies have a shape obtained by dividing them by crossing the elongated through holes of the resintered rectangular parallelepiped body in the length direction.

本発明の態様[2]は、前記態様[1]の接合工程において、
前記直方体状再焼結体が、断面L字状焼結体と直方体状焼結体とを位置決めまたは嵌合させて焼結結合した再焼結体であり、
前記断面L字状焼結体が、前記直方体状焼結体と位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成された基底部と、この基底部の端部から立設した位置決め部とを有し、
前記直方体状焼結体に、前記断面L字状焼結体と位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ
前記断面L字状焼結体の前記位置決め部の隅部に位置する前記直方体状焼結体の角部を面取りし、前記隅部と前記角部との間に隙間を設ける態様である。
In the aspect [2] of the present invention, in the bonding step of the aspect [1],
The rectangular parallelepiped resintered body is a resintered body in which a cross section L-shaped sintered body and a rectangular parallelepiped sintered body are positioned or fitted and sintered together,
a base having an elongated groove for forming an elongated through-hole in the bonding surface in a state in which the sintered body having an L-shaped cross section is positioned or fitted with the sintered body having a rectangular parallelepiped; and a positioning part erected from the end of the part,
The rectangular parallelepiped sintered body is formed with an elongated groove portion for forming an elongated through-hole in the bonding surface in a state of being positioned or fitted with the L-shaped cross section sintered body, and the L-shaped cross section In this aspect, the corners of the rectangular parallelepiped sintered body positioned at the corners of the positioning portion of the sintered body are chamfered to provide a gap between the corners.

本発明の態様[3]は、前記態様[2]において、前記断面L字状焼結体と前記直方体状焼結体との接触面の平行度がそれぞれ3μm以下であり、かつ前記断面L字状焼結体の隅部の直角度が3μm以下である態様である。 Aspect [3] of the present invention is the aspect [2], wherein the parallelism of the contact surfaces of the L-shaped cross-sectional sintered body and the rectangular parallelepiped sintered body is 3 μm or less, and the L-shaped cross-section In this embodiment, the squareness of the corners of the sintered body is 3 μm or less.

本発明の態様[4]は、前記態様[1]の接合工程において、
前記直方体状再焼結体が、断面L字状焼結体と、前記断面L字状焼結体と位置決めまたは嵌合して細長状孔部を形成するための第1の直方体状焼結体と、少なくとも1つの他の直方状焼結体とを嵌合させて焼結結合した再焼結体であり、
前記断面L字状焼結体が、前記第1の直方体状焼結体と位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成された基底部と、この基底部の端部から立設した位置決め部とを有し、かつ
前記第1の直方体状焼結体に、前記断面L字状焼結体と位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ前記他の直方体状焼結体と位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、
前記他の直方体状焼結体に、直方体状焼結体同士が位置決めまたは嵌合した状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ
前記断面L字状焼結体の位置決め部の隅部に位置する前記第1の直方体状焼結体の角部を面取りし、前記隅部と前記角部との間に隙間を設ける態様である。
In aspect [4] of the present invention, in the bonding step of aspect [1],
The re-sintered rectangular parallelepiped body includes a sintered body with an L-shaped cross section and a first sintered rectangular parallelepiped body for positioning or fitting with the sintered body with an L-shaped cross section to form an elongated hole. and at least one other rectangular parallelepiped sintered body are fitted and sintered together,
a base portion having an elongated groove for forming an elongated through-hole in the bonding surface in a state in which the sintered body having an L-shaped cross section is positioned or fitted with the first sintered body having a rectangular parallelepiped; , and a positioning portion erected from the end of the base portion, and in a state where the first rectangular parallelepiped sintered body is positioned or fitted with the L-shaped cross section sintered body, on the joint surface An elongated groove for forming an elongated through-hole is formed, and an elongated groove for forming an elongated through-hole is formed in the bonding surface in a state of being positioned or fitted with the other rectangular parallelepiped sintered body. formed,
An elongated groove portion for forming an elongated through hole is formed in the joint surface in a state where the rectangular parallelepiped sintered bodies are positioned or fitted to each other in the other rectangular parallelepiped sintered body, and the cross section is L-shaped. In this mode, the corners of the first rectangular parallelepiped sintered body positioned at the corners of the positioning portions of the sintered body are chamfered to provide a gap between the corners.

本発明の態様[5]は、前記態様[4]において、前記断面L字状焼結体と前記第1の直方体状焼結体との接合面の平行度がそれぞれ3μm以下であり、前記第1の直方体状焼結体と前記他の直方体状焼結体との接合面の平行度がそれぞれ3μm以下であり、前記他の直方体状焼結体同士の接合面の平行度がそれぞれ3μm以下であり、かつ前記断面L字状焼結体の隅部の直角度が3μm以下である態様である。 Aspect [5] of the present invention is Aspect [4], wherein parallelism of joint surfaces between the L-shaped cross-section sintered body and the first rectangular parallelepiped sintered body is 3 μm or less, and Parallelism of joint surfaces of the rectangular parallelepiped sintered body of No. 1 and the other rectangular parallelepiped sintered bodies is 3 μm or less, and parallelism of joint surfaces of the other rectangular parallelepiped sintered bodies is 3 μm or less. and the squareness of the corners of the sintered body having an L-shaped cross section is 3 μm or less.

本発明の態様[6]は、前記態様[1]~[5]のいずれかの態様において、前記接合工程の前工程として、前記複数の焼結体における細長状貫通孔を形成するための細長状溝部を、光学式倣い研削盤で研削して形成する態様である。 Aspect [6] of the present invention is based on any one of Aspects [1] to [5], wherein, as a pre-process of the bonding step, elongated through-holes are formed in the plurality of sintered bodies. In this embodiment, the shaped groove is formed by grinding with an optical profiling grinder.

本発明の態様[7]は、前記態様[2]~[6]のいずれかの態様において、前記接合工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する切断工程を含む態様である。 Aspect [7] of the present invention is any one of Aspects [2] to [6], wherein the re-sintered body obtained in the bonding step does not include elongated through-holes and has the rectangular parallelepiped shape. This embodiment includes a cutting step of cutting and removing a region including a gap formed by chamfering corners of the sintered body or the first rectangular parallelepiped sintered body.

本発明の態様[8]は、前記態様[1]~[7]のいずれかの態様において、前記再焼結体の細長状貫通孔に細孔状電極を挿入して放電加工する放電加工工程をさらに含む態様である。 Aspect [8] of the present invention is the electric discharge machining step of inserting a porous electrode into the elongated through-hole of the resintered body and performing electric discharge machining in any one of the above-mentioned aspects [1] to [7]. It is an embodiment further comprising

本発明の態様[9]は、前記態様[8]において、前記放電加工工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する切断工程を含む態様である。 Aspect [9] of the present invention is based on Aspect [8], wherein the re-sintered body obtained in the electric discharge machining step does not contain elongated through-holes, and the rectangular parallelepiped sintered body or the first This embodiment includes a cutting step of cutting and removing a region including a gap formed by chamfering the corners of the rectangular parallelepiped sintered body.

本発明には、態様[10]として、超硬合金で形成され、少なくとも1つの細長状貫通孔を有する直方体状成形体であって、前記細長状貫通孔の平均孔径が200μm以下であり、かつ前記細長状貫通孔の長さが前記平均孔径の30倍以上である直方体状成形体も含まれる。 In the present invention, as aspect [10], there is provided a cuboid formed body made of cemented carbide and having at least one elongated through-hole, wherein the elongated through-hole has an average pore size of 200 μm or less, and A rectangular parallelepiped molded body in which the length of the elongated through holes is 30 times or more the average hole diameter is also included.

本発明の態様[11]は、前記態様[10]において、前記細長状貫通孔の長さ方向において、孔径の分散度が平均孔径に対して20%以下である態様である。 Aspect [11] of the present invention is an aspect according to the aspect [10], wherein the pore size distribution in the longitudinal direction of the elongated through-holes is 20% or less with respect to the average pore size.

本発明の態様[12]は、前記態様[10]または[11]において、前記細長状貫通孔の平行度が30μm以下である態様である。 Aspect [12] of the present invention is an aspect in which the parallelism of the elongated through-holes is 30 μm or less in the aspect [10] or [11].

本発明の態様[13]は、前記態様[10]~[12]のいずれかの態様において、前記細長状貫通孔の開口形状が円形状、楕円形状または多角形状である態様である。 Aspect [13] of the present invention is any one of Aspects [10] to [12], wherein the opening shape of the elongated through-hole is circular, elliptical or polygonal.

本発明の態様[14]は、前記態様[10]~[13]のいずれかの態様において、前記細長状貫通孔の開口形状が円形状である態様である。 Aspect [14] of the present invention is an aspect in which, in any one of Aspects [10] to [13], the opening shape of the elongated through-hole is circular.

本発明の態様[15]は、前記態様[10]~[14]のいずれかの態様において、前記直方体状成形体が、間隔をおいて平行に延びる複数の細長状貫通孔を有する態様である。 Aspect [15] of the present invention is an aspect in which, in any one of Aspects [10] to [14], the rectangular parallelepiped molded body has a plurality of elongated through-holes extending in parallel at intervals. .

本発明の態様[16]は、前記態様[10]~[15]のいずれかの態様において、前記直方体状成形体が金型である態様である。 Aspect [16] of the present invention is an aspect in which, in any one of the aspects [10] to [15], the cuboid molded article is a mold.

なお、本願明細書および特許請求の範囲において「矩形」は「正方形または長方形」を意味する。 In the specification and claims of the present application, "rectangle" means "square or rectangle".

本発明では、細長状貫通孔を有する直方体状焼結体を、前記細長状貫通孔を長さ方向に横切って分割した形状の複数の焼結体をあわせて接合する方法により、超硬合金で形成され、かつ均一で微細な細長状貫通孔を有する新規な成形体を製造できる。しかも、押出機などの生産機を用いる必要もないため、細長状貫通孔を有する成形体を簡便に製造できる。得られた成形体は、長さ方向に均一な微細孔径であり、かつ平行度も高い細長状貫通孔を有するため、精密な細長形状を要求される電子部品の金型として利用できる。 In the present invention, a rectangular parallelepiped sintered body having an elongated through-hole is joined together with a plurality of sintered bodies having a shape divided by crossing the elongated through-hole in the length direction. It is possible to produce a novel compact having elongated through-holes that are formed and uniform and fine. Moreover, since there is no need to use a production machine such as an extruder, a compact having elongated through-holes can be easily produced. The resulting molded article has elongated through-holes with a uniform micropore size in the length direction and a high degree of parallelism, so that it can be used as a mold for electronic parts that require a precise elongated shape.

