JP7245344B2 - 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構 - Google Patents

無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構 Download PDF

Info

Publication number
JP7245344B2
JP7245344B2 JP2021544174A JP2021544174A JP7245344B2 JP 7245344 B2 JP7245344 B2 JP 7245344B2 JP 2021544174 A JP2021544174 A JP 2021544174A JP 2021544174 A JP2021544174 A JP 2021544174A JP 7245344 B2 JP7245344 B2 JP 7245344B2
Authority
JP
Japan
Prior art keywords
wlan
cellular
network
data
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021544174A
Other languages
English (en)
Other versions
JP2022519497A (ja
Inventor
チェン リ
ビニタ グプタ
カルロス コルデイロ
プニート ジェイン
ネカティ カンポラト
サンギータ エル バンゴラエ
ユン ヒョン ホ
アレクサンダー シロトキン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2022519497A publication Critical patent/JP2022519497A/ja
Application granted granted Critical
Publication of JP7245344B2 publication Critical patent/JP7245344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

(関連出願の相互参照)
本出願は、2019年1月29日に出願された米国特許仮出願第62/798,380号明細書の関連出願であり、米国特許法119条の下でこの仮出願に対する利益を主張し、その全体が参照により本明細書に組み込まれる。
様々な実施形態は、一般に、無線通信の分野に関連し得る。
本開示のいくつかの実施形態は、無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWi-Fiアクセスネットワークを収斂させる機構のための装置及び方法を含む。
いくつかの実施形態は、基地局(BS)を対象とする。BSは、セルラ分散ユニット(DU)と、セルラDUに結合されたセルラ中央ユニット(CU)と、セルラCUに結合された無線ローカルエリアネットワーク(WLAN)CUと、WLAN CUに結合され、1つ以上のユーザ機器(UE)測定又はUEイベント通知をWLAN CUに提供し、非アクセス層(NAS)シグナリングトランスポートを提供するように構成されたWLAN DUと、を含む。
BSは、結合されて収斂したCUを形成するセルラCU及びWLAN CUを更に含むことができ、収斂したCUは、セルラCU及びWLAN CUの各々によって共通してアクセスされる無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティを介してデータのトラフィック管理をサポートするために、一組のN2及びN3インタフェースをサポートする。
BSは、5Gコアネットワーク(5GC)及びWLANのポリシー制御をいずれかの方向に実施するように、更に構成されるN2インタフェースを更に含み得る。
BSは、RTAMのための5GCからのセルラCU上にポリシー規則を実施するように、更に構成されるN2インタフェースを更に含むことができる。
BSは、Xzインタフェースを介して結合されているセルラCU及びWLAN CUを更に含むことができ、Xzインタフェースは、セルラCU及びWLAN CUの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、セルラCU及びWLAN CUは各々、各々個別にアクセスされるRTAM論理エンティティを介して個別にデータのトラフィック管理をサポートする。
BSは、Xzインタフェースを介して結合されているセルラCU及びWLAN CUを更に含むことができ、XZインタフェースは、セルラCUとWLAN CUとの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、セルラCUが、セルラリンクを介したUEの初期アクセス及び無線アクセスネットワーク(RAN)レベル接続を可能にし、セルラCUは、RTAM論理エンティティを介してデータのトラフィック管理をサポートする。
BSは、Xzインタフェースを介して結合されているセルラCU及びWLAN CUを更に含むことができ、XZインタフェースは、セルラCUとWLAN CUとの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、WLAN CUが、WLANリンクを介したUEの初期アクセス及び無線アクセスネットワーク(RAN)レベル接続を可能にし、WLAN CUは、RTAM論理エンティティを介してデータのトラフィック管理をサポートする。
いくつかの実施形態は、基地局(BS)を動作させる方法を対象とする。方法は、BSによって、N2又はN3インタフェースを介して5Gコアネットワーク(5GC)と通信することと、BSによって、セルラリンク、無線ローカルエリア(WLAN)リンク、又はこれらの組み合わせを介してユーザ機器(UE)と通信することと、BSによって、N2又はN3インタフェースを介して、5GCとの間、そしてセルラリンク、WLANリンク、又はそれらの組み合わせを介して、UEとの間のデータのトラフィック管理を実行することとを含み得る。
方法は、セルラ分散ユニット(DU)によって実行されるセルラリンクを介してUEと通信することを含み得る。
方法は、WLAN DUによって実行されるWLANリンクを介してUEと通信することを含むことができる。
方法は、セルラ中央ユニット(CU)を介してセルラDUによって受信されたデータをルーティングすることを更に含み得る。
方法は、WLAN CUを介してWLAN DUによって受信されたデータをルーティングすることを更に含み得る。
方法は、セルラCU内から無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティによって、データのトラフィック管理を実行することを更に含み得る。
方法は、WLAN CU内からRTAM論理エンティティによってデータのトラフィック管理を実行することを更に含むことができる。
いくつかの実施形態は、記憶された命令を有する非一時的コンピュータ可読媒体であって、命令が、基地局(BS)装置によって実行されると、BS装置に、N2又はN3インタフェースを介して5Gコアネットワーク(5GC)と通信することと、セルラリンク、無線ローカルエリア(WLAN)リンク、又はそれらの組み合わせを介して、ユーザ機器(UE)と通信することと、N2又はN3インタフェースを介して5GCとの間、そしてセルラリンク、WLANリンク、又はそれらの組み合わせを介して、UEとの間の、データのトラフィック管理を実行することとを含む動作を実行させる、非一時的コンピュータ可読媒体に関する。
非一時的コンピュータ可読媒体は、セルラ分散ユニット(DU)を介してセルラリンクを介してUEと通信することと、WLAN DUを介してWLANリンクを介してUEと通信することと、を更に含む動作を含み得る。
非一時的コンピュータ可読媒体は、セルラ中央ユニット(CU)を介してセルラDUによって受信されたデータをルーティングすることを更に含む動作を更に含むことができる。
非一時的コンピュータ可読媒体は、WLAN CUを介してWLAN DUによって受信されたデータをルーティングすることを更に含む動作を含むことができる。
非一時的コンピュータ可読媒体は、セルラCU内から無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティによって、データのトラフィック管理を実行することを更に含む動作を更に含み得る。
非一時的コンピュータ可読媒体は、WLAN CU内からRTAM論理エンティティによって、データのトラフィック管理を実行することを更に含む動作を含むことができる。
実施形態による、並置展開におけるRAN収斂を示す。 実施形態による、非並置展開におけるRAN収斂を示す。 実施形態による、RANレベル収斂ソリューションにおける新規及び拡張されたインタフェースを示す。 実施形態による、セルラCU上にアンカーされるCP/UPのRAN収斂アーキテクチャを示す。 実施形態による、WLAN CU上にアンカーされたCP/UPのためのRAN収斂アーキテクチャを示す。 実施形態による、例示的なシステムアーキテクチャを示す。 実施形態による、別の例示的なシステムアーキテクチャを示す。 実施形態による、別の例示的なシステムアーキテクチャを示す。 いくつかの実施形態による、例示的なインフラストラクチャ機器のブロック図を示す。 いくつかの実施形態による、例示的なプラットフォームのブロック図を示す。 実施形態による、ベースバンド回路及びフロントエンドモジュールのブロック図を示す。 実施形態による、無線通信デバイスにおいて実施され得る例示的なプロトコル機能のブロック図を示す。 いくつかの実施形態による、例示的なコアネットワークのブロック図を示す。 実施形態による、ネットワーク機能仮想化をサポートするためのシステム構成要素のブロック図を示す。 様々な実施形態を実施するために利用することができる例示的なコンピュータシステムのブロック図を示す。 実施形態によるシステムを動作させる方法を示す。
実施形態の特徴及び利点は、図面と併せて以下に述べる詳細な説明から明らかになり、図面では、同様の参照符号は、全体を通して対応する要素を特定する。図面において、同様の参照番号は、一般に、同一の、機能的に類似の、及び/又は構造的に類似の要素を示す。要素が最初に現れる図面は、対応する参照番号における最も左の桁(複数可)によって示される。
以下の詳細な説明は、添付の図面を参照する。同じ参照番号が、同じ又は類似の要素を識別するために、異なる図面において使用される場合がある。以下の記載において、限定するためにではなく、説明の目的上、様々な実施形態の様々な態様の完全な理解を提供するために、特定の構造、アーキテクチャ、インタフェース、技法などの具体的な詳細を説明する。しかし、様々な実施形態の様々な態様が、これらの具体的な詳細から逸脱した他の実施例において実施され得ることは、本開示の利益を有する技術分野の当業者には明らかであろう。場合によっては、様々な実施形態の説明を不必要な詳細によって不明瞭にしないように、周知のデバイス、回路、及び方法の説明は省略される。本開示の目的のために、「A又はB」は、(A)、(B)、又は(A及びB)を意味する。
5G New Radio(NR)及び5G Coreを備えた3GPPの5Gセルラ技術、ならびに最新のWi-Fi技術であるWi-Fi 6は、大幅に強化された機能を有し、AR/VRなどの高度化モバイルブロードバンド(eMBB)、スマートメータリングなどの超大規模マシンタイプ通信(mMTC)、並びに自動運転及び産業オートメーションなどの超高信頼性低レイテンシ通信(URLLC)を含む、新たな及び新興の5G使用シナリオの要件を満たすように設計されている。5G技術とWi-Fi技術との間の収斂は、Wi-Fi技術及び5G技術からの一意かつ相補的な能力を活用することを可能にするために極めて重要になり、これらの技術の両方からのリソースを組み合わせて、5G使用量シナリオのスループット、カバレッジ、レイテンシ、信頼性、可用性、及び接続密度に関する要件の多様なセットを満たす。
本明細書では、Wi-Fiアクセス(WLAN)を5G new radio(NR)アクセスと収斂させるためのソリューションを無線アクセスネットワーク(RAN)レベルで説明し、これは、既存のソリューションを超える性能の差異、より速いデバイスモビリティ、より低いバックホールオーバヘッド、並びにより低いインフラストラクチャ及びデバイスコストを含むいくつかの利点を提供することができる。適用性には、NRとWLANアクセスの両方がモバイルネットワークオペレータ(MNO)によって展開される、又はNRとWLANアクセスの両方が企業によって展開される、又はいくつかの状況では、MNOがNRアクセスを展開し、企業がWLANアクセスを展開するユースケースが含まれるが、これらに限定されない。
現在の第3世代パートナーシッププロジェクト(3GPP)ソリューションは、5Gコアネットワーク内での5G及びWLANのインターワーキング/統合を可能にする。具体的には、リリース15は、N3IWF(非3GPPインターワーキング機能)を介した信頼できないWLANアクセスの5Gコアとの統合を提供する。リリース16は、TNGF(信頼できる非3GPPゲートウェイ機能)を介した5G Coreとの信頼できるWLANアクセスの統合を提供する。リリース16はまた、NR及びWLANアクセスリンクを介したトラフィックルーティングを管理するために、5Gコア内でアクセストラフィックステアリング、スイッチング、複製、及び分割(ATSSS)機能(以下「トラフィック管理」と呼ぶ)を提供する。
コアネットワーク(CN)レベルでWLANアクセスと5Gとの統合を提供する現在の3GPPソリューションには、以下の欠点があり、(1)ATSSSトラフィックルーティングソリューションは、5Gコアで実行されるため、無線/チャネル条件の変更に対する応答性が低く、ユーザプレーン(UP)の性能利得が制限され、(2)ATSSSソリューションは、制御プレーン(CP)のための性能利得を制限する制御プレーン(CP)データトラフィック管理のためのサポートを提供せず、(3)ATSSSソリューションは、下位層UPトラフィック管理のサポートを提供しない。UPトラフィック管理は、MP-TCPプロトコルを使用してTCPレベルでのみ達成することができ、(4)デバイス上に3GPPアイデンティティ及びSIM認証情報を有する5Gコアに接続するWi-Fiのみのデバイスのみをサポートすることができ、(5)デバイスに3GPPアイデンティティ及びSIM認証情報を持たないWi-Fiのみのデバイスをサポートせず、(6)TNGFを通じた信頼できるWLAN統合は、WLANがCPアンカーであることをサポートせず、これは、セルラのデッドスポットにおける継続的なCP接続を制限し、(7)5GコアとRANとの間で複製されたUPデータを搬送するためのより高いバックホールオーバヘッド、(8)CNベースの統合は、N3IWF及びTNF構成要素を展開する必要があるため、インフラストラクチャコストが高くなる。
本明細書に記載のソリューションは、(1)RAN内のWLANと5G技術の収斂、(2)RAN内のCP及びUPトラフィック管理、(3)CP/UPが5G NR(セルラアンカーされた)又はWLAN(WLANアンカーされた)のいずれかにアンカーされることを可能にし、WLAN又は5GからのCPデータが他の無線リンクを介して配信されることを可能にする相互アンカリングを提供する。
WLANと5G NRとの間のRANレベル収斂は、以下の利点を提供することができ、(1)より良好な信頼性、レイテンシの低減、より良好なリソース利用、スループットの向上、及び電力消費の低減に関して、CP及びUPの性能利得をもたらすチャネル条件の変更に対するより迅速な応答、(2)WLANと5G NRからの最新のRAN測定を利用するWLANと5G NRとの間のより高速なデバイスモビリティ、(3)データの単一のコピーが5GコアとRANとの間を移動するため、パケット重複のバックホールオーバヘッドが低減され、(4)RAN内の緊密な統合によるインフラストラクチャ及びデバイスコストの低減、(5)5G RANとWLANアクセスネットワークの両方のための共通管理ソリューション、(6)WLANアンカーソリューションを用いた企業及び非公衆ネットワーク展開のためのより良好な制御である。
本明細書に記載された技術の使用は、UEにおける制御プレーン(CP)及びUPトラフィックに関連し、関連付けられる。RANベースの収斂により、非アクセス層(NAS)又は無線リソース制御(RRC)CPメッセージは、WLANを介して配信することができ、これは、UEでWLAN CPトラフィックをキャプチャし分析することによって観察することができる。また、WLAN CPメッセージは、5G NRリンクを介して配信することができ、これはまたUEでNR CPトラフィックをキャプチャ及び分析することによって観察することができる。また、RANベースの収斂により、所与のプロトコルデータユニット(PDU)セッションのUPトラフィックは、ネットワーク及び/又はUE側でNR及びWLANリンクを介して分割することができる。これは、PDUセッションデータトラフィック管理がNRリンク及びWLANリンクを介して単一のDRB ID(データ無線ベアラID)に対して発生したかどうかを識別するために、ある特定のアプリケーション(例えば、YouTubeストリーミング)を実行している間に、UEでトラフィックをキャプチャし、パケットヘッダをリバースエンジニアリングすることによって観察することができる。
RAN収斂アーキテクチャ及びインタフェース
本明細書に記載のRAN収斂ソリューションでは、5G及びWLANは、図1に示すように、3GPPのgNB CU(Central Unit)/DU(Distributed Unit)分割アーキテクチャの下で収斂する。図1は、実施形態による、並置展開におけるRAN収斂を示す。Wi-Fiアクセスポイント(AP)/WLAN102は、セルラCU及びWLAN CU機能を含む収斂したCU104に接続するRAN内のDUとして統合される。WLAN CUは、従来のWLANコントローラ(WLC)機能を実装する。収斂した基地局(cNB)106は、1つ以上のセルラDU108、1つ以上のWLAN DU102、及び収斂したCU104を含み、CP及びUPのためにそれぞれ5GコアとインタフェースするN2及びN3の単一のセットをサポートする。収斂したCU104及びUEは、RANレベルのトラフィックアクセス管理(RTAM)論理エンティティによって示されるRAN内のトラフィック管理をサポートする。収斂したCU104は、セルラ又はWLANアクセス上に、UEごとにCP及びUPアンカーを提供する。収斂したCU104は、セルラ及びWLANアクセスを介してCP及びトラフィックルーティング機能(トラフィック管理を含む)を達成するための収斂層をサポートする。
WLAN CU及びセルラCUはまた、図2に示すように別々に展開され得る。図2は、実施形態による、非並置展開におけるRAN収斂を示す。このような非並置展開では、WLAN CU202は信頼できるものと仮定され、それは、CP及びUPのためのN2及びN3インタフェースを介して5GCと直接インタフェースする。非収斂NR RANに関して、セルラCU204はまた、CP及びUPのための5GコアとのN2及びN3インタフェースをそれぞれサポートする。WLAN CU202及びセルラCU204の両方は、RTAMによって示されるトラフィック管理機能をホストし、セルラ及びWLANアクセスを介してCP及びUPトラフィックルーティング機能を達成するために収斂層をサポートする。所与のUEについて、CU(セルラCU204又はWLAN CU202)のうちの一方は、そのCU上でRTAM機能及び収斂層をアクティブ化するCP及びUPのためのアンカーポイントとして機能することができる。
図3は、実施形態による、RANレベル収斂ソリューションにおける新規及び拡張されたインタフェースを示す。以下、インタフェースについて説明する。
図3インタフェース
Xz:セルラCUとWLAN CUとの間のCP及びUPデータ交換を可能にするためにセルラアクセスとWLANアクセスとの間で定義された新しいリファレンスポイント302。Xz302は、Xz-C及びXz-Uインタフェースを含む。
F1’:APの動作を制御及び管理し、AP及びUE測定並びにUEイベント通知をWLAN CUに提供し、NASシグナリングトランスポートを提供するための、WLAN CUとWi-Fi APとの間の新しいリファレンスポイント304。
N2:3GPP定義N2インタフェース306は、以下の追加機能を提供するように拡張され、(1)いずれかの方向における5GCとWLANとの間のポリシー制御、(2)RANレベルトラフィックアクセス管理(RTAM)のための5GCからのCUに対するポリシー/規則設定、(3)N2インタフェース306の1つのセットのみが、所与の時間において、収斂したRANと5Gのコアとの間でアクティブである。アクティブなN2インタフェース306は、アンカーポイントCUと5Gコアとの間にある。
5G NR 308:CP及びUPのための収斂層情報の搬送をサポートするための強化
WLANエアインタフェース310:CP及びUPのための収斂層情報の搬送をサポートするための強化
RAN収斂-相互アンカリング
RAN収斂ソリューションは、CP及びUPトラフィックのための相互アンカリングを可能にする。相互アンカリングは、所与のUEのCP及びUPのためのアンカーポイントとしてNR又はWLANアクセスのいずれかを使用する能力である。アンカーポイントCUは、マスタノード(MN)CUと呼ばれ、他の非MN CUは、セカンダリノード(SN)CUと呼ばれる。相互アンカリングは、WLAN上でNR CP(NAS又はRRC CP)を送信すること、又はNR上でWLAN CPを送信することを可能にすることができ、これにより、デバイス上の電力消費が改善され、WLANカバレッジを有するセルラデッドスポットでNR CP接続が継続される。
実施形態では、所与のUEは単一のアンカーポイントを有し、セルラCU又はWLAN CUのいずれかがアンカーとして機能することができる。アンカー選択は、無線測定、初期接続経路、及び/又はポリシー設定を含む1つ又は複数の基準に基づいてセルラCU又はWLAN CUによって行われ得る。現在のアンカーは、無線条件及びその内部設定に基づいてアンカーを変更することができる。デュアルコネクティビティUEの場合、5G CoreとのCP接続(N2)は、アンカーポイントCUと5G Coreとの間でのみ維持される。アンカーポイントCUは、CP(NAS CP、RRC CP、及びWLAN CPを含む)及びUPのためのRANレベルトラフィック管理(RTAM機能)を実行する。
UPの場合、マスタノード(MN)CU及び他のRAT CUの両方は、5Gコアをサポートするマスタノード(MN)及びセカンダリノード(SN)ベアラ/PDUセッションとのUP接続を有することができる。アンカーポイント/MN CUは、MN CUと5Gコアとの間に確立されたMN PDUセッションに対してUPトラフィック管理を実行する。SN CUは、SN CUと5Gコアとの間に確立されたSNベアラ/PDUセッションの2つの動作モードをサポートすることができ、モード1)SNベアラ/PDUセッションは、対応するSNアクセス(WLAN又はセルラ)を介してのみ転送され、モード2)SN CUは、SNベアラ/PDUセッションのトラフィック管理を実行する。これらの2つのモードのいずれが各SNベアラに使用されるかは、MN又はSN自体によって決定することができる。SN CUがトラフィック管理を実行する場合、SN CUは、セルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために収斂層をホストする。
アンカーとしてのセルラ
図4は、実施形態による、セルラCU上にアンカーされるCP/UPのRAN収斂アーキテクチャを示す。この場合、UEの初期アクセス及びRANレベル接続(RRC接続確立)は、セルラを介して行われ、UEの接続状態は、セルラリンクを介して維持される。また、UEの認証/登録及びPDUセッション確立は、セルラリンクを介して行われる。セルラCUは、5GコアとのCP接続(N2)を有し、NR及びWi-Fiアクセス(RTAM機能)に対してCP及びUPトラフィック管理を実行する。セルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために、セルラCU上に収斂層が追加される。NR CP(NAS又はRRC CP)は、WLANを介して送信することができ、又はWLAN CPは、RTAM機能及び収斂層を介してNRを介して送信することができる。セルラCUは、Xz302インタフェースを利用して、WLAN CUへCP/UPデータを転送する。セルラCUは、NRとWLANとの間のデバイスモビリティを提供する。
アンカーとしてのWLAN
図5は、実施形態による、WLAN CU上にアンカーされたCP/UPのためのRAN収斂アーキテクチャを示す。この場合、UEの初期アクセス及びRANレベル接続は、WLANを介して行われ、UEの接続状態は、WLANリンクを介して維持される。また、UEの認証/登録及びPDUセッション確立は、WLANリンクを介して行われる。WLAN CUは、5GコアとのCP接続性(N2 306)を有し、NR及びWi-Fiアクセス(RTAM機能)上でCP及びアップトラフィック管理を実行する。セルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために、WLAN CU上に収斂層が追加される。NR CP(NAS又はRRC CP)は、WLANを介して送信することができ、又はWLAN CPは、RTAM機能及び収斂層を介してNRを介して送信することができる。WLAN CUはXz302インタフェースを利用してCP/UPデータをセルラCUに伝送する。WLAN CUは、WLANとNRとの間のデバイスモビリティを提供する。
システム及び実装
図6は、いくつかの実施形態に係るネットワークのシステム600のアーキテクチャを示す。以下の説明は、LTEシステム規格及び3GPP技術仕様によって提供されるような5G又はNRシステム標準と併せて動作する例示的なシステム600について説明する。しかしながら、例示的な実施形態は、この点に関して限定されず、説明される実施形態は、将来の3GPPシステム(例えば、第6世代(6G))システム、IEEE802.16プロトコル(例えば、WMAN、WiMAXなど)などの、本明細書に記載の原理から恩恵を受ける他のネットワークに適用することができる。
図6に示すように、システム600は、UE601a及びUE601b(集合的に「UE601」と呼ばれる)を含む。この例では、UE601は、スマートフォン(例えば、1つ以上のセルラネットワークに接続可能な携帯式タッチスクリーンモバイルコンピューティングデバイス)として図示されているが、民生用デバイス、携帯電話、スマートフォン、機能電話、タブレットコンピュータ、ウェアラブルコンピュータデバイス、携帯情報端末(PDA)、ページャ、無線ハンドセット、デスクトップコンピュータ、ラップトップコンピュータ、インフュージョンインフォテメント(IVI)、車両内娯楽(ICE)デバイス、インストルメントクラスタ(IC)、ヘッドアップディスプレイ(HUD)デバイス、車載診断(OBD)デバイス、ダッシュトップモバイル機器(DME)、モバイルデータ端末(MDT)、電子エンジン管理システム(EEMS)、電子/エンジン制御ユニット(ECU)、電子エンジン/エンジン制御モジュール(ECM)、組み込みシステム、マイクロコントローラ、制御モジュール、エンジン管理システム(EMS)、ネットワーク化又は「スマート」電化製品、MTCデバイス、M2M、IoTデバイス、及び/又は同様のものなどの任意のモバイル又は非モバイルコンピューティングデバイスを含んでもよい。
いくつかの実施形態では、UE601のいずれかは、IoT UEを含むことができ、それは、短期UE接続を利用する低電力IoTアプリケーション用に設計されたネットワークアクセス層を含み得る。IoT UEは、PLMN、ProSe又はD2D通信、センサネットワーク、又はIoTネットワークを介して、MTCサーバ又はデバイスとデータを交換するためのM2M又はMTCなどの技術を利用することができる。M2Mデータ交換又はMTCデータ交換は、機械起動のデータの交換であってもよい。IoTネットワークは、相互に接続するIoT UEを記載し、それは、短期接続による、(インターネットインフラストラクチャ内の)一意に識別可能な埋め込み型コンピューティングデバイスを含み得る。IoT UEは、IoTネットワークの接続を容易にするために、バックグラウンドアプリケーション(例えば、キープアライブメッセージ、ステータス更新など)を実行してもよい。
UE601は、RAN610に接続されるように、例えば通信可能に結合されるように、構成され得る。実施形態では、RAN610は、NG RAN若しくは5G RAN、E-UTRAN、又はUTRAN若しくはGERANなどのレガシーRANであってもよい。本明細書で使用するとき、用語「NG RAN」などは、NR又は5Gシステム600で動作するRAN610を指し、用語「E-UTRAN」などは、LTE又は4Gシステム600で動作するRAN610を指してもよい。UE601は、それぞれ接続(又はチャネル)603及び接続604を利用し、これらは各々、物理通信インタフェース又は層(以下で更に詳細に議論する)を含む。
この実施例では、接続603及び604は、通信可能な結合を可能にするためのエアインタフェースとして示されており、GSMプロトコル、CDMAネットワークプロトコル、PTTプロトコル、POCプロトコル、UMTSプロトコル、3GPP LTEプロトコル、5Gプロトコル、NRプロトコル、及び/又は本明細書で論じる他の通信プロトコルのいずれかなどのセルラ通信プロトコルと一致し得る。本実施形態では、UE601は、更に、ProSeインタフェース605を介して通信データを直接交換することができる。ProSeインタフェース605は、代替的にSLインタフェース605と称されてもよく、PSCCH、PSSCH、PSDCH、及びPSBCHを含むがこれらに限定されない1つ以上の論理チャネルを含んでもよい。
UE601bは、接続607を介してAP606(「WLANノード606」「WLAN606」「WLAN端末606」、「WT606」などとも呼ばれる)にアクセスするように構成されていることが示されている。接続607は、任意のIEEE802.11プロトコルと合致する接続などのローカルワイヤレス接続を含むことができ、AP606は、WiFi(Wireless Fidelity)(登録商標)ルータを備えるであろう。本例では、AP606は、図示するように、ワイヤレスシステムのコアネットワークに接続せずにインターネットに接続される(以下で更に詳細に説明する)。様々な実施形態では、UE601b、RAN610及びAP606は、LWA動作及び/又はLWIP動作を利用するように構成することができる。LWA動作は、LTE及びWLANの無線リソースを利用するために、RANノード611a~611bによって構成されているRRC接続のUE601bを伴い得る。LWIP動作は、接続607を介して送信されたパケット(例えば、IPパケット)を認証及び暗号化するために、IPsecプロトコルトンネルを介してWLAN無線リソース(例えば、接続607)を使用してUE601bに関与し得る。IPsecトンネリングは、元のIPパケットの全体をカプセル化し、新しいパケットヘッダを追加することを含んでもよく、それによってIPパケットのオリジナルヘッダを保護することを含んでもよい。
RAN610は、接続603及び604を可能にする1つ以上のANノード又はRANノード611a及び611b(まとめて「RANノード611」又は「RANノード611」と呼ぶ)を含むことができる。本明細書で使用するとき、用語「アクセスノード」、「アクセスポイント」などは、ネットワークと1人以上のユーザとの間のデータ及び/又は音声接続のための無線ベースバンド機能を提供する機器を説明することができる。これらのアクセスノードは、BS、gNB、RANノード、eNB、NodeBs、RSUs、TRxP又はTRPなどと称される場合があり、地理的エリア(例えば、セル)内に有効通信範囲を提供する地上局(例えば、地上アクセスポイント)又はサテライト局を備えることができる。本明細書で使用するとき、用語「NG RANノード」などは、NR又は5Gシステム600(例えば、gNB)で動作するRANノード611を指してもよく、用語「E-UTRANノード」は、LTE又は4Gシステム600(例えば、eNB)で動作するRANノード611を指し得る。様々な実装形態によれば、RANノード611は、マクロセルと比較してより小さいカバレッジエリア、より小さいユーザ容量、又はより高い帯域幅を有するフェムトセル、ピコセル、又は他の同様のセルを提供するための、マクロセル基地局、及び/又は低電力(LP)基地局などの専用物理デバイスのうちの1つ以上として実装され得る。
いくつかの実装形態では、RANノード611の全て又は一部は、仮想ネットワークの一部としてサーバコンピュータ上で実行される1つ以上のソフトウェアエンティティとして実装されてもよく、このソフトウェアエンティティは、CRAN及び/又は仮想ベースバンドユニットプール(vBBUP)と称され得る。これらの実装形態では、CRAN又はvBBUPは、RRC及びPDCP層が、CRAN/vBBUPによって動作され、他のL2プロトコルエンティティは、個々のRANノード611によって動作されるPDCP分割などのRAN機能分割、RRC、PDCP、RLC、及びMAC層がCRAN/vBBUPによって動作され、PHY層が個別のRANノード611によって動作される、MAC/PHY分割、又はRRC、PDCP、RLC、MAC層、及びPHY層の上部がCRAN/vBBUPによって動作され、PHY層の下部が個々のRANノード611によって動作される、「下位PHY」分割を実装し得る。この仮想化されたフレームワークは、RANノード611の解放されたプロセッサコアが、他の仮想化されたアプリケーションを実行することを可能にする。いくつかの実装形態では、個々のRANノード611は、個々のF1インタフェース(図6に示されていない)を介してgNB-CUに接続された個々のgNB-DUを表し得る。これらの実装形態では、gNB-DUは、1つ以上のリモート無線ヘッド又はRFEM(例えば、図9を参照)を含むことができ、gNB-CUは、RAN610(図示せず)に配置されたサーバによって、又はCRAN/vBBUPと同様の方法でサーバプールによって動作することができる。追加的又は代替的に、RANノード611のうちの1つ以上は次世代eNB(ng-eNB)であってもよく、次世代eNBは、UE601に向けてE-UTRAユーザプレーン及び制御プレーンプロトコル端末を提供し、NGインタフェースを介して5GC(例えば、図8のCN820)に接続されるRANノードである。
V2Xシナリオでは、RANノード611のうちの1つ以上は、RSUとすることができるか、又はその役割を果たし得る。用語「Road Side Unit」又は「RSU」は、V2X通信に使用される任意の輸送インフラストラクチャエンティティを指し得る。RSUは、適切なRANノード又は静止(又は比較的静止)UEにおいて又はそれによって実装されてもよく、UEにおいて又はそれによって実装されるRSUは「UEタイプRSU」と呼ばれてもよく、eNBにおいて又はそれによって実装されるRSUは「eNBタイプRSU」と呼ばれてもよく、gNBにおいて又はそれによって実装されるRSUは「gNBタイプRSU」などと呼ばれてもよい。一例では、RSUは、通過車両UE601(vUE601)に接続性サポートを提供する路側に位置する無線周波数回路に結合されたコンピューティングデバイスである。RSUはまた、交差点マップ形状、交通統計、媒体、並びに進行中の車両及び歩行者の交通を検知及び制御するためのアプリケーション/ソフトウェアを記憶するための内部データ記憶回路を含むことができる。RSUは、5.9GHz Direct Short Range Communication(DSRC)帯域で動作して、衝突回避、トラフィック警告などの高速イベントに必要な非常に短い待ち時間の通信を提供することができる。追加的又は代替的に、RSUは、前述の短い待ち時間通信、並びに他のセルラ通信サービスを提供するために、セルラV2X帯域で動作することができる。追加的又は代替的に、RSUは、Wi-Fiホットスポット(2.4GHz帯域)として動作することができ、及び/又は1つ以上のセルラネットワークへの接続性を提供して、アップリンク及びダウンリンク通信を提供することができる。RSUのコンピューティングデバイス及び無線周波数回路の一部又は全ては、屋外設置に適した耐候性エンクロージャにパッケージ化することができ、交通信号コントローラ及び/又はバックホールネットワークに有線接続(例えば、イーサネット)を提供するためのネットワークインタフェースコントローラを含むことができる。
