JP7248419B2 - 樹木幅設定装置及びプログラム - Google Patents

樹木幅設定装置及びプログラム Download PDF

Info

Publication number
JP7248419B2
JP7248419B2 JP2018235989A JP2018235989A JP7248419B2 JP 7248419 B2 JP7248419 B2 JP 7248419B2 JP 2018235989 A JP2018235989 A JP 2018235989A JP 2018235989 A JP2018235989 A JP 2018235989A JP 7248419 B2 JP7248419 B2 JP 7248419B2
Authority
JP
Japan
Prior art keywords
tree
vertex
area
height
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018235989A
Other languages
English (en)
Other versions
JP2020098442A (ja
Inventor
翔宇 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2018235989A priority Critical patent/JP7248419B2/ja
Publication of JP2020098442A publication Critical patent/JP2020098442A/ja
Application granted granted Critical
Publication of JP7248419B2 publication Critical patent/JP7248419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

この発明は、樹木幅設定装置及びプログラムに関する。
従来、センシングデータを用いて樹木の頂点を特定する技術がある。特定された頂点は、例えば、樹木の本数の計数に用いられたり、各樹木の伐採計画の立案に設けられたりといった森林資源の把握や利用に係る各種用途で用いられる。
樹木の頂点位置を特定する手法の一つとして、樹冠の上縁に係る地面からの高さの分布を取得し、当該分布における高さの空間的な極大点を抽出することで樹木の頂点を特定する技術がある。高さの分布を示す樹冠高データ(Digital Canopy Height Model、DCHM)は、樹木表面を含む高さ分布を示す数値表層モデル(Digital Surface Model、DSM)と、地表面の高さ分布を示す数値標高モデル(Digital Elevation Model、DEM)との差分をとることで得られる。これらDSMモデル及びDEMモデルを得るための計測手法の一つとして、上空から照射したレーザ光の反射を用いたレーザプロファイラが知られている。
このとき、樹木の枝ぶりなどによっては、頂点が適切に検出できず、過小又は過大に特定される場合がある。特許文献1では、DCHMデータから地上開度及び地下開度の分布を求め、これらの値に基づいて予め定められた樹木間隔の範囲内でそれぞれ頂点を検出する技術が開示されている。樹木間隔は、例えば、ユーザにより別途設定される。
特開2009-022278号公報
しかしながら、森林における立木密度や樹木間の間隔は、各樹木について一様ではない。したがって、従来の取り扱いでは、全体として樹木の頂点の特定精度が低くなりやすいという問題がある。
この発明の目的は、より安定して精度よく樹木の頂点を特定するための樹木幅設定装置及びプログラムを提供することにある。
上記目的を達成するため、本発明は、
樹木の特性と、当該樹木の領域幅に係る情報との対応関係を記憶する記憶部と、
樹木表面を含む高さ分布を示す数値表層モデル及び地表面の高さ分布を示す数値標高モデルとの差分により得た樹木の高さの極大点を樹木の頂点候補として抽出し、抽出された前記樹木の頂点候補の各々における樹木の特性に応じた領域幅を前記記憶部から取得することで、当該樹木のそれぞれの領域幅を設定する幅設定部と、
を備えることを特徴とする樹木幅設定装置である。
本発明に従うと、より安定して精度よく樹木の頂点を特定することが可能になるという効果がある。
処理装置の機能構成を示すブロック図である。 DSM、DEM及びDCHMを説明する模式図である。 樹木分布情報及び地理情報を模式的に示す図である。 樹木特定処理の流れの概略を説明する図である。 林分密度テーブルの一部の例を示す図表である。 頂点候補のリストの例を示す図表と、分布の例を示す図である。 樹木頂点特定処理の制御手順を示すフローチャートである。 樹木の本数を特定した結果の例を示す図表である。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、樹木幅設定装置の実施形態である処理装置1の機能構成を示すブロック図である。
処理装置1は、例えば、通常のコンピュータ(コンピュータ端末又はサーバ)であり、制御部11と、記憶部12と、入出力インターフェイス13と、表示部14と、操作受付部15などを備える。
制御部11は、各種演算処理を行うプロセッサであり、例えば、CPU(Central Processing Unit)などを備える。CPUは、記憶部12からプログラムなどを読み込んで実行することで各種制御処理を行う。
記憶部12は、RAMと、不揮発性メモリなどを備え、各種データを記憶する。RAMは、CPUに作業用のメモリ空間を提供し、一時データを記憶する。不揮発性メモリは、プログラム121や設定データなどを記憶保持する。不揮発性メモリとしては、フラッシュメモリが含まれ、あるいは、これに代えて又は加えてHDD(Hard Disk Drive)などが含まれてもよい。また、初期制御プログラムなどは、ROM(Read Only Memory)に格納されていてもよい。プログラム121には、後述の樹木特定処理プログラムが含まれる。
