JP7241292B2 - 処理方法およびそれを利用した処理装置 - Google Patents

処理方法およびそれを利用した処理装置 Download PDF

Info

Publication number
JP7241292B2
JP7241292B2 JP2021064887A JP2021064887A JP7241292B2 JP 7241292 B2 JP7241292 B2 JP 7241292B2 JP 2021064887 A JP2021064887 A JP 2021064887A JP 2021064887 A JP2021064887 A JP 2021064887A JP 7241292 B2 JP7241292 B2 JP 7241292B2
Authority
JP
Japan
Prior art keywords
processing
image
layer
reference image
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021064887A
Other languages
English (en)
Other versions
JP2021119474A (ja
Inventor
俊嗣 堀井
祥平 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2021119474A publication Critical patent/JP2021119474A/ja
Application granted granted Critical
Publication of JP7241292B2 publication Critical patent/JP7241292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30144Printing quality

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

本開示は、処理技術、特に画像に対する処理を実行する処理方法およびそれを利用した処理装置に関する。
製品の外観検査工程において画像中の特徴的な領域が検出される。これは、正常な参照画像と検査対象画像との差をもとに、画像の変化を識別することによってなされる。しかしながら、このような方法では、検査対象の位置決めに誤差がある場合、検査対象の形状がわずかに変化する場合、充分に異常を検出できない。そのため、対象画像に注目領域および注目領域を取り囲む周辺領域を規定し、各領域について色に関連する特徴量および画像上の特異性を使用して注目領域における画像上の特異性として数値的に示す外れ値を計算することがなされる(例えば、特許文献1参照)。
特開2017-107541号公報
検査対象画像と参照画像との位置調整を不要にしながら、参照画像に対する検査対象画像の異常を検出するために、ニューラルネットワークを使用することが有効である。しかしながら、製品の仕様変更等により参照画像が変わると、新たな参照画像を再学習する必要がある。一方、学習が不十分であると、処理の正確性が低下する。
本開示はこうした状況に鑑みなされたものであり、その目的は、学習の作業量の増加を抑制しながら、処理の正確性の低下を抑制する技術を提供することにある。
上記課題を解決するために、本開示のある態様の処理装置は、含まれている不良項目が既知である学習用画像を入力する第1入力部と、参照されるべき参照画像を入力する第2入力部と、学習用画像に含まれた不良項目を示す教師データを入力する教師データ入力部と、第1入力部に入力した学習用画像と、第2入力部に入力した参照画像との関係が、教師データ入力部に入力した教師データとなるように、ニューラルネットワークを学習する処理部と、を備える。
本開示の別の態様は、処理方法である。この方法は、含まれている不良項目が既知である学習用画像を入力するステップと、参照されるべき参照画像を入力するステップと、学習用画像に含まれた不良項目を示す教師データを入力するステップと、入力した学習用画像と、入力した参照画像との関係が、入力した教師データとなるように、ニューラルネットワークを学習するステップと、を備える。
なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。
本開示によれば、学習の作業量の増加を抑制しながら、処理の正確性の低下を抑制できる。
図1(a)-(b)は、実施例に係る処理装置の構成を示す図である。 図2(a)-(c)は、図1(a)-(b)の処理部の構成を示す図である。 図1(a)の教師データ入力部に入力される教師データのデータ構造を示す図である。 図1(a)-(b)の処理部における処理の概要を示す図である。 第1変形例に係る処理部の構成を示す図である。 第3変形例に係る処理部の構成を示す図である。 図7(a)-(c)は、第4変形例に係る処理部の構成を示す図である。
本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例は、検査対象となる画像に不良項目が含まれているかを判定する処理装置に関する。これまでラベルの貼り付けがなされていた部分に対して、ラベル生産コストの削減、ラベル貼付工数の合理化を目指して、レーザ印字への切替がなされている。レーザ印字の場合、レーザ印字のかけが画像処理により自動検査される。これまでは、検査対象となるレーザ印字の画像(以下、「検査画像」という)と、参照されるべき画像(以下、「参照画像」という)との差分をもとに印字かけが検出されている。具体的には、検査画像の位置が補正されてから、参照画像との差分を算出して、検査画像と参照画像が一致しているか否かが判定される。一致している場合、検査画像においてレーザ印字が正しくなされているが、一致しない場合、検査画像においてレーザ印字のかけが発生している。
このような手法では、商品毎に文字の太さが異なることを考慮して商品毎に太さのしきい値設定が必要になるとともに、商品毎に3点の領域を設定するためにシビアな位置あわせ調整が必要になる。さらに、これらのことは、商品毎あるいは商品リニューアル毎に変わるので、商品毎あるいは商品リニューアル毎に検査プログラムを調整が必要になる。しきい値設定、シビアな位置あわせ調整を不要にするために、ニューラルネットワークの利用が有効である。しかしながら、ニューラルネットワークでは、参照画像として、各不良項目が含まれた画像と良品の画像とを使用した学習が必要になるので、参照画像におけるパターンが変わると再学習が必要になる。このような再学習のために、学習の作業量が増加する。しかしながら、学習が不十分であると処理の正確性が低下する。
