JP6778509B2 - Wire saw device and method of cutting out powder molded product using this device - Google Patents

Wire saw device and method of cutting out powder molded product using this device Download PDF

Info

Publication number
JP6778509B2
JP6778509B2 JP2016099259A JP2016099259A JP6778509B2 JP 6778509 B2 JP6778509 B2 JP 6778509B2 JP 2016099259 A JP2016099259 A JP 2016099259A JP 2016099259 A JP2016099259 A JP 2016099259A JP 6778509 B2 JP6778509 B2 JP 6778509B2
Authority
JP
Japan
Prior art keywords
cutting
molded body
powder
wire saw
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099259A
Other languages
Japanese (ja)
Other versions
JP2017205828A (en
Inventor
友紀 園田
友紀 園田
伸也 池田
伸也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Gokin Co Ltd
Original Assignee
Kyoritsu Gokin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Gokin Co Ltd filed Critical Kyoritsu Gokin Co Ltd
Priority to JP2016099259A priority Critical patent/JP6778509B2/en
Publication of JP2017205828A publication Critical patent/JP2017205828A/en
Application granted granted Critical
Publication of JP6778509B2 publication Critical patent/JP6778509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一次成形体としての粉末成形体から所定の形状の二次成形体を切り出して、所定の超硬合金などの焼結体を製造するのに有用なワイヤーソー装置、この装置を用いて粉末成形体(又は圧縮成形体)から所定形状の二次成形体を切り出す方法(又は切断方法)、並びに二次成形体を焼結して焼結体(超硬合金など)を製造する方法に関する。 The present invention uses a wire saw device, which is useful for producing a sintered body such as a predetermined cemented carbide by cutting out a secondary molded body having a predetermined shape from a powder molded body as a primary molded body. A method of cutting out a secondary molded product having a predetermined shape (or a cutting method) from a powder molded product (or compression molded product), and a method of sintering a secondary molded product to produce a sintered body (cemented carbide, etc.). Regarding.

超硬合金は、切削工具、掘削具、打ち抜き金具などに広く利用されている。このような超硬合金は、通常、粉末冶金法、例えば、タングステンカーバイドWCとコバルトとの粉末混合物をブロック状に圧縮成形し、必要により熱処理(予備焼結)して成形体を調製し、所定の形状に整形し、整形した成形体を焼結し、さらに寸法精度を高めるため、焼結体を、ダイヤモンド砥石、カッターなどを用いて所定の形態に加工している。しかし、超硬合金は、硬度が極めて高いため、加工性が劣り、製品の生産性を大きく低下させる。特に、ブロック状の焼結体から複数の製品を切り出す場合には、製品の生産性を著しく低下させる。また、加工過程で焼結体が欠損し、製品の歩留まりも低下させる場合もある。さらには、焼結体の加工により生成する切粉は、焼結されているため、再利用することが困難である。 Cemented carbide is widely used in cutting tools, excavators, punching metal fittings, and the like. Such a cemented carbide is usually prepared by a powder metallurgy method, for example, a powder mixture of tungsten carbide WC and cobalt is compression-molded into blocks, and if necessary, heat-treated (pre-sintered) to prepare a molded body. The sintered body is processed into a predetermined shape by using a diamond grindstone, a cutter, or the like in order to shape the shaped body into the shape of the above, sinter the shaped molded body, and further improve the dimensional accuracy. However, since cemented carbide has extremely high hardness, it is inferior in processability and greatly reduces the productivity of the product. In particular, when a plurality of products are cut out from a block-shaped sintered body, the productivity of the products is significantly reduced. In addition, the sintered body may be damaged during the processing process, which may reduce the yield of the product. Furthermore, the chips generated by the processing of the sintered body are sintered, so that it is difficult to reuse them.

このような焼結体の加工方法の1つとして、放電加工(ワイヤーカット放電加工)が知られている。しかし、この放電加工では、一対の電極間での放電を利用して溶融させて切断するため、消費エネルギー及び電極の消耗が大きいだけでなく、水性又は油性の加工液を用いて加工する必要がある。 Electric discharge machining (wire-cut electric discharge machining) is known as one of the processing methods for such a sintered body. However, in this electric discharge machining, since the electric discharge between the pair of electrodes is used to melt and cut, not only the energy consumption and the consumption of the electrodes are large, but also it is necessary to perform the electric discharge machining using an aqueous or oil-based machining liquid. is there.

一方、粉末混合物の圧縮成形により生成したブロック状の一次成形体から所定の二次成形体を、切削工具を用いて切り出して整形し、この成形体を焼結することが考えられる。しかし、この方法では、前記ブロック状の一次成形体がチョーク状であり柔らかく脆いため、切り出し及び整形加工で、二次成形体にクラックが生成し易く、切り出しに伴って二次成形体が落下すると、二次成形体が損傷する。さらに、端部では切削部位に欠けが生じやすいため、欠け部を考慮して端部を切り代とし、所定の加工を施した後、切り代を切断する必要がある。そのため、工程数が多くなるとともに、歩留まりが低下する。また、一次成形体が損傷しやすいことは、短時間で効率よく加工するうえで、大きな弊害であり、生産性を高めることが困難である。 On the other hand, it is conceivable to cut out a predetermined secondary molded body from the block-shaped primary molded body produced by compression molding of the powder mixture using a cutting tool, shape the molded body, and sinter the molded body. However, in this method, since the block-shaped primary molded body is chalk-shaped and soft and brittle, cracks are likely to be generated in the secondary molded body during cutting and shaping, and when the secondary molded body falls with the cutting. , The secondary molded body is damaged. Further, since the cutting portion is likely to be chipped at the end portion, it is necessary to cut the cutting allowance after performing a predetermined process by setting the end portion as a cutting allowance in consideration of the chipped portion. Therefore, as the number of steps increases, the yield decreases. Further, the fact that the primary molded body is easily damaged is a great adverse effect in efficient processing in a short time, and it is difficult to increase the productivity.

特開2003−165047号公報(特許文献1)には、微粒の硬質切削材が表面に設けられたワイヤーソーを、対向する第1及び第2の案内機構によって直線状に送り出し、前記第1及び第2の案内機構間に配置されたテーブルに固定されたセラミックス被加工物に前記ワイヤーソーを押しつけながら、前記被加工物の形状加工を行うセラミック加工装置が記載され、この装置では、前記テーブルを、X及びY方向に自在又は予めプログラムされた命令に従って移動するXYテーブルとすることが記載されている。また、前記第1及び第2の案内機構をそれぞれ独立に制御することも記載されている。しかし、この装置では、ワイヤーソーを送り出しながらセラミックを切断すると、セラミックが硬質であるため、切断部位が発熱し、乾式で切断すると、砥粒が付着したワイヤーソーによる切断効率が大きく低下する。また、第1及び第2の案内機構のプーリーにワイヤーソーを架け渡して縦方向に送り出し、XYテーブルでセラミックをXY軸方向に移動させると、ワイヤーソーに対してテーブルの移動方向に張力が作用してワイヤーソーが傾斜する。そのため、切断部位とプーリーとの間でワイヤーソーが傾斜した状態で走行するため、プーリーがワイヤーソーにより研削されてしまい、長時間に亘り安定してセラミックを切断できなくなる。しかも、ワイヤーソーによりセラミックス被加工物を縦方向に切断し、円柱状などの所定形状に抜き取って、セラミックス被加工物に丸孔などの貫通部を形成するため、切断又はスライスしたセラミックが落下して損傷するおそれがある。 According to Japanese Patent Application Laid-Open No. 2003-165847 (Patent Document 1), a wire saw provided with a fine-grained hard cutting material on the surface is linearly fed by the opposing first and second guide mechanisms, and the first and second are described. A ceramic processing apparatus for processing the shape of the workpiece while pressing the wire saw against the ceramic workpiece fixed to a table arranged between the second guide mechanisms is described. In this apparatus, the table is used. , X and Y directions are described as XY tables that move freely or according to pre-programmed instructions. It is also described that the first and second guide mechanisms are controlled independently. However, in this device, when the ceramic is cut while feeding the wire saw, the ceramic is hard, so that the cut portion generates heat, and when the ceramic is cut by a dry method, the cutting efficiency by the wire saw to which the abrasive grains are attached is greatly reduced. Further, when the wire saw is bridged over the pulleys of the first and second guide mechanisms and sent out in the vertical direction and the ceramic is moved in the XY axis direction on the XY table, tension acts on the wire saw in the moving direction of the table. Then the wire saw tilts. Therefore, since the wire saw runs in an inclined state between the cutting portion and the pulley, the pulley is ground by the wire saw, and the ceramic cannot be cut stably for a long time. Moreover, the ceramic work piece is cut in the vertical direction with a wire saw and extracted into a predetermined shape such as a columnar shape to form a through portion such as a round hole in the ceramic work work, so that the cut or sliced ceramic falls. May be damaged.

特開2003−303728号公報(特許文献2)には、磁石粉末の成形体を作製する工程と、砥粒が固定されたワイヤーソーを用いて前記成形体を加工する工程と、前記成形体を焼結する工程とを含む焼結磁石の製造方法が記載され、前記加工工程では、前記成形体を前記ワイヤーソーに対して相対的に移動させて前記成形体をスライスすること、前記ワイヤーソーに対して前記成形体を水平面内で相対的に移動させ、スライスした複数の部分を鉛直方向に引き離すこと、成形体のうちワイヤーソーとの接触部に切削液を付与することも記載されている。 Japanese Unexamined Patent Publication No. 2003-303728 (Patent Document 2) describes a step of producing a molded body of magnet powder, a step of processing the molded body using a wire saw on which abrasive grains are fixed, and a step of processing the molded body. A method for manufacturing a sintered magnet including a step of sintering is described, and in the processing step, the molded body is moved relative to the wire saw to slice the molded body, and the wire saw is used. On the other hand, it is also described that the molded body is relatively moved in a horizontal plane to pull the sliced portions apart in the vertical direction, and that the cutting liquid is applied to the contact portion of the molded body with the wire saw.

特開2005−268668号公報(特許文献3)には、希土類元素を含む原料合金粉を成形し、成形した成形体を所定の形状に切断加工するに際し、前記成形体の切断面と略直交する2方向の面のうち少なくとも1方向の面を加圧支持することが記載され、ワイヤーソー加工により切断加工することが記載されている。 Japanese Patent Application Laid-Open No. 2005-268668 (Patent Document 3) states that when a raw material alloy powder containing a rare earth element is molded and the molded product is cut into a predetermined shape, it is substantially orthogonal to the cut surface of the molded product. It is described that the surface in at least one of the two directions is pressure-supported, and that the surface is cut by wire saw processing.

しかし、これらの方法では、成形体を縦方向に所定の幅でスライスしており、切断加工された成形体の形状が板状の形態に制約される。特に、スライス加工された成形体が倒れて損傷する可能性があるとともに、スライス加工された成形体が倒れるのを防止するためには、前記のように加圧支持機構を必要とする。さらに、切削液が付着すると、焼結時の割れや、組織不良による焼結体の性能ムラが生じるおそれがある。 However, in these methods, the molded product is sliced in the vertical direction with a predetermined width, and the shape of the cut molded product is restricted to the plate-like shape. In particular, the sliced molded product may fall and be damaged, and in order to prevent the sliced molded product from falling over, a pressure support mechanism is required as described above. Further, if the cutting fluid adheres, there is a possibility that cracks during sintering and uneven performance of the sintered body due to poor structure may occur.

特開2013−63648号公報(特許文献4)には、押出成形により、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を作製し、このハニカム成形体を所定の長さに切断するハニカム成形体の切断方法が記載され、この方法では、前記ハニカム成形体の外周に対して、波長領域0.7〜2.5μmのレーザーにより切断補助溝を設け、この切断補助溝を介してワイヤーにより切断することが記載されている。この方法でも、ハニカム成形体の長さ方向に対して直交する方向に所定長さでハニカム成形体を切断しており、ハニカム状の形態に制約される。 Japanese Patent Application Laid-Open No. 2013-63648 (Patent Document 4) describes a material containing silicon carbide in which a large number of cells are juxtaposed in the longitudinal direction across a cell wall by extrusion molding and an outer peripheral wall is formed on the side surface thereof. A method for cutting a honeycomb molded body is described in which a columnar honeycomb molded body is produced and the honeycomb molded body is cut to a predetermined length. In this method, the wavelength region 0. It is described that a cutting auxiliary groove is provided by a laser of 7 to 2.5 μm, and cutting is performed by a wire through the cutting auxiliary groove. Also in this method, the honeycomb molded body is cut at a predetermined length in the direction orthogonal to the length direction of the honeycomb molded body, and the honeycomb-shaped form is restricted.

なお、コンターマシン(バンドソー装置)で粉末成形体を切断することも考えられる。しかし、コンターマシンでは、帯鋸を用いるため、粉末成形体を直線加工しかできない。 It is also conceivable to cut the powder molded product with a contour machine (band saw device). However, since the contour machine uses a band saw, the powder compact can only be processed in a straight line.

特開2003−165047号公報(特許請求の範囲、図1)JP-A-2003-165847 (Claims, FIG. 1) 特開2003−303728号公報(特許請求の範囲、図1)JP-A-2003-303728 (Claims, FIG. 1) 特開2005−268668号公報(特許請求の範囲、図1)JP-A-2005-268668 (Claims, FIG. 1) 特開2013−63648号公報(特許請求の範囲、図1)JP 2013-63648 (Claims, FIG. 1)

従って、本発明の目的は、一次成形体としての粉末成形体から所定形状の二次成形体を安定に切り出(又は切断)して、超硬合金などの所定の焼結体を製造するのに有用なワイヤーソー装置、この装置を用いて粉末成形体(又は圧縮成形体)から二次成形体を切り出す方法(又は切断方法)、並びに二次成形体を焼結して焼結体(超硬合金など)を製造する方法を提供することにある。 Therefore, an object of the present invention is to stably cut (or cut) a secondary molded product having a predetermined shape from a powder molded product as a primary molded product to produce a predetermined sintered body such as cemented carbide. A wire saw device useful for, a method of cutting a secondary molded body (or a cutting method) from a powder molded body (or compression molded body) using this device, and a sintered body (super) by sintering the secondary molded body. The purpose is to provide a method for producing cemented carbide, etc.).

本発明の他の目的は、粉末成形体から、二次成形体を非平板状(又は三次元立体形状)に切り出す(又は切断加工する)のに有用なワイヤーソー装置及び切り出し方法(又は切断方法)、並びに三次元立体形状の二次成形体を焼結して焼結体(超硬合金など)を製造する方法を提供することにある。 Another object of the present invention is a wire saw device and a cutting method (or cutting method) useful for cutting (or cutting) a secondary molded body from a powder molded body into a non-plate shape (or a three-dimensional three-dimensional shape). ), And a method for producing a sintered body (cemented carbide, etc.) by sintering a secondary molded body having a three-dimensional three-dimensional shape.

本発明のさらに他の目的は、一次成形体が柔らかく脆く、しかも二次成形体が薄肉及び/又は小径部を有していても、転倒や落下を防止しつつ、二次成形体を損傷することなく精度よく切り出し(又は切断)可能なワイヤーソー装置、この装置を用いて二次成形体を切り出す方法(又は切断方法)、並びに焼結体(超硬合金など)を製造する方法を提供することにある。 Yet another object of the present invention is to damage the secondary molded body while preventing it from tipping over or falling even if the primary molded body is soft and brittle and the secondary molded body has a thin wall and / or a small diameter portion. Provided are a wire saw device capable of cutting (or cutting) accurately without any need, a method of cutting (or cutting) a secondary molded product using this device, and a method of manufacturing a sintered body (cemented carbide, etc.). There is.