RANノード611のうちのいずれかは、エアインタフェースプロトコルを終結させることができ、UE601の第1の接触点とすることができる。いくつかの実施形態では、RANノード611のいずれも、RAN610のための様々な論理機能を果たすことができ、その機能は、限定されないが、無線ベアラ管理、アップリンク及びダウンリンク動的無線リソース管理、並びにデータパケットスケジューリング、並びにモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含む。
いくつかの実施形態によれば、UE601は、様々な通信技術に従ったマルチキャリア通信チャネルにより、OFDM通信信号を用いて、互いに又はRANノード611のいずれかと通信するように構成することができ、この様々な通信技術は、例えば、(例えば、ダウンリンク通信用の)OFDMA通信技術、又は(例えば、アップリンク及びProSe又はサイドリンク通信用の)SC-FDMA通信技術であるが、これらに限定されず、実施形態の範囲は、この点において限定されない。OFDM信号は、複数の直交サブキャリアを含むことができる。
いくつかの実施形態では、ダウンリンクリソースグリッドは、RANノード611のいずれかからUE601へのダウンリンク送信のために使用することができ、一方、アップリンク送信は同様の技術を利用することができる。グリッドは、リソースグリッド又は時間周波数リソースグリッドと呼ばれる時間周波数グリッドとすることができ、それは、各スロット内のダウンリンクの物理的リソースである。このような時間周波数平面表現は、OFDMシステムの一般的な慣習であり、それは無線リソース割り当ての直感的なものにする。リソースグリッドの各列及び各行は、それぞれ、1つのOFDMシンボル及び1つのOFDMサブキャリアに対応する。時間ドメイン内のリソースグリッドの持続時間は、無線フレーム内の1つのスロットに対応する。リソースグリッドの最小時間周波数単位は、リソースエレメントと表記する。各リソースグリッドは、多数のリソースブロックを含み、それは、リソースエレメントへの特定の物理チャネルのマッピングを説明する。各リソースブロックは、リソースエレメントの集合を含み、周波数ドメインにおいて、これは、現在割り当てられ得るリソースの最小量を表すことができる。このようなリソースブロックを用いて伝達されるいくつかの異なる物理ダウンリンクチャネルが存在する。
様々な実施形態によれば、UE601及びRANノード611、612は、認可媒体(「認可スペクトル」及び/又は「認可帯域」とも呼ばれる)及び無認可共有媒体(「無認可スペクトル」及び/又は「無認可帯域」とも呼ばれる)を介してデータ(例えば、送信及び受信)データを通信する。認可スペクトルは、約400MHz~約3.8GHzの周波数範囲で動作するチャネルを含んでもよく、無認可スペクトルは、5GHz帯域を含んでもよい。
無認可スペクトルで動作するために、UE601及びRANノード611、612は、LAA、eLAA、及び/又はfeLAA機構を使用して動作することができる。これらの実装では、UE601及びRANノード611、612は、無認可スペクトル内の1つ以上のチャネルが無認可スペクトルで送信する前に利用不可能であるか、又は別の方法で占有されているかどうかを判定するために、1つ以上の既知の媒体検知動作及び/又はキャリア検知動作を実行してもよい。媒体/キャリア検知動作は、listen-before-talk(LBT)プロトコルに従って実行することができる。
LBTは、機器(例えば、UE601、RANノード611、612など)が媒体(例えば、チャネル又はキャリア周波数)を検知し、媒体がアイドル状態であることが検知されたとき(又は、媒体内の特定のチャネルが占有されていないと検知されたとき)を送信する機構である。媒体検知動作は、チャネルが占有されているか又はクリアされているかどうかを決定するために、チャネル上の他の信号の有無を決定するために少なくともEDを利用するCCAを含んでもよい。このLBT機構により、無認可スペクトル及び他のLAAネットワークにおいて、セルラ/LAAネットワークが現用システムと共存することを可能にする。EDは、ある期間にわたって意図された送信帯域にわたってRFエネルギーを検知することと、検知されたRFエネルギーを所定の閾値又は設定された閾値と比較することを含んでもよい。
典型的には、5GHz帯域における現用システムは、IEEE802.11技術に基づいてWLANである。WLANは、CSMA/CAと呼ばれる、コンテンションベースのチャネルアクセス機構を採用する。ここで、WLANノード(例えば、UE601、AP606などの移動局(MS))が送信することを意図する場合、WLANノードは、送信前にCCAを最初に実行してもよい。更に、2つ以上のWLANノードがチャネルをアイドル状態として検知し、同時に送信する状況における衝突を回避するためにバックオフ機構が使用される。バックオフ機構は、CWS内でランダムに引き寄せられたカウンタであってもよく、これは、衝突の発生時に指数関数的に増加し、送信が成功したときに最小値にリセットされる。LAA用に設計されたLBT機構は、WLANのCSMA/CAと幾分類似している。いくつかの実装形態では、PDSCH又はPUSCH送信をそれぞれ含むDL又はUL送信バーストのためのLBT手順は、XECCAスロットとYECCAスロットとの間の長さが可変であるLAA競合ウィンドウを有することができ、X及びYは、LAAのためのCWSの最小値及び最大値である。一例では、LAA送信のための最小CWSは、9マイクロ秒(μs)であってもよいが、CWS及びMCOTのサイズ(例えば、送信バースト)は、政府規制要件に基づいてもよい。
LAA機構は、LTEアドバンストシステムのCA技術に基づいて構築されている。CAでは、各集約されたキャリアはCCと呼ばれる。CCは、1.4、3、5、10、15、又は20MHzの帯域幅を有することができ、最大5つのCCを集約することができ、従って、最大集約された帯域幅は100MHzである。FDDシステムでは、集約されたキャリアの数は、DLとULとで異なることがあり、UL CCの数は、DL要素キャリアの数以下である。場合によっては、個々のCCは、他のCCとは異なる帯域幅を有することができる。TDDシステムでは、CCの数及び各CCの帯域幅は、通常、DL及びULに対して同じである。
CAはまた、個々のCCを提供する個々のサービングセルを含む。例えば、異なる周波数帯域におけるCCは、異なる経路喪失を経験するので、サービングセルの有効通信範囲は異なり得る。一次サービスセル又はPCellは、UL及びDLの両方にPCCを提供することができ、RRC及びNAS関連のアクティビティを処理することができる。他のサービングセルはSCellと呼ばれ、各SCellは、ULとDLの両方に個別のSCCを提供し得る。PCCを変更することは、UE601がハンドオーバを受けることを必要とし得る一方、SCCは、必要に応じて追加及び除去され得る。LAA、eLAA、及びfeLAAでは、SCellの一部又は全部は、無認可スペクトル(「LAA SCell」と呼ばれる)で動作することができ、LAA SCellは、認可スペクトルで動作するPCellによって支援される。UEが2つ以上のLAA SCellで構成される場合、UEは、同じサブフレーム内の異なるPUSCH開始位置を示す、構成されたLAA SCell上でULグラントを受信することができる。
PDSCHは、ユーザデータ及び上位層シグナリングをUE601に搬送する。PDCCHは、とりわけ、PDSCHチャネルに関連するトランスポートフォーマット及びリソース割り当てに関する情報を搬送する。また、それは、アップリンク共有チャネルに関する送信フォーマット、リソース割り当て、及びHARQ情報について、UE601に通知することもできる。典型的には、ダウンリンクスケジューリング(制御及び共有チャネルリソースブロックをセル内のUE601bに割り当てる)は、UE601のいずれかからフィードバックされるチャネル品質情報に基づいて、RANノード611のいずれかで実行されてもよい。ダウンリンクリソース割り当て情報は、UE601の各々に対して使用される(例えば、割り当てられた)PDCCHで送信されてもよい。
PDCCHは、CCEを使用して制御情報を伝達する。リソースエレメントにマッピングされる前に、PDCCH複素数値シンボルは最初に、4つの組(quadruplets)に編成されてもよく、その後、レートマッチングのためのサブブロックインターリーバを用いて入れ替えられてもよい。各PDCCHを、これらのCCEのうちの1つ以上を用いて送信してもよく、各CCEは、REGとして知られる4つの物理リソースエレメントの9つのセットに対応することができる。4つの四位相偏移変調(QPSK)シンボルを各REGにマッピングしてもよい。PDCCHは、DCIのサイズ及びチャネル状態に応じて、1つ以上のCCEを用いて送信することができる。異なる数のCCE(例えば、アグリゲーションレベル、L=1、2、4、又は8)を有するLTEに定義される4つ以上の異なるPDCCHフォーマットが存在し得る。
いくつかの実施形態は、上記の概念の拡張である制御チャネル情報のためのリソース割り当てのための概念を使用することができる。例えば、いくつかの実施形態は、制御情報送信のためにPDSCHリソースを使用するEPDCCHを利用することができる。EPDCCHを、1つ以上のECCEを用いて送信してもよい。上記と同様に、各ECCEは、EREGとして知られる4つの物理リソースエレメントからなる9つのセットに対応し得る。ECCEは、一部の状況では、他の数のEREGを有してもよい。
RANノード611は、インタフェース612を介して互いに通信するように構成され得る。システム600がLTEシステム(例えば、CN620が図7のEPC720である場合)である実施形態では、インタフェース612はX2インタフェース612であり得る。X2インタフェースは、EPC620に接続する2つ以上のRANノード611(例えば、2つ以上のeNBなど)間、及び/又はEPC620に接続する2つのeNB間に定義されてもよい。いくつかの実装形態では、X2インタフェースは、X2ユーザプレーンインタフェース(X2-U)及びX2制御プレーンインタフェース(X2-C)を含むことができる。X2-Uは、X2インタフェースを介して転送されるユーザデータパケットのためのフロー制御機構を提供し得、eNB間のユーザデータの配信に関する情報を通信するために使用され得る。例えば、X2-Uは、MeNBからSeNBへ転送されるユーザデータのための特定のシーケンス番号情報と、ユーザデータのためのSeNBからUE601へのPDCP PDUのシーケンス配信の成功に関する情報と、UE601に配信されなかったPDCP PDUの情報と、UEユーザデータに送信するためのSeNBにおける現在の最小所望バッファサイズに関する情報などを提供し得る。X2-Cは、ソースeNBからターゲットeNBへのコンテキスト転送、ユーザプレーントランスポート制御等を含む、LTE内アクセスモビリティ機能と、負荷管理機能と、セル間干渉調整機能とを提供し得る。
システム600が5G又はNRシステム(例えば、CN620が図8の5GC820である場合)である実施形態では、インタフェース612はXnインタフェース612であり得る。Xnインタフェースは、5GC620に接続する2つ以上のRANノード611(例えば、2つ以上のgNBなど)間、5GC620に接続するRANノード611(例えば、gNB)とeNBとの間、及び/又は5GC620に接続する2つのeNB間で定義される。いくつかの実装形態では、Xnインタフェースは、Xnユーザプレーン(Xn-U)インタフェース及びXn制御プレーン(Xn-C)インタフェースを含むことができる。Xn-Uは、ユーザプレーンPDUの非保証配信を提供し、データ転送及びフロー制御機能をサポート/提供することができる。Xn-Cは、他の機能の中でもとりわけ、管理及びエラー処理機能、Xn-Cインタフェースを管理する機能、1つ以上のRANノード611間の接続モードのためのUEモビリティを管理する機能を含む、接続モードのUE601(例えば、CM接続)のためのモビリティサポートを提供し得る。モビリティサポートは、古い(ソース)サービングRANノード611から新しい(ターゲット)サービングRANノード611へのコンテキスト転送と、古い(ソース)サービングRANノード611と新しい(ターゲット)サービングRANノード611との間のユーザプレーントンネルの制御とを含み得る。Xn-Uのプロトコルスタックは、インターネットプロトコル(IP)トランスポート層上に構築されたトランスポートネットワーク層と、ユーザプレーンPDUを搬送するためにUDP層及び/又はIP層の上のGTP-U層とを含むことができる。Xn-Cプロトコルスタックは、アプリケーション層シグナリングプロトコル(Xnアプリケーションプロトコル(Xn-AP)と呼ばれる)と、SCTP上に構築されたトランスポートネットワーク層とを含むことができる。SCTPは、IP層の上にあってもよく、アプリケーション層メッセージの保証された配信を提供してもよい。トランスポートIP層では、シグナリングPDUを配信するためにポイントツーポイント送信が使用される。他の実装形態では、Xn-Uプロトコルスタック及び/又はXn-Cプロトコルスタックは、本明細書に示し説明したユーザプレーン及び/又は制御プレーンプロトコルスタックと同じ又は同様であってもよい。
RAN610は、コアネットワーク、この実施形態ではコアネットワーク(CN)620に通信可能に結合されるように示されている。CN620は、RAN610を介してCN620に接続されている顧客/加入者(例えば、UE601のユーザ)に様々なデータ及び電気通信サービスを提供するように構成された複数のネットワークエレメント622を備えることができる。CN620の構成要素は、マシン可読媒体又はコンピュータ可読媒体(例えば、非一時的マシン可読記憶媒体)から命令を読み取って実行するための構成要素を含む、単一の物理ノード又は別個の物理ノードに実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化することができる。CN620の論理インスタンス化は、ネットワークスライスと称されてもよく、CN620の一部の論理インスタンス化は、ネットワークサブスライスと呼ばれることができる。NFVアーキテクチャ及びインフラストラクチャは、業界標準のサーバハードウェア、ストレージハードウェア、又はスイッチの組み合わせを含む物理リソース上で、1つ以上のネットワーク機能を仮想化するために使用されてもよく、或いは専用ハードウェアによって実行されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想又は再構成可能な実装を実行することができる。
一般に、アプリケーションサーバ630は、コアネットワーク(例えば、UMTSPSドメイン、LTEPSデータサービスなど)とのIPベアラリソースを使用するアプリケーションを提供するエレメントであってもよい。アプリケーションサーバ630はまた、EPC620を介してUE601のために1つ以上の通信サービス(例えば、VoIPセッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)をサポートするように構成することもできる。
実施形態では、CN620は5GC(「5GC620」などと呼ばれる)であってもよく、RAN610はNGインタフェース613を介してCN620に接続されてもよい。実施形態では、NGインタフェース613は、RANノード611とUPFとの間でトラフィックデータを搬送するNGユーザプレーン(NG-U)インタフェース614と、RANノード611とAMFとの間のシグナリングインタフェースであるS1制御プレーン(NG-C)インタフェース615との2つの部分に分割することができる。CN620が5GC620である実施形態は、図8に関してより詳細に説明される。
実施形態では、CN620は5G CN(「5GC 620」などと呼ばれる)であってもよく、他の実施形態では、CN620はEPCであってもよい。CN620がEPC(「EPC620」などと呼ばれる)である場合、RAN610は、S1インタフェース613を介してCN620と接続され得る。実施形態では、S1インタフェース613は、RANノード611とS-GWとの間にトラフィックデータを搬送するS1ユーザプレーン(S1-U)インタフェース614と、RANノード611とMMEとの間のシグナリングインタフェースであるS1-MMEインタフェース615との2つの部分に分割されてもよい。CN620がEPC620である例示的なアーキテクチャを図7に示す。
図7は、様々な実施形態による、第1のCN 720を含むシステム700の例示的なアーキテクチャを示す。この例では、システム700は、CN720が図6のCN620に対応するEPC720であるLTE規格を実装することができる。更に、UE701は、図6のUE601と同じか又は同様であってもよく、E-UTRAN710は、図6のRAN610と同じか又は同様であり、前述したRANノード611を含み得るRANであってもよい。CN720は、MME721、S-GW722、P-GW723、HSS724、及びSGSN725を備えることができる。
MME721は、レガシーSGSNの制御プレーンと機能が類似していてもよく、UE701の現在位置を追跡するためにMM機能を実施し得る。MME721は、ゲートウェイ選択及びトラッキングエリアリスト管理などのアクセスのモビリティ態様を管理するために、様々なMM手順を実行し得る。MM(E-UTRANシステムでは「EPSMM」又は「EMM」とも呼ばれる)は、UE701の現在位置に関する知識を維持し、ユーザアイデンティティの機密性を提供し、及び/又はユーザ/加入者に他の同様のサービスを実行するために使用される全ての適用可能な手順、方法、データストレージなどを指すことができる。各UE701及びMME721は、MM又はEMMサブ層を含んでもよく、アタッチ手順が正常に完了したときに、UE701及びMME721においてMMコンテキストが確立されてもよい。MMコンテキストは、UE701のMM関連情報を格納するデータ構造又はデータベースオブジェクトであってもよい。MME721は、S6a基準点を介してHSS724と結合されてもよく、S3基準点を介してSGSN725と結合されてもよく、S11基準点を介してS-GW722と結合されてもよい。
SGSN725は、個々のUE701の位置を追跡し、セキュリティ機能を実行することによって、UE701にサービス提供するノードであってもよい。更に、SGSN725は、他の機能の中でもとりわけ、2G/3GとE-UTRAN3GPPアクセスネットワークとの間のモビリティのためのEPC間ノードシグナリング、MMES721によって指定されたPDN及びS-GW選択、MME721によって指定されたUE701の時間帯機能の処理、E-UTRAN3GPPアクセスネットワークへのハンドオーバのためのMME選択とを行うことができる。MME721とSGSN725との間のS3基準点は、アイドル状態及び/又はアクティブ状態における3GPP間アクセスネットワークモビリティのためのユーザ及びベアラ情報交換を可能にすることができる。
HSS724は、ネットワークユーザのデータベースを備えることができ、それは、ネットワークエンティティの通信セッションの取り扱いをサポートするための加入関連情報を含む。EPC720は、モバイル加入者の数、機器の容量、ネットワークの組織などに応じて、1つ以上のHSS724を備えることができる。例えば、HSS724は、ルーティング/ローミング、認証、認可、命名/アドレス指定解決、位置依存関係などのサポートを提供することができる。HSS724とMME721との間のS6a基準点は、HSS724とMME721との間のEPC720へのユーザアクセスを認証/認可するための加入及び認証データの転送を可能にすることができる。
S-GW722は、RAN710に対するS1インタフェース613(図7における「S1-U」)を終了させ、RAN710とEPC720との間でデータパケットをルーティングしてもよい。加えて、S-GW722は、RANノード間ハンドオーバのためのローカルモビリティアンカー点であってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。他の責任は、合法の傍受、課金、及び一部のポリシー施行を含んでもよい。S-GW722とMME721との間のS11基準点は、MME721とS-GW722との間に制御プレーンを提供することができる。S-GW722は、S5基準点を介してP-GW723と結合され得る。
P-GW723は、PDN730に対するSGiインタフェースを終了することができる。P-GW723は、IPインタフェース625(例えば、図6を参照されたい)を介して、EPC720と、アプリケーションサーバ630を含むネットワーク(代替的に「AF」と称される)などの外部ネットワークとの間でデータパケットをルーティングしてもよい。実施形態では、P-GW723は、IP通信インタフェース625(例えば、図6を参照されたい)を介してアプリケーションサーバ(図6のアプリケーションサーバ630又は図7のPDN730)に通信可能に結合することができる。P-GW723とS-GW722との間のS5基準点は、GW723とS-GW722との間のユーザプレーントンネリング及びトンネル管理を提供し得る。S5基準点はまた、UE701のモビリティに起因して、S-GW722が必要とされるPDN接続性のために、非並置P-GW723に接続する必要がある場合に、S-GW722の再配置に使用されてもよい。P-GW723は、更に、ポリシー施行及び課金データ収集のためのノード(例えば、PCEF(図示せず))を含んでもよい。加えて、P-GW723とパケットデータネットワーク(PDN)730との間のSGi基準点は、例えば、IMSサービスを提供するための、オペレータ外部公衆、プライベートPDN、又はオペレータ内パケットデータネットワークであってもよい。P-GW723は、Gx基準点を介してPCRF726と結合され得る。
PCRF726は、EPC720のポリシー及び課金制御要素である。非ローミングシナリオでは、UE701のインターネットプロトコル接続性アクセスネットワーク(IP-CAN)セッションに関連付けられたHPLMN(Home Public Land Mobile Network)内に単一のPCRF726が存在してもよい。トラフィックのローカルブレークアウトを伴うローミングシナリオでは、UE701のIP-CANセッションに関連付けられた2つのPCRF、すなわち、HPLMN内のホームPCRF(H-PCRF)とVPLMN(Visited Public Land Mobile Network)内のVisited PCRF(V-PCRF)が存在し得る。PCRF726は、P-GW723を介してアプリケーションサーバ730に通信可能に連結されてもよい。アプリケーションサーバ730は、PCRF726に信号を送って、新しいサービスフローを指示し、QoS及び課金パラメータを選択することができる。PCRF726は、適切なTFT及びQCIを有するPCEF(図示せず)にこの規則をプロビジョニングすることができ、アプリケーションサーバ730によって指定されたQoS及び課金を開始する。PCRF726とP-GW723との間のGx基準点は、PCRF726からP-GW723のPCEFへのQoSポリシー及び課金ルールの転送を可能にし得る。Rx基準点は、PDN730(又は「AF730」)とPCRF726との間に存在し得る。
図8は、様々な実施形態による第2のCN820を含むシステム800のアーキテクチャを示す。システム800は、前述のUE601及びUE701と同じ又は同様であり得るUE801と、前述したRAN610及びRAN710と同じか又は同様であり得、前述したRANノード611を含み得る(R)AN810と、例えば、オペレータサービス、インターネットアクセス、又はサードパーティサービスであってもよいDN803と、5GC820とを含むように示されている。5GC820は、AUSF822、AMF821、SMF824、NEF823、PCF826、NRF825、UDM827、AF828、UPF802及びNSSF829を含み得る。
UPF802は、RAT内及びRAT間モビリティのためのアンカー点、DN803への相互接続の外部PDUセッション点、及びマルチホーム化PDUセッションをサポートする分岐点として機能し得る。UPF802はまた、パケットルーティング及び転送を実行し、パケット検査を実行し、ポリシールールのユーザプレーン部分を施行し、パケットを合法的に傍受し(UPコレクション)、トラフィック使用レポートを実行し、ユーザプレーンに対するQoS処理を実行し(例えば、パケットフィルタリング、ゲーティング、UL/DLレート施行)、アップリンクトラフィック検証を実行し(例えば、SDF対QoSフローマッピング)、アップリンク及びダウンリンクにおけるトランスポートレベルパケットマーキングを実行し、ダウンリンクパケットバッファ及びダウンリンクデータ通知トリガを実行することができる。UPF802は、データネットワークへのルーティングトラフィックフローをサポートするためのアップリンク分類子を含むことができる。DN803は、様々なネットワークオペレータサービス、インターネットアクセス、又はサードパーティサービスを表すことができる。DN803は、先に論じたアプリケーションサーバ630を含んでもよく、又はこれと同様であってもよい。UPF802は、SMF824とUPF802との間のN4基準点を介してSMF824と相互作用することができる。
AUSF822は、UE801の認証のためのデータを記憶し、認証関連機能を処理してもよい。AUSF822は、様々なアクセスタイプのための一般的な認証フレームワークを容易にすることができる。AUSF822は、AMF821とAUSF822との間のN12基準点を介してAMF821と通信することができ、UDM827とAUSF822との間のN13基準点を介してUDM827と通信することができる。加えて、AUSF822は、Nausfサービスベースのインタフェースを示し得る。
AMF821は、登録管理(例えば、UE801を登録するためなど)、接続管理、到達可能性管理、モビリティ管理、及びAMF関連イベントの合法的傍受、並びにアクセス認証及び認可に関与してもよい。AMF821は、AMF821とSMF824との間のN11基準点の終端点であり得る。AMF821は、UE801とSMF824との間のSMメッセージのトランスポートを提供し、SMメッセージをルーティングするための透明的プロキシとして機能することができる。AMF821はまた、UE801とSMSF(図8には示されず)との間のSMSメッセージのためのトランスポートを提供し得る。AMF821は、AUSF822とUE801との相互作用と、UE801の認証プロセスの結果として確立された中間鍵の受信とを含んでもよい、SEAFとして機能してもよい。USIMベースの認証が使用される場合、AMF821は、AUSF822からセキュリティ材料を取得してもよい。AMF821はまた、アクセスネットワーク固有の鍵を導出するために使用するSEAからの鍵を受信する、SCM機能を含んでもよい。更に、AMF821は、RANCPインタフェースの終端点であってもよく、(R)AN810とAMF821との間のN2基準点を含むか又はそれであってもよく、AMF821は、NAS(N1)シグナリングの終端点であり、NAS暗号化及び完全性保護を行うことができる。
AMF821はまた、N3IWFインタフェースを介して、UE801を用いてNASシグナリングをサポートすることができる。N3IWFを使用して、信頼できないエンティティへのアクセスを提供することができる。N3IWFは、制御プレーンの(R)AN810とAMF821との間のN2インタフェースの終端点であってもよく、ユーザプレーンの(R)AN810とUPF802との間のN3基準点の終端点であってもよい。従って、AMF821は、PDUセッション及びQoSのためにSMF824及びAMF821からのN2シグナリングを処理し、IPsec及びN3トンネリングのためにパケットをカプセル化/カプセル化解除し、アップリンクでN3ユーザプレーンパケットをマークし、N2を介して受信されたそのようなマーキングに関連するQoS要件を考慮して、N3パケットマーキングに対応するQoSを実施することができる。N3IWFはまた、UE801とAMF821との間のN1参照点を介してUE801とAMF821との間のアップリンク及びダウンリンク制御プレーンNASシグナリングを中継し、UE801とUPF802との間のアップリンク及びダウンリンクユーザプレーンパケットを中継することができる。N3IWFはまた、UE801とのIPsecトンネル確立のための機構を提供する。AMF821は、Namfサービスベースのインタフェースを示すことができ、2つのAMF821間のN14基準点、及びAMF821と5G-EIR(図8には示されず)との間のN17基準点の終端点とすることができる。
UE801は、ネットワークサービスを受信するためにAMF821に登録する必要があり得る。RMは、UE801をネットワーク(例えば、AMF821)に登録又は登録解除し、ネットワーク(例えば、AMF821)内のUEコンテキストを確立するために使用される。UE801は、RM-REGISTERED状態又はRM-DEREGISTERED状態で動作してもよい。RM登録解除状態では、UE801はネットワークに登録されず、AMF821内のUEコンテキストは、UE801がAMF821によって到達可能ではないように、UE801に対する有効なロケーション又はルーティング情報を保持しない。RM登録状態では、UE801はネットワークに登録され、AMF821内のUEコンテキストは、UE801がAMF821によって到達可能であるように、UE801に対する有効な位置又はルーティング情報を保持することができる。RM登録状態では、とりわけ、UE801は、モビリティ登録更新手順を実行し、(例えば、UE801がまだアクティブであることをネットワークに通知するために)周期的更新タイマの満了によってトリガされる周期的登録更新手順を実行し、UE能力情報を更新するか、又はネットワークとプロトコルパラメータを再ネゴシエートするために登録更新手順を実行することができる。
AMF821は、UE801に対する1つ以上のRMコンテキストを記憶することができ、各RMコンテキストは、ネットワークへの特定のアクセスに関連付けられる。RMコンテキストは、とりわけ、アクセスタイプごとの登録状態及び定期更新タイマを示すか又は記憶するデータ構造、データベースオブジェクトなどであってもよい。AMF821はまた、前述した(E)MMコンテキストと同じ又は同様であり得る5GCMMコンテキストを格納し得る。様々な実施形態では、AMF821は、関連付けられたMMコンテキスト又はRMコンテキストにUE801のCEモードB制限パラメータを格納することができる。AMF821はまた、UEコンテキスト(及び/又はMM/RMコンテキスト)に既に記憶されているUEの使用設定パラメータから、必要に応じて値を導出してもよい。
CMは、N1インタフェースを介してUE801とAMF821との間のシグナリング接続を確立及び解放するために使用され得る。シグナリング接続は、UE801とCN820との間のNASシグナリング交換を可能にするために使用され、UEとAN(例えば、非3GPPアクセスのためのRRC接続又はUE-N3IWF接続)との間のシグナリング接続と、AN(例えば、RAN810)とAMF821との間のUE801のためのN2接続の両方を含む。UE801は、CM-IDLEモード又はCM-CONNECTEDモードの2つのCM状態のいずれかで動作してもよい。UE801がCM-IDLE状態/モードで動作しているとき、UE801は、N1インタフェースを介してAMF821とのNASシグナリング接続を確立されていなくてもよく、UE801のための(R)AN810シグナリング接続(例えば、N2及び/又はN3接続)があってもよい。UE801がCM-CONNECTED状態/モードで動作しているとき、UE801は、N1インタフェースを介してAMF821との確立されたNASシグナリング接続を有していてもよく、UE801のための(R)AN810シグナリング接続(例えば、N2及び/又はN3接続)があってもよい。(R)AN810とAMF821との間のN2接続の確立は、UE801をCM-IDLEモードからCM-CONNECTEDモードに遷移させることができ、UE801は、(R)AN810とAMF821との間のN2シグナリングが解放されたときにCM-CONNECTEDモードからCM-IDLEモードに遷移することができる。
SMF824は、SM(例えば、UPFとANノードとの間のトンネル維持を含む、セッションの確立、変更、及び解放)、UE IPアドレス割り当て及び管理(任意選択的な認可を含む)、UP機能の選択及び制御、適切な宛先にトラフィックをルーティングするために、UPFでトラフィックステアリングを構成すること、ポリシー制御機能に向かうインタフェースの終了、ポリシー施行及びQoSの一部の制御、(SMイベント及びLIシステムへのインタフェースの)合法的傍受、NASメッセージのSM部の終了、ダウンリンクデータ通知、N2上でAMFを介してANに送信されたAN固有SM情報の開始、及びセッションのSSCモードの決定を含む。SMは、PDUセッションの管理を指すことができ、PDUセッション(又は「セッション」)は、UE801とデータネットワーク名(DNN)によって識別されるデータネットワーク(DN)803との間のPDUの交換を行う又は可能にするPDU接続性サービスを指すことができる。PDUセッションは、UE801要求時に確立され、UE801及び5GC820要求に応じて変更され、UE801とSMF824との間のN1基準点を介して交換されたNAS SMシグナリングを使用して、UE801及び5GC820要求時に解放され得る。アプリケーションサーバからの要求に応じて、5GC820は、UE801内の特定のアプリケーションをトリガすることができる。トリガメッセージの受信に応じて、UE801は、トリガメッセージ(又はトリガメッセージの関連する部分/情報)を、UE801内の1つ以上の特定されたアプリケーションに渡すことができる。UE801内の特定されたアプリケーション(単数又は複数)は、特定のDNNにPDUセッションを確立することができる。SMF824は、UE801要求がUE801に関連付けられたユーザ加入情報に準拠しているか否かをチェックすることができる。この点に関して、SMF824は、UDM827からSMF824レベルの加入データに対する更新通知を取得すること、及び/又は受信するように要求することができる。
SMF824は、以下のローミング機能を含むことができる:QoS SLA(VPLMN)を適用するためのローカル施行処理、課金データ収集及び課金インタフェース(VPLMN)、(SMイベント及びLIシステムへのインタフェースのVPLMN内の)合法的傍受、外部DNによるPDUセッションの認可/認証のためのシグナリングの伝送のための外部DNとの相互作用のためのサポートを含み得る。2つのSMF824間のN16参照点がシステム800に含まれてもよく、これは、ローミングシナリオにおける訪問先ネットワーク内の別のSMF824とホームネットワーク内のSMF824との間であってもよい。加えて、SMF824は、Nsmfサービスベースのインタフェースを示し得る。
NEF823は、サードパーティ、内部露出/再露出、アプリケーション機能(例えば、AF828)、エッジコンピューティング又はフォッグコンピューティングシステムなどのための、3GPPネットワーク機能によって提供されるサービス及び能力を安全に露出させるための手段を提供してもよい。そのような実施形態では、NEF823は、AFを認証、認可、及び/又は減速させることができる。NEF823はまた、AF828と交換された情報、及び内部ネットワーク機能と交換された情報を変換してもよい。例えば、NEF823は、AFサービス識別子と内部5GC情報との間で変換することができる。NEF823はまた、他のネットワーク機能の露出した能力に基づいて、他のネットワーク機能(NF)から情報を受信してもよい。この情報は、構造化されたデータとしてNEF823に、又は標準化されたインタフェースを使用してデータ記憶NFで記憶されてもよい。次いで、記憶された情報は、NEF823によって他のNF及びAFに再露出し、かつ/又は分析などの他の目的に使用することができる。更に、NEF823は、Nnefサービスベースのインタフェースを提示することができる。