入出力インターフェイス13は、周辺機器と接続するための接続端子131や外部機器との間で信号の送受信を行うための通信部132などを備える。周辺機器としては、大型の補助記憶装置、例えば、データベース装置21、並びにCDROM、DVD及びBlu-ray(登録商標)などの可搬型記憶媒体(光ディスク)を読み取る光学読取装置22などが挙げられる。また、可搬型記憶媒体に磁気テープが含まれ、この磁気テープを読み取る読取装置が周辺機器に含まれてもよい。接続端子としては、USB(Universal Serial Bus)など各種規格に応じたものが利用されてよい。あるいは、LAN(Local Area Network)などのネットワーク回線を介して通信部が外部から取得するものであってもよい。データベース装置21及び/又は可搬型記憶媒体に記憶されたデータには、DSMデータ201、DEMデータ202、樹木分布情報203(分布情報)、地理情報204(環境特性情報)及び林分密度テーブル205が含まれる。
DSMデータ201及びDEMデータ202は、水平面に平行な2次元面(2次元地図面)について、2次元地図を区切った複数のメッシュごとに中心位置の水平座標と高度(標高値)とを対応付けたものである。
図2は、DSM、DEM及びDCHMを説明する模式図である。
図2(a)に示すように、DSMの高度は、地上の構造物や樹林などを含めたものであり、樹林帯では、樹冠の上縁に係る高度分布を示す。これらの値は、例えば、レーザプロファイラによって計測、取得されたものである。この高度には、後述のように、送電線Wなども含まれ得る。また、葉や枝の隙間を抜けて地面や下草の高度が取得されたものが混じっている場合がある。後述のように、樹木の高さとして適切でない高さのデータを除外するために、上限基準高さHmaxや下限基準高さHminが定められている。水平座標は、緯度経度の値であってもよいし、所定の原点位置からの相対距離を示すものであってもよい。
また、DEMでは、水平面に平行な2次元面について、2次元地図を区切った複数のメッシュごとに地表面の高度を水平座標と対応付けたものである。すなわち、DEMデータ202では、レーザプロファイラなどで取得されたDSMデータから地上の構造物や樹林などの高さを取り除いた高度値(標高)の分布を示す。水平座標は、DSMデータ201と同様に表される。隣り合う樹木の間の距離が樹木間距離Dである。
図2(b)に示すように、樹林帯では、同一水平座標におけるDSMデータ201の値とDEMデータ202の値との差が樹冠上縁の高さH(すなわち、各位置における樹木の高さ)となり、その分布がDCHMである。樹木又は構造物がなく、直接地表が観測される部分では、DSMデータ201の値とDEMデータ202の値は等しくなる。
樹木分布情報203は、樹木種の分布に係る情報である。樹木分布情報203では、例えば、単独の樹木種又は優勢な樹木種の情報が単位位置範囲ごとにメッシュ状に規定されている。樹木分布情報203を参照することで、指定された緯度経度の情報に対して、対応する位置における樹木種Sが得られる。樹木分布情報203には、予め実測などにより各樹木種の生育範囲が特定されている林相図が用いられる。あるいは、樹木分布情報203は、後述の頂点候補の抽出処理と並行で樹木種を特定する処理がなされてもよい。例えば、DSMデータ201及びDEMデータ202に係るレーザ計測と同時になされた写真撮影データに基づく樹木種の特定処理がなされてもよい。
地理情報204は、上記樹木種Sの分布よりも大きいエリアであるエリアGの範囲情報(地理的特性)を保持する。エリアGは、少なくとも、気候や積雪などの環境条件が異なる範囲、例えば、北海道、東北の日本海側、東北の太平洋側といった範囲で定められる。一般的には、エリアGは、例えば、都道府県単位や市町村単位で区分されていればよい。
図3は、樹木分布情報203及び地理情報204を模式的に示す図である。
図3(a)の樹木分布情報203において、単位位置範囲Bは、例えば、矩形(正方形)形状であり、大きさは、上記のDSMデータ201などにおける単位面積と同一であってもよいし、当該単位面積の所定倍などであってもよい。林相図では、樹木種の分布範囲ごとにエリアS1、S2、S3などが定められている。空白部分は、森林以外の部分である。これらのうち、特に単一樹種のエリアについては、具体的な樹種が明示されている。なお、メッシュ単位では樹木種がそれぞれID値などで示され、別途ID値などと樹木種の名称とが対応付けられていてもよい。また、最終的に樹木種に応じた領域幅の算出が可能であればよいので、処理装置1内で理解可能な対応付けがなされていれば(ID値のみで全ての処理が可能であれば)、樹木種の名称が明示されている必要はない。樹木種としては、具体的には、ヒノキ、スギ、アカマツなどが挙げられる。複数種類の雑木林などについては、より広く広葉樹林又は針葉樹林などで定められてもよい。例えば、DSM、DEM、DCHMなどにおける水平位置の緯度経度情報に応じて指定された地点P1は、エリアS2に属し、当該エリアS2に対応する樹木種の樹木であると特定される。
図3(b)の地理情報204において、エリア境界BRが定められており、当該エリア境界BRを境に両側がそれぞれエリアG1、G2として設定されている。DSM、DEM、DCHMなどにおける水平位置情報に基づいて、当該位置に対応する単位位置範囲が所属するエリア情報が得られる。単位位置範囲は、樹木分布情報203の単位位置範囲Bと同一であってもよいし、より細かくてもよい。あるいは、境界に沿った部分だけ他の部分よりも細かく定められるなどであってもよい。例えば、上記地点P1は、エリアG1に属すると特定される。各エリアGは、後述の最多立木密度に応じた値を算出するときに対応付けが可能に区分されていればよく、直接都道府県名が指定されていてもよいし、エリアごとにIDが付されていてもよい。
林分密度テーブル205は、林分の樹木種S、エリアG及び上層樹高の平均高さに応じた最多立木密度を求めるための算出パラメータが、樹木種S及びエリアGの組み合わせに対応付けられたテーブルである。林分密度テーブル205については、後述する。