本発明の別の目的は、高い歩留まり及び生産性で二次成形体及び焼結体を製造可能であるとともに、生成する切粉又は粉塵を有効に再利用可能なワイヤーソー装置、この装置を用いて二次成形体を切り出す方法(又は切断方法)、並びに焼結体(超硬合金など)を製造する方法を提供することにある。 Another object of the present invention is a wire saw device capable of producing a secondary molded body and a sintered body with high yield and productivity, and effectively reusing the generated chips or dust, using this device. It is an object of the present invention to provide a method for cutting out (or cutting) a secondary molded product, and a method for producing a sintered body (cemented carbide, etc.).

本発明者らは、粉末冶金において、焼結体は加工効率が大きく低下すること、焼結に供する粉末成形体(圧縮成形体)は加工し易いものの、柔らかくて脆く損傷しやすいことに着目し、前記課題を達成するため鋭意検討した結果、ワイヤーソーで粉末成形体を縦方向にスライスして切断加工するのではなく、ワイヤーソーを横方向(左右のX軸方向)に走行させ、かつ粉末成形体(一次成形体)を少なくともY軸方向(奥行き方向)に移動させ、粉末成形体を乾式で横方向に切断又はスライスすると、二次成形体(予備成形体)を積み重ねた状態で切断又はスライスできるため、二次成形体(予備成形体)が落下又は倒れることがないため、殆ど損傷しないだけでなく、湿式による切断と異なり、切断部での二次成形体(予備成形体)の組織変動が生じないこと、特に、粉末成形体(一次成形体)をY軸方向及びZ軸方向(高さ方向)に移動させると、粉末成形体から三次元立体形状の二次成形体を損傷させることなく精度よく、しかも高い歩留まり及び生産性で切断又は切り出しできることを見いだし、本発明を完成した。 The present inventors have focused on the fact that in powder metallurgy, the processing efficiency of a sintered body is greatly reduced, and that the powder molded body (compression molded body) used for sintering is easy to process, but is soft, brittle and easily damaged. As a result of diligent studies to achieve the above-mentioned problems, instead of slicing and cutting the powder compact in the vertical direction with a wire saw, the wire saw is run in the horizontal direction (X-axis direction on the left and right) and the powder is formed. When the molded product (primary molded product) is moved at least in the Y-axis direction (depth direction) and the powder molded product is cut or sliced in the lateral direction in a dry manner, the secondary molded product (pre-molded product) is cut or cut in a stacked state. Since it can be sliced, the secondary molded body (pre-molded body) does not fall or fall, so not only is it hardly damaged, but unlike the wet cutting, the structure of the secondary molded body (pre-molded body) at the cut portion No fluctuation, especially when the powder molded body (primary molded body) is moved in the Y-axis direction and the Z-axis direction (height direction), damages the secondary molded body having a three-dimensional three-dimensional shape from the powder molded body. The present invention has been completed by finding that it can be cut or cut out with high accuracy and high yield and productivity without any problems.

すなわち、本発明の装置は、粉末成形体(又は一次成形体)をワイヤーソーで切断加工するための装置(ワイヤーソー装置)であって、X軸方向に走行可能なワイヤーソーと、このワイヤーソーに対して、Y軸方向及びZ軸方向のうち少なくともY軸方向に相対的に移動可能であり、かつ前記粉末成形体を載置又は保持可能なテーブルとを備えている。 That is, the device of the present invention is a device (wire saw device) for cutting a powder molded body (or a primary molded body) with a wire saw, and is a wire saw capable of traveling in the X-axis direction and the wire saw. On the other hand, it is provided with a table that is relatively movable in at least the Y-axis direction of the Y-axis direction and the Z-axis direction, and on which the powder molded product can be placed or held.

このようなワイヤーソー装置は、X軸方向(横方向)にワイヤーソーが走行可能な切断域と、この切断域において、ワイヤーソーに対してY−Z軸方向に移動可能なテーブルとを備えていてもよい。さらに、ワイヤーソーに対して、テーブルに載置又は保持された粉末成形体をY軸方向に進退動させるための進退動手段と、ワイヤーソーに対して粉末成形体をZ軸方向に上下動させるための上下動手段と、前記進退動手段と上下動手段とを制御し、ワイヤーソーを中心として粉末成形体をY−Z軸方向(周方向)に移動させるための制御ユニットとを備えていてもよい。 Such a wire saw device includes a cutting area in which the wire saw can travel in the X-axis direction (lateral direction), and a table that can move in the YZ-axis direction with respect to the wire saw in this cutting area. You may. Further, an advancing / retreating means for advancing / retreating the powder molded body placed or held on the table with respect to the wire saw in the Y-axis direction, and moving the powder molded body up / down in the Z-axis direction with respect to the wire saw. A control unit for controlling the vertical movement means and the vertical movement means and the vertical movement means for moving the powder molded body in the YZ axis direction (circumferential direction) around the wire saw is provided. May be good.

前記粉末成形体(又は一次成形体)は、必要に応じてバインダーを用い、原料粉末を圧縮成形した成形体であればよく、柔らかくて脆いチョーク状の成形体であってもよい。粉末成形体は、粉末冶金での焼結前の成形体、例えば、超硬合金粉末成形体などであってもよい。このような粉末成形体は、下記(a)(b)及び(c)から選択された少なくとも1つの特性を有していてもよい。 The powder molded product (or primary molded product) may be a molded product obtained by compression molding the raw material powder using a binder, if necessary, and may be a soft and brittle chalk-shaped molded product. The powder molded product may be a molded product before sintering by powder metallurgy, for example, a cemented carbide powder molded product. Such a powder molded product may have at least one property selected from the following (a), (b) and (c).

(a)硬度0.01〜1GPa
(b)密度3〜10g/cm
(c)抗折力0.1〜50MPa
(A) Hardness 0.01 to 1 GPa
(B) Density 3 to 10 g / cm 3
(C) Folding force 0.1 to 50 MPa

前記硬度は、JIS Z 2244に準じて測定荷重9.8Nで測定でき、前記密度は、物理的方法に測定した一次成形体の容積と重量とから算出できる。また、抗折力は、CIS(日本機械工具工業会(旧超硬工具協会)規格)026に規定する方法に従って測定できる。 The hardness can be measured with a measurement load of 9.8 N according to JIS Z 2244, and the density can be calculated from the volume and weight of the primary molded body measured by a physical method. The bending force can be measured according to the method specified in CIS (Japan Machine Tool Manufacturers Association (former Carbide Tool Association) standard) 026.

本発明では、一次成形体としての粉末成形体をワイヤーソーで切断して二次成形体を製造する方法であって、ワイヤーソーをX軸方向に走行させ、このワイヤーソーに対して、テーブルに載置又は保持した粉末成形体を、Y軸方向及びZ軸方向のうち少なくともY軸方向に相対的に移動させ、粉末成形体を切断して二次成形体を製造する方法(又は切断方法)も包含する。 The present invention is a method of manufacturing a secondary molded product by cutting a powder molded product as a primary molded product with a wire saw. The wire saw is run in the X-axis direction, and the wire saw is placed on a table. A method (or cutting method) in which a placed or held powder molded product is relatively moved in at least the Y-axis direction of the Y-axis direction and the Z-axis direction, and the powder molded product is cut to produce a secondary molded product. Also includes.

このような方法において、粉末成形体をY軸方向に移動させて粉末成形体の一方の端面から他方の端面までスライス(又は切断)する操作を少なくとも1回行い、厚みの薄いシート状又はプレート状の二次成形体を製造してもよい。また、ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体をY軸方向及びZ軸方向に移動させ、三次元立体形状の二次成形体を切り出し(又は刳り抜いて)てもよい。例えば、粉末成形体をY軸方向及びZ軸方向に移動させ、ワイヤーソーによる連続した形態(一筆書きの形態)の切断軌跡で複数の二次成形体を切り出し(又は切断し)てもよく、二次成形体は、一筆書きの要領で、切断軌跡を形成することにより粉末成形体から切り出してもよい。また、ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体をY軸方向及びZ軸方向に移動させ、複数の三次元立体形状の二次成形体をY軸方向に隣接させて切り出してもよい。 In such a method, the operation of moving the powder molded product in the Y-axis direction and slicing (or cutting) the powder molded product from one end face to the other end face is performed at least once to form a thin sheet or plate. The secondary molded product of the above may be manufactured. Further, the powder molded body placed or held on the table may be moved in the Y-axis direction and the Z-axis direction with respect to the wire saw to cut out (or cut out) the secondary molded body having a three-dimensional three-dimensional shape. .. For example, the powder compact may be moved in the Y-axis direction and the Z-axis direction, and a plurality of secondary compacts may be cut out (or cut) along a cutting locus in a continuous form (one-stroke form) by a wire saw. The secondary molded product may be cut out from the powder molded product by forming a cutting locus in the manner of one-stroke writing. Further, the powder molded body placed or held on the table is moved to the wire saw in the Y-axis direction and the Z-axis direction, and a plurality of three-dimensional three-dimensional shaped secondary molded bodies are cut out adjacent to each other in the Y-axis direction. You may.

より具体的には、本発明の方法は、(A)ワイヤーソーに対して、粉末成形体を少なくともY軸方向に前進動させて粉末成形体の第1の切断開始部から所定の第1の基点にまで粉末成形体を切断加工する第1の横方向切断工程(少なくとも横方向に切断加工する工程)と、
(B)第1の基点への切断部の到達の後(又は到達に応答して)、粉末成形体を少なくともY軸方向に前進動させつつY軸方向及びZ軸方向に移動させ、二次成形体の断面外形線(断面形状)の少なくとも一部の外形線に対応する切断軌跡で粉末成形体を切断加工するための立体切断工程と、
(C)第1の横方向切断工程と立体切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体を少なくともY軸方向に前進動させつつ、Y軸方向に繰り返し、少なくとも前記第1の基点に戻る複数の切断軌跡を形成して、複数の二次成形体をY軸方向に隣接させて粉末成形体を切断加工するための繰返し工程と、
(D)最終切断サイクルの立体切断工程の後、二次成形体を分離回収する工程とを含んでいてもよい。
More specifically, in the method of the present invention, the powder compact is moved forward at least in the Y-axis direction with respect to the wire saw (A), and a predetermined first cutting start portion of the powder compact is formed. The first lateral cutting step (at least the step of cutting laterally) of cutting the powder molded product to the base point, and
(B) After (or in response to) the arrival of the cut portion at the first base point, the powder compact is moved forward in at least the Y-axis direction and moved in the Y-axis direction and the Z-axis direction to be secondary. A three-dimensional cutting step for cutting a powder molded product with a cutting locus corresponding to at least a part of the cross-sectional outline (cross-sectional shape) of the molded product.
(C) The first lateral cutting step and the three-dimensional cutting step are regarded as one cutting cycle, and this cutting cycle is repeated in the Y-axis direction while moving the powder molded product forward at least in the Y-axis direction, and at least the first step. A repetitive step for forming a plurality of cutting loci returning to the base point of 1 and cutting the powder compact by making the plurality of secondary compacts adjacent to each other in the Y-axis direction.
(D) After the three-dimensional cutting step of the final cutting cycle, a step of separating and recovering the secondary molded product may be included.

なお、粉末成形体を異なる高さ位置で切断加工し、Z軸方向に間隔をおいて、Y軸方向に隣接して形成された複数の二次成形体の列が形成された形態で、複数列の二次成形体を形成してもよい。例えば、前記工程で粉末成形体を切断加工した後、以下の(H1)又は(H2)の態様で粉末成形体を異なる高さ位置で切断加工してもよい。 It should be noted that the powder compacts are cut at different height positions, and a plurality of rows of secondary compacts formed adjacent to each other in the Y-axis direction are formed at intervals in the Z-axis direction. A row of secondary moldings may be formed. For example, after cutting the powder molded product in the above step, the powder molded product may be cut at different height positions in the following embodiment (H1) or (H2).

(H1)粉末成形体をZ軸方向に移動させ、粉末成形体の第1の切断終点部と異なる高さ位置を第2の切断開始部として粉末成形体をY軸方向に後退動させ、切断サイクルを逆方向に繰り返し、粉末成形体の第2の切断終点部に至るまで横方向に切断加工する
(H2)ワイヤーソーとの接触を回避して、粉末成形体をX軸方向、Y軸方向及びZ軸方向に移動させ、粉末成形体の第1の切断開始部側にワイヤーソーを位置(初期位置)させ、第1の切断開始部と異なる高さ位置を第2の切断開始部として、粉末成形体をY軸方向に前進動させ、切断サイクルを順方向に繰り返し、粉末成形体の第2の切断終点部に至るまで横方向に切断加工する
(H1) The powder molded body is moved in the Z-axis direction, and the powder molded body is retracted in the Y-axis direction at a height position different from the first cutting end point of the powder molded body as the second cutting start portion to cut. The cycle is repeated in the opposite direction, and the powder molded body is cut laterally up to the second cutting end point of the powder molded body. (H2) The powder molded body is cut in the X-axis direction and the Y-axis direction while avoiding contact with the wire saw. And by moving in the Z-axis direction, the wire saw is positioned (initial position) on the side of the first cutting start portion of the powder molded body, and the height position different from the first cutting start portion is set as the second cutting start portion. The powder molded body is moved forward in the Y-axis direction, the cutting cycle is repeated in the forward direction, and the powder molded body is cut laterally up to the second cutting end point of the powder molded body.

本発明は、さらに、前記方法で生成した二次成形体を焼結し、焼結体を製造する方法も包含する。この焼結体は超硬合金であってもよい。 The present invention further includes a method of manufacturing a sintered body by sintering a secondary molded product produced by the above method. This sintered body may be a cemented carbide.

なお、本明細書中、「X軸方向」は横方向、「Y軸方向」は奥行き方向、「Z軸方向」は高さ方向と同義に用いる。また、「粉末成形体」を、バインダーを除去した予備焼結体(又は仮焼結体)も含め、粉末圧縮成形体、一次成形体という場合があり、「粉末成形体」から切断又は切り出しなどにより生成した成形体を「二次成形体」といい、この「二次成形体」を予備成形体という場合がある。 In the present specification, the "X-axis direction" is used synonymously with the lateral direction, the "Y-axis direction" is used with the depth direction, and the "Z-axis direction" is used synonymously with the height direction. In addition, the "powder molded body" may be referred to as a powder compression molded body or a primary molded body, including a pre-sintered body (or a temporary sintered body) from which the binder has been removed, and may be cut or cut out from the "powder molded body". The molded product produced by the above is referred to as a "secondary molded product", and this "secondary molded product" may be referred to as a pre-molded product.

本発明では、ワイヤーソーを利用し、少なくとも横方向(X軸方向)に粉末成形体(一次成形体)を切断加工するため、切断した二次成形体が倒れることがなく、二次成形体を安定に製造でき、超硬合金などの所定の焼結体を効率よく製造できる。さらに、粉末成形体(一次成形体)をY−Z方向に移動可能であるため、粉末成形体から、非平板状(又は三次元立体形状)である二次成形体を効率よく切り出し(又は切断)できる。特に、一次成形体が柔らかく脆く、しかも二次成形体が薄肉及び/又は小径部を有していても、転倒や落下を防止しつつ、二次成形体を損傷することなく精度よく切り出し(又は切断)可能である。さらに、ワイヤーソーで切断加工するため、高い歩留まり及び生産性で二次成形体及び焼結体を製造可能である。さらには、切断加工により生成した切粉又は粉塵が未焼結体であるため、切粉又は粉塵を有効に再利用できる。 In the present invention, since the powder molded body (primary molded body) is cut at least in the lateral direction (X-axis direction) using a wire saw, the cut secondary molded body does not fall over, and the secondary molded body can be formed. It can be stably manufactured, and a predetermined sintered body such as cemented carbide can be efficiently manufactured. Further, since the powder molded body (primary molded body) can be moved in the YZ direction, a non-flat (or three-dimensional three-dimensional shape) secondary molded body is efficiently cut out (or cut) from the powder molded body. )it can. In particular, even if the primary molded body is soft and brittle and the secondary molded body has a thin wall and / or a small diameter portion, it is cut out (or accurately) without damaging the secondary molded body while preventing it from tipping over or falling. (Cut) is possible. Further, since it is cut with a wire saw, it is possible to manufacture a secondary molded product and a sintered body with high yield and productivity. Furthermore, since the chips or dust generated by the cutting process is an unsintered body, the chips or dust can be effectively reused.