図1は、本発明の成形体の一例を示す概略透視斜視図である。FIG. 1 is a schematic see-through perspective view showing an example of the molded article of the present invention. 図2は、本発明の成形体の他の例を示す概略透視斜視図である。FIG. 2 is a schematic see-through perspective view showing another example of the molded article of the present invention. 図3は、図1の成形体の製造方法を説明するための概略端面図である。3A and 3B are schematic end elevations for explaining a method for manufacturing the molded body of FIG. 1. FIG. 図4は、図3(a)で示されている接合工程で複数の焼結体を嵌合した状態を示す概略透視斜視図である。FIG. 4 is a schematic see-through perspective view showing a state in which a plurality of sintered bodies are fitted in the joining step shown in FIG. 3(a). 図5は、図2の成形体の製造方法を説明するための概略端面図である。FIG. 5 is a schematic end view for explaining the method of manufacturing the compact of FIG. 図6は、本発明の成形体の製造方法における放電加工工程を説明するための概略断面図である。FIG. 6 is a schematic cross-sectional view for explaining the electric discharge machining step in the method for producing a molded article of the present invention. 図7は、実施例で得られた再焼結体を、細長状貫通孔を長さ方向に沿って等分割して切断した写真、および得られた再焼結体における細長状貫通孔の長さ方向の上端部(A)、中央部(B)および下端部(C)の拡大写真である。FIG. 7 is a photograph of the resintered body obtained in Example, which was cut by equally dividing the elongated through-holes along the length direction, and the length of the elongated through-holes in the obtained resintered body. It is an enlarged photograph of the upper end (A), the central part (B) and the lower end (C) in the vertical direction.

[成形体の材質]
本発明の成形体の材質である超硬合金は、特に限定されない。代表的な超硬合金としては、周期表4~6族金属炭化物を含む合金が挙げられ、なかでも、炭化タングステンWC(タングステンカーバイト)を含む合金(WC系合金)が汎用される。
[Material of molding]
The cemented carbide that is the material of the compact of the present invention is not particularly limited. Typical cemented carbides include alloys containing metal carbides of Groups 4 to 6 of the periodic table. Among them, alloys containing tungsten carbide WC (tungsten carbide) (WC alloys) are widely used.

WC系合金は、主成分であるWCと、焼結により液相を形成し、結合相を形成する結合成分とで形成されていてもよい。 The WC-based alloy may be composed of WC, which is the main component, and a binder component that forms a liquid phase by sintering to form a binder phase.

結合成分としては、例えば、マンガンMn、鉄Fe、コバルトCo、ニッケルNiなどの周期表8~10族金属などが挙げられる。これらの結合成分は、単独でまたは二種以上組み合わせて使用できる。これらのうち、コバルトCoおよび/またはニッケルNiが好ましく、コバルトCoが特に好ましい。 Examples of binding components include periodic table 8-10 group metals such as manganese Mn, iron Fe, cobalt Co, and nickel Ni. These binding components can be used alone or in combination of two or more. Among these, cobalt Co and/or nickel Ni are preferred, and cobalt Co is particularly preferred.

結合成分(特に、Co)の割合は、炭化タングステン100質量部に対して40質量部以下であってもよく、好ましくは0.5~35質量部、さらに好ましくは1~30質量部である。 The proportion of the binding component (particularly Co) may be 40 parts by weight or less, preferably 0.5 to 35 parts by weight, more preferably 1 to 30 parts by weight, with respect to 100 parts by weight of tungsten carbide.

WC系合金は、前記主成分以外の金属炭化物(他の金属炭化物)をさらに含んでいてもよい。他の金属炭化物としては、例えば、炭化チタンTiC、炭化ニオブNbC、炭化タンタルTaC、炭化クロムCrなどが挙げられる。これら他の金属炭化物は、単独でまたは二種以上組み合わせて使用できる。これらのうち、TiC、TaC、Crが好ましい。 The WC-based alloy may further contain metal carbides (other metal carbides) other than the main component. Other metal carbides include, for example, titanium carbide TiC, niobium carbide NbC, tantalum carbide TaC, chromium carbide Cr 3 C 2 and the like. These other metal carbides can be used alone or in combination of two or more. Among these, TiC, TaC and Cr 3 C 2 are preferred.

WC系合金は、前記結合成分以外の金属単体(他の金属単体)をさらに含んでいてもよい。他の金属単体としては、例えば、チタンTi、ジルコニウムZr、バナジウムV、ニオブNb、タンタルTa、クロムCr、モリブデンMo、タングステンW、レニウムReなどが挙げられる。これら他の金属単体は、単独でまたは二種以上組み合わせて使用できる。これらのうち、Vおよび/またはCrが好ましい。 The WC-based alloy may further contain an elemental metal (another elemental metal) other than the binding component. Examples of other metal elements include titanium Ti, zirconium Zr, vanadium V, niobium Nb, tantalum Ta, chromium Cr, molybdenum Mo, tungsten W, and rhenium Re. These other metal simple substances can be used individually or in combination of 2 or more types. Of these, V and/or Cr are preferred.

他の金属単体の割合は、WC系合金全体100質量部に対して5質量部以下であってもよく、好ましくは0.1~3質量部、さらに好ましくは0.2~2質量部である。 The ratio of the other metal simple substance may be 5 parts by mass or less, preferably 0.1 to 3 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the entire WC alloy. .

WC系合金は、炭素源C(カーボンブラックなど)をさらに含んでいてもよく、不可避的に混入する成分を含んでいてもよい。 The WC-based alloy may further contain a carbon source C (such as carbon black), and may contain components that are unavoidably mixed.

WC系合金としては、例えば、WC-Co系合金、WC-TiC-Co系合金、WC-TaC-Co系合金、WC-TiC-TaC-Co系合金、WC-Ni系合金、WC-Ni-Cr系合金などが挙げられる。これらのうち、WC-Co系合金が汎用される。 WC-based alloys include, for example, WC-Co-based alloys, WC-TiC-Co-based alloys, WC-TaC-Co-based alloys, WC-TiC-TaC-Co-based alloys, WC-Ni-based alloys, WC-Ni- Cr system alloy etc. are mentioned. Among these, WC—Co alloys are widely used.

[成形体の形状]
本発明の成形体の形状は、平均孔径が200μm以下であり、かつ長さが平均孔径の30倍以上である細長状貫通孔を有する形状であれば、特に限定されず、球状、円柱状、多角柱状などであってもよいが、再焼結体が直方体状で得られるため、生産性などの点から、直方体状が好ましい。本発明の成形体の詳細な形状について、以下に図面を用いて説明する。
[Shape of compact]
The shape of the molded article of the present invention is not particularly limited as long as it has elongated through holes with an average pore diameter of 200 μm or less and a length of 30 times or more the average pore diameter. Although it may have a polygonal columnar shape or the like, a rectangular parallelepiped shape is preferable from the viewpoint of productivity because the re-sintered body can be obtained in a rectangular parallelepiped shape. The detailed shape of the molded article of the present invention will be described below with reference to the drawings.

図1は、本発明の成形体の一例の概略透視斜視図である。この成形体1は、間隔をおいて平行に延びる2つの細長状貫通孔1a,1bを有しており、これらの細長状貫通孔1a,1bの端面における面形状が長方形状の直方体状である。さらに、前記細長状貫通孔1a,1bの長さ方向に垂直な断面形状は円形状である。 FIG. 1 is a schematic see-through perspective view of an example of the molded article of the present invention. This molded body 1 has two elongated through holes 1a and 1b extending in parallel with a space therebetween, and the surface shape of the end faces of these elongated through holes 1a and 1b is a rectangular parallelepiped. . Furthermore, the elongated through holes 1a and 1b have a circular cross-sectional shape perpendicular to the length direction.

図2は、本発明の成形体の他の例の概略透視斜視図である。この成形体2は、間隔をおいて平行に延びる6つの細長状貫通孔2a,2b,2c,2d,2e,2fを有しており、これらの細長状貫通孔の端面における面形状が長方形状の直方体状である。さらに、前記細長状貫通孔のうち、細長状貫通孔2aと2bとが第1の孔列、細長状貫通孔2cと2dとが第2の孔列、細長状貫通孔2eと2fとが第3の孔列として配列されている。前記端面において、第1~3の孔列の配列方向は、前記端面における長方形の長辺に平行であり、第1~3の孔列は、短辺方向において、等間隔で配列されている。さらに、細長状貫通孔2aと2cと2eとが第4の孔列、細長状貫通孔2bと2dと2fとが第5の孔列として配列されている。第4の孔列および第5の孔列の配向方向は、前記端面における長方形の一辺に対して傾斜する方向であり、第4の孔列と第5の孔列とは間隔をおいて配列されている。 FIG. 2 is a schematic see-through perspective view of another example of the molded article of the present invention. The molded body 2 has six elongated through holes 2a, 2b, 2c, 2d, 2e, and 2f extending in parallel at intervals. is a rectangular parallelepiped. Furthermore, among the elongated through-holes, the elongated through-holes 2a and 2b are the first hole row, the elongated through-holes 2c and 2d are the second hole row, and the elongated through-holes 2e and 2f are the second row. It is arranged as three rows of holes. On the end face, the arrangement direction of the first to third hole rows is parallel to the long side of the rectangle on the end face, and the first to third hole rows are arranged at equal intervals in the short side direction. Further, the elongated through holes 2a, 2c and 2e are arranged as the fourth hole row, and the elongated through holes 2b, 2d and 2f are arranged as the fifth hole row. The orientation direction of the fourth hole-row and the fifth hole-row is a direction that is inclined with respect to one side of the rectangle on the end face, and the fourth hole-row and the fifth hole-row are arranged with a space therebetween. ing.

直方体状成形体の形状は、長さ方向における孔径が均一であり、かつ平行度の数値が低く、直線に近い細長状貫通孔(以下「均一でストレートな細長状貫通孔」と称する場合がある)を簡便に形成し易い点から、再焼結体の形状において、成形体の角部が直角であることが重要であり、面形状は矩形であればよい。そのため、面形状は、図1および2の長方形状に限定されず、正方形状であってもよい。 The shape of the rectangular parallelepiped molded body has a uniform hole diameter in the length direction, a low numerical value of parallelism, and an elongated through hole close to a straight line (hereinafter sometimes referred to as a "uniform and straight elongated through hole"). ) is easy to form, it is important that the corners of the re-sintered body are right-angled, and the surface shape may be rectangular. Therefore, the surface shape is not limited to the rectangular shape shown in FIGS. 1 and 2, and may be a square shape.