表示部14は、制御部11の制御により、表示画面にメニュー、ステータスや処理結果などの表示を行わせる。表示画面としては、特には限られないが、例えば、液晶表示画面を有する。操作受付部15としてタッチパネルを有する場合には、表示画面は、タッチパネルと併用され、タッチセンサと重ねて設けられる。
操作受付部15は、例えば、キーボードやマウスなどの入力デバイスを備え、ユーザなど外部からの入力操作を受け付ける。入力デバイスには、タッチパネル(タッチセンサ)などが含まれていてもよい。
次に、樹木特定処理の原理について説明する。樹木特定処理は、定められたエリア内における樹木の頂点位置を特定する処理である。
図4は、樹木特定処理の流れの概略を説明する図である。
ここでは、まず、数値表層モデル(DSM)と、地表面の高さ分布を示す数値標高モデル(DEM)との差分をとることで樹冠高データ(DCHM)を取得する(PR1)。当該DCHMデータから高さの極大点を樹木の頂点候補として抽出する(PR2;候補抽出部)。抽出方法としては、例えば、従来の局所的な最大値(極大値)を取得する方法などが用いられてよい。
このとき、極大点は、枝ぶりなどにより樹頂点以外の場所でも生じ得る。後述の処理では、抽出された頂点候補から頂点ではないと判断された候補点が除去されていくので、抽出は、検出漏れがある過小検出よりも誤検出がある過剰検出の方がよい。したがって、局所的最大値の決定範囲は、実際に想定され得る樹頂点間の最小間隔に比して狭く定められるとよい。例えば、人工林では、多くの場合、植林時の植林密度には上限(例えば、4000本/haなど)があり、以後は伐採されたり枯れたりして単調減少する。したがって、この植林密度に基づいて、すなわち、植林密度での樹木を分離可能な値に最小間隔が設定される。ここでは、例えば、120cm四方又は直径120cm(半径60cm)の円などに設定される。
樹木分布情報203が参照(取得)されて、頂点候補として抽出された位置を含むエリア(領域)の樹木種Sが特定され(PR3;種別特定部)、また、地理情報204が参照されて、当該位置のエリアGが特定される(PR4;特性特定部)。
各頂点候補の位置における樹頂点間の最小間隔である樹木間距離Dが求められ(PR5)、これにより、頂点候補の領域幅R(候補領域)が定められる。樹木の頂点を中心として領域幅Rを直径とする円形エリア内は、他の樹木の円形エリアと重複しない排他エリアとして設定される。ここでは、対象とされる頂点候補の位置における樹木の高さHと、当該樹木が含まれるエリアの樹木種Sと、地理的なエリアGとに基づいて、最多立木密度を求める式を用いて当該最多立木密度に当たる数値Nが求められ、数値Nから樹木間距離Dが求められる。上述のように、最多立木密度は、同様の高さの樹木が並んでいる樹林(林分)の上層樹高の平均的な高さに基づいて当該林分に対して求められる値である。ここでは、各頂点候補について、高さHにより各々数値Nが算出される。すなわち、求める樹木間距離Dは、頂点候補ごとに各々別個に定められる変数である。領域幅Rは、樹木間距離Dと等しいものとして設定される。
数値Nの算出情報は、林分密度テーブル205から取得される。最多立木密度は、樹木種Sと、地理的なエリアGと、上層樹高の平均値Haとに依存する。ここでは、日本林業技術協会による人工林林分密度管理図などが用いられる。最多立木密度Nrは、以下の(数式1)により定められている。
log(Nr)=a-b×log(Ha) … (数式1)
係数a、bは、樹木種S及びエリアGにより定まる数値パラメータである。すなわち、林分密度テーブル205には、樹木種S及びエリアGの組み合わせに応じた係数a、bの値がそれぞれ設定、記憶されている。
図5は、林分密度テーブル205の一部の例を示す図表である。林分密度テーブル205では、樹木種S、エリアG、及びこれらに対応する係数a、bが対応付けられてそれぞれリスト記憶されている。これらの値は、上記の人工林林分密度管理図の他に、特定の地域や諸外国で定められた独自の又は第三者作成のデータが用いられてもよい。この場合には、樹木種S及びエリアG以外の要素が数値パラメータ(ここでは、係数a、b)の特定に用いられてもよい。
特定されている樹木種S及びエリアGにより、林分密度テーブル205からこれらに応じた係数a、bが取得される。これらの係数a、bとともに、上層樹高の平均値Haの代わりに高さHを用いて、数値Nが算出される。数値Nの平方根の逆数(N)-1/2が最小の樹木間距離D、すなわち、領域幅Rとなる。なお、係数a、b及び高さHから直接領域幅Rが求められるように計算式が予め定められていてもよい。(数式1)で分かるように、高さHが大きいほど数値Nが低下し、これに応じて領域幅Rが広くなる。
上記のように抽出された頂点候補の位置情報(すなわち、エリアG)及び高さHに基づいて、当該樹木の周囲に他の樹木の候補領域と重複しない範囲(候補領域)を示す領域幅Rが得られる。この領域幅Rは、同一エリアの同一樹木種であっても、高さHに依存することから、本実施形態の処理装置1では、各頂点候補に対して領域幅Rが各々異なる値となる場合がある。
図6は、このようにして得られた頂点候補のリストの例を示す図表(a)と、分布の例を示す図(b)である。
図6(a)に示すように、緯度経度で示される頂点候補に対し、それぞれ、その高さH及び樹木種S(樹木の特性)、並びにエリアG(地理的特性)が定められている。これらに基づいて得られた樹木間距離Dに応じて、頂点候補が頂点である場合の領域幅Rが設定されて、頂点候補に係る領域(候補領域)として対応付けられる(PR6;幅設定部(PR5を含んでよい))。
この候補領域の設定データに基づき、頂点が特定される(PR7;樹頂点特定部)。
図6(b)に示すように、各頂点候補(P11~P14)を中心として領域幅(R11~R14)をそれぞれ直径とする範囲(候補領域)を設定した場合に、当該候補領域が他の頂点候補について定められた候補領域と重複するか否かを検出する。ここでは、頂点候補P11の候補領域と頂点候補P12の候補領域とが重複している。重複する場合には、いずれかの頂点候補が誤抽出されたものであると判断される。したがって、重複範囲がなくなるように、いずれかの頂点候補が除去されて、残った頂点候補が頂点として特定される。
