JP7244380B2 - 汚染土の不溶化処理評価方法 - Google Patents

汚染土の不溶化処理評価方法 Download PDF

Info

Publication number
JP7244380B2
JP7244380B2 JP2019135299A JP2019135299A JP7244380B2 JP 7244380 B2 JP7244380 B2 JP 7244380B2 JP 2019135299 A JP2019135299 A JP 2019135299A JP 2019135299 A JP2019135299 A JP 2019135299A JP 7244380 B2 JP7244380 B2 JP 7244380B2
Authority
JP
Japan
Prior art keywords
contaminated soil
simulated
eluted
simulated contaminated
stable isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135299A
Other languages
English (en)
Other versions
JP2021016841A (ja
Inventor
啓輔 小島
光博 隈倉
雄大 加藤
正人 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2019135299A priority Critical patent/JP7244380B2/ja
Publication of JP2021016841A publication Critical patent/JP2021016841A/ja
Application granted granted Critical
Publication of JP7244380B2 publication Critical patent/JP7244380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、汚染土の不溶化処理における模擬汚染土の評価方法及び不溶化処理に用いる不溶化剤の評価方法に関する。
汚染土に含まれる特定の元素の溶出を抑制するため、汚染土に不溶化剤を添加し、汚染土の不溶化が行われる。
特許文献1には、汚染土壌に不溶化剤を添加し、前記汚染土壌が含有する重金属を不溶化する方法であって、前記不溶化剤が、スラグ含有量31~70%の高炉セメントと、水と、塩化第二鉄又は液体キレートとからなり、水セメント比(W/C)が80~120%とされ、前記高炉セメントが前記汚染土壌1mあたり200kg以上とされ、前記塩化第二鉄が前記汚染土壌1mあたり0.7kg以上又は前記液体キレートが前記汚染土壌1mあたり0.5kg以上とされる、ことを特徴とする汚染土壌の不溶化方法が記載されている。
特許文献2には、MgO及び/又はMgO含有材と、塩化第二鉄及びポリ塩化アルミニウム(PAC)を含有する固化不溶化助剤と、を含み、有害物質汚染土壌に添加されて該土壌を固化させると共に該土壌に含有されている有害物質を不溶化させ、前記有害物質は、窒素、リン及びシアンからなる群より選ばれる少なくとも一つを含有する、有害物質汚染土壌用固化不溶化剤が記載されている。
不溶化剤は、汚染土から溶出する特定の元素の濃度が基準値以下になるように汚染土に添加される。
不溶化剤の種類及び添加量は、現場から採取した汚染土を用いて溶出試験を行い、不溶化剤の種類及び添加量を変えながら、特定の元素の溶出濃度が基準値以下になるように検討する。地質調査の結果や過去の情報により、特定の元素の溶出濃度が基準値を超過する恐れがあるにもかかわらず、現場から採取した汚染度の特定の元素の溶出濃度が基準値を超えない場合は、現場から採取した汚染土に特定の元素を含む試薬を添加した模擬汚染土を用いて不溶化剤の種類及び添加量を検討する。
しかし、汚染土にもともと含まれている元素と添加した元素とでは不溶化剤に対する挙動が異なり、模擬汚染土を用いて不溶化剤の種類及び添加量の検討が適切に行われていないおそれがあると指摘されている。不溶化剤は比較的高価な薬剤であり、種類及び添加量が適切でないと、コストの増大を招く上に、充分な不溶化効果が得られず、環境中への汚染物質の溶出を防止できないこととなる。
特開2001-321756号公報 特開2009-045624号公報
本発明は、汚染土の不溶化処理に用いる不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適しているか否かを評価する、汚染土の不溶化処理における模擬汚染土の評価方法と、不溶化剤の種類及び添加量が汚染土に適しているか否かを評価する、不溶化処理に用いる不溶化剤の評価方法とを提供することを課題とする。
上記課題は、以下の構成によって解決される。
[1] 以下の(1)~(7)の工程を備える、模擬汚染土の評価方法。
(1)汚染土Sからの元素Mの溶出試験を行い、溶出した元素Mの濃度C(0)を測定する。
(2)前記汚染土Sから溶出した元素Mの安定同位体比δM(0)を測定する。
(3)前記汚染土Sに、安定同位体比がδM(1)である元素Mを添加して模擬汚染土S’を作製する。ただし、δM(1)≠δM(0)とする。