細長状貫通孔の数は、用途に応じて選択でき、特に限定されず、1以上であればよく、例えば1~100程度であり、通常2~50程度であるが、生産性などの点から、2~10程度であってもよい。 The number of elongated through-holes can be selected according to the application and is not particularly limited. , about 2 to 10.

細長状貫通孔の形成位置は、用途および孔数によって適宜選択でき、直方体状成形体において、1の細長状貫通孔を形成する場合は、直方体状成形体の端面の適所に形成できるが、中心に形成するのが好ましく、複数の細長状貫通孔を形成する場合は、所定の間隔をおいて配列した形態、特に、等間隔で規則的に配列して形成するのが好ましい。 The formation position of the elongated through-holes can be appropriately selected depending on the application and the number of holes. When a plurality of elongated through-holes are formed, they are preferably arranged at predetermined intervals, particularly regularly arranged at equal intervals.

細長状貫通孔の長さ方向に垂直な断面形状は、楕円形状、長方形状などの異方形状であってもよいが、円形状、正方形状、正六角形状などの等方形状が好ましく、円形状が特に好ましい。 The cross-sectional shape of the elongated through-hole perpendicular to the length direction may be an anisotropic shape such as an elliptical shape or a rectangular shape. Shapes are particularly preferred.

細長状貫通孔は、極細の貫通孔であり、平均孔径は200μm以下であればよく、好ましくは100μm以下である。具体的には、細長状貫通孔の平均孔径は、1~150μm程度の範囲から選択でき、例えば10~130μm、好ましくは20~120μm、さらに好ましくは30~110μm、より好ましくは50~100μm、最も好ましくは70~90μmである。平均孔径が小さすぎると、均一でストレートな(直線状の)細長状貫通孔を形成するのが困難となる虞がある。 The elongated through-holes are very fine through-holes, and the average pore size is 200 μm or less, preferably 100 μm or less. Specifically, the average pore diameter of the elongated through holes can be selected from the range of about 1 to 150 μm, for example, 10 to 130 μm, preferably 20 to 120 μm, more preferably 30 to 110 μm, more preferably 50 to 100 μm, most preferably 50 to 100 μm. It is preferably 70 to 90 μm. If the average pore size is too small, it may be difficult to form uniform and straight (linear) elongated through-holes.

なお、本明細書および特許請求の範囲において、細長状貫通孔の平均孔径は、光学式画像測定器(スマートスコープ)などを用いて測定できる。また、平均孔径は、上下面の孔径の平均で求めることができるが、各孔径は最大径を意味し、円形状では直径であり、多角形状や異方形状では、長径などを意味する。 In addition, in the present specification and claims, the average hole diameter of elongated through holes can be measured using an optical image measuring device (smart scope) or the like. The average pore diameter can be obtained by averaging the pore diameters of the upper and lower surfaces, but each pore diameter means the maximum diameter, and in the case of a circular shape, it is the diameter, and in the case of a polygonal or anisotropic shape, it means the major axis.

細長状貫通孔は、細長状であるため、孔径に対する長さ比であるアスペクト比が大きい。細長状貫通孔の長さは、平均孔径の30倍以上であればよく、好ましくは100倍以上である。具体的には、細長状貫通孔の長さは、平均孔径の30~1000倍、好ましくは50~800倍、さらに好ましくは70~500倍、より好ましくは80~300倍、最も好ましくは100~200倍である。アスペクト比が大きすぎると、成形体の生産性が低下する虞がある。 Since the elongated through-holes are elongated, they have a large aspect ratio, which is the ratio of the length to the hole diameter. The length of the elongated through-holes should be at least 30 times the average pore diameter, preferably at least 100 times. Specifically, the length of the elongated through holes is 30 to 1000 times the average pore diameter, preferably 50 to 800 times, more preferably 70 to 500 times, more preferably 80 to 300 times, most preferably 100 to 100 times. 200 times. If the aspect ratio is too large, there is a risk that the productivity of the molded product will decrease.

細長状貫通孔は、孔径の均一性が高く、細長状貫通孔の長さ方向において、孔径の分散度が平均孔径に対して、例えば20%以下、好ましくは15%以下、さらに好ましくは10%以下、より好ましくは5%以下、最も好ましくは3%以下である。 The elongated through-holes have a high uniformity of pore size, and in the length direction of the elongated through-holes, the pore size dispersion is, for example, 20% or less, preferably 15% or less, and more preferably 10% with respect to the average pore diameter. or less, more preferably 5% or less, and most preferably 3% or less.

なお、本明細書および特許請求の範囲において、孔径の分散度は、下記式で表される。 In addition, in the present specification and claims, the pore size distribution is represented by the following formula.

孔径の分散度={[平均孔径と最大孔径または最小孔径との差(絶対値)における最大値]/平均孔径}×100(%)。 Dispersion of pore diameters={[maximum value of difference (absolute value) between average pore diameter and maximum pore diameter or minimum pore diameter]/average pore diameter}×100 (%).

細長状貫通孔は、うねりや変形(撓み)が小さく、直線状であり、高い直進度を有している。細長状貫通孔の端面を基準とした平行度は、例えば30μm以下、好ましくは20μm以下、さらに好ましくは10μm以下、より好ましくは5μm以下、最も好ましくは3μm以下である。 The elongated through-hole has little undulation and deformation (bending), is straight, and has a high straightness. The parallelism with respect to the end faces of the elongated through holes is, for example, 30 μm or less, preferably 20 μm or less, more preferably 10 μm or less, more preferably 5 μm or less, and most preferably 3 μm or less.

なお、本明細書および特許請求の範囲において、細長状貫通孔の平行度は、JIS B 0621に準拠し、断面に対して光学式画像測定機(スマートスコープ)などを用いて、細長状貫通孔の端面を基準として測定できる。 In this specification and the scope of claims, the parallelism of the elongated through-holes is determined in accordance with JIS B 0621. can be measured using the end face of

[接合工程]
本発明の成形体の製造方法は、接合面に形成された少なくとも1つの細長状溝部同士を位置合わせして複数の焼結体を焼結接合し、少なくとも1つの細長状貫通孔を有する直方体状再焼結体を得る接合工程を含む。本発明では、接合工程において、前記直方体状再焼結体の細長状貫通孔を長さ方向に横切って分割した形状である複数の焼結体を位置合わせして接合することにより、均一でストレートな細長状貫通孔を簡便に形成できる。
[Joining process]
In the method for producing a molded body of the present invention, a plurality of sintered bodies are sinter-bonded by aligning at least one elongated groove formed on a bonding surface with each other, and forming a rectangular parallelepiped having at least one elongated through hole. It includes a joining step to obtain a resintered body. In the present invention, in the joining step, a plurality of sintered bodies having a shape obtained by dividing the elongated through-holes of the cuboid re-sintered body in the length direction are aligned and joined to achieve a uniform and straight shape. Elongated through holes can be easily formed.

(原料粉末)
原料粉末は、超硬合金の種類に応じて適宜選択でき、通常、超硬合金の構成成分が、それぞれ粒子の形態で使用される。WC系合金では、原料粉末として、結合成分粒子に加えて、必要に応じて他の金属炭化物粒子、他の金属粒子が使用される。
(Raw material powder)
The raw material powder can be appropriately selected according to the type of cemented carbide, and usually the constituent components of the cemented carbide are used in the form of particles. In the WC-based alloy, in addition to binding component particles, other metal carbide particles and other metal particles are used as raw material powders as necessary.

WC粒子の平均粒子径は、例えば0.1~15μm、好ましくは0.12~12μm、さらに好ましくは0.2~10μmである。 The average particle size of WC particles is, for example, 0.1 to 15 μm, preferably 0.12 to 12 μm, more preferably 0.2 to 10 μm.

結合成分粒子(特に、Co粒子)の平均粒子径は、溶融して結合相を形成するため、特に限定されないが、例えば0.1~5μm、好ましくは0.5~3μm、さらに好ましくは1~2.5μmである。 The average particle size of the binder component particles (especially Co particles) is not particularly limited because it melts to form a binder phase, but is for example 0.1 to 5 μm, preferably 0.5 to 3 μm, more preferably 1 to 5 μm. 2.5 μm.

他の金属炭化物粒子および他の金属粒子の平均粒子径は、それぞれ、例えば0.1~5μm、好ましくは0.5~3μm、さらに好ましくは1~2.5μmである。 The average particle size of the other metal carbide particles and the other metal particles is, for example, 0.1 to 5 μm, preferably 0.5 to 3 μm, more preferably 1 to 2.5 μm.

これらのWC系合金の原料粉末の使用量は、前述の超硬合金中における構成成分の割合と同一である。 The amount of raw material powder used for these WC-based alloys is the same as the ratio of the constituent components in the aforementioned cemented carbide.

圧粉成形(圧縮成形)においては、これらの原料粉末に加えて、バインダーを配合してもよい。バインダーとしては、焼結の過程で加熱によって除去可能なバインダーが好ましい。このようなバインダーとしては、例えば、パラフィン、ワックスまたはロウなどの直鎖状または分岐鎖状脂肪族炭化水素類、ポリエチレングリコールなどが挙げられる。これらのバインダーは、粒子状の形態であってもよい。さらに、これらのバインダーは、エタノールなどのアルコール類および/またはベンジン類と共に配合してもよい。 In powder compacting (compression molding), a binder may be blended in addition to these raw material powders. As the binder, a binder that can be removed by heating during the sintering process is preferred. Such binders include, for example, straight or branched chain aliphatic hydrocarbons such as paraffin, wax or wax, polyethylene glycol, and the like. These binders may be in particulate form. Additionally, these binders may be formulated with alcohols such as ethanol and/or benzines.

バインダーの割合は、原料粉末100質量部に対して20質量部以下であってもよく、好ましくは0.1~10質量部、さらに好ましくは0.2~7質量部である。 The proportion of the binder may be 20 parts by weight or less, preferably 0.1 to 10 parts by weight, more preferably 0.2 to 7 parts by weight, per 100 parts by weight of the raw material powder.

(図1に示す成形体の接合工程)
接合工程の一例である図1に示す成形体の接合工程について、図3を用いて説明する。
(Joining step of compact shown in FIG. 1)
A process of joining the compacts shown in FIG. 1, which is an example of the joining process, will be described with reference to FIG.

