JP7246915B2 - 医用画像処理装置、医用画像処理方法及びx線診断装置 - Google Patents

医用画像処理装置、医用画像処理方法及びx線診断装置 Download PDF

Info

Publication number
JP7246915B2
JP7246915B2 JP2018237000A JP2018237000A JP7246915B2 JP 7246915 B2 JP7246915 B2 JP 7246915B2 JP 2018237000 A JP2018237000 A JP 2018237000A JP 2018237000 A JP2018237000 A JP 2018237000A JP 7246915 B2 JP7246915 B2 JP 7246915B2
Authority
JP
Japan
Prior art keywords
plaques
plaque
medical image
image processing
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018237000A
Other languages
English (en)
Other versions
JP2019111332A (ja
Inventor
ファンジエ モン
チー ジュウ
リジュン ジャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Publication of JP2019111332A publication Critical patent/JP2019111332A/ja
Application granted granted Critical
Publication of JP7246915B2 publication Critical patent/JP7246915B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Description

本発明の実施形態は、医用画像処理装置、医用画像処理方法及びX線診断装置に関する。
臨床において、心臓血管系の疾患は深刻な病理学的形態であり、経皮的冠動脈形成術(PCI)によってステント等を病人の体内にインターベンションすることにより、病症を緩和する必要があることがある。術前計画及び術中ナビゲーションは、経皮的冠動脈形成術に用いられる重要な技術であり、術前計画及び手術過程において、十分な可視化は手術の成否にとって非常に重要である。
従来、特許文献1、2のいずれにもステント留置支援システムが提案されており、仮想ステント解析技術及びDSA(Digital Subtraction Angiography、ディジタルサブトラクションアンギオグラフィ)技術が開示されているが、これらの文献においては、ステント留置術においてステントを案内するために、どのように仮想ステント解析方法によって術前計画段階でステントを位置決めするか、と共に、位置決めしたステントとDSA画像とをどのように融合するか、という点に重点が置かれている。
また、特許文献3には、単一のプラークの最適なビュー角度の計算方法が提供されている。その方法によって、単一のプラークについて最適な観察角度を選択することができる。
米国特許第7650179号明細書 米国特許第8060186号明細書 米国特許出願公開第2006/00084862号明細書
本発明が解決しようとする課題は、最適なビュー角度で複数のプラークを観察することである。
実施形態に係る医用画像処理装置は、複数プラークの視覚化表示のための医用画像処理装置であって、関心領域設定部と、認識部と、重み付け値設定部と、計算部とを備える。関心領域設定部は、被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定する。認識部は、前記関心領域に対して、前記複数のプラークのそれぞれの位置及び特性を認識する。重み付け値設定部は、認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定する。計算部は、前記複数のパラメータと前記複数の重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する。
を備える、医用画像処理装置。
図1は、第1の実施形態に係る医用画像処理装置を示すブロック図である。 図2は、複数のプラークを有する分岐部位を関心領域とする場合の関心領域を説明するための概略図である。 図3Aは、被検体から検出されたCT画像においてプラークの位置及び特性を示した図である。 図3Bは、IVUS(血管内超音波)を利用して得られた血管の断面においてプラークの位置及び特性を示した概略図である。 図4は、本実施形態に係る医用画像処理装置の処理フローのフローチャートである。 図5は、最適なビュー角度を決めるためのパラメータを説明する概略図である。 図6は、パラメータの1つである血管の透視短縮率を示す概略図である。 図7は、パラメータの1つである血管の重畳率を示す概略図である。 図8は、パラメータの1つである血管の狭窄率を示す概略図である。 図9は、パラメータの1つである血管の変位量を示す概略図である。 図10は、パラメータの1つである血管の分岐角度を示す概略図である。 図11は、本実施形態の変形例1に係るビュー角度を最適なビュー角度に調整した場合の、血管のDSA画像及び血管内超音波の方式で表示されたレジストレーション後の血管の断面を示す概略図である。 図12は、本実施形態の変形例2に係る医用画像処理装置の処理フローの概略図である。 図13は、パラメータの1つである血管のポジティブモデリング率を示す概略図である。 図14は、第2の実施形態に係るX線診断装置を示すブロック図である。
本実施形態は、医用画像処理装置、医用画像処理方法及びX線診断装置に関し、特に管状構造の分岐部位に複数のプラークが存在する場合、複数のプラークに対しビュー角度の最適化を行う医用画像処理装置、医用画像処理方法及びX線診断装置に関する。
上述したように、単一のプラークの最適なビュー角度の計算方法が提供されているが、経皮的冠動脈形成術(PCI)過程において、血管の分岐部位に複数のプラークが存在する場合があり、この場合、上述した技術では最適なビュー角度を探し出すことは困難である。また、プラークは形成原因の相違で、表れる特性がそれぞれ異なっており、手術においてプラーク特性に対する把握も必要である。上述した技術では、この方面について不足がある。従って、複数プラークの場合、特に分岐部位に複数プラークが存在する場合に、最適なビュー角度で関連の分岐を観察すると共に全てのプラークの位置及び特性を全面的に考慮することができる新たな技術が必要となる。
本実施形態は、上記した課題を解決するためになされたものであり、最適なビュー角度で分岐部位の複数のプラークを観察することができると共に、DSA画像又はDA(Digital Angiography、ディジタルアンジオグラフィ)画像においてプラークの位置及び特性を表示することができる医用画像処理装置、医用画像処理方法及びX線診断装置を提供する。
本実施形態の一態様による医用画像処理装置は、被検体の3D画像において、管状構造の分岐部での複数のプラークを含むように関心領域を設定する関心領域設定手段と、前記関心領域に対して、前記複数のプラークの各々の位置及び特性を認識する認識手段と、認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定する重み付け値設定手段と、前記複数のパラメータと前記複数の重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する計算手段と、を備える。
本実施形態の一態様による医用画像処理方法は、複数プラークの視覚化表示のためのものであって、被検体の3D画像において、管状構造の分岐部での複数のプラークを含むように関心領域を設定する関心領域設定工程と、前記関心領域に対して、プラークの位置及び特性を認識する認識工程と、認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定する重み付け値設定工程と、前記複数のパラメータと前記複数の重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する計算工程と、を含む。
本実施形態の医用画像処理装置、医用画像処理方法及びX線診断装置を用いることにより、最適なビュー角度で血管の分岐部位に含まれる複数のプラークの位置及び特徴を観察できる。
且つ、DSA画像又はDA(Digital Angiography、ディジタルアンジオグラフィ)画像においてプラークの3D画像を重畳表示することができ、操作者を支援してステント計画及びステントインターベンション手術において複数のプラークを有する分岐部位の形態及びプラークの特性を正確且つ全面的に把握することができるため、精確にステントを挿入するか、或いはプラーク部分を処理することも可能になる。
また、操作者に、実際の必要に応じてターゲットプラークを調整させるか、又はターゲットプラーク或いは一部のパラメータの重み付け値を調整させることができる。これにより、操作者が実際の必要に応じて最適なビュー角度を調整できるように、表示の融通性を向上させることが可能である。