(4)前記模擬汚染土S’からの元素Mの溶出試験を行い、溶出した元素Mの濃度C(2)を測定する。
(5)前記模擬汚染土S’から溶出した元素Mの安定同位体比δM(2)測定値を測定する。
(6)以下の計算式によりδM(2)計算値を算出する。
δM(2)計算値=δM(0)×〔C(0)/C(2)〕+δM(1)×〔C(1)/C(2)〕
ただし、C(1)=C(2)-C(0)である。
(7)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断し、
前記範囲外であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していないと判断する。
ただし、前記汚染土S又は前記模擬汚染土S’からの元素Mの溶出試験は、土壌環境基準(平成3年8月23日 環境庁告示第46号)の別表の測定方法の欄に掲げる方法によるものとし、前記汚染土S又は前記模擬汚染土S’から溶出した元素Mの安定同位体比の測定は、ICP-MSを用いて分析するものとする。
[2] 以下の(1)~(13)の工程を備える、不溶化剤の評価方法。
(1)汚染土Sからの元素Mの溶出試験を行い、溶出した元素Mの濃度C(0)を測定する。
(2)前記汚染土Sから溶出した元素Mの安定同位体比δM(0)を測定する。
(3)前記汚染土Sに、安定同位体比がδM(1)である元素Mを含む試薬を添加して模擬汚染土S’を作製する。ただし、δM(1)≠δM(0)とする。
(4)前記模擬汚染土S’からの元素Mの溶出試験を行い、溶出した元素Mの濃度C(2)を測定する。
(5)前記模擬汚染土S’から溶出した元素Mの安定同位体比δM(2)測定値を測定する。
(6)以下の計算式によりδM(2)計算値を算出する。
δM(2)計算値=δM(0)×〔C(0)/C(2)〕+δM(1)×〔C(1)/C(2)〕
ただし、C(1)=C(2)-C(0)である。
(7)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断する。
(8)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内である模擬汚染土S’を準備する。
(9)前記模擬汚染土S’に不溶化剤を添加して模擬汚染土S”を作製する。
(10)前記模擬汚染土S”からの元素Mの溶出試験を行い、溶出した元素Mの溶出量C(3)を測定する。
(11)C(3)が目標値(溶出量基準)以下になる不溶加剤の添加量を求める。
(12)前記模擬汚染土S”から溶出した元素Mの安定同位体比δM(3)を測定する。
(13)δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲内であれば、前記不溶化剤の種類は汚染土Sの不溶化処理に適していると判断する。
本発明によれば、汚染土の不溶化処理に用いる不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適しているか否かを評価する、汚染土の不溶化処理における模擬汚染土の評価方法と、不溶化剤の種類及び添加量が汚染土に適しているか否かを評価する、不溶化処理に用いる不溶化剤の評価方法とを提供できる。
図1は、不溶化剤の評価方法における安定同位体比の利用方法を説明する図である。
「~」を用いて表される数値範囲は、「~」の両側の数値を含むものとする。
「A±B」(Aは実数、Bは正の実数)の形式で表される数値範囲は、A-B及びA+Bをその範囲内に含むものとする。
陽子数が同じで中性子数が異なる原子を「同位体」といい、陽子数が同じ原子の集合を「元素」といい、陽子数及び中性子数が同じ原子の集合を「核種」という。
「安定同位体」とは、半減期が1000億年以上の核種をいう。「安定同位体」は、また、「安定核種」ともいう。
本発明において、安定同位体比を求める対象の元素は、安定同位体を2つ以上持つ元素とする。
元素の族及び周期はIUPAC(国際純正・応用化学連合)周期表に従うものとする。
以下では、本発明を実施するための形態を詳細に説明する。ただし、本発明は実施形態に限定されるものではなく、本発明の要旨を変更しない限り、種々の変形が可能である。
[模擬汚染土の評価方法]
不溶化剤を添加して汚染土の不溶化を行おうとする現場の汚染土を準備する(対象汚染土)。
対象汚染土について、不溶化しようとする元素(以下「対象元素」という。)Mの溶出試験を後述する溶出試験方法によって行う。元素Mの溶出量(濃度)をC(0)とする。
後述する安定同位体比の測定方法によって、溶出した元素Mの安定同位体比δM(0)を求める。
対象汚染土に安定同位体比が既知(δM(1))の元素Mを含む試薬を添加する。この場合のδM(1)は、δM(1)とδM(0)の差の絶対値|δM(1)-δM(0)|がより大きくなるようにすることが好ましい。
安定同位体比がδM(1)の元素Mを含む試薬を添加した対象汚染土について、元素Mの溶出試験を後述する溶出試験方法によって行う。元素Mの溶出量(濃度)をC(2)とする。
後述する安定同位体比の測定方法によって、溶出した元素Mの安定同位体比δM(2)測定値を求める。
以下の式により、δM(2)計算値を算出する。
