JP7243714B2 - 露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体 - Google Patents

露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体 Download PDF

Info

Publication number
JP7243714B2
JP7243714B2 JP2020510641A JP2020510641A JP7243714B2 JP 7243714 B2 JP7243714 B2 JP 7243714B2 JP 2020510641 A JP2020510641 A JP 2020510641A JP 2020510641 A JP2020510641 A JP 2020510641A JP 7243714 B2 JP7243714 B2 JP 7243714B2
Authority
JP
Japan
Prior art keywords
unit
detection
exposure control
detection value
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510641A
Other languages
English (en)
Other versions
JPWO2019188390A1 (ja
Inventor
駿 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2019188390A1 publication Critical patent/JPWO2019188390A1/ja
Application granted granted Critical
Publication of JP7243714B2 publication Critical patent/JP7243714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Exposure Control For Cameras (AREA)
  • Studio Devices (AREA)

Description

本技術は、露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体に関し、特に、自動露光(Auto Exposure)を行う場合に用いて好適な露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体に関する。
従来、自車両の走行進行方向の遠方道路消失点を基準にして、遠方車両が走行していると期待される遠方小枠を定義し、遠方小枠内の輝度情報に基づいて車載カメラの露光制御を行うことが提案されている(例えば、特許文献1参照)。
特開2017-5678号公報
ところで、例えば、トンネルの入口又は出口付近などで周囲の明るさが急激に変化する場合、車載カメラの露光制御が間に合わずに、撮影された画像において、明るい場所が白飛びしたり、暗い場所が黒潰れしたりする場合がある。特許文献1では、この対策については検討されていない。
本技術は、このような状況に鑑みてなされたものであり、適切に露光制御を行うことができるようにするものである。
本技術の第1の側面の露光制御装置は、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部とを備える。
本技術の第1の側面の露光制御方法は、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出し、前記検波値に基づいて、前記撮影部の露光制御を行う。
本技術の第1の側面のプログラムは、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出し、前記検波値に基づいて、前記撮影部の露光制御を行う処理をコンピュータに実行させる。
本技術の第2の側面の撮影装置は、撮影部と、前記撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部とを備える。
本技術の第3の側面の移動体は、撮影部と、前記撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と、前記撮影画像に基づいて、移動制御を行う移動制御部とを備える。
本技術の第1の側面においては、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値が算出され、前記検波値に基づいて、前記撮影部の露光制御が行われる。
本技術の第2の側面においては、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値が算出され、前記検波値に基づいて、前記撮影部の露光制御が行われる。
本技術の第3の側面においては、撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値が算出され、前記検波値に基づいて、前記撮影部の露光制御が行われ、前記撮影画像に基づいて、移動制御が行われる。
本技術の第1の側面又は第2の側面によれば、適切に露光制御を行うことができる。
本技術の第3の側面によれば、適切に露光制御を行うことができる。その結果、移動体の移動制御を適切に行うことができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
本技術が適用され得る移動体制御システムの構成例を示すブロック図である。 本技術を適用した撮影システムの第1の実施の形態を示すブロック図である。 図2の撮影システムにより実行される露光制御処理を説明するためのフローチャートである。 撮影画像の例を示す模式図である。 分割領域の重みの第1の例を示す図である。 白飛びした撮影画像の例の模式図である。 黒潰れした撮影画像の例の模式図である。 生存時間の例を示す図である。 分割領域の重みの第2の例を示す図である。 パラメータテーブルの例を示す図である。 画像勾配に基づくパラメータを説明するための図である。 本技術を適用した撮影システムの第2の実施の形態を示すブロック図である。 図12の撮影システムにより実行される露光制御処理を説明するためのフローチャートである。 検波領域の第1の設定方法を説明するための図である。 検波領域の第2の設定方法を説明するための図である。 検波領域の第2の設定方法を説明するための図である。 コンピュータの構成例を示す図である。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.移動体制御システムの構成例
2.第1の実施の形態(輝度の加重平均を用いる例)
3.第2の実施の形態(検波領域を設定する例)
4.変形例
5.その他
<<1.移動体制御システムの構成例>>
図1は、本技術を適用した移動体制御システム100の概略的な機能の構成例を示すブロック図である。
移動体制御システム100は、移動体10に設けられ、移動体10の各種の制御を行うシステムである。
移動体10は、例えば、移動しながら周囲を撮影し、撮影した画像を用いた処理を行う移動体からなる。例えば、移動体10は、車両、自動二輪車、自転車、パーソナルモビリティ、飛行機、船舶、建設機械、農業機械(トラクター)等の搭乗者のいる移動体を含む。また、例えば、移動体10は、遠隔操作又は自動制御により移動するドローン、ロボット等の搭乗者のいない移動体を含む。さらに、例えば、移動体10は、直接操作、遠隔操作、又は、自動制御のいずれにより移動するものでもよい。
移動体制御システム100は、入力部101、データ取得部102、通信部103、移動体内部機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、記憶部109、及び、自律移動制御部110を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、記憶部109、及び、自律移動制御部110は、通信ネットワーク111を介して、相互に接続されている。通信ネットワーク111は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、IEEE802.3等のLAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した通信ネットワークやバス、あるいは規格化されていない独自の通信方式等からなる。なお、移動体制御システム100の各部は、通信ネットワーク111を介さずに、直接接続される場合もある。
なお、以下、移動体制御システム100の各部が、通信ネットワーク111を介して通信を行う場合、通信ネットワーク111の記載を省略するものとする。例えば、入力部101と自律移動制御部110が、通信ネットワーク111を介して通信を行う場合、単に入力部101と自律移動制御部110が通信を行うと記載する。
入力部101は、ユーザが各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、移動体制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、ユーザにより入力されたデータや指示等に基づいて入力信号を生成し、移動体制御システム100の各部に供給する。