NRF825は、サービス発見機能をサポートし、NFインスタンスからNF発見要求を受信し、NFインスタンスに発見されたNFインスタンスの情報を提供することができる。NRF825はまた、利用可能なNFインスタンス及びそれらのサポートされたサービスの情報を維持する。本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことができ、「インスタンス」は、例えば、プログラムコードの実行中に発生し得るオブジェクトの具体的な発生を指すことができる。加えて、NRF825は、Nnrfサービスベースのインタフェースを示し得る。
PCF826は、制御プレーン機能(単数又は複数)にポリシールールを提供して、それらを施行することができ、また、統合ポリシーフレームワークをサポートして、ネットワーク挙動を統制することができる。PCF826はまた、UDM827のUDRにおけるポリシー決定に関連する加入情報にアクセスするためにFEを実装してもよい。PCF826は、PCF826とAMF821との間のN15基準点を介してAMF821と通信することができ、ローミングシナリオの場合、訪問先ネットワーク内のPCF826及びAMF821を含むことができる。PCF826は、PCF826とAF828との間のN5基準点を介してAF828と通信することがあり、PCF826とSMF824との間のN7基準点を介してSMF824と通信することがある。システム800及び/又はCN820はまた、(ホームネットワーク内の)PCF826と訪問先ネットワーク内のPCF826との間にN24基準点を含むことができる。更に、PCF826は、Npcfサービスベースのインタフェースを提示することができる。
UDM827は、加入関連情報を処理して、ネットワークエンティティの通信セッションの処理をサポートすることができ、UE801の加入データを記憶することができる。例えば、加入データは、UDM827とAMF821との間のN8基準点を介してUDM827とAMFとの間で通信され得る。UDM827は、アプリケーションFE及びUDRの2つの部分を含むことができる(FE及びUDRは図8には示されず)。UDRは、UDM827及びPCF826の加入データ及びポリシーデータ、/又はNEF823の曝露及びアプリケーションデータ(アプリケーション検出のためのPFD、複数のUE並びに801のためのアプリケーション要求情報を含む)のための構造化データを格納することができる。Nudrサービスベースのインタフェースは、UDM827、PCF826、及びNEF823が記憶されたデータの特定のセットにアクセスすること、UDRの関連するデータ変更の通知の読み取り、更新(例えば、追加、修正)、削除、及びサブスクライブを行うことを可能にするために、UDR221によって提示され得る。UDMは、クレデンシャル、位置管理、加入管理などの処理を担当するUDM FEを含んでもよい。いくつかの異なるフロントエンドは、異なるトランザクションにおいて同じユーザにサービスを提供することができる。UDM-FEは、UDRに格納されたサブスクリプション情報にアクセスし、認可資格情報処理、ユーザ識別処理、アクセス許可、登録/モビリティ管理、及びサブスクリプション管理を実行する。UDRは、UDM827とSMF824との間のN10参照点を介してSMF824と相互作用することができる。UDM827はまた、SMS管理をサポートすることができ、SMS-FEは、前述したものと同様のアプリケーションロジックを実装する。加えて、UDM827は、Nudmサービスベースのインタフェースを示し得る。
AF828は、トラフィックルーティングにアプリケーションの影響を与え、NCEへのアクセスを提供し、ポリシー制御のためにポリシーフレームワークと対話することができる。NCEは、エッジコンピューティング実装に使用することができる、NEF823を介して5GC820及びAF828が互いに情報を提供することを可能にする機構であってもよい。そのような実装形態では、ネットワークオペレータ及びサードパーティサービスは、UE801のアタッチのアクセスポイントに近接してホストされて、トランスポートネットワーク上の低減されたエンドツーエンドレイテンシ及び負荷によって効率的なサービス配信を達成することができる。エッジコンピューティング実装では、5GCは、UE801に近接したUPF802を選択し、N6インタフェースを介してUPF802からDN803へのトラフィックステアリングを実行することができる。これは、UE加入データ、UE位置、及びAF828によって提供される情報に基づいてもよい。このようにして、AF828は、UPF(再)選択及びトラフィックルーティングに影響を及ぼすことができる。オペレータの展開に基づいて、AF828が信頼されたエンティティであると見なされるとき、ネットワークオペレータは、AF828が関連するNFと直接相互作用することを許可することができる。更に、AF828は、Nafサービスベースのインタフェースを提示することができる。
NSSF829は、UE801にサービスを提供するネットワークスライスインスタンスのセットを選択することができる。NSSF829は、必要に応じて、許可されたNSSAI及びサブスクライブされたS-NSSAIへのマッピングを決定することもできる。NSSF829はまた、好適な構成に基づいて、及び場合によってはNRF825を問い合わせることによって、UE801にサービス提供するために使用されるAMFセット、又は候補AMF(単数又は複数)821のリストを判定することもできる。UE801に対するネットワークスライスインスタンスのセットの選択は、AMF821によってトリガされてもよく、このAMF821には、その変化につながり得るNSSF829と相互作用することによってUE801が登録される。NSSF829は、AMF821とNSSF829との間のN22基準点を介してAMF821と相互作用することができ、N31基準点(図8には示されていない)を介して訪問先ネットワーク内の別のNSSF829と通信することができる。更に、NSSF829は、Nnssfサービスベースのインタフェースを提示することができる。
前述したように、CN820は、SMS加入チェック及び検証に関与して、UE801とSMS-GMSC/IWMSC/SMSルータなどの他のエンティティとの間のSMメッセージを中継することができる、SMSFを含んでもよい。SMSはまた、UE801がSMS転送に利用可能である通知手順のために、AMF821及びUDM827と相互作用する(例えば、UEに到達不可能なフラグを設定し、UE801がSMSに利用可能である場合にUDM827に通知する)ことができる。
CN120はまた、データストレージシステム/アーキテクチャ、5G-EIR、SEPPなど、図8に示されていない他の要素を含んでもよい。データストレージシステムは、SDSF、UDSFなどを含むことができる。任意のNFは、任意のNFとUDSFとの間のN18参照点(図8には示されていない)を介して、非構造化データをUDSF(例えば、UEコンテキスト)に格納し、UDSFから取り出すことができる。個々のNFは、各非構造化データを格納するためにUDSFを共有することができ、又は個々のNFはそれぞれ、個々のNF又はその近くに位置する独自のUDSFを有することができる。更に、UDSFは、Nudsfサービスベースのインタフェース(図8には示されず)を提示することができる。5G-EIRは、特定の機器/エンティティがネットワークからブラックリストに記載されているかどうかを判定するためにPEIのステータスをチェックするNFであってもよく、SEPPは、PLMN間制御プレーンインタフェース上でトポロジ隠蔽、メッセージフィルタリング、及びポリシングを実行する非透過プロキシであってもよい。
更に、NF内のNFサービス間には、より多くの参照点及び/又はサービスベースのインタフェースが存在してもよい。しかしながら、これらのインタフェース及び参照点は、明確にするために図8から省略されている。一例では、CN820は、CN820とCN720との間のインターワーキングを可能にするために、MME(例えば、MME(単数又は複数)721)とAMF821との間のCN間インタフェースである、Nxインタフェースを含むことができる。他の例示的なインタフェース/基準点は、5G-EIRによって提示されるN5g-EIRサービスベースのインタフェースと、訪問先ネットワーク内のNRFとホームネットワーク内のNRFとの間のN27基準点と、訪問先ネットワーク内のNSSFとホームネットワーク内のNSSFとの間のN31参照点とを含むことができる。
図9は、様々な実施形態によるインフラストラクチャ機器900の例示の構成要素を示す。インフラストラクチャ機器900(又は「システム900」)は、基地局、無線ヘッド、RANノード611及び/又は前述したAP606などのRANノード、アプリケーションサーバ630、及び/又は本明細書で説明した任意の他のエレメント/デバイスとして実装することができる。他の例では、システム900は、UEにおいて、又はUEによって実装され得る。
システム900は、アプリケーション回路905と、ベースバンド回路910と、1つ以上の無線フロントエンドモジュール(RFEM)915と、メモリ回路920と、電力管理集積回路(PMIC)925と、電力T回路930と、ネットワークコントローラ回路935と、ネットワークインタフェースコネクタ940と、衛星測位回路945と、ユーザインタフェース950とを含む。いくつかの実施形態では、デバイス900は、例えば、メモリ/記憶装置、ディスプレイ、カメラ、センサ、又は入力/出力(I/O)インタフェースなどの追加の要素を含んでもよい。他の実施形態では、以下で説明される構成要素は、2つ以上のデバイスに含まれてもよい。例えば、当該回路は、CRAN、vBBU、又は他の同様の実装のために2つ以上のデバイスに別々に含まれてもよい。
アプリケーション回路905は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに低ドロップアウトレギュレータ(LDO)、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、リアルタイムクロック(RTC)、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用入出力(I/O又はIO)、Secure Digital(SD)マルチメディアカード(MMC)などのメモリカードコントローラ、ユニバーサルシリアルバス(USB)インタフェース、モバイル産業プロセッサインタフェース(MIPI)インタフェース、及びJoint Test Access Group(JTAG)テストアクセスポートなどのうちの1つ以上の回路を含む。アプリケーション回路905のプロセッサ(又はコア)は、メモリ/記憶装置に連結されてもよいし、メモリ/記憶素子を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム900上で実行することを可能にするために、メモリ/記憶装置に格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路905のプロセッサは、例えば、1つ以上のプロセッサコア(CPU)、1つ以上のアプリケーションプロセッサ、1つ以上のグラフィック処理ユニット(GPU)、1つ以上の縮小命令セットコンピューティング(RISC)プロセッサ、1つ以上のAcorn RISCマシン(ARM)プロセッサ、1つ以上の複合命令セットコンピューティング(CISC)プロセッサ、1つ以上のデジタル信号プロセッサ(DSP)、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、又はこれらの任意の好適な組み合わせを含むことができる。いくつかの実施形態では、アプリケーション回路905は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。例として、アプリケーション回路905のプロセッサは、1つ以上のIntel Pentium(登録商標)、Core(登録商標)、又はXeon(登録商標)プロセッサ、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ、Accelerated Processing Unit(APU)、又はEpyc(登録商標)プロセッサ、プロセッサのARM Cortex-AファミリなどのARM Holdings、Ltdによって提供されるARMベースのプロセッサ、及び、Cavium(商標)Inc.によって提供されるThunderX2(登録商標)、MIPS Warrior又はP-クラスプロセッサなどのMIPS Technologies,Inc.から提供されるMIPSベースの設計などを含み得る。いくつかの実施形態では、システム900は、アプリケーション回路905を利用しなくてもよく、代わりに、例えば、EPC又は5GCから受信したIPデータを処理するための専用プロセッサ/コントローラを含んでもよい。
いくつかの実装形態では、アプリケーション回路905は、マイクロプロセッサ、プログラマブル処理デバイスなどであり得る、1つ以上のハードウェアアクセラレータを含むことができる。1つ以上のハードウェアアクセラレータは、例えば、コンピュータビジョン(CV)及び/又はディープラーニング(DL)アクセラレータを含むことができる。例として、プログラマブル処理デバイスは、フィールドプログラマブルゲートアレイ(FPGA)などの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実装形態では、アプリケーション回路905の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実装形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路905の回路は、ルックアップテーブル(LUT)に論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路910は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路910の様々なハードウェア電子要素は、図11に関して以下に説明される。
ユーザインタフェース回路950は、システム900とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、又はシステム900との周辺構成要素相互作用を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェースは、1つ以上の物理又は仮想ボタン(例えば、リセットボタン)、1つ以上のインジケータ(例えば、発光ダイオード(LED))、物理キーボード又はキーパッド、マウス、タッチパッド、タッチスクリーン、スピーカ又は他のオーディオ発光デバイス、マイクロフォン、プリンタ、スキャナ、ヘッドセット、ディスプレイスクリーン又はディスプレイデバイスなどを含むことができるが、これらに限定されない。周辺構成要素インタフェースは、不揮発性メモリポート、ユニバーサルシリアルバス(USB)ポート、オーディオジャック、電源インタフェースなどを含むことができるが、これらに限定されない。
無線フロントエンドモジュール(RFEM)915は、ミリメートル波(ミリ波)RFEM及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図11のアンテナアレイ1111を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装形態では、ミリ波及びサブミリ波無線機能の両方は、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理RFEM915内に実装されてもよい。
メモリ回路920は、ダイナミックランダムアクセスメモリ(DRAM)及び/又は同期ダイナミックランダムアクセスメモリ(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができ、Intel(登録商標)及びMicron(登録商標)の三次元(3D)クロスポイント(XPOINT)メモリを組み込むことができる。メモリ回路920は、はんだ付けパッケージ集積回路、ソケットメモリモジュール、及びプラグインメモリカードのうちの1つ以上として実装されてもよい。
PMIC925は、電圧レギュレータ、サージ保護器、電力アラーム検出回路、及びバッテリ又はコンデンサなどの1つ以上の予備電源を含んでもよい。電力アラーム検出回路は、ブラウンアウト(不足電圧)及びサージ(過電圧)状態のうちの1つ以上を検出してもよい。電力T回路930は、ネットワークケーブルから引き出される電力を供給して、単一のケーブルを使用してインフラストラクチャ機器900に電力供給及びデータ接続性の両方を提供することができる。
ネットワークコントローラ回路935は、イーサネット、GREトンネル上のイーサネット、マルチプロトコルラベルスイッチング(MPLS)上のイーサネット、又は何らかの他の適切なプロトコルなどの標準的なネットワークインタフェースプロトコルを使用してネットワークへの接続性を提供することができる。ネットワーク接続は、電気(一般に「銅配線」と呼ばれる)、光、又は無線であり得る物理接続を使用して、ネットワークインタフェースコネクタ940を介してインフラストラクチャ機器900に/から提供され得る。ネットワークコントローラ回路935は、前述のプロトコルのうちの1つ以上を使用して通信するための1つ以上の専用プロセッサ及び/又はFPGAを含むことができる。いくつかの実装形態では、ネットワークコントローラ回路935は、同じ又は異なるプロトコルを使用して他のネットワークへの接続を提供するための複数のコントローラを含むことができる。
測位回路945は、全地球航法衛星システム(GNSS)の測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国の全地球測位システム(GPS)、ロシアの全地球航法システム(GLONASS)、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、Indian Constellation(NAVIC)によるナビゲーション、日本の準天頂衛星システム(QZSS)、フランスのDoppler Orbitography and Radio positioning Integrated by Satellite(DORIS)など)などが含まれる。測位回路945は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路945は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するためのMicro-Technology for Positioning,Navigation,and Timing(Micro-PNT)ICを含むことができる。測位回路945はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路910及び/又はRFEM915の一部であってもよく、又はそれらと相互作用してもよい。測位回路945はまた、位置データ及び/又は時間データをアプリケーション回路905に提供することができ、アプリケーション回路は、データを使用して動作を様々なインフラストラクチャ(例えば、RANノード611など)などと同期させることができる。
図9に示す構成要素は、業界標準アーキテクチャ(ISA)、拡張ISA(EISA)、周辺構成要素相互接続(PCI)、拡張周辺構成要素相互接続(PCIx)、PCIエクスプレス(PCIe)、又は任意の数の他の技術などの任意の数のバス及び/又は相互接続(IX)技術を含むことができるインタフェース回路を使用して互いに通信することができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバスであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図10は、様々な実施形態によるプラットフォーム1000(又は「デバイス1000」)の一例を示す。実施形態では、コンピュータプラットフォーム1000は、UE601、701、アプリケーションサーバ630、及び/又は本明細書で説明される任意の他の要素/デバイスとしての使用に適し得る。プラットフォーム1000は、実施例に示される構成要素の任意の組み合わせを含んでもよい。プラットフォーム1000の構成要素は、コンピュータプラットフォーム1000に適合された集積回路(IC)、その一部、個別の電子デバイス、又は他のモジュール、論理、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせとして、或いはより大きなシステムのシャーシ内に組み込まれる構成要素として実装されてもよい。図10のブロック図は、コンピュータプラットフォーム1000の構成要素の高レベル図を示すことを意図している。しかしながら、示されている構成要素のいくつかは省略されてもよく、追加の構成要素が存在してもよく、示されている構成要素の異なる配置が他の実施態様で発生してもよい。
アプリケーション回路1005は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに1つ以上のLDO、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、RTC、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用I/O、SD MMCなどのメモリカードコントローラ、USBインタフェース、MIPIインタフェース、及びJTAGテストアクセスポートなどの回路を含む。アプリケーション回路1005のプロセッサ(又はコア)は、メモリ/記憶装置に連結されてもよいし、メモリ/記憶素子を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム1000上で実行することを可能にするために、メモリ/記憶装置に格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路905のプロセッサは、例えば、1つ以上のプロセッサコア、1つ以上のアプリケーションプロセッサ、1つ以上のGPU、1つ以上のRISCプロセッサ、1つ以上のARMプロセッサ、1つ以上のCISCプロセッサ、1つ以上のDSP、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、マルチスレッドプロセッサ、超低電圧プロセッサ、埋め込みプロセッサ、いくつかの他の既知の処理エレメント、又はこれらの任意の好適な組み合わせを含み得る。いくつかの実施形態では、アプリケーション回路905は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。
例として、アプリケーション回路1005のプロセッサは、Quark(商標)、Atom(商標)、i3、i5、i7、若しくはMCUクラスのプロセッサなどのIntel(登録商標)Architecture Core(商標)ベースのプロセッサ、又はカリフォルニア州サンタクララのIntel(登録商標)Corporationから入手可能な別のそのようなプロセッサを含むことができる。アプリケーション回路1005のプロセッサはまた、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ又はAccelerated Processing Units(APU)、Apple(登録商標)Inc.製のA5-A9プロセッサ、Qualcomm(登録商標)Technologies,Inc.のSnapdragon(商標)プロセッサ、Texas Instruments,Inc.(登録商標)Open Multimedia Applications Platform(OMAP)(商標)プロセッサ、MIPS Warrior M-クラス、Warrior I-クラス及びWarrior P-クラスプロセッサなどのMIPS Technologies,Inc.からのMIPSベースの設計、ARM Cortex-A、Cortex-R及びプロセッサのCortex-MファミリなどのARM Holdingsから認可されたARMベースの設計、又は同様のもののうちの1つ以上である。いくつかの実装形態では、アプリケーション回路1005は、アプリケーション回路1005及び他の構成要素が単一の集積回路、又はIntel(登録商標)Corporation製のEdison(商標)若しくはGalileo(商標)SoCボードなどの単一のパッケージに形成されるシステムオンチップ(SoC)の一部であってもよい。
追加的又は代替的に、アプリケーション回路1005は、これらに限定されるものではないが、FPGAなどの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実施形態では、アプリケーション回路1005の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実施形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路1005の回路は、ルックアップテーブル(LUT)に論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路1010は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路1010の様々なハードウェア電子要素は、図11に関して以下に説明される。
RFEM1015は、ミリメートル波(ミリ波)RFEM及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図11のアンテナアレイ1111を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装形態では、ミリ波及びサブミリ波無線機能の両方は、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理RFEM1015内に実装されてもよい。
メモリ回路1020は、所与の量のシステムメモリを提供するために使用される任意の数及び種類のメモリデバイスを含み得る。例として、メモリ回路1020は、ダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)及び/又は同期ダイナミックRAM(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができる。メモリ回路1020は、Joint Electron Devices Engineering Council(JEDEC)の低電力ダブルデータレート(LPDDR)ベースの設計、例えばLPDDR2、LPDDR3、LPDDR4などに従って開発されてもよい。メモリ回路1020は、はんだ付きパッケージ集積回路、シングルダイパッケージ(SDP)、デュアルダイパッケージ(DDP)又はクワッドダイパッケージ(Q17P)、ソケット状メモリモジュール、マイクロDIMM又はミニDIMMを含むデュアルインラインメモリモジュール(DIMM)、及び/又はボールグリッドアレイ(BGA)を介してマザーボード上にはんだ付けされたもののうちの1つ以上として実装されてもよい。低電力実装形態では、メモリ回路1020は、アプリケーション回路1005に関連付けられたオンダイメモリ又はレジスタであってもよい。データ、アプリケーション、オペレーティングシステムなどの情報の永続的記憶を提供するために、メモリ回路1020は、とりわけ、ソリッドステートディスクドライブ(SSDD)、ハードディスクドライブ(HDD)、マイクロHDD、抵抗変化メモリ、相変化メモリ、ホログラフィックメモリ、又は化学メモリを含むことができる1つ以上の大容量記憶装置を含んでもよい。例えば、コンピュータプラットフォーム1000は、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。
取り外し可能なメモリ回路1023は、ポータブルデータ記憶装置をプラットフォーム1000と連結するために使用されるデバイス、回路、エンクロージャ/筐体、ポート又はレセプタクルなどを含んでもよい。これらのポータブルデータ記憶装置は、大量記憶目的のために使用することができ、例えば、フラッシュメモリカード(例えば、セキュアデジタル(SD)カード、microSDカード、xD画像カードなど)、及びUSBフラッシュドライブ、光ディスク、外部HDDなどを含んでもよい。
プラットフォーム1000はまた、外部デバイスをプラットフォーム1000と接続するために使用されるインタフェース回路(図示せず)を含んでもよい。インタフェース回路を介してプラットフォーム1000に接続された外部デバイスは、センサ回路1021及び電気機械構成要素(EMC)1022、並びに取り外し可能なメモリ回路1023に結合された取り外し可能なメモリデバイスを含む。
センサ回路1021は、その目的がその環境内でイベント又は変化を検出し、検出されたイベントに関する情報(センサデータ)を、他のデバイス、モジュール、サブシステムなどに送信することであるデバイス、モジュール、又はサブシステムを含む。このようなセンサの例は、とりわけ加速度計、ジャイロスコープ、及び/又は磁力計を含む慣性測定ユニット(IMU)を含む。3軸加速度計、3軸ジャイロスコープ、及び/又は磁力計を備える微小電気機械システム(MEMS)又はナノ電気機械システム(NEMS)、レベルセンサ、フローセンサ、温度センサ(例えば、サーミスタ)、圧力センサ、気圧センサ、重力計、高度計、画像キャプチャデバイス(例えば、カメラ又はレンズレス開口)、光検出測距(LiDAR)センサ、近接センサ(例えば、赤外線検出器など)、深度センサ、周囲光センサ、超音波トランシーバ、マイクロフォン又は他の同様の音声キャプチャデバイス、などを含む。
EMC1022は、プラットフォーム1000がその状態、位置、及び/又は向きを変更すること、又は機構若しくは(サブ)システムを移動若しくは制御することを可能にすることを目的とするデバイス、モジュール、又はサブシステムを含む。更に、EMC1022は、EMC1022の現在の状態を示すために、プラットフォーム1000の他の構成要素にメッセージ/信号を生成及び送信するように構成されてもよい。EMC1022の例には、1つ以上の電源スイッチ、電気機械式リレー(EMR)及び/又はソリッドステートリレー(SSR)を含むリレー、アクチュエータ(例えば、バルブアクチュエータなど)、可聴音発生装置、視覚的警告装置、モータ(例えば、DCモータ、ステッパモータなど)、車輪、スラスタ、プロペラ、爪、クランプ、フック、及び/又は他の同様の電気機械部品が含まれる。実施形態では、プラットフォーム1000は、1つ以上のキャプチャされたイベント及び/又はサービスプロバイダ及び/又は様々なクライアントから受信した命令又は制御信号に基づいて、1つ以上のEMC1022を動作させるように構成される。
いくつかの実装形態では、インタフェース回路は、プラットフォーム1000を測位回路1045と接続してもよい。測位回路1045は、GNSSの測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国のGPS、ロシアのGLONASS、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、NAVIC、日本のQZSS、フランスのDORISなど)などが含まれる。測位回路1045は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路1045は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するためのMicro-PNT ICを含むことができる。測位回路1045はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路910及び/又はRFEM1015の一部であってもよく、又はそれらと相互作用してもよい。測位回路1045はまた、位置データ及び/又は時間データをアプリケーション回路1005に提供することができ、アプリケーション回路は、データを使用して、ターンバイターンナビゲーションアプリケーションなどのために、様々なインフラストラクチャ(例えば、無線基地局)と動作を同期させることがある。
いくつかの実装形態では、インタフェース回路は、プラットフォーム1000を近距離通信(NFC)回路1040と接続してもよい。NFC回路1040は、無線周波数識別(RFID)規格に基づいて非接触の短距離通信を提供するように構成され、磁場誘導は、NFC回路1040とプラットフォーム1000の外部のNFC対応デバイス(例えば、「NFCタッチポイント」)との間の通信を可能にするために使用される。NFC回路1040は、アンテナ要素と結合されたNFCコントローラと、NFCコントローラと結合されたプロセッサとを備える。NFCコントローラは、NFCコントローラのファームウェア及びNFCスタックを実行することにより、NFC回路1040にNFC機能を提供するチップ/ICであってもよい。NFCスタックは、NFCコントローラを制御するためにプロセッサによって実行されてもよく、NFCコントローラファームウェアは、近距離RF信号を放射するようにアンテナエレメントを制御するためにNFCコントローラによって実行されてもよい。RF信号は、パッシブNFCタグ(例えば、ステッカー又はリストバンドに埋め込まれたマイクロチップ)に電力を供給して、記憶されたデータをNFC回路1040に送信するか、又は、プラットフォーム1000に近接したNFC回路1040と別のアクティブNFCデバイス(例えば、スマートフォン又はNFC対応POS端末)との間のデータ送出を開始することができる。
ドライバ回路1046は、プラットフォーム1000に組み込まれた、プラットフォーム1000に取り付けられた、又はそうでなければプラットフォーム1000と通信可能に結合された特定のデバイスを制御するように動作するソフトウェア及びハードウェア要素を含むことができる。ドライバ回路1046は、プラットフォーム1000の他の構成要素が、プラットフォーム1000内に存在するか、又はそれに接続され得る様々な入力/出力(I/O)デバイスと相互作用するか、又はそれらを制御することを可能にする個々のドライバを含むことができる。例えば、ドライバ回路1046は、ディスプレイデバイスへのアクセスを制御及び許可するためのディスプレイドライバと、プラットフォーム1000のタッチスクリーンインタフェースへのアクセスを制御及び許可するためのタッチスクリーンドライバと、センサ回路1021のセンサ読み取り値を取得してセンサ回路1021へのアクセスを制御及び許可するためのセンサドライバと、EMC1022のアクチュエータ位置を取得して及び/又はEMC1022へのアクセスを制御及び許可するためのEMCドライバと、埋め込みキャプチャデバイスへのアクセスを制御及び許可するためのカメラドライバと、1つ以上のオーディオ装置へのアクセスを制御及び許可するためのオーディオドライバとを含むことができる。
電力管理集積回路(PMIC)1025(「電力管理回路1025」とも呼ばれる)は、プラットフォーム1000の様々な構成要素に供給される電力を管理することができる。具体的には、ベースバンド回路1010に関して、PMIC1025は、電源選択、電圧スケーリング、バッテリ充電、又はDC-DC変換を制御することができる。プラットフォーム1000がバッテリ1030によって給電可能である場合、例えば、このデバイスがUE601、701に含まれている場合に、多くの場合、PMIC1025が含まれてもよい。
いくつかの実施形態では、PMIC1025は、プラットフォーム1000の様々な省電力機構を制御するか、又は別の方法でその一部とすることができる。例えば、プラットフォーム1000がRRC_Connected状態にあって、トラフィックを間もなく受信することが予期されるのでRANノードに依然として接続されている場合、ある非アクティブ期間後、プラットフォームは、間欠受信モード(DRX)として知られる状態に入ることができる。この状態の間は、プラットフォーム1000は、短時間電力を落とすことができ、それによって節電することができる。長期間のデータトラフィック活動が存在しない場合、プラットフォーム1000は、RRC_Idle状態に遷移することができ、ネットワークから切断し、チャネル品質フィードバック、ハンドオーバなどの動作を実行しない。プラットフォーム1000は、非常に低い電力状態になり、ページングを実行し、ここで再び周期的にウェイクアップしてネットワークにリッスンし、次いで再びパワーダウンする。プラットフォーム1000は、この状態でデータを受信しなくてもよい。データを受信するために、RRC_Connected状態に遷移しなければならない。付加的な省電力モードにより、ページング間隔より長期間(秒から数時間に及ぶ)、デバイスがネットワークを利用不可にすることを可能にしてもよい。この間、デバイスは、ネットワークに全く接続できず、完全に電力を落とすことができる。この間に送信されるどんなデータも、大きな遅延をもたらし、遅延が許容できるものと想定される。