δM(2)計算値=δM(0)×〔C(0)/C(2)〕+δM(1)×〔C(1)/C(2)〕
ただし、C(1)=C(2)-C(0)である。
δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内であれば、対象汚染土にもともと含まれている元素Mと添加した試薬由来の元素Mは近似の溶出挙動を示すと判断できる。すなわち、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断できる。
しかし、上記範囲外であれば、添加した試薬によって、対象汚染土にもともと含まれている元素Mの溶出量が促進されたり、抑制されたりしていることになるため、元素Mを含む試薬で作成した模擬汚染土は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として不適切であることがわかる。
対象元素Mは安定同位体が2つ以上ある元素である。具体的には、以下に掲げる元素である(括弧内に元素記号を示す)。
1族元素: リチウム(Li)、カリウム(K);
2族元素: マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba);
4族元素: チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf);
5族元素: バナジウム(V)、タンタル(Ta);
6族元素: クロム(Cr)、モリブデン(Mo)、タングステン(W);
7族元素: レニウム(Re);
8族元素: 鉄(Fe)、ルテニウム(Ru)、オスミウム(Os);
9族元素: イリジウム(Ir);
10族元素: ニッケル(Ni)、パラジウム(Pd)、プラチナ(Pt);
11族元素: 銅(Cu)、銀(Ag);
12族元素: 亜鉛(Zn)、カドミウム(Cd)、水銀(Hg);
13族元素: ホウ素(B)、ガリウム(Ga)、インジウム(In)、タリウム(Tl);
14族元素: ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb);
15族元素: アンチモン(Sb);
16族元素: イオウ(S)、セレン(Se)、テルル(Te);
17族元素: 塩素(Cl)、臭素(Br);
ランタノイド系列: ランタン(La)、セリウム(Ce)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、エルビウム(Er)、イッテルビウム(Yb)。
これらの中でも、鉄(Fe)、鉛(Pb)、プラチナ(Pt)、銀(Ag)、銅(Cu)、クロム(Cr)、カドミウム(Cd)、水銀(Hg)、亜鉛(Zn)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、スズ(Sn)等の重金属元素、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、アンチモン(Sb)、テルル(Te)等の半金属元素、又はイオウ(S)、セレン(Se)等の反応性非金属元素が好ましい。
[不溶化剤の評価方法]
以下では、不溶化剤の種類及び添加量の検討方法について説明する。
δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内となるように、汚染土に元素Mを含む試薬を添加する(模擬汚染土)(以下、δM(2)=δM(2)測定値とする。)。
模擬汚染土に不溶化剤を添加した後、元素Mの溶出試験を後述する溶出試験方法によって行う。元素Mの溶出量(濃度)をC(3)とする。C(3)が目標値(溶出量基準)以下になるような不溶加剤の添加量に調整する。
後述する安定同位体比の測定方法によって、溶出した元素Mの安定同位体比δM(3)を求める。
δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲内であるときは、添加した不溶化剤は、汚染土にもともと含まれていた元素Mにも、添加した試薬由来の元素Mにも、同様の効果を示すことがわかる。 δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲外であり、δM(2)とδM(0)の間に位置しているのであれば、添加した不溶化剤は、汚染土にもともと含まれていた元素Mよりも後から添加した試薬由来の元素Mに効果的であり、たとえC(3)が目標値(溶出量基準)以下になるように不溶化剤を添加していたとしても不溶化剤の添加量が過小である、もしくは汚染土にもともと含まれていた元素Mには効果がない(すなわち不溶化処理として不適切な不溶化剤である)と判断される。
δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲外であり、δM(2)とδM(1)の間に位置しているのであれば、添加した不溶化剤は、後から添加した試薬由来の元素Mよりも汚染土にもともと含まれていた元素Mに効果的であり、不溶化剤の添加量が過大であると判断される。
ここで、図1を参照しながら、より具体的に説明する。
δM(0)=0.845、δM(1)=0.882、δM(2)測定値=0.871、C(0)=0.006mg/L、C(2)=0.020mg/L、C(3)=0.010mg/Lとする。