重複がある場合に、いずれの頂点候補が除去されるかは、機械的に行われてもよいし、ユーザが判断して手動で決定されてもよい。機械的に行われる場合には、例えば、重複している複数点のうち高さHが最大の点が選択される(ここでは、頂点候補P12の方が頂点候補P11よりも高い)。ユーザが判断する場合には、重複状況を表示部14に表示させ、ユーザが表示内容を見て操作受付部15により一つを選択する又は一つ以外を除去する操作を行えばよい。
必要に応じて確定操作がなされることで、頂点位置が特定される。特定された頂点位置のデータは、直接、及び/又は統計処理などがなされて、表示部14の表示画面への表示がなされたり、データベース装置21及び/又は外部機器に送信されたり、光学読取装置22にセットされた光学ディスクに書き込みが可能とされたりしてよい。
図7は、本実施形態の処理装置1で実行される樹木頂点特定処理の制御部11による制御手順を示すフローチャートである。この処理は、例えば、ユーザが操作受付部15から所定の位置範囲を指定して開始命令を行うことで開始される。
樹木頂点特定処理が開始されると、制御部11は、指定されたエリアに対応するDSMデータ201及びDEMデータ202を取得する(ステップS101)。制御部11は、DSMデータ201の各位置における標高値と、DEMデータ202の各位置における標高値とを取得して、差分値を算出し、水平座標と対応付けてDCHMデータを生成する(ステップS102)。
制御部11は、予め定められた局所範囲に基づいて最大値(極大値)を検出し、頂点候補として抽出する(ステップS103)。制御部11は、抽出された頂点候補のうち基準外のデータを除外する(ステップS104)。基準外のデータは、例えば、基準高さ範囲から外れたものである。例えば、上述のように、送電線が上限基準高さ(例えば、30m)より高い高さHで検出され、下草などが下限基準高さ(例えば、5m)未満の高さHで検出される。なお、ステップS104の処理がステップS103の処理の前に行われて、予め基準外のデータが除外されてもよい。
制御部11は、抽出された頂点候補から未選択のものを順番に選択する(ステップS105)。制御部11は、DCHMを用いて、選択した頂点候補の位置における高さHを取得する(ステップS106)。
制御部11は、樹木分布情報203を参照して、頂点候補の水平座標に対応する樹木種Sを特定する(ステップS107)。制御部11は、地理情報204を参照して、頂点候補の水平座標に対応するエリアGを特定する(ステップS108)。制御部11は、樹木種S及びエリアGに対応する係数a、bを特定し、これら係数a、b及び高さHを用いて領域幅Rを算出する(ステップS109)。
制御部11は、全ての頂点候補を選択したか否かを判別する(ステップS110)。選択していない頂点候補があると判別された場合には(ステップS110で“NO”)、制御部11の処理は、ステップS105に戻る。全ての頂点候補が選択されたと判別された場合には(ステップS110で“YES”)、制御部11の処理は、ステップS111に移行する。
ステップS111の処理に移行すると、制御部11は、各頂点候補の位置(水平座標)を中心として、当該頂点候補に対して求められた領域幅Rを半径とするエリアを候補領域として各々設定する(ステップS111;幅設定ステップ、幅設定手段(ステップS109を含んでよい))。制御部11は、設定された各候補領域の間で重複部分があるか否かを判別する(ステップS112)。重複部分がないと判別された場合には(ステップS112で“NO”)、制御部11の処理は、ステップS116に移行する。
重複部分があると判別された場合には(ステップS112で“YES”)、制御部11は、重複する頂点候補を表示部14により表示させる(ステップS113)。表示は、処理がなされた全体についてなされてもよいし(制御部11は、重複部分のみ色を異ならせるなどでユーザが容易に知得可能とさせることができる)、重複部分のみを拡大してなされてもよい。
制御部11は、重複部分について、いずれか一つが選択される操作が検出されたか否かを判別する(ステップS114)。検出されていないと判別された場合には(ステップS114で“NO”)、制御部11は、ステップS114の処理を繰り返す。
いずれか一つが選択される操作が検出されたと判別された場合には(ステップS114で“YES”)、制御部11は、選択されていない頂点候補を全て除去する(ステップS115)。それから、制御部11の処理は、ステップS116に移行する。
ステップS112、S115の処理からステップS116の処理に移行すると、制御部11は、残っている頂点候補を樹木の頂点として確定する(ステップS116)。そして、制御部11は、樹木頂点特定処理を終了する。
上述のように、手動選択を用いずに機械的に自動で重複エリアから一つの頂点候補を選択する場合には、ステップS113、S114の処理の代わりに適宜上述のような選択処理がなされて、選択されていない頂点候補が除去されればよい。
以上のように、本実施形態の処理装置1は、制御部11を備え、制御部11は、幅設定部として、DSMモデル及びDEMモデルを用いて抽出された樹木の頂点候補の各々における樹木の特性、すなわち、樹木の高さH及び樹木種Sに基づいて、当該樹木の領域幅Rを設定する。
このように、樹木ごとに領域幅Rを定量的に評価して設定するので、容易かつより安定して精度のよい領域幅Rを定めることができる。この領域幅Rを用いることによって、より安定して精度よく樹木の頂点を特定することが可能になる。
また、樹木の頂点の特定時に、最小樹木幅の最適値を試行錯誤したり、ユーザによる立木密度の読み取りに経験を要したりする必要がない。特に、頂点位置の特定範囲における立木密度の読み取りを予め行って設定を行ってから処理を開始したり、一度頂点候補を定めてからその周囲の立木密度を読み取って再度処理をしなおしたりするような二度手間を必要としないので、より効率よく正確な樹木の頂点位置の特定に寄与することができる。