図1は本発明のワイヤーソー装置を説明するための概略正面図である。FIG. 1 is a schematic front view for explaining the wire saw device of the present invention. 図2は図1に示す装置の概略側面図である。FIG. 2 is a schematic side view of the device shown in FIG. 図3は図1に示す装置による粉末成形体の切断状態を示す概略斜視図である。FIG. 3 is a schematic perspective view showing a cutting state of the powder molded product by the apparatus shown in FIG. 図4はワイヤーソーによる粉末成形体の切断軌跡を示す概略図である。FIG. 4 is a schematic view showing a cutting locus of a powder molded product by a wire saw. 図5はワイヤーソーによる粉末成形体の他の切断軌跡と保持部材とを示す概略図である。FIG. 5 is a schematic view showing another cutting locus of the powder molded product by the wire saw and the holding member.

以下、必要により添付図面を参照しつつ、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, if necessary.

図1〜3に示すワイヤーソー装置(加工装置)は、巻回されたワイヤーソー1を繰り出すための供給リール2と、このリールから繰り出されたワイヤーソーを巻き取るための巻き取りリール3と、供給リール2と巻き取りリール3との間に配設され、ワイヤーソー1をX軸方向(横方向)に案内するための一対の案内リール4,5とを備えており、一対の案内リール4,5と供給リール2及び巻き取りリール3との間には、それぞれガイドロール6a〜6dが配設されているとともに、巻き取りリール3側には、ワイヤーソー1の張力を調整するためのテンションプーリー7が配設されている。なお、一対の案内リール4,5間はワイヤーソー1がX軸方向(横方向)に走行可能な切断域を形成している。一対の案内リール4,5に隣接するガイドロール6a,6bは、テンションプーリーとして機能させてもよい。 The wire saw device (processing device) shown in FIGS. 1 to 3 includes a supply reel 2 for unwinding the wound wire saw 1, a take-up reel 3 for winding the wire saw unwound from the reel, and a winding reel 3. It is arranged between the supply reel 2 and the take-up reel 3, and includes a pair of guide reels 4 and 5 for guiding the wire saw 1 in the X-axis direction (lateral direction), and a pair of guide reels 4 Guide rolls 6a to 6d are arranged between the reels 2 and the take-up reels 3 and the guide rolls 6a to 6d, respectively, and a tension for adjusting the tension of the wire saw 1 is provided on the take-up reel 3 side. A pulley 7 is arranged. A cutting area is formed between the pair of guide reels 4 and 5 so that the wire saw 1 can travel in the X-axis direction (lateral direction). The guide rolls 6a and 6b adjacent to the pair of guide reels 4 and 5 may function as tension pulleys.

なお、供給リール2及び巻き取りリール3には、それぞれトラバース機構(図示せず)が設けられており、供給リール2から巻き取りリール3に向かって正回転方向(順方向)にワイヤーソー1が走行可能であるとともに、所定長さのワイヤーソー1を巻き取った後、巻き取りリール3から供給リール2に向かって逆回転方向(逆方向)にもワイヤーソー1が走行可能である。 The supply reel 2 and the take-up reel 3 are each provided with a traverse mechanism (not shown), and the wire saw 1 is provided in the forward rotation direction (forward direction) from the supply reel 2 toward the take-up reel 3. In addition to being able to travel, the wire saw 1 can also travel in the reverse rotation direction (reverse direction) from the winding reel 3 toward the supply reel 2 after winding the wire saw 1 having a predetermined length.

超硬合金粉末成形体10をワイヤーソー1で切断加工するため、前記粉末成形体10はテーブル(ワークテーブル)11に載置又は保持可能である。この例では、前記テーブル11には、粉末成形体10を前記テーブル11に位置決めするため保持部材12が配置されているとともに、テーブル11の周縁部(X軸及びY軸方向の端部)には、切粉を回収するための回収溝部13が形成されている。 Since the cemented carbide powder molded body 10 is cut by the wire saw 1, the powder molded body 10 can be placed or held on a table (work table) 11. In this example, the table 11 is provided with a holding member 12 for positioning the powder molded body 10 on the table 11, and is located on the peripheral edge of the table 11 (ends in the X-axis and Y-axis directions). , A recovery groove portion 13 for collecting chips is formed.

前記テーブル(ワークテーブル)11は、X軸方向(横方向)に走行可能なワイヤーソー1に対して、Y軸方向(奥行き方向)及びZ軸方向(上下方向)に移動可能である。すなわち、テーブル11と支持台15との間には、Y軸方向に延びるガイド部14が介在し、Y軸方向に進退動させるための進退動手段(図示せず)により、ガイド部14に沿ってテーブル11が移動可能である。また、前記支持台15を上下動可能な上下動手段(昇降手段)(図示せず)により、ワイヤーソー1に対して粉末成形体10をZ軸方向に上下動可能である。なお、この例では、支持台15にはY軸方向に沿って一対のレール部14a,14aが形成され、前記テーブル11の底面には、一対のレール部14a,14a間の走行路に配置可能であり、Y軸方向に延びる走行部14bが形成され、一対のレール部14a,14aと走行部14bとでガイド部14を形成している。 The table (work table) 11 is movable in the Y-axis direction (depth direction) and the Z-axis direction (vertical direction) with respect to the wire saw 1 that can travel in the X-axis direction (horizontal direction). That is, a guide portion 14 extending in the Y-axis direction is interposed between the table 11 and the support base 15, and is along the guide portion 14 by advancing / retreating means (not shown) for advancing / retreating in the Y-axis direction. The table 11 can be moved. Further, the powder molded body 10 can be moved up and down in the Z-axis direction with respect to the wire saw 1 by a vertical movement means (elevating means) (not shown) capable of moving the support base 15 up and down. In this example, a pair of rail portions 14a and 14a are formed on the support base 15 along the Y-axis direction, and can be arranged on the bottom surface of the table 11 in a traveling path between the pair of rail portions 14a and 14a. A traveling portion 14b extending in the Y-axis direction is formed, and the pair of rail portions 14a and 14a and the traveling portion 14b form a guide portion 14.

この例では、支持台15を介して、上下動手段を備えた上下動ユニットの上に、進退動手段を備えた進退動ユニットが配置された形態を有し、上下動ユニット及び進退動ユニットの動作を制御するための制御ユニット(数値制御(NC)装置)により、テーブル11に載置又は保持された粉末成形体10の移動度及び移動方向(Y軸方向及び/又はZ軸方向)を制御している。なお、制御ユニットでは、慣用の駆動ユニット(例えば、多軸同期制御可能なサーボモータ及び/又はシリンダなど)を利用し、変数として数値を入力して形状加工可能なプログラム(マクロプログラム)に従って、テーブル11の動作を制御してもよい。 In this example, the advance / retreat unit provided with the advance / retreat means is arranged on the vertically moving unit provided with the vertically moving means via the support base 15, and the vertically moving unit and the advancing / retreating unit are arranged. The mobility and movement direction (Y-axis direction and / or Z-axis direction) of the powder molded body 10 placed or held on the table 11 are controlled by a control unit (numerical control (NC) device) for controlling the operation. doing. In the control unit, a conventional drive unit (for example, a servomotor and / or a cylinder capable of multi-axis synchronous control) is used, and a numerical value is input as a variable to perform shape processing according to a program (macro program). The operation of 11 may be controlled.

さらに、前記装置は、ワイヤーソー1による粉末成形体10の切断に伴って生成する粉塵を除去するため、エアーを吹き付け可能なノズル16も備えており、飛散した粉塵を回収するためのダクト(又は集塵ユニット)(図示せず)も備えている。 Further, the apparatus also includes a nozzle 16 capable of blowing air in order to remove dust generated when the powder molded body 10 is cut by the wire saw 1, and a duct (or) for collecting scattered dust. It also has a dust collection unit) (not shown).

このような装置では、X軸方向(横方向)に走行するワイヤーソー1に対して、粉末成形体10をY軸方向(奥行き方向)及びZ軸方向(高さ方向)に移動できるため、加工液又は切削液を用いることなく、柔らかく脆い粉末成形体10から種々の形態の二次成形体を切り出すことができる。例えば、前記の例では、ワイヤーソー1を中心として、テーブル11をY軸方向に移動させる動作と、テーブル11を円弧状(又はリング状)にY−Z軸方向に移動させる動作とを繰り返すことにより、Y軸方向に複数の円柱状の二次成形体17を隣接させて切り出すことができる。しかも、切り出された二次成形体17は、円弧状切断部の受け面で支持されているため、損傷することなく、高い寸法精度で二次成形体17を製造できる。そのため、高い歩留まり及び生産性で二次成形体17を製造できる。しかも、ワイヤーソー1による切断で生成した粉塵を、ノズル16からのエアーで効率よく集塵ユニットに回収できるため、切粉による粉塵の飛散量が極めて少なく、切粉の飛散を著しく抑制できる。そのため、コバルトなどの特定化学物質を含む粉末成形体であっても、作業環境を大きく改善できる。また、集塵ユニット及び前記回収溝部13で回収した切粉を粉末成形体に有効に再利用することもできる。 In such a device, the powder molded body 10 can be moved in the Y-axis direction (depth direction) and the Z-axis direction (height direction) with respect to the wire saw 1 traveling in the X-axis direction (lateral direction). Various forms of secondary compacts can be cut out from the soft and brittle powder compact 10 without using a liquid or a cutting liquid. For example, in the above example, the operation of moving the table 11 in the Y-axis direction and the operation of moving the table 11 in an arc shape (or ring shape) in the YZ axis direction are repeated with the wire saw 1 as the center. As a result, a plurality of columnar secondary molded bodies 17 can be cut out adjacent to each other in the Y-axis direction. Moreover, since the cut out secondary molded body 17 is supported by the receiving surface of the arc-shaped cut portion, the secondary molded body 17 can be manufactured with high dimensional accuracy without being damaged. Therefore, the secondary molded product 17 can be manufactured with high yield and productivity. Moreover, since the dust generated by cutting with the wire saw 1 can be efficiently collected in the dust collecting unit by the air from the nozzle 16, the amount of dust scattered by the chips is extremely small, and the scattering of the chips can be remarkably suppressed. Therefore, even a powder molded product containing a specific chemical substance such as cobalt can greatly improve the working environment. Further, the chips collected by the dust collecting unit and the collecting groove portion 13 can be effectively reused for the powder molded product.

なお、ワイヤーソーの走行路の形態は特に制限されず、粉末成形体の切断域においてワイヤーソーがX軸方向(横方向)に走行可能であればよい。テンションプーリーは、巻き取りリール3側に限らず、ワイヤーソーの走行路の適所に配設でき、一対の案内リール4,5に隣接するガイドロール6a,6bをテンションプーリーとして機能させてもよい。 The form of the traveling path of the wire saw is not particularly limited, as long as the wire saw can travel in the X-axis direction (lateral direction) in the cutting region of the powder molded product. The tension pulley can be arranged not only on the take-up reel 3 side but also at an appropriate position on the traveling path of the wire saw, and the guide rolls 6a and 6b adjacent to the pair of guide reels 4 and 5 may function as the tension pulley.

なお、ワイヤーソーは、通常、ワイヤー芯線(本体)と、このワイヤー芯線に付着又は固着(電着)した砥粒(ダイヤモンド粒子、窒化ケイ素、アルミナなどの硬質砥粒)とで形成できる。ワイヤー芯線は、例えば、硬鋼線(ピアノ線)、ニッケル合金(Fe/Ni合金などの合金)、高融点金属(タングステン、モリブデンなど)、ナイロン(アラミド)繊維束などで形成してもよいが、通常、ピアノ線である場合が多い。ワイヤー芯線の平均径(線径)は特に制限されず、粉末成形体の種類、二次成形体の外形の精度などに応じて選択でき、例えば、0.01〜1mm、好ましくは0.05〜0.5mm(例えば、0.1〜0.3mm)、さらに好ましくは0.12〜0.25mm(例えば、0.15〜0.2mm)程度であってもよい。また、ワイヤーソーの平均線径は、例えば、0.1〜0.5mm、好ましくは0.15〜0.4mm、さらに好ましくは0.2〜0.3mm程度であってもよい。また、砥粒による研削を防止するため、プーリーやガイドロールのうち、ワイヤーソーとの接触部位(例えば、周面)は、例えば、ウレタンゴムやその発泡体などの軟質ゴム又は発泡体で被覆してもよい。 The wire saw can usually be formed of a wire core wire (main body) and abrasive grains (hard abrasive particles such as diamond particles, silicon nitride, and alumina) attached or fixed (electrodeposited) to the wire core wire. The wire core wire may be formed of, for example, a hard steel wire (piano wire), a nickel alloy (alloy such as Fe / Ni alloy), a refractory metal (tungsten, molybdenum, etc.), a nylon (aramid) fiber bundle, or the like. , Usually, it is often a piano wire. The average diameter (wire diameter) of the wire core wire is not particularly limited and can be selected according to the type of powder molded body, the accuracy of the outer shape of the secondary molded body, etc., for example, 0.01 to 1 mm, preferably 0.05 to. It may be about 0.5 mm (for example, 0.1 to 0.3 mm), more preferably about 0.12 to 0.25 mm (for example, 0.15 to 0.2 mm). The average wire diameter of the wire saw may be, for example, 0.1 to 0.5 mm, preferably 0.15 to 0.4 mm, and more preferably 0.2 to 0.3 mm. Further, in order to prevent grinding by abrasive grains, the contact portion (for example, the peripheral surface) with the wire saw in the pulley or guide roll is covered with a soft rubber or foam such as urethane rubber or its foam. You may.

ワイヤーソーのテンション(張力)は、粉末成形体及びワイヤー芯線の種類などに応じて選択でき、例えば、30〜70N、好ましくは35〜65N、さらに好ましくは40〜60N(例えば、45〜55N)程度であってもよい。 The tension of the wire saw can be selected according to the type of the powder molded body and the wire core wire, and is, for example, about 30 to 70 N, preferably 35 to 65 N, and more preferably 40 to 60 N (for example, 45 to 55 N). It may be.

なお、ワイヤーソーの正方向及び逆方向への往復走行(供給リール2の正回転方向及び逆回転方向)において、ワイヤーソーの芯線を少しずつ送り出し、ワイヤーソーのねじれを抑制してもよい。 In the reciprocating travel in the forward and reverse directions of the wire saw (forward rotation direction and reverse rotation direction of the supply reel 2), the core wire of the wire saw may be gradually fed out to suppress twisting of the wire saw.

超硬合金粉末成形体10などのように、自重が大きな粉末成形体では保持部材12は必ずしも必要ではない。また、保持部材12の形態は粉末成形体10と接触して粉末成形体10の移動を規制できる限り特に制限されず、テーブルに対して立設可能なピン状、板状又は角柱状などであってもよく、テーブルに対して横設可能な角柱状、枠状(コ字状など)などであってもよい。保持部材12は、テーブル11に対して固定又は仮固定可能な部材、例えば、金属などであってもよく、磁石などの脱着可能な手段で形成してもよい。 The holding member 12 is not always necessary for a powder molded body having a large weight, such as the cemented carbide powder molded body 10. Further, the form of the holding member 12 is not particularly limited as long as it can be in contact with the powder molded body 10 to regulate the movement of the powder molded body 10, and may be pin-shaped, plate-shaped, prismatic, or the like that can be erected on a table. It may be a prismatic shape or a frame shape (U-shaped or the like) that can be horizontally installed on the table. The holding member 12 may be a member that can be fixed or temporarily fixed to the table 11, for example, metal, or may be formed by a removable means such as a magnet.