δM(2)計算値=δM(0)×{C(0)/C(2)}+δM(1)×{(C(2)-C(0))/C(2)}=0.871
従って、δM(2)測定値=δM(2)計算値=δM(2)である。
図1(A)に示すとおり、δM(2)はδM(0)とδM(1)の間にある。
図1(B)に示すとおり、δM(3)はδM(0)とδM(1)の間にある。
・δM(3)=δM(2)=0.871である場合:
汚染土由来の鉛及び添加した試薬由来の鉛に対する不溶化剤の効果は同等である。
・δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲外であり、δM(2)とδM(0)の間に位置している場合:
汚染土由来の鉛よりも添加した試薬由来の鉛に対して不溶化剤が効果的である。すなわち、汚染土由来の鉛に対して、添加量が過小であるか、又は不溶化効果が得られない可能性がある。
・δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲外であり、δM(2)とδM(1)の間に位置している場合:
添加した試薬由来の鉛よりも汚染土由来の鉛に対して不溶化剤が効果的である。すなわち、汚染土由来の鉛に対して、添加量が過剰となっている可能性がある。
[銅の場合の模擬汚染土の評価例]
銅(Cu)の安定同位体は63Cu(天然存在比:0.6915)と65Cu(天然存在比:0.3085)である(天然の安定同位体比:65Cu/63Cu=0.3085/0.6915=0.4461)。銅に汚染された汚染土の不溶化処理に用いる不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適しているか否かの評価例を以下に記載する。
<1>汚染土からの銅の溶出試験を行い、銅濃度〔C(0)〕を求める。次に、溶出した銅の安定同位体比〔δCu(0);R(65Cu/63Cu)=65Cuと63Cuの比〕を求める。
<2>汚染土に、銅(安定同位体比δCu(1),|δCu(1)-δCu(0)|が大きくなるように選ぶ)を含む試薬を添加し、汚染土からの銅の溶出試験を行い、銅濃度〔C(2)〕を求める。次に、溶出した銅の安定同位体比〔δCu(2)測定値〕を求める。
<3>以下の式によりδCu(2)計算値を求める。
δCu(2)計算値=δCu(0)×〔C(0)/C(2)〕+δCu(1)×〔C(1)/C(2)〕
ただし、C(1)=C(2)-C(0)である。
<4>δCu(2)測定値がδCu(2)計算値±|δCu(1)-δCu(0)|×0.1の範囲内であれば、汚染土にもともと含まれていた銅と後から添加した銅の溶出挙動が近似しており、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断される。
上記範囲外であれば、汚染土にもともと含まれていた銅と後から添加した銅の溶出挙動が近似しておらず、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していないと判断される。
[銅の場合の不溶化剤の評価例]
<1>δCu(2)測定値がδCu(2)計算値±|δCu(1)-δCu(0)|×0.1の範囲内となるように、汚染土に銅を含む試薬を添加する(模擬汚染土)。以下、δCu(2)=δCu(2)測定値とする。
<2>模擬汚染土に不溶化剤を添加した後、銅の溶出試験を行い、銅濃度〔C(3)〕を求める。C(3)が目標値以下になるように、不溶化剤の添加量を調整する。
<3>溶出した銅の安定同位体比〔δCu(3)〕を求める。
<4>δCu(3)がδCu(2)±|δCu(1)-δCu(0)|×0.1の範囲内であるときは、添加した不溶化剤は、汚染土にもともと含まれていた銅にも、添加した試薬由来の銅にも、同様の効果を示す、適切な種類の不溶化剤であると判断できる。
δCu(3)がδCu(2)±|δCu(1)-δCu(0)|×0.1の範囲外であり、δCu(2)とδCu(0)の間に位置しているのであれば、添加した不溶化剤は、汚染土にもともと含まれていた銅よりも後から添加した試薬由来の銅に効果的であり、不溶化剤の添加量が過小である、又は汚染土にもともと含まれていた銅には効果が無い(不溶化処理には不適切な不溶化剤である)と判断する。
δCu(3)がδCu(2)±|δCu(1)-δCu(0)|×0.1の範囲外であり、δCu(2)とδCu(1)の間に位置しているのであれば、添加した不溶化剤は、後から添加した試薬由来の銅よりも汚染土にもともと含まれていた銅に効果的であり、不溶化剤の添加量が過大であると判断する。
[鉛の場合の模擬汚染土の評価例]
鉛(Pb)の安定同位体には、204Pb(天然存在比:0.014)、206Pb(天然存在比:0.241)、207Pb(天然存在比:0.221)及び208Pb(天然存在比:0.524)が知られている(天然の安定同位体比:207Pb/206Pb=0.221/0.241=0.917,208Pb/206Pb=0.524/0.241=2.174)。鉛に汚染された汚染土の不溶化処理に用いる不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適しているか否かの評価例を以下に記載する。