また、樹木の特性には、頂点候補の位置における樹木の高さHが含まれる。同一の林分内の同時期に植えられた樹木であっても、地形などの生育条件に応じて高さにはばらつきを生じる場合がある。また、異なる時期に植えられた樹木であれば、更に大きな高さの差が生じ得る。これらに応じて、頂点候補の位置における樹木の高さHを用いて当該樹木の領域幅Rを定めるので、個々の木に対してより適切に領域幅Rが定められ、当該樹木の周囲における過剰な特定や必要以上の樹木の除外を避けることができる。
また、制御部11は、種別特定部として、頂点候補の位置のそれぞれにおける樹木種を特定する。領域幅Rの算出に係る樹木の特性には、特定された樹木種が含まれる。
これにより、対象となる樹木の樹冠の形状の違いに適切に対応し、より正確な領域幅Rを定めることができる。これにより、より適切に各樹頂点を特定し、過剰な特定や除外を避けることができる。
また、制御部11は、種別特定部として、樹木分布情報203を取得し、当該樹木分布情報203における頂点候補の位置を含む領域の樹木種Sの情報により当該樹木種を特定する。すなわち、予め定められている樹木分布情報203を参照して対応する位置の樹木種を取得するので、容易に樹木種を特定して適切な領域幅Rを定めることができる。
また、制御部11は、特性特定部として、地理情報204を取得し、当該地理情報204における頂点候補の位置を含む領域のエリアGの情報により、環境特性情報を特定する。制御部11は、幅設定部として、環境特性情報に基づいて領域幅Rを設定する。すなわち、制御部11は、樹木の特性だけではなく、当該樹木の生育環境も考慮して領域幅Rを定める。これにより、より精度よく各樹木の領域幅Rを定めることができる。
また、環境特性情報には、頂点候補の位置の地理的特性が含まれる。すなわち、地理的なエリアに応じた気候条件を反映して、領域幅Rをより適切に設定することができる。また、各地方や都道府県自治体などの地理的なエリアの情報は、比較的容易に用いることができるので、少ない手間でより確実に適切な領域幅Rに基づき、樹木の頂点を特定することができる。
また、制御部11は、幅設定部として、最多立木密度を求める式を用いて樹木の特性に基づく値を算出し、当該値に応じて領域幅Rを設定する。最多立木密度は、最小の樹木間距離に対応する。樹木間距離は、当該樹木と、この樹木に隣り合う樹木との勢力範囲を示す半径rの和となるので、結局この樹木間距離から領域幅Rが得られる。したがって、樹木ごとにその高さHを用いて最多立木密度に当たる値を求めることで、よりきめ細かく各樹木の領域幅Rを想定される最低範囲で定めることができる。これにより、樹木の頂点の特定時に、より正確に重複候補の除外を行い、また、不要な排除を避けることができる。
また、DSMモデル及びDEMモデルは、レーザプロファイラを用いて算出されたものである。樹林帯では、隙間のある樹木を通してDSMモデルとDEMモデルがよい精度で同時に取得されるので、効率よくDCHMモデルを取得することができ、したがって、適切な頂点候補の抽出及び当該頂点候補の高さHの特定が可能となる。よって、処理装置1では、より精度のよい領域幅Rの算出が可能となり、これに応じて頂点の特定をより正確に行うことが可能になる。
また、制御部11は、候補抽出部として、DSMモデル及びDEMモデルを用いて樹木の頂点候補を抽出する。これにより、処理装置1では、頂点候補を抽出して、抽出した頂点候補に対してより適切に頂点であるか否かを判別するための適切な領域幅Rを定めることができる。
また、樹木頂点特定処理の実施形態としての処理装置1は、制御部11が、上述の樹木幅設定装置としての各機能動作と、樹頂点特定部として、設定された領域幅Rで定まる各樹木の領域が重複しないように頂点候補から頂点を特定する処理とを行う。すなわち、上述のように領域幅Rが定められた各頂点候補における領域(頂点候補の位置を頂点とした直径が領域幅Rの円形領域)が重複している場合には、いずれかの頂点候補が誤検出であると判断されて、重複領域について1つのみが選択される。この重複領域を定める領域が上述の領域幅Rの設定によりより適切になされているので、処理装置1では、重複の判定及び頂点の特定をより正確に行うことができる。
また、上記のような処理により、上述の処理装置1と同様に容易かつより安定して精度のよい領域幅Rを定めることができる。この領域幅Rを用いることによって、より安定して精度よく樹木の頂点を特定することが可能になる。
また、本実施形態のプログラム121は、コンピュータ(処理装置1)を、DSMモデル及びDEMモデルを用いて抽出された樹木の頂点候補の各々における樹木の特性に基づいて、当該樹木の領域幅Rを設定する幅設定手段として機能させる。
このような処理を行うプログラム121をインストールしてコンピュータに処理を行わせることで、ソフトウェア的に容易かつ適切に、より精度のよい領域幅Rを安定して定めることができる。これにより、より安定して精度良く樹木の頂点を特定することが可能になる。
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、高さH、樹木種S及びエリアGを用いて最多立木密度Nrを求める式に基づいて領域幅Rを算出し、また、独自データや第三者データがもちいられてもよい旨示したが、例えば、特定の樹木種Sに係る全地域の算出パラメータの代表値(平均値)などを取得して、エリアGの情報なしに算出が可能に変形してもよい。データの読み込みや処理の負荷を若干低減し、処理を簡略化することができる。同様に、算出における高さH及び樹木種Sのうちいずれかを省いても(固定値などとしても)、従来に比して若干の精度の向上を図ることができる。
また、本実施形態では、DSMデータ201、DEMデータ202、樹木分布情報203、地理情報204及び林分密度テーブル205の各データは、外部のデータベース装置21又は可搬型記憶媒体から取得されるものとして説明したが、処理装置1がこれらのうち一部又は全部を予め内部に保持していてもよい。
また、上記実施の形態では、頂点候補の抽出にDCHMの局所的な最大値の検出を利用したが、これに限られるものではない。その他の機械的に抽出可能な方法を用いて又は併用してもよいし、あるいは、DCHMデータからノイズが除去されたデータをそのまま用いてもよい。