バッテリ1030は、プラットフォーム1000に電力を供給することができるが、いくつかの例では、プラットフォーム1000は、固定位置に展開して取り付けられてもよく、送電網に結合された電源を有してもよい。バッテリ1030は、リチウムイオンバッテリ、空気亜鉛バッテリなどの金属空気バッテリ、アルミニウム空気バッテリ、リチウム空気バッテリなどであってもよい。V2X用途などのいくつかの実装形態では、バッテリ1030は、典型的な鉛酸自動車バッテリであってもよい。
いくつかの実装形態では、バッテリ1030は、バッテリ管理システム(BMS)又はバッテリ監視集積回路を含むか、又はそれに結合された「スマートバッテリ」であってもよい。BMSは、バッテリ1030の充電状態(SoCh)を追跡するためにプラットフォーム1000に含まれてもよい。BMSは、バッテリ1030の他のパラメータを監視して、バッテリ1030の健康状態(SoH)及び機能状態(SoF)などの故障予測を提供するために使用されてもよい。BMSは、バッテリ1030の情報を、アプリケーション回路1005又はプラットフォーム1000の他の構成要素に通信してもよい。BMSはまた、アプリケーション回路1005がバッテリ1030の電圧、又はバッテリ1030からの電流の流れを直接監視することを可能にするアナログ-デジタル(ADC)変換器を含んでもよい。バッテリパラメータは、送信周波数、ネットワーク動作、検知周波数などの、プラットフォーム1000が実行し得る動作を決定するために使用されてもよい。
電力ブロック、又は電気グリッドに結合された他の電源は、バッテリ1030を充電するためにBMSと結合されてもよい。いくつかの実施例では、電力ブロックXS30は、無線電力受信機と置き換えられて、例えば、コンピュータプラットフォーム1000内のループアンテナを介して無線で電力を取得することができる。これらの実施例では、無線バッテリ充電回路がBMSに含まれてもよい。選択される特定の充電回路は、バッテリ1030のサイズ、従って必要とされる電流に依存し得る。充電は、とりわけ、Airfuel Allianceによって公布されたAirfuel標準、Wireless Power Consortiumによって公布されたQi無線充電標準、又はAlliance for Wireless Powerによって公布されたRezence充電標準を使用して実行することができる。
ユーザインタフェース回路1050は、プラットフォーム1000内に存在するか、又はそれに接続される様々な入出力(I/O)デバイスを含み、プラットフォーム1000とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、及び/又はプラットフォーム1000との周辺構成要素相互作用を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェース回路1050は、入力デバイス回路及び出力デバイス回路を含む。入力デバイス回路は、とりわけ、1つ以上の物理的又は仮想的ボタン(例えば、リセットボタン)、物理キーボード、キーパッド、マウス、タッチパッド、タッチスクリーン、マイクロフォン、スキャナ、ヘッドセットなどを含む入力を受け付けるための任意の物理的又は仮想的手段を含む。出力デバイス回路は、センサ読み取り値、アクチュエータ位置、又は他の同様の情報などの情報を表示するか、又は他の方法で情報を伝達するための任意の物理的又は仮想的な手段を含む。出力デバイス回路は、とりわけ、1つ以上の単純な視覚出力/インジケータ(例えば、発光ダイオード(LED))及び複数桁文字視覚出力、又はディスプレイデバイス若しくはタッチスクリーン(例えば、液晶ディスプレイ(LCD)、LEDディスプレイ、量子ドットディスプレイ、プロジェクタなど)などのより複雑な出力を含む、任意の数及び/又は組み合わせのオーディオ又は視覚ディスプレイを含むことができ、文字、グラフィック、マルチメディアオブジェクトなどの出力は、プラットフォーム1000の動作から生成される。出力デバイス回路はまた、スピーカ又は他のオーディオ放出デバイス、プリンタ、及び/又は同様のものを含んでもよい。いくつかの実施形態では、センサ回路1021は、入力デバイス回路(例えば、画像キャプチャデバイス、モーションキャプチャデバイスなど)として使用されてもよく、1つ以上のEMCは、出力デバイス回路(例えば、触覚フィードバックを提供するためのアクチュエータなど)として使用されてもよい。別の実施例では、アンテナ要素と結合されたNFCコントローラを備えるNFC回路、及び処理デバイスが、電子タグを読み取り、及び/又は別のNFC対応デバイスと接続するために含まれてもよい。周辺構成要素インタフェースとしては、不揮発性メモリポート、USBポート、オーディオジャック、電源インタフェースなどが挙げられるが、これらに限定されない。
図示されていないが、プラットフォーム1000の構成要素は、適切なバス又は相互接続(IX)技術を使用して互いに通信することができ、これは、ISA、EISA、PCI、PCIx、PCIe、時間トリガプロトコル(TTP)システム、FlexRayシステム、又は任意の数の他の技術を含む任意の数の技術を含むことができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバス/IXであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図11は、様々な実施形態による、ベースバンド回路1110及び無線フロントエンドモジュール(RFEM)1115の例示的な構成要素を示す。ベースバンド回路1110は、図9及び図10のベースバンド回路910及び1010にそれぞれ対応する。RFEM1115は、図9及び図10のRFEM915及び1015にそれぞれ対応する。図示のように、RFEM1115は、少なくとも示されるように共に結合された無線周波数(RF)回路1106、フロントエンドモジュール(FEM)回路1108、アンテナアレイ1111を含んでもよい。
ベースバンド回路1110は、RF回路1106を介して1つ以上の無線ネットワークとの通信を可能にする様々な無線/ネットワークプロトコル及び無線制御機能を実行するように構成された回路及び/又は制御論理を含む。無線制御機能は、信号変調/復調、符号化/復号化、無線周波数シフト等を含み得るが、これらに限定されない。いくつかの実施形態では、ベースバンド回路1110の変調/復調回路は、高速フーリエ変換(FFT)、プリコーディング、又はコンスタレーションマッピング/デマッピング機能性を含み得る。いくつかの実施形態では、ベースバンド回路1110の符号化/復号回路は、畳込み、テールバイティング畳込み、ターボ、ビタビ、又は低密度パリティチェック(LDPC)エンコーダ/デコーダ機能性を含んでもよい。変調/復調及びエンコーダ/デコーダ機能の実施形態は、これらの実施例に限定されず、他の実施形態では他の好適な機能を含んでもよい。ベースバンド回路1110は、RF回路1106の受信信号経路から受信したベースバンド信号を処理し、RF回路1106の送信信号経路のためのベースバンド信号を生成するように構成される。ベースバンド回路1110は、ベースバンド信号の生成及び処理のために、かつRF回路1106の動作を制御するために、アプリケーション回路905/1005(図9及び図10を参照)とインタフェース接続するように構成される。ベースバンド回路1110は、様々な無線制御機能を処理することができる。
ベースバンド回路1110の前述の回路及び/又は制御論理は、1つ以上の単一又はマルチコアプロセッサを含んでもよい。例えば、1つ以上のプロセッサは、3Gベースバンドプロセッサ1104A、4G/LTEベースバンドプロセッサ1104B、5G/NRベースバンドプロセッサ1104C、又は他の既存世代、開発中の、若しくは将来開発される世代(例えば、第6世代(6G)など)の他のいくつかのベースバンドプロセッサ1104Dを含み得る。他の実施形態では、ベースバンドプロセッサ1104A~1104Dの機能の一部又は全部は、メモリ1104Gに格納されたモジュールに含まれ、中央処理装置(CPU)1104Eを介して実行されてもよい。他の実施形態では、ベースバンドプロセッサ1104A~1104Dの機能の一部又は全ては、対応するメモリセルに格納された適切なビットストリーム又は論理ブロックをロードされたハードウェアアクセラレータ(例えば、FPGA、ASICなど)として提供されてもよい。様々な実施形態において、メモリ1104Gは、CPU1104E(又は他のベースバンドプロセッサ)によって実行されると、CPU1104E(又は他のベースバンドプロセッサ)に、ベースバンド回路1110のリソース、タスクをスケジュールするなどを管理させることになるリアルタイムOS(RTOS)のプログラムコードを記憶することができる。RTOSの例は、Enea(登録商標)によって提供されるOperating System Embedded(OSE)(商標)、Mentor Graphics(登録商標)によって提供されるNucleus RTOS(商標)、Mentor Graphics(登録商標)によって提供されるVersatile Real-Time Executive(VRTX)、Express Logic(登録商標)によって提供されるThreadX(商標)、FreeRTOS、Qualcomm(登録商標)によって提供されるREX OS、Open Kernel(OK)Labs(登録商標)によって提供されるOKL4、又は本明細書で説明されるような他の任意の適切なRTOSを含むことができる。更に、ベースバンド回路1110は、1つ以上の音声デジタル信号プロセッサ(DSP)1104Fを含み得る。音声DSP(単数又は複数)1104Fは、圧縮/展開及びエコー除去のための要素を含んでもよく、他の実施形態では、他の好適な処理要素を含む。
いくつかの実施形態では、プロセッサ1104A~1104Eの各々は、メモリ1104Gに/メモリ1104Gからデータを送受信するためのそれぞれのメモリインタフェースを含む。ベースバンド回路1110は、ベースバンド回路1110の外部のメモリにデータを送受信するインタフェースなどの他の回路/デバイスに通信可能に結合する1つ以上のインタフェースと、図9~図11のアプリケーション回路905/1005との間でデータを送受信するためのアプリケーション回路インタフェースと、図11のRF回路1106との間でデータを送受信するRF回路インタフェースと、1つ以上の無線ハードウェア要素(例えば、近距離無線通信(NFC)構成要素、Bluetooth(登録商標)/Bluetooth(登録商標)低エネルギー構成要素、WiFi(登録商標)構成要素、及び/又は同様のもの)との間でデータを送受信するための無線ハードウェア接続インタフェースと、PMIC1025との間で電力又は制御信号を送受信する電力管理インタフェースと、を更に含む。
代替の実施形態(上述の実施形態と組み合わされてもよい)では、ベースバンド回路1110は、相互接続サブシステムを介してCPUサブシステム、オーディオサブシステム、及びインタフェースサブシステムに互いに結合された、1つ以上のデジタルベースバンドシステムを含む。デジタルベースバンドサブシステムはまた、別の相互接続サブシステムを介してデジタルベースバンドインタフェース及び混合信号ベースバンドサブシステムに結合されてもよい。相互接続サブシステムのそれぞれは、バスシステム、ポイントツーポイント接続、ネットワークオンチップ(NOC)構造、及び/又は本明細書で論じられるものなどのいくつかの他の好適なバス若しくは相互接続技術を含んでもよい。オーディオサブシステムは、DSP回路、バッファメモリ、プログラムメモリ、音声処理アクセラレータ回路、アナログ-デジタル及びデジタル-アナログ変換回路などのデータ変換回路、増幅器及びフィルタのうちの1つ以上を含むアナログ回路、及び/又は他の同様の構成要素を含み得る。本開示の一態様では、ベースバンド回路1110は、デジタルベースバンド回路及び/又は無線周波数回路(例えば、無線フロントエンドモジュール1115)のための制御機能を提供するために、制御回路(図示せず)の1つ以上のインスタンスを有するプロトコル処理回路を含むことができる。
図11には示されていないが、いくつかの実装形態では、ベースバンド回路1110は、1つ以上の無線通信プロトコル(例えば、「マルチプロトコルベースバンドプロセッサ」又は「プロトコル処理回路機構」)を実行するための個々の処理デバイス(単数又は複数)及びPHY層機能を実装するための個々の処理デバイス(単数又は複数)を含む。これらの実施形態では、PHY層機能は、前述の無線制御機能を含む。これらの実施形態では、プロトコル処理回路は、1つ以上の無線通信プロトコルの様々なプロトコル層/エンティティを動作又は実装させる。第1の実施例では、プロトコル処理回路は、ベースバンド回路1110及び/又はRF回路1106がミリ波通信回路又はいくつかの他の好適なセルラ通信回路の一部であるときに、LTEプロトコルエンティティ及び/又は5G/NRプロトコルエンティティを動作させることができる。第1の実施例では、プロトコル処理回路は、MAC、RLC、PDCP、SDAP、RRC、及びNAS機能を動作させる。第2の実施例では、プロトコル処理回路は、ベースバンド回路1110及び/又はRF回路1106がWi-Fi通信システムの一部である場合に、1つ以上のIEEEベースのプロトコルを動作させてもよい。第2の実施例では、プロトコル処理回路は、WiFi MAC及び論理リンク制御(LLC)機能を動作させる。プロトコル処理回路は、プログラムコード及びプロトコル機能を動作させるためのデータを記憶するための1つ以上のメモリ構造(例えば1104G)と、プログラムコードを実行し、データを使用して様々な動作を実行する1つ以上の処理コアを含んでもよい。ベースバンド回路1110はまた、2つ以上の無線プロトコルに関する無線通信をサポートすることができる。
本明細書で論じるベースバンド回路1110の様々なハードウェア要素は、例えば、1つ以上の集積回路(IC)を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージIC、又は2つ以上のICを含むマルチチップモジュールとして実装されてもよい。一実施例では、ベースバンド回路1110の構成要素は、単一のチップ、又はチップセット内で好適に組み合わされてもよいし、同じ回路基板上に配置されてもよい。別の実施例では、ベースバンド回路1110及びRF回路1106の構成要素の一部又は全部は、例えば、システムオンチップSoC又はシステムインパッケージ(SiP)に、一緒に実装されてもよい。別の実施例では、ベースバンド回路1110の構成要素の一部又は全ては、RF回路1106(又はRF回路1106の複数のインスタンス)と通信可能に結合された別個のSoCとして実装されてもよい。更に別の実施例では、ベースバンド回路1110及びアプリケーション回路905/1005の構成要素の一部又は全部は、同じ回路基板(例えば、「マルチチップパッケージ」)に実装された個々のSoCとして一緒に実装されてもよい。
いくつかの実施形態では、ベースバンド回路1110は、1つ以上の無線技術と互換性のある通信を提供することができる。例えば、いくつかの実施形態では、ベースバンド回路1110は、E-UTRAN又は他のWMAN、WLAN、WPANとの通信をサポートすることができる。ベースバンド回路1110が2つ以上の無線プロトコルの無線通信をサポートするように構成される実施形態は、マルチモードベースバンド回路と称される場合がある。
RF回路1106は、非固体媒体を通した変調電磁放射線を用いて無線ネットワークとの通信を可能にすることができる。様々な実施形態では、RF回路1106は、無線ネットワークとの通信を容易にするために、スイッチ、フィルタ、増幅器などを含んでもよい。RF回路1106は、FEM回路1108から受信したRF信号をダウンコンバートし、ベースバンド信号をベースバンド回路1110に提供するための回路を含み得る受信信号経路を含み得る。RF回路1106はまた、ベースバンド回路1110によって提供されるベースバンド信号をアップコンバートし、送信のためにRF出力信号をFEM回路1108に提供するための回路を含み得る送信信号経路も含んでもよい。
いくつかの実施形態では、RF回路1106の受信信号経路は、ミキサ回路1106A、増幅器回路1106B及びフィルタ回路1106Cを含み得る。いくつかの実施形態では、RF回路1106の送信信号経路は、フィルタ回路1106C及びミキサ回路1106Aを含み得る。RF回路1106はまた、受信信号経路及び送信信号経路のミキサ回路1106Aによって使用される周波数を合成するための合成器回路1106Dを含んでもよい。いくつかの実施形態では、受信信号経路のミキサ回路1106Aは、合成器回路1106Dによって提供される合成周波数に基づいて、FEM回路1108から受信したRF信号をダウンコンバートするように構成されてもよい。増幅器回路1106bは、ダウンコンバートされた信号を増幅するように構成することができ、フィルタ回路1106Cは、ダウンコンバートされた信号から不要な信号を除去して出力ベースバンド信号を生成するように構成されたローパスフィルタ(LPF)又はバンドパスフィルタ(BPF)であってもよい。出力ベースバンド信号は、更に処理するためにベースバンド回路1110に提供されてもよい。いくつかの実施形態では、出力ベースバンド信号は、ゼロ周波数ベースバンド信号であってもよいが、これは必須ではない。いくつかの実施形態では、受信信号経路のミキサ回路1106Aは、受動ミキサを含んでもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、送信信号経路のミキサ回路1106Aは、合成器回路1106Dによって提供される合成周波数に基づいて入力ベースバンド信号をアップコンバートして、FEM回路1108のためのRF出力信号を生成するように構成されてもよい。ベースバンド信号は、ベースバンド回路1110によって提供されてもよく、フィルタ回路1106Cによってフィルタリングされてもよい。
いくつかの実施形態では、受信信号経路のミキサ回路1106A及び送信信号経路のミキサ回路1106Aは、2つ以上のミキサを含んでもよく、直交ダウンコンバージョン及びアップコンバージョンのためにそれぞれ配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路1106A及び送信信号経路のミキサ回路1106Aは、2つ以上のミキサを含んでもよく、画像除去(例えば、ハートレー(Hartley)画像除去)のために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路1106A及び送信信号経路のミキサ回路1106Aは、それぞれ直接ダウンコンバージョン及び直接アップコンバージョンのために構成されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路1106A及び送信信号経路のミキサ回路1106Aは、スーパーヘテロダイン動作のために構成されてもよい。
いくつかの実施形態では、出力ベースバンド信号及び入力ベースバンド信号はアナログベースバンド信号であってもよいが、実施形態の範囲はこの点で限定されない。いくつかの代替実施形態では、出力ベースバンド信号及び入力ベースバンド信号は、デジタルベースバンド信号であってもよい。これらの代替実施形態では、RF回路1106は、アナログデジタル変換器(ADC)及びデジタルアナログ変換器(DAC)回路を含むことができ、ベースバンド回路1110は、RF回路1106と通信するためのデジタルベースバンドインタフェースを含んでもよい。
いくつかのデュアルモード実施形態では、各スペクトルの信号を処理するために別個の無線IC回路が提供されてもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、合成器回路1106Dは、フラクショナルN合成器であってもよいし、又はフラクショナルN/N+1合成器であってもよいが、他の種類の周波数合成器が好適である場合があるので、本実施形態の範囲はこの点で限定されない。例えば、合成器回路1106Dは、デルタ-シグマ合成器、周波数乗算器、又は周波数分割器を有する位相ロックループを備える合成器であってもよい。
合成器回路1106Dは、周波数入力及びディバイダ制御入力に基づいて、RF回路1106のミキサ回路1106Aによって使用される出力周波数を合成するように構成されてもよい。いくつかの実施形態では、合成器回路1106Dは、フラクショナルN/N+1合成器であってもよい。
いくつかの実施形態では、周波数入力は、電圧制御型発振器(VCO)によって提供されてもよいが、それは必須ではない。分割器制御入力は、所望の出力周波数に応じてベースバンド回路1110又はアプリケーション回路905/1005のいずれかによって提供されてもよい。いくつかの実施形態では、分割器制御入力(例えば、N)は、アプリケーション回路905/1005によって示されるチャネルに基づいてルックアップテーブルから決定されてもよい。
RF回路1106の合成器回路1106Dは、分割器、遅延ロックループ(DLL)、マルチプレクサ、及び位相アキュムレータを含み得る。いくつかの実施形態では、ディバイダは、デュアルモジュラスディバイダ(dual modulus divider、DMD)であってもよく、位相アキュムレータは、デジタル位相アキュムレータ(digital phase accumulator、DPA)であってもよい。いくつかの実施形態では、DMDは、入力信号を(例えば、実行に基づいて)N又はN+1のいずれかに分割して、フラクショナル分割比を提供するように構成されてもよい。いくつかの例示的実施形態では、DLLは、カスケード式同調可能な遅延素子、位相検出器、チャージポンプ、及びD型フリップフロップのセットを含み得る。これらの実施形態では、遅延素子は、VCO周期を、Ndの等しい位相のパケットに分割するように構成することができ、ここでNdは遅延線内の遅延素子の数である。このようにして、DLLは、遅延線を通した合計遅延が1つのVCOサイクルであることを保証することに寄与すべく、負のフィードバックを提供する。
いくつかの実施形態では、合成器回路1106Dは、出力周波数としてキャリア周波数を生成するように構成されてもよく、他の実施形態では、出力周波数は、キャリア周波数の倍数(例えば、キャリア周波数の2倍、キャリア周波数の4倍)であってもよく、直交発生器及び分割器回路と併せて使用して、互いに対して複数の異なる位相を有するキャリア周波数で複数の信号を生成することができる。いくつかの実施形態では、出力周波数はLO周波数(fLO)であってもよい。いくつかの実施形態では、RF回路1106は、IQ/極性変換器を含んでもよい。
FEM回路1108は、アンテナアレイ1111から受信したRF信号上で動作し、受信信号を増幅し、更に処理するために受信信号の増幅バージョンをRF回路1106に提供するように構成された回路を含み得る受信信号経路を含んでもよい。FEM回路1108はまた、アンテナアレイ1111の1つ以上のアンテナエレメントにより送信されるためにRF回路1106によって提供される、送信のための信号を増幅するように構成された回路を含み得る送信信号経路を含んでもよい。様々な実施形態では、送信又は受信信号経路を通じた増幅は、RF回路1106のみにおいて、FEM回路1108のみにおいて、又はRF回路1106及びFEM回路1108の両方において行われてもよい。
いくつかの実施形態では、FEM回路1108は、送信モードと受信モード動作との間で切り替えるためのTX/RXスイッチを含んでもよい。FEM回路1108は、受信信号経路及び送信信号経路を含み得る。FEM回路1108の受信信号経路は、受信されたRF信号を増幅し、増幅された受信RF信号を出力として(例えば、RF回路1106に)提供するためのLNAを含んでもよい。FEM回路1108の送信信号経路は、(例えば、RF回路1106によって提供される)入力RF信号を増幅するための電力増幅器(PA)と、アンテナアレイ1111のうちの1つ以上のアンテナエレメントによる後続する送信のためにRF信号を生成するための1つ以上のフィルタとを含むことができる。
アンテナアレイ1111は、各々が電気信号を電波に変換して空気中を移動し、受信した電波を電気信号に変換するように構成された、1つ以上のアンテナエレメントを備える。例えば、ベースバンド回路1110によって提供されるデジタルベースバンド信号は、1つ以上のアンテナエレメント(図示せず)を含むアンテナアレイ1111のアンテナエレメントを介して増幅され送信されるアナログRF信号(例えば、変調波形)に変換される。アンテナエレメントは、無指向性、指向性、又はこれらの組み合わせであってもよい。アンテナエレメントは、本明細書で知られている及び/又は説明されているように、多数の配列で形成されてもよい。アンテナアレイ1111は、1つ以上のプリント回路基板の表面上に作製されるマイクロストリップアンテナ又はプリントアンテナを含み得る。アンテナアレイ1111は、様々な形状の金属箔(例えば、パッチアンテナ)のパッチとして形成されてもよく、金属送信線などを使用してRF回路1106及び/又はFEM回路1108と結合されてもよい。
アプリケーション回路905/1005のプロセッサ及びベースバンド回路1110のプロセッサを使用して、プロトコルスタックの1つ以上のインスタンスの要素を実行することができる。例えば、ベースバンド回路1110のプロセッサを単独で又は組み合わせて使用することができ、層3、層2、又は層1の機能を実行することができる一方で、アプリケーション回路905/1005のプロセッサは、これらの層から受信したデータ(例えば、パケットデータ)を利用してもよく、更に、層4の機能(例えば、TCP及びUDP層)を実行してもよい。本明細書で言及するように、層3は、以下に更に詳細に記載するRRC層を含んでもよい。本明細書で言及するように、層2は、以下に更に詳細に記載するMAC層、RLC層及びPDCP層を含んでもよい。本明細書で言及するように、層1は、以下に更に詳細に記載する、UE/RANノードのPHY層を含み得る。
図12は、様々な実施形態に従って、無線通信デバイスにおいて実施され得る様々なプロトコル機能を例示する。特に、図12は、様々なプロトコル層/エンティティ間の相互接続を示す配列1200を含む。図12の以下の説明は、5G/NRシステム規格及びLTEシステム規格と連携して動作する様々なプロトコル層/エンティティについて提供されるが、図12の態様の一部又は全ては、他の無線通信ネットワークシステムにも適用可能であり得る。
1200のプロトコル層は、図示されていない他の上位層機能に加えて、PHY1210、MAC1220、RLC1230、PDCP1240、SDAP1247、RRC1255、及びNAS層1257のうちの1つ以上を含むことができる。プロトコル層は、2つ以上のプロトコル層の間の通信を提供することができる1つ以上のサービスアクセスポイント(例えば、図12の項目1259,1256,1250,1249,1245,1235,1225及び1215)を含むことができる。
PHY1210は、1つ以上の他の通信デバイスとの間で受信又は送信され得る物理層信号1205を送受信することができる。物理層信号1205は、本明細書で説明したような、1つ以上の物理チャネルを含むことができる。PHY1210は、リンク適応又は適応変調及び符号化(adaptive modulation and coding、AMC)、電力制御、(例えば、初期同期及びハンドオーバ目的のための)セル探索、並びに、RRC1255などの上位層によって使用される他の測定を更に実行してもよい。PHY層1210は、また、トランスポートチャネル上のエラー検出、トランスポートチャネルの前方エラー訂正(forward error correction、FEC)符号化/復号、物理チャネルの変調/復調、インターリーブ、レートマッチング、物理チャネルへのマッピング、及びMIMOアンテナ処理を更に実行してもよい。実施形態では、PHY1210のインスタンスは、1つ以上のPHY-SAP1215を介してMAC1220のインスタンスからの要求を処理し、指示を提供することができる。いくつかの実施形態によれば、PHY-SAP1215を介して通信される要求及び指示は、1つ以上のトランスポートチャネルを含むことができる。
MAC1220のインスタンスは、1つ以上のMAC-SAP1225を介してRLC1230のインスタンスからの要求を処理し、インスタンスに指示を提供することができる。MAC-SAP1225を介して通信されるこれらの要求及び指示は、1つ以上の論理チャネルを含むことができる。MAC1220は、論理チャネルとトランスポートチャネルとの間のマッピング、トランスポートチャネルを介してPHY1210に配信されるTB上への1つ以上の論理チャネルからのMAC SDUの多重化、トランスポートチャネルを介してPHY1210に配信されるTBから1つ以上の論理チャネルへのMAC SDUの逆多重化、TB上へのMAC SDUの多重化、スケジューリング情報報告、HARQによるエラー訂正、及び論理チャネル優先順位付けを実行することができる。
RLC1230のインスタンスは、1つ以上の無線リンク制御サービスアクセスポイント(RLC-SAP)1235を介してPDCP1240のインスタンスからの要求を処理し、PDCPのインスタンスに指示を提供することができる。RLC-SAP1235を介して通信されるこれらの要求及び指示は、1つ以上のRLCチャネルを含むことができる。RLC1230は、透過モード(Transparent Mode、TM)、非確認モード(Unacknowledged Mode、UM)、及び確認モード(Acknowledged Mode、AM)を含む、複数の動作モードで動作することができる。RLC1230は、上位層プロトコルデータユニット(PDU)の転送、AMデータ転送のための自動再送要求(automatic repeat request、ARQ)によるエラー訂正、並びに、UM及びAMデータ転送のためのRLC SDUの連結、分割、及び再組み立てを実行することができる。RLC1230はまた、AMデータ転送のためのRLCデータPDUの再分割を実行し、UM及びAMデータ転送のためのRLCデータPDUを並べ替え、UM及びAMデータ転送のための複製データを検出し、UM及びAMデータ転送のためのRLC SDUを破棄し、AMデータ転送のためのプロトコルエラーを検出し、RLC再確立を実行してもよい。
PDCP1240のインスタンスは、RRC1255のインスタンス及び/又はSDAP1247のインスタンスへの要求を処理し、指示を、1つ以上のパケットデータ収斂プロトコルサービスアクセスポイント(PDCP-SAP)1245を介して提供することができる。PDCP-SAP1245を介して通信されるこれらの要求及び指示は、1つ以上の無線ベアラを備え得る。PDCP1240は、IPデータのヘッダ圧縮及び展開を実行し、PDCPシーケンス番号(SN)を維持し、下位層の再確立における上位層PDUのインシーケンス配信を実行し、RLC AM上にマッピングされた無線ベアラのための下位層の再確立における下位層SDUの複製を除去し、制御プレーンデータを暗号化及び解読し、制御プレーンデータの完全性保護及び完全性検証を実行し、データのタイマベースの破棄を制御し、セキュリティ動作(例えば、暗号化、解読、完全性保護、完全性検証など)を実行することができる。
SDAP1247のインスタンスは、1つ以上のSDAP-SAP1249を介して、1つ以上の上位層プロトコルエンティティからの要求を処理し、指示を提供することができる。SDAP-SAP1249を介して通信されるこれらの要求及び指示は、1つ以上のQoSフローを含むことができる。SDAP1247は、QoSフローをDRBにマッピングすることができ、その逆も可能であり、DLパケット及びULパケット内のQFIをマークすることもできる。単一のSDAPエンティティ1247は、個々のPDUセッションのために構成されてもよい。UL方向では、NG-RAN610は、反射マッピング、又は明示的マッピングの2つの異なる方法で、QoSフローのDRB(単数又は複数)へのマッピングを制御することができる。反射マッピングのために、UE601のSDAP1247は、各DRBに対するDLパケットのQFIを監視してもよく、UL方向に流れるパケットに対して同じマッピングを適用することができる。DRBに関しては、UE601のSDAP1247は、QoSフローID(単数又は複数)及びそのDRBに関するDLパケット内で観測されたPDUセッションに対応するQoSフロー(単数又は複数)に属するULパケットをマッピングすることができる。反射マッピングを可能にするために、NG-RAN810は、Uuインタフェース上のDLパケットをQoSフローIDでマークし得る。明示的なマッピングは、SDAP1247をDRBマッピングルールに明示的なQoSフローで構成するRRC1255を含んでもよく、これは記憶され、SDAP1247が後に続くことができる。実施形態では、SDAP1247は、NR実装でのみ使用されてもよく、LTE実装では使用されなくてもよい。
RRC1255は、1つ以上の管理サービスアクセスポイント(M-SAP)を介して、PHY1210、MAC1220、RLC1230、PDCP1240、及びSDAP1247の1つ以上のインスタンスを含み得る、1つ以上のプロトコル層の態様を構成し得る。実施形態では、RRC1255のインスタンスは、1つ以上のRRC-SAP1256を介して、1つ以上のNASエンティティ1257からの要求を処理し、指示を提供することができる。RRC1255のメインサービス及び機能としては、システム情報(例えば、MIB又はNASに関連するSIBに含まれる)又はシステム情報ブロック(System Information Block、SIB)に含まれる)のブロードキャスト、アクセス層(access stratum、AS)に関するシステム情報のブロードキャスト、UE601及びRAN610との間のRRC接続のページング、確立、維持、及び解放(例えば、RRC接続ページング、RRC接続確立、RRC接続変更、RRC接続解放)、ポイントツーポイント無線ベアラの確立、構成、維持、及び解放、鍵管理を含むセキュリティ機能、無線アクセス技術(RAT)間モビリティ、並びにUE測定報告のための測定構成を挙げることができる。MIB及びSIBは、それぞれ個々のデータフィールド又はデータ構造を含むことができる1つ以上のIEを含んでもよい。
NAS1257は、UE601とAMF821との間の制御プレーンの最上位層を形成してもよい。NAS1257は、UE601とLTEシステムのP-GWとの間のIP接続性を確立及び維持するために、UE601のモビリティ及びセッション管理手順をサポートしてもよい。
様々な実施形態によれば、1200の1つ以上のプロトコルエンティティは、上述のデバイス間の制御プレーン又はユーザプレーン通信プロトコルスタックに使用される、UE601、RANノード611、NR実装のAMF821又はLTE実装のMME721、NR実装のUPF802又はLTE実装のS-GW722及びP-GW723などで実装されてもよい。そのような実施形態では、UE601、gNB611、AMF821などのうちの1つ以上に実装され得る1つ以上のプロトコルエンティティは、そのような通信を実行するために、それぞれの下位層プロトコルエンティティのサービスを使用して別のデバイス内又は上に実装され得る、それぞれのピアプロトコルエンティティと通信することができる。いくつかの実施形態では、gNB611のgNB-CUは、1つ以上のgNB-DUの動作を制御するgNBのRRC1255、SDAP1247、及びPDCP1240をホストすることができ、gNB611のgNB-DUは、gNB211のRLC1230、MAC1220、及びPHY1210を各々ホストすることができる。
第1の例では、制御プレーンプロトコルスタックは、最上位層から最下位層の順に、NAS1257、RRC1255、PDCP1240、RLC1230、MAC1220、及びPHY1210を備えることができる。この実施例では、上位層1260は、IP層1261、SCTP1262、及びアプリケーション層シグナリングプロトコル(AP)1263を含むNAS1257の上に構築することができる。
NR実装では、AP1263は、NG-RANノード611とAMF821との間に定義されたNGインタフェース613用のNGアプリケーションプロトコル層(NGAP又はNG-AP)1263であってもよいし、AP1263は、2つ以上のRANノード611の間に定義されたXnインタフェース612用のXnアプリケーションプロトコル層(XnAP又はXn-AP)1263であってもよい。