<1>汚染土からの鉛の溶出試験を行い、鉛濃度〔C(0)〕を求める。次に、溶出した鉛の安定同位体比〔δPb(0);R(207Pb/206Pb),R(208Pb/206Pb)〕を求める。
<2>汚染土に、鉛(安定同位体比δPb(1),|δPb(1)-δPb(0)|が大きくなるように選ぶ)を含む試薬を添加し、汚染土からの鉛の溶出試験を行い、鉛濃度〔C(2)〕を求める。次に、溶出した鉛の安定同位体比〔δPb(2)測定値〕を求める。
<3>以下の式によりδPb(2)計算値を求める。
δPb(2)計算値=δPb(0)×〔C(0)/C(2)〕+δPb(1)×〔C(1)/C(2)〕
ただし、C(1)=C(2)-C(0)である。
<4>δPb(2)測定値がδPb(2)計算値±|δPb(1)-δPb(0)|×0.1の範囲内であれば、汚染土にもともと含まれていた鉛と後から添加した鉛の溶出挙動が近似しており、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断される。
上記範囲外であれば、汚染土にもともと含まれていた鉛と後から添加した鉛の溶出挙動が近似しておらず、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していないと判断される。
なお、安定同位体比として、207Pb/206Pb及び208Pb/206Pbの2軸による評価を行ったが、これらのうちの一方を用いた1軸による評価としてもよい。また、208Pb/207Pb等の他の安定同位体比を用いてもよい。
[鉛の場合の不溶化剤の評価例]
<1>δPb(2)測定値がδPb(2)計算値±|δPb(1)-δPb(0)|×0.1の範囲内となるように、汚染土に鉛を含む試薬を添加する(模擬汚染土)。以下、δPb(2)=δPb(2)測定値とする。
<2>模擬汚染土に不溶化剤を添加した後、鉛の溶出試験を行い、鉛濃度〔C(3)〕を求める。C(3)が目標値以下となるように、不溶化剤の添加量を調整する。
<3>溶出した鉛の安定同位体比〔δPb(3)〕を求める。
<4>δPb(3)がδPb(2)±|δPb(1)-δPb(0)|×0.1の範囲内であるときは、添加した不溶化剤は、汚染土にもともと含まれていた鉛にも、添加した試薬由来の鉛にも、同様の効果を示す、適切な種類の不溶化剤であると判断できる。
δPb(3)がδPb(2)±|δPb(1)-δPb(0)|×0.1の範囲外であり、δPb(2)とδPb(0)の間に位置しているのであれば、添加した不溶化剤は、汚染土にもともと含まれていた鉛よりも後から添加した試薬由来の鉛に効果的であり、不溶化剤の添加量が過小である、又は汚染土にもともと含まれていた鉛には効果が無い(不溶化処理には不適切な不溶化剤である)と判断する。
δPb(3)がδPb(2)±|δPb(1)-δPb(0)|×0.1の範囲外であり、δPb(2)とδPb(1)の間に位置しているのであれば、添加した不溶化剤は、後から添加した試薬由来の鉛よりも汚染土にもともと含まれていた鉛に効果的であり、不溶化剤の添加量が過大であると判断する。
[溶出試験方法]
土壌からの対象元素の溶出試験の方法は、土壌環境基準(平成3年8月23日 環境庁告示第46号)の別表の測定方法の欄に掲げる方法によるものとする。
[安定同位体比の測定方法]
安定同位体比の測定は、溶出試験により溶出した対象元素を、ICP-MS(誘導結合プラズマ質量分析計)により分析することにより行う。
安定同位体比の測定は対象元素をイオン化(電離)して行う。様々なイオン化法が提案されているが、本発明においては、イオン化をICP(高周波誘導プラズマ)を用いて行う。ICPは、不活性なアルゴンガスを高温(6000~10000K)でプラズマ化(Ar+e→Ar+2e)し、その状態に試料溶液を噴霧することで多くの元素(ハロゲン、希ガス、水素、炭素、酸素を除く)を陽イオン化(多くは1価)する。ICPは、イオン化効率が高く、大気圧でプラズマ状態にできるため、試料の導入も容易である。
イオン化した同位体を、高真空下で印加電圧をかけて加速し磁界の中を通過させると、磁界に垂直な方向にローレンツ力が加わる。イオンは、ローレンツ力を向心力とする等速円運動をするが、重い同位体は軽い同位体に比べて半径が大きい。つまりイオンが進む方向が異なるので、同位体を分離できる。
イオン検出器には、SEM(走査型電子顕微鏡)、Daly検出器、イオンカウンティング装置、AMS(加速質量分析装置)等を使用できる。SEMは、電子が金属又は酸化物に衝突するとその数倍の電子が放出されることを利用するもので、一次イオン電流の10~10まで増幅できる。Daly検出器では、二次電子を光に変換し、光電子増倍管を用いて増幅する。いずれも高感度で微弱なイオン流を検出できる。イオンカウンティング装置はイオン粒子がさらに少ない場合でも検出でき、10~20A程度の極微弱電流も測定できる。AMSでは、ごく微量な放射性同位体を存在量の多い安定同位体と一緒に測定できる。このような同位体比に大きな違いがある場合は、検出器を分けて使うこともできる。
元素Xを構成する同位体(X)の他の同位体(X)に対する存在割合は、各同位体の個数(N,N)の割合(N/N)で表される。