本実施例に係る処理装置は、検査画像と参照画像を入力し、検査画像に含まれている不良項目の情報を教師データとして学習を実行する。また、そのような学習がなされた後、処理装置は、検査画像と参照画像を入力し、検査画像に含まれている不良項目を判定する。つまり、参照画像自体を学習するのではなく、検査画像と参照画像との比較結果である不良項目を学習する。その結果、商品リニューアルによって参照画像が変わる場合、新たな参照画像と検査画像を処理装置に入力すればよくなり、未学習の印字パターンでも判定が可能になる。
図1(a)-(b)は、処理装置100の構成を示す。特に、図1(a)は、学習処理のための構成を示し、図1(b)は、判定処理ための構成を示す。判定処理は、検査画像と参照画像とにニューラルネットワークを使用することによって、検査画像に含まれている不良項目を判定する処理である。不良項目の一例は、かけ、細りである。図1(a)における処理装置100と図1(b)における処理装置100とは、同一の装置として構成されてもよいし、別の装置として構成されてもよい。
処理装置100は、学習処理ための構成として、第1入力部110、第2入力部112、処理部114、教師データ入力部116を含み、判定処理のための構成として、第1入力部110、第2入力部112、処理部114、出力部118を含む。ここで、学習処理において処理部114が学習され、判定処理において処理部114が使用される。処理装置100の構成を説明する前に、処理部114の構成を説明する。
図2(a)-(c)は、処理部114の構成を示す。図2(a)は、処理部114の構成の一例を示す。処理部114は、畳み込み層142と総称される第1畳み込み層142a、第2畳み込み層142b、第3畳み込み層142c、第4畳み込み層142d、プーリング層144と総称される第1プーリング層144a、第2プーリング層144b、第3プーリング層144c、第4プーリング層144d、組合せ層146、全結合層148を含む。
組合せ層146は、図1(a)-(b)の第1入力部110と第2入力部112に接続され、第1入力部110から検査画像を入力し、第2入力部112から参照画像を入力する。組合せ層146は、検査画像と参照画像とを組み合わせる。組合せの第1例では、2つの入力である検査画像と参照画像とが別のチャンネルとして1つに合併される。この場合、検査画像と参照画像の組合せが生成される。組合せの第2例では、2つの入力である検査画像と参照画像との対応する画素同士の差分が計算され、画素毎に差分を並べた画像(以下、「差分画像」という)が生成される。組合せの第3例では、検査画像と参照画像と差分画像とが別のチャンネルとして1つに合併される。この場合、検査画像と参照画像と差分画像の組合せが生成される。組合せの第4例では、参照画像と差分画像とが別のチャンネルとして1つに合併される。この場合、参照画像と差分画像の組合せが生成される。組合せの第5例では、検査画像と差分画像とが別のチャンネルとして1つに合併される。この場合、検査画像と差分画像の組合せが生成される。組合せ層146は、組合せの結果(以下、「組合画像」という)を出力する。なお、検査画像、参照画像、差分画像は「画像」と総称される。
畳み込み層142は、組合画像の各チャンネルに対して、画像のサイズよりも小さいサイズの空間フィルタをずらしながら空間フィルタリングを実行する。空間フィルタリングは公知の技術であるので、ここでは説明を省略するが、この空間フィルタリングが畳み込み処理に相当し、畳み込み処理によって画像の特徴量が抽出される。なお、畳み込み層142においてパディング等が実行されてもよい。さらに、畳み込み層142は、各チャンネルの画像に対して、複数の空間フィルタを並列に使用して、複数の空間フィルタリングを並列して実行してもよい。このような複数の空間フィルタの並列使用によって、画像が増加する。これは、組合画像におけるチャンネル数が増加することに相当する。
プーリング層144は、組合画像における各チャンネルの画像内の任意の領域に含まれた複数の画素を1つの画素にまとめることによって、画像のサイズを小さくする。ここで、複数の画素を1つの画素にまとめるために、平均プーリングあるいは最大プーリングが実行される。平均プーリングでは、領域内の複数の画素値の平均値が1つの画素に対して使用され、最大プーリングでは、領域内の複数の画素値のうちの最大値が1つの画素に対して使用される。プーリング処理は、着目領域における代表値あるいは平均値の並進移動に対してロバスト性を強化するためになされる。
ここでは、第1畳み込み層142a、第1プーリング層144a、第2畳み込み層142b、第2プーリング層144b、第3畳み込み層142c、第3プーリング層144c、第4畳み込み層142d、第4プーリング層144dの順に処理が実行される。つまり、組合画像に対して、畳み込み処理とプーリング処理とが繰り返し実行される。また、畳み込み処理とプーリング処理とが繰り返されることによって、各チャンネルの画像のサイズが順に小さくされる。その結果、1×1の空間次元となり、かつ1以上のチャンネル数を有する組合画像が全結合層148に出力される。
全結合層148は、特徴量が抽出されている画像を受けつける。全結合層148は、特徴量に基づいて、複数のクラスへの分類を実行することによって、画像を識別する。全結合層148における処理には公知の技術が使用されればよいので、ここでは説明を省略するが、全結合層148における分類結果では、「OK」、「かけ」、「細り」の3つのクラスのそれぞれに対する確率が示される。ここで、「OK」は、参照画像に対して検査画像に不良項目が含まれない場合に相当し、「かけ」は、参照画像に対して検査画像にかけた印字部分が含まれる場合に相当し、「細り」は、参照画像に対して検査画像に細くなった印字部分が含まれる場合に相当する。特に、「かけ」、「細り」は不良項目であるといえる。なお、「かけ」、「細り」の他に、「太り」、「つぶれ」、「異物」が不良項目として分類されてもよい。