NGインタフェース613の機能をNG-AP1263がサポートしてもよく、エレメンタリープロシージャ(Elementary Procedures)(EP)を含んでもよい。NG-AP EPは、NG-RANノード611とAMF821との間の相互作用の単位とすることができる。NG-AP1263サービスは、UE関連サービス(例えば、UE601に関連するサービス)及び非UE関連サービス(例えば、NG-RANノード611とAMF821との間のNGインタフェースインスタンス全体に関連するサービス)の2つのグループを含み得る。これらのサービスは、これらに限定されないが、特定のページングエリアに含まれるNG-RANノード611にページング要求を送信するためのページング機能、AMF821がAMF821及びNG-RANノード611内のUEコンテキストを確立、修正、及び/又は解放することを可能にするためのUEコンテキスト管理機能、NG-RAN内のモビリティをサポートするシステム内HO及びEPSシステムとの間のモビリティをサポートするシステム間HOのための、ECM接続モードにおけるUE601のためのモビリティ機能、UE601とAMF821との間でNASメッセージを伝送又は再ルーティングするためのNASシグナリングトランスポート機能、AMF821とUE601との間の関連性を判定するためのNASノード選択機能、NGインタフェースを設定し、NGインタフェースを介してエラーを監視するためのNGインタフェース管理機能(単数又は複数)、NGインタフェースを介して警告メッセージを転送し、又は警告メッセージの進行中のブロードキャストをキャンセルする手段を提供するための警告メッセージ送信機能、CN620を介して二つのRANノード611間でRAN構成情報(例えば、SON情報、性能測定(PM)データなど)を要求及び転送するConfiguration Transfer機能、及び/又は他の同様の機能を含み得る。
XnAP1263は、Xnインタフェース612の機能をサポートすることができ、XnAP基本モビリティ手順及びXnAPグローバル手順を含んでもよい。XnAP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト検索及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、NGRAN611(又はE-UTRAN710)内でUEモビリティを処理するために使用される手順を含むことができる。XnAPグローバル手順は、Xnインタフェースセットアップ手順及びリセット手順、NG-RAN更新手順、セル活性化手順など、特定のUE601に関連しない手順を含み得る。
LTE実装形態では、AP1263は、E-UTRANノード611とMMEとの間に定義されるS1インタフェース613に対するS1アプリケーションプロトコル層(S1-AP)1263であってもよく、又はAP1263は、2つ以上のE-UTRANノード611の間に定義されるX2インタフェース612に対するX2アプリケーションプロトコル層(X2AP又はX2-AP)1263であってもよい。
S1アプリケーションプロトコル層(S1-AP)1263は、S1インタフェースの機能をサポートすることができ、前述のNG-APと同様に、S1-APは、S1-APEPを含むことができる。S1-AP EPは、E-UTRANノード611とLTE CN620内のMME721との間の相互作用の単位とすることができる。S1-AP1263サービスは、UE関連サービス及び非UE関連サービスの2つのグループを含んでもよい。これらのサービスは、E-UTRAN無線アクセスベアラ(E-UTRAN Radio Access Bearer、E-RAB)管理、UE能力インジケーション、モビリティ、NASシグナリング伝送、RAN情報管理(RAN Information Management、RIM)、及び構成転送を含むが、これらに限定されない機能を実行する。
X2AP1263は、X2インタフェース612の機能をサポートすることができ、X2AP基本モビリティ手順及びX2APグローバル手順を含むことができる。X2AP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト検索及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、E-UTRAN620内でUEモビリティを処理するために使用される手順を含み得る。X2APグローバル手順は、X2インタフェースセットアップ及びリセット手順、負荷指示手順、エラー指示手順、セルアクティブ化手順など、特定のUE601に関連しない手順を含み得る。
SCTP層(代替的にSCTP/IP層と呼ばれる)1262は、アプリケーション層メッセージ(例えば、NR実装形態におけるNGAP若しくはXnAPメッセージ、又はLTE実装形態におけるS1-AP若しくはX2APメッセージ)の保証された配信を提供することができる。SCTP1262は、IP1261によってサポートされるIPプロトコルに部分的に基づいて、RANノード611とAMF821/MME721との間のシグナリングメッセージの信頼できる配信を保証することができる。インターネットプロトコル層(IP)1261は、パケットアドレス指定及びルーティング機能を実行するために使用され得る。いくつかの実装形態では、IP層1261は、PDUを配信及び伝達するためにポイントツーポイント送信を使用してもよい。これに関して、RANノード611は、情報を交換するためにMME/AMFとのL2及びL1層通信リンク(例えば、有線又は無線)を備えてもよい。
第2の例では、ユーザプレーンプロトコルスタックは、最上位層から最下位層の順に、SDAP1247、PDCP1240、RLC1230、MAC1220、及びPHY1210を備えることができる。ユーザプレーンプロトコルスタックは、LTE実装形態では、UE601、RANノード611及びUPF802の間の通信のために使用されてもよく、又はLTE実装形態では、S-GW722とP-GW723との間の通信のために使用されてもよい。この例では、上位層1251は、SDAP1247の上に構築されてもよく、ユーザデータグラムプロトコル(UDP)及びIPセキュリティ層(UDP/IP)1252、ユーザプレーン層(GTP-U)のための汎用パケット無線サービス(GPRS)トンネリングプロトコル1253、及びユーザプレーンPDU層(UP PDU)1263を含んでもよい。
トランスポートネットワーク層1254(「トランスポート層」とも呼ばれる)は、IPトランスポート上に構築されてもよく、GTP-U1253をUDP/IP層1252(UDP層及びIP層を含む)の上に使用して、ユーザプレーンPDU(UP-PDU)を搬送してもよい。IP層(「インターネット層」とも呼ばれる)は、パケットアドレス指定及びルーティング機能を実行するために使用されてもよい。IP層は、例えば、IPv4、IPv6、又はPPPフォーマットのうちのいずれかにおいて、IPアドレスをユーザデータパケットに割り当てることができる。
GTP-U1253は、GPRSコアネットワーク内及び無線アクセスネットワークとコアネットワークとの間にユーザデータを運ぶために使用され得る。伝送されるユーザデータは、例えば、IPv4、IPv6、又はPPPフォーマットのうちのいずれかのパケットであってもよい。UDP/IP1252は、データ完全性のチェックサム、ソース及び宛先で異なる機能に対処するためのポート番号、並びに選択されたデータフロー上の暗号化及び認証を提供することができる。RANノード611及びS-GW722は、L1層(例えば、PHY1210)、L2層(例えば、MAC1220、RLC1230、PDCP1240、及び/又はSDAP1247)、UDP/IP層1252、及びGTP-U1253を含むプロトコルスタックを介してユーザプレーンデータを交換するためにS1-Uインタフェースを利用することができる。S-GW722及びP-GW723は、S5/S8aインタフェースを利用して、L1層、L2層、UDP層/IP層1252、及びGTP-U1253を含むプロトコルスタックを介してユーザプレーンデータを交換することができる。前述したように、NASプロトコルは、UE601とP-GW723との間のIP接続を確立及び維持するために、UE601のモビリティ及びセッション管理手順をサポートすることができる。
更に、図12には示されていないが、AP1263及び/又はトランスポートネットワーク層1254の上にアプリケーション層が存在してもよい。アプリケーション層は、UE601、RANノード611、又は他のネットワーク要素のユーザが、例えば、アプリケーション回路905又はアプリケーション回路1005によって実行されるソフトウェアアプリケーションと相互作用する層であってもよい。アプリケーション層はまた、UE601又はベースバンド回路1110などのRANノード611の通信システムと相互作用するためのソフトウェアアプリケーションのための1つ以上のインタフェースを提供してもよい。いくつかの実装形態では、IP層及び/又はアプリケーション層は、開放型システム間相互接続(OSI)モデル(例えば、OSI層7-アプリケーション層、OSI層6-プレゼンテーション層、及びOSI層5-セッション層)の層5~7又はその一部と同じ又は類似の機能を提供することができる。
図13は、様々な実施形態によるコアネットワークの構成要素を示す。CN720の構成要素は、マシン可読媒体又はコンピュータ可読媒体(例えば、非一時的マシン可読記憶媒体)から命令を読み取って実行するための構成要素を含む、単一の物理ノード又は別個の物理ノードに実装されてもよい。実施形態では、CN820の構成要素は、CN720の構成要素に関して本明細書で説明したのと同じ又は同様の方法で実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化する。CN720の論理インスタンス化は、ネットワークスライス1302と呼ばれることがあり、CN720の個々の論理インスタンス化は、特定のネットワーク能力及びネットワーク特性を提供することができる。CN720の一部分の論理インスタンス化は、ネットワークサブスライス1304と呼ぶことができる(例えば、ネットワークサブスライス1304は、P-GW723及びPCRF726を含むように示されている)。
本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことができ、「インスタンス」は、例えば、プログラムコードの実行中に発生し得るオブジェクトの具体的な発生を指すことができる。ネットワークインスタンスは、異なるIPドメイン又は重複しているIPアドレスの場合にトラフィック検出及びルーティングに使用され得るドメインを識別する情報を指し得る。ネットワークスライスインスタンスは、ネットワーク機能(NF)インスタンス及びネットワークスライスを展開するために必要なリソース(例えば、計算、ストレージ、及びネットワーキングリソース)のセットを指すことができる。
5Gシステム(例えば、図8を参照されたい)に関して、ネットワークスライスは常にRAN部分とCN部分とを含む。ネットワークスライシングのサポートは、異なるスライスに対するトラフィックが異なるPDUセッションによって扱われるという原理に依存する。ネットワークは、スケジューリングによって、また異なるL1/L2構成を提供することによって、異なるネットワークスライスを実現することができる。UE801は、NASによって提供されている場合に、適切なRRCメッセージにおけるネットワークスライス選択のための支援情報を提供する。ネットワークは多数のスライスをサポートすることができるが、UEは8スライスを同時にサポートする必要はない。
ネットワークスライスは、CN820制御プレーン及びユーザプレーンNF、サービングPLMN内のNG-RAN810、及びサービングPLMN内のN3IWF機能を含み得る。個々のネットワークスライスは、異なるS-NSSAIを有してもよく、及び/又は異なるSSTを有してもよい。NSSAIは、1つ以上のS-NSSAIを含み、各ネットワークスライスは、S-NSSAIによって一意に識別される。ネットワークスライスは、サポートされる機能及びネットワーク機能の最適化について異なり得、及び/又は複数のネットワークスライスインスタンスは、UE801の異なるグループ(例えば、企業ユーザ)について同じサービス/機能を配信し得る。例えば、個々のネットワークスライスは、異なるコミットされたサービスを配信してもよく、及び/又は特定の顧客又は企業専用であってもよい。この実施例では、各ネットワークスライスは、同じSSTを有するが異なるスライス微分子を有した、異なるNSSAIを有し得る。更に、単一のUEは、5G ANを介して同時に1つ以上のネットワークスライスインスタンスでサービスされ、8つの異なるS-NSSAIに関連付けられ得る。更に、個々のUE801にサービス提供するAMF821インスタンスは、そのUEにサービス提供するネットワークスライスインスタンスの各々に属し得る。
NG-RAN810におけるネットワークスライシングは、RANスライス認識を含む。RANスライス認識は、事前構成された異なるネットワークスライスに関するトラフィックの微分された処理を含む。NG-RAN810におけるスライス認識は、PDUセッションリソース情報を含む全てのシグナリングにおいて、PDUセッションに対応するS-NSSAIを指示することによって、PDUセッションレベルで導入される。NG-RAN810が、NG-RAN機能(例えば、各スライスを含むネットワーク機能のセット)の観点からスライス有効化をサポートする方法は、実装形態に依存する。NG-RAN810は、UE801又は5GC820によって提供される補助情報を使用してネットワークスライスのRAN部分を選択し、これは、PLMN内の事前構成されたネットワークスライスのうちの1つ以上を曖昧さなく識別する。NG-RAN810はまた、SLAに従ってスライス間のリソース管理及びポリシー施行をサポートする。単一のNG-RANノードは、複数のスライスをサポートすることができ、NG-RAN810はまた、各サポートされたスライスに対して、実施されているSLAの適切なRRMポリシーを適用してもよい。NG-RAN810はまた、スライス内でQoS差別化をサポートすることができる。
NG-RAN810はまた、利用可能な場合、初期アタッチ中にAMF821を選択するためのUE支援情報を使用してもよい。NG-RAN810は、初期NASをAMF821にルーティングするために支援情報を使用する。NG-RAN810が支援情報を使用してAMF821を選択できない場合、又はUE801がそのような情報を全く提供しない場合、NG-RAN810は、AMF821のプールの中にあり得るデフォルトAMF821にNASシグナリングを送信する。後続のアクセスのために、UE801は、5GC820によってUE801に割り当てられた一時的ID(temp ID)を提供して、temp IDが有効である限り、NG-RAN810がNASメッセージを適切なAMF821にルーティングすることを可能にする。NG-RAN810は、temp IDに関連付けられたAMF821を認識し、それに到達することができる。そうでなければ、初期アタッチのための方法が当てはまる。
NG-RAN810は、スライス間のリソース分離をサポートする。NG-RAN810リソース分離は、RRMポリシー及び保護機構によって達成されてもよく、これは、1つのスライスが別のスライスのためのサービスレベル合意を破る場合に共有リソースの不足を回避する必要がある。いくつかの実装形態では、NG-RAN810リソースを特定のスライスに完全に専用にすることが可能である。NG-RAN810がリソース分離をサポートする方法は、実装形態に依存する。
いくつかのスライスは、ネットワークの一部でのみ利用可能であってもよい。その隣接セルのセル内でサポートされるスライスのNG-RAN810の認識は、接続モードでの周波数間モビリティに有益であり得る。スライス可用性は、UEの登録エリア内で変化しないようにできる。NG-RAN810及び5GC820は、所与の領域で利用可能であってもなくてもよいスライスのサービス要求を処理する役割を果たす。スライスへのアクセスの承認又は拒否は、スライスのサポート、リソースの可用性、NG-RAN810による要求されたサービスのサポートなどの要因に依存し得る。
UE801は、複数のネットワークスライスと同時に関連付けられてもよい。UE801が複数のスライスに同時に関連付けられている場合、1つのシグナリング接続のみが維持され、周波数内セル再選択のために、UE801は最良のセルにキャンプするように試みる。周波数間セル再選択に対して、UE801がキャンプしている周波数を制御するために、専用の優先度を使用することができる。5GC820は、UE801がネットワークスライスにアクセスする権利を有することを検証することになる。初期コンテキストセットアップ要求メッセージを受信する前に、NG-RAN810は、UE801がアクセスを要求している特定のスライスの認識に基づいて、いくつかの暫定/ローカルポリシーを適用することを許可され得る。初期コンテキスト設定中、NG-RAN810は、リソースが要求されているスライスについて通知される。
NFVアーキテクチャ及びインフラストラクチャは、1つ以上のNFを仮想化するために使用されてもよく、代替的に専有ハードウェアによって実行されて、業界標準のサーバハードウェア、記憶ハードウェア、又はスイッチの組み合わせを含む物理リソース上に仮想化されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想又は再構成可能な実装を実行することができる。
図14は、いくつかの例示的な実施形態による、NFVをサポートするシステム1400の構成要素を示すブロック図である。システム1400は、VIM1402、NFVI1404、VNFM1406、VNF1408、EM1410、NFVO1412、及びNM1414を含むものとして示されている。
VIM1402は、NFVI1404のリソースを管理する。NFVI1404は、システム1400を実行するために使用される物理リソース又は仮想リソース及びアプリケーション(ハイパーバイザを含む)を含むことができる。VIM1402は、NFVI1404による仮想リソースのライフサイクル(例えば、1つ以上の物理リソースに関連付けられたVMの生成、維持、及び解体)を管理し、VMインスタンスを追跡し、VMインスタンス及び関連する物理リソースの性能、障害、及びセキュリティを追跡し、VMインスタンス及び関連する物理リソースを他の管理システムに露出することができる。
VNFM1406は、VNF1408を管理することができる。VNF1408を使用して、EPC構成要素/機能を実行することができる。VNFM1406は、VNF1408のライフサイクルを管理し、VNF1408の仮想態様の性能、障害、及びセキュリティを追跡してもよい。EM1410は、VNF1408の機能的態様の性能、障害、及びセキュリティを追跡することができる。VNFM1406及びEM1410からの追跡データは、例えば、VIM1402又はNFVI1404によって使用される性能測定PMデータを含んでもよい。VNFM1406及びEM1410の両方は、システム1400のVNFの量をスケールアップ/ダウンすることができる。
NFVO1412は、要求されたサービスを提供するために(例えば、EPC機能、構成要素、又はスライスを実行するために)、NFVI1404のリソースを調整、認可、解放、及び予約することができる。NM1414は、ネットワークの管理の責任を有するエンドユーザ機能のパッケージを提供することができ、これは、VNF、非仮想化ネットワーク機能、又はその両方を有するネットワーク要素を含んでもよい(VNFの管理は、EM1410を介して行われてもよい)。
図15は、いくつかの例示的実施形態による、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取り、本明細書で論じる方法論のうちのいずれか1つ以上を実行することができる構成要素を示すブロック図である。具体的には、図15は、1つ以上のプロセッサ(又はプロセッサコア)1510、1つ以上のメモリ/記憶装置1520、及び1つ以上の通信リソース1530を含むハードウェアリソース1500の図式表現を示し、これらの各々は、バス1540を介して通信可能に結合され得る。ノード仮想化(例えば、NFV)が利用される実施形態では、ハイパーバイザ1502が、ハードウェアリソース1500を利用するための1つ以上のネットワークスライス/サブスライスの実行環境を提供するために実行されてもよい。
プロセッサ1510は、例えば、プロセッサ1512及びプロセッサ1514を含み得る。プロセッサ1510(単数又は複数)は、例えば、中央処理装置(CPU)、縮小命令セットコンピューティング(RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、DSP、例えばベースバンドプロセッサ、ASIC、FPGA、高周波集積回路(RFIC)、(本明細書で論じたものを含む)別のプロセッサ、又はこれらの任意の好適な組み合わせであり得る。
メモリ/記憶装置1520は、メインメモリ、ディスクストレージ、又はそれらの任意の好適な組み合わせを含むことができる。メモリ/記憶装置1520としては、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラム可能読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意の種類の揮発性又は不揮発性メモリを含んでもよいが、これらに限定されない。
通信リソース1530は、ネットワーク1508を介して1つ以上の周辺機器1504又は1つ以上のデータベース1506と通信するための、相互接続又はネットワークインタフェースコンポーネント又は他のデバイスを含み得る。例えば、通信リソース1530は、(例えば、USBを介した結合のための)有線通信構成要素、セルラ通信構成要素、NFC構成要素、Bluetooth(登録商標)又は、Bluetooth(登録商標)Low Energy構成要素、WiFi(登録商標)構成要素、及び他の通信構成要素を含み得る。
命令1550は、プロセッサ1510の少なくともいずれかに、本明細書で論じる方法論のうちの任意の1つ以上を実行させるための、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は他の実行可能コードを含んでもよい。命令1550は、完全に又は部分的に、プロセッサ1510(例えば、プロセッサのキャッシュメモリ内に)、メモリ/記憶装置1520、又はそれらの任意の好適な組み合わせのうちの少なくとも1つの中に存在してもよい。更に、命令1550の任意の部分は、周辺機器1504又はデータベース1506の任意の組み合わせからハードウェアリソース1500に転送されてもよい。従って、プロセッサ1510のメモリ、メモリ/記憶装置1520、周辺機器1504、及びデータベース1506は、コンピュータ可読媒体及び機械可読媒体の例である。
図16は、実施形態によるシステムを動作させる方法1600を示す。方法1600は、工程1602に示すように、N2又はN3インタフェースを介して5Gコアネットワーク(5GC)をBSによって通信することを含む。ステップ1604に示すように、BSによって、セルラリンク、無線ローカルエリア(WLAN)リンク、又はそれらの組み合わせを介してユーザ機器(UE)と通信することと、ステップ1606に示すように、BSによって、N2又はN3インタフェースを介して5GCと、セルラリンク、WLANリンク、又はそれらの組み合わせを介してUEとの間で、データのトラフィック管理、又はその組み合わせを実行することとを含む。
図16のステップ及び機能は、アプリケーション回路905又は1005,ベースバンド回路910又は1010,並びに/又はプロセッサ1514によって実行又は制御することができる。
1つ以上の実施形態については、前述の図のうちの1つ以上に記載されている構成要素のうちの少なくとも1つは、以下の例示的なセクションに記載されているような1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成され得る。例えば、前述の図のうちの1つ以上に関連して上述したベースバンド回路は、以下に記載される例のうちの1つ以上に従って動作するように構成されてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、ネットワークエレメントなどに関連付けられた回路は、例示的なセクションにおいて以下に記載される例のうちの1つ以上に従って動作するように構成され得る。
実施例
実施例1は、並置展開の無線アクセスネットワーク(RAN)内の5G NRを用いてWLANを収斂するために、収斂した基地局(cNB)が定義される。cNBは、それぞれWLAN DU及びWLAN CU構成要素として、5G NR gNB CU/DU分割アーキテクチャ内でWLAN AP及びWLANコントローラを統合する。cNBは、5GのNRセルラCU及びWLAN CUの機能性の両方を提供する、収斂したCU104成分を含む。cNBは、1つ以上のセルラDUと、収斂したCU104に接続された1つ以上のWLAN DUとを含む。収斂したCU104は、CPのために5GのコアとそれぞれインタフェースするN2及びN3の単一のセットを支持する。収斂したCU104は、RAN(RTAM機能)内のトラフィック管理をサポートする。UEは、RANレベル(RTAM関数)でのトラフィック管理をサポートする。収斂したCU104は、セルラ又はWLANアクセス上に、UEごとにCP及びUPアンカーを提供する。収斂したCU104は、セルラアクセス及びWLANアクセスを介してトラフィックルーティング機能を達成するための収斂層を支持する。
実施例2は、WLAN CU及びセルラCUが、非並置展開のために収斂したRAN内に別々に配置され、新しいXzインタフェースを介して接続されることを含み得る。Xzインタフェースは、セルラ無線アクセスネットワークとWLAN無線アクセスネットワークとの間のCP及びUPデータ交換を可能にする。WLAN CUは信頼されていると想定され、それは、CP及びUPのためのN2及びN3インタフェースを介して5GCと直接インタフェースする。WLAN CU及びセルラCUの両方は、RAN内のトラフィック管理(RTAM機能)をホストする。WLAN CU及びセルラCUの両方は、セルラアクセス及びWLANアクセスを介してCP及びアップトラフィックルーティング機能を達成するために収斂層をサポートする。UEは、RANレベル(RTAM関数)でのトラフィック管理をサポートする。
実施例3は、AP&UE測定及びUEイベント通知をWLAN CUに提供し、NASシグナリングトランスポートを提供するために、WLAN CUとWi-Fi AP(WLAN DU)との間に定義された新しいF1’インタフェースを含むことができ、NASシグナリングトランスポートを提供することができる。
実施例4は、a)いずれかの方向における5GCとWLANとの間のポリシー制御、及びb)RANレベルトラフィックアクセス管理(RTAM)のための5GCからのCUに対するポリシー/規則設定の機能を追加するように強化された3GPP N2インタフェースを含むことができる。
実施例5は、セルラアクセス及びWLANアクセスを介してCP及びトラフィック経路アップ機能を達成するように定義された収斂層に関する情報をサポートするために、5R NRインタフェースを含むことができる。
実施例6は、CP及びアップトラフィックルーティング機能をセルラ及びWLANアクセス上で達成するように定義された収斂層に関する情報をサポートするために、WLAN空気インタフェースが強化される。
実施例7は、所与のUEのために、CP及びUPが5G NR(セルラCUがアンカーになる)又はWLAN(WLAN CUがアンカーになる)のいずれかにアンカーされることを可能にする相互アンカリング機構が定義されること、すなわち、WLANアクセスを介して5G CPデータ(NAS又はRRC CP)を送信することをサポートし、NRアクセスを介したWLAN CPデータの送信をサポートし、CP及びUPのために、UEごとに単一のアンカーポイント又はマスタノードが定義され、単一のCP接続(N2)が、アンカーポイント/MN CUと5Gコアとの間で維持され、UPの場合、MN CUと非MN/SN CUの両方は、それぞれMN及びSNベアラ/PDUセッションをサポートする5GコアとのUP接続を有することができることを含み得る。アンカーポイント/MN CUは、CP(NAS CP、RRC CP、及びWLAN CPを含む)のためのRANレベルトラフィック管理(RTAM機能)を実行する。アンカーポイント/MN CUは、UP(MNベアラ/PDUセッション)のためのRANレベルトラフィック管理(RTAM機能)を実行する。アンカー/MN選択は、無線測定、初期接続経路、及び/又はポリシー設定を含む複数の基準に基づいてセルラCU又はWLAN CUによって行われ得る。現在のアンカーは、無線条件及びその内部設定に基づいてアンカーを変更することができる。
実施例8は、セルラ/5G NRがCPアンカー及びUPアンカーであるための機構が定義されていることを含み得る。セルラCUは、アンカー/MNとして機能し、5GコアとのCP接続性(N2)を有する。UEの初期アクセス及びRANレベル接続(RRC接続確立)はセルラを介して行われ、UEの接続状態はセルラリンクを介して維持される。UE認証/登録及びPDUセッション確立は、セルラリンクを介して行われる。セルラCUは、NR及びWi-Fiアクセスに対してCP及びUPトラフィック管理を実行する(RTAM機能)。セルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために、セルラCU上に収斂層が追加される。セルラCUは、NRとWLANとの間のデバイスモビリティを提供する。
実施例9は、WLANがCP及びUPアンカーであるように定義された機構を含むことができる。WLAN CUは、アンカー/MNとして機能し、5GコアとのCP接続性(N2)を有する。UEの初期アクセス及びRANレベルの接続はWLANを介して行われ、UEの接続状態はWLANリンクを介して維持される。UE認証/登録及びPDUセッション確立は、WLANリンクを介して行われる。WLAN CUは、NR及びWi-Fiアクセス(RTAM機能)に対してCP及びUPトラフィック管理を実行する。セルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために、WLAN CU上に収斂層が追加される。WLAN CUは、NRとWLANとの間のデバイスモビリティを提供する。
実施例10は、非MN/SN CUが、SN CUと5Gコアとの間に確立された各SNベアラ/PDUセッションの2つの動作モードのうちの1つをサポートするように定義されることを含むことがあり、モード1)SNベアラ/PDUセッションは、対応するSNアクセス(WLAN又はセルラ)を介してのみ転送され、モード2)SN CUは、SNベアラ/PDUセッションのトラフィック管理を実行する。動作モードは、各SNベアラ/PDUセッションごとにMN又はSN自体によって選択することができる。SNベアラのためにモード2が選択される場合、収斂層は、そのSNベアラのセルラ及びWLANアクセスを介してトラフィックルーティング機能を達成するために、SN CUに配置される。
実施例11は、N2及び/又はN3インタフェースを介して5Gコアネットワークと通信することと、セルラネットワーク及び無線ローカルエリアネットワーク(WLAN)を介してユーザ機器(UE)と通信することと、N2及び/又はN3インタフェースを介して5Gコアネットワークとの間、セルラネットワーク及びWLANを介してUEとの間のトラフィックのトラフィック管理を実行することと、を含む方法を含み得る。
実施例12は、実施例11又は本明細書の別の例の方法を含んでもよく、セルラネットワークを介し、WLANを介した制御プレーンシグナリング及びユーザプレーンシグナリングのためのUEのためのアンカーとして機能することを更に含む。
実施例13は、実施例11~12又は本明細書の別の例の方法を含んでもよく、トラフィックは、N2及び/又はN3インタフェースを介して5Gコアネットワークから受信されたダウンリンクトラフィックであり、方法は、セルラネットワークとWLANとの間のUEへのトラフィックの管理を含む。
実施例14は、実施例11~13又は本明細書の別の例の方法を含んでもよく、トラフィックは制御プレーントラフィックである。
実施例15は、実施例11~13又は本明細書の別の例の方法を含んでもよく、トラフィックはユーザプレーントラフィックである。
実施例16は、実施例11~15又は本明細書の別の例の方法を含んでもよく、方法は収斂した基地局又はその一部によって実行される。
実施例17は、実施例16又は本明細書の別の例の方法を含んでもよく、セルラネットワークを介したUEとの通信は、収斂した基地局のセルラ分散ユニットを介して実行され、WLANを介したUEとの通信は、収斂した基地局のWLAN分散ユニット又はその一部を介して実行される。
実施例18は、無線ローカルエリアネットワーク(WLAN)制御ユニット(CU)によって実行される方法を含むことができ、方法は、WLANを介してユーザ機器(UE)とデータを通信することと、WLAN CUと5Gコアネットワークとの間のN2及び/又はN3インタフェースを介して、UEと5Gコアネットワークとの間でデータをルーティングすることとを含む。
実施例19は、実施例18の方法を含むことができ、データは第1のデータであり、方法は、N2及び/又はN3インタフェースを介して5Gコアネットワークから第2のデータを受信することと、無線セルラネットワークを介してセルラCUからUEへデータを配信するためにセルラCUへのデータをルーティングすることとを更に含む。
実施例20は、実施例18~19の方法を含むことができ、UEが無線セルラネットワークを介して5Gコアネットワークと通信するためのアンカーとして機能することを更に含む。
実施例21は、実施例20又は本明細書における別の実施例の方法を含むことができ、無線セルラネットワークを介してUEによって送信されたセルラCUからのセルラデータを受信することと、N2及び/又はN3インタフェースを介して5Gコアネットワークにセルラデータを送信することとを更に含む。
実施例22は、実施例20又は本明細書における別の実施例の方法を含むことができ、無線条件に基づいてセルラCUへのアンカーを変更することを更に含む。
実施例23は、実施例18~22又は本明細書における別の実施例の方法を含むことができ、N2インタフェースを介して5Gコアネットワークから、WLANと無線セルラネットワークとの間のデータのルーティングを制御するためのポリシー制御情報を受信することを更に含む。
実施例24は、実施例18~23又は本明細書における別の実施例の方法を含むことができ、データは、N2インタフェースを介してルーティングされた制御プレーンデータである。
実施例25は、実施例18~24又は本明細書における別の実施例の方法を含むことができ、データは、N3インタフェースを介してルーティングされたユーザプレーンデータである。
実施例26は、実施例18~25又は本明細書における別の実施例の方法を含んでもよく、WLANとセルラネットワークとの間のUEのためのトラフィックの管理を含む無線アクセスネットワーク(RAN)トラフィックアクセス管理(RTAM)を実行することを更に含む。
実施例27は、実施例18~26又は本明細書における別の実施例の方法を含んでもよく、WLANを介して5Gコアネットワークを用いてUEを認証及び登録することと、セルラCUを介してUEと5Gコアネットワークとの間の通信を可能にするために、セルラCUに登録情報を提供することとを更に含む。
実施例28は、5GコアネットワークへのアクセスのためにWLANを介して無線ローカルエリアネットワーク(WLAN)制御ユニット(CU)を用いて認証及び登録することと、認証及び登録に基づいて、無線セルラネットワークを介して5Gコアネットワークと通信することとを含む方法を含んでもよい。
実施例29は、実施例28又は本明細書における別の実施例の方法を含んでもよく、WLAN CUとのパケットデータユニット(PDU)セッションを確立することと、PDUセッションに従って無線セルラネットワーク上で通信することとを更に含む。
実施例30は、実施例28~29又は本明細書における別の実施例の方法を含んでもよく、方法はユーザ機器(UE)又はその一部によって実行される。
実施例31は、5Gコアネットワークへのアクセスのために無線セルラネットワークを介してセルラ制御ユニット(CU)を用いて認証及び登録することと、認証及び登録に基づいて無線ローカルエリアネットワークを介して5Gコアネットワークと通信することとを含む方法を含んでもよい。