図3は、図1の成形体の製造方法を説明するための概略端面図であり、詳しくは、接合工程で複数の焼結体を嵌合した状態[図3(a)]と、目的の成形体[図3(b)]とを対比した概略端面図である。なお、図3は、細長状貫通孔の位置関係の理解を視覚的に容易にするため、図1に比べて細長状貫通孔の孔径を拡大した模式図として記載している。また、図4は、図3(a)で示されている接合工程で複数の焼結体を嵌合した状態を示す概略透視斜視図である。 3A and 3B are schematic end views for explaining the method of manufacturing the compact shown in FIG. Fig. 3(b) is a schematic end view for comparison with the molded body [Fig. 3(b)]. Note that FIG. 3 is a schematic diagram in which the hole diameters of the elongated through-holes are enlarged compared to FIG. 1 in order to visually facilitate understanding of the positional relationship of the elongated through-holes. Moreover, FIG. 4 is a schematic see-through perspective view showing a state in which a plurality of sintered bodies are fitted in the joining step shown in FIG. 3(a).

図3および図4において接合工程で接合される複数の焼結体は、図3(a)に示されるように、図3(b)に示される直方体状成形体1を分割した形状に対応する形状であり、断面L字状焼結体12と直方体状焼結体13とが嵌合して直方体を形成している。 The plurality of sintered bodies joined in the joining step in FIGS. 3 and 4 correspond to the shape obtained by dividing the rectangular parallelepiped compact 1 shown in FIG. 3(b), as shown in FIG. 3(a). A sintered body 12 having an L-shaped cross section and a sintered body 13 having an L-shaped cross section are fitted together to form a rectangular parallelepiped.

前記断面L字状焼結体12には、前記直方体状焼結体13と位置決めまたは嵌合した状態で、前記直方体状焼結体13との接合面に細長状貫通孔11a,11bを形成するための細長状溝部12a,12bが形成された基底部12dと、この基底部12dの端部から垂直に立設した位置決め部12eとで形成されている。 In the sintered body 12 having an L-shaped cross section, elongated through holes 11a and 11b are formed in the joint surface with the sintered rectangular parallelepiped 13 in a state of being positioned or fitted with the sintered rectangular parallelepiped 13. A base portion 12d formed with elongated grooves 12a and 12b for squeezing and a positioning portion 12e erected vertically from the end of the base portion 12d.

前記直方体状焼結体13には、前記断面L字状焼結体12と位置決めまたは嵌合した状態で、前記断面L字状焼結体12との接合面に細長状貫通孔11a,11bを形成するための細長状溝部13a,13bが形成されている。 The rectangular parallelepiped sintered body 13 has elongated through-holes 11a and 11b in the joint surface with the L-shaped sintered body 12 in a state of being positioned or fitted with the L-shaped sintered body 12 in cross section. Elongated grooves 13a and 13b for forming are formed.

前記断面L字状焼結体12の細長状溝部12a,12bおよび前記直方体状焼結体13の細長状溝部13a,13bは、それぞれ断面半円状であり、両焼結体を位置決めまたは嵌合させることにより、断面円形状の細長状貫通孔11a,11bが形成される。そのため、図3(a)および図4において、両焼結体の接合面を横断して形成されている細長状貫通孔11a,11bは、再焼結で両焼結体が接合されることによって、図1や図3(b)のような細長状貫通孔1a,1bが形成される。 The elongated grooves 12a and 12b of the L-shaped sintered body 12 and the elongated grooves 13a and 13b of the rectangular parallelepiped sintered body 13 are semicircular in cross section, respectively, and the two sintered bodies are positioned or fitted together. By doing so, elongated through holes 11a and 11b with circular cross sections are formed. Therefore, in FIGS. 3A and 4, the elongated through holes 11a and 11b formed across the bonding surfaces of the two sintered bodies are formed by re-sintering the two sintered bodies together. , elongated through holes 1a and 1b are formed as shown in FIGS. 1 and 3(b).

断面L字状焼結体12と直方体状焼結体13とを嵌合させた状態の複数の焼結体は、前述のように、直方体状成形体1を分割した形状に対応する形状であるが、この例では、断面L字状焼結体12の位置決め部12eを含む領域を延出させた形状で形成されており、断面L字状焼結体12と直方体状焼結体13とを接合した後、後述する切断工程において、切断箇所15で再焼結体を切断することにより、直方体状成形体1を簡便に製造できる。 A plurality of sintered bodies in which the L-shaped sintered body 12 and the rectangular parallelepiped sintered body 13 are fitted to each other have a shape corresponding to the shape obtained by dividing the rectangular parallelepiped molded body 1 as described above. However, in this example, the sintered body 12 having an L-shaped cross section is formed in a shape in which a region including the positioning portion 12e is extended, and the sintered body 12 having an L-shaped cross section and the rectangular parallelepiped sintered body 13 are formed into a shape. After bonding, the re-sintered body is cut at the cutting portion 15 in the cutting step described later, whereby the cuboid molded body 1 can be easily manufactured.

断面L字状焼結体12と直方体状焼結体13とを嵌合する方法は、特に限定されないが、均一でストレートな細長状貫通孔を簡便に形成するために、断面L字状焼結体12の細長状溝部12a,12bの配列方向が重力方向と垂直になるように載置した後、断面L字状焼結体12の上に、直方体状焼結体13の細長状溝部13a,13bを前記細長状溝部12a,12bと対向させて直方体状焼結体13を載置するのが好ましい。このような配置で両焼結体を嵌合させると、重力と垂直の方向(長辺方向)で断面L字状焼結体12の位置決め部12eに向けて直方体状焼結体13を押し付けて両焼結体を密着させることができ、細長状貫通孔11a,11bを形成するための両溝部を正確に位置決めすることができる。しかも、断面L字状焼結体12の隅部12cが直角であるため、押し付ける際に細長状貫通孔11a,11bにおける接合面のわずかな浮きも抑制でき、より精密に密着できる。 The method of fitting the L-shaped sintered body 12 and the rectangular parallelepiped sintered body 13 is not particularly limited. After placing the body 12 so that the direction of arrangement of the elongated grooves 12a and 12b is perpendicular to the direction of gravity, the elongated grooves 13a and 13a of the rectangular parallelepiped sintered body 13 are placed on the L-shaped sintered body 12 in cross section. It is preferable to mount the rectangular parallelepiped sintered body 13 with the sintered body 13b facing the elongated grooves 12a and 12b. When both sintered bodies are fitted in such an arrangement, the cuboid sintered body 13 is pressed toward the positioning portion 12e of the sintered body 12 having an L-shaped cross section in a direction perpendicular to gravity (long side direction). Both sintered bodies can be brought into close contact, and both grooves for forming the elongated through holes 11a and 11b can be accurately positioned. Moreover, since the corner 12c of the sintered body 12 having an L-shaped cross section is right-angled, it is possible to suppress a slight lifting of the joining surfaces of the elongated through holes 11a and 11b when pressed, and to achieve more precise adhesion.

また、断面L字状焼結体12と直方体状焼結体13との位置決めまたは嵌合では、精密な位置決めまたは嵌合が要求されるが、断面L字状焼結体12の位置決め部12eの隅部12cの形状は、R状(曲面状)になり易く、精密な直角上に成形するのが困難であり、直方体状焼結体13の角部と完全に密着させるのは困難である。そこで、この例では、断面L字状焼結体12の隅部12cと嵌合させる直方体状焼結体13の角部13cは、先端部が面取りされており、前記隅部12aとの間に隙間14が形成されている。そのため、直方体状焼結体13を、断面L字状焼結体12の上に載置し、重力と垂直の方向で断面L字状焼結体12の位置決め部12eに向けて直方体状焼結体13を押し付けることにより、直方体状焼結体13と断面L字状焼結体12とを密着できる。なお、後述する切断工程では、両焼結体を接合して得られた再焼結体から、細長状貫通孔を含まず、かつ前記隙間14のみを含む領域を切断して除去してもよい。 Further, in the positioning or fitting of the L-shaped sintered body 12 and the rectangular parallelepiped sintered body 13, precise positioning or fitting is required. The shape of the corner 12c is likely to be R-shaped (curved), and it is difficult to form the corner 12c at a precise right angle. Therefore, in this example, the corner 13c of the rectangular parallelepiped sintered body 13 to be fitted with the corner 12c of the sintered body 12 having an L-shaped cross section is chamfered at the tip, and between the corner 12a A gap 14 is formed. Therefore, the rectangular parallelepiped sintered body 13 is placed on the L-shaped cross section sintered body 12, and the rectangular parallelepiped sintered body is sintered toward the positioning part 12e of the L-shaped cross section sintered body 12 in a direction perpendicular to gravity. By pressing the body 13, the rectangular parallelepiped sintered body 13 and the L-shaped cross section sintered body 12 can be brought into close contact. In the cutting step, which will be described later, from the re-sintered body obtained by joining the two sintered bodies, the region that does not include the elongated through holes and includes only the gap 14 may be cut and removed. .

さらに、断面L字状焼結体12と直方体状焼結体13との密着性を向上させるために、断面L字状焼結体12と直方体状焼結体13との接合面の平行度はそれぞれ5μm以下に調整されている。さらに、前記断面L字状焼結体12の位置決め部12eの隅部12cの直角度も5μm以下に調整されている。 Furthermore, in order to improve the adhesion between the L-shaped sintered body 12 and the rectangular parallelepiped sintered body 13, the parallelism of the joint surface between the L-shaped sintered body 12 and the rectangular parallelepiped sintered body 13 is Each is adjusted to 5 μm or less. Further, the squareness of the corner 12c of the positioning portion 12e of the sintered body 12 having an L-shaped cross section is also adjusted to 5 μm or less.

なお、本明細書および特許請求の範囲において、平行度および直角度は、JIS B 0022に準拠し、平行度は定盤の上に配置した焼結体をハイトゲージにて測定し、直角度は3次元測定器を用いて焼結体の直角度を測定する。 In the present specification and claims, parallelism and squareness are measured in accordance with JIS B 0022. A dimension measuring instrument is used to measure the squareness of the sintered body.

図1に示す成形体の接合工程は、1つの細長状貫通孔を有する成形体や、一列に配列された複数の細長状貫通孔を有する成形体の製造方法として好適に利用できる。 The step of joining the molded bodies shown in FIG. 1 can be suitably used as a method for manufacturing a molded body having one elongated through-hole or a molded body having a plurality of elongated through-holes arranged in a line.