(第1の実施形態)
以下、図面を参照して、本実施形態の詳細について説明する。なお、以下に示す実施形態は例示に過ぎず、本願に係る医用画像処理装置、医用画像処理方法及びX線診断装置は、以下の実施形態に示す構成によって限定されるものではない。
以下の実施形態においては、被検体において血管領域の3Dデータを採集すると共に3DデータにおいてROI領域を選定するものを例として説明するが、本実施形態の適用は血管領域に限定されず、管状構造を有し、管状構造に多箇所の病変が発生する可能性がある領域(例えば、分岐部位)でさえあれば、その他の管状構造に適用してもよい。
また、上述した3Dデータは、本実施形態においてはCT画像データを例として説明しているが、CT方式で形成される画像データに限らず、MR方式で形成される画像データなどの他の3Dデータも含まれる。
また、本実施形態では説明の便宜のため、病変部分についてプラークという概念を用いているが、本実施形態におけるプラークは塊状構造であり、通常の意味での血管内プラークのみならず、血管におけるポジティブリモデリング、ネガティブリモデリング、浮腫、水腫、腫瘍、ポリープなどの他の病理形態も含まれている。
図1は、第1の実施形態の医用画像処理装置を示すブロック図である。図1に示すように、医用画像処理装置1は、処理回路100を有する。処理回路100は、関心領域設定機能101と、認識機能102と、重み付け値設定機能103と、計算機能104とを実行する。ここで、関心領域設定機能101は、関心領域設定部の一例である。また、認識機能102は、認識部の一例である。また、重み付け値設定機能103は、重み付け値設定部の一例である。また、計算機能104は、計算部の一例である。
図1に示す医用画像処理装置1においては、各処理機能がコンピュータによって実行可能なプログラムの形態で図示しないメモリへ記憶されている。処理回路100は、メモリからプログラムを読み出して実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路100は、読み出したプログラムに対応する機能を有することとなる。なお、図1においては、関心領域設定機能101、認識機能102、重み付け値設定機能103及び計算機能104の各処理機能が単一の処理回路100によって実現される場合を示したが、実施形態はこれに限られるものではない。例えば、処理回路100は、複数の独立したプロセッサを組み合わせて構成され、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。また、処理回路100が有する各処理機能は、単一又は複数の処理回路に適宜に分散又は統合されて実現されてもよい。
処理回路100は、メモリから関心領域設定機能101に相当するプログラムを読み出して実行することにより、CT等によって撮像される3Dデータにおいて、管状構造(以下では、単に血管と称する)の分岐部位に位置する複数のプラークを含むように関心領域を設定する。具体的には、関心領域設定機能101は、CT等によって撮像された後、分岐を有する領域を検出すると共に、更に分岐を有する領域においてプラークが存在するか否かを分析し、プラークが存在し、且つプラークが複数であると判断した場合、操作者に提示し、操作者によって関心を持つ領域が選択され、関心領域として設定する。上記した例では、操作者が手動で関心領域ROIを選択しているが、当然、予め設定されたプログラムを実行することにより、関心領域の設定を自動的に完成してもよい。
処理回路100は、メモリから認識機能102に相当するプログラムを読み出して実行することにより、前記関心領域に対して、前記複数のプラークそれぞれの位置及び特性を認識する。具体的には、認識機能102は、複数のプラークを有する関心領域である分岐部位に対して、被検体のCT画像又はIVUS画像等からプラークを認識すると共に、プラークの位置及び特性をマークする。ここで、プラークの特性とは、プラーク自身が有する属性であり、本実施形態におけるプラーク特性とは、脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分の少なくともいずれかである。
図3Aは、被検体から検出されたCT画像においてプラークの位置及び特性を示した図である。図3Aにおける矢印部分で指された部位は複数プラークが存在する血管の分岐部位であり、好ましくは、当該分岐部位に含まれる複数のプラークは図面において強調表示され、例えばプラークのある位置をハイライト表示してもよく、また図においてプラークが有する異なる特性を直観的に区別するように、プラークの特性に基づいて、異なる色を用いて脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分を標識してもよい。各プラークの位置と各プラークが有する異なる特徴とを知ることは、操作者の実際の操作、例えばステント挿入にとって重要であるので、好ましい。図3Bは、IVUS(血管内超音波)を利用して得られた血管の断面においてプラークの位置及び特性を示した概略図である。プラークの血管内超音波における表示方式もCT画像における表示方式と同一であり、分岐部位に含まれる複数のプラークの位置及び特性を図面において強調表示すると共に、色やパターン等を用いて区別してもよい。
本実施形態においては、色を用いて各プラークの位置及び特性を標識しているが、色に限定されず、異なるプラークの位置及び特性を区別できれば、他の方式を用いて標識してもよい。
処理回路100は、メモリから重み付け値設定機能103に相当するプログラムを読み出して実行することにより、認識機能102が複数のプラークそれぞれの位置及び特性を認識した後に得た認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定する。ここで、複数のパラメータは、管状構造の透視短縮率、重畳率、狭窄率、変位量、分岐角度から選ばれる少なくとも2つである。複数の重み付け値は、血管の透視短縮率と、重畳率と、狭窄率と、変位量と、分岐角度とのパラメータにそれぞれ付与した重み付け値である。また、前記重み付け値は各プラークの異なる特性に基づいて、プラークに対しランク付けをすることで得られたものであり、異なるプラークのランクに対応する重み付け値は異なる。例えば、脂質成分のプラークが石灰化のプラークよりも高いプラークランク(重み付け値)を有するように、脂質成分が高く、破損し易いという特性を有するプラークの重み付け値を大きく設定してもよい。
本実施形態において、各プラークの重み付け値は、プラークランク(プラーク特性)により特定される。
本実施形態では、透視短縮率と、重畳率と、狭窄率と、変位量と、分岐角度とそれらの指標から全ての指標をパラメータとして選択しているが、実際の必要に応じて一部の指標をパラメータとして選択してもよい。
前記パラメータはαとβ角を変量とする関数Fparameter(α,β)である。それにおいて、α、βはCアームX線診断装置における被検体に対するCアームの位置を示すための角度である。αは、Cアームが被検体周りに回転するアーム角を示し、RAO/LAO角度であり、βは、Cアームが頭位置又は足位置にあるアーム角を示し、CRA/CAU角度である。上述のこれらのパラメータの各パラメータについて、各組のαとβの値により唯一のパラメータ値を特定でき、前記複数のパラメータはそれぞれビュー角度を示すα、βの変更に応じて変更する。
本実施形態に例示されたα、βはCアームX線診断装置に用いられているが、CアームX線診断装置に限定されず、角度によって前記各パラメータの値を特定できれば、他のX線診断装置を適用してもよい。
各パラメータの意味については、後に詳述する。
処理回路100は、メモリから計算機能104に相当するプログラムを読み出して実行することにより、複数のプラークに対する最適なビュー角度を計算する。具体的には、計算機能104は、前記複数のパラメータ(血管の透視短縮率、重畳率、狭窄率、変位量、分岐角度)と各プラークの特性により決められる複数の重み付け値に基づいて、複数のプラークに対する最適なビュー角度を計算する。
最適なビュー角度は、以下の式(1)によって計算することができる。
Figure 0007246915000001
ここで、式(1)におけるFforeshortening(α、β)は血管の透視短縮率を示し、Foverlapping(α、β)は血管の重畳率を示し、Fstenosis(α、β)は血管の狭窄率を示し、Fmovement(α、β)は血管の変位量を示し、Fadjacentspacing(α、β)は血管の分岐角度を示し、γ、δ、ε、θ、μはそれぞれ血管の透視短縮率、重畳率、狭窄率、変位量、分岐角度に対応するプラークの重み付け値を示す。
本実施形態においては、計算機能104が、式(1)のargmin値が最小となる場合のα、βを計算することにより、この場合のα、βを最適なビュー角度とする。
実際に操作する場合、操作者は、複数のパラメータと各々に対応する重み付け値とを乗算させてから加算した値が最小となるようにCアームX線診断装置のα、β値を調整し、その後にCアームの角度を固定し、最適なビュー角度であるα、βを保持する。