また、上記実施の形態では、環境特性情報としての地理情報204は、環境条件に応じたエリア分けの情報として、都道府県や、地方の太平洋側/日本海側などの区分を例に挙げて説明したが、都道府県内でも積雪状況、例えば、北側斜面や南側斜面などによってより細かく区分を行ってもよい。あるいは、上記の区分に対して、積雪状況に基づいて補正がなされるように、積雪状況の情報やその数値補正用のデータを保持していてもよい。
また、上記実施の形態では、DSMデータ201及びDEMデータ202がレーザプロファイラによって取得されたものであるとして説明したが、これに限られない。例えば、異なる位置で撮影された航空写真を用いたステレオマッチングなどにより、高度分布が取得されてもよい。
また、上記実施の形態では、候補の抽出、領域幅の設定及び頂点の特定に係る各処理を単一の処理プログラム(樹木特定処理プログラム)により行われることとして説明したが、これらの各処理、及びこれら各処理の一部は、異なるプログラムに分割されて作成され、別個に呼び出されて実行されてもよい。
また、樹木特定処理プログラムに係るソフトウェア的な処理の一部が専用の論理回路などのハードウェアによってなされてもよい。
また、これらの各処理は、異なる処理装置(コンピュータ)に分散されてなされてもよい。
その他、上記実施の形態で示した装置構成、処理内容や処理手順などの具体的な細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
また、上記実施の形態では、プログラム121が記憶部12の不揮発性メモリ又はHDDなどに記憶されるものとして説明したが、これに限られない。プログラム121は、CDROM、DVD、又はBlu-rayなどの光学ディスクといった可搬型記憶媒体に記憶されてよい。また、本発明に係るプログラムのデータを通信回線を介して提供する媒体として、キャリアウェーブ(搬送波)も本発明に適用される。
[実施例]
北近畿・中国地方エリアにおけるスギ及びヒノキの樹林について、スギ及び/又はヒノキを樹木種とし(一部のエリアではスギとヒノキが共存しており、スギが優勢である)、立木密度の異なる半径11.28mの円形エリアを設定して目視により実際に計測した樹木の本数と、機械的に特定した樹木の本数とを比較した。
これらの各円形エリアに対し、本実施形態を適用した場合として、まず半径60cmのエリア設定を用いて局所的最大値を求めて樹木の頂点候補を抽出した。次いで、上記エリア及び主な樹木種を適用して得られた最多立木密度の係数a、bと、頂点候補における高さHを用いて、最小の樹木間距離Dを算出した。そして、頂点候補を中心として、得られた樹木間距離Dを領域幅Rとして、当該領域幅Rを直径とする円領域を候補領域として定め、頂点候補間で候補領域の重複があった場合には、重複がなくなるまで頂点候補を除去した。
一方、比較例としては、局所的最大値を求めるエリアの半径rを60cm~180cmの固定値として定めて抽出された頂点候補を、そのまま樹頂点として特定した。
図8は、樹木の本数を特定した結果の例を示す図表である。
設定された20箇所の円形エリアにおいて、目視によって得られた実際の本数は、17~67本の間に分布している。すなわち、樹木間距離には、大きな開きがある。これに対し、半径r=60cmの場合には、特定数が目視数より多く、過剰に特定されている場合が多い。このときの平均平方二乗誤差(Root Mean Square Error;RMSE)は、12.2である。
半径rが60cmよりも大きくなると、特定本数は減少していく。半径Dが100cmでは、特定数が目視数よりも少ない場合が多く、既に過小検出となっている。RMSEは、10.2と、半径rが60cmの場合より若干小さい。半径rが140cm、180cmでは、更に検出数が減少し、RMSEがそれぞれ17.8、22.1となっている。
これに対し、本実施例では、目視数に対して過剰検出又は過小検出のいずれにも偏らず、また、全体としてずれが小さく抑えられている。RMSEは、4.6であり、比較例における半径r=60cm、100cmの場合よりも十分に小さい。事例ごとに見ると、比較例のいずれかにおける特定数が、実施例による特定数よりも目視数に近い場合もあるが、本実施例では、全体としてのずれ量が安定して小さく抑えられていることが示されている。
さらに、樹木種がスギのエリア(8エリア)とヒノキのエリア(10エリア)とで区別した場合、目視での本数がスギで17~67本、ヒノキで26~49本に対し、本実施例では、スギ及びヒノキに係るRMSEは、それぞれ、5.0、4.7と安定して小さい値が維持されている。これに対し、比較例のr=60cmでは、スギに係るRMSEの値(4.1)に比してヒノキに係るRMSEの値(16.7)が大きい。反対に、r=100cmでは、スギに係るRMSEの値(12.8)がヒノキに係るRMSEの値(8.5)より大きくなっている。すなわち、本実施例では、樹木種に応じた違いに対して柔軟に対応して、より安定して精度よく特定されるという結果が得られた。
1 処理装置
11 制御部
12 記憶部
121 プログラム
13 入出力インターフェイス
131 接続端子
132 通信部
14 表示部
15 操作受付部
21 データベース装置
22 光学読取装置
201 DSMデータ
202 DEMデータ
203 樹木分布情報
204 地理情報
205 林分密度テーブル
D 樹木間距離
G エリア
R 領域幅
S 樹木種

Claims (5)

  1. 樹木の特性と、当該樹木の領域幅に係る情報との対応関係を記憶する記憶部と、
    樹木表面を含む高さ分布を示す数値表層モデル及び地表面の高さ分布を示す数値標高モデルとの差分により得た樹木の高さの極大点を樹木の頂点候補として抽出し、抽出された前記樹木の頂点候補の各々における樹木の特性に応じた領域幅を前記記憶部から取得することで、当該樹木のそれぞれの領域幅を設定する幅設定部と、
    を備えることを特徴とする樹木幅設定装置。
  2. 前記特性には、前記頂点候補の位置における前記樹木の高さが含まれることを特徴とする請求項1記載の樹木幅設定装置。