データ取得部102は、移動体制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、移動体制御システム100の各部に供給する。
例えば、データ取得部102は、移動体10の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセル等の加速入力の操作量、減速入力の操作量、方向指示入力の操作量、エンジンやモータ等の駆動装置の回転数や入出力エネルギー・燃料量、エンジンやモータ等のトルク量、若しくは、車輪や関節の回転速度やトルク等を検出するためのセンサ等を備える。
また、例えば、データ取得部102は、移動体10の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、偏光カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、移動体10の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、レーザ測距センサ、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
さらに、例えば、データ取得部102は、移動体10の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
通信部103は、移動体内部機器104、並びに、移動体外部の様々な機器、サーバ、基地局等と通信を行い、移動体制御システム100の各部から供給されるデータを送信したり、受信したデータを移動体制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である。
例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、移動体内部機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、移動体内部機器104と有線通信を行う。
さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、移動体10の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、移動体10が車両の場合、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、移動体10と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
移動体内部機器104は、例えば、ユーザが有するモバイル機器若しくはウェアラブル機器、移動体10に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
出力制御部105は、ユーザ又は移動体外部に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
出力部106は、ユーザ又は移動体外部に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、ユーザが装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。尚、出力制御部105および出力部106は、自律移動の処理には必須の構成ではないため、必要に応じて省略するようにしてもよい。
駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
駆動系システム108は、移動体10の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、4本の脚の各関節に備わった角度やトルクを指定可能なサーボモータ、ロボット自体の移動の動きを4本の足の動きに分解・置換するモーションコントローラ並びに、各モータ内のセンサや足裏面のセンサによるフィードバック制御装置を備える。
別の例では、駆動系システム108は、4基ないし6基の機体上向きのプロペラを持つモータ、ロボット自体の移動の動きを各モータの回転量に分解・置換するモーションコントローラを備える。
さらに、別の例では、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
記憶部109は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部109は、移動体制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部109は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、移動体10の周囲の情報を含むローカルマップ等の地図データを記憶する。
自律移動制御部110は、自動運転又は運転支援等の自律移動に関する制御を行う。具体的には、例えば、自律移動制御部110は、移動体10の衝突回避あるいは衝撃緩和、移動体間距離に基づく追従移動、移動体速度維持移動、または、移動体10の衝突警告の機能実現を目的とした協調制御を行う。また、例えば、自律移動制御部110は、ユーザの操作に拠らずに自律的に移動する自律移動等を目的とした協調制御を行う。自律移動制御部110は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
検出部131は、自律移動の制御に必要な各種の情報の検出を行う。検出部131は、移動体外部情報検出部141、移動体内部情報検出部142、及び、移動体状態検出部143を備える。
移動体外部情報検出部141は、移動体制御システム100の各部からのデータ又は信号に基づいて、移動体10の外部の情報の検出処理を行う。例えば、移動体外部情報検出部141は、移動体10の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、他の移動体、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、移動体外部情報検出部141は、移動体10の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。移動体外部情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、及び、状況認識部152、並びに、動作制御部135等に供給する。
移動体内部情報検出部142は、移動体制御システム100の各部からのデータ又は信号に基づいて、移動体内部の情報の検出処理を行う。例えば、移動体内部情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、移動体内部の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる移動体内部の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。移動体内部情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部152、及び、動作制御部135等に供給する。
移動体状態検出部143は、移動体制御システム100の各部からのデータ又は信号に基づいて、移動体10の状態の検出処理を行う。検出対象となる移動体10の状態には、例えば、速度、加速度、角速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の移動体搭載機器の状態等が含まれる。移動体状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部152、及び、動作制御部135等に供給する。
自己位置推定部132は、移動体外部情報検出部141、及び、状況分析部133の状況認識部152等の移動体制御システム100の各部からのデータ又は信号に基づいて、移動体10の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、及び、状況認識部152等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部109に記憶させる。
状況分析部133は、移動体10及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、状況認識部152、及び、状況予測部153を備える。
マップ解析部151は、自己位置推定部132及び移動体外部情報検出部141等の移動体制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部109に記憶されている各種のマップの解析処理を行い、自律移動の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、状況認識部152、状況予測部153、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