最適なビュー角度を見つけるための各パラメータを考慮する場合、ターゲット血管の透視短縮が小さく、血管の重畳が小さく、血管狭窄程度が大きく、プラーク領域の移動距離が小さく、分岐部位の分岐角度が大きいことが望ましい。ここで、ターゲット血管の透視短縮、血管の重畳、及びプラーク領域の移動距離は小さい方が好ましく、血管狭窄程度及び分岐部位の分岐角度は大きい方が好ましい。つまり、各パラメータの好ましい基準が統一されておらず、1つの公式で最適角度を求めることが困難である。従って、本実施形態では、基準を統一して1つの公式で最適角度を計算可能とするために、血管の狭窄率の逆数と血管の分岐角度の逆数をパラメータFstenosis、Fadjacentspacingとした。この場合に、各パラメータとそれぞれの重み付け値とを乗算させてから加算した値の最小値を求めればよい。
言うまでもなく、最小値の計算は一例に過ぎず、実施形態はこれに限定されず、ターゲット血管の透視短縮、血管の重畳、及びプラーク領域の移動距離の逆数を用いて最大値を計算してもよく、他のルールに従って他の値を計算してもよい。
図4は、本実施形態の医用画像処理装置1により行われる処理フローを説明するためのものである。
図4に示すように、医用画像処理装置1においては、まず、関心領域設定機能101が、例えば、CTや、MR方式で収集された3D画像において、血管の分岐部位に位置する複数のプラークを含むように関心領域を設定する(ステップS201)。
ここで、関心領域の設定方法については、例えば、図2を参照しながら設定してもよい。
図2のおいては、左側にプラークが存在する冠状動脈の分岐部位が例示されており、右側に操作者によって選択された、或いはプログラムによって自動的に認識された分岐部位が示される。まず、図2の左側に例示されたように、認識された複数のプラークを有する全ての血管を表示し、プラークを有する全ての血管は何れも3つの数字を用いてプラークの数及び存在する位置を表す。例えば、111は3つのプラークが存在し、3つのプラークがそれぞれ上側、右側及び下側に位置するものであり、110は2つのプラークが存在し、2つのプラークがそれぞれ上側及び下側に位置するものであり、001は1つのプラークが存在し、その1つのプラークが血管の右側の分岐に位置するものである。3つの数字のうち少なくとも2つの数字が1である血管を認識することにより、分岐部位に複数のプラークが存在する全ての血管を特定することができる。続いて、操作者又は予め設定されたプログラムにより、特定された複数の血管から1つ又は複数を選択して、関心を持つ領域を関心領域として設定する。
続いて、関心領域設定機能101により関心領域が設定されると、認識機能102は、関心領域に対して、CT画像又はIVUS画像を代表とするマルチモーダル画像からプラークを認識すると共に、プラークの位置及び特性をマークする(ステップS202)。ここで、ステップS202において、分岐部位に含まれる複数のプラークの位置及び特性を画像上で強調表示してもよい。本実施形態においては、例えば色を用いて各プラークの位置及び特性を標識しているが、色に限定されず、異なるプラークの位置及び特性を区別できれば、他の方式を用いて標識してもよい。
その後、ステップS203において、重み付け値設定機能103は、認識機能102により認識したプラークの位置及び特性に基づいて、各プラークをプラークのランクに応じて分けて、異なるランクのプラークに異なる重み付け値を付与する。
ステップS203において、重み付け値設定機能103は、複数のプラークがそれぞれ脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分のうちの何れに属するかを認識すると共に、事前に特定された脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分の各々の属するプラークのランクに応じて、複数のプラークに対してランク付けをし、プラークのランクに対応する重み付け値を各プラークに付与する。例えば、脂質成分のプラークが石灰化プラークよりも高いプラークランク(重み付け値)を有するように、脂質成分が高く、破損し易いという特性を有するプラークの重み付け値を大きく設定してもよい。
そして、ステップS204において、計算機能104は、複数のパラメータと各プラークの特性により決められる複数のパラメータに対応する複数のプラークの重み付け値に基づいて、最適なビュー角度を計算する。
ここで、「最適なビュー角度」はOVAと略称され、X線画像を収集する過程に用いられ、通常はα(LAO/RAO)とβ(CRA/CRU)との2つの角度を含む。
図5に示すように、OVMは「最適なビュー角度図」の略語であり、1つの関数Fparameter(α,β)として定義可能であり、該関数は2つのアーム角α(LAO/RAO)とβ(CRA/CRU)を変量として用いることにより、ある角度でのパラメータ(透視短縮率、重畳率、狭窄率、変位量、分岐角度)の値を計算する。OVMにおいて最適パラメータ値を見つけることにより最適なビュー角度(OVA)を得る。なお、図5においては、点ごと(角度ごと)に透視短縮率を示し、透視短縮率を5つの範囲に区分けして色付けしたグラフを示す。
複数のパラメータは、血管の透視短縮率、重畳率、狭窄率、変位量、分岐角度から選ばれる全て又は任意の複数である。複数の重み付け値はそれぞれ複数のパラメータに対応し、また複数の重み付け値は複数のプラークの各々の特性に基づいて特定されるものである。
前述した通り、本実施形態において、最適なビュー角度は、透視短縮率、重畳率、狭窄率、変位量、分岐角度をパラメータとする各関数Fparameter(α,β)を総合的に考慮することにより特定される。即ち、上記した式(1)に示すように、透視短縮率、重畳率、狭窄率、変位量、分岐角度の各関数の値の和(argmin)が最小となる場合、αとβに基づく最適なビュー角度を特定できる。
以下では、図6~図10を参照しながら本実施形態における各パラメータの意味を具体的に説明する。
図6は、パラメータの1つである血管の透視短縮率を示す概略図である。図7は、パラメータの1つである血管の重畳率を示す概略図である。図8は、パラメータの1つである血管の狭窄率を示す概略図である。図9は、パラメータの1つである血管の変位量を示す概略図である。図10は、パラメータの1つである血管の分岐角度を示す概略図である。
図6に示すように、パラメータの1つである血管の透視短縮率は、特定のビュー角度から血管を観察する場合、異なる状態での血管が1つの画像平面に投影された時にその2次元投影が最長となる場合の2次元投影に対する短縮率を示すものである。最適なビュー角度を考慮する場合、折り畳みがない時の本当の長さの血管を観察するために、透視短縮率が小さいことが好ましい。
図7に示すように、パラメータの1つである血管の重畳率は血管の間の重畳率を示すためのものである。図7の左側と右側にはそれぞれαとβが異なる値である場合の重畳率が例示されており、図7の左側の図においてαとβはそれぞれ69度、55度であり、この場合の血管の間には重畳がなく、重畳率が0%である。一方、図7の右側の図においてαとβはそれぞれ3度、38度であり、この場合の血管の間の重畳率が35%である。最適なビュー角度を考慮する場合、観察する時に他の血管にもたらされる影響を小さくするために、重畳率が小さいことが好ましい。
図8に示すように、血管壁内にはプラークの堆積が存在するため、プラーク堆積が存在する部分の血管内径が狭くなる。最適なビュー角度を考慮する場合、望ましいのはプラーク堆積が多く、即ち血管内径が最も狭い部分を観察することである。従って、狭窄率が大きいことが好ましい。しかし、本実施形態においては、最適なビュー角度αとβを特定する時に計算するのは、各関数Fparameterの最小値であるので、数式1に代入するFstenosis(α、β)は狭窄率の逆数である。
図9に示すように、心臓の拍動に伴って、血管(例えば、関心領域)の1つの心拍周期における位置は変化している。例えば、投影1においてPSで示す収縮期のプラークと投影2においてPDで示す拡張期のプラークとの位置の差が大きい。最適なビュー角度を考慮する場合、望ましいのは、モーションアーティファクトを回避できるように、血管(例えば、関心領域であってもよい)の変位量を小さくすることである。本実施形態では収縮期と拡張期との2枚の3D画像を用いて血管の変位量を測定しているが、心拍周期全体の3D画像を分析して、血管の変位量を平均化した後の最小値を取得してもよい。
図10に示すように、図面には、(a)、(b)で血管の2種の異なる分岐角度を示すものが示されている。(a)において血管の2つのサブブランチ1、2の距離が近く、(b)において血管の2つのサブブランチ1、2の距離が遠い。(a)、(b)を比較して自明であるように、(b)において血管の分岐角度が大きい。最適なビュー角度を考慮する場合、分岐部位での血管分岐の間の関係をはっきりと検査することを可能とするために、且つインターベンション手術において、2つの血管にステントを挿入し易く、2つの血管が互いに影響しないようにするために、血管の分岐角度が大きいことが好ましい。しかし、本実施形態においては、最適なビュー角度αとβを特定する時に計算されるのは、各関数Fparameterの最小値であるので、数式1に代入するFadjacentspacing(α、β)は分岐角度の逆数である。