このような処理部114の構成をもとにして、ここでは、図1(a)を使用しながら、処理装置100における学習処理を説明する。前述のごとく、第1入力部110は、検査画像の代わりに学習用画像を受けつけ、第2入力部112は参照画像を受けつける。学習用画像では、どのような不良項目が含まれているか未知である検査画像とは異なり、含まれている不良項目が既知である。教師データ入力部116は、学習用画像と参照画像との関係に対応した、つまり学習用画像に含まれた不良項目を示す教師データを受けつける。処理部114は、図2(a)のように構成されている。処理部114は、第1入力部110において受けつけた学習用画像と、第2入力部112において受けつけた参照画像との関係が、教師データ入力部116において受けつけた教師データとなるように、各畳み込み層142の空間フィルタの係数を学習させる。
参照画像には、理想的にレーザ印字されたパターンが示され、学習用画像には、実際にレーザ印字されうるパターンが示される。また、教師データは、参照画像と学習用画像との関係が示される。図3は、教師データ入力部116に入力される教師データのデータ構造を示す。教師データは、3チャンネルを有しており、全結合層148における分類結果と同様にOK、かけ、細りを含む。ここで、参照画像に対して学習用画像に不良項目が含まれない場合に教師データはOKを示す。一方、参照画像に対して学習用画像に不良項目が含まれる場合に、その原因に応じて、教師データは、かけあるいは細りを示す。なお、空間フィルタの係数の学習自体には公知の技術が使用されればよいので、ここでは説明を省略する。
次に、図1(b)を使用しながら、処理装置100における判定処理を説明する。なお、図1(a)と図1(b)における処理装置100とが別の装置として構成される場合、図1(a)における処理部114に対する学習によって導出された空間フィルタの係数が、図1(b)における処理部114に設定される。
第1入力部110は検査画像を受けつけ、第2入力部112は参照画像を受けつける。処理部114は、図2(a)に示される構成を有しており、第1入力部110に入力した検査画像と、第2入力部112に入力した参照画像とに対してニューラルネットワークの処理を実行する。出力部118は、処理部114の処理結果として、参照画像に対して検査画像に含まれる不良項目の情報を出力する。つまり、OK、かけ、細りのいずれかの情報が出力される。
以下では、処理部114の構成の別の例を示す。図2(b)は、処理部114の構成の別の一例を示す。処理部114は、畳み込み層142と総称される第1-1畳み込み層142aa、第1-2畳み込み層142ab、第1-3畳み込み層142ac、第2-1畳み込み層142ba、第2-2畳み込み層142bb、第2-3畳み込み層142bc、第4畳み込み層142d、プーリング層144と総称される第1-1プーリング層144aa、第1-2プーリング層144ab、第1-3プーリング層144ac、第2-1プーリング層144ba、第2-2プーリング層144bb、第2-3プーリング層144bc、第4プーリング層144d、組合せ層146、全結合層148を含む。
第1-1畳み込み層142aa、第1-1プーリング層144aa、第1-2畳み込み層142ab、第1-2プーリング層144ab、第1-3畳み込み層142ac、第1-3プーリング層144acは順に並べられる。これらは、第1入力部110に入力された検査画像に対して前述の処理を実行する。第2-1畳み込み層142ba、第2-1プーリング層144ba、第2-2畳み込み層142bb、第2-2プーリング層144bb、第2-3畳み込み層142bc、第2-3プーリング層144bcは順に並べられる。これらは、第2入力部112に入力された参照画像に対して前述の処理を実行する。
組合せ層146は、第1-3プーリング層144acからの処理結果と、第2-3プーリング層144bcからの処理結果とを入力する。第1-3プーリング層144acからの処理結果は検査画像に対する処理結果(以下、「第1処理結果」という)であり、第2-3プーリング層144bcからの処理結果は参照画像に対する処理結果(以下、「第2処理結果」という)である。ここで、第1処理結果と第2処理結果は複数のチャンネルによって構成されていてもよい。組合せ層146は、第1処理結果と第2処理結果とを組み合わせる。組合せは、前述の第1例から第5例のいずれかのようになされればよい。なお、差分画像の生成は、第1処理結果と第2処理結果との互いに対応したチャンネル同士の間でなされる。組合せ層146は、組合せの結果(以下、これもまた「組合画像」という)を出力する。
第4畳み込み層142d、第4プーリング層144dは、組合画像に対して畳み込み処理とプーリング処理とを順次実行する。全結合層148は、図2(a)と同様に構成される。このような処理部114の構成に対する処理装置100の学習処理と判定処理は、これまでと同様であるので、ここでは説明を省略する。なお、学習の結果、検査画像に対して畳み込み層142の処理を実行する際の重み係数と、参照画像に対して畳み込み層142の処理を実行する際の重み係数とが共通にされてもよい。具体的には、第1-1畳み込み層142aaと第2-1畳み込み層142baとの間で重み係数が共通にされる。また、第1-2畳み込み層142abと第2-2畳み込み層142bbとの間で重み係数が共通にされ、第1-3畳み込み層142acと第2-3畳み込み層142bcとの間で重み係数が共通にされる。
図2(c)は、処理部114の構成のさらに別の一例を示す。処理部114は、畳み込み層142と総称される第1-1畳み込み層142aa、第1-2畳み込み層142ab、第1-3畳み込み層142ac、第1-4畳み込み層142ad、第2-1畳み込み層142ba、第2-2畳み込み層142bb、第2-3畳み込み層142bc、第2-4畳み込み層142bd、プーリング層144と総称される第1-1プーリング層144aa、第1-2プーリング層144ab、第1-3プーリング層144ac、第1-4プーリング層144ad、第2-1プーリング層144ba、第2-2プーリング層144bb、第2-3プーリング層144bc、第2-4プーリング層144bd、組合せ層146、全結合層148を含む。