  3. 前記頂点候補の位置のそれぞれにおける樹木種を特定する種別特定部を備え、
    前記種別特定部は、樹木種の分布情報を取得し、当該分布情報における前記頂点候補の位置を含む領域の樹木種の情報により当該樹木種を特定し、
    前記特性には、特定された前記樹木種が含まれる
    ことを特徴とする請求項1又は2記載の樹木幅設定装置。
  4. 前記頂点候補の位置の環境特性情報を特定する特性特定部を備え、
    前記環境特性情報には、前記頂点候補の位置の地理的特性が含まれ、
    前記幅設定部は、前記環境特性情報に基づいて前記領域幅を設定する
    ことを特徴とする請求項1~3のいずれか一項に記載の樹木幅設定装置。
  5. コンピュータを、
    樹木の特性と、当該樹木の領域幅に係る情報との対応関係を記憶する記憶手段、
    樹木表面を含む高さ分布を示す数値表層モデル及び地表面の高さ分布を示す数値標高モデルとの差分により得た樹木の高さの極大点を樹木の頂点候補として抽出し、抽出された前記樹木の頂点候補の各々における樹木の特性に応じた領域幅を前記記憶手段の記憶内容から取得することで、当該樹木のそれぞれの領域幅を設定する幅設定手段
    として機能させることを特徴とするプログラム。
JP2018235989A 2018-12-18 2018-12-18 樹木幅設定装置及びプログラム Active JP7248419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235989A JP7248419B2 (ja) 2018-12-18 2018-12-18 樹木幅設定装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235989A JP7248419B2 (ja) 2018-12-18 2018-12-18 樹木幅設定装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2020098442A JP2020098442A (ja) 2020-06-25
JP7248419B2 true JP7248419B2 (ja) 2023-03-29

Family

ID=71106552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235989A Active JP7248419B2 (ja) 2018-12-18 2018-12-18 樹木幅設定装置及びプログラム

Country Status (1)

Country Link
JP (1) JP7248419B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323689B1 (ja) 2022-08-25 2023-08-08 朝日航洋株式会社 表示装置、表示方法、及び、表示プログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111724A (ja) 2006-10-30 2008-05-15 Tokyo Electric Power Co Inc:The 樹木頂点認識方法及び樹木頂点認識のプログラム並びに樹木頂点認識装置
US20080319673A1 (en) 2007-06-22 2008-12-25 Weyerhaeuser Co. Identifying vegetation attributes from LiDAR data
JP2009022278A (ja) 2007-06-19 2009-02-05 Tokyo Electric Power Co Inc:The 樹木頂点認識方法及び樹木頂点認識装置並びに樹木頂点認識のプログラム
JP2010086276A (ja) 2008-09-30 2010-04-15 Shinshu Univ 樹種分類方法及び樹種分類システム、森林現況情報の作成方法及び森林現況情報の作成システム、間伐対象区域の選定方法及び間伐対象区域の選定システム
US20100250482A1 (en) 2009-03-24 2010-09-30 Weyerhaeuser Nr Company System and method for identifying trees using lidar tree models
JP2012098247A (ja) 2010-11-05 2012-05-24 Pasuko:Kk 樹木位置検出装置、樹木位置検出方法、及びプログラム
JP2012103155A (ja) 2010-11-11 2012-05-31 Pasuko:Kk レーザ密度分布推定装置、レーザ密度分布推定方法、及びプログラム
JP2014100099A (ja) 2012-11-20 2014-06-05 Kodaira Associates Kk 森林情報管理装置
JP2018084472A (ja) 2016-11-22 2018-05-31 国立大学法人信州大学 森林資源情報算定方法及び森林資源情報算定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111724A (ja) 2006-10-30 2008-05-15 Tokyo Electric Power Co Inc:The 樹木頂点認識方法及び樹木頂点認識のプログラム並びに樹木頂点認識装置
JP2009022278A (ja) 2007-06-19 2009-02-05 Tokyo Electric Power Co Inc:The 樹木頂点認識方法及び樹木頂点認識装置並びに樹木頂点認識のプログラム
US20080319673A1 (en) 2007-06-22 2008-12-25 Weyerhaeuser Co. Identifying vegetation attributes from LiDAR data
JP2010086276A (ja) 2008-09-30 2010-04-15 Shinshu Univ 樹種分類方法及び樹種分類システム、森林現況情報の作成方法及び森林現況情報の作成システム、間伐対象区域の選定方法及び間伐対象区域の選定システム