状況認識部152は、自己位置推定部132、移動体外部情報検出部141、移動体内部情報検出部142、移動体状態検出部143、及び、マップ解析部151等の移動体制御システム100の各部からのデータ又は信号に基づいて、移動体10に関する状況の認識処理を行う。例えば、状況認識部152は、移動体10の状況、移動体10の周囲の状況、及び、移動体10の運転者の状況等の認識処理を行う。また、状況認識部152は、必要に応じて、移動体10の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)、道路地図(Lane Map)、または、点群地図(Point Cloud Map)とされる。
認識対象となる移動体10の状況には、例えば、移動体10の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる移動体10の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
状況認識部152は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部153等に供給する。また、状況認識部152は、状況認識用マップを記憶部109に記憶させる。
状況予測部153は、マップ解析部151、及び状況認識部152等の移動体制御システム100の各部からのデータ又は信号に基づいて、移動体10に関する状況の予測処理を行う。例えば、状況予測部153は、移動体10の状況、移動体10の周囲の状況、及び、運転者の状況等の予測処理を行う。
予測対象となる移動体10の状況には、例えば、移動体10の挙動、異常の発生、及び、移動可能距離等が含まれる。予測対象となる移動体10の周囲の状況には、例えば、移動体10の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
状況予測部153は、予測処理の結果を示すデータを、及び状況認識部152からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
ルート計画部161は、マップ解析部151及び状況予測部153等の移動体制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
行動計画部162は、マップ解析部151及び状況予測部153等の移動体制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に移動するための移動体10の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、移動速度、及び、追い越し等の計画を行う。行動計画部162は、計画した移動体10の行動を示すデータを動作計画部163等に供給する。
動作計画部163は、マップ解析部151及び状況予測部153等の移動体制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための移動体10の動作を計画する。例えば、動作計画部163は、加速、減速、及び、移動軌道等の計画を行う。動作計画部163は、計画した移動体10の動作を示すデータを、動作制御部135等に供給する。
動作制御部135は、移動体10の動作の制御を行う。
より詳細には、動作制御部135は、移動体外部情報検出部141、移動体内部情報検出部142、及び、移動体状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、移動体10の異常等の緊急事態の検出処理を行う。動作制御部135は、緊急事態の発生を検出した場合、急停止や急旋回等の緊急事態を回避するための移動体10の動作を計画する。
また、動作制御部135は、動作計画部163により計画された移動体10の動作を実現するための加減速制御を行う。例えば、動作制御部135は、計画された加速、減速、又は、急停止を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
さらに、動作制御部135は、動作計画部163により計画された移動体10の動作を実現するための方向制御を行う。例えば、動作制御部135は、動作計画部163により計画された移動軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
なお、以下、主に移動体10が車両である場合を例に挙げて説明する。
<<2.第1の実施の形態>>
次に、図2乃至図11を参照して、本技術の第1の実施の形態について説明する。
なお、第1の実施の形態は、図1の移動体制御システム100のうち、主にデータ取得部102の処理に関連するものである。
<撮影システムの構成例>
図2は、本技術の第1の実施の形態である撮影システム201の構成例を示すブロック図である。
撮影システム201は、移動体10の周囲を撮影するシステムである。撮影システム201は、撮影部211及び制御部212を備える。
なお、撮影システム201は、1つの装置(例えば、撮影装置)により構成されてもよいし、複数の装置により構成されてもよい。後者の場合、例えば、撮影部211と制御部212がそれぞれ異なる装置(例えば、撮影装置と露光制御装置)に分かれたり、撮影部211と制御部212の一部とが1つの装置(例えば、撮影装置)を構成し、制御部212の残りが異なる装置(例えば、露光制御装置)を構成したりする。
撮影部211は、移動体10の周囲を撮影する。撮影部211は、撮影の結果得られた画像(以下、撮影画像と称する)を、移動体制御システム100の検出部131及び自己位置推定部132、並びに、制御部212の検波部221の重み設定部231等に供給する。
また、撮影部211は、制御信号生成部244からの制御信号に基づいて、撮像素子(不図示)の露光時間(シャッタ速度)、撮像素子のゲイン(感度)、及び、絞りの大きさを調整することにより、露光量を調整する。
制御部212は、撮影部211の露光制御等を行う。制御部212は、検波部221及び露光制御部222を備える。
検波部221は、撮影画像の輝度に基づく検波値を検出し、検波値を示す検波信号を露光制御部222の誤差検出部241に供給する。検波部221は、重み設定部231及び検波値算出部232を備える。
重み設定部231は、後述するように、撮影画像を複数の分割領域に分割し、各分割領域に対する重みを設定する。重み設定部231は、撮影画像、及び、各分割領域の重みを示すデータを検波値算出部232に供給する。
検波値算出部232は、撮影画像の各分割領域の輝度及び重みに基づいて、検波値を算出する。検波値算出部232は、検波値を示す検波信号を露光制御部222の誤差検出部241に供給する。
露光制御部222は、検波信号に基づいて、撮影部211の露光制御を行う。露光制御部222は、誤差検出部241、露光量設定部242、制御方法設定部243、及び、制御信号生成部244を備える。
誤差検出部241は、検波部221により検出された検波値と目標値との間の誤差を検出し、検出した誤差を示すデータを露光量設定部242に供給する。
露光量設定部242は、検波値の誤差に基づいて、撮影部211の露光量の目標値を設定する。露光量設定部242は、露光量の目標値を示すデータを制御方法設定部243に供給する。
制御方法設定部243は、撮影部211の露光量が目標値に達するように、撮影部211の露光の制御方法を設定する。制御方法設定部243は、露光量の目標値、及び、露光の制御方法を示すデータを制御信号生成部244に供給する。
制御信号生成部244は、設定された露光の制御方法に従って、露光量が目標値に達するように撮影部211の露光を制御する制御信号を生成し、撮影部211に供給する。
<露光制御処理>
次に、図3のフローチャートを参照して、撮影システム201により実行される露光制御処理について説明する。
この処理は、例えば、撮影システム201の電源がオンされたとき開始され、撮影システム201の電源がオフされたとき終了する。
ステップS1において、撮影部211は、移動体10の周囲を撮影する。撮影部211は、撮影により得られた撮影画像を検出部131、自己位置推定部132、及び、重み設定部231等に供給する。
検出部131の移動体外部情報検出部141(図1)は、例えば、撮影画像内の特徴点、及び各特徴点の移動体10に対する位置(距離及び方向)の検出を行う。なお、特徴点の検出方法には、任意の手法を用いることが可能である。
また、移動体外部情報検出部141は、例えば、撮影画像内の各被写体の位置及び種類等の検出を行う。なお、被写体の検出方法には、例えば、セマンティックセグメンテーション、人体検出、又は、車両検出等の任意の手法を用いることが可能である。
さらに、移動体外部情報検出部141は、例えば、撮影画像内の各被写体の動き(例えば、速度及び移動方向等)の検出を行う。なお、被写体の動きの検出方法には、任意の手法を用いることが可能である。
自己位置推定部132は、撮影画像等に基づいて、移動体10の自己位置推定を行う。
なお、以下、図4に模式的に示される撮影画像P1が撮影された場合を適宜具体例に挙げながら説明する。撮影画像P1は、移動体10の前方を撮影した画像であり、空、前方の路面、路面上の他の車両、道路の両側の建物や木々等が写っている。
ステップS2において、重み設定部231は、移動体10及び周囲の情報を取得する。
例えば、重み設定部231は、撮影画像内の特徴点、各特徴点の移動体10に対する位置(距離及び方向)、並びに、撮影画像内の各被写体の位置、種類、及び、動き等の検出結果を示すデータを移動体外部情報検出部141から取得する。