第1-1畳み込み層142aa、第1-1プーリング層144aa、第1-2畳み込み層142ab、第1-2プーリング層144ab、第1-3畳み込み層142ac、第1-3プーリング層144ac、第1-4畳み込み層142ad、第1-4プーリング層144adは順に並べられる。これらは、第1入力部110に入力された検査画像に対して前述の処理を実行する。第2-1畳み込み層142ba、第2-1プーリング層144ba、第2-2畳み込み層142bb、第2-2プーリング層144bb、第2-3畳み込み層142bc、第2-3プーリング層144bc、第2-4畳み込み層142bd、第2-4プーリング層144bdは順に並べられる。これらは、第2入力部112に入力された参照画像に対して前述の処理を実行する。
組合せ層146は、第1-4プーリング層144adからの処理結果と、第2-4プーリング層144bdからの処理結果とを入力する。第1-4プーリング層144adからの処理結果は検査画像に対する処理結果(以下、これもまた「第1処理結果」という)であり、第2-4プーリング層144bdからの処理結果は参照画像に対する処理結果(以下、これもまた「第2処理結果」という)である。組合せ層146は、第1処理結果と第2処理結果とを組み合わせる。組合せは、前述の第1例から第5例のいずれかのようになされればよい。組合せ層146は、組合せの結果(以下、これもまた「組合画像」という)を出力する。
全結合層148は、図2(a)と同様に構成される。このような処理部114の構成に対する処理装置100の学習処理と判定処理は、これまでと同様であるので、ここでは説明を省略する。なお、学習の結果、検査画像に対して畳み込み層142の処理を実行する際の重み係数と、参照画像に対して畳み込み層142の処理を実行する際の重み係数とが共通にされてもよい。具体的には、第1-1畳み込み層142aaと第2-1畳み込み層142baとの間で重み係数が共通にされ、第1-2畳み込み層142abと第2-2畳み込み層142bbとの間で重み係数が共通にされる。また、第1-3畳み込み層142acと第2-3畳み込み層142bcとの間で重み係数が共通にされ、第1-4畳み込み層142adと第2-4畳み込み層142bdとの間で重み係数が共通にされる。
なお、処理部114の構成から全結合層148が除外されてもよい。このような構成を図4をもとに説明する。図4は、処理部114における処理の概要を示す。ここでは、説明を明瞭にするために、1入力として示し、組合せ層146を省略している。しかしながら、図2(a)-(c)と同様に、2入力であり、組合せ層146が含まれればよい。処理部114は、畳み込み層142と総称する第1畳み込み層142a、第2畳み込み層142b、第3畳み込み層142c、第4畳み込み層142d、第5畳み込み層142e、第6畳み込み層142f、プーリング層144と総称する第1プーリング層144a、第2プーリング層144b、第3プーリング層144c、第4プーリング層144d、第5プーリング層144eを含む。このような畳み込み層142、プーリング層144は、各処理を実行するブロックのイメージを示す。
入力画像140は、処理装置100における判定処理の処理対象となる画像である。処理部114におけるニューラルネットワークには、完全畳み込みニューラルネットワークと同様に、全結合層148が含まれないので、入力画像140のサイズに対する制限が設けられない。入力画像140は、第1畳み込み層142aに入力される。処理部114では、第1畳み込み層142a、第1プーリング層144a、第2畳み込み層142b、第2プーリング層144b、第3畳み込み層142c、第3プーリング層144c、第4畳み込み層142d、第4プーリング層144d、第5畳み込み層142e、第5プーリング層144e、第6畳み込み層142fが順に配置される。つまり、これまでと同様に、畳み込み処理とプーリング処理とが繰り返し実行される。
このような処理部114の構成をもとにして、ここでは、図1(a)を使用しながら、処理装置100における学習処理を説明する。前述のごとく、第1入力部110は学習用画像を受けつけ、第2入力部112は参照画像を受けつけ、教師データ入力部116は教師データを受けつける。処理部114は、第1入力部110において受けつけた学習用画像と、第2入力部112において受けつけた参照画像との関係が、教師データ入力部116において受けつけた教師データとなるように、各畳み込み層142の空間フィルタの係数を学習させる。
本実施例において、教師データのサイズは1×1の空間次元を有するように設定される。そのため、教師データは、学習用画像と参照画像との関係に対して、限定された数のクラスのいずれかを示すだけである。つまり、1つのチャンネルに対する教師データは、1つのクラスに該当するか否かだけを示せばよい。そのため、物体に対して色塗りによるセグメンテーションがなされた画像を生成する場合と比較して、1つの教師データを生成するための作業量が低減する。その結果、作業量の増加を抑制しながら、教師データの数を多くすることが可能である。
一方、学習用画像と参照画像は、判定処理が正確に実行された場合に教師データが出力されるような元の画像であり、そのサイズは教師データが1×1の空間次元となるように定められる。ここで、入力画像140のサイズに対する制限が設けられないので、学習処理に使用される画像と、判定処理に使用される画像とが異なったサイズでもよい。なお、空間フィルタの係数の学習自体には公知の技術が使用されればよいので、ここでは説明を省略する。
以下では、処理装置100の変形例を説明する。
(第1変形例)
図1(a)-(b)の第2入力部112は、参照画像として複数種類の参照画像を入力する。各参照画像は互いに異なる。処理部114は、参照画像に対するニューラルネットワークの処理として、複数種類の参照画像のそれぞれに対してニューラルネットワークの処理を実行する。図5は、処理部114の構成を示す図である。処理部114は、畳み込み層142と総称される第1-1畳み込み層142aa、第1-2畳み込み層142ab、第1-3畳み込み層142ac、第2-1畳み込み層142ba、第2-2畳み込み層142bb、第2-3畳み込み層142bc、第3-1畳み込み層142ca、第3-2畳み込み層142cb、第3-3畳み込み層142cc、第N-1畳み込み層142na、第N-2畳み込み層142nb、第N-3畳み込み層142nc、プーリング層144と総称される第1-1プーリング層144aa、第1-2プーリング層144ab、第2-1プーリング層144ba、第2-2プーリング層144bb、第3-1プーリング層144ca、第3-2プーリング層144cb、第N-1プーリング層144na、第N-2プーリング層144nb、第3プーリング層144c、第4プーリング層144d、組合せ層146、デンスブロック150と総称される第1デンスブロック150a、第2デンスブロック150bを含む。