(図2に示す成形体の接合工程)
接合工程の他の例である図2に示す成形体の接合工程について、図5を用いて説明する。
(Joining process of compact shown in FIG. 2)
A process of joining the compacts shown in FIG. 2, which is another example of the joining process, will be described with reference to FIG.

図5は、図2の成形体の製造方法を説明するための概略端面図であり、詳しくは、接合工程で複数の焼結体を嵌合した状態[図5(a)]と、目的の成形体[図5(b)]とを対比した概略端面図である。なお、図5は、細長状貫通孔の位置関係を明確にするため、図2に比べて細長状貫通孔の孔径を拡大した模式図として記載されている。 5A and 5B are schematic end views for explaining the method for manufacturing the compact shown in FIG. Fig. 5(b) is a schematic end view for comparison with the molded body [Fig. 5(b)]. In addition, FIG. 5 is described as a schematic diagram in which the hole diameters of the elongated through-holes are enlarged as compared with FIG. 2 in order to clarify the positional relationship of the elongated through-holes.

図5において接合工程で接合される複数の焼結体は、図5(a)に示されるように、図5(b)に示される直方体状成形体2を分割した形状に対応する形状であり、断面L字状焼結体22と、第1の直方体状焼結体23、第2の直方体状焼結体24および第3の直方体状焼結体25とが嵌合して直方体を形成している。 The plurality of sintered bodies to be joined in the joining step in FIG. 5, as shown in FIG. A sintered body 22 having an L-shaped cross section, a first sintered rectangular parallelepiped 23, a second sintered rectangular parallelepiped 24 and a third sintered rectangular parallelepiped 25 are fitted together to form a rectangular parallelepiped. ing.

前記断面L字状焼結体22には、前記第1の直方体状焼結体23と位置決めまたは嵌合した状態で、前記第1の直方体状焼結体23との接合面に細長状貫通孔21a,21bを形成するための細長状溝部22a,22bが形成された基底部22dと、この基底部22dの端部から垂直に立設した位置決め部22eとで形成されている。 The sintered body 22 having an L-shaped cross section has an elongated through-hole on the joint surface with the first sintered rectangular parallelepiped 23 in a state where it is positioned or fitted with the first sintered rectangular parallelepiped 23 . It is formed of a base portion 22d having elongated grooves 22a and 22b for forming 21a and 21b, and a positioning portion 22e vertically erected from the end of the base portion 22d.

前記第1の直方体状焼結体23には、前記断面L字状焼結体22と位置決めまたは嵌合した状態で、前記断面L字状焼結体22との接合面に細長状貫通孔21a,21bを形成するための細長状溝部23a,23bが形成され、かつ前記第2の直方体状焼結体24と位置決めまたは嵌合した状態で、前記第2の直方体状焼結体24との接合面に細長状貫通孔21c,21dを形成するための細長状溝部23c,23dが形成されている。 The first rectangular parallelepiped sintered body 23 has an elongated through hole 21a on the joint surface with the L-shaped sintered body 22 in a state of being positioned or fitted with the L-shaped sintered body 22 in cross section. , 21b are formed, and are positioned or fitted with the second rectangular parallelepiped sintered body 24, joining with the second rectangular parallelepiped sintered body 24 Elongated grooves 23c and 23d for forming the elongated through holes 21c and 21d are formed on the surface.

前記第2の直方体状焼結体24には、前記第1の直方体状焼結体23と位置決めまたは嵌合した状態で、前記第1の直方体状焼結体23との接合面に細長状貫通孔21c,21dを形成するための細長状溝部24a,24bが形成され、かつ前記第3の直方体状焼結体25と位置決めまたは嵌合した状態で、前記第3の直方体状焼結体25との接合面に細長状貫通孔21e,21fを形成するための細長状溝部24c,24dが形成されている。 The second rectangular parallelepiped sintered body 24 has an elongated penetrating part on the joint surface with the first rectangular parallelepiped sintered body 23 in a state of being positioned or fitted with the first rectangular parallelepiped sintered body 23 . With the elongated groove portions 24a and 24b for forming the holes 21c and 21d formed, and positioned or fitted with the third rectangular parallelepiped sintered body 25, the third rectangular parallelepiped sintered body 25 and the Elongated grooves 24c and 24d for forming the elongated through holes 21e and 21f are formed in the joint surfaces of the two.

前記第3の直方体状焼結体25には、前記第2の直方体状焼結体24と位置決めまたは嵌合した状態で、前記第2の直方体状焼結体24との接合面に細長状貫通孔21e,21fを形成するための細長状溝部25a,25bが形成されている。 The third rectangular parallelepiped sintered body 25 has an elongated penetrating part on the joint surface with the second rectangular parallelepiped sintered body 24 in a state of being positioned or fitted with the second rectangular parallelepiped sintered body 24 . Elongated grooves 25a and 25b are formed for forming the holes 21e and 21f.

前記断面L字状焼結体22および前記第1~3の直方体状焼結体23,24,25の細長状溝部は、それぞれ断面半円状であり、両焼結体を位置決めまたは嵌合させることにより、断面円形状の細長状貫通孔21a,21b,21c,21d,21e,21fが形成される。そのため、図5(a)において、両焼結体の接合面を横断して形成されている細長状貫通孔は、再焼結で両焼結体が接合されることによって、図2や図5(b)のような細長状貫通孔2a,2b,2c,2d,2e,2fが形成される。 The sintered body 22 having an L-shaped cross section and the elongated grooves of the first to third rectangular parallelepiped sintered bodies 23, 24, and 25 each have a semicircular cross section, and position or fit both sintered bodies. Thereby, elongated through holes 21a, 21b, 21c, 21d, 21e, and 21f having circular cross sections are formed. Therefore, in FIG. 5(a), the elongated through-holes formed across the bonding surfaces of both sintered bodies are re-sintered to bond the two sintered bodies to each other as shown in FIGS. Elongated through holes 2a, 2b, 2c, 2d, 2e, and 2f are formed as shown in (b).

断面L字状焼結体22と、第1の直方体状焼結体23、第2の直方体状焼結体24および第3の直方体状焼結体25とを嵌合させた状態の複数の焼結体は、前述のように、直方体状成形体2を分割した形状に対応する形状であるが、この例では、断面L字状焼結体22の位置決め部22eを含む領域を延出させた形状で形成されており、断面L字状焼結体22と直方体状焼結体23とを接合した後、後述する切断工程において、切断箇所27で再焼結体を切断することにより、直方体状成形体2を簡便に製造できる。 A plurality of sintered bodies having an L-shaped cross section 22, a first rectangular parallelepiped sintered body 23, a second rectangular parallelepiped sintered body 24, and a third rectangular parallelepiped sintered body 25 are fitted together. As described above, the joint has a shape corresponding to the shape obtained by dividing the rectangular parallelepiped molded body 2, but in this example, the region including the positioning portion 22e of the L-shaped sintered body 22 in cross section is extended. After joining the L-shaped sintered body 22 and the rectangular parallelepiped sintered body 23, the re-sintered body is cut at a cutting point 27 in a cutting step described later to obtain a rectangular parallelepiped shape. The compact 2 can be manufactured easily.

断面L字状焼結体22と第1~3の直方体状焼結体23,24,25とを嵌合する方法は、特に限定されないが、均一でストレートな細長状貫通孔を簡便に形成するために、断面L字状焼結体22の細長状溝部22a,22bの配列方向が重力方向と垂直になるように載置した後、断面L字状焼結体22の上に、直方体状焼結体23の細長状溝部23a,23bを前記細長状溝部22a,22bと対向させて直方体状焼結体23を載置した後、直方体状焼結体23の上に、細長状溝部同士を対向させて、第2の直方体状焼結体24および第3の直方体状焼結体25を同様の方法で順次載置するのが好ましい。このような配置で両焼結体を嵌合させると、重力と垂直方向(長辺方向)で断面L字状焼結体22の位置決め部22eに向けて第1~3の直方体状焼結体23,24,25を押し付けて両焼結体を密着させることができ、細長状貫通孔21a,21b,21c,21d,21e,21fを形成するための各溝部を正確に位置決めすることができる。しかも、断面L字状焼結体22の隅部22cが直角であるため、押し付ける際に細長状貫通孔21a,21bにおける接合面のわずかな浮きも抑制でき、より精密に密着できる。 The method of fitting the L-shaped cross section sintered body 22 and the first to third rectangular parallelepiped sintered bodies 23, 24, and 25 is not particularly limited, but uniform and straight elongated through holes are easily formed. For this purpose, after placing the elongated grooves 22a and 22b of the sintered body 22 having an L-shaped cross section so that the direction of arrangement of the elongated grooves 22a and 22b is perpendicular to the direction of gravity, a rectangular parallelepiped sintered body is placed on the sintered body 22 having an L-shaped cross section. After the rectangular parallelepiped sintered body 23 is placed with the elongated grooves 23a and 23b of the binding body 23 opposed to the elongated grooves 22a and 22b, the elongated grooves are opposed to each other on the rectangular parallelepiped sintered body 23. It is preferable to place the second sintered rectangular parallelepiped body 24 and the third sintered rectangular parallelepiped body 25 sequentially in the same manner. When both sintered bodies are fitted in such an arrangement, the first to third rectangular parallelepiped sintered bodies are directed toward the positioning portion 22e of the sintered body 22 having an L-shaped cross section in the direction perpendicular to gravity (long side direction). 23, 24 and 25 can be pressed to bring the two sintered bodies into close contact, and each groove for forming the elongated through holes 21a, 21b, 21c, 21d, 21e and 21f can be accurately positioned. Moreover, since the corner 22c of the sintered body 22 having an L-shaped cross section is right-angled, it is possible to prevent slight lifting of the joining surfaces of the elongated through-holes 21a and 21b when pressed, and to achieve more precise adhesion.