また、例えば、重み設定部231は、移動体10の速度及び角速度等の検出結果を示すデータを、検出部131の移動体状態検出部143(図1)から取得する。
さらに、例えば、重み設定部231は、移動体10の自己位置の推定結果を示すデータを自己位置推定部132から取得する。
ステップS3において、重み設定部231は、撮影画像の各分割領域に対する重みを設定する。具体的には、重み設定部231は、撮影画像を複数の分割領域に分割する。そして、詳細は後述するが、重み設定部231は、各分割領域に対する重みを設定する。重み設定部231は、撮影画像、及び、各分割領域の重みを示すデータを検波値算出部232に供給する。
ステップS4において、検波値算出部232は、撮影画像の各分割領域の輝度及び重みに基づいて、検波値を算出する。検波値算出部232は、検波値を示す検波信号を誤差検出部241に供給する。
ここで、図5乃至図11を参照して、ステップS3及びステップS4における検波値の算出方法の具体例について説明する。
<検波値の第1の算出方法>
まず、図5乃至図9を参照して、検波値の第1の算出方法について説明する。
例えば、重み設定部231は、図5に示されるように、同じ大きさのn個(この例では48個)の矩形の分割領域i(i=1~n)に撮影画像P1を分割し、各分割領域iに対して重みwiを設定する。図5の各分割領域i内の数字は、各分割領域iの重みwiを示しており、この例では、全ての分割領域iの重みwiが1に設定されている。
検波値算出部232は、次式(1)により、各分割領域iの輝度の加重平均を検波値として算出する。
Figure 0007243714000001
なお、xiは、分割領域i内の各画素の輝度の平均xi(以下、平均輝度xiと称する)を示す。
ここで、図5の例では、全ての分割領域iの重みwiが1に設定されている。そこで、式(1)の重みwiに1を代入すると、次式(2)となる。
Figure 0007243714000002
すなわち、全ての分割領域iの重みwiを1に設定すると、検波値は、各分割領域iの平均輝度xiの平均、換言すれば、撮影画像P1の各画素の輝度の単純平均と等しくなる。
しかしながら、検波値を撮影画像の各画素の輝度の単純平均に設定すると、移動体10の周囲の明るさが急激に変化した場合、適切に撮影部211の露光を制御できない場合がある。すなわち、通常、露光制御は、所定のフレーム前又は所定の時間前に撮影された撮影画像に基づく検波値に基づいて行われるため、周囲の明るさが急激に変化した場合、露光制御が周囲の明るさの変化に迅速に追従できないおそれがある。
例えば、トンネルや森林の出口付近等において、暗い場所から明るい場所に移る場合、露光制御が間に合わずに、撮影画像内の明るい部分が白飛びしてしまうおそれがある。
例えば、図6は、森林の出口付近において撮影された撮影画像P2を模式的に示している。撮影画像P2では、例えば、領域A1内の森林の出口付近及び出口より前方の明るい領域が白飛びしてしまう。そのため、森林の外の状況を正確に把握できずに、自己位置推定や障害物認識等の精度が低下するおそれがある。
また、例えば、トンネルや森林の入口付近等において、明るい場所から暗い場所に移る場合、露光制御が間に合わずに、撮影画像内の暗い部分が黒潰れしてしまうおそれがある。
例えば、図7は、トンネルの入口付近において撮影された撮影画像P3を模式的に示している。撮影画像P3では、例えば、領域A2内のトンネル内の暗い領域が黒潰れしてしまう。そのため、トンネル内の状況を正確に把握できずに、自己位置推定や障害物認識等に支障が出るおそれがある。
これに対して、重み設定部231は、まず、各分割領域iの生存時間tiを予測する。
生存時間tiは、生存時間を予測する基準となる基準時刻以降において、分割領域i(内の被写体)が撮影画像に写っている時間である。換言すれば、生存時間tiは、基準時刻以降において、分割領域i(内の被写体)が撮影部211の画角内に留まっている時間である。より具体的には、例えば、生存時間は、生存時間を予測する時点(基準時刻)から、分割領域i(内の被写体)が撮影部211の画角から出て、撮影画像に写らなくなる時点までの時間である。
例えば、重み設定部231は、撮影画像の分割領域i毎に代表特徴点piを設定する。
このとき、重み設定部231は、分割領域i内に特徴点が1つしか存在しない場合、その特徴点を代表特徴点piに設定する。
一方、重み設定部231は、分割領域i内に複数の特徴点が存在する場合、そのうちの1つを代表特徴点piに設定する。例えば、重み設定部231は、分割領域i内で最も面積の大きい被写体、又は、分割領域i内で最も重要な被写体を選択する。ここで、最も重要な被写体とは、例えば、人、車両、標識等、認識する必要性が最も高い被写体である。そして、重み設定部231は、選択した被写体の特徴点のうち、例えば最も特徴量が大きい特徴点を代表特徴点piに設定する。
或いは、例えば、重み設定部231は、被写体を考慮せずに、分割領域i内で最も特徴量の大きい特徴点、又は、分割領域iの中心に最も近い特徴点を代表特徴点piに設定する。
そして、重み設定部231は、例えば、移動体10の速度及び移動方向、並びに、代表特徴点piの移動体10からの距離及び方向に基づいて、分割領域iの生存時間tiを予測する。例えば、重み設定部231は、移動体10が現在の移動方向に現在の速度で移動を継続する仮定して、代表特徴点piが撮影画像から出る時刻(撮影部211の画角から出る時刻)を予測する。重み設定部231は、現在の時刻から予測した時刻までの時間を分割領域iの生存時間tiとする。
図8は、移動体10が矢印の方向に移動する場合の撮影画像P1内の各点における生存時間の例を示している。図内の黒点の下の数値は、各点の生存時間を示している。
この例では、移動体10の進行方向において移動体10に近い被写体上の点ほど、生存時間が短くなっている。一方、移動体10の進行方向において移動体10から遠い被写体上の点ほど、生存時間が長くなっている。
なお、重み設定部231は、分割領域i内の被写体の動きをさらに考慮して、生存時間tiを予測するようにしてもよい。
例えば、重み設定部231は、移動体10の速度及び移動方向、代表特徴点piを有する被写体(以下、代表被写体と称する)の特徴点の速度及び移動方向、並びに、代表特徴点piの移動体10からの距離及び方向に基づいて、生存時間tiを予測する。例えば、重み設定部231は、移動体10及び代表被写体が現在の移動方向に現在の速度で移動を継続すると仮定し、代表特徴点piが撮影画像から出る時刻(撮影部211の画角から出る時刻)を予測する。重み設定部231は、現在の時刻から予測した時刻までの時間を分割領域iの生存時間tiとする。
次に、重み設定部231は、例えば、次式(3)の関数fを用いて、生存時間tiに基づいて、各分割領域iの重みwiを算出する。
wi=f(l,D,ti,v,ω) ・・・(3)
なお、lはタイムラグを示し、Dは露光深度を示し、vは移動体10の速度を示し、ωは移動体10の角速度を示している。
タイムラグlは、露光の制御に要する時間を示している。例えば、タイムラグlは、撮影画像を取得してから、その撮影画像に基づく露光制御が完了するまでの時間(タイムラグ)を示している。タイムラグlは、例えば、露光が反映されるのに要する時間ともいえる。
なお、タイムラグlは、固定値でもよいし、可変値でもよい。可変値の場合、タイムラグlは、例えば、検波値の変化量に基づいて設定される。検波値の変化量が大きい場合、すなわち、移動体10の周囲の明るさが大きく変化した場合、一般的に露光制御に要する時間が長くなるため、タイムラグlは大きくされる。一方、検波値の変化量が小さい場合、すなわち、移動体10の周囲の明るさがほとんど変化していない場合、一般的に露光制御に要する時間が短くなるため、タイムラグlは小さくされる。
露光深度Dは、露光を合わせたい深度、すなわち、露光を合わせたい位置の移動体10からの距離を示している。
そして、例えば、関数fにより、タイムラグlの経過後(露光制御が完了する時刻)に撮影画像内で支配的になる分割領域iであって、重要度が高い分割領域iに対する重みwiが、大きな値に設定される。一方、例えば、タイムラグlの経過後に撮影画像内で支配的にならない分割領域i、及び、重要度が低い分割領域iに対する重みwiが、小さい値に設定される。
ここで、タイムラグlの経過後に撮影画像内で支配的になる分割領域iとは、例えば、タイムラグlの経過後に撮影される撮影画像内で大きな面積を占めると予測される分割領域iである。分割領域iがタイムラグlの経過後に撮影される撮影画像内で占める面積は、例えば、分割領域iの生存時間ti、並びに、移動体10の速度v及び角速度w等に基づいて予測される。
また、分割領域iの重要度は、例えば、タイムラグl、露光深度D、生存時間ti、並びに、移動体10の速度v及び角速度wに基づいて予測される。例えば、タイムラグlの経過後の移動体10から分割領域i(内の被写体)までの予測距離と露光深度Dとの差が小さいほど、すなわち、分割領域i(内の被写体)がタイムラグlの経過後に露光を合わせたい位置に近いほど、重要度が高いと予測される。一方、例えば、タイムラグlの経過後の移動体10から分割領域i(内の被写体)までの予測距離と露光深度Dとの差が大きいほど、すなわち、分割領域i(内の被写体)がタイムラグlの経過後に露光を合わせたい位置から遠いほど、重要度が低いと予測される。