また、回収溝部13は必ずしも必要ではない。また、切粉を回収するための回収溝部13は、テーブル11のX軸方向及び/又はY軸方向の端部に形成してもよい。 Further, the recovery groove portion 13 is not always necessary. Further, the collection groove portion 13 for collecting chips may be formed at the end portion of the table 11 in the X-axis direction and / or the Y-axis direction.

粉末成形体から所定の形態の二次成形体を切断又は切り出すため、ワイヤーソーと粉末成形体(又はテーブル)とは、所定の方向に相対的に移動可能であればよく、通常、ワイヤーソーに対して、Y軸方向及びZ軸方向のうち少なくともY軸方向(特にY−Z軸方向)に、粉末成形体(又はテーブル)が移動可能である場合が多い。特に、少なくともY軸方向に粉末成形体(又はテーブル)を移動させると、切断面で切断した二次成形体を支持できるため、安定かつ高い精度で二次成形体を製造できる。 In order to cut or cut out a secondary molded body having a predetermined form from the powder molded body, the wire saw and the powder molded body (or table) may be relatively movable in a predetermined direction, and are usually used in a wire saw. On the other hand, in many cases, the powder molded body (or table) can be moved in at least the Y-axis direction (particularly the Y-Z-axis direction) of the Y-axis direction and the Z-axis direction. In particular, when the powder molded body (or table) is moved at least in the Y-axis direction, the secondary molded body cut on the cut surface can be supported, so that the secondary molded body can be manufactured stably and with high accuracy.

なお、テーブルのY軸方向及びZ軸方向への移動には、ガイド機構(ガイド部)、シリンダ機構などが利用でき、これらの機構の駆動には、モータ類(ステッピングモーター、サーボモータなど)、油圧などが利用できる。また、少なくとも二軸同期制御可能(例えば、多軸同期制御可能)なモータ類を利用し、制御ユニットにより、所定のプログラムに従って、テーブルをY軸方向及びZ軸方向に移動させてもよい。プログラム制御により、種々の形状の二次成形体を製造でき、高い歩留まり及び生産性で二次成形体を製造できる。 A guide mechanism (guide unit), a cylinder mechanism, etc. can be used to move the table in the Y-axis direction and the Z-axis direction, and motors (stepping motor, servomotor, etc.) are used to drive these mechanisms. Hydraulic pressure etc. can be used. Further, at least two-axis synchronously controllable (for example, multi-axis synchronously controllable) motors may be used, and the table may be moved in the Y-axis direction and the Z-axis direction by the control unit according to a predetermined program. By program control, secondary molded bodies of various shapes can be manufactured, and secondary molded bodies can be manufactured with high yield and productivity.

テーブル11と支持台15との間に介在するガイド部の形態は特に制限されず、支持台15に形成されたレール部(Y軸方向に延びるV溝状レール部などのレール部)と、前記テーブル11に形成され、前記レール部に沿って走行可能な走行部(前記V溝に対応した形態を有し、Y軸方向に延びる走行部など)とで形成できる。 The form of the guide portion interposed between the table 11 and the support base 15 is not particularly limited, and the rail portion (rail portion such as the V-groove-shaped rail portion extending in the Y-axis direction) formed on the support base 15 and the above-mentioned It can be formed by a traveling portion formed on the table 11 and capable of traveling along the rail portion (a traveling portion having a form corresponding to the V groove and extending in the Y-axis direction, etc.).

粉末成形体(一次成形体)は、焼結されていないため、柔らかく脆いという特色がある。このような粉末成形体は、例えば、下記(a)(b)及び(c)から選択された少なくとも1つの特性(特に、全ての特性)を有している場合が多い。 Since the powder molded product (primary molded product) is not sintered, it is characterized by being soft and brittle. Such a powder molded product often has, for example, at least one property (particularly all properties) selected from the following (a), (b) and (c).

(a)JIS Z 2244に準じて荷重9.8Nで測定した硬度0.005〜1GPa(例えば、0.001〜0.1GPa(例えば、0.01〜0.7GPa)、好ましくは0.03〜0.5GPa、さらに好ましくは0.05〜0.3GPa(例えば、0.1〜0.3GPa))程度
(b)物理的方法(X軸、Y軸及びZ軸方向の寸法)により測定又は算出した容積と重量とに基づいて算出した密度2〜10g/cm(例えば、3〜10g/cm、好ましくは3〜9g/cm(例えば、5〜8g/cm)、さらに好ましくは6〜7.5g/cm)程度
(c)CIS(日本機械工具工業会(旧超硬工具協会)規格)026に規定する方法に準じて測定した抗折力0.1〜50MPa(例えば、0.5〜25MPa、好ましくは0.7〜10MPa(例えば、1〜5MPa)、さらに好ましくは1〜3MPa)程度であってもよい。
(A) Hardness 0.005 to 1 GPa (for example, 0.001 to 0.1 GPa (for example, 0.01 to 0.7 GPa), preferably 0.03 to 0.03 to 1 GPa) measured at a load of 9.8 N according to JIS Z 2244. About 0.5 GPa, more preferably 0.05 to 0.3 GPa (for example, 0.1 to 0.3 GPa)) (b) Measured or calculated by a physical method (dimensions in the X-axis, Y-axis and Z-axis directions) Density 2-10 g / cm 3 (eg 3-10 g / cm 3 , preferably 3-9 g / cm 3 (eg 5-8 g / cm 3 ), more preferably 6 calculated based on the volume and weight. ~ 7.5 g / cm 3 ) Approx. (C) CIS (Japan Machine Tool Manufacturers Association (former Carbide Tool Association) standard) 0.1 to 50 MPa (for example, 0) It may be about 5 to 25 MPa, preferably 0.7 to 10 MPa (for example, 1 to 5 MPa), and more preferably 1 to 3 MPa.

粉末成形体(一次成形体)の種類は特に制限されず、粉末冶金に供される焼結前の成形体(圧縮成形体)、例えば、セラミック粉末成形体(アルミナ、チタニア、ジルコニアなどの金属酸化物、窒化アルミニウム、窒化ホウ素などの金属窒化物などの金属ホウ化物、炭化ケイ素などの金属炭化物などの粉体の圧縮成形体など)、磁石粉末成形体(ネオジウムNd、プセセオシムPr、シスプロシウムDyなどの希土類元素を含む磁石粉末成形体など)、超硬合金粉末成形体などであってもよい。好ましい粉末成形体は、超硬合金粉末成形体である。 The type of powder molded body (primary molded body) is not particularly limited, and the molded body before sintering (compression molded body) used for powder metallurgy, for example, metal oxidation of ceramic powder molded body (alumina, titania, zirconia, etc.) Materials, metal nitrides such as metal nitrides such as aluminum nitride and boron nitride, compression moldings of powders such as metal carbides such as silicon carbide), magnet powder moldings (neodium Nd, pseudosim Pr, cisprosium Dy, etc.) It may be a magnet powder molded body containing a rare earth element), a cemented carbide powder molded body, or the like. A preferred powder molded product is a cemented carbide powder molded product.

このような超硬合金粉末成形体(一次成形体)は、通常、炭化タングステンWCと、焼結により液相を形成し、結合相を形成する成分(コバルトCo及び/又はニッケルNiなど)とを含んでおり、必要により、炭素源C(カーボンブラック、カーボンナノコイル、カーボンナノチューブなど)を含んでいてもよく、不可避的に混入する成分を含んでいてもよい。前記結合相は、例えば、周期表第IV族元素(チタンTi、ジルコニウムZrなど)、第V族元素(バナジウムV、ニオブNb、タンタルTaなど)、VI族元素(クロムCr、モリブデンMo、タングステンWなど)、第VII族元素(マンガンMn、レニウムReなど)などを含んでいてもよい。好ましい結合相は少なくともコバルトを含んでいてもよい。 Such a cemented carbide powder molded product (primary molded product) usually contains tungsten carbide WC and components (cobalt Co and / or nickel Ni, etc.) that form a liquid phase by sintering and form a bonded phase. It contains, and if necessary, carbon source C (carbon black, carbon nanocoil, carbon nanotube, etc.) may be contained, or a component that is inevitably mixed may be contained. The bonded phase includes, for example, Group IV elements (titanium Ti, zirconium Zr, etc.), Group V elements (vanadium V, niobium Nb, tantalum Ta, etc.), Group VI elements (chromium Cr, molybdenum Mo, tungsten W, etc.). Etc.), Group VII elements (manganese Mn, renium Re, etc.) and the like may be contained. The preferred binding phase may contain at least cobalt.

これらの成分は、粉粒状の形態を有している。炭化タングステンWCの平均粒子径は、例えば、0.1〜15μm(例えば、0.12〜12μm、好ましくは0.2〜10μm)程度であってもよく、コバルトCo及び/又はニッケルNiの平均粒子径は、溶融して結合相を形成するため、特に制限されず、例えば、0.1〜5μm(例えば、0.5〜3μm、好ましくは1〜2.5μm)程度であってもよい。また、コバルトCo及び/又はニッケルNiの割合は、超硬合金成分全体100重量部に対して、0〜40重量部、好ましくは0.5〜35重量部、さらに好ましくは1〜30重量部程度であってもよい。 These components have a powdery granular form. The average particle size of tungsten carbide WC may be, for example, about 0.1 to 15 μm (for example, 0.12 to 12 μm, preferably 0.2 to 10 μm), and the average particles of cobalt Co and / or nickel Ni. The diameter is not particularly limited because it melts to form a bonded phase, and may be, for example, about 0.1 to 5 μm (for example, 0.5 to 3 μm, preferably 1 to 2.5 μm). The ratio of cobalt Co and / or nickel Ni to 100 parts by weight of the entire cemented carbide component is 0 to 40 parts by weight, preferably 0.5 to 35 parts by weight, and more preferably about 1 to 30 parts by weight. It may be.

バナジウムV及び/又はクロムCrの平均粒子径は、前記結合相に固溶するため、特に制限されず、例えば、0.1〜5μm(例えば、0.5〜3μm、好ましくは1〜2.5μm)程度であってもよい。周期表第IV族元素〜第VII族元素(バナジウムV及び/又はクロムCrなど)の割合は、超硬合金成分全体100重量部に対して、0〜5重量部、好ましくは0.1〜3重量部、さらに好ましくは0.2〜2重量部程度であってもよい。 The average particle size of vanadium V and / or chromium Cr is not particularly limited because it dissolves in the bonded phase, and is, for example, 0.1 to 5 μm (for example, 0.5 to 3 μm, preferably 1 to 2.5 μm). ) May be the case. Periodic Table The ratio of Group IV to Group VII elements (vanadium V and / or chromium Cr, etc.) is 0 to 5 parts by weight, preferably 0.1 to 3 parts by weight, based on 100 parts by weight of the entire superhard alloy component. It may be about 0.2 to 2 parts by weight, more preferably 0.2 to 2 parts by weight.

このような成分は、粉粒状の形態で、バインダー、特に加熱により除去可能なバインダー、例えば、パラフィン、ワックス又はロウなどの直鎖状又は分岐鎖状脂肪族炭化水素類、ポリエチレングリコールなどと、必要により、エタノールなどのアルコール類及び/又はベンジン類を添加して混合・乾燥し、圧縮成形してもよい。バインダーの割合は、粉粒体100重量部に対して0〜20重量部、好ましくは0.1〜10重量部(例えば、0.2〜7重量部)程度であってもよい。 Such components are required in powdery granular form with binders, especially binders that can be removed by heating, such as linear or branched aliphatic hydrocarbons such as paraffin, wax or wax, polyethylene glycol and the like. Therefore, alcohols such as ethanol and / or benzines may be added, mixed and dried, and compression-molded. The ratio of the binder may be about 0 to 20 parts by weight, preferably 0.1 to 10 parts by weight (for example, 0.2 to 7 parts by weight) with respect to 100 parts by weight of the powder or granular material.

このような混合物(粉末状混合物)を、圧縮成形することにより、前記粉末成形体(一次成形体)を調製できる。前記混合物の成形圧は、例えば、50〜200MPa、好ましくは75〜150MPa程度であってもよい。 The powder molded product (primary molded product) can be prepared by compression molding such a mixture (powdered mixture). The molding pressure of the mixture may be, for example, about 50 to 200 MPa, preferably about 75 to 150 MPa.

このような圧縮成形体(粉末成形体)は、前記バインダーを含んでいてもよく、例えば、常圧又は減圧下、100〜1000℃(好ましくは300〜900℃、さらに好ましくは500〜800℃)程度で加熱して前記バインダーを除去し、バインダーを含まない粉末成形体(予備焼結体(又は仮焼結体))を調製してもよい。このような予備焼結体(又は仮焼結体)の表面の硬度は、未焼結体に比べて、若干大きくてもよい。 Such a compression molded product (powder molded product) may contain the binder, for example, under normal pressure or reduced pressure, 100 to 1000 ° C. (preferably 300 to 900 ° C., more preferably 500 to 800 ° C.). The binder may be removed by heating to a degree to prepare a powder molded product (pre-sintered product (or temporary sintered body)) containing no binder. The hardness of the surface of such a pre-sintered body (or a temporary sintered body) may be slightly larger than that of the unsintered body.

一次成形体(粉末成形体)は、肉厚状又はブロック状成形体である場合が多い。 The primary molded body (powder molded body) is often a thick-walled or block-shaped molded body.

本発明の方法では、ワイヤーソーをX軸方向に走行させ、このワイヤーソーに対して、テーブルに載置又は保持した粉末成形体(一次成形体)を、Y軸方向及びZ軸方向のうち少なくともY軸方向に相対的に移動させ、粉末成形体を切断して二次成形体を製造できる。二次成形体の形態は特に制限されず、例えば、シート又はプレート状などの二次元形状であってもよく、ピン状又は棒状若しくは柱状(角柱状、丸棒状など)、断面無定形状の三次元立体形状などであってもよく、同一又は異なる所定断面形状部が連なった形態(ブロック部(角柱部、丸棒部など)が薄肉部で連なった形態、例えば、数珠状の形態など)などであってもよい。 In the method of the present invention, the wire saw is run in the X-axis direction, and the powder molded body (primary molded body) placed or held on the table is placed on or held on the table with respect to the wire saw at least in the Y-axis direction and the Z-axis direction. It can be moved relatively in the Y-axis direction to cut the powder molded product to produce a secondary molded product. The form of the secondary molded body is not particularly limited, and may be, for example, a two-dimensional shape such as a sheet or a plate, and a pin-shaped or rod-shaped or columnar (square columnar, round bar-shaped, etc.) or tertiary shape having an indefinite cross section. It may have an original three-dimensional shape, or a form in which the same or different predetermined cross-sectional shape portions are connected (a form in which block portions (prisms, round bars, etc.) are connected in a thin-walled portion, for example, a beaded shape), etc. It may be.