また、第1の直方体状焼結体23も、直方体焼結体13と同様の理由で、断面L字状焼結体22の位置決め部22eの隅部22cと位置決めまたは嵌合させる第1の直方体状焼結体23の角部23eは、先端部が面取りされており、前記隅部22cとの間に隙間26が形成されている。そのため、直方体状焼結体23を、断面L字状焼結体22の上に載置し、重力と垂直方向で断面L字状焼結体22の位置決め部22eに向けて第1の直方体状焼結体23を押し付けることにより、第1の直方体状焼結体23と断面L字状焼結体22とを密着できる。なお、後述する切断工程では、両焼結体を接合して得られた再焼結体から、細長状貫通孔を含まず、かつ前記隙間26のみを含む領域を切断して除去してもよい。 For the same reason as the rectangular parallelepiped sintered body 13, the first rectangular parallelepiped sintered body 23 is also the first rectangular parallelepiped to be positioned or fitted to the corner 22c of the positioning part 22e of the L-shaped cross section 22. A corner portion 23e of the sintered body 23 is chamfered at the tip, and a gap 26 is formed between the corner portion 22c and the corner portion 23e. Therefore, the rectangular parallelepiped sintered body 23 is placed on the L-shaped cross section sintered body 22, and directed toward the positioning part 22e of the L-shaped cross section sintered body 22 in the direction perpendicular to the gravity. By pressing the sintered body 23, the first rectangular parallelepiped sintered body 23 and the L-shaped cross section sintered body 22 can be brought into close contact. In the cutting step, which will be described later, from the re-sintered body obtained by joining the two sintered bodies, the region that does not include the elongated through-holes and includes only the gap 26 may be cut and removed. .

さらに、断面L字状焼結体22と第1の直方体状焼結体23との密着性を向上させるために、断面L字状焼結体22と第1の直方体状焼結体23との接合面の平行度はそれぞれ3μm以下に調整されている。また、第1~3の直方体状焼結体23,24,25同士の接合面の平行度がそれぞれ3μm以下に調整されている。さらに、前記断面L字状焼結体22の位置決め部22eの隅部の直角度も3μm以下に調整されている。 Furthermore, in order to improve the adhesion between the sintered body 22 having an L-shaped cross section and the first sintered body 23 having a rectangular parallelepiped, The parallelism of the joint surfaces is adjusted to 3 μm or less. In addition, the parallelism of the joint surfaces of the first to third rectangular parallelepiped sintered bodies 23, 24 and 25 is adjusted to 3 μm or less. Further, the perpendicularity of the corner of the positioning portion 22e of the sintered body 22 having an L-shaped cross section is also adjusted to 3 μm or less.

図2に示す成形体の接合工程は、一列に配列されていない複数の細長状貫通孔を有する成形体の製造方法として好適に利用できる。 The step of joining the molded bodies shown in FIG. 2 can be suitably used as a method for manufacturing a molded body having a plurality of elongated through holes that are not arranged in a row.

(複数の焼結体の形状)
嵌合させた複数の焼結体において、細長状貫通孔の形状は、成形体の細長状貫通孔に対応する形状であり、略同一形状が好ましく、同一形状が特に好ましい。
(Shapes of multiple sintered bodies)
In a plurality of sintered bodies that are fitted together, the elongated through-holes have a shape corresponding to the elongated through-holes of the molded body, preferably substantially the same shape, particularly preferably the same shape.

嵌合させた複数の焼結体の形状は、直方体状であり、本発明では、均一でストレートな細長状貫通孔を形成するために、成形体の角部が直角であることが重要であり、面形状は矩形であればよい。そのため、面形状は、長方形であってもよく、正方形であってもよい。また、効率良く均一でストレートな細長状貫通孔を簡便に形成するために、直方体状焼結体の面取りした角部に対応する隙間を形成した場合は、前記隙間を有する領域を切断して除去し易くするために、前記隙間が形成される領域を延出して拡大した形状とするのが好ましい。 The shape of the plurality of sintered bodies that are fitted together is a rectangular parallelepiped, and in the present invention, it is important that the corners of the molded body are right angles in order to form uniform and straight elongated through-holes. , the surface shape may be rectangular. Therefore, the surface shape may be rectangular or square. In addition, in order to easily form elongated through holes that are uniform and straight efficiently, when a gap corresponding to the chamfered corner of the rectangular parallelepiped sintered body is formed, the area having the gap is cut and removed. It is preferable that the area where the gap is formed is extended and enlarged in order to facilitate the installation.

本発明では、断面L字状焼結体と直方体状焼結体との接合面および直方体状焼結体同士の接合面において、それぞれの接合面の平行度は、それぞれ10μm以下であってもよく、好ましくは8μm以下、さらに好ましくは5μm以下、より好ましくは3μm以下、最も好ましくは2μm以下である。 In the present invention, the parallelism between the joint surfaces of the L-shaped sintered body and the rectangular parallelepiped sintered body and the joint surfaces between the rectangular parallelepiped sintered bodies may be 10 μm or less. , preferably 8 μm or less, more preferably 5 μm or less, more preferably 3 μm or less, and most preferably 2 μm or less.

また、断面L字状焼結体の位置決め部の隅部の直角度は、それぞれ10μm以下であってもよく、好ましくは8μm以下、さらに好ましくは5μm以下、より好ましくは3μm以下、最も好ましくは2μm以下である。 Further, the squareness of the corners of the positioning portions of the L-shaped sintered body in cross section may be 10 μm or less, preferably 8 μm or less, more preferably 5 μm or less, more preferably 3 μm or less, and most preferably 2 μm. It is below.

(再焼結の条件)
再焼結の温度は、例えば1200~1600℃、好ましくは1250~1550℃、さらに好ましくは1300~1500℃である。再焼結は、常圧または減圧下(または真空下)で行ってもよく、常圧下または加圧下で行ってもよい。再焼結時間は、例えば1~48時間、好ましくは2~24時間、さらに好ましくは3~20時間である。
(Conditions for restintering)
The temperature for restintering is, for example, 1200 to 1600°C, preferably 1250 to 1550°C, more preferably 1300 to 1500°C. Resintering may be performed under normal pressure or reduced pressure (or under vacuum), and may be performed under normal pressure or increased pressure. The restintering time is, for example, 1 to 48 hours, preferably 2 to 24 hours, more preferably 3 to 20 hours.

接合工程で焼結体を再焼結して得られた再焼結体の細長状貫通孔は、前記成形体の形状で記載された平均孔径、アスペクト比、孔径の分散度および平行度を有する均一でストレートな細長状貫通孔であるため、そのまま本発明の成形体として利用できる。 The elongated through-holes of the re-sintered body obtained by re-sintering the sintered body in the bonding step have the average pore size, aspect ratio, pore size distribution and parallelism described in the shape of the compact. Since the elongated through-holes are uniform and straight, they can be used as they are as the molded article of the present invention.

[研削工程]
本発明の成形体の製造方法は、前記接合工程の前工程として、前記複数の焼結体における細長状貫通孔を形成するための細長状溝部を、研削機で研削して形成する研削工程をさらに含んでいてもよい。
[Grinding process]
In the method for manufacturing a molded body of the present invention, as a pre-process of the joining step, a grinding step of grinding and forming, with a grinder, elongated grooves for forming elongated through-holes in the plurality of sintered bodies. It may contain further.

研削機としては、目的の細長状貫通孔に対応する凹部を精密に形成できれば特に限定されず、慣用の研削機を利用できる。慣用の研削機としては、例えば、光学式倣い研削盤(光学式ならい研削盤またはプロファイル研削盤)、機械式倣い研削盤、光学-機械式倣い研削盤、万能工具研削盤、NC研削盤、ジグ研削盤、ねじ研削盤、ウォーム研削盤、クランク軸研削盤、カム研削盤、スプライン研削盤、ロール研削盤、軸受みぞ研削盤、卓上研削盤などが利用できる。 The grinder is not particularly limited as long as it can precisely form the concave portion corresponding to the desired elongated through hole, and a commonly used grinder can be used. Examples of conventional grinders include optical profiling grinders (optical profiling grinders or profile grinders), mechanical profiling grinders, optical-mechanical profiling grinders, universal tool grinders, NC grinders, jigs Grinding machines, thread grinding machines, worm grinding machines, crankshaft grinding machines, cam grinding machines, spline grinding machines, roll grinding machines, bearing groove grinding machines, bench grinding machines, etc. can be used.

これらの研削機のうち、効率良く均一でストレートな細長状貫通孔を簡便に形成できる点から、光学式倣い研削機、ジグ研削機が好ましく、光学式倣い研削機が特に好ましい。 Among these grinders, an optical profile grinder and a jig grinder are preferable, and an optical profile grinder is particularly preferable, because they can easily form elongated through-holes that are uniform and straight.

研削方法としては、研削機を用いて慣用の方法を利用できる。 As a grinding method, a conventional method using a grinding machine can be used.

[放電加工工程]
本発明の成形体の製造方法は、前記再焼結体の細長状貫通孔に細長状電極を挿入して放電加工する放電加工工程(細孔放電加工またはWE放電加工工程)をさらに含んでいてもよい。
[Electrical discharge machining process]
The method for producing a compact of the present invention further includes an electrical discharge machining step (hole electrical discharge machining or WE electrical discharge machining step) of inserting elongated electrodes into the elongated through-holes of the re-sintered body for electrical discharge machining. good too.

接合工程で得られた再焼結体は、複数の焼結体を接合することにより、均一でストレートな細長状貫通孔が形成されているが、精密な電子部品などにおいて、より均一な細長状貫通孔が要求される場合は、さらに前記再焼結体の細長状貫通孔に対して細孔放電加工またはWE放電加工を施してもよい。 The re-sintered body obtained in the joining process has uniform and straight elongated through-holes formed by joining multiple sintered bodies. If through-holes are required, the elongated through-holes of the resintered body may be further subjected to pore electrical discharge machining or WE electrical discharge machining.