図9は、撮影画像P1の各分割領域iに対して関数fを用いて設定した重みwiの例を、図5と同様の方法により示している。
例えば、撮影画像P1の中央付近の分割領域iであって、生存時間tiが(タイムラグl+露光深度D/速度v)に近い分割領域iに対する重みwiが大きくなっている。具体的には、移動体10の少し前の路面及び路面上の車両、並びに、移動体10の少し前の建物等が写っている分割領域iに対する重みwiが大きくなっている。
一方、タイムラグlの経過後に撮影画像内に存在しないと予測される分割領域i(タイムラグlが経過するまでの時間内に撮影部211の画角から出ると予測される分割領域i)、例えば、生存時間tiがタイムラグl未満の分割領域iに対する重みが小さくなっている。具体的には、例えば、撮影画像Piの左右の端部及び四隅付近の分割領域iに対する重みwiが小さくなっている。また、例えば、移動体10からの距離が遠い分割領域iに対する重みwiが小さくなっている。具体的には、例えば、空や道路の消失点付近が写っている分割領域iに対する重みwiが小さくなっている。
そして、検波値算出部232は、上述した式(1)により、各分割領域iに対する重みwiを用いて各分割領域iの輝度の加重平均を算出することにより、検波値を算出する。
なお、関数fは、人手により作成及びチューニングするようにしてもよいし、機械学習を用いて生成するようにしてもよい。
また、例えば、関数fの引数であるタイムラグl、露光深度D、移動体10の速度v、及び、移動体10の角速度ωのうち1つ以上を省略することも可能である。
<検波値の第2の算出方法>
次に、図10乃至図11を参照して、検波値の第2の算出方法について説明する。
第2の算出方法では、重みwiに加えて、各分割領域iの重要度等を示すパラメータφiが求められ、各分割領域iに対する重みが、パラメータφi×重みwiに設定される。
例えば、重み設定部231は、図10に示されるパラメータテーブルを用いて、各分割領域i内の被写体のうち最も大きな被写体の種類に基づいて、パラメータφiを設定する。例えば、人、車、路面、標識等の認識する必要性が高い被写体ほど、パラメータφiが大きくなっている。一方、例えば、空、木等の認識する必要性が低い被写体ほど、パラメータφiは小さくなっている。
または、例えば、重み設定部231は、次式(3)により、各分割領域iのパラメータφiを設定する。
φi=Σgrad(u,v) ・・・(3)
grad(u,v)は、分割領域i内の座標(u,v)の画素の輝度(または画素値)の勾配を示しており、パラメータφiは、分割領域iの画像勾配となる。
従って、分割領域iの画像勾配が大きくなるほど、例えば、分割領域iの輝度(または画素値)の変化が大きくなるほど、パラメータφiは大きくなる。一方、分割領域iの画像勾配が小さくなるほど、例えば、分割領域iの輝度(または画素値)の変化が小さくなるほど、パラメータφiは小さくなる。
画像勾配が大きい分割領域iは、一般的に移動体10に近い物体を含み、その物体が鮮明に写っている領域である。一方、画像勾配が小さい領域は、一般的に物体が存在しない領域や、移動体10から遠い物体を含み、その物体が鮮明に写っていない領域である。例えば、図11の撮影画像P1の建物を含む分割領域A11に対するパラメータφiは、空を含む分割領域A12に対するパラメータφiより大きくなる。
そして、検波値算出部232は、次式(4)により、各分割領域iに対する重みφi*wiを用いて各分割領域iの輝度の加重平均を算出することにより、検波値を算出する。
Figure 0007243714000003
このように、パラメータφiを用いることにより、認識する必要性が高い被写体が存在し、重要度が高い分割領域iに対してより大きな重みが設定され、認識する必要性が高い被写体が存在せず、重要度が低い分割領域iに対してより小さな重みが設定されて、検波値が算出される。
なお、例えば、被写体の種類と画像勾配の両方に基づいて、パラメータφiを設定するようにしてもよい。また、例えば、他の分割領域iの重要度等を示すパラメータを用いて、パラメータφiを設定するようにしてもよい。
なお、いずれの算出方法においても、検波値の算出に用いる撮影画像は、γ補正を施す前のRaw画像が望ましい。
図3に戻り、ステップS5において、誤差検出部241は、検波値の誤差を検出する。具体的には、誤差検出部241は、検波値算出部232により算出された検波値と、検波値の目標値との差を誤差として検出する。誤差検出部241は、検波値の誤差を示すデータを露光量設定部242に供給する。
なお、検波値の目標値は、例えば、撮影部211の撮像素子の画素の飽和時の輝度の12%から20%の間の値(例えば、18%)に設定される。
ステップS6において、露光量設定部242は、露光量の目標値を設定する。例えば、露光量設定部242は、検波値の誤差の推移に基づいて、検波値が目標値に近づくように、撮影部211の露光量の目標値を設定する。このとき、露光量設定部242は、撮影画像の明るさが不自然に変化しないように、例えば、撮影画像が急激に明るくなったり、急激に暗くなったり、又は、明暗を繰り返したりしないように、露光量の目標値を設定する。例えば、露光量設定部242は、露光量の目標値を徐々に変化させたり、検波値の目標値付近で露光量の目標値を変化させずに固定する期間を設けたりする。
露光量設定部242は、露光量の目標値を示すデータを制御方法設定部243に供給する。
ステップS7において、制御方法設定部243は、露光の制御方法を設定する。
撮影部211の露光量は、撮影部211の撮像素子の露光時間(シャッタ速度)、撮像素子のゲイン(感度)、及び、絞りの大きさにより設定される。一方、例えば、ゲインを上げすぎると、撮影画像のノイズが増加し、露光時間を長くすると、撮影画像のブレが大きくなる。
そこで、制御方法設定部243は、撮影画像のノイズやブレを抑制しつつ、露光量が目標値に達するように、露光の制御方法(露光時間、ゲイン、及び、絞り)の配分を適切に設定する。
制御方法設定部243は、露光量の目標値、及び、露光の制御方法の配分を示すデータを制御信号生成部244に供給する。
ステップS8において、撮影システム201は、露光制御を行う。
具体的には、制御信号生成部244は、露光量の目標値、及び、露光の制御方法の配分に基づいて、露光時間、ゲイン、及び、絞りの大きさの制御量を算出する。制御信号生成部244は、算出した露光時間、ゲイン、及び、絞りの大きさの制御量を示す制御信号を撮影部211に供給する。
撮影部211は、制御信号に基づいて、露光時間、ゲイン、及び、絞りの大きさを調整する。
その後、処理はステップS1に戻り、ステップS1以降の処理が実行される。
以上のように、撮影画像の各分割領域iに重みをつけて検波値が算出され、算出された検波値に基づいて露光制御が行われる。これにより、より大きな重みが設定された分割領域i内の被写体に対して迅速に露光が合わせられる。従って、例えば、少し前に撮影された撮影画像に基づいて実際に露光が制御されるときに撮影される撮影画像において支配的になる被写体や認識する必要性が高い被写体に対して、迅速に露光を合わせることができ、白飛びや黒潰れの発生を抑制することができる。その結果、移動体10の自己位置推定や障害物認識等の精度が向上する。
<<3.第2の実施の形態>>
次に、図12乃至図16を参照して、本技術の第2の実施の形態について説明する。
なお、第2の実施の形態は、第1の実施の形態と同様に、図1の移動体制御システム100のうち、主にデータ取得部102の処理に関連するものである。
<撮影システムの構成例>
図12は、本技術の第2の実施の形態である撮影システム301の構成例を示すブロック図である。なお、図中、図2の撮影システム201と対応する部分には同じ符号を付してあり、その説明は適宜省略する。
撮影システム301は、撮影システム201と比較して、制御部212の代わりに制御部311が設けられている点が異なる。制御部311は、制御部212と比較して、検波部221の代わりに検波部321が設けられている点が異なる。
検波部321は、領域設定部331及び検波値算出部332を備える。
領域設定部331は、後述するように、撮影画像において、検波値を検出する対象とする領域(以下、検波領域と称する)を設定する。領域設定部331は、撮影画像、及び、検波領域を示すデータを検波値算出部332に供給する。
検波値算出部332は、撮影画像の検波領域の輝度に基づいて、検波値を算出する。検波値算出部332は、検波値を示す検波信号を誤差検出部241に供給する。
<露光制御処理>
次に、図13のフローチャートを参照して、撮影システム301により実行される露光制御処理について説明する。
なお、この処理は、例えば、撮影システム301の電源がオンされたとき開始され、撮影システム301の電源がオフされたとき終了する。
ステップS101において、図3のステップS1の処理と同様に、移動体10の周囲が撮影される。
ステップS102において、図3のステップS2の処理と同様に、移動体10及び周囲の情報が取得される。
ステップS103において、領域設定部331は、検波領域を設定する。
例えば、領域設定部331は、上述した図3のステップS3と同様の処理により、撮影画像の各分割領域iの生存時間tiを予測する。そして、領域設定部331は、各分割領域iの生存時間tiに基づいて、撮影画像の検波領域を設定する。