第1入力部110には検査画像が入力され、第2入力部112には、第1参照画像から第N-1参照画像、つまりN-1種類の参照画像が入力される。第1-1畳み込み層142aaは、第1入力部110からの検査画像を受けつけ、第2-1畳み込み層142baは、第2入力部112からの第1参照画像を受けつけ、第3-1畳み込み層142caは、第2入力部112からの第2参照画像を受けつけ、第N-1畳み込み層142naは、第2入力部112からの第N-1参照画像を受けつける。第1-1畳み込み層142aa、第1-1プーリング層144aa、第1-2畳み込み層142ab、第1-3畳み込み層142ac、第1-2プーリング層144abは、これまで通りに検査画像に対するニューラルネットワークの処理を実行する。第2-1畳み込み層142ba、第2-1プーリング層144ba、第2-2畳み込み層142bb、第2-3畳み込み層142bc、第2-2プーリング層144bbは、第1参照画像に対するニューラルネットワークの処理を実行する。他の参照画像についても同様である。
組合せ層146は、第1-2プーリング層144abから第N-2プーリング層144nbのそれぞれからの処理結果を受けつける。組合せ層146は、前述のようにこれらの処理結果を組み合わせる。組合せ層146は、組合せの結果(以下、これもまた「組合画像」という)を出力する。第1デンスブロック150aは、畳み込み層142、組合せ層146等の組合せによって構成される。デンスブロック150には公知の技術が使用されればよいので、ここでは説明を省略する。第1デンスブロック150aに続く、第3プーリング層144c、第2デンスブロック150b、第4プーリング層144dは、これまでと同様の処理を実行するので、ここでは説明を省略する。図5の畳み込み層142、デンスブロック150について、図5に合わせた学習がなされる。
(第2変形例)
第1入力部110に入力した検査画像と、第2入力部112に入力した参照画像は、N次元Mチャンネル(N、M整数)を有する画像であってもよい。ここで、N次元には、1次元、2次元、3次元、4次元、・・・・が含まれる。このような検査画像と参照画像に対して、処理部114はこれまでと同様の処理を実行すればよい。
(第3変形例)
これまでの処理部114には、畳み込み層142、プーリング層144が含まれていたが、畳み込み層142、プーリング層144が含まれなくてもよい。図6は、処理部114の構成を示す。処理部114は、組合せ層146、全結合層148と総称される第1-1全結合層148aa、第1-2全結合層148ab、第1-3全結合層148ac、第2-1全結合層148ba、第2-2全結合層148bb、第2-3全結合層148bc、第4全結合層148dを含む。つまり、組合せ層146を除いて、全結合層148だけが含まれる。第1-1全結合層148aaは、第1入力部110からの検査画像を受けつけ、第2-1全結合層148baは、第2入力部112からの参照画像を受けつける。第1-1全結合層148aaから第1-3全結合層148acは、検査画像に対して全結合層の処理を実行し、第2-1全結合層148baから第2-3全結合層148bcは、参照画像に対して全結合層の処理を実行する。組合せ層146は、第1-3全結合層148acと第2-3全結合層148bcから処理結果を受けつける。組合せ層146は、前述のようにこれらの処理結果を組み合わせる。組合せ層146は、組合せの結果(以下、これもまた「組合画像」という)を出力する。第4全結合層148dは、組合画像に対して全結合層の処理を実行する。
図6における組合せ層146は、図2(b)と同様に、検査画像に対する処理結果と、参照画像に対する処理結果とを入力し、組合画像に対して処理を実行させるために出力する。しかしながら、図2(a)と同様に、検査画像と参照画像とを入力し、組合画像に対して処理を実行させるために出力してもよい。また、図2(c)と同様に、検査画像に対する処理結果と、参照画像に対する処理結果とを入力し、組合画像を出力してもよい。
(第4変形例)
これまでの組合せ層146では、組合せの第1例、第3例から第5例のように、複数のチャンネルが1つに合併されている。合併はこれに限定されない。図7(a)-(c)は、処理部114の構成を示す。第1入力画像200a、第2入力画像200bは、組合せ層146に入力される2つの画像であり、検査画像、参照画像、処理結果を含む。図7(a)は、組合せ層146におけるこれまでの合併を示し、2つのチャンネルの第1入力画像200a、第2入力画像200bが合併により1つのチャンネルにされる。第1入力画像200a、第2入力画像200bを総称する入力画像200の数は「2」に限定されない。また、1つのチャンネルにされた画像が前述の組合画像に相当する。図7(b)では、2つのチャンネルの第1入力画像200a、第2入力画像200bが、x軸方向に並べることによって1つのチャンネルにされる。図7(c)では、2つのチャンネルの第1入力画像200a、第2入力画像200bが、y軸方向に並べることによって1つのチャンネルにされる。
本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。
本実施例によれば、検査画像と参照画像とに対してニューラルネットワークの処理を実行することによって、2つの画像の比較結果として、検査画像に含まれる不良項目の情報を出力できる。また、2つの画像を比較した結果が出力されるので、参照画像が変わっても新たな参照画像による学習の量を低減できる。また、参照画像が変わっても新たな参照画像による学習の量が低減されるので、学習の作業量の増加を抑制できる。また、検査画像に含まれる不良項目を教師データとしてニューラルネットワークを学習させるので、処理の正確性の低下を抑制できる。
また、検査画像と参照画像とを組み合わせてから、組合せに対して畳み込み層142の処理とプーリング層144の処理を実行するので、処理量の増加を抑制できる。また、検査画像と参照画像のそれぞれに対して畳み込み層142の処理とプーリング層144の処理を実行してから、これらの組合せに対して畳み込み層142の処理とプーリング層144の処理を実行するので、処理の精度を向上できる。また、検査画像と参照画像のそれぞれに対して畳み込み層142の処理とプーリング層144の処理を実行してから、これらを組み合わせるので、処理の精度を向上できる。