本実施形態の医用画像処理方法において、血管の分岐部位に複数のプラークが存在する分岐に対して関心領域を設定し、関心領域に対してプラークの位置及び特性を認識し、特性に基づいてプラークのランク付けをし、異なる特性(ランク付け)のプラークに異なる重み付け値を付与し、複数のパラメータと複数の重み付け値に基づいて、最適なビュー角度を決める。これにより、血管の分岐部位に複数プラークが存在する場合についても、最適なビュー角度で観察することができる。
(変形例1)
第1の実施形態の変形例として、医用画像処理装置1には、計算した最適なビュー角度を表示する表示制御機能をさらに備えてもよい。なお、表示制御機能は、ビュー角度に基づいてDSA画像又はDA画像を取得すると共に、取得したDSA画像又はDA画像と3D画像を重畳表示することが好ましい。すなわち、図示しないメモリが表示制御機能に相当するプログラムを記憶し、処理回路100が、メモリから表示制御機能に相当するプログラムを読み出して実行することにより、ディスプレイに対する種々の表示を制御する。なお、表示先のディスプレイは、医用画像処理装置1が備えるディスプレイ(不図示)でもよく、或いは、ネットワークを介して接続されるディスプレイでもよい。
ここで、3D画像は被検体の全体画像であってもよく、血管の全体又は一部の画像であってもよく、操作者が選択した関心領域の画像であってもよい。
図11は、ビュー角度を最適なビュー角度に調整した場合の、血管のDSA画像、及び血管内超音波の方式で表示された、レジストレーションした後の血管の断面を示す概略図である。図11において最左側に位置する図は、ビュー角度を最適なビュー角度に調整した場合の血管のDSA画像である。実際の操作において操作者は常にDSA画像を観察用図として用いるため、ビュー角度が最適なビュー角度である場合の血管のDSA画像を表示することが好ましい。また、画像において関心領域設定機能101により設定された3D画像の関心領域を重畳表示する。DSA画像とCTイメージング又はMRイメージング等に基づいて得られた3D画像とを重畳表示することにより、DSA画像において最適なビュー角度での血管の分岐部位の複数のプラークの位置及び特性を直観的且つ正確に観察することができる。
図11の真中と右側に上下2段で示す図は最適なビュー角度での血管内超音波(IVUS)の方式で表示されたレジストレーションした後の血管の断面の概略図である。上段と下段の図は、分岐された各血管における断面をそれぞれ示す。図11の左側に示すDSA画像に基づいて、DSA画像とIVUS画像との間にレジストレーションを行うことにより、IVUSモーダルなどの他のモーダルであっても血管が最適なビュー角度である各プラークの位置及び特性を表示することができる。
また、本変形例ではビュー角度を最適なビュー角度に調整した場合の血管のDSA画像のみが例示されているが、これに限らず、ビュー角度を最適なビュー角度に調整した場合のDA(Digital Angiography、ディジタルアンジオグラフィ)画像を用いてもよい。
なお、レジストレーションは、DSA画像(又はDA画像)とIVUS画像を除いた他のモーダルで行われてもよい。
変形例1の医用画像処理装置1によれば、DSA画像又はDA(Digital Angiography、ディジタルアンジオグラフィ)画像においてプラークの3D画像を重畳表示することができ、操作者を支援してステント計画及びステントインターベンション手術において複数のプラークを有する分岐部位の形態及びプラークの特性を正確且つ全面的に把握することができるため、精確にステントを挿入するか、或いはプラーク部分を処理することも可能になる。
(変形例2)
上述した実施形態では、関心領域における全てのプラークを表示しているが、全てのプラークが何れも操作者が関連を持つものであるわけではないことがある。この場合に、該プラークの重み付け値を手動的に低く調整するか、或いは操作者が関心を持たないプラークの表示を直接にオフにすることができる。
また、表示制御機能は重み付け値設定機能103により設定された各プラークが有する重み付け値を表示してもよく、上述のように、各プラークに付与する重み付け値は各プラークの特性により決められる。しかし、全てのパラメータの重み付け値が同一値であることが望ましくないか、又は一部のパラメータの重みを増加或いは低減することが望ましいことがある。この場合に、プラークのランク(プラーク特性)によって各プラークの重み付け値を特定した後に、操作者が実際の必要(例えば、手術類型)及び経験などに応じて各プラークの重み付け値を微調整してもよい。なお、プラークのランク(プラーク特性)によって各プラークの重み付け値を特定した後に、操作者が実際の必要(例えば、手術類型)などに応じて各パラメータ(透視短縮率、重畳率、狭窄率、変位量、分岐角度)に対応する重み付け値の大きさを微調整してもよい。
図12は、本実施形態の変形例2の医用画像処理装置1の処理フローの概略図である。図12では、矢印を用いて医用画像処理装置の処理順次を示す。
図12に示すように、まず、複数プラークを有する分岐領域にROIを設置し、ROI領域における複数のプラークをターゲットプラークとする。
そして、認識した複数のターゲットプラークを強調表示する。ここで、例えば、複数のプラークに番号を付け、操作者が必要に応じて番号に従ってターゲットプラークを変更するように一部の強調表示されたプラークをオン又はオフにすることを可能にする。即ち、表示制御機能は、複数のプラークに対して、最適化されたビュー角度で表示を行ってもよく、複数のプラークにおける各プラークに対して、最適化されたビュー角度で表示を行ってもよく、当然、複数のプラークにおける一部のプラークに対して、最適化されたビュー角度で表示を行ってもよい。
続いて、重み付け値設定機能103が重み付け値を計算すると共に、表示制御機能によって重み付け値を操作者に表示する(図12における表を参照)。操作者が必要に応じて、行を単位として複数のプラーク(本例ではプラーク1~4)におけるいずれか又は幾つかの重み付け値を手動的に調節することができ、また列を単位として複数のパラメータ(本例では透視短縮率、重畳率、狭窄率、変位量、分岐角度)におけるいずれか又は幾つかの重み付け値を手動的に調節することもでき、また行、列の方式に係らず表におけるいずれか又は幾つかの重み付け値を手動的に調節することもできる。
その後、最適なビュー角度を計算すると共に、最適なビュー角度を操作者に示す。
最後に、最適なビュー角度をCアームX線診断装置に適用して、ライブDSA画像を得ると共にユーザに融合/レジストレーションした後のマルチモーダル画像(本例ではDSA画像とIVUS画像)を示す。
変形例2の医用画像処理装置1によれば、操作者に、実際の必要に応じてターゲットプラークを調整させるか、又はターゲットプラーク或いは一部のパラメータの重み付け値を調整させることができる。これにより、操作者が実際の必要に応じて最適なビュー角度を調整できるように、表示の融通性を向上させることが可能である。
(変形例3)
上述した実施形態では、パラメータとして、透視短縮率と、重畳率と、狭窄率と、変位量と、分岐角度とを用いる場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、その他の指標をパラメータとして用いる場合でもよい。例えば、血管におけるポジティブリモデリングをターゲットとする場合には、ポジティブリモデリング率をパラメータとして用いる場合でもよい。
図13は、パラメータの1つである血管のポジティブモデリング率を示す概略図である。図13に示すように、血管のポジティブモデリングは、血管内腔の径は変化しないが、プラークの生成・伸展に伴って血管径が拡大する。最適なビュー角度を考慮する場合、望ましいのはプラークの堆積が多く、血管壁の厚みが最も厚い部分を観察することである。従って、図13に示すポジティブリモデリング率が大きいことが好ましい。しかし、本実施形態においては、最適なビュー角度αとβを特定する時に計算するのは、各関数Fparameterの最小値であるので、ポジティブリモデリング率を上記した式(1)に用いる場合には、代入するFremodeling(α、β)はポジティブリモデリング率の逆数である。
上述したように、本実施形態に用いられるパラメータは種々の指標を用いることができる。これらの指標は、ターゲットとするプラークの病理形態(ネガティブリモデリング、浮腫、水腫、腫瘍、ポリープなど)に応じて、適宜、取捨選択される場合でもよい。例えば、大腸の生じた複数のポリープを観察する場合の最適なビュー角度を計算する場合には、透視短縮率と重畳率のみが用いられる場合でもよい。
(変形例4)