例えば、粉末成形体(又はテーブル)をY軸方向に移動させて粉末成形体の一方の端面から他方の端面までスライス(切断)すると、ワイヤーソーの径が小さいため、極めて厚みの薄いシート状又はプレート状の二次成形体を製造できる。しかも、テーブルを+Y軸方向(前進方向)に移動させて一方の端面から他方の端面まで粉末成形体をスライス(切断)し、テーブルの高さ位置を変えて(Z軸方向に移動させ)、テーブルを−Y軸方向(後退方向)に移動させて他方の端面から一方の端面まで粉末成形体をスライス(切断)する操作を繰り返し、高さ方向(Z軸方向)の位置を変えて粉末成形体を横方向(Y軸方向)にスライスすると、極めて厚みが小さくても、スライスした二次成形体を積み重ね状態で平面的に支持できるため、安定かつ高い精度で二次成形体を高い生産性及び歩留まりで製造できる。例えば、従来では、工具幅(厚み)が0.7〜1mm程度と大きいため、厚み1.5mm程度のプレート状二次成形体しか製造できなかったものの、本発明では、厚み0.2〜0.6mm(例えば、0.3〜0.5mm)程度のプレート状二次成形体であっても、安定にしかも積み重ね状態で製造でき、二次成形体の生産性及び歩留まりを飛躍的に向上できる。 For example, when a powder compact (or table) is moved in the Y-axis direction and sliced (cut) from one end face to the other end face of the powder compact, the diameter of the wire saw is small, so that it is in the form of an extremely thin sheet or A plate-shaped secondary molded product can be manufactured. Moreover, the table is moved in the + Y-axis direction (forward direction) to slice (cut) the powder molded body from one end face to the other end face, and the height position of the table is changed (moved in the Z-axis direction). The operation of slicing (cutting) the powder molded body from the other end face to one end face by moving the table in the −Y axis direction (backward direction) is repeated, and the position in the height direction (Z axis direction) is changed for powder molding. When the body is sliced in the lateral direction (Y-axis direction), the sliced secondary compacts can be supported in a plane in a stacked state even if the thickness is extremely small, so that the secondary compacts can be stably and highly accurately supported with high productivity. And can be manufactured by yield. For example, in the past, since the tool width (thickness) was as large as about 0.7 to 1 mm, only a plate-shaped secondary molded product having a thickness of about 1.5 mm could be manufactured, but in the present invention, the thickness is 0.2 to 0. Even a plate-shaped secondary molded product of about 0.6 mm (for example, 0.3 to 0.5 mm) can be manufactured stably and in a stacked state, and the productivity and yield of the secondary molded product can be dramatically improved. ..

なお、テーブルのY軸方向の移動及びZ軸方向の移動を1つの切断サイクル(1スライスサイクル)としたとき、このサイクルは、少なくとも1回(好ましくは複数回)繰り返すことができ、前記サイクルを複数回に亘り繰り返す場合、例えば、テーブルの+Y軸方向の移動、Z軸方向の移動、及び−Y軸方向の移動を利用してもよい。 When the movement of the table in the Y-axis direction and the movement in the Z-axis direction are regarded as one cutting cycle (1 slice cycle), this cycle can be repeated at least once (preferably a plurality of times), and the cycle can be repeated. When repeating a plurality of times, for example, the movement of the table in the + Y-axis direction, the movement in the Z-axis direction, and the movement in the −Y-axis direction may be used.

なお、プレス成形により薄肉シートを形成することも考えられる。しかし、プレス成形において、薄く均一な粉粒体の層を金型に形成することは至難の業であるだけでなく、脆く柔らかな薄肉シートを調製するには限界がある。これに対して、本発明では、粉末成形体(例えば、未焼結の一次成形体)が脆く柔らかであっても、薄物の二次成形体を容易に作製できる。 It is also conceivable to form a thin-walled sheet by press molding. However, in press molding, it is extremely difficult to form a thin and uniform layer of powder or granular material in a mold, and there is a limit in preparing a brittle and soft thin-walled sheet. On the other hand, in the present invention, even if the powder molded product (for example, an unsintered primary molded product) is brittle and soft, a thin secondary molded product can be easily produced.

ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体をY軸方向及びZ軸方向に移動させることにより、非平板状(又は三次元立体形状)の二次成形体を切り出すことができる。例えば、粉末成形体をY軸方向及びZ軸方向に移動させ、二次成形体を規則性のない切断軌跡の形態、例えば、波形状又は屈曲状など形態で切断加工すると、互いに嵌合又は装着可能な合わせ面を有する一対の二次成形体を得ることもできる。 By moving the powder molded body placed or held on the table with respect to the wire saw in the Y-axis direction and the Z-axis direction, a non-flat (or three-dimensional three-dimensional shape) secondary molded body can be cut out. .. For example, when the powder compact is moved in the Y-axis direction and the Z-axis direction and the secondary compact is cut in the form of a non-regular cutting locus, for example, a wavy shape or a bent shape, they are fitted or attached to each other. It is also possible to obtain a pair of secondary molded articles having possible mating surfaces.

さらに、粉末成形体(又はテーブル)をY軸方向及びZ軸方向に移動させ、連続した形態(一筆書きの形態)のワイヤーソーによる切断軌跡で複数の二次成形体を切り出してもよい。すなわち、粉末成形体(又はテーブル)をY軸方向及びZ軸方向に移動させることにより、1つの粉末成形体から、種々の断面形状の二次成形体を規則的又は非規則的に切り出し又は製造できるとともに、1つの粉末成形体から、異なる断面形状(又は厚み)の二次成形体を規則的又は非規則的に切り出すこともできる。より具体的には、テーブルをY軸方向及びZ軸方向に移動させることにより、粉末成形体から、径の大小に拘わらず、棒状又は柱状体(角棒、丸棒など)などを切り出すことができる。特に、極細状の棒体(丸棒など)、例えば、直径0.5〜1.5mmΦ(例えば、0.5〜1mmΦ)程度の棒体も切り出すことができる。このような二次成形体の調製においても、二次成形体が粉末成形体の切断部で支持されているため、落下を防止しつつ、損傷することがない。 Further, the powder compact (or table) may be moved in the Y-axis direction and the Z-axis direction, and a plurality of secondary compacts may be cut out by a cutting locus with a wire saw in a continuous form (one-stroke form). That is, by moving the powder molded product (or table) in the Y-axis direction and the Z-axis direction, secondary molded products having various cross-sectional shapes are regularly or irregularly cut out or manufactured from one powder molded product. At the same time, secondary molded bodies having different cross-sectional shapes (or thicknesses) can be cut out regularly or irregularly from one powder molded product. More specifically, by moving the table in the Y-axis direction and the Z-axis direction, a rod-shaped or columnar body (square bar, round bar, etc.) can be cut out from the powder molded body regardless of the diameter. it can. In particular, an ultrafine rod (such as a round rod), for example, a rod having a diameter of about 0.5 to 1.5 mmΦ (for example, 0.5 to 1 mmΦ) can be cut out. Even in the preparation of such a secondary molded product, since the secondary molded product is supported by the cut portion of the powder molded product, it is not damaged while being prevented from falling.

さらに、ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体をY軸方向及びZ軸方向に移動させ、複数の三次元立体形状の二次成形体を規則的又は非規則的にY軸方向及び/又はZ軸方向に隣接させて切り出すこともできる。このような方向に隣接する二次成形体の形態は同一又は異なっていてもよい。 Further, the powder molded body placed or held on the table is moved to the wire saw in the Y-axis direction and the Z-axis direction, and a plurality of three-dimensional three-dimensional shaped secondary molded bodies are regularly or irregularly Y-shaped. It can also be cut out adjacent to the axial direction and / or the Z-axis direction. The morphology of the secondary compacts adjacent in such a direction may be the same or different.

Y軸方向に隣接する二次成形体は、例えば、下記の第1の横方向切断工程(1)、立体切断工程(2)、繰返し工程(3)及び分離回収工程(4)とを含む方法により粉末成形体から切り出すことができる。 The secondary molded product adjacent to the Y-axis direction includes, for example, the following first lateral cutting step (1), three-dimensional cutting step (2), repeating step (3), and separation and recovery step (4). Can be cut out from the powder molded product.

(1)ワイヤーソーに対して、粉末成形体を少なくともY軸方向に移動又は前進動させて粉末成形体の第1の切断開始部から所定の第1の基点にまで粉末成形体を切断する第1の横方向切断工程(例えば、所定の深さにまで少なくとも横方向に切断加工する工程)
(2)第1の基点を基点として(又は第1の基点への切断部の到達に応答して)、粉末成形体をY軸方向及びZ軸方向に移動させ(例えば、少なくともY軸方向に前進動させつつY軸方向及びZ軸方向に移動させ)、二次成形体の断面外形線(断面形状)の少なくとも一部の外形線に対応する切断軌跡で粉末成形体を切断加工するための立体切断工程
(3)第1の横方向切断工程と立体切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体を少なくともY軸方向に前進動させつつ、Y軸方向に繰り返し、少なくとも前記第1の基点に戻る複数の切断軌跡(複数の閉じた軌跡又はループ状軌跡)を形成して、複数の二次成形体をY軸方向に隣接させて粉末成形体を切断加工するための繰返し工程
(4)最終切断サイクルの立体切断工程の後、二次成形体を分離回収する工程。
(1) With respect to the wire saw, the powder compact is moved or moved forward at least in the Y-axis direction to cut the powder compact from the first cutting start portion of the powder compact to a predetermined first base point. 1 lateral cutting step (for example, a step of cutting at least laterally to a predetermined depth)
(2) With the first base point as the base point (or in response to the arrival of the cut portion at the first base point), the powder compact is moved in the Y-axis direction and the Z-axis direction (for example, at least in the Y-axis direction). (Move in the Y-axis direction and the Z-axis direction while moving forward), for cutting the powder molded body with a cutting locus corresponding to at least a part of the cross-sectional outline (cross-sectional shape) of the secondary molded body. Three-dimensional cutting step (3) The first lateral cutting step and the three-dimensional cutting step are regarded as one cutting cycle, and this cutting cycle is repeated in the Y-axis direction while moving the powder molded body forward at least in the Y-axis direction. To form a plurality of cutting loci (plural closed loci or loop loci) returning to at least the first base point, and to cut the powder molded body by adjoining the plurality of secondary molded bodies in the Y-axis direction. (4) A step of separating and recovering the secondary molded body after the three-dimensional cutting step of the final cutting cycle.

特に、粉末成形体をY軸方向に移動(前進及び/又は後退動)させるとともにZ軸方向に移動(上昇及び/又は下降)させながら、一筆書きの要領でワイヤーソーによる閉じた切断軌跡(複数の閉じた軌跡又はループ状軌跡)を形成すると、粉末成形体から二次成形体を効率よく切り出すことができる。なお、二次成形体の断面形状に対応して、ワイヤーソーを基準(又は中心)として粉末成形体をY軸方向及びZ軸方向に移動させることにより、二次成形体を形成できる。 In particular, while moving the powder compact in the Y-axis direction (forward and / or backward movement) and moving in the Z-axis direction (up and / or down), a closed cutting locus (plural) with a wire saw in the manner of a single stroke. By forming a closed locus or a loop-shaped locus), the secondary molded body can be efficiently cut out from the powder molded body. The secondary molded body can be formed by moving the powder molded body in the Y-axis direction and the Z-axis direction with the wire saw as a reference (or center) according to the cross-sectional shape of the secondary molded body.

以下に、添付図面を参照して前記装置の動作及び切断方法(又は切り出し方法)について詳細に説明する。なお、図4では、丸棒状(断面円形状)の二次成形体を切り出す例を示している。図4(a)では、以下の態様(A)で複数の三次元立体形状の二次成形体をY軸方向に隣接させて切り出している。 Hereinafter, the operation of the apparatus and the cutting method (or cutting method) will be described in detail with reference to the attached drawings. Note that FIG. 4 shows an example of cutting out a secondary molded body having a round bar shape (circular cross section). In FIG. 4A, a plurality of three-dimensional three-dimensional shaped secondary molded bodies are cut out adjacent to each other in the Y-axis direction in the following aspect (A).

態様(A)の方法は、(1a)実線で示されるように、ワイヤーソーに対して、粉末成形体10をY軸方向に前進動(+Y軸方向に移動)させて粉末成形体の第1の切断開始部21から所定の第1の基点22にまで粉末成形体10を横方向に切断加工する第1の横方向切断工程と、
(2a)第1の基点22へのワイヤーソーの切断部の到達の後、粉末成形体10をY軸方向に前進動させつつY軸方向及びZ軸方向に移動させ、二次成形体27の断面外形線(断面形状)に対応し、かつY軸方向において前記第1の基点22に対して対向する所定の第2の基点23に至る切断軌跡(この例では、第1の半円弧状軌跡)24で粉末成形体10を切断加工する第1の半閉じ状(又は半ループ状)切断工程と、
(3a)前記(1a)第1の横方向切断工程と(2a)第1の半閉じ状半ループ状切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体10をY軸方向に前進動させつつY軸方向に繰り返す第1の繰返し工程(前進方向繰り返し工程)と、
(4a)最終切断サイクルの(2a)第1の半閉じ状(半ループ状)切断工程で第2の基点23に到達した後、粉末成形体10をY軸方向に前進動させて、粉末成形体10の第1の切断終点部25に至るまで粉末成形体10を横方向に切断加工する第2の横方向切断工程とを備えている。
In the method of aspect (A), as shown by the solid line (1a), the powder molded body 10 is moved forward (moved in the + Y-axis direction) in the Y-axis direction with respect to the wire saw to make the first powder molded body. The first lateral cutting step of cutting the powder compact 10 in the lateral direction from the cutting start portion 21 to the predetermined first base point 22.
(2a) After the cut portion of the wire saw reaches the first base point 22, the powder molded body 10 is moved forward in the Y-axis direction and moved in the Y-axis direction and the Z-axis direction to move the secondary molded body 27. A cutting locus corresponding to the cross-sectional outline (cross-sectional shape) and reaching a predetermined second base point 23 facing the first base point 22 in the Y-axis direction (in this example, a first semi-arc-shaped locus). ) 24, the first semi-closed (or semi-looped) cutting step of cutting the powder compact 10
(3a) The (1a) first lateral cutting step and (2a) first semi-closed semi-loop cutting step are regarded as one cutting cycle, and this cutting cycle is used for the powder molded body 10 in the Y-axis direction. The first repeating process (advancing direction repeating process) that repeats in the Y-axis direction while moving forward
(4a) After reaching the second base point 23 in the (2a) first semi-closed (semi-loop) cutting step of the final cutting cycle, the powder compact 10 is moved forward in the Y-axis direction to perform powder molding. It includes a second lateral cutting step of cutting the powder molded body 10 in the lateral direction up to the first cutting end point 25 of the body 10.

このような工程により、半閉じ状(又は半ループ状)の切断軌跡をY軸方向に隣接して形成できる(この例では、平坦な軌跡部を介して、第1の半円弧状がY軸方向に隣接した切断軌跡を形成している)。 By such a step, a semi-closed (or semi-looped) cutting locus can be formed adjacent to the Y-axis direction (in this example, the first semi-arc shape is the Y-axis via a flat locus portion). It forms a cutting locus adjacent to the direction).

さらに、このような工程の後、粉末成形体10をY軸方向に後退動させて、上記とは逆方向に半閉じ状(又は半ループ状)の切断軌跡を形成する工程を繰り返すことにより、複数の二次成形体27が切り出された形態の切断軌跡を形成できる。すなわち、
(5a)破線で示されるように、第2の横方向切断工程の後、粉末成形体10をY軸方向に後退動(−Y軸方向に移動)させて、第2の横方向切断工程の切断軌跡に沿って切断部を第2の基点23に移動させる工程と、
(6a)切断部が第2の基点23に到達した後、粉末成形体10をY軸方向に後退動させつつY軸方向及びZ軸方向に移動させ、二次成形体27の断面外形線に対応し、かつ第2の基点23から第1の基点22に戻る切断軌跡(この例では、前記第1の半円弧状軌跡と連なり、閉じループ状軌跡を形成する第2の半円弧状で軌跡)26で粉末成形体10を切断加工する第2の半閉じ状(半ループ状)切断工程と、
(7a)(4a)第2の横方向切断工程と(6a)第2の半閉じ状半ループ状切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体10をY軸方向に後進動させつつ繰り返す第2の繰返し工程(後退方向繰り返し工程)と、
(8a)最終切断サイクルの(6a)第2の半閉じ状半ループ状切断工程で第1の基点22に到達した後、粉末成形体10をY軸方向に後進動させて、第1の横方向切断工程の切断軌跡に沿って(粉末成形体10の第1の切断開始部に至るまで)粉末成形体10を横方向に移動させる工程とにより、複数の二次成形体27がY軸方向に隣接して切り出された粉末成形体10を形成できる。
Further, after such a step, the powder molded body 10 is retracted in the Y-axis direction to form a semi-closed (or semi-looped) cutting locus in the direction opposite to the above, by repeating the step. It is possible to form a cutting locus in which a plurality of secondary molded bodies 27 are cut out. That is,
(5a) As shown by the broken line, after the second lateral cutting step, the powder molded body 10 is moved backward (moved in the −Y axis direction) in the Y-axis direction to perform the second lateral cutting step. The process of moving the cut portion to the second base point 23 along the cut locus, and
(6a) After the cut portion reaches the second base point 23, the powder molded body 10 is moved in the Y-axis direction and the Z-axis direction while retreating in the Y-axis direction to form the cross-sectional outline of the secondary molded body 27. A cutting locus that corresponds and returns from the second base point 23 to the first base point 22 (in this example, a second semicircular locus that is continuous with the first semicircular locus and forms a closed loop locus). ) 26, a second semi-closed (semi-loop) cutting step of cutting the powder molded body 10 and
(7a) (4a) The second lateral cutting step and (6a) the second semi-closed semi-loop cutting step are regarded as one cutting cycle, and this cutting cycle is performed by moving the powder compact 10 in the Y-axis direction. A second repeating process (reverse direction repeating process) that repeats while moving backward,
(8a) After reaching the first base point 22 in the (6a) second semi-closed semi-loop cutting step of the final cutting cycle, the powder compact 10 is moved backward in the Y-axis direction to perform the first lateral movement. By the step of moving the powder compact 10 laterally along the cutting locus of the directional cutting step (up to the first cutting start portion of the powder compact 10), the plurality of secondary compacts 27 are moved in the Y-axis direction. The powder molded body 10 cut out adjacent to the can be formed.