実施例32は、実施例31又は本明細書における別の実施例の方法を含んでもよく、セルラCUとのパケットデータユニット(PDU)セッションを確立することと、PDUセッションに従ってWLAN上で通信することとを更に含む。
実施例33は、実施例31~32又は本明細書における別の実施例の方法を含んでもよく、方法はユーザ機器(UE)又はその一部によって実行される。
実施例34は、実施例1~33のいずれか1つに記載の、若しくはこれらに関連する方法、又は本明細書に記載されるその他いずれかの方法若しくはプロセスの1つ以上の要素を実行するための手段を含む装置を含むことができる。
実施例35は、命令を含む1つ以上の非一時的コンピュータ可読媒体であって、電子デバイスの1つ以上のプロセッサによって命令が実行されると、命令は電子デバイスに、実施例1~33のいずれか1つに記載された方法、又は本明細書に記載の任意の他の方法若しくはプロセス、の1つ以上の要素を実行させる、1つ以上の非一時的コンピュータ可読媒体を含んでもよい。
実施例36は、実施例1~33のいずれか1つに記載の、若しくはこれらに関連する方法、又は本明細書に記載されるその他いずれかの方法若しくはプロセスの1つ以上の要素を実行するためのロジック、モジュール、又は回路を含む装置を含むことができる。
実施例37は、実施例1~33のいずれか1つに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの部分若しくは部品を含むことができる。
実施例38は、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに実施例1~33のいずれか1つに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの部分を実行させる命令を含む1つ以上のコンピュータ可読媒体と、を含む装置を含むことができる。
実施例39は、実施例1~33のいずれか1つに記載又は関連する信号、又はその一部若しくは部分を含み得る。
実施例40は、本明細書に示されて記載された無線ネットワークにおける信号を含むことができる。
実施例41は、本明細書に図示され説明されるように無線ネットワーク内で通信する方法を含んでもよい。
実施例42は、本明細書に図示され説明されるような無線通信を提供するためのシステムを含んでもよい。
実施例43は、本明細書に図示され説明されるような無線通信を提供するためのデバイスを含んでもよい。
上記の実施例のいずれも、特に明記しない限り、任意の他の実施例(又は実施例の組み合わせ)と組み合わせることができる。1つ以上の実装形態の前述の説明は、例示及び説明を提供するが、網羅的であることを意図するものではなく、又は、開示される正確な形態に実装形態の範囲を限定することを意図するものではない。修正及び変形は、上記の教示を考慮して可能であるか、又は本開示と整合した実践的実施形態から得ることができる。
略語
本文書の目的のために、以下の略語を本明細書で論じる例及び実施形態に適用することができるが、限定することを意味するものではない。
3GPP 第3世代パートナーシッププロジェクト
4G 第4世代
5G 第5世代
5GC 5Gコアネットワーク
ACK 肯定応答
AF アプリケーション機能
AM 確認モード
AMBR アグリゲート最大ビットレート
AMF アクセス及びモビリティ管理機能
AN アクセスネットワーク
ANR 自動近隣関係
AP アプリケーションプロトコル、アンテナポート、アクセスポイント
API アプリケーションプログラミングインタフェース
APN アクセスポイント名
ARP 割り当て及び保持優先度
ARQ 自動再送要求
AS アクセス層
ASN.1 抽象構文表記1
AUSF 認証サーバ機能
AWGN 付加白色ガウスノイズ
BCH ブロードキャストチャネル
BER ビット誤り率
BFD ビーム故障検出
BLER ブロック誤り率
BPSK 2値位相シフトキーイング
BRAS ブロードバンドリモートアクセスサーバ
BSS 業務支援システム
BS 基地局
BSR バッファ状態レポート
BW 帯域幅
BWP 帯域幅部分
C-RNTI セル無線ネットワーク一時識別子
CA キャリアアグリゲーション、認証局
CAPEX 設備投資
CBRA 競合ベースのランダムアクセス
CC コンポーネントキャリア、国コード、暗号チェックサム
CCA クリアチャネルアセスメント
CCE 制御チャネル要素
CCCH 共通制御チャネル
CE カバレッジ拡張
CDM コンテンツ配信ネットワーク
CDMA 符号分割多元アクセス
CFRA コンテンションフリーランダムアクセス
CG セルグループ
CI セルアイデンティティ
CID セルID(例えば、位置決め方法)
CIM 共通情報モデル
CIR キャリア対干渉比
CK 暗号鍵
CM 接続管理、条件付き必須
CMAS 商用モバイル警告サービス
CMD コマンド
CMS クラウド管理システム
CO 条件付きオプション
CoMP 協調マルチポイント
CORESET 制御リソースセット
COTS いつでも買える市販品
CP 制御プレーン、サイクリックプレフィックス、接続ポイント
CPD 接続点記述子
CPE 顧客宅内機器
CPICH 共通パイロットチャネル
CQI チャネル品質インジケータ
CPU CSI処理部、中央処理部
C/R コマンド/応答フィールドビット
CRAN クラウド無線アクセスネットワーク、クラウドRAN
CRB 共通リソースブロック
CRC 巡回冗長検査
CRI チャネル状態情報リソースインジケータ、CSI-RSリソースインジケータ
C-RNTI セルRNTI
CS 回路切換
CSAR クラウドサービスアーカイブ
CSI チャネル状態情報
CSI-IM CSI干渉測定値
CSI-RS CSI基準信号
CSI-RSRP CSI基準信号受信電力
CSI-RSRQ CSI基準信号受信品質
CSI SINR CSI信号対干渉及びノイズ比
CSMA キャリアセンス多元アクセス
CSMA/CA 衝突回避を伴うCSMA
CSS 共通探索空間、セル固有探索空間
CTS 送信クリア
CW コードワード
CWS 競合ウィンドウサイズ
D2D デバイス間
DC デュアルコネクティビティ、直流
DCI ダウンリンク制御情報
DF 展開Flavour
DL ダウンリンク
DMTF 分散管理タスクフォース
DPDK データプレーン開発キット
DM-RS、DMRS 復調基準信号
DN データネットワーク
DRB データ無線ベアラ
DRS 発見基準信号
DRX 不連続受信
DSL ドメイン固有言語デジタル加入者回線
DSLAM DSLアクセスマルチプレクサ
DwPTS ダウンリンクパイロット時間スロット
E-LAN Ethernetローカルエリアネットワーク
E2E エンドツーエンド
ECCA 拡張クリアチャネル評価、拡張CCA
ECCE 拡張制御チャネル要素、拡張CCE
ED エネルギー検出
EDGE GSM進化のための拡張データ(GSMエボリューション)
EGMF Exposure Governance Management Function
EGPRS 拡張GPRS
EIR 機器アイデンティティレジスタ
eLAA enhanced免許アシストアクセス、enhanced LAA
EM 要素マネージャ
eMBB 拡張モバイルブロードバンド
EMS 要素管理システム
eNB 進化型ノードB、E-UTRANノードB
EN-DC E-UTRA-NRデュアルコネクティビティ
EPC 進化型パケットコア
EPDCCH エンハンストPDCCH、エンハンスト物理ダウンリンク制御チャネル
EPRE リソース要素ごとのエネルギー
EPS 進化型パケットシステム
EREG 強化されたREG、強化されたリソース要素グループ
ETSI 欧州電気通信標準化機構
ETWS 地震・津波警報システム
eUICC 埋め込みUICC、埋め込みユニバーサル集積回路カード
E-UTRA 進化型UTRA
E-UTRAN 進化型UTRAN
EV2X エンハンストV2X
F1AP F1アプリケーションプロトコル
F1-C F1制御プレーンインタフェース
F1-U F1ユーザプレーンインタフェース
FACCH 高速付随制御チャネル
FACCH/F 高速付随制御チャネル/フルレート
FACCH/H 高速付随制御チャネル/ハーフレート
FACH 順方向アクセスチャネル
FAUSCH 高速アップリンクシグナリングチャネル
FB 機能ブロック
FBI フィードバック情報
FCC 連邦通信委員会
FCCH 周波数補正チャネル
FDD 周波数分割複信
FDM 周波数分割多重化
FDMA 符号分割多元アクセス
FE フロントエンド
FEC 順方向誤り訂正
FFS 更なる研究
FFT 高速フーリエ変換
feLAA further enhancedライセンス支援アクセス、further enhanced LAA
FN フレーム番号
FPGA フィールドプログラマブルゲートアレイ
FR 周波数範囲
G-RNTI GERAN無線ネットワーク一時識別子
GERAN GSM EDGE RAN、GSM EDGE無線アクセスネットワーク
GGSN ゲートウェイGPRSサポートノード
GLONASS GLObal’naya NAvigattionnaya Sputnikovaya Sistema(全地球航法衛星システム)
gNB 次世代ノードB
gNB-CU gNB-集中ユニット、次世代NodeB集中ユニット
gNB-DU gNB分散ユニット、次世代NodeB分散ユニット
GNSS 全球測位衛星システム
GPRS 汎用パケット無線サービス
GSM モバイル通信用グローバルシステム、グループスペシャルモバイル
GTP GPRSトンネリングプロトコル
GTP-U ユーザプレーン用GPRSトンネリングプロトコル
GTS スリープ要求信号(WUS関連)
GUMMEI グローバルに一意のMME識別子
GUTI グローバルに一意の一時UEアイデンティティ
HARQ ハイブリッドARQ、ハイブリッド自動再送要求
HANDO、HO ハンドオーバ
HFN ハイパーフレーム番号
HHO ハードハンドオーバ
HLR ホームロケーションレジスタ
HN ホームネットワーク
HO ハンドオーバ
HPLMN ホームパブリックランドモバイルネットワーク
HSDPA 高速ダウンリンクパケットアクセス
HSN ホッピングシーケンス番号
HSPA 高速パケットアクセス
HSS ホーム加入者サーバ
HSUPA 高速アップリンクパケットアクセス
HTTP ハイパーテキスト転送プロトコル
HTTPS ハイパーテキスト転送プロトコルセキュア(httpsはSSL上のhttp/1.1、すなわちポート443である)
I-Block 情報ブロック
ICCID 集積カード識別子
ICIC セル間干渉調整
ID アイデンティティ、識別子
IDFT 逆離散フーリエ変換
IE 情報要素
IBE 帯域内放射
IEEE 米国電気電子学会
IEI 情報要素識別子
IEIDL 情報要素識別子データ長
IETF インターネット技術タスクフォース
IF インフラストラクチャ
IM 干渉測定、相互変調、IPマルチメディア
IMC IMS認証情報
IMEII 国際モバイル機器アイデンティティ
IMGI 国際移動体グループアイデンティティ
IMPI IPマルチメディアプライベートアイデンティティ
IMPU IPマルチメディアパブリックアイデンティティ
IMS IPマルチメディアサブシステム
IMSI 国際移動電話加入者識別番号
IoT モノのインターネット
IP インターネットプロトコル
Ipsec IPセキュリティ、インターネットプロトコルセキュリティ
IP-CAN IP接続アクセスネットワーク
IP-M IPマルチキャスト
IPv4 インターネットプロトコルバージョン4
IPv6 インターネットプロトコルバージョン6
IR 赤外線
IS 同期している
IRP 統合基準点
ISDN 統合サービスデジタルネットワーク
ISIM IMサービスアイデンティティモジュール
ISO 国際標準化機構
ISP インターネットサービスプロバイダ
IWF 相互作用関数
I-WLAN 相互接続WLAN
K 畳込符号の制約長、USIM個別キー
kB キロバイト(1000バイト)
kbps キロビット/秒
Kc 暗号鍵
Ki 個別加入者認証鍵
KPI 主要能力評価指標
KQI 主要品質インジケータ
KSI キーセット識別子
ksps キロシンボル/秒
KVM カーネル仮想マシン
L1 層1(物理層)
L1-RSRP 層1基準信号受信電力
L2 層2(データリンク層)
L3 層3(ネットワーク層)
LAA 免許支援アクセス
LAN ローカルエリアネットワーク
LBT リッスンビフォアトーク
LCM ライフサイクル管理
LCR 低チップレート
LCS 場所サービス
LCID 論理チャネルID
LI 層インジケータ
LLC 論理リンク制御、低層互換性
LPLMN ローカルPLMN
LPP LTE位置決めプロトコル
LSB 最下位ビット
LTE ロングタームエボリューション
LWA LTE-WLANアグリゲーション
LWIP IPsecチャネルとのLTE/WLAN無線レベル統合
LTE ロングタームエボリューション
M2M マシンツーマシン
MAC 媒体アクセス制御(プロトコル層コンテキスト)
MAC メッセージ認証コード(セキュリティ/暗号コンテキスト)
MAC-A 認証及び鍵合意に使用されるMAC(TSG T WG3コンテキスト)
MAC-I シグナリングメッセージのデータ完全性に使用されるMAC(TSG T WG3コンテキスト)
MANO 管理及びオーケストレーション
MBMS マルチメディアブロードキャストマルチキャストサービス
MBSFN マルチメディアブロードキャストマルチキャストサービスシングル周波数ネットワーク
MCC モバイルカントリコード
MCG マスタセルグループ
MCOT 最大チャネル占有時間
MCS 変調及び符号化スキーム
MDAF 管理データ分析機能
MDAS 管理データ分析サービス
MDT 駆動試験の最小化
ME モバイル機器
MeNB マスタeNB
MER メッセージ誤り率
MGL 測定ギャップ長
MGRP 測定ギャップ反復期間
MIB マスタ情報ブロック、管理情報ベース
MIMO 多重入力多重出力
MLC モバイルロケーションセンタ
MM モビリティ管理
MME モビリティ管理エンティティ
MN マスタノード
MO 測定オブジェクト、モバイル発信
MPBCH MTC物理報知チャネル
MPDCCH MTC物理ダウンリンク制御チャネル
MPDSCH MTC物理ダウンリンク共有チャネル
MPRACH MTC物理ランダムアクセスチャネル
MPDSCH MTC物理アップリンク共有チャネル
MPLS マルチプロトコルラベルスイッチング
MS 移動局
MSB 最上位ビット
MSC モバイル切換センタ
MSI 最小システム情報、MCHスケジューリング情報
MSID 移動局識別子
MSIN 移動局識別番号
MSISDN モバイル加入者ISDN番号
MT モバイル終端、モバイルターミネーション
MTC マシン型通信
mMTC 大規模MTC、大規模マシン型通信
MU-MIMO マルチユーザMIMO
MWUS MTCウェイクアップ信号、MTC WUS
NACK 否定応答
NAI ネットワークアクセス識別子
NAS 非アクセス層
NCT ネットワーク接続トポロジ
NEC ネットワーク能力開示
NE-DC NR-E-UTRAデュアルコネクティビティ
NEF ネットワーク開示機能
NF ネットワーク機能
NFP ネットワーク転送経路
NFPD ネットワーク転送経路記述子
NFV ネットワーク機能仮想化
NFVI NFVインフラストラクチャ
NFVO NFVオーケストレータ
NG 次世代
NGEN-DC NG-RAN E-UTRA-NRデュアルコネクティビティ
NM ネットワークマネージャ
NMS ネットワーク管理システム
N-PoP ネットワークポイントオブプレゼンス
NMIB,N-MIB 狭帯域MIB
NPBCH 狭帯域物理ブロードキャストチャネル
NPDCCH 狭帯域物理ダウンリンク制御チャネル
NPDSCH 狭帯域物理ダウンリンク共有チャネル
NPRACH 狭帯域物理ランダムアクセスチャネル
NPUSCH 狭帯域物理アップリンク共有チャネル
NPSS 狭帯域プライマリ同期信号
NSSS 狭帯域セカンダリ同期信号
NR 新無線、近隣関係
NRF NFリポジトリ機能
NRS 狭帯域基準信号
NS ネットワークサービス
NSA 非スタンドアロン動作モード
NSD ネットワークサービス記述子
NSR ネットワークサービスレコード
NSSAI ネットワークスライス選択支援情報
S-NNSAI シングルNSSAI
NSSF ネットワークスライス選択機能
NW ネットワーク
NWUS 狭帯域ウェイクアップ信号、狭帯域WUS
NZP 非ゼロ電力
O&M 運用及び保守
ODU2 光チャネルデータユニット-タイプ2
OFDM 直交周波数分割多重化
OFDMA 直交周波数分割多元アクセス
OOB 帯域外
OOS 同期外れ
OPEX 運転費
OSI その他システム情報
OSS オペレーションサポートシステム
OTA over-the-air
PAPR ピーク対平均電力比
PAR ピーク対平均比
PBCH 物理ブロードキャストチャネル
PC 電力制御、パーソナルコンピュータ
PCC プライマリコンポーネントキャリア、プライマリCC
PCell プライマリセル
PCI 物理セルID、物理セルアイデンティティ
PCEF ポリシー及び課金実施機能
PCF ポリシー制御機能
PCRF ポリシー制御及び課金ルール機能
PDCP パケットデータコンバージェンスプロトコル、パケットデータ収斂プロトコル層
PDCCH 物理ダウンリンク制御チャネル
PDCP パケットデータコンバージェンスプロトコル
PDN パケットデータネットワーク、パブリックデータネットワーク
PDSCH 物理ダウンリンク共有チャネル
PDU プロトコルデータユニット
PEI 永久機器識別子
PFD パケットフロー記述
P-GW PDNゲートウェイ
PHICH 物理ハイブリッドARQインジケータチャネル
PHY 物理層
PLMN 公衆陸上移動網
PIN 個人識別番号
PM 性能測定
PMI プリコーディング行列インジケータ
PNF 物理ネットワーク機能
PNFD 物理ネットワーク機能記述子
PNFR 物理ネットワーク機能記録
POC セルラを介するPTT
PP,PTP ポイントツーポイント
PPP ポイントツーポイントプロトコル
PRACH 物理RACH
PRB 物理リソースブロック
PRG 物理リソースブロックグループ
ProSe 近接サービス、近接ベースのサービス
PRS 位置決め基準信号
PRR パケット受信無線機
PS パケットサービス
PSBCH 物理サイドリンクブロードキャストチャネル
PSDCH 物理サイドリンクダウンリンクチャネル
PSCCH 物理サイドリンク制御チャネル
PSSCH 物理サイドリンク共有チャネル
PSCell プライマリSCell
PSS プライマリ同期信号
PSTN 公衆交換電話網
PT-RS 位相追跡基準信号
PTT プッシュツートーク
PUCCH 物理アップリンク制御チャネル
PUSCH 物理アップリンク共有チャネル
QAM 直交振幅変調
QCI 識別子のQoSクラス
QCL 準コロケーション
QFI QoSフローID、QoSフロー識別子
QoS サービス品質
QPSK 直交(四値)位相シフトキーイング
QZSS 準天頂衛星システム
RA-RNTI ランダムアクセスRNTI
RAB 無線アクセスベアラ、ランダムアクセスバースト
RACH ランダムアクセスチャネル
RADIUS ユーザサービスにおけるリモート認証ダイヤル
RAN 無線アクセスネットワーク
RAND 乱数(認証に使用)
RAR ランダムアクセス応答
RAT 無線アクセス技術
RAU ルーティングエリア更新
RB リソースブロック、無線ベアラ
RBG リソースブロックグループ
REG リソース要素グループ
Rel 解放
REQ 要求
RF 無線周波数
RI ランクインジケータ
RIV リソースインジケータ値
RL 無線リンク
RLC 無線リンク制御、無線リンク制御層
RLC AM RLC肯定応答モード
RLC UM RLC非肯定応答モード
RLF 無線リンク障害
RLM 無線リンクモニタリング
RLM-RS RLMのための基準信号
RM 登録管理
RMC 基準測定チャネル
RMSI 残存MSI、残存最小システム情報
RN 中継ノード
RNC 無線ネットワークコントローラ
RNL 無線ネットワーク層
RNTI 無線ネットワーク一時識別子
ROHC ロバストヘッダ圧縮
RRC 無線リソース制御、無線リソース制御層
RRM 無線リソース管理
RS 基準信号
RSRP 基準信号受信電力
RSRQ 基準信号受信品質
RSSI 受信信号強度インジケータ
RSU 路側機
RSTD 基準信号時間差
RTP リアルタイムプロトコル
RTS 送信要求
RTT 往復時間
Rx 受信、受信機
S1AP S1アプリケーションプロトコル
S1-MME 制御プレーン用S1
S1-U ユーザプレーン用S1
S-GW サービングゲートウェイ
S-RNTI SRNC無線ネットワーク一時識別子
S-TMSI SAE一時移動局識別子
SA スタンドアロン動作モード
SAE システムアーキテクチャ発展
SAP サービスアクセスポイント
SAPD サービスアクセスポイント記述子
SAPI サービスアクセスポイント識別子
SCC セカンダリコンポーネントキャリア、セカンダリCC
SCell セカンダリセル
SC-FDMA シングルキャリア周波数分割多元アクセス
SCG セカンダリセルグループ
SCM セキュリティコンテキスト管理
SCS サブキャリア間隔
SCTP ストリーム制御伝送プロトコル
SDAP サービスデータ適応プロトコル、サービスデータ適応プロトコル層
SDL 補助ダウンリンク
SDNF 構造化データストレージネットワーク機能
SDP サービスディスカバリプロトコル(Bluetooth関連)
SDSF 構造化データ記憶機能
SDU サービスデータユニット
SEAF セキュリティアンカー機能
SeNB セカンダリeNB
SEPP セキュリティエッジ保護プロキシ
SFI スロットフォーマット表示
SFTD 空間周波数時間ダイバーシティ、SFN及びフレームタイミング差
SFN システムフレーム番号
SgNB セカンダリgNB
SGSN サービングGPRSサポートノード
S-GW サービングゲートウェイ
SI システム情報
SI-RNTI システム情報RNTI
SIB システム情報ブロック
SIM 加入者識別モジュール
SIP セッション開始プロトコル
SiP システムインパッケージ
SL サイドリンク
SLA サービス水準合意
SM セッション管理
SMF セッション管理機能
SMS ショートメッセージサービス
SMSF SMS機能
SMTC SSBベースの測定タイミング構成
SN セカンダリノード、シーケンス番号
SoC システムオンチップ
SON 自己組織ネットワーク
SpCell 特殊セル
SP-CSI-RNTI 反永続的CSI RNTI
SPS 反永続的スケジューリング
SQN シーケンス番号
SR スケジューリング要求
SRB シグナリング無線ベアラ
SRS サウンディング基準信号
SS 同期信号
SSB 同期信号ブロック、SS/PBCHブロック
SSBRI SS/PBCHブロックリソースインジケータ、同期信号ブロックリソースインジケータ
SSC セッション及びサービス連続性
SS-RSRP 同期化信号ベースの基準信号受信電力
SS-RSRQ 同期信号ベースの基準信号受信品質
SS-SINR 同期信号ベースの信号対ノイズ及び干渉比
SSS セカンダリ同期信号
SSSG 探索空間セットグループ
SSSIF 探索空間セットインジケータ
SST スライス/サービスタイプ
SU-MIMO シングルユーザMIMO
SUL 補助アップリンク
TA タイミングアドバンス、トラッキングエリア
TAC 追跡エリアコード
TAG タイミングアドバンスグループ
TAU 追跡エリア更新
TB トランスポートブロック
TBS トランスポートブロックサイズ
TBD To Be Defined
TCI 送信構成インジケータ
TCP 伝送通信プロトコル
TDD 時分割複信
TDM 時分割多重
TDMA 時分割多元アクセス
TE 端末機器
TEID トンネルエンドポイント識別子
TFT トラフィックフローテンプレート
TMSI 一時モバイル加入者アイデンティティ
TNL トランスポートネットワーク層
TPC 送信電力制御
TPMI 送信プリコーディング行列インジケータ
TR 技術報告書
TRP,TRxP 送信受信点
TRS 追跡基準信号
TRx トランシーバ
TS 技術仕様書、技術規格
TTI 送信時間間隔
Tx 送信、送信機
U-RNTI UTRAN無線ネットワーク一時識別子
UART ユニバーサル非同期受信機及び送信機
UCI アップリンク制御情報
UE ユーザ機器
UDM 統合データ管理
UDP ユーザデータグラムプロトコル
UDSF 非構造化データストレージネットワーク機能
UICC ユニバーサル集積回路カード
UL アップリンク
UM 非肯定応答モード
UML 統一モデル言語
UMTS ユニバーサル移動体通信システム
UP ユーザプレーン
UPF ユーザプレーン機能
URI ユニフォームリソース識別子
URL ユニフォームリソースロケータ
URLLC 超高信頼及び低レイテンシ
USB ユニバーサルシリアルバス
USIM ユニバーサル加入者アイデンティティモジュール
USS UE 固有探索空間
UTRA UMTS端末無線アクセス
UTRAN ユニバーサル地上無線アクセスネットワーク
UwPTS アップリンクパイロットタイムスロット
V2I ビークルツーインフラストラクチャ
V2P ビークルツー歩行者
V2V ビークルツービークル
V2X ビークルツーエブリシング
VIM 仮想化インフラストラクチャマネージャ
VL 仮想リンク、
VLAN 仮想LAN、仮想ローカルエリアネットワーク
VM 仮想マシン
VNF 仮想化ネットワーク機能
VNFFG VNF転送グラフ
VNFFGD VNF転送グラフ記述子
VNFM VNFマネージャ
VoIP ボイスオーバーIP、ボイスオーバーインターネットプロトコル
VPLMN 訪問先公衆移動陸上網
VPN 仮想プライベートネットワーク
VRB 仮想リソースブロック
WiMAX ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス
WLAN 無線ローカルエリアネットワーク
WMAN 無線メトロポリタンエリアネットワーク
WPAN 無線パーソナルエリアネットワーク
X2-C X2-制御プレーン
X2-U X2-ユーザプレーン
XML 拡張可能なマークアップ言語
XRES 予想ユーザ応答
XOR 排他的論理和
ZC Zadoff-Chu
ZP ゼロ電力
専門用語
本明細書の目的のために、以下の用語及び定義は、本明細書で論じる例及び実施形態に適用可能であるが、限定することを意味するものではない。
本明細書で使用される「回路」という用語は、電子回路、論理回路、プロセッサ(共有、専用、又はグループ)及び/又はメモリ(共有、専用、又はグループ)、特定用途向け集積回路(ASIC)、フィールドプログラマブルデバイス(FPD)(例えば、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックデバイス(PLD)、複合PLD(CPLD)、大容量PLD(HCPLD)、構造化ASIC、又はプログラマブルSoC)、デジタルシグナルプロセッサ(DSP)などの、記載の機能を提供するように構成されたハードウェア構成要素を指すか、その一部であるか、又は含む。いくつかの実施形態では、回路は、1つ以上のソフトウェア又はファームウェアプログラムを実行して、記載された機能の少なくとも一部を提供することができる。「回路」という用語はまた、1つ以上のハードウェア要素(又は、電気若しくは電子システムにおいて使用される回路の組み合わせ)と、そのプログラムコードの機能を実行するために使用されるプログラムコードとの組み合わせを指すことができる。これらの実施形態では、ハードウェア要素とプログラムコードとの組み合わせは、特定のタイプの回路と称されてもよい。
本明細書で使用される「プロセッサ回路」という用語は、一連の算術演算若しくは論理演算、又はデジタルデータの記録、記憶、及び/又は転送を順次自動的に実行することができる回路を指すか、その一部であるか、又は含む。「プロセッサ回路」という用語は、1つ以上のアプリケーションプロセッサ、1つ以上のベースバンドプロセッサ、物理中央処理装置(CPU)、シングルコアプロセッサ、デュアルコアプロセッサ、トリプルコアプロセッサ、クアドコアプロセッサ、及び/又はプログラムコード、ソフトウェアモジュール、及び/又は機能プロセスなどのコンピュータ実行可能命令を実行又は動作させることができる任意の他のデバイスを指すことができる。「アプリケーション回路」及び/又は「ベースバンド回路」という用語は、「プロセッサ回路」と同義であると考えられ、「プロセッサ回路」と呼ばれることがある。
本明細書で使用される「インタフェース回路」という用語は、2つ以上の構成要素又はデバイス間の情報の交換を可能にする回路を指すか、その一部であるか、又は含む。用語「インタフェース回路」は、1つ以上のハードウェアインタフェース、例えば、バス、I/Oインタフェース、周辺構成要素インタフェース、ネットワークインタフェースカード、及び/又は同様のものを指すことがある。
本明細書で使用される「ユーザ機器」又は「UE」という用語は、無線通信機能を有するデバイスを指し、通信ネットワーク内のネットワークリソースのリモートユーザを表すことができる。「ユーザ機器」又は「UE」という用語は、クライアント、モバイル、モバイルデバイス、モバイル端末、ユーザ端末、モバイルユニット、モバイルステーション、モバイルユーザ、加入者、ユーザ、リモートステーション、アクセスエージェント、ユーザエージェント、受信機、無線機器、再構成可能無線機器、再構成可能モバイルデバイスなどと同義であると考えられてもよく、これらで呼ばれてもよい。更に、「ユーザ機器」又は「UE」という用語は、任意のタイプの無線/有線デバイス又は無線通信インタフェースを含む任意のコンピューティングデバイスを含んでもよい。
本明細書で使用される「ネットワーク要素」という用語は、有線又は無線通信ネットワークサービスを提供するために使用される物理的又は仮想化された機器及び/又はインフラストラクチャを指す。「ネットワーク要素」という用語は、ネットワーク化されたコンピュータ、ネットワーク化されたハードウェア、ネットワーク機器、ネットワークノード、ルータ、スイッチ、ハブ、ブリッジ、無線ネットワークコントローラ、RANデバイス、RANノード、ゲートウェイ、サーバ、仮想化されたVNF、NFVIなどと同義であると考えられてもよく、及び/又はそれらと呼ばれてもよい。
本明細書で使用するとき、用語「コンピュータシステム」は、任意のタイプの相互接続された電子デバイス、コンピュータデバイス、又はそれらの構成要素を指す。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合されたコンピュータの様々な構成要素を指すことができる。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合され、コンピューティングリソース及び/又はネットワーキングリソースを共有するように構成された複数のコンピュータデバイス及び/又は複数のコンピューティングシステムを指すことができる。
本明細書で使用される「機器」、「コンピュータ機器」などの用語は、特定のコンピューティングリソースを提供するように特に設計されたプログラムコード(例えば、ソフトウェア又はファームウェア)を有するコンピュータデバイス又はコンピュータシステムを指す。「仮想機器」は、コンピュータ機器を仮想化又はエミュレートする、又は特定のコンピューティングリソースを提供するために専用のハイパーバイザを備えたデバイスによって実装される仮想マシンイメージである。
本明細書で使用される「リソース」という用語は、コンピュータデバイス、機械的デバイス、メモリ空間、プロセッサ/CPU時間、プロセッサ/CPU使用量、プロセッサ及びアクセラレータ負荷、ハードウェア時間又は使用量、電力、入出力動作、ポート又はネットワークソケット、チャネル/リンク割り当て、スループット、メモリ使用量、ストレージ、ネットワーク、データベース及びアプリケーション、ワークロードユニットなどの、物理又は仮想デバイス、コンピューティング環境内の物理又は仮想コンポーネント、及び/又は特定のデバイス内の物理又は仮想コンポーネントを指す。「ハードウェアリソース」は、物理ハードウェア要素によって提供される計算、記憶、及び/又はネットワークリソースを指すことができる。「仮想化リソース」は、仮想化インフラストラクチャによってアプリケーション、デバイス、システムなどに提供される計算、ストレージ、及び/又はネットワークリソースを指すことができる。「ネットワークリソース」又は「通信リソース」という用語は、通信ネットワークを介してコンピュータデバイス/システムによってアクセス可能なリソースを指すことができる。「システムリソース」という用語は、サービスを提供するための任意の種類の共有エンティティを指すことができ、コンピューティングリソース及び/又はネットワークリソースを含むことができる。システムリソースは、そのようなシステムリソースが単一のホスト又は複数のホスト上に存在し、明確に識別可能であるサーバを介してアクセス可能な、コヒーレント機能、ネットワーク・データ・オブジェクト又はサービスのセットと考えることができる。
本明細書で使用される場合、用語「チャネル」は、データ又はデータストリームを通信するために使用される有形又は非有形のいずれかの伝送媒体を指す。「チャネル」という用語は、「通信チャネル」、「データ通信チャネル」、「伝送チャネル」、「データ伝送チャネル」、「アクセスチャネル」、「データアクセスチャネル」、「リンク」、「データリンク」、「キャリア」、「高周波キャリア」、及び/又はデータが通信される経路又は媒体を示す任意の他の同様の用語と同義及び/又は同等であり得る。更に、本明細書で使用される場合、用語「リンク」は、情報を送受信する目的で、RATを介した2つのデバイス間の接続を指す。
本明細書で使用される「インスタンス化する」、「インスタンス化」などの用語は、インスタンスの作成を指す。「インスタンス」はまた、例えばプログラムコードの実行中に発生し得るオブジェクトの具体的なの発生を指す。
「結合された(coupled)」、「通信可能に結合された(communicatively coupled)」という用語は、その派生語と共に本明細書で使用される。用語「結合された」は、2つ以上の要素が互いに直接物理的又は電気的に接触していることを意味することができ、2つ以上の要素が互いに間接的に接触しつつ、互いに連携若しくは相互作用することを意味することができ、かつ/又は、互いに結合されていると言われる要素の間に1つ以上の他の要素が結合又は接続されていることを意味することができる。用語「直接結合された」は、2つ以上の要素が互いに直接接触していることを意味し得る。「通信可能に結合された」という用語は、2つ以上の要素が、有線又は他の相互接続を介して、無線通信チャネル又はインクを介して、及び/又は同様のものを含む通信手段によって互いに接触することができることを意味することができる。
「情報要素」という用語は、1つ以上のフィールドを含む構造要素を指す。「フィールド」という用語は、情報要素、又はコンテンツを含むデータ要素の個々のコンテンツを指す。
「SMTC」という用語は、SSB-MeasurementTimingConfigurationによって構成されたSSBベースの測定タイミング構成を指す。
「SSB」という用語は、SS/PBCHブロックを指す。
「プライマリセル」という用語は、プライマリ周波数で動作するMCGセルを指し、UEは、初期接続確立手順を実行するか、又は接続再確立手順を開始する。
「プライマリSCGセル」とは、DC動作用の同期手順を用いて再構成を行う際に、UEがランダムアクセスを行うSCGセルを指す。
「セカンダリセル」という用語は、CAで構成されたUEのための専用セルの上に追加の無線リソースを提供するセルを指す。
「セカンダリセルグループ」という用語は、DCで構成されたUEのためのPSCell及び0個以上のセカンダリセルを含むサービングセルのサブセットを指す。
「サービングセル」という用語は、CA/DCで構成されていないRRC_CONNECTEDにおけるUEのためのプライマリセルを指し、プライマリセルから構成されるサービングセルは1つのみである。
「サービングセル」という用語は、特殊セルと、CA/で構成されたRRC_CONNECTEDにおけるUE用の全てのセカンダリセルとを含むセルのセットを指す。
「専用セル」という用語は、DC動作のためのMCGのPCell又はSCGのPSCellを指す。そうでない場合、「特殊セル」という用語はPセルを指す。