上述した実施形態では、単一のCアームによる最適なビュー角度を計算する場合について説明した。しかしながら、複数のアームによって複数の角度からX線画像が収集することが可能な場合、各アームにおける最適なビュー角度を計算する場合でもよい。例えば、医用画像処理装置1によって計算された角度でX線画像を収集するX線診断装置が、ステレオタイプ(バイプレーン)である場合、複数のプラークの最適なビュー角度を、2つのアームでそれぞれ計算する場合でもよい。
図12に示す4つのプラークをターゲットする場合を一例に挙げて説明する。例えば、図12に示す4つのプラークに対して、操作者が、プラーク1及びプラーク3を含む関心領域1と、プラーク2及びプラーク4を含む関心領域2とを指定する。関心領域設定機能101は、操作者によって指定された関心領域1及び関心領域2をそれぞれ設定する。認識機能102、重み付け値設定機能103、計算機能104は、関心領域設定機能101によって設定された関心領域1及び関心領域2に対して、上述した処理をそれぞれ実行する。
これにより、計算機能104は、関心領域1に含まれるプラーク1及びプラーク3を観察するのに最適なビュー角度と、関心領域2に含まれるプラーク2及びプラーク4を観察するのに最適なビュー角度とをそれぞれ計算することができる。表示制御機能は、関心領域1及び関心領域2のそれぞれについて、上述した種々の情報を表示させることができる。そして、ステレオタイプのX線診断装置は、医用画像処理装置1から受信した角度情報に基づいて、各アームの角度を制御する。
(第2の実施形態)
上述した第1の実施形態及び変形例1~変形例4では、各処理を医用画像処理装置1が実行する場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、上述した各処理がX線診断装置によって実行される場合でもよい。すなわち、X線診断装置が、収集部と、関心領域設定部と、認識部と、重み付け値設定部と、計算部とを有する。収集部は、被検体の3D画像を収集する。関心領域設定部は、前記被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定する。認識部は、前記関心領域に対して、前記複数のプラークのそれぞれの位置及び特性を認識する。重み付け値設定部は、認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定する。計算部は、前記複数のパラメータと前記複数の重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する。
図14は、第2の実施形態に係るX線診断装置を示すブロック図である。図14に示すように、X線診断装置10は、X線高電圧装置11と、X線管12と、X線絞り器13と、天板14と、Cアーム15と、X線検出器16と、メモリ17と、ディスプレイ18と、入力インターフェース19と、処理回路20とを備える。
X線高電圧装置11は、処理回路20による制御の下、X線管12に高電圧を供給する。例えば、X線高電圧装置11は、変圧器(トランス)及び整流器等の電気回路を有し、X線管12に印加する高電圧を発生する高電圧発生装置と、X線管12が照射するX線に応じた出力電圧の制御を行うX線制御装置とを有する。なお、高電圧発生装置は、変圧器方式であってもよいし、インバータ方式であってもよい。
X線管12は、熱電子を発生する陰極(フィラメント)と、熱電子の衝突を受けてX線を発生する陽極(ターゲット)とを有する真空管である。X線管12は、X線高電圧装置11から供給される高電圧を用いて、陰極から陽極に向けて熱電子を照射することにより、X線を発生する。
X線絞り器13は、X線管12により発生されたX線の照射範囲を絞り込むX線絞りと、X線管12から曝射されたX線を調節するフィルタとを有する。
X線絞り器13におけるX線絞りは、例えば、スライド可能な4枚の絞り羽根を有する。X線絞りは、絞り羽根をスライドさせることで、X線管12が発生したX線を絞り込んで被検体Pに照射させる。ここで、絞り羽根は、鉛などで構成された板状部材であり、X線の照射範囲を調整するためにX線管12のX線照射口付近に設けられる。
X線絞り器13におけるフィルタは、被検体Pに対する被曝線量の低減とX線画像データの画質向上を目的として、その材質や厚みによって透過するX線の線質を変化させ、被検体Pに吸収されやすい軟線成分を低減したり、X線画像データのコントラスト低下を招く高エネルギー成分を低減したりする。また、フィルタは、その材質や厚み、位置などによってX線の線量及び照射範囲を変化させ、X線管12から被検体Pへ照射されるX線が予め定められた分布になるようにX線を減衰させる。
例えば、X線絞り器13は、モータ及びアクチュエータ等の駆動機構を有し、後述する処理回路20による制御の下、駆動機構を動作させることによりX線の照射を制御する。例えば、X線絞り器13は、処理回路20から受け付けた制御信号に応じて駆動電圧を駆動機構に付加することにより、X線絞りの絞り羽根の開度を調整して、被検体Pに対して照射されるX線の照射範囲を制御する。また、例えば、X線絞り器13は、処理回路20から受け付けた制御信号に応じて駆動電圧を駆動機構に付加することにより、フィルタの位置を調整することで、被検体Pに対して照射されるX線の線量の分布を制御する。
天板14は、被検体Pを載せるベッドであり、図示しない寝台の上に配置される。なお、被検体Pは、X線診断装置10に含まれない。例えば、寝台は、モータ及びアクチュエータ等の駆動機構を有し、後述する処理回路20による制御の下、駆動機構を動作させることにより、天板14の移動・傾斜を制御する。例えば、寝台は、処理回路20から受け付けた制御信号に応じて駆動電圧を駆動機構に付加することにより、天板14を移動させたり、傾斜させたりする。
Cアーム15は、X線管12及びX線絞り器13と、X線検出器16とを、被検体Pを挟んで対向するように保持する。例えば、Cアーム15は、モータ及びアクチュエータ等の駆動機構を有し、後述する処理回路20による制御の下、駆動機構を動作させることにより、回転したり移動したりする。例えば、Cアーム15は、処理回路20から受け付けた制御信号に応じて駆動電圧を駆動機構に付加することにより、X線管12及びX線絞り器13と、X線検出器16とを被検体Pに対して回転・移動させ、X線の照射位置や照射角度を制御する。なお、図14では、X線診断装置10がシングルプレーンの場合を例に挙げて説明しているが、実施形態はこれに限定されるものではなく、バイプレーンの場合であってもよい。
X線検出器16は、例えば、マトリクス状に配列された検出素子を有するX線平面検出器(Flat Panel Detector:FPD)である。X線検出器16は、X線管12から照射されて被検体Pを透過したX線を検出して、検出したX線量に対応した検出信号を処理回路20へと出力する。なお、X線検出器16は、グリッド、シンチレータアレイ及び光センサアレイを有する間接変換型の検出器であってもよいし、入射したX線を電気信号に変換する半導体素子を有する直接変換型の検出器であっても構わない。
メモリ17は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。例えば、メモリ17は、処理回路20によって収集されたX線画像データを受け付けて記憶する。また、メモリ17は、処理回路20によって読み出されて実行される各種機能に対応するプログラムを記憶する。なお、メモリ17は、X線診断装置10とネットワークを介して接続されたサーバ群(クラウド)により実現されることとしてもよい。
ディスプレイ18は、各種の情報を表示する。例えば、ディスプレイ18は、処理回路20による制御の下、操作者の指示を受け付けるためのGUIや、各種のX線画像を表示する。例えば、ディスプレイ18は、液晶ディスプレイやCRTディスプレイである。なお、ディスプレイ18はデスクトップ型でもよいし、処理回路20と無線通信可能なタブレット端末等で構成されることにしても構わない。
入力インターフェース19は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路20に出力する。例えば、入力インターフェース19は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック、操作面へ触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一体化されたタッチスクリーン、光学センサを用いた非接触入力回路、音声入力回路等により実現される。例えば、入力インターフェース19は、部分透視モードを実行するためのスイッチや、通常透視モードを実行するためのスイッチを含む。
ここで、入力インターフェース19は、処理回路20と無線通信可能なタブレット端末等で構成されることにしても構わない。また、入力インターフェース19は、マウスやキーボード等の物理的な操作部品を備えるものだけに限られない。例えば、X線診断装置10とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号を処理回路20へ出力する電気信号の処理回路も入力インターフェース19の例に含まれる。
処理回路20は、収集機能20a、出力機能20b、制御機能20c、関心領域設定機能20d、認識機能20e、重み付け値設定機能20f、計算機能20gを実行することで、X線診断装置10全体の動作を制御する。なお、収集機能20aは、収集部の一例である。