(9a)このような工程を経て、二次成形体27がY軸方向に隣接して形成でき、粉末成形体10を切断面に沿って分離する分離工程により、損傷させることなく、二次成形体を分離回収できる。 (9a) Through such a step, the secondary molded body 27 can be formed adjacent to each other in the Y-axis direction, and the secondary molded body 10 is separated along the cut surface by the separation step, which is secondary molding without damage. The body can be separated and recovered.

なお、前記第1の横方向切断工程(1a)は第1の横方向切断工程(1)に対応し、第1の半閉じ状切断工程(2a)は立体切断工程(2)に対応し、第1の繰返し工程(3a)、第2の横方向切断工程(4a)、移動工程(5a)、第2の半閉じ状切断工程(6a)、第2の繰返し工程(7a)及び移動工程(8a)は繰返し工程(3)に対応し、(9a)分離工程は分離回収工程(4)に対応する。 The first lateral cutting step (1a) corresponds to the first lateral cutting step (1), and the first semi-closed cutting step (2a) corresponds to the three-dimensional cutting step (2). First repeating step (3a), second lateral cutting step (4a), moving step (5a), second semi-closed cutting step (6a), second repeating step (7a) and moving step ( 8a) corresponds to the repeating step (3), and (9a) the separating step corresponds to the separation and recovery step (4).

なお、態様(A)では、第1の基点22と第2の基点23とを結ぶ基準線を中心として、粉末成形体10のY軸方向の前進動に伴って、一方の側(上側)に凸型(山形状)の形態で半閉じ状の第1の切断軌跡を隣接させて形成し、粉末成形体10のY軸方向の後退動に伴って、他方の側(下側)に凹型(谷状)の形態で半閉じ状の第2の切断軌跡を隣接させて形成し、第1の切断軌跡と第2の切断軌跡とでループ状の閉じた切断軌跡を形成しているが、閉じた切断軌跡の形成方法は特に制限されない。 In the aspect (A), the powder molded body 10 is moved forward on one side (upper side) with the forward movement of the powder molded body 10 in the Y-axis direction about the reference line connecting the first base point 22 and the second base point 23. A semi-closed first cutting locus is formed adjacent to each other in a convex (mountain-shaped) form, and a concave shape (lower side) is formed on the other side (lower side) as the powder molded body 10 moves backward in the Y-axis direction. A semi-closed second cutting locus is formed adjacent to each other in the form of a valley), and a loop-shaped closed cutting locus is formed by the first cutting locus and the second cutting locus. The method of forming the cutting locus is not particularly limited.

図4(b)に示す態様(B)では、第1の基点22と第2の基点23とを結ぶ基準線を中心として、粉末成形体10のY軸方向の前進動に伴って、実線で示されるように、双方の側(上側及び下側)に波形(サインカーブ)の形態で半閉じ状の第1の切断軌跡24を隣接させて形成し、粉末成形体10のY軸方向の後退動に伴って、破線で示されるように、双方の側(上側及び下側)に波形(サインカーブ)の形態で半閉じ状の第2の切断軌跡26を隣接させて形成し、第1の切断軌跡と第2の切断軌跡とでループ状の閉じた切断軌跡を形成している。 In the aspect (B) shown in FIG. 4 (b), the solid line is drawn with the forward movement of the powder molded body 10 in the Y-axis direction about the reference line connecting the first base point 22 and the second base point 23. As shown, a semi-closed first cutting locus 24 is formed adjacent to each other on both sides (upper and lower sides) in the form of a waveform (sine curve), and the powder molded body 10 recedes in the Y-axis direction. Along with the movement, as shown by the broken line, a semi-closed second cutting locus 26 is formed adjacent to each other in the form of a waveform (sine curve) on both sides (upper side and lower side), and the first A loop-shaped closed cutting locus is formed by the cutting locus and the second cutting locus.

なお、二次成形体は粉末成形体10のY軸方向の往復動により形成する必要はなく、粉末成形体10をY軸方向に前進動又は後退動させることにより形成してもよい。 The secondary molded body does not have to be formed by reciprocating the powder molded body 10 in the Y-axis direction, and may be formed by moving the powder molded body 10 forward or backward in the Y-axis direction.

図4(c)では、以下の態様(C)で複数の三次元立体形状の二次成形体をY軸方向に隣接させて切り出している。すなわち、態様(C)の方法は、(1b)ワイヤーソーに対して、粉末成形体10をY軸方向に前進動(+Y軸方向に移動)させて第1の切断開始部21から所定の第1の基点22にまで粉末成形体10を横方向に切断加工する第1の横方向切断工程と、
(2b)第1の基点22へのワイヤーソーの切断部の到達の後(又は到達に応答して)、粉末成形体10をY軸方向に前進動及び後退動させつつY軸方向及びZ軸方向に移動させ、二次成形体10の断面外形線(断面形状)に対応し、かつ前記第1の基点22に戻る閉じ形態の切断軌跡33で粉末成形体10を切断加工する閉じ状(ループ状)切断工程と、
(3b)(1b)第1の横方向切断工程と(2b)閉じ状(ループ状)切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体10をY軸方向に前進動させつつY軸方向に繰り返す繰返し工程と、
(4b)最終切断サイクルの(2b)閉じ状(ループ状)切断工程で第1の基点22に到達した後、粉末成形体10をY軸方向に前進動させて、粉末成形体10の第1の切断終点部25に至るまで粉末成形体10を横方向に切断加工する第2の横方向切断工程とを含んでいる。
In FIG. 4C, a plurality of three-dimensional three-dimensional shaped secondary molded bodies are cut out adjacent to each other in the Y-axis direction in the following aspect (C). That is, in the method of aspect (C), the powder molded body 10 is moved forward (moved in the + Y-axis direction) in the Y-axis direction with respect to the wire saw (1b), and a predetermined first cutting start portion 21 is used. The first lateral cutting step of cutting the powder compact 10 laterally up to the base point 22 of 1 and
(2b) After (or in response to) the arrival of the cut portion of the wire saw to the first base point 22, the powder compact 10 is moved forward and backward in the Y-axis direction while moving forward and backward in the Y-axis direction and the Z-axis. A closed shape (loop) that cuts the powder molded body 10 with a closed form cutting locus 33 that moves in the direction, corresponds to the cross-sectional outline (cross-sectional shape) of the secondary molded body 10, and returns to the first base point 22. Shape) Cutting process and
(3b) (1b) The first lateral cutting step and (2b) closed (loop-shaped) cutting step are regarded as one cutting cycle, and this cutting cycle moves the powder molded body 10 forward in the Y-axis direction. While repeating the process repeating in the Y-axis direction,
(4b) After reaching the first base point 22 in the (2b) closed (loop-shaped) cutting step of the final cutting cycle, the powder compact 10 is moved forward in the Y-axis direction to move the powder compact 10 forward to the first powder compact 10. It includes a second lateral cutting step of cutting the powder molded body 10 in the lateral direction up to the cutting end point portion 25 of the above.

なお、第2の横方向切断工程(4b)は分離回収工程(4)に含まれ、この分離回収工程(4)では、Y軸方向に隣接して形成された二次成形体27を粉末成形体10から抜き出すことにより、回収できる。 The second lateral cutting step (4b) is included in the separation / recovery step (4), and in this separation / recovery step (4), the secondary molded body 27 formed adjacent to the Y-axis direction is powder-molded. It can be recovered by extracting it from the body 10.

さらに、粉末成形体10に形成された切断部(切断軌跡)に沿って再度ワイヤーソーを移動させると、二次成形体の寸法精度が若干低下する可能性がある。このような場合、切断軌跡を重複させることなく、二次成形体を形成してもよい。 Further, if the wire saw is moved again along the cut portion (cutting locus) formed in the powder molded body 10, the dimensional accuracy of the secondary molded body may be slightly lowered. In such a case, the secondary molded body may be formed without overlapping the cutting loci.

図4(d)では、以下の態様(D)で複数の三次元立体形状の二次成形体をY軸方向に隣接させて切り出している。態様(D)の方法は、(1c)ワイヤーソーに対して、粉末成形体10をY軸方向に前進動させて粉末成形体10の第1の切断開始部21から所定の第1の基点22にまで粉末成形体10を横方向に切断加工する第1の横方向切断工程と、
(2c)第1の基点22への切断部の到達の後(又は到達に応答して)、粉末成形体10をY軸方向に前進動(+Y軸方向に移動)させつつZ軸方向に移動(下降動)させるとともにY軸方向に後退動(−Y軸方向に移動)させつつZ軸方向に移動(上昇動)させ、二次成形体の断面外形線(断面形状)に対応し、かつ前記第1の基点22に戻る閉じ形態(この例では、円弧状、円形状又はループ状の形態)の切断軌跡24で粉末成形体10を切断加工する閉じ状(又はループ状)切断工程と、
(3c)前記第1の基点22への前記切断部の再到達の後(又は到達に応答して)、粉末成形体10をY軸方向に前進動させつつZ軸方向に移動(下降動)させ、Y軸方向において第1の基点22と対向し、かつ閉じ形態(円弧状の形態)の切断軌跡24の対向部よりも前方(+Y軸方向)に位置する所定の第2の基点23に至る半閉じ状(半ループ状)の切断軌跡28で粉末成形体10を切断加工する半閉じ状(又は半ループ状)切断工程とを含んでいる。
In FIG. 4D, a plurality of three-dimensional three-dimensional shaped secondary molded bodies are cut out adjacent to each other in the Y-axis direction in the following aspect (D). In the method of aspect (D), the powder molded body 10 is moved forward in the Y-axis direction with respect to the wire saw (1c), and a predetermined first base point 22 is moved from the first cutting start portion 21 of the powder molded body 10. The first lateral cutting step of cutting the powder molded product 10 in the lateral direction, and
(2c) After the cut portion reaches the first base point 22 (or in response to the arrival), the powder molded body 10 moves forward in the Y-axis direction (moves in the + Y-axis direction) and moves in the Z-axis direction. It moves in the Z-axis direction (upward movement) while moving in the Y-axis direction (moving in the -Y-axis direction) while moving (downward movement), and corresponds to the cross-sectional outline (cross-sectional shape) of the secondary molded body. A closed (or loop) cutting step of cutting the powder molded body 10 with a cutting locus 24 in a closed form (in this example, an arc shape, a circular shape, or a loop shape) returning to the first base point 22.
(3c) After (or in response to) the re-arrival of the cut portion to the first base point 22, the powder compact 10 is moved forward in the Y-axis direction and moved in the Z-axis direction (downward movement). To a predetermined second base point 23 that faces the first base point 22 in the Y-axis direction and is located forward (+ Y-axis direction) from the facing portion of the cut locus 24 in the closed form (arc-shaped form). It includes a semi-closed (or semi-looped) cutting step of cutting the powder molded body 10 with a semi-closed (semi-looped) cutting locus 28.

この例では、この半閉じ状(半ループ状)の切断軌跡28は、前記閉じ形態(円弧状の形態)の切断軌跡24の曲率半径よりも大きな曲率半径で形成されている。すなわち、(3c)半閉じ状切断工程では、二次成形体27の断面外形線に対応する閉じ形態の切断軌跡24と相似形であって、上側の切断軌跡24よりも上方向に外れた軌跡で半閉じ状(半ループ状)の切断軌跡28が形成されている。 In this example, the semi-closed (semi-looped) cutting locus 28 is formed with a radius of curvature larger than the radius of curvature of the closed locus (arc-shaped) cutting locus 24. That is, in the (3c) semi-closed cutting step, the locus is similar to the closed locus 24 corresponding to the cross-sectional outline of the secondary molded body 27 and deviates upward from the upper cutting locus 24. A semi-closed (semi-looped) cutting locus 28 is formed in the above.

さらに、態様(D)の切断方法では、(4c)前記第1の横方向切断工程と閉じ状(ループ状)切断工程と半閉じ状(半ループ状)切断工程とを1つの切断サイクルとし、この切断サイクルをY軸方向に繰り返す繰り返し工程と、(5c)最終切断サイクルの(3c)半閉じ状切断工程で前記切断部が前記第2の基点23に到達した後、粉末成形体10をY軸方向に前進動させて、粉末成形体10の第1の切断終点部25に至るまで粉末成形体10を横方向に切断加工する第2の横方向切断工程とを含んでいる。 Further, in the cutting method of the aspect (D), (4c) the first lateral cutting step, the closed (loop) cutting step, and the semi-closed (semi-loop) cutting step are combined into one cutting cycle. After the cut portion reaches the second base point 23 in the repeating step of repeating this cutting cycle in the Y-axis direction and the (3c) semi-closed cutting step of the (5c) final cutting cycle, the powder compact 10 is Y. It includes a second lateral cutting step of laterally cutting the powder molded body 10 up to the first cutting end point 25 of the powder molded body 10 by moving forward in the axial direction.

前記態様(D)において、閉じ状(又はループ状)切断工程(3b)と半閉じ状(又は半ループ状)切断工程(3c)とで立体切断工程(2)を形成できる。 In the aspect (D), the three-dimensional cutting step (2) can be formed by the closed (or loop) cutting step (3b) and the semi-closed (or semi-loop) cutting step (3c).

なお、前記態様(D)において、粉末成形体を、ループ状の形態で前記第1の基点に戻る閉じた形態の切断軌跡で切断して所定の形状の二次成形体を生成させるループ状切断工程と、前記切断部が第1の基点に戻った後、前記二次成形体のうち前記第1の基点に対してY軸方向の対向部にまで、前記ループ状切断軌跡に沿って又はループ状切断軌跡を外れた相似形の形態で切断加工する半ループ状切断工程と、この半ループ状切断工程の後、粉末成形体をY軸方向に移動又は前進動させて切断加工する第2の横方向切断工程とを含んでいてもよい。また、(3c)半閉じ状切断工程では、ループ状切断軌跡を外れた相似形の形態で切断加工してもよく、例えば、二次成形体27の断面外形線に対応する閉じ形態の切断軌跡24と相似形であって、切断軌跡24から外れた軌跡(例えば、下方向に外れた軌跡)で半閉じ状(半ループ状)の切断軌跡28を形成してもよい。 In the aspect (D), the powder molded product is cut in a loop shape with a closed cutting locus that returns to the first base point to generate a secondary molded product having a predetermined shape. Along the loop-shaped cutting locus or loop to the step and the portion of the secondary molded body facing the first base point in the Y-axis direction after the cut portion returns to the first base point. After the semi-loop cutting step of cutting in a similar shape that deviates from the shape cutting locus and the semi-loop cutting step, the powder compact is moved or moved forward in the Y-axis direction to perform cutting. It may include a transverse cutting step. Further, in the (3c) semi-closed cutting step, the loop-shaped cutting locus may be cut in a similar shape, and for example, the closed-shaped cutting locus corresponding to the cross-sectional outline of the secondary molded body 27 may be cut. A semi-closed (semi-loop-shaped) cutting locus 28 may be formed with a locus similar to the 24 and deviating from the cutting locus 24 (for example, a locus deviating downward).