Claims (18)

  1. 基地局(BS)装置であって、
    セルラ分散ユニット(DU)と、
    前記セルラDUに結合されたセルラ中央ユニット(CU)と、
    前記セルラCUに結合された無線ローカルエリアネットワーク(WLAN)CUと、
    前記WLAN CUに結合され、1つ以上のユーザ機器(UE)測定又はUEイベント通知を前記WLAN CUに提供し、非アクセス層(NAS)シグナリングトランスポートを提供するように構成されたWLAN DUと
    を備え、
    前記セルラCU及び前記WLAN CUは、一緒に結合されて、収斂したCUを形成し、前記収斂したCUは、前記セルラCU及びWLAN CUの各々によってアクセスされる無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティを介してデータのトラフィック管理をサポートするために、一組のN2及びN3インタフェースをサポートし、
    前記N2インタフェースによって、5Gコアネットワーク(5GC)及びWLANのポリシー制御が実施される、
    基地局(BS)装置。
  2. 前記N2インタフェースによって、前記RTAMのための5GCからの前記セルラCUに対してポリシー規則設定が施される、請求項に記載のBS装置。
  3. 前記セルラCU及び前記WLAN CUは、Xzインタフェースを介して結合され、前記Xzインタフェースは、前記セルラCU及びWLAN CUの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、前記セルラCU及び前記WLAN CUは各々、各々個別にアクセスされるRTAM論理エンティティを介して個別にデータのトラフィック管理をサポートする、請求項1に記載のBS装置。
  4. 前記セルラCU及び前記WLAN CUは、Xzインタフェースを介して結合され、前記Xzインタフェースは、前記セルラCU及びWLAN CUの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、前記セルラCUは、セルラリンクを介したUE初期アクセス及び無線アクセスネットワーク(RAN)レベル接続を可能にし、前記セルラCUは、RTAM論理エンティティを介してデータのトラフィック管理をサポートする、請求項1に記載のBS装置。
  5. 前記セルラCU及び前記WLAN CUは、Xzインタフェースを介して結合され、前記Xzインタフェースは、前記セルラCU及びWLAN CUの間の制御プレーン(CP)及びユーザプレーン(UP)データ交換を可能にするように構成され、前記WLAN CUは、WLANリンクを介したUE初期アクセス及び無線アクセスネットワーク(RAN)レベル接続を可能にし、前記WLAN CUは、RTAM論理エンティティを介してデータのトラフィック管理をサポートする、請求項1に記載のBS装置。
  6. 基地局(BS)機器を動作させる方法であって、
    前記BSによって、N2又はN3インタフェースを介して5Gコアネットワーク(5GC)と通信することと、
    前記BSによって、セルラリンク、無線ローカルエリア(WLAN)リンク、又はそれらの組み合わせを介して、ユーザ機器(UE)と通信することと、
    前記BSによって、前記N2又はN3インタフェースを介して前記5GCを用いて、そして前記セルラリンク、前記WLANリンク、又はそれらの組み合わせを介して、前記UEを用いて、データのトラフィック管理を実行することと
    を含み、
    前記セルラリンク及び前記WLANリンクは、収斂したリンクを形成し、前記収斂したリンクは、前記セルラリンク及びWLANリンクの各々によってアクセスされる無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティを介してデータのトラフィック管理をサポートするために、一組のN2及びN3インタフェースをサポートし、
    前記N2インタフェースによって、前記5GC及びWLANリンクのポリシー制御が実施される、
    方法。
  7. 前記セルラリンクを介する前記UEとの前記通信は、セルラ分散ユニット(DU)によって実行される、請求項に記載の方法。
  8. 前記WLANリンクを介して前記UEと通信することは、WLAN DUによって実行される、請求項に記載の方法。
  9. セルラ中央ユニット(CU)を介して前記セルラDUによって受信されたデータをルーティングすることを更に含む、請求項に記載の方法。
  10. WLAN CUを介して前記WLAN DUによって受信されたデータをルーティングすることを更に含む、請求項に記載の方法。
  11. データの前記トラフィック管理を実行することが、前記セルラCU内から前記RTAM論理エンティティによって行われる、請求項に記載の方法。
  12. データの前記トラフィック管理を実行することは、前記WLAN CU内から前記RTAM論理エンティティによって行われる、請求項10に記載の方法。
  13. 記憶された命令を有する非一時的コンピュータ可読媒体であって、前記命令が、基地局(BS)装置によって実行されると、前記BS装置に、
    N2又はN3インタフェースを介して5Gコアネットワーク(5GC)と通信することと、
    セルラリンク、無線ローカルエリア(WLAN)リンク、又はそれらの組み合わせを介して、ユーザ機器(UE)と通信することと、
    前記N2又はN3インタフェースを介して前記5GCを用いて、そして前記セルラリンク、前記WLANリンク、又はそれらの組み合わせを介して、前記UEを用いて、データのトラフィック管理を実行することと
    を含む動作を実行させ、
    前記セルラリンク及び前記WLANリンクは、収斂したリンクを形成し、前記収斂したリンクは、前記セルラリンク及びWLANリンクの各々によってアクセスされる無線アクセスネットワークレベルトラフィックアクセス管理(RTAM)論理エンティティを介してデータの前記トラフィック管理をサポートするために、一組のN2及びN3インタフェースをサポートし、
    前記N2インタフェースによって、前記5GC及びWLANリンクのポリシー制御が実施される、
    非一時的コンピュータ可読媒体。
  14. 前記動作は、セルラ分散ユニット(DU)を介して前記セルラリンクを介して前記UEと通信することと、
    WLAN DUを介して前記WLANリンクを介して前記UEと通信することと、
    を更に含む、請求項13に記載の非一時的コンピュータ可読媒体。
  15. 前記動作は、セルラ中央ユニット(CU)を介して前記セルラDUによって受信されたデータをルーティングすることを更に含む、請求項14に記載の非一時的コンピュータ可読媒体。
  16. 前記動作は、WLAN CUを介して前記WLAN DUによって受信したデータをルーティングすることを更に含む、請求項13に記載の非一時的コンピュータ可読媒体。
  17. 前記動作は、前記セルラCU内から前記RTAM論理エンティティによって、データの前記トラフィック管理を実行することを更に含む、請求項15に記載の非一時的コンピュータ可読媒体。
  18. 前記動作は、前記WLAN CU内から前記RTAM論理エンティティによって、データの前記トラフィック管理を実行することを更に含む、請求項16に記載の非一時的コンピュータ可読媒体。
JP2021544174A 2019-01-29 2020-01-29 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構 Active JP7245344B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962798380P 2019-01-29 2019-01-29
US62/798,380 2019-01-29
PCT/US2020/015718 WO2020160176A1 (en) 2019-01-29 2020-01-29 Mechanisms to converge the wi-fi access network with the 5g new radio (nr) access network within the radio access network