本発明は、汚染土にもともと含まれている元素と添加した元素とでは不溶化剤に対する挙動が異なり、模擬汚染土を用いて不溶化剤の種類及び添加量の検討が適切に行われていないおそれがあるとの指摘に対するソリューションを提供する。具体的には、汚染土の不溶化処理に用いる不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適しているか否かを評価する、模擬汚染土の評価方法と、不溶化剤の種類及び添加量が汚染土に適しているか否かを評価する、不溶化処理に用いる不溶化剤の評価方法を提供する。本発明の評価方法によって適切であると判断された模擬汚染土を用い、不溶化剤の種類及び添加量を適切に評価することで、充分な不溶化効果が得られ、環境中への汚染物質の溶出を効率的に防止できることとなる。

Claims (2)

  1. 以下の(1)~(7)の工程を備える、模擬汚染土の評価方法。
    (1)汚染土Sからの元素Mの溶出試験を行い、溶出した元素Mの濃度C(0)を測定する。
    (2)前記汚染土Sから溶出した元素Mの安定同位体比δM(0)を測定する。
    (3)前記汚染土Sに、安定同位体比がδM(1)である元素Mを添加して模擬汚染土S’を作製する。ただし、δM(1)≠δM(0)とする。
    (4)前記模擬汚染土S’からの元素Mの溶出試験を行い、溶出した元素Mの濃度C(2)を測定する。
    (5)前記模擬汚染土S’から溶出した元素Mの安定同位体比δM(2)測定値を測定する。
    (6)以下の計算式によりδM(2)計算値を算出する。
    δM(2)計算値=δM(0)×〔C(0)/C(2)〕+δM(1)×〔C(1)/C(2)〕
    ただし、C(1)=C(2)-C(0)である。
    (7)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断し、
    前記範囲外であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していないと判断する。
    ただし、前記汚染土S又は前記模擬汚染土S’からの元素Mの溶出試験は、土壌環境基準(平成3年8月23日 環境庁告示第46号)の別表の測定方法の欄に掲げる方法によるものとし、前記汚染土S又は前記模擬汚染土S’から溶出した元素Mの安定同位体比の測定は、ICP-MSを用いて分析するものとする。
  2. 以下の(1)~(13)の工程を備える、不溶化剤の評価方法。
    (1)汚染土Sからの元素Mの溶出試験を行い、溶出した元素Mの濃度C(0)を測定する。
    (2)前記汚染土Sから溶出した元素Mの安定同位体比δM(0)を測定する。
    (3)前記汚染土Sに、安定同位体比がδM(1)である元素Mを含む試薬を添加して模擬汚染土S’を作製する。ただし、δM(1)≠δM(0)とする。
    (4)前記模擬汚染土S’からの元素Mの溶出試験を行い、溶出した元素Mの濃度C(2)を測定する。
    (5)前記模擬汚染土S’から溶出した元素Mの安定同位体比δM(2)測定値を測定する。
    (6)以下の計算式によりδM(2)計算値を算出する。
    δM(2)計算値=δM(0)×〔C(0)/C(2)〕+δM(1)×〔C(1)/C(2)〕
    ただし、C(1)=C(2)-C(0)である。
    (7)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内であれば、前記模擬汚染土S’は、不溶化剤の種類及び添加量の検討に用いる模擬汚染土として適していると判断する。
    (8)δM(2)測定値がδM(2)計算値±|δM(1)-δM(0)|×0.1の範囲内である模擬汚染土S’を準備する。
    (9)前記模擬汚染土S’に不溶化剤を添加して模擬汚染土S”を作製する。
    (10)前記模擬汚染土S”からの元素Mの溶出試験を行い、溶出した元素Mの溶出量C(3)を測定する。
    (11)C(3)が目標値(溶出量基準)以下になる不溶加剤の添加量を求める。
    (12)前記模擬汚染土S”から溶出した元素Mの安定同位体比δM(3)を測定する。
    (13)δM(3)がδM(2)±|δM(1)-δM(0)|×0.1の範囲内であれば、前記不溶化剤の種類は汚染土Sの不溶化処理に適していると判断する。
JP2019135299A 2019-07-23 2019-07-23 汚染土の不溶化処理評価方法 Active JP7244380B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135299A JP7244380B2 (ja) 2019-07-23 2019-07-23 汚染土の不溶化処理評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135299A JP7244380B2 (ja) 2019-07-23 2019-07-23 汚染土の不溶化処理評価方法

Publications (2)

Publication Number Publication Date
JP2021016841A JP2021016841A (ja) 2021-02-15