前記の例では、断面円形状の棒状体の形態で二次成形体を形成しているが、断面円形状に限らず、任意の形態、例えば、断面多角形、星形状、楕円形状などの形態で二次成形体を形成できる。 In the above example, the secondary molded body is formed in the form of a rod-shaped body having a circular cross section, but the secondary molded body is not limited to the circular cross section, and any form such as a polygonal cross section, a star shape, or an elliptical shape is formed. Can form a secondary molded body.

また、前記の例では、横方向への切断工程(第1及び第2の切断工程、第1の基点から第2の基点への切断工程)で、粉末成形体をY軸方向に移動させて直線的に切断しているが、少なくともY軸方向に粉末成形体を移動させればよく、Y軸方向に加えてZ軸方向に移動させて非直線的(蛇行又は湾曲などの形態)に切断してもよい。さらに、必要であれば、所定の二次成形体を切断加工した後、粉末成形体をZ軸方向に移動させてコ字状などの切断軌跡で隣接する二次成形体の切断軌跡に移行してもよい。 Further, in the above example, in the lateral cutting step (first and second cutting steps, cutting step from the first base point to the second base point), the powder molded body is moved in the Y-axis direction. Although it is cut linearly, the powder compact may be moved at least in the Y-axis direction, and may be moved in the Z-axis direction in addition to the Y-axis direction to cut non-linearly (a form such as meandering or bending). You may. Further, if necessary, after cutting the predetermined secondary molded body, the powder molded body is moved in the Z-axis direction to shift to the cutting locus of the adjacent secondary molded body with a cutting locus such as a U shape. You may.

なお、切断軌跡は特に制限されず、複数の二次成形体の切断軌跡と、一方の二次成形体の切断軌跡から隣接する二次成形体へ切断軌跡が移行する移行切断軌跡とを備え、連続した形態の切断軌跡を形成する場合が多い。 The cutting locus is not particularly limited, and includes a cutting locus of a plurality of secondary molded bodies and a transition cutting locus in which the cutting locus shifts from the cutting locus of one secondary molded body to an adjacent secondary molded body. It often forms a continuous form of cutting locus.

さらに、粉末成形体では、前記複数の二次成形体をY軸方向に一列の形態で形成してもよく、複数列の形態で形成してもよい。例えば、前記切断サイクルをY軸方向に繰り返し、Y軸方向の第1の切断終点部(例えば、粉末成形体の第1の切断開始部に対して対向する切断終点部)に到達した後、以下の(H1)又は(H2)の態様で粉末成形体を異なる高さ位置で切断加工することにより、Y軸方向に隣接して形成された複数の二次成形体の列が、Z軸方向に間隔をおいて形成された形態で、複数列の二次成形体を形成できる。 Further, in the powder molded body, the plurality of secondary molded bodies may be formed in a single row form in the Y-axis direction, or may be formed in a plurality of rows. For example, after repeating the cutting cycle in the Y-axis direction to reach the first cutting end point in the Y-axis direction (for example, the cutting end point facing the first cutting start part of the powder compact), the following By cutting the powder compacts at different height positions in the aspect of (H1) or (H2), a plurality of rows of secondary compacts formed adjacent to each other in the Y-axis direction are formed in the Z-axis direction. A plurality of rows of secondary molded bodies can be formed in the form formed at intervals.

(H1)粉末成形体をY軸方向に前進動させ、粉末成形体のうち一方の端面(切断開始部側)から他方の端面(切断終点部側)に向かって二次成形体を形成した後、粉末成形体をY軸方向に後退動させ、他方の端面から一方の端面に向かって二次成形体を形成する操作(切断サイクル)を繰り返す方法。この方法では、粉末成形体をZ軸方向(高さ)に移動させ、第1の切断終点部と異なる高さ位置を第2の切断開始部(粉末成形体のうち、第1の切断終点部と同じ端面であって第1の切断終点部とは高さ位置の異なる切断開始部)として粉末成形体をY軸方向に後退動させ、切断サイクルを逆方向に繰り返すことができる。 (H1) After moving the powder molded body forward in the Y-axis direction to form a secondary molded body from one end face (cutting start portion side) of the powder molding body toward the other end face (cutting end point side). , A method of retreating a powder molded product in the Y-axis direction and repeating an operation (cutting cycle) of forming a secondary molded product from the other end face toward one end face. In this method, the powder molded body is moved in the Z-axis direction (height), and a height position different from that of the first cutting end point is set at the second cutting start part (the first cutting end point of the powder molded body). The powder molded body can be moved backward in the Y-axis direction as a cutting start portion having the same end face as the above but having a height position different from that of the first cutting end end portion, and the cutting cycle can be repeated in the opposite direction.

(H2)粉末成形体のうち一方の端面(切断開始部側)から他方の端面(切断終点部側)に向かって二次成形体を形成する操作(切断サイクル)を繰り返す方法。この方法では、粉末成形体をZ軸方向(高さ)に移動させ、ワイヤーソーとの接触を回避して粉末成形体をY軸方向に後退動及びZ軸方向に移動させ、第1の切断開始部側の側面のうち第1の切断開始部と異なる高さ位置を第2の切断開始部として、粉末成形体をY軸方向に前進動させ、切断サイクルを順方向に繰り返すことができる。 (H2) A method of repeating an operation (cutting cycle) of forming a secondary molded body from one end face (cutting start portion side) to the other end face (cutting end point side) of the powder molded body. In this method, the powder molded body is moved in the Z-axis direction (height), the powder molded body is moved backward in the Y-axis direction and the Z-axis direction while avoiding contact with the wire saw, and the first cutting is performed. The powder molded body can be moved forward in the Y-axis direction with a height position different from that of the first cutting start portion on the side surface on the start portion side as the second cutting start portion, and the cutting cycle can be repeated in the forward direction.

このような態様のうち態様(H1)を利用する場合が多い。 Of these aspects, aspect (H1) is often used.

なお、上記の例では、粉末成形体のY軸方向に二次成形体を隣接させて切り出す例を中心に説明しているが、粉末成形体をY軸方向及びZ軸方向に移動させて二次成形体を切り出せばよく、必要であれば、粉末成形体のZ軸方向(高さ方向)に二次成形体を隣接させて切り出してもよい。 In the above example, the example in which the secondary molded body is cut out adjacent to each other in the Y-axis direction of the powder molded body is mainly described, but the powder molded body is moved in the Y-axis direction and the Z-axis direction. The secondary molded body may be cut out, and if necessary, the secondary molded body may be cut out adjacent to each other in the Z-axis direction (height direction) of the powder molded body.

さらに、本発明では、一筆書きの要領で、粉末成形体から不要部を切り抜き、中抜きの形態の二次成形体を製造することもできる。例えば、図5に示されるように、テーブル(図示せず)上の保持部材32で粉末成形体30を保持した状態で、粉末成形体30に形成された挿通孔31にワイヤーソー1を通し、粉末成形体30(及びテーブル)を、Y軸方向及びZ軸方向に移動させて、所定の四角枠を中心とし、この中心四角枠のコーナー部に四角枠の角部が隣接した幾何学形態の切断軌跡34で断面四角形状の複数の角柱状成形体37を切り出し、中空形態の成形体(抜き加工された二次成形体)38を得ることができる。この中空形態の成形体を焼結して焼結体とすることができる。 Further, in the present invention, it is also possible to cut out an unnecessary portion from the powder molded product in the manner of one-stroke writing to produce a secondary molded product in the form of hollowing out. For example, as shown in FIG. 5, in a state where the powder molded body 30 is held by the holding member 32 on the table (not shown), the wire saw 1 is passed through the insertion hole 31 formed in the powder molded body 30. The powder molded body 30 (and the table) is moved in the Y-axis direction and the Z-axis direction to be centered on a predetermined square frame, and the corners of the central square frame are adjacent to the corners of the square frame. A plurality of prismatic molded bodies 37 having a quadrangular cross section can be cut out from the cutting locus 34 to obtain a hollow molded body (secondary molded body that has been punched) 38. This hollow molded body can be sintered to obtain a sintered body.

なお、前記挿通孔31をスタート孔として切断加工すると、切れ目なく抜き加工ができ、抜き加工された二次成形体を調製できる。このため、半導体などの金型のダイ形状に近づけることができ、精密加工するのに要する工数及び時間を短縮して、金型を精度よく形成できる。 When the cutting process is performed using the insertion hole 31 as the start hole, the punching process can be performed without a break, and the punched secondary molded body can be prepared. Therefore, the shape of the die of a mold such as a semiconductor can be approached, the man-hours and time required for precision machining can be shortened, and the mold can be formed accurately.

このように、本発明では種々の形態の二次成形体を製造することができる。特に、一筆書きの要領又は様式で(又は連続的な切断軌跡で)粉末成形体を切断加工すると、二次成形体を効率よくしかも高い生産性で歩留まりよく製造できる。 As described above, in the present invention, various forms of secondary molded articles can be produced. In particular, when the powder compact is cut in a one-stroke manner or manner (or in a continuous cutting locus), the secondary compact can be produced efficiently, with high productivity, and with a high yield.

粉末成形体から切り出された前記二次成形体を、必要により整形加工し、焼結することにより、焼結体を製造できる。二次成形体の焼結は、成形体の種類に応じて、慣用の方法、例えば、1000〜3000℃程度の温度で加熱することによりで行うことができる。例えば、磁石粉末成形体の二次成形体では、1000〜1300℃(例えば、1000〜1150℃)程度の温度で焼結でき、超硬合金粉末成形体の二次成形体では、例えば、1200〜1600℃(例えば、1250〜1550℃)程度の温度で焼結できる。焼結時間は、焼結装置に応じて、例えば、5分〜48時間(例えば、1〜24時間)程度であってもよい。なお、焼結は、減圧下(又は真空下)で行ってもよく、常圧下又は加圧下で行ってもよい。このような焼結により、寸法精度の高い焼結体を高い生産性及び歩留まりが製造できる。 A sintered body can be manufactured by shaping and sintering the secondary molded body cut out from the powder molded body, if necessary. Sintering of the secondary molded product can be performed by a conventional method, for example, by heating at a temperature of about 1000 to 3000 ° C., depending on the type of the molded product. For example, the secondary molded product of the magnet powder molded product can be sintered at a temperature of about 1000 to 1300 ° C. (for example, 1000 to 1150 ° C.), and the secondary molded product of the cemented carbide powder molded product is, for example, 1200 to 1200. It can be sintered at a temperature of about 1600 ° C. (for example, 1.25 to 1550 ° C.). The sintering time may be, for example, about 5 minutes to 48 hours (for example, 1 to 24 hours) depending on the sintering apparatus. In addition, sintering may be performed under reduced pressure (or vacuum), and may be performed under normal pressure or pressure. By such sintering, a sintered body having high dimensional accuracy can be manufactured with high productivity and yield.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
粉末状炭化タングステンWCと、粉末状コバルトCoと、パラフィンとを含む混合末のブロック状圧縮成形体(縦50×横100×高さ200mm)を減圧下、700℃に加熱し、パラフィンを除去し、粉末成形体を調製した。JIS Z 2244(測定荷重9.8N)で測定したとき、粉末成形体の硬度は0.23GPa、寸法に基づいて計算した容積と重量とから算出した粉末成形体の密度は7.0g/cm、CIS 026で測定した粉末成形体の抗折力は2.2MPaであった。
Example 1
A block-shaped compression molded body (length 50 x width 100 x height 200 mm) containing powdered tungsten carbide WC, powdered cobalt Co, and paraffin is heated to 700 ° C. under reduced pressure to remove paraffin. , A powder molded body was prepared. When measured with JIS Z 2244 (measured load 9.8 N), the hardness of the powder molded product was 0.23 GPa, and the density of the powder molded product calculated from the volume and weight calculated based on the dimensions was 7.0 g / cm 3 The bending resistance of the powder molded product measured by CIS 026 was 2.2 MPa.

この粉末成形体を図1に示すテーブルに載置し、ピアノ線(平均径0.18mm)にダイヤモンド砥粒が電着したワイヤーソー(平均径0.25mm)を用い、図4(d)に示す切断軌跡で丸棒状の二次成形体(直径5mmΦ)を縦横方向に隣接させて形成した。なお、円弧状切断軌跡24と第2の基点23との距離は0.5mm、隣接する二次成形体において、第2の基点23と第1の基点22との距離は0.6mmに設定した。このような操作により、100本の丸棒状の二次成形体を1時間で調製できた。なお、従来の方法では、100本の丸棒状の二次成形体を調製するのに8時間を要していた。 This powder molded body was placed on the table shown in FIG. 1, and a wire saw (average diameter 0.25 mm) in which diamond abrasive grains were electrodeposited on a piano wire (average diameter 0.18 mm) was used, as shown in FIG. 4 (d). A round bar-shaped secondary molded body (diameter 5 mmΦ) was formed adjacent to each other in the vertical and horizontal directions with the cut locus shown. The distance between the arc-shaped cutting locus 24 and the second base point 23 was set to 0.5 mm, and the distance between the second base point 23 and the first base point 22 was set to 0.6 mm in the adjacent secondary molded product. .. By such an operation, 100 round bar-shaped secondary compacts could be prepared in 1 hour. In the conventional method, it took 8 hours to prepare 100 round bar-shaped secondary molded products.

得られた丸棒状の二次成形体を、真空下、1360℃で7時間焼結し、焼結体(超硬合金の打ち抜きパンチ)を調製した。この焼結体は、CIS(日本機械工具工業会(旧超硬工具協会)規格)027に規定する方法で測定したとき、硬度は1.75GPa、CIS(日本機械工具工業会(旧超硬工具協会)規格)028に規定する方法で測定した密度は14.7g/cm)、CIS(日本機械工具工業会(旧超硬工具協会)規格)026に規定する方法で測定した抗折力は3.2GPaであった。 The obtained round bar-shaped secondary molded body was sintered under vacuum at 1360 ° C. for 7 hours to prepare a sintered body (punching punch of cemented carbide). This sintered body has a hardness of 1.75 GPa when measured by the method specified in CIS (Japan Machine Tool Manufacturers Association (former Carbide Tool Association) standard) 027, and CIS (Japan Machine Tool Manufacturers Association (former Carbide Tool Association) standard). Association) Standard) The density measured by the method specified in 028 is 14.7 g / cm 3 ), and the bending force measured by the method specified in CIS (Japan Machine Tool Manufacturers Association (former Carbide Tool Association) standard) 026 is It was 3.2 GPa.

実施例2
実施例1と同様にして調製した粉末成形体を、図1に示すテーブルに載置し、ピアノ線(平均径0.18mm)にダイヤモンド砥粒が電着したワイヤーソー(平均径0.25mm)をX軸方向に走行させ、粉末成形体をY軸方向(+Y軸方向)に前進動させながら、横方向にスライスした後、Z方向(高さ方向)に約0.6mm移動させて粉末成形体をY軸方向(−Y軸方向)に後退動させて横方向にスライスする操作を繰り返した。このようなスライス操作により、多数の厚み0.4mmのプレート状二次成形体を調製した。二次成形体は厚みが薄いにもかかわらず、欠けなどの損傷部が生成することなく調製できた。
Example 2
The powder molded product prepared in the same manner as in Example 1 was placed on the table shown in FIG. 1 and a wire saw (average diameter 0.25 mm) in which diamond abrasive grains were electrodeposited on a piano wire (average diameter 0.18 mm). Is moved in the X-axis direction, the powder molded body is moved forward in the Y-axis direction (+ Y-axis direction), sliced in the lateral direction, and then moved by about 0.6 mm in the Z direction (height direction) to form the powder. The operation of retreating the body in the Y-axis direction (-Y-axis direction) and slicing in the lateral direction was repeated. By such a slicing operation, a large number of plate-shaped secondary compacts having a thickness of 0.4 mm were prepared. Although the secondary molded product was thin, it could be prepared without forming damaged parts such as chips.