例えば、処理回路20は、メモリ17から収集機能20aに相当するプログラムを読み出して実行することにより、X線画像データを収集する。例えば、収集機能20aは、X線高電圧装置11を制御し、X線管12に供給する電圧を調整することで、被検体Pに対して照射されるX線量やオン/オフを制御する。
また、例えば、収集機能20aは、X線絞り器13の動作を制御し、X線絞りが有する絞り羽根の開度を調整することで、被検体Pに対して照射されるX線の照射範囲を制御する。具体的には、収集機能20aは、X線絞りにおける複数の絞り羽根をスライドさせることにより、複数の絞り羽根で形成される開口部の形状、サイズ、位置を任意に変化させることができる。
また、収集機能20aは、X線絞り器13の動作を制御し、フィルタの位置を調整することで、X線の線量の分布を制御する。例えば、収集機能20aは、入力インターフェース19を介してユーザが設定した位置にフィルタを移動させて、X線の線量の分布を制御する。また、収集機能20aは、Cアーム15の動作を制御することで、Cアーム15を回転させたり、移動させたりする。また、例えば、収集機能20aは、寝台の動作を制御することで、天板14を移動させたり、傾斜させたりする。
また、収集機能20aは、X線検出器16から受信した検出信号に基づいて投影データを生成し、生成した投影データをメモリ17に格納する。また、収集機能20aは、メモリ17が記憶する投影データに対して各種画像処理を行なうことで、X線画像を生成する。また、収集機能20aは、X線画像に対して、例えば、画像処理フィルタによるノイズ低減処理や、散乱線補正を実行する。また、収集機能20aは、回転撮影によって収集した投影データを用いてボリュームデータを再構成し、再構成したボリュームデータからX線画像を生成する。
また、処理回路20は、メモリ17から出力機能20bに相当するプログラムを読み出して実行することにより、処理回路20による処理結果を外部へ出力する。例えば、出力機能20bは、収集機能20aによって収集されたX線画像データを外部装置へ出力する。
また、処理回路20は、メモリ17から制御機能20cに相当するプログラムを読み出して実行することにより、ディスプレイ18にGUIやX線画像を表示させる。例えば、制御機能20cは、収集機能20aの制御によって収集されたX線画像などをディスプレイ18に表示させる。また、制御機能20cは、関心領域設定機能20d、認識機能20e、重み付け値設定機能20f、計算機能20gによる処理結果をディスプレイ18に表示させる。すなわち、制御機能20cは、上述した表示制御機能と同様の処理を実行する。
また、処理回路20は、関心領域設定機能20d、認識機能20e、重み付け値設定機能20f及び計算機能20gに相当するプログラムを読み出して実行することにより、上述した種々の処理を実行する。すなわち、関心領域設定機能20dは、上述した関心領域設定機能101と同様の処理を実行する。また、認識機能20eは、上述した認識機能102と同様の処理を実行する。また、重み付け値設定機能20fは、上述した重み付け値設定機能103と同様の処理を実行する。また、計算機能20gは、上述した計算機能104と同様の処理を実行する。
図14に示すX線診断装置10においては、各処理機能がコンピュータによって実行可能なプログラムの形態でメモリ17へ記憶されている。処理回路20は、メモリ17からプログラムを読み出して実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路20は、読み出したプログラムに対応する機能を有することとなる。なお、図14においては、収集機能20a、出力機能20b、制御機能20c、関心領域設定機能20d、認識機能20e、重み付け値設定機能20f及び計算機能20gの各処理機能が単一の処理回路20によって実現される場合を示したが、実施形態はこれに限られるものではない。例えば、処理回路20は、複数の独立したプロセッサを組み合わせて構成され、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。また、処理回路20が有する各処理機能は、単一又は複数の処理回路に適宜に分散又は統合されて実現されてもよい。
上述した第1の実施形態及び第2の実施形態の説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、あるいは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサはメモリに保存されたプログラムを読み出し実行することで機能を実現する。
なお、上述した実施形態においては、単一のメモリが各処理機能に対応するプログラムを記憶するものとして説明した。しかしながら、複数のメモリを分散して配置し、処理回路は、個別のメモリから対応するプログラムを読み出す構成としても構わない。また、メモリにプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。
上述した実施形態に係る各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更に、各装置にて行われる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現されうる。
また、上述した実施形態で説明した医用画像処理方法は、予め用意された医用画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この医用画像処理プログラムは、インターネット等のネットワークを介して配布することができる。また、この制御プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVD等のコンピュータで読み取り可能な非一過性の記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくとも一つの実施形態によれば、最適なビュー角度で複数のプラークを観察することができる。
また、以上の実施形態に関し、さらに以下の付記を記す。
(付記1)複数プラークの視覚化表示のための医用画像処理方法であって、
被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定し、
前記関心領域に対して、プラークの位置及び特性を認識し、
認識結果に基づいて、複数のパラメータに対応する複数の重み付け値を設定し、
前記複数のパラメータと前記複数の重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する、
ことを含む、医用画像処理方法。
(付記2)計算された前記ビュー角度を表示させることをさらに含む、付記1に記載の医用画像処理方法。
(付記3)計算された前記ビュー角度に基づいてDSA画像又はDA画像を取得すると共に、取得したDSA画像又はDA画像と前記3D画像を重畳表示させる、付記2に記載の医用画像処理方法。
(付記4)前記特性は、脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分の少なくともいずれかである、付記1~3のいずれか1つに記載の医用画像処理方法。
(付記5)前記重み付け値は、前記特性に基づいて設定される、付記1~4のいずれか1つに記載の医用画像処理方法。
(付記6)前記複数のパラメータは、管状構造の透視短縮率、重畳率、狭窄率、変位量、分岐角度から選ばれる少なくとも2つのパラメータである、付記1~5のいずれか1つに記載の医用画像処理方法。
(付記7)前記複数のパラメータは、それぞれビュー角度を示す第1変量と第2変量の変更に応じて変更する、付記6に記載の医用画像処理方法。
(付記8)前記第1変量は、Cアームが被検体周りに回転するアーム角を示し、
前記第2変量は、Cアームが頭位置又は足位置にあるアーム角を示す、付記7に記載の医用画像処理方法。
(付記9)認識された前記プラークの位置を強調表示すると共に、ターゲットとする前記プラークを変更可能である、付記2に記載の医用画像処理方法。
(付記10)設定された前記重み付け値を表示させる、付記2に記載の医用画像処理方法。
(付記11)前記重み付け値は調整可能であり、
前記複数のパラメータと調整された重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する、付記1~10のいずれか1つに記載の医用画像処理方法。
(付記12)前記複数のプラークにおける各プラークに対して、最適化のビュー角度で表示を行う、付記2に記載の医用画像処理方法。
(付記13)前記複数のプラークの全てのプラークに対して、最適化のビュー角度で表示を行う、付記2に記載の医用画像処理方法。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 医用画像処理装置
10 X線診断装置
20a 収集機能
20c 制御機能
20d、101 関心領域設定機能
20e、102 認識機能
20f、103 重み付け値設定機能
20g、104 計算機能