細長状貫通孔における細孔放電加工またはWE放電加工では、図6に示すように、焼結体31に孔径φaで形成された細長状貫通孔31aに、直径φbの対応する細長状電極32を挿入して放電加工される。詳しくは、細長状貫通孔31aの内壁に対して、接触させずに隙間(放電代)を空けて細長状電極32を挿入することにより、アーク放電を起こし、細長状貫通孔31aの内壁を仕上げ加工することにより、細長状電極32の形状を転写できるが、細長状電極32の形状を正確に転写するためには、前記放電代を小さくするのが望ましい。これに対して、本発明のような細長状貫通孔31aにおいて小さい隙間を空けるためには、高度に均一でストレートな細長状貫通孔が形成されていることが要件となる。例えば、細長状貫通孔31aの孔径φaが70μm程度の場合、細長状電極32の直径φbは50μm程度であり、放電代10μm程度の微細な隙間となる。これに対して、本発明では、成形体に均一でストレートな細長状貫通孔が形成されているため、型彫り放電加工が可能となり、精密な細長状貫通孔の形成が可能となる。一方、特許文献1のような従来の細長状貫通孔では、均一でストレートな細長状貫通孔は形成できないため、細長状貫通孔に細長状電極を挿入すると、細長状貫通孔の内壁に細長状電極が接触し、型彫り放電加工を実施することはできない。 In electrical discharge machining or WE electrical discharge machining for an elongated through-hole, as shown in FIG. 6, an elongated through-hole 31a formed in a sintered body 31 with a diameter of φa is provided with an elongated electrode 32 with a diameter of φb. It is inserted and EDM machined. Specifically, the elongated electrode 32 is inserted into the inner wall of the elongated through-hole 31a with a gap (discharge margin) without contact, thereby causing an arc discharge and finishing the inner wall of the elongated through-hole 31a. By processing, the shape of the elongated electrodes 32 can be transferred, but in order to accurately transfer the shape of the elongated electrodes 32, it is desirable to reduce the discharge margin. On the other hand, in order to form a small gap in the elongated through-holes 31a as in the present invention, it is necessary to form highly uniform and straight elongated through-holes. For example, when the hole diameter φa of the elongated through hole 31a is about 70 μm, the diameter φb of the elongated electrode 32 is about 50 μm, resulting in a fine gap with a discharge allowance of about 10 μm. On the other hand, in the present invention, uniform and straight elongated through-holes are formed in the compact, so die-sinking electric discharge machining becomes possible, and precise elongated through-holes can be formed. On the other hand, in the conventional elongated through-holes such as those disclosed in Patent Document 1, uniform and straight elongated through-holes cannot be formed. The electrodes are in contact and die-sinking electrical discharge machining cannot be performed.

細長状電極の形状は、細長状貫通孔に対応していればよい。細長状電極の直径は、例えば5~110μm、好ましくは10~100μm、さらに好ましくは20~90μm、より好ましくは30~80μm、最も好ましくは50~70μmである。 The shape of the elongated electrode may correspond to the elongated through hole. The diameter of the elongated electrodes is, for example, 5-110 μm, preferably 10-100 μm, more preferably 20-90 μm, more preferably 30-80 μm, most preferably 50-70 μm.

放電加工において、細長状電極と細長状貫通孔との隙間(放電代)は、例えば1~30μm、好ましくは3~20μm、さらに好ましくは5~15μmである。 In electrical discharge machining, the gap (discharge margin) between the elongated electrode and the elongated through hole is, for example, 1 to 30 μm, preferably 3 to 20 μm, more preferably 5 to 15 μm.

[切断工程]
本発明の成形体の製造方法は、前記接合工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する第1の切断工程、または前記放電加工工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する第2の切断工程をさらに含んでいてもよい。
[Cutting process]
In the method for producing a molded body of the present invention, the re-sintered body obtained in the bonding step does not include elongated through holes and corners of the rectangular parallelepiped sintered body or the first rectangular parallelepiped sintered body are removed. From the resintered body obtained in the first cutting step of cutting and removing the region including the gap formed by chamfering the part or the electric discharge machining step, the rectangular parallelepiped not including the elongated through hole and It may further include a second cutting step of cutting and removing a region including a gap formed by chamfering corners of the shaped sintered body or the first rectangular parallelepiped shaped sintered body.

本発明の成形体の製造方法が放電加工工程を含む場合、切断工程は、接合工程で得られた再焼結体に施してもよいし、放電加工工程で得られた再焼結体に施してもよい。 When the method for producing a molded body of the present invention includes an electric discharge machining step, the cutting step may be performed on the resintered body obtained in the joining step, or may be performed on the resintered body obtained in the electric discharge machining step. may

本発明の成形体の製造方法において、切断工程は必須の工程ではなく、前記隙間を形成しない場合は不要である上に、隙間を形成した場合であっても、用途に応じて、隙間を利用する場合や隙間が用途の障害とならない場合には、前記隙間を有する成形体として利用してもよい。 In the manufacturing method of the molded article of the present invention, the cutting step is not an essential step, and is unnecessary when the gap is not formed. In the case where the gap does not interfere with the application, it may be used as a molded body having the gap.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited by these examples.

実施例1
[研削工程]
ダイヤ砥石(φ150mm、#400)を備えたプロファイル研削機((株)和井田製作所製「SPG-WiL」)を用いて、回転数4000rpm、揺動速度60st/minで、R0.040mmの半円形状の細長状溝部を有する直方体状焼結体および断面L字状焼結体を成形した。プロファイル研削盤の投影倍率は50倍とした。
Example 1
[Grinding process]
Using a profile grinder (“SPG-WiL” manufactured by Waida Seisakusho Co., Ltd.) equipped with a diamond grindstone (φ 150 mm, # 400), a semicircular shape with an R of 0.040 mm at a rotation speed of 4000 rpm and a rocking speed of 60 st / min. A rectangular parallelepiped sintered body having an elongated groove and a sintered body having an L-shaped cross section were molded. The projection magnification of the profile grinder was 50 times.

[接合工程]
図5(a)に示すように、直方体状焼結体を、断面L字状焼結体の上に載置し、重力と垂直方向で断面L字状焼結体の位置決め部に向けて第1~3の直方体状焼結体を順次押し付け、真空下、1400℃で7時間焼結し、再焼結体を得た。得られた再焼結体について、細長状貫通孔を長さ方向に沿って等分割して切断した写真、および切断した再焼結体における細長状貫通孔の長さ方向の上端部(A)、中央部(B)および下端部(C)のそれぞれの拡大写真を図7に示す。図7から明らかなように、得られた再焼結体には、上端部(A)、中央部(B)、下端部(C)のいずれの領域でも均一で直線状の細長貫通孔が形成されていた。さらに、細長状貫通孔のサイズを測定したところ、平均孔径は73μm、孔径に対する長さ比であるアスペクト比は273倍、孔径の分散度は3%、平行度は2μmであった。
[Joining process]
As shown in FIG. 5(a), the rectangular parallelepiped sintered body is placed on the sintered body having an L-shaped cross section, and is directed toward the positioning portion of the sintered body having an L-shaped cross section in a direction perpendicular to gravity. 1 to 3 rectangular parallelepiped sintered bodies were sequentially pressed and sintered at 1400° C. for 7 hours under vacuum to obtain a resintered body. Photographs of the resulting resintered body obtained by equally dividing the elongated through-holes along the length direction, and the upper ends (A) of the elongated through-holes in the cut resintered body. , respectively enlarged photographs of the central part (B) and the lower end part (C) are shown in FIG. As is clear from FIG. 7, the obtained re-sintered body has uniform and linear elongated through-holes formed in all regions of the upper end (A), the central portion (B), and the lower end (C). It had been. Furthermore, when the size of the elongated through-holes was measured, the average pore diameter was 73 μm, the aspect ratio, which is the ratio of the length to the pore diameter, was 273 times, the dispersion of the pore diameters was 3%, and the parallelism was 2 μm.

[放電加工工程]
細長状電極((株)ソディック製「AP450L」)を用いて、WE線径φ0.05mmで前記細長状貫通孔を直径φ0.1mmに細孔加工した。
[Electrical discharge machining process]
Using an elongated electrode (“AP450L” manufactured by Sodick Co., Ltd.), the elongated through-hole was processed to have a diameter of φ0.1 mm with a WE wire diameter of φ0.05 mm.

[切断工程]
図5(a)に示すように、WE加工機を用いて再焼結体を切断し、成形体を得た。
[Cutting process]
As shown in FIG. 5(a), a WE processing machine was used to cut the re-sintered body to obtain a molded body.

本発明の成形体は、細長状貫通孔が必要な成形体として利用でき、特に、微細で均一なストレート状の線条体が要求される精密機械や電子部品の金型(例えば、インクジェットプリンターのノズルを形成するための金型など)として好適である。 The molded article of the present invention can be used as a molded article that requires elongated through-holes, and in particular, molds for precision machinery and electronic parts that require fine and uniform straight filaments (for example, inkjet printers). molds for forming nozzles, etc.).

1…成形体
1a,1b…細孔状貫通孔
DESCRIPTION OF SYMBOLS 1... Molded object 1a, 1b... Porous through-hole

Claims (14)