また、検査画像に対して畳み込み層142の処理を実行する際の重み係数と、参照画像に対して畳み込み層142の処理を実行する際の重み係数とを共通にするので、処理の精度を向上できる。また、組合せとして、2つの入力を1つに合併するので、処理を簡易にできる。また、組合せとして、2つの入力の差分を導出するので、処理の精度を向上できる。また、組合せとして、差分に、2つの入力の少なくとも1つを合併するので、処理の精度を向上できる。1×1の空間次元を有する教師データに対して、畳み込み層142の空間フィルタの学習がなされている畳み込みニューラルネットワークを使用するので、教師データの作成の作業量を低減できる。また教師データの作成の作業量が低減されるので、学習の作業量の増加を抑制できる。また教師データの作成の作業量が低減されるので、教師データの数を多くできる。また、教師データの数が多くなるので、学習の精度を向上できる。
また、複数の参照画像を入力するので、処理の精度を向上できる。また、検査画像と参照画像は、N次元Mチャンネル(N、Mは整数)を有する画像であるので、本実施例の適用範囲を拡大できる。また、検査画像と参照画像とを組み合わせてから、組合せに対して全結合層148の処理を実行するので、構成の自由度を向上できる。また、検査画像に対して全結合層148の処理を実行するとともに、参照画像に対して全結合層148の処理を実行し、検査画像に対する処理結果と参照画像に対する処理結果との組合せに対して全結合層148の処理を実行するので、構成の自由度を向上できる。また、検査画像に対して全結合層148の処理を実行するとともに、参照画像に対して全結合層148の処理を実行し、検査画像に対する処理結果と参照画像に対する処理結果とを組み合わせるので、構成の自由度を向上できる。
本開示の一態様の概要は、次の通りである。本開示のある態様の処理装置(100)は、検査対象となる検査画像を入力する第1入力部(110)と、参照されるべき参照画像を入力する第2入力部(112)と、第1入力部(110)に入力した検査画像と、第2入力部(112)に入力した参照画像とに対してニューラルネットワークの処理を実行する処理部(114)と、処理部(114)の処理結果として、検査画像に含まれる不良項目の情報を出力する出力部(118)と、を備える。
第2入力部(112)は、参照画像として、互いに異なった第1参照画像と第2参照画像とを入力し、処理部(114)は、第2入力部に入力した参照画像に対するニューラルネットワークの処理として、第1参照画像と第2参照画像とのそれぞれに対してニューラルネットワークの処理を実行してもよい。
第1入力部(110)に入力した検査画像と、第2入力部(112)に入力した参照画像は、N次元Mチャンネル(N、Mは整数)を有する画像であってもよい。
処理部(114)は、(1)検査画像と参照画像とを組み合わせてから、(2)組合せに対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行してもよい。
処理部(114)は、(1)検査画像に対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行するとともに、参照画像に対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行し、(2)検査画像に対する処理結果と参照画像に対する処理結果とを組合せ、(3)組合せに対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行してもよい。
処理部(114)は、(1)検査画像に対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行するとともに、参照画像に対して畳み込み層(142)の処理とプーリング層(144)の処理の少なくとも1つを実行し、(2)検査画像に対する処理結果と参照画像に対する処理結果とを組み合わせる。
処理部(114)は、検査画像に対して畳み込み層(142)の処理を実行する際の重み係数と、参照画像に対して畳み込み層(142)の処理を実行する際の重み係数とを共通にしてもよい。
処理部(114)において使用されるニューラルネットワークは、全結合層を除外した畳み込みニューラルネットワークであり、当該畳み込みニューラルネットワークでは、1×1の空間次元を有する処理結果に対して、畳み込み層のフィルタの学習がなされていてもよい。
処理部(114)は、(1)検査画像と参照画像とを組み合わせてから、(2)組合せに対して全結合層(148)の処理を実行してもよい。
処理部(114)は、(1)検査画像に対して全結合層(148)の処理を実行するとともに、参照画像に対して全結合層(148)の処理を実行し、(2)検査画像に対する処理結果と参照画像に対する処理結果とを組合せ、(3)組合せに対して全結合層(148)の処理を実行してもよい。
処理部(114)は、(1)検査画像に対して全結合層(148)の処理を実行するとともに、参照画像に対して全結合層(148)の処理を実行し、(2)検査画像に対する処理結果と参照画像に対する処理結果とを組み合わせる。
処理部(114)は、組合せとして、2つの入力を1つに合併してもよい。
処理部(114)は、2つの入力を1つの方向に並べることによって合併を実行してもよい。
処理部(114)は、組合せとして、2つの入力の差分を導出してもよい。
処理部(114)は、組合せとして、差分に、2つの入力の少なくとも1つを合併してもよい。
本開示の別の態様は、処理方法である。この方法は、検査対象となる検査画像を入力するステップと、参照されるべき参照画像を入力するステップと、入力した検査画像と、入力した参照画像とに対してニューラルネットワークの処理を実行するステップと、処理結果として、検査画像に含まれる不良項目の情報を出力するステップと、を備える。
以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
本実施例における処理部114の構成は、複数の畳み込み層142と複数のプーリング層144とが交互に並べんでいる。しかしながらこれに限らず例えば、処理部114は、GoogLeNet系、DenseNet系等の構成を有していてもよい。本変形例によれば、構成の自由度を向上できる。