Publications (2)

Publication Number Publication Date
JP2022519497A JP2022519497A (ja) 2022-03-24
JP7245344B2 true JP7245344B2 (ja) 2023-03-23

Family

ID=69743919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021544174A Active JP7245344B2 (ja) 2019-01-29 2020-01-29 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構

Country Status (3)

Country Link
US (1) US20220124542A1 (ja)
JP (1) JP7245344B2 (ja)
WO (1) WO2020160176A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159415A1 (en) * 2019-02-01 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Distributed unit, proxy central unit and methods in a wireless communications network
KR20210154169A (ko) * 2019-03-27 2021-12-20 오피노 엘엘씨 액세스 관리를 위한 셀 정보
US10841844B1 (en) * 2019-08-14 2020-11-17 Dish Wireless L.L.C. Anchor point movement in a compound cellular network
US11627638B2 (en) * 2020-03-24 2023-04-11 Arris Enterprises Llc Integrated system with an access point powered by a radio node
US20220287150A1 (en) * 2021-03-08 2022-09-08 At&T Intellectual Property I, L.P. Method and apparatus for providing wireless services via an integrated base station
CN113259970B (zh) * 2021-05-08 2022-07-08 Tcl通讯(宁波)有限公司 通信方法及终端设备
US11825389B2 (en) * 2021-07-02 2023-11-21 Cisco Technology, Inc. Mechanism to deliver SMS meant for user's public or private 5G identity over WLAN network
US11831469B2 (en) 2021-07-27 2023-11-28 Rockwell Collins, Inc. Heterogenous network of tactical network and mobile core network via military trusted interworking function (M-TIF) device
US11889399B2 (en) 2021-07-27 2024-01-30 Rockwell Collins, Inc. Military central units and distributed units
US11757707B2 (en) * 2021-07-28 2023-09-12 Cisco Technology, Inc. Network assurance for 5G enterprise networks
WO2023013936A1 (ko) * 2021-08-02 2023-02-09 삼성전자 주식회사 무선 통신 시스템에서 무선-코어 융합 제어 평면 운영 방법 및 장치
US11825353B2 (en) * 2021-11-29 2023-11-21 Verizon Patent And Licensing Inc. Systems and methods for centralized unit load balancing in a radio access network
CN114374427A (zh) * 2022-01-19 2022-04-19 苏州全时空信息技术有限公司 软件定义的中低轨卫星网络中控制器动态部署方法及系统
CN114189864B (zh) * 2022-02-16 2022-05-31 中国电子科技集团公司第三十研究所 移动通信系统非蜂窝接入装置及接入方法
CN117425222A (zh) * 2022-07-09 2024-01-19 大唐移动通信设备有限公司 一种通信连接建立方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211433A (ja) 2010-03-29 2011-10-20 Kddi Corp 無線通信装置およびその制御プログラム
US20160198379A1 (en) 2013-09-04 2016-07-07 Lg Electronics Inc. Network controller within core network and method for connection with terminal by network controller
JP2017523634A (ja) 2014-06-03 2017-08-17 インテル コーポレイション 統合されたwlan/3gpp無線アクセス技術のための無線リソース制御(rrc)プロトコル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230043226A (ko) * 2017-07-10 2023-03-30 모토로라 모빌리티 엘엘씨 모바일 네트워크에서의 다중 액세스 데이터 접속
US11191060B2 (en) * 2018-03-15 2021-11-30 Sprint Communications Company L.P. Dynamic wireless network architecture to serve uplink-centric and downlink-centric user applications
US11716558B2 (en) * 2018-04-16 2023-08-01 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless network services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211433A (ja) 2010-03-29 2011-10-20 Kddi Corp 無線通信装置およびその制御プログラム
US20160198379A1 (en) 2013-09-04 2016-07-07 Lg Electronics Inc. Network controller within core network and method for connection with terminal by network controller
JP2017523634A (ja) 2014-06-03 2017-08-17 インテル コーポレイション 統合されたwlan/3gpp無線アクセス技術のための無線リソース制御(rrc)プロトコル

Also Published As

Publication number Publication date
WO2020160176A1 (en) 2020-08-06
JP2022519497A (ja) 2022-03-24
US20220124542A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP7269356B2 (ja) 3gppシステムにおける識別及び動作のためのuasサービスの有効化
US11695459B2 (en) Resource allocation, reference signal design, and beam management for new radio (NR) positioning
JP7245344B2 (ja) 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構
JP7219345B2 (ja) 非ライセンススペクトルで動作するnrシステムにおけるcbgベースの再送信のためのカテゴリ4のlbtの競合ウィンドウサイズ更新
JP7216834B2 (ja) クロスリンク干渉(cli)測定報告
US20220086698A1 (en) Performance measurements related to quality of service flow and service request
JP7178501B2 (ja) ビームフォーミング情報を用いて高速モビリティを可能にする方法
JP7232346B2 (ja) Ne-dcモードの測定ギャップ設計
KR102533687B1 (ko) Ue 보조 피드백을 위한 시그널링 메커니즘에 대한 시스템 및 방법들
US20220070855A1 (en) Systems and methods for control signaling of uplink transmission for multiple antenna panels
JP7444892B2 (ja) 2ステップrachのためのフォールバック手順
JP7206403B2 (ja) Cli-rssi測定リソース構成
JP7279177B2 (ja) ハンドオーバ割り込みを低減するためのシステム及び方法
US20220070876A1 (en) Methods for simultaneous support of resource selection modes and configuration mechanisms for nr v2x sidelink
US20220095176A1 (en) NR RRM Enhancements in Measurement Event and Reporting and Cell Reselection Criteria for Unlicensed Band Operation
JP7200386B2 (ja) 単一キャリア波形の位相追跡基準信号設計
US11985658B2 (en) Physical downlink control channel with multi-transmission reception points (TRPs)
JP7304422B2 (ja) 2ステップランダムアクセス手順においてメッセージング用のmacフォーマットを生成するための装置及び方法
JP7250933B2 (ja) Ue間クロスリンク干渉測定のネットワーク調整のための情報交換
JP7369194B2 (ja) 異なるニューメロロジーを有するクロスキャリアスケジューリング
KR102488489B1 (ko) 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적
US20220078686A1 (en) System and method to avoid user equipment triggering a measurement report after exit of conditional handover
US20220086740A1 (en) Downlink reception signal collision avoidance
JP7245345B2 (ja) セル再選択のための同期信号ブロック周期性
JP7342139B2 (ja) セカンダリセルビーム回復のための方法及びシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230310

R150 Certificate of patent or registration of utility model

Ref document number: 7245344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150