超硬合金で形成され、少なくとも1つの細長状貫通孔を有する成形体の製造方法であって、
接合面に形成された少なくとも1つの細長状溝部同士を位置合わせして複数の焼結体を焼結接合し、少なくとも1つの細長状貫通孔を有する直方体状再焼結体を得る接合工程と、
前記再焼結体の細長状貫通孔に細孔状電極を挿入して放電加工する放電加工工程とを含み、
前記成形体の細長状貫通孔の平均孔径が200μm以下であり、かつ前記細長状貫通孔の長さが前記平均孔径の30倍以上であり、かつ
前記複数の焼結体が、前記直方体状再焼結体の細長状貫通孔を長さ方向に横切って分割した形状である製造方法。
A method for producing a molded body made of cemented carbide and having at least one elongated through hole, comprising:
a joining step of aligning at least one elongated groove formed on the joint surface and sintering and joining a plurality of sintered bodies to obtain a cuboid resintered body having at least one elongated through hole ;
an electric discharge machining step of inserting a porous electrode into the elongated through-hole of the re-sintered body and performing electric discharge machining ;
The average hole diameter of the elongated through-holes of the molded body is 200 μm or less, and the length of the elongated through-holes is 30 times or more the average hole diameter, and
The production method, wherein the plurality of sintered bodies are divided in the longitudinal direction across the elongated through-holes of the re-sintered rectangular parallelepiped body.
前記接合工程において、
前記直方体状再焼結体が、断面L字状焼結体と直方体状焼結体とを位置決めして焼結結合した再焼結体であり、
前記断面L字状焼結体が、前記直方体状焼結体と位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成された基底部と、この基底部の端部から立設した位置決め部とを有し、
前記直方体状焼結体に、前記断面L字状焼結体と位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ
前記断面L字状焼結体の前記位置決め部の隅部に位置する前記直方体状焼結体の角部を面取りし、前記隅部と前記角部との間に隙間を設ける請求項1記載の製造方法。
In the bonding step,
The rectangular parallelepiped resintered body is a resintered body in which a cross section L-shaped sintered body and a rectangular parallelepiped sintered body are positioned and sintered together,
a base portion in which an elongated groove for forming an elongated through hole is formed in a bonding surface in a state in which the sintered body having an L-shaped cross section is positioned with the sintered body having a rectangular parallelepiped; and the base portion. and a positioning portion erected from the end of the
The rectangular parallelepiped sintered body is formed with an elongated groove portion for forming an elongated through hole in the joint surface in a state of being positioned with the L-shaped cross section sintered body, and the L-shaped cross section sintered body 2. The manufacturing method according to claim 1, wherein the corners of the rectangular parallelepiped sintered body positioned at the corners of the positioning portion of the body are chamfered to provide a gap between the corners.
前記断面L字状焼結体と前記直方体状焼結体との接触面の平行度がそれぞれ3μm以下であり、かつ前記断面L字状焼結体の隅部の直角度が3μm以下である請求項2記載の製造方法。 The parallelism of the contact surfaces of the sintered body having an L-shaped cross section and the sintered body having a rectangular parallelepiped is 3 μm or less, and the squareness of the corners of the sintered body having an L-shaped cross section is 3 μm or less. Item 2. The manufacturing method according to item 2. 前記接合工程において、
前記直方体状再焼結体が、断面L字状焼結体と、第1の直方体状焼結体と、少なくとも1つの他の直方状焼結体とを位置決めして焼結結合した再焼結体であり、
前記断面L字状焼結体が、前記第1の直方体状焼結体と位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成された基底部と、この基底部の端部から立設した位置決め部とを有し、かつ
前記第1の直方体状焼結体に、前記断面L字状焼結体と位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ前記他の直方体状焼結体と位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、
前記他の直方体状焼結体に、直方体状焼結体同士が位置決めした状態で、接合面に細長状貫通孔を形成するための細長状溝部が形成され、かつ
前記断面L字状焼結体の位置決め部の隅部に位置する前記第1の直方体状焼結体の角部を面取りし、前記隅部と前記角部との間に隙間を設ける請求項1記載の製造方法。
In the bonding step,
The resintered rectangular parallelepiped body is a restintered body obtained by positioning and sintering a sintered body having an L-shaped cross section , a first sintered rectangular parallelepiped body, and at least one other sintered rectangular parallelepiped body. is the body,
a base portion having an elongated groove for forming an elongated through-hole in the bonding surface in a state in which the sintered body having an L-shaped cross section is positioned with the first rectangular parallelepiped sintered body; and a positioning part erected from the end of the base part, and in a state where the sintered body having the L-shaped cross section is positioned on the first rectangular parallelepiped sintered body, an elongated shape is formed on the bonding surface. An elongated groove for forming a through-hole is formed, and an elongated groove for forming an elongated through-hole is formed in the bonding surface in a state of being positioned with the other rectangular parallelepiped sintered body,
An elongated groove portion for forming an elongated through hole is formed in the joint surface in a state in which the rectangular parallelepiped sintered bodies are positioned in the other rectangular parallelepiped sintered body, and the L-shaped cross section is sintered. 2. The manufacturing method according to claim 1, wherein the corners of the first rectangular parallelepiped sintered body positioned at the corners of the positioning portion of the body are chamfered to provide a gap between the corners.
前記断面L字状焼結体と前記第1の直方体状焼結体との接合面の平行度がそれぞれ3μm以下であり、前記第1の直方体状焼結体と前記他の直方体状焼結体との接合面の平行度がそれぞれ3μm以下であり、前記他の直方体状焼結体同士の接合面の平行度がそれぞれ3μm以下であり、かつ前記断面L字状焼結体の隅部の直角度が3μm以下である請求項4記載の製造方法。 Parallelism of joint surfaces between the sintered body having an L-shaped cross section and the first sintered rectangular parallelepiped body is 3 μm or less, and the first sintered rectangular parallelepiped body and the other sintered rectangular parallelepiped body have a parallelism of 3 μm or less. The parallelism of the joint surfaces of the other rectangular parallelepiped sintered bodies is 3 μm or less, and the parallelism of the joint surfaces of the other rectangular parallelepiped sintered bodies is 3 μm or less, and the corners of the L-shaped sintered bodies in cross section are straight. 5. The manufacturing method according to claim 4, wherein the angle is 3 [mu]m or less. 前記接合工程の前工程として、前記複数の焼結体における細長状貫通孔を形成するための細長状溝部を、光学式倣い研削盤で研削して形成する研削工程を含む請求項1~5のいずれか一項に記載の製造方法。 6. The method of claims 1 to 5, comprising a grinding step of forming elongated grooves for forming elongated through-holes in the plurality of sintered bodies by grinding with an optical copying grinder as a pre-process of the bonding step. The manufacturing method according to any one of the items. 前記接合工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する切断工程を含む請求項4または5記載の製造方法。 From the resintered body obtained in the joining step, a gap which does not include an elongated through hole and is formed by chamfering the corners of the rectangular parallelepiped sintered body or the first rectangular parallelepiped sintered body is removed. 6. The manufacturing method according to claim 4 or 5, further comprising a cutting step of cutting and removing the containing region. 前記放電加工工程で得られた再焼結体から、細長状貫通孔を含まず、かつ前記直方体状焼結体または前記第1の直方体状焼結体の角部を面取りして形成された隙間を含む領域を切断して除去する切断工程を含む請求項4または5記載の製造方法。 A gap formed by chamfering corners of the rectangular parallelepiped sintered body or the first rectangular parallelepiped sintered body, which does not include elongated through-holes, from the resintered body obtained in the electrical discharge machining step. 6. The manufacturing method according to claim 4 or 5, comprising a cutting step of cutting and removing the region containing 超硬合金で形成され、少なくとも1つの細長状貫通孔を有する直方体状成形体であって、
前記細長状貫通孔の平均孔径が200μm以下であり、
前記細長状貫通孔の長さ方向において、孔径の分散度が平均孔径に対して20%以下であり、かつ
前記細長状貫通孔の長さが前記平均孔径の30倍以上である直方体状成形体。
A cuboid molded body made of cemented carbide and having at least one elongated through hole,
The elongated through-holes have an average pore diameter of 200 μm or less,
A rectangular parallelepiped molded body having a pore diameter dispersion of 20% or less with respect to the average pore diameter in the length direction of the elongated through-holes, and a length of the elongated through-holes 30 times or more the average pore diameter. .
前記細長状貫通孔の平行度が30μm以下である請求項記載の直方体状成形体。 10. The rectangular parallelepiped molded article according to claim 9 , wherein the elongated through holes have a parallelism of 30 [mu]m or less. 前記細長状貫通孔の開口形状が円形状、楕円形状または多角形状である請求項または10記載の直方体状成形体。 11. The cuboid molded article according to claim 9 or 10 , wherein the opening shape of said elongated through holes is circular, elliptical or polygonal. 前記細長状貫通孔の開口形状が円形状である請求項または10記載の直方体状成形体。 11. The cuboid molded article according to claim 9 or 10 , wherein the elongated through holes have circular openings. 間隔をおいて平行に延びる複数の細長状貫通孔を有する請求項または10記載の直方体状成形体。 11. The cuboid molded article according to claim 9 or 10 , having a plurality of elongated through-holes extending in parallel at intervals. 金型である請求項または10記載の直方体状成形体。 11. The cuboid molded article according to claim 9 or 10 , which is a mold.
JP2022171373A 2022-10-26 2022-10-26 Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same Active JP7249707B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022171373A JP7249707B1 (en) 2022-10-26 2022-10-26 Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022171373A JP7249707B1 (en) 2022-10-26 2022-10-26 Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same

Publications (1)

Publication Number Publication Date
JP7249707B1 true JP7249707B1 (en) 2023-03-31

Family

ID=85772967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022171373A Active JP7249707B1 (en) 2022-10-26 2022-10-26 Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same

Country Status (1)

Country Link
JP (1) JP7249707B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136404A (en) * 1983-01-21 1984-08-06 Shizuo Togo Preparation of super-hard anti-wear and impact resistant tool
JPH0445206A (en) * 1990-06-12 1992-02-14 Aoyama Seisakusho:Kk Manufacture of sintered hard alloy-made die
JP2006075907A (en) * 2004-09-07 2006-03-23 Nachi Fujikoshi Corp Cemented carbide for discharge electrode
JP2008142578A (en) * 2006-12-05 2008-06-26 Suzuki Precion Co Ltd Microchip and its manufacturing method
JP2022001662A (en) * 2020-06-22 2022-01-06 日本特殊合金株式会社 Long-sized cemented carbide body equipped with ultra-micropore, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136404A (en) * 1983-01-21 1984-08-06 Shizuo Togo Preparation of super-hard anti-wear and impact resistant tool
JPH0445206A (en) * 1990-06-12 1992-02-14 Aoyama Seisakusho:Kk Manufacture of sintered hard alloy-made die
JP2006075907A (en) * 2004-09-07 2006-03-23 Nachi Fujikoshi Corp Cemented carbide for discharge electrode
JP2008142578A (en) * 2006-12-05 2008-06-26 Suzuki Precion Co Ltd Microchip and its manufacturing method
JP2022001662A (en) * 2020-06-22 2022-01-06 日本特殊合金株式会社 Long-sized cemented carbide body equipped with ultra-micropore, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN110139725B (en) Method and device for producing hard metal compacts, and hard metal compact
EP1429881B1 (en) Method for milling casting moulds
JP4684973B2 (en) Electrode for electric discharge machining and method for producing the same
JP7249707B1 (en) Cemented Carbide Molded Body with Slotted Pores and Method for Manufacturing Same
JP6778509B2 (en) Wire saw device and method of cutting out powder molded product using this device
KR102510360B1 (en) Manufacturing method of tool head
KR20070025976A (en) Sliding member and machine tools comprising the same
Gupta et al. Overview of Wire Spark Erosion Machining (WSEM)
US5865983A (en) Process for forming honeycomb extrusion die
CN110997190B (en) Method for producing a sintered component and sintered component
CN100450703C (en) Molding process
CN108406447B (en) Track grinding method for precise non-circular curved surface
CN116323041B (en) Method for manufacturing sintered gear
CN109475935B (en) Pressing tool
JP6594703B2 (en) Mesh filter injection molding method, injection mold, and mesh filter
JP3755877B2 (en) Diamond die for deformed wire drawing and method for manufacturing deformed wire
Gadow et al. Electrical Discharge Machining (EDM) of High-Performance Ceramics: Materials and Process Development for Wear Resistant Precision Tools with High Geometrical Complexity
EP0163718A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method
JP2016108645A (en) Production device for mold material and method for producing mold material
JP7296466B2 (en) Method for manufacturing metal member
JP2537501B2 (en) Manufacturing method of forging die
JP4618992B2 (en) Molding method of ceramic powder
WO2023210568A1 (en) Sintered member, and method for producing sintered member
JP7327864B1 (en) Precision nozzle and its manufacturing method
JPS62103302A (en) Manufacture of sintered hard metallic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7249707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150