JP7244380B2 true JP7244380B2 (ja) 2023-03-22

Family

ID=74563360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135299A Active JP7244380B2 (ja) 2019-07-23 2019-07-23 汚染土の不溶化処理評価方法

Country Status (1)

Country Link
JP (1) JP7244380B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570469A (en) 1995-01-06 1996-10-29 Lockheed Martin Corporation Method for removing metal contaminants from flue dust
JP2001321756A (ja) 2000-05-18 2001-11-20 Raito Kogyo Co Ltd 汚染土壌の不溶化方法及び汚染土壌の不溶化剤
JP2005254230A (ja) 2004-02-12 2005-09-22 Tatsuya Suzuki 同位体分離方法、同位体分離装置、および同位体分離手段
JP2009045624A (ja) 2001-11-30 2009-03-05 Matsuda Giken Kogyo Kk 汚染土壌用固化不溶化剤
JP2010540969A (ja) 2007-10-02 2010-12-24 メタボリック アナリシーズ インコーポレイテッド 生物の質量スペクトル表現型比較における同位体パターンの生成と使用
JP2016061768A (ja) 2014-09-22 2016-04-25 Jx日鉱日石エネルギー株式会社 土壌の分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570469A (en) 1995-01-06 1996-10-29 Lockheed Martin Corporation Method for removing metal contaminants from flue dust
JP2001321756A (ja) 2000-05-18 2001-11-20 Raito Kogyo Co Ltd 汚染土壌の不溶化方法及び汚染土壌の不溶化剤
JP2009045624A (ja) 2001-11-30 2009-03-05 Matsuda Giken Kogyo Kk 汚染土壌用固化不溶化剤
JP2005254230A (ja) 2004-02-12 2005-09-22 Tatsuya Suzuki 同位体分離方法、同位体分離装置、および同位体分離手段
JP2010540969A (ja) 2007-10-02 2010-12-24 メタボリック アナリシーズ インコーポレイテッド 生物の質量スペクトル表現型比較における同位体パターンの生成と使用
JP2016061768A (ja) 2014-09-22 2016-04-25 Jx日鉱日石エネルギー株式会社 土壌の分析方法

Also Published As

Publication number Publication date
JP2021016841A (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
Varga et al. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry
Packer et al. Validation of an inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cerium, strontium, and titanium in ceramic materials used in radiological dispersal devices (RDDs)
Kraiem et al. Development of an improved method to perform single particle analysis by TIMS for nuclear safeguards
Wysocka et al. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: rare earth elements as a case study
Lee et al. Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard
Lee et al. Accurate determination of minor isotope ratios in individual plutonium–uranium mixed particles by thermal ionization mass spectrometry
Suzuki et al. Optimization of collision/reaction gases for determination of 90Sr in atmospheric particulate matter by inductively coupled plasma tandem mass spectrometry after direct introduction of air via a gas-exchange device