本実施例における処理部114の構成は、複数の畳み込み層142と複数のプーリング層144とが交互に並べんでいる。しかしながらこれに限らず例えば、処理部114では、畳み込み層142のみが含まれて畳み込み処理だけが実行されてもよいし、プーリング層144のみが含まれてプーリング処理だけが実行されてもよい。本変形例によれば、構成の自由度を向上できる。
100 処理装置、 110 第1入力部、 112 第2入力部、 114 処理部、 116 教師データ入力部、 118 出力部、 140 入力画像、 142 畳み込み層、 144 プーリング層、 146 組合せ層、 148 全結合層。

Claims (16)

  1. 含まれている不良項目が既知である学習用画像を入力する第1入力部と、
    参照されるべき参照画像を入力する第2入力部と、
    学習用画像に含まれた不良項目を示す教師データを入力する教師データ入力部と、
    前記第1入力部に入力した学習用画像と、前記第2入力部に入力した参照画像との関係が、前記教師データ入力部に入力した教師データとなるように、ニューラルネットワークを学習する処理部と、
    を備えることを特徴とする処理装置。
  2. 前記第2入力部は、前記参照画像として、互いに異なった第1参照画像と第2参照画像とを入力し、
    前記処理部は、前記第2入力部に入力した参照画像に対するニューラルネットワークの学習として、第1参照画像と第2参照画像とのそれぞれに対してニューラルネットワークの学習を実行することを特徴とする請求項1に記載の処理装置。
  3. 前記第1入力部に入力した検査画像と、前記第2入力部に入力した参照画像は、N次元Mチャンネル(N、Mは整数)を有する画像であることを特徴とする請求項1または2に記載の処理装置。
  4. 前記処理部は、(1)学習用画像と参照画像とを組み合わせてから、(2)組合せに対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行することを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  5. 前記処理部は、(1)学習用画像に対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行するとともに、参照画像に対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行し、(2)学習用画像に対する処理結果と参照画像に対する処理結果とを組合せ、(3)組合せに対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行することを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  6. 前記処理部は、(1)学習用画像に対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行するとともに、参照画像に対して畳み込み層の処理とプーリング層の処理の少なくとも1つを実行し、(2)学習用画像に対する処理結果と参照画像に対する処理結果とを組み合わせることを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  7. 前記処理部は、学習用画像に対して畳み込み層の処理を実行するための重み係数と、参照画像に対して畳み込み層の処理を実行するための重み係数とを共通にすることを特徴とする請求項5または6に記載の処理装置。
  8. 前記処理部において使用されるニューラルネットワークは、全結合層を除外した畳み込みニューラルネットワークであり、
    前記処理部は、当該畳み込みニューラルネットワークにおける1×1の空間次元を有する処理結果に対して、前記畳み込み層のフィルタを学習することを特徴とする請求項1から7のいずれか1項に記載の処理装置。
  9. 前記処理部は、(1)学習用画像と参照画像とを組み合わせてから、(2)組合せに対して全結合層の処理を実行することを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  10. 前記処理部は、(1)学習用画像に対して全結合層の処理を実行するとともに、参照画像に対して全結合層の処理を実行し、(2)学習用画像に対する処理結果と参照画像に対する処理結果とを組合せ、(3)組合せに対して全結合層の処理を実行することを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  11. 前記処理部は、(1)学習用画像に対して全結合層の処理を実行するとともに、参照画像に対して全結合層の処理を実行し、(2)学習用画像に対する処理結果と参照画像に対する処理結果とを組み合わせることを特徴とする請求項1から3のいずれか1項に記載の処理装置。
  12. 前記処理部は、組合せとして、2つの入力を1つに合併することを特徴とする請求項4から11のいずれか1項に記載の処理装置。
  13. 前記処理部は、2つの入力を1つの方向に並べることによって合併を実行することを特徴とする請求項12に記載の処理装置。
  14. 前記処理部は、組合せとして、2つの入力の差分を導出することを特徴とする請求項4から11のいずれか1項に記載の処理装置。
  15. 前記処理部は、組合せとして、差分に、2つの入力の少なくとも1つを合併することを特徴とする請求項14に記載の処理装置。
  16. 含まれている不良項目が既知である学習用画像を入力するステップと、
    参照されるべき参照画像を入力するステップと、
    学習用画像に含まれた不良項目を示す教師データを入力するステップと、
    入力した学習用画像と、入力した参照画像との関係が、入力した教師データとなるように、ニューラルネットワークを学習するステップと、
    を備えることを特徴とする処理方法。
JP2021064887A 2018-04-04 2021-04-06 処理方法およびそれを利用した処理装置 Active JP7241292B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018072512 2018-04-04