例えば、領域設定部331は、生存時間tiが所定の閾値以上の分割領域iからなる領域を検波領域に設定する。例えば、図14に示されるように、移動体10が矢印の方向に移動している場合、撮影画像P1のほぼ中央の矩形の領域A21が検波領域に設定される。
なお、検波領域の設定に用いる閾値は、固定値でもよいし、可変値でもよい。可変値の場合、例えば、上述した式(3)のタイムラグl、露光深度D、移動体10の速度v等に基づいて閾値が設定される。例えば、タイムラグl、又は、(タイムラグl+露光深度D/速度v)が閾値に設定される。
或いは、例えば、領域設定部331は、移動体10の動き(例えば、速度及び角速度等)並びに撮影画像等に基づいて、所定のアルゴリズムにより、現在の撮影画像内において、所定のターゲット時間経過後の撮影画像に対応する領域を予測する。そして、領域設定部331は、予測した領域を検波領域に設定する。
例えば、図15は、撮影画像P1が撮影されてからターゲット時間経過後に撮影された撮影画像P4の例を模式的に示している。この例では、例えば、領域設定部331は、撮影画像P4の撮影前に、撮影画像P1内において撮影画像P4に対応する領域A31を予測する。すなわち、領域A31は、撮影画像P1において、ターゲット時間後の撮影画像P4に写っていると予測される領域である。そして、領域設定部331は、領域A31を検波領域に設定する。
なお、このアルゴリズムは、例えば、機械学習により生成される。また、ターゲット時間は、固定値でもよいし、可変値でもよい。可変値の場合、例えば、上述した式(3)のタイムラグl、露光深度D、移動体10の速度v等に基づいてターゲット時間が設定される。例えば、タイムラグl、又は、(タイムラグl+露光深度D/速度v)がターゲット時間に設定される。
なお、検波領域は、必ずしも矩形に限定されるものではなく、矩形以外の形状でもよい。
また、例えば、上述した方法により設定した検波領域以外に、認識する必要性が高い被写体が存在し、重要度が高い領域を検波領域に加えるようにしてもよい。
ステップS104において、検波値算出部332は、検波領域を対象にして、検波値を算出する。例えば、検波値算出部332は、撮影画像の検波領域内の各画素の輝度の平均を検波値として算出する。この検波値は、撮影画像の検波領域に対する重みを1に設定し、検波領域以外の領域(所定の時間内に撮影部211の画角から出ると予測される領域)に対する重みを0に設定し、重みを0に設定した領域を除いて撮影画像の輝度の平均を算出した値と等しくなる。
ステップS105乃至ステップS108において、図3のステップS5乃至ステップS8と同様の処理が実行される。その後、処理はステップS101に戻り、ステップS101以降の処理が実行される。
以上のように、検波領域が設定され、検波領域の輝度に基づいて検波値が算出され、算出された検波値に基づいて露光制御が行われる。これにより、検波領域外の被写体を除いて、検波領域内の被写体を対象に迅速に露光が合わせられる。少し前に撮影された撮影画像に基づいて実際に露光が制御されるときに撮影される撮影画像において支配的になる被写体や認識する必要性が高い被写体に対して、迅速に露光を合わせることができ、白飛びや黒潰れの発生を抑制することができる。その結果、移動体10の自己位置推定や障害物認識等の精度が向上する。
<<4.変形例>>
以下、上述した本技術の実施の形態の変形例について説明する。
例えば、以上の説明では分割領域iを矩形にする例を示したが、矩形以外の形状にすることも可能である。
また、例えば、分割領域iを1画素により構成することも可能である。
さらに、例えば、第1の実施の形態と第2の実施の形態を組み合わせることが可能である。例えば、検波領域を複数の分割領域に分割して、各分割領域に対して重みをつけて検波値を算出するようにしてもよい。
<<5.その他>>
<コンピュータの構成例>
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
図17は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
コンピュータ500において、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
入力部506は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア511を駆動する。
以上のように構成されるコンピュータ500では、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ500(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータ500では、プログラムは、リムーバブルメディア511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
<構成の組み合わせ例>
本技術は、以下のような構成をとることもできる。
(1)
撮影部により撮影された撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして検波値を算出する検波部と、
前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と
を備える露光制御装置。
(2)
前記検波部は、前記撮影画像内の複数の領域毎の生存時間に基づいて、前記検波値を算出する
前記(1)に記載の露光制御装置。
(3)
前記検波部は、前記生存時間に基づいて前記領域の重みを設定し、各前記領域の輝度及び前記重みに基づいて、前記検波値を算出する
前記(2)に記載の露光制御装置。
(4)
前記検波部は、前記重みを用いた各前記領域の輝度の加重平均により前記検波値を算出する
前記(3)に記載の露光制御装置。
(5)
前記検波部は、前記生存時間に加えて、露光の制御に要する時間、露光を合わせる距離、前記撮影部を備える移動体の速度、及び、前記移動体の角速度のうち少なくとも1つに基づいて、前記重みを設定する
前記(3)又は(4)に記載の露光制御装置。
(6)
前記検波部は、さらに前記領域内の被写体の種類に基づいて、前記重みを設定する
前記(3)乃至(5)のいずれかに記載の露光制御装置。
(7)
前記検波部は、さらに前記領域内の画像勾配に基づいて、前記重みを設定する
前記(3)乃至(6)のいずれかに記載の露光制御装置。
(8)
前記検波部は、各前記領域の前記生存時間に基づいて前記撮影画像の一部の領域を検波領域に設定し、前記検波領域の輝度に基づいて前記検波値を算出する
前記(2)に記載の露光制御装置。
(9)
前記検波部は、前記生存時間が所定の閾値以上の前記領域を前記検波領域に設定する
前記(8)に記載の露光制御装置。
(10)
前記検波部は、前記撮影部を備える移動体の動き及び前記撮影画像に基づいて、前記撮影画像の一部の領域を検波領域に設定し、前記検波領域の輝度に基づいて前記検波値を算出する
前記(1)に記載の露光制御装置。
(11)
前記検波部は、所定の時間後に前記撮影部により撮影されると予測される領域を前記検波領域に設定する
前記(10)に記載の露光制御装置。
(12)
前記検波部は、前記所定の時間内に前記撮影部の画角から出ると予測される領域を除いて前記検波値を算出する
前記(1)乃至(11)のいずれかに記載の露光制御装置。
(13)
撮影部により撮影された撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして検波値を算出し、
前記検波値に基づいて、前記撮影部の露光制御を行う
露光制御方法。
(14)
撮影部により撮影された撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして検波値を算出し、
前記検波値に基づいて、前記撮影部の露光制御を行う
処理をコンピュータに実行させるためのプログラム。
(15)
撮影部と、
前記撮影部により撮影された撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして検波値を算出する検波部と、
前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と
を備える撮影装置。
(16)
撮影部と、
前記撮影部により撮影された撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして検波値を算出する検波部と、
前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と、
前記撮影画像に基づいて、移動制御を行う移動制御部と
を備える移動体。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
10 移動体, 100 移動体制御システム, 102 データ取得部, 131 検出部, 132 自己位置推定部, 141 移動体外部情報検出部, 143 移動体状態検出部, 201 撮影システム, 211 撮影部, 212 制御部, 221 検波部, 222 露光制御部, 231 重み設定部, 232 検波値算出部, 241 誤差検出部, 242 露光量設定部, 243 制御方法設定部, 244 制御信号生成部, 301 撮影システム, 311 制御部, 321 検波部, 331 領域設定部, 332 検波値算出部