Wang et al. Determination of ultra-low 236U in environment samples using ICP-MS/MS measurement and chemical separation
JP7244380B2 (ja) 汚染土の不溶化処理評価方法
Kasar et al. Precise measurement of 234U/238U, 235U/238U and 236U/238U isotope ratios in Fukushima soils using thermal ionization mass spectrometry
Lomax-Vogt et al. A searchable/filterable database of elemental, doubly charged, and polyatomic ions that can cause spectral overlaps in inductively coupled plasma-mass spectrometry
Russell et al. Investigating the potential of tandem inductively coupled plasma mass spectrometry (ICP-MS/MS) for 41 Ca determination in concrete
Ayala et al. On-line pseudo-stationary magnetic solid-phase extraction using magnetic cation exchange microparticles and its application to the determination of strontium
Vockenhuber et al. 182Hf, a new isotope for AMS
Godoy et al. Determination of total content and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes by ICP-QMS
Kazi et al. Comparison of the measurement of Pu and Am isotopes by AMS using fluoride and oxide anion beams
Zhang et al. A simple acid digestion using HCl–HNO 3− NH 4 HF 2 for rapid SF-ICP-MS determination of 237 Np and Pu isotopes in steel and concrete samples
Barrett et al. Rapid extraction and assay of uranium from environmental surface samples
Zhao et al. Matrix-assisted production of actinide molecular anions for AMS
Larivière et al. Determination of 226 Ra in sediments by ICP-MS: A comparative study of three sample preparation approaches
Zhou et al. Analysis and environmental application of 129I at the Xi’an Accelerator Mass Spectrometry Center
Esaka et al. Feasibility study of isotope ratio analysis of individual uranium-plutonium mixed oxide particles with SIMS and ICP-MS
Greis et al. Determination of plutonium in environmental samples with quadrupole ICP-MS
Zhang et al. Determination of Iodine-129 in twenty soil and sediment reference materials
Liu et al. Preliminary investigation on the rapid and direct AMS measurement of 129I in environmental samples without chemical separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7244380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150