Claims (14)

  1. 複数プラークの視覚化表示のための医用画像処理装置であって、
    被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定する関心領域設定部と、
    前記関心領域に対して、前記複数のプラークのそれぞれの位置及び特性を認識する認識部と、
    前記管状構造を投影した際の当該管状構造の状態を表す複数のパラメータに対して、プラークの特性に応じた重み付け値をそれぞれ設定する処理を、各位置のプラークごとに実行する重み付け値設定部と、
    前記管状構造の投影角度ごとの前記複数のパラメータに関する値前記複数のパラメータごとの前記重み付け値とに基づいて、プラークごとに対応する管状構造の投影角度に関する値を算出し、算出したプラークごとの値に基づいて、前記複数のプラークに対するビュー角度を計算する計算部と、
    を備える、医用画像処理装置。
  2. 前記計算部によって計算された前記ビュー角度を表示させる表示制御部をさらに備える、請求項1に記載の医用画像処理装置。
  3. 前記表示制御部は、前記ビュー角度に基づいてDSA画像又はDA画像を取得すると共に、取得したDSA画像又はDA画像と前記3D画像を重畳表示させる、請求項2に記載の医用画像処理装置。
  4. 前記特性は、脂質成分、石灰化成分、線維性又は線維化脂肪性又は壊死性のコア成分の少なくともいずれかである、請求項1~3のいずれか1つに記載の医用画像処理装置。
  5. 前記複数のパラメータは、前記管状構造の透視短縮率、重畳率、狭窄率、変位量、分岐角度から選ばれる少なくとも2つのパラメータである、請求項1~4のいずれか1つに記載の医用画像処理装置。
  6. 前記複数のパラメータは、それぞれビュー角度を示す第1変量と第2変量の変更に応じて変更する、請求項5に記載の医用画像処理装置。
  7. 前記第1変量は、Cアームが被検体周りに回転するアーム角を示し、
    前記第2変量は、Cアームが頭位置又は足位置にあるアーム角を示す、請求項6に記載の医用画像処理装置。
  8. 前記表示制御部は、認識された前記プラークの位置を強調表示すると共に、ターゲットとするプラークを変更可能である、請求項2に記載の医用画像処理装置。
  9. 前記表示制御部は、前記重み付け値設定部により設定された前記重み付け値を表示させる、請求項2に記載の医用画像処理装置。
  10. 前記重み付け値は調整可能であり、
    前記計算部は、前記複数のパラメータと調整された重み付け値に基づいて、前記複数のプラークに対するビュー角度を計算する、請求項1~9のいずれか1つに記載の医用画像処理装置。
  11. 前記表示制御部は、前記複数のプラークにおける各プラークに対して、最適化のビュー角度で表示を行う、請求項2に記載の医用画像処理装置。
  12. 前記表示制御部は、前記複数のプラークの全てのプラークに対して、最適化のビュー角度で表示を行う、請求項2に記載の医用画像処理装置。
  13. 複数プラークの視覚化表示のための医用画像処理方法であって、
    被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定し、
    前記関心領域に対して、複数のプラークの位置及び特性を認識し、
    前記管状構造を投影した際の当該管状構造の状態を表す複数のパラメータに対して、プラークの特性に応じた重み付け値をそれぞれ設定する処理を、各位置のプラークごとに実行し、
    前記管状構造の投影角度ごとの前記複数のパラメータに関する値前記複数のパラメータごとの前記重み付け値とに基づいて、プラークごとに対応する管状構造の投影角度に関する値を算出し、算出したプラークごとの値に基づいて、前記複数のプラークに対するビュー角度を計算する、
    ことを含む、医用画像処理方法。
  14. 被検体の3D画像を収集する収集部と、
    前記被検体の3D画像において、管状構造における複数のプラークを含むように関心領域を設定する関心領域設定部と、
    前記関心領域に対して、前記複数のプラークのそれぞれの位置及び特性を認識する認識部と、
    前記管状構造を投影した際の当該管状構造の状態を表す複数のパラメータに対して、プラークの特性に応じた重み付け値をそれぞれ設定する処理を、各位置のプラークごとに実行する重み付け値設定部と、
    前記管状構造の投影角度ごとの前記複数のパラメータに関する値前記複数のパラメータごとの前記重み付け値とに基づいて、プラークごとに対応する管状構造の投影角度に関する値を算出し、算出したプラークごとの値に基づいて、前記複数のプラークに対するビュー角度を計算する計算部と、
    を備える、X線診断装置。
JP2018237000A 2017-12-20 2018-12-19 医用画像処理装置、医用画像処理方法及びx線診断装置 Active JP7246915B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711389174.1A CN109949265B (zh) 2017-12-20 2017-12-20 医用图像处理装置及医用图像处理方法
CN201711389174.1 2017-12-20