US20100250482A1 (en) 2009-03-24 2010-09-30 Weyerhaeuser Nr Company System and method for identifying trees using lidar tree models
JP2012098247A (ja) 2010-11-05 2012-05-24 Pasuko:Kk 樹木位置検出装置、樹木位置検出方法、及びプログラム
JP2012103155A (ja) 2010-11-11 2012-05-31 Pasuko:Kk レーザ密度分布推定装置、レーザ密度分布推定方法、及びプログラム
JP2014100099A (ja) 2012-11-20 2014-06-05 Kodaira Associates Kk 森林情報管理装置
JP2018084472A (ja) 2016-11-22 2018-05-31 国立大学法人信州大学 森林資源情報算定方法及び森林資源情報算定装置

Also Published As

Publication number Publication date
JP2020098442A (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
Leitold et al. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+
JP5360989B2 (ja) 地理情報生成システム及び地理情報生成方法
US8897483B2 (en) System and method for inventorying vegetal substance
US20090185741A1 (en) Apparatus and method for automatic airborne LiDAR data processing and mapping using data obtained thereby
US8582808B2 (en) Methods for identifying rooftops using elevation data sets
CN111340012B (zh) 一种地质灾害解译方法、装置、终端设备
US9098745B2 (en) Sampling position-fixing system
US20160093056A1 (en) Multi-spectral image labeling with radiometric attribute vectors of image space representation components
Xie et al. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system
Yadav et al. Identification of trees and their trunks from mobile laser scanning data of roadway scenes
Arkin et al. Integrated fire severity–land cover mapping using very-high-spatial-resolution aerial imagery and point clouds
CN111222539A (zh) 基于多源多时相遥感影像优化和扩充监督分类样本的方法
JP7248419B2 (ja) 樹木幅設定装置及びプログラム
Potůčková et al. Comparison of quality measures for building outline extraction
CN115457408A (zh) 一种土地监测方法、装置、电子设备及介质
JP4946072B2 (ja) 樹頂探索方法、装置及びプログラム
Alvites et al. Unsupervised algorithms to detect single trees in a mixed-species and multilayered Mediterranean forest using LiDAR data
Norman et al. Fusion of multispectral imagery and LiDAR data for roofing materials and roofing surface conditions assessment
CN114519712A (zh) 一种点云数据处理方法、装置、终端设备及存储介质
Xiao et al. Individual tree detection from multi-view satellite images
Yin et al. Object-based larch tree-crown delineation using high-resolution satellite imagery
Sarıtaş et al. Enhancing Ground Point Extraction in Airborne LiDAR Point Cloud Data Using the CSF Filter Algorithm
Wężyk et al. Use of airborne laser scanning data for a revision and update of a digital forest map and its descriptive database: a case study from the Tatra National Park
US20220277418A1 (en) Method and electronic portal system for building façade inspection
CN113111793A (zh) 树木识别方法与装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7248419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150