Claims (16)

  1. 撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、
    前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と
    を備える露光制御装置。
  2. 前記検波部は、前記生存時間に基づいて前記領域の重みを設定し、各前記領域の輝度及び前記重みに基づいて、前記検波値を算出する
    請求項1に記載の露光制御装置。
  3. 前記検波部は、前記重みを用いた各前記領域の輝度の加重平均により前記検波値を算出する
    請求項2に記載の露光制御装置。
  4. 前記検波部は、前記生存時間に加えて、露光の制御に要する時間、露光を合わせる距離、前記撮影部を備える移動体の速度、及び、前記移動体の角速度のうち少なくとも1つに基づいて、前記重みを設定する
    請求項2に記載の露光制御装置。
  5. 前記検波部は、さらに前記領域内の被写体の種類に基づいて、前記重みを設定する
    請求項2に記載の露光制御装置。
  6. 前記検波部は、さらに前記領域内の画像勾配に基づいて、前記重みを設定する
    請求項2に記載の露光制御装置。
  7. 前記検波部は、各前記領域の前記生存時間に基づいて前記撮影画像の一部の領域を検波領域に設定し、前記検波領域の輝度に基づいて前記検波値を算出する
    請求項1に記載の露光制御装置。
  8. 前記検波部は、前記生存時間が所定の閾値以上の前記領域を前記検波領域に設定する
    請求項7に記載の露光制御装置。
  9. 前記検波部は、前記撮影画像において所定の時間内に前記撮影部の画角から出ると予測される領域に対する重みを小さくして前記検波値を算出する
    請求項1に記載の露光制御装置。
  10. 前記検波部は、前記撮影部を備える移動体の動き及び前記撮影画像に基づいて、前記撮影画像の一部の領域を検波領域に設定し、前記検波領域の輝度に基づいて前記検波値を算出する
    請求項1に記載の露光制御装置。
  11. 前記検波部は、所定の時間後に前記撮影部により撮影されると予測される領域を前記検波領域に設定する
    請求項10に記載の露光制御装置。
  12. 前記検波部は、所定の時間内に前記撮影部の画角から出ると予測される領域を除いて前記検波値を算出する
    請求項1に記載の露光制御装置。
  13. 撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出し、
    前記検波値に基づいて、前記撮影部の露光制御を行う
    露光制御方法。
  14. 撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出し、
    前記検波値に基づいて、前記撮影部の露光制御を行う
    処理をコンピュータに実行させるためのプログラム。
  15. 撮影部と、
    前記撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、
    前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と
    を備える撮影装置。
  16. 撮影部と、
    前記撮影部により撮影された撮影画像内の複数の領域毎の生存時間に基づいて、検波値を算出する検波部と、
    前記検波値に基づいて、前記撮影部の露光制御を行う露光制御部と、
    前記撮影画像に基づいて、移動制御を行う移動制御部と
    を備える移動体。
JP2020510641A 2018-03-29 2019-03-15 露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体 Active JP7243714B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018064978 2018-03-29
JP2018064978 2018-03-29
PCT/JP2019/010758 WO2019188390A1 (ja) 2018-03-29 2019-03-15 露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体