Publications (2)

Publication Number Publication Date
JP2019111332A JP2019111332A (ja) 2019-07-11
JP7246915B2 true JP7246915B2 (ja) 2023-03-28

Family

ID=67005476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237000A Active JP7246915B2 (ja) 2017-12-20 2018-12-19 医用画像処理装置、医用画像処理方法及びx線診断装置

Country Status (2)

Country Link
JP (1) JP7246915B2 (ja)
CN (1) CN109949265B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091735A (ja) 2001-09-19 2003-03-28 Toshiba Medical System Co Ltd 画像処理装置
JP2008126070A (ja) 2006-11-22 2008-06-05 General Electric Co <Ge> 血管プラーク・ビューを自動的に識別して表示する方法及びシステム
JP2009542283A (ja) 2006-06-28 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 所定の最適なビューマップに基づくraについての最適な回転式軌跡決定方法
US20130016092A1 (en) 2011-06-16 2013-01-17 The Medipattern Coproration Method and system of generating a 3d visualization from 2d images
JP2015503416A (ja) 2012-01-06 2015-02-02 コーニンクレッカ フィリップス エヌ ヴェ 最適なデバイスナビゲーションのための血管系ビューのリアルタイム表示

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017284B2 (ja) * 2012-11-30 2016-10-26 東芝メディカルシステムズ株式会社 医用画像診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091735A (ja) 2001-09-19 2003-03-28 Toshiba Medical System Co Ltd 画像処理装置
JP2009542283A (ja) 2006-06-28 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 所定の最適なビューマップに基づくraについての最適な回転式軌跡決定方法
JP2008126070A (ja) 2006-11-22 2008-06-05 General Electric Co <Ge> 血管プラーク・ビューを自動的に識別して表示する方法及びシステム
US20130016092A1 (en) 2011-06-16 2013-01-17 The Medipattern Coproration Method and system of generating a 3d visualization from 2d images
JP2015503416A (ja) 2012-01-06 2015-02-02 コーニンクレッカ フィリップス エヌ ヴェ 最適なデバイスナビゲーションのための血管系ビューのリアルタイム表示

Also Published As

Publication number Publication date
JP2019111332A (ja) 2019-07-11
CN109949265A (zh) 2019-06-28
CN109949265B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
JP6325221B2 (ja) X線診断装置および医用画像処理装置
US11504082B2 (en) Blood vessel model display
US20220071584A1 (en) Medical image-processing apparatus, x-ray ct apparatus, and medical image-processing method performing fluid analysis to switch displayed color information
US10278662B2 (en) Image processing apparatus and medical image diagnostic apparatus
CN110740686B (zh) 医用图像处理装置、医用图像诊断装置及存储介质
JP7160659B2 (ja) 医用情報処理装置、医用情報処理システム及び医用情報処理方法
JP2018057835A (ja) 医用情報処理装置、x線ct装置及び医用情報処理プログラム
JP6933498B2 (ja) 医用情報処理装置、x線ct装置及び医用情報処理プログラム
JP7066415B2 (ja) 医用画像処理装置、医用画像診断装置及び医用画像処理プログラム
US11304669B2 (en) X-ray diagnosis apparatus, medical image processing apparatus, medical image processing system, and medical image processing method
JP7246915B2 (ja) 医用画像処理装置、医用画像処理方法及びx線診断装置
JP2017140365A (ja) 画像処理装置及び医用画像診断装置
US10842446B2 (en) Medical information processing apparatus, X-ray CT apparatus, and medical information processing method
JP6871007B2 (ja) 医用画像処理装置及び医用画像診断システム
JP2019072465A (ja) X線診断装置、医用画像処理装置、医用画像処理システム、及び医用画像処理プログラム
JP7534145B2 (ja) 医用画像処理装置、x線診断装置及びプログラム
JP7292871B2 (ja) 医用情報処理装置及びx線診断装置
US20220031277A1 (en) Medical image processing apparatus, x-ray diagnostic apparatus, and medical image processing method
JP2019136128A (ja) X線診断装置
US20240127450A1 (en) Medical image processing apparatus and non-transitory computer readable medium
JP7330701B2 (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
US20230190227A1 (en) Plaque burden indication on longitudinal intraluminal image and x-ray image
US20230181156A1 (en) Automatic segmentation and treatment planning for a vessel with coregistration of physiology data and extraluminal data
JP6943616B2 (ja) X線ct装置、医用情報処理装置及び医用情報処理プログラム
WO2019225605A1 (ja) 医用画像処理装置、医用画像診断装置及び医用画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7246915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150