得られたプレート状二次成形体を、実施例1と同様にして焼結し、焼結体(超硬合金の刃物)を調製した。この焼結体は、前記実施例1と同様の硬度、密度及び抗折力を有していた。 The obtained plate-shaped secondary molded product was sintered in the same manner as in Example 1 to prepare a sintered body (cemented carbide blade). This sintered body had the same hardness, density and bending force as in Example 1.

実施例3
実施例1において、図4(b)に示す切断軌跡で丸棒状の二次成形体の直径を0.8mmΦとする以外、実施例2と同様にして極細丸棒状の二次成形体を縦横方向に隣接させて形成した。得られた極細丸棒状の二次成形体を、実施例1と同様にして焼結し、焼結体(超硬合金の極細ピン)を調製した。この焼結体は、前記実施例1と同様の硬度、密度及び抗折力を有していた。
Example 3
In Example 1, an extra-fine round bar-shaped secondary molded body is formed in the vertical and horizontal directions in the same manner as in Example 2 except that the diameter of the round bar-shaped secondary molded body is 0.8 mmΦ in the cutting locus shown in FIG. 4 (b). It was formed adjacent to. The obtained ultrafine round bar-shaped secondary molded body was sintered in the same manner as in Example 1 to prepare a sintered body (ultrafine pin of cemented carbide). This sintered body had the same hardness, density and bending force as in Example 1.

本発明は、粉末冶金の分野において、種々の形態の二次成形体を製造できるとともに、この二次成形体を焼結した焼結体を製造できる。この焼結体は、粉末成形体の種類に応じて、磁石、超硬合金などの用途に利用できる。超硬合金は、高い硬度及び強度を有し、切削、掘削、切断、圧延、耐摩耗性金型などのドリル、エンドミル、フライス、旋盤、ピニオンカッタなどの切削工具(自動車部品、エンジン部品、トランスミッション部品、ステアリング部金などの金属加工)、シールドマシンなどの掘削刃、打ち抜き金具などに広く利用できる。特に、薄肉状の二次成形体を調製できるとともに、丸棒状(極細丸棒状などを含む)などの柱状の二次成形体を形成でき、これらの二次成形体を焼結することにより、刃物などに適した薄肉の超硬合金、電子部品の打ち抜きパンチなどに適した柱状の超硬合金を調製できる。 INDUSTRIAL APPLICABILITY In the field of powder metallurgy, the present invention can produce a secondary molded product having various forms, and can also produce a sintered body obtained by sintering the secondary molded product. This sintered body can be used for applications such as magnets and cemented carbide, depending on the type of powder molded body. Cemented carbide has high hardness and strength, and cutting, drilling, cutting, rolling, drills such as abrasion resistant dies, cutting tools such as end mills, milling cutters, lathes, pinion cutters (automobile parts, engine parts, transmissions). It can be widely used for parts, metal processing of steering parts, etc.), drilling blades for shield machines, punching metal fittings, etc. In particular, a thin-walled secondary molded body can be prepared, and a columnar secondary molded body such as a round bar (including a fine round bar) can be formed. By sintering these secondary molded bodies, a cutting tool can be formed. It is possible to prepare thin-walled cemented carbide suitable for such as, and columnar cemented carbide suitable for punching punches of electronic parts.

1…ワイヤーソー
10…粉末成形体
11…テーブル
12,32…保持部材
21…第1の切断開始部
22…第1の基点
23…第2の基点
24,26,28,33,34…切断軌跡
25…第1の切断終点部
17,27,37…二次成形体
1 ... Wire saw 10 ... Powder molded body 11 ... Table 12, 32 ... Holding member 21 ... First cutting start part 22 ... First base point 23 ... Second base point 24, 26, 28, 33, 34 ... Cutting locus 25 ... First cutting end point 17, 27, 37 ... Secondary molded body

Claims (12)

焼結されていない粉末成形体をワイヤーソーで切断加工するための装置であって、方向に走行可能なワイヤーソーと、このワイヤーソーに対して、奥行き方向及び高さ向に相対的に移動可能であり、かつ前記粉末成形体を載置又は保持可能なテーブルとを備えているワイヤーソー装置であって、前記ワイヤーソーによる連続した形態の切断軌跡で複数の二次成形体を切り出し可能な装置The powder compact that has not been sintered to a device for cutting a wire saw, and laterally can travel a wire saw, for this wire saw, relative to the depth direction and the height Direction A wire saw device provided with a table that is movable and on which the powder compact can be placed or held, and can cut out a plurality of secondary compacts with a continuous form of cutting locus by the wire saw. Equipment . 方向にワイヤーソーが走行可能な切断域と、この切断域において、ワイヤーソーに対して奥行き高さ方向に移動可能なテーブルとを備えている請求項1記載の装置。 The device according to claim 1, further comprising a cutting area in which the wire saw can travel in the lateral direction and a table in the cutting area in which the wire saw can move in the depth - height direction with respect to the wire saw. ワイヤーソーに対して、テーブルに載置又は保持された粉末成形体を奥行き方向に進退動させるための進退動手段と、ワイヤーソーに対して粉末成形体を高さ方向に上下動させるための上下動手段と、前記進退動手段と上下動手段とを制御し、ワイヤーソーを中心として粉末成形体を奥行き高さ方向に移動させるための制御ユニットとを備えている請求項1又は2記載の装置。 Against wire saw, a reciprocating motion means for置又mounting the table to move forward and backward a powder compact which is held in the depth direction, the upper and lower for vertically moving the powder compact in the height direction relative to a wire saw The first or second claim, wherein the moving means, the advancing / retreating means, and the vertical moving means are controlled, and a control unit for moving the powder molded body in the depth - height direction around a wire saw is provided. apparatus. 粉末成形体が、下記(a)(b)及び(c)から選択された少なくとも1つの特性を有している請求項1〜3のいずれかに記載の装置。
(a)硬度0.01〜1GPa
(b)密度3〜10g/cm
(c)抗折力0.1〜50MPa
The apparatus according to any one of claims 1 to 3, wherein the powder molded product has at least one property selected from the following (a), (b) and (c).
(A) Hardness 0.01 to 1 GPa
(B) Density 3 to 10 g / cm 3
(C) Folding force 0.1 to 50 MPa
粉末成形体が超硬合金粉末成形体である請求項1〜4のいずれかに記載の装置。 The apparatus according to any one of claims 1 to 4, wherein the powder molded product is a cemented carbide powder molded product. 一次成形体としての焼結されていない粉末成形体をワイヤーソーで切断して二次成形体を製造する方法であって、ワイヤーソーを方向に走行させ、このワイヤーソーに対して、テーブルに載置又は保持した粉末成形体を、奥行き方向及び高さ向に相対的に移動させ、ワイヤーソーによる連続した形態の切断軌跡で粉末成形体を切断して複数の二次成形体を製造する方法。 The powder compact that has not been sintered as the primary molded product A method for producing a secondary molded body was cut with a wire saw, it is run a wire saw laterally with respect to the wire saw, the table the placing置又the powder compact was maintained, is relatively moved in the depth direction and the height direction, to produce a plurality of secondary shaped body by cutting a powder compact at a slicing trajectory of the continuous form by a wire saw Method. ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体を奥行き方向及び高さ方向に移動させ、三次元立体形状の二次成形体を切り出す請求項6記載の方法。 The method according to claim 6, wherein the powder molded body placed or held on the table is moved to the wire saw in the depth direction and the height direction to cut out the secondary molded body having a three-dimensional three-dimensional shape. ワイヤーソーに対して、テーブルに載置又は保持した粉末成形体を奥行き方向及び高さ方向に移動させ、複数の三次元立体形状の二次成形体を奥行き方向に隣接させて切り出す請求項6又は7記載の方法。 Against wire saw,置又mounting the table moves the powder molded body held in the depth direction and the height direction, cut by adjacent secondary molding of a plurality of three-dimensional shape in the depth direction according to claim 6 or the method of 7, wherein. (1)ワイヤーソーに対して、粉末成形体を少なくとも奥行き方向に前進動させて粉末成形体の第1の切断開始部から所定の第1の基点にまで粉末成形体を切断加工する第1の横方向切断工程と、
(2)第1の基点への切断部の到達の後、粉末成形体を少なくとも奥行き方向に前進動させつつ奥行き方向及び高さ方向に移動させ、二次成形体の断面外形線の少なくとも一部の外形線に対応する切断軌跡で粉末成形体を切断加工するための立体切断工程と、
(3)第1の横方向切断工程と立体切断工程とを1つの切断サイクルとし、この切断サイクルを、粉末成形体を少なくとも奥行き方向に前進動させつつ、奥行き方向に繰り返し、少なくとも奥行き方向に後退進させて、一筆書きの要領で前記第1の基点に戻り、複数の閉じた切断軌跡又はループ状の切断軌跡を形成して、複数の二次成形体を奥行き方向に隣接させて粉末成形体を切断加工するための繰返し工程と、
(4)最終切断サイクルの立体切断工程の後、二次成形体を分離回収する工程とを含む請求項6〜のいずれかに記載の方法。
(1) A first method of cutting a powder molded body from a first cutting start portion of the powder molded body to a predetermined first base point by moving the powder molded body forward at least in the depth direction with respect to a wire saw. Lateral cutting process and
(2) After the cut portion reaches the first base point, the powder molded body is moved forward in the depth direction and the height direction while moving forward at least in the depth direction, and at least a part of the cross-sectional outline of the secondary molded body. A three-dimensional cutting process for cutting a powder compact with a cutting locus corresponding to the outline of
(3) the first transverse cutting step and three-dimensional cutting step and one cutting cycle, the cutting cycle, while the powder molded body is advanced dynamic at least in the depth direction, repeated in the depth direction, retracts at least the depth direction by advancing, return to the first base point in a manner of single stroke, and to form a plurality of closed slicing trajectory or looped cutting trajectory, are adjacent a plurality of secondary molded body in the depth direction powder molding Repeated process for cutting the body and
(4) The method according to any one of claims 6 to 8 , which includes a step of separating and recovering the secondary molded product after the three-dimensional cutting step of the final cutting cycle.
粉末成形体を異なる高さ位置で切断加工し、高さ方向に間隔をおいて、奥行き方向に隣接して形成された複数の二次成形体の列が形成された形態で、複数列の二次成形体を形成する請求項記載の方法。 The powder molded product is cut at different height positions, and the powder molded products are cut at different height positions, and a plurality of rows of secondary molded products formed adjacent to each other in the depth direction are formed at intervals in the height direction. The method according to claim 9 , wherein the next molded body is formed. 請求項6〜10のいずれかに記載の方法で生成した二次成形体を焼結し、焼結体を製造する方法。 A method for producing a sintered body by sintering a secondary molded product produced by the method according to any one of claims 6 to 10 . 焼結体が超硬合金である請求項11記載の方法。 The method according to claim 11 , wherein the sintered body is a cemented carbide.
JP2016099259A 2016-05-18 2016-05-18 Wire saw device and method of cutting out powder molded product using this device Active JP6778509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099259A JP6778509B2 (en) 2016-05-18 2016-05-18 Wire saw device and method of cutting out powder molded product using this device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099259A JP6778509B2 (en) 2016-05-18 2016-05-18 Wire saw device and method of cutting out powder molded product using this device

Publications (2)

Publication Number Publication Date
JP2017205828A JP2017205828A (en) 2017-11-24
JP6778509B2 true JP6778509B2 (en) 2020-11-04

Family

ID=60415399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099259A Active JP6778509B2 (en) 2016-05-18 2016-05-18 Wire saw device and method of cutting out powder molded product using this device

Country Status (1)

Country Link
JP (1) JP6778509B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225484B2 (en) * 2018-06-04 2023-02-21 福井県 Manufacturing method of coil for electrical equipment
JP7243698B2 (en) * 2020-09-28 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243910B1 (en) * 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243909B1 (en) * 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243908B1 (en) * 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162496A (en) * 1974-11-27 1976-05-31 Inoue Japax Res KENSAKUSOCHI
JPH0479050U (en) * 1990-11-22 1992-07-09
JP2588847B2 (en) * 1994-08-23 1997-03-12 慎吾 大給 Stone curved surface cutting machine
JP2000061801A (en) * 1998-08-18 2000-02-29 Hitachi Ltd Cutting method, cutting device and manufacture of semiconductor device
JP3713254B2 (en) * 2001-07-31 2005-11-09 株式会社Neomax Manufacturing method of sintered magnet
JP2003165047A (en) * 2001-11-28 2003-06-10 Pmt:Kk Device for processing ceramics
JP2006165300A (en) * 2004-12-08 2006-06-22 Neomax Co Ltd Method of manufacturing rare earth sintered magnet
JP2006283100A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for cutting rare earth alloy powder molding
US20060278057A1 (en) * 2005-06-14 2006-12-14 Kim Wuertemberger Rotary wire cutter
JP5475772B2 (en) * 2008-07-11 2014-04-16 サンーゴバン アブレイシブズ,インコーポレイティド Wire slicing system
WO2014054169A1 (en) * 2012-10-05 2014-04-10 イビデン株式会社 Cutting method for honeycomb dried body and production method for honeycomb structure
JP6045398B2 (en) * 2013-02-28 2016-12-14 コマツNtc株式会社 Multi-directional machining method and wire saw for multi-directional machining

Also Published As

Publication number Publication date
JP2017205828A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6778509B2 (en) Wire saw device and method of cutting out powder molded product using this device
US7687156B2 (en) Composite cutting inserts and methods of making the same
KR102126243B1 (en) Production method and production device for three-dimensionally shaped molded object
WO2012160811A1 (en) Method for producing three-dimensional shape structure
US10391602B2 (en) Method for multiple cutoff machining of rare earth magnet
PL197642B1 (en) Composite rotary tool and tool fabrication method
CN110139725A (en) For manufacturing the method and apparatus and hard metal green compact of hard metal green compact
CN105149894A (en) Method for manufacturing microstructure carbide blade
JP6979055B2 (en) Methods and equipment for manufacturing cemented carbide press-molded products and cemented carbide press-molded products
JP5034492B2 (en) Manufacturing method of mold for forming honeycomb structure
Jurisevic et al. Introduction of laminated supporting tools in water jet incremental sheet metal forming
CN105458066A (en) Sectional material dressing die
WO2018080374A1 (en) Method of making a patterned composite metal plate
CN103949641B (en) A kind of manufacturing process of micropore wire drawing die carbide alloy core rod
KR100709393B1 (en) Manufacturing method of segments for cutting/polishing tool and manufacturing apparatus thereof
KR101580733B1 (en) Method and apparatus for manufacturing metal sheets
JP2004211162A (en) Method for producing die for press
CN113677461A (en) Method for manufacturing sintered gear
US20060065355A1 (en) Waste removal laminate layering rapid prototyping machine
KR20080038839A (en) Press device for forming ultra-hard sintered body having a layered section
WO2023172401A1 (en) Polycrystalline diamond element including at least one leaching feature, cutting tool inserts and systems incorporating same, and related methods
JP4869567B2 (en) Method of manufacturing cutting blade member of cutting tool and press molding die of green compact used in the manufacturing method
JP2011098392A (en) Method for manufacturing cutting edge member of cutting tool, and press-forming die for green compact used in the same
Radhakrishnan Challenges in Meso-, Micro-, and Nanomanufacturing
CN103240335A (en) Step mould

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250