Publications (2)

Publication Number Publication Date
JPWO2019188390A1 JPWO2019188390A1 (ja) 2021-04-15
JP7243714B2 true JP7243714B2 (ja) 2023-03-22

Family

ID=68059953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510641A Active JP7243714B2 (ja) 2018-03-29 2019-03-15 露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体

Country Status (6)

Country Link
US (1) US11363212B2 (ja)
EP (1) EP3780578A4 (ja)
JP (1) JP7243714B2 (ja)
KR (1) KR20200136398A (ja)
CN (1) CN111886854B (ja)
WO (1) WO2019188390A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324160B2 (ja) * 2020-02-19 2023-08-09 キヤノン株式会社 撮影制御装置、撮像装置、撮影制御方法、及びプログラム
EP4184912A4 (en) * 2020-07-15 2023-12-20 Sony Group Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM
JP2022053967A (ja) * 2020-09-25 2022-04-06 ソニーセミコンダクタソリューションズ株式会社 撮像制御装置、および撮像制御方法ならびに移動体
CN114697560B (zh) * 2020-12-31 2024-09-06 浙江舜宇智能光学技术有限公司 基于tof成像系统的主动曝光方法及曝光时间的计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143547A (ja) 2013-01-23 2014-08-07 Denso Corp 露出制御装置
WO2017203794A1 (ja) 2016-05-24 2017-11-30 株式会社Jvcケンウッド 撮像装置、撮像表示方法および撮像表示プログラム
JP6501091B1 (ja) 2017-10-30 2019-04-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、移動体、制御方法、及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444004B2 (en) 2004-03-29 2008-10-28 Fujifilm Corporation Image recognition system, image recognition method, and machine readable medium storing thereon an image recognition program
DE102006007092A1 (de) * 2005-03-01 2006-09-07 Denso Corp., Kariya Bildgebungsvorrichtung
JP4214160B2 (ja) * 2006-08-31 2009-01-28 フジノン株式会社 監視カメラシステム
JP6471528B2 (ja) * 2014-02-24 2019-02-20 株式会社リコー 物体認識装置、物体認識方法
JP6648411B2 (ja) * 2014-05-19 2020-02-14 株式会社リコー 処理装置、処理システム、処理プログラム及び処理方法
CN112839169B (zh) * 2014-05-29 2023-05-09 株式会社尼康 驾驶辅助装置及摄像装置
CN104320654B (zh) * 2014-10-28 2017-04-05 小米科技有限责任公司 测光方法及装置
CN105323496B (zh) * 2015-02-13 2019-01-11 维沃移动通信有限公司 自动曝光方法、拍照装置及移动终端
JP6657925B2 (ja) 2015-06-04 2020-03-04 ソニー株式会社 車載カメラ・システム並びに画像処理装置
CN105227857B (zh) * 2015-10-08 2018-05-18 广东欧珀移动通信有限公司 一种自动曝光的方法和装置
CN105827990B (zh) * 2016-01-22 2018-12-04 维沃移动通信有限公司 一种自动曝光方法及移动终端
CN106791472B (zh) * 2016-12-29 2019-07-30 努比亚技术有限公司 一种曝光方法及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143547A (ja) 2013-01-23 2014-08-07 Denso Corp 露出制御装置
WO2017203794A1 (ja) 2016-05-24 2017-11-30 株式会社Jvcケンウッド 撮像装置、撮像表示方法および撮像表示プログラム
JP6501091B1 (ja) 2017-10-30 2019-04-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、移動体、制御方法、及びプログラム

Also Published As

Publication number Publication date
WO2019188390A1 (ja) 2019-10-03
EP3780578A4 (en) 2021-04-21
JPWO2019188390A1 (ja) 2021-04-15
CN111886854B (zh) 2022-10-04
KR20200136398A (ko) 2020-12-07
CN111886854A (zh) 2020-11-03
US20210029287A1 (en) 2021-01-28
EP3780578A1 (en) 2021-02-17
US11363212B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP7043755B2 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
US11363235B2 (en) Imaging apparatus, image processing apparatus, and image processing method
KR102685934B1 (ko) 정보 처리 장치, 이동체, 제어 시스템, 정보 처리 방법 및 프로그램
WO2019130945A1 (ja) 情報処理装置、情報処理方法、プログラム、及び移動体
US11427218B2 (en) Control apparatus, control method, program, and moving body
JP7243714B2 (ja) 露光制御装置、露光制御方法、プログラム、撮影装置、及び、移動体
JP7259749B2 (ja) 情報処理装置、および情報処理方法、プログラム、並びに移動体
JP7143857B2 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
JP7320001B2 (ja) 情報処理装置、情報処理方法、プログラム、移動体制御装置、及び、移動体
EP4227157B1 (en) Information processing apparatus, information processing method, photographing apparatus, lighting apparatus, and mobile body
WO2020054240A1 (ja) 情報処理装置及び情報処理方法、撮像装置、移動体装置、並びにコンピュータプログラム
JP7257737B2 (ja) 情報処理装置、自己位置推定方法、及び、プログラム
JP7487178B2 (ja) 情報処理方法、プログラム、及び、情報処理装置
US20200230820A1 (en) Information processing apparatus, self-localization method, program, and mobile body
JPWO2020116194A1 (ja) 情報処理装置、情報処理方法、プログラム、移動体制御装置、及び、移動体
JP7483627B2 (ja) 情報処理装置、情報処理方法、プログラム、移動体制御装置、及び、移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R151 Written notification of patent or utility model registration

Ref document number: 7243714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151