JP2018072512 2018-04-04
JP2020511717A JP6876940B2 (ja) 2018-04-04 2019-03-27 画像処理装置および画像処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020511717A Division JP6876940B2 (ja) 2018-04-04 2019-03-27 画像処理装置および画像処理方法

Publications (2)

Publication Number Publication Date
JP2021119474A JP2021119474A (ja) 2021-08-12
JP7241292B2 true JP7241292B2 (ja) 2023-03-17

Family

ID=68100674

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020511717A Active JP6876940B2 (ja) 2018-04-04 2019-03-27 画像処理装置および画像処理方法
JP2021064887A Active JP7241292B2 (ja) 2018-04-04 2021-04-06 処理方法およびそれを利用した処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020511717A Active JP6876940B2 (ja) 2018-04-04 2019-03-27 画像処理装置および画像処理方法

Country Status (5)

Country Link
US (1) US11436717B2 (ja)
EP (1) EP3779873A4 (ja)
JP (2) JP6876940B2 (ja)
CN (1) CN111937033A (ja)
WO (1) WO2019194044A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572972A1 (en) * 2018-05-23 2019-11-27 IDEMIA Identity & Security Germany AG Extendend convolutional neural network for document analysis
KR20210157000A (ko) * 2020-06-19 2021-12-28 현대자동차주식회사 차량 하부 검사 시스템 및 그 방법
JP7462168B2 (ja) * 2020-10-08 2024-04-05 パナソニックIpマネジメント株式会社 処理方法およびそれを利用した処理装置
KR102610783B1 (ko) * 2022-11-03 2023-12-07 시냅스이미징(주) Cad 영상을 활용한 전처리가 구현된 딥러닝 검사시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191112A (ja) 2002-12-10 2004-07-08 Ricoh Co Ltd 欠陥検査方法
JP2004354250A (ja) 2003-05-29 2004-12-16 Nidek Co Ltd 欠陥検査装置
JP2012026982A (ja) 2010-07-27 2012-02-09 Panasonic Electric Works Sunx Co Ltd 検査装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333650B2 (en) 2003-05-29 2008-02-19 Nidek Co., Ltd. Defect inspection apparatus
JP4790523B2 (ja) * 2005-09-14 2011-10-12 株式会社リコー 画像処理装置およびプログラム
US9741107B2 (en) * 2015-06-05 2017-08-22 Sony Corporation Full reference image quality assessment based on convolutional neural network
US10359371B2 (en) * 2015-08-24 2019-07-23 Kla-Tencor Corp. Determining one or more characteristics of a pattern of interest on a specimen
CN106548127B (zh) * 2015-09-18 2022-11-04 松下电器(美国)知识产权公司 图像识别方法
JP6794737B2 (ja) 2015-12-01 2020-12-02 株式会社リコー 情報処理装置、情報処理方法、プログラムおよび検査システム
US10944767B2 (en) * 2018-02-01 2021-03-09 International Business Machines Corporation Identifying artificial artifacts in input data to detect adversarial attacks
CN108460787B (zh) * 2018-03-06 2020-11-27 北京市商汤科技开发有限公司 目标跟踪方法和装置、电子设备、程序、存储介质
CN108259997B (zh) * 2018-04-02 2019-08-23 腾讯科技(深圳)有限公司 图像相关处理方法及装置、智能终端、服务器、存储介质
JP6981940B2 (ja) * 2018-08-29 2021-12-17 富士フイルム株式会社 画像診断支援装置、方法及びプログラム
KR102131505B1 (ko) * 2018-08-29 2020-07-07 한국과학기술원 뉴럴 네트워크를 이용한 에코평면 영상 고스트 아티팩트 제거 방법 및 그 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191112A (ja) 2002-12-10 2004-07-08 Ricoh Co Ltd 欠陥検査方法
JP2004354250A (ja) 2003-05-29 2004-12-16 Nidek Co Ltd 欠陥検査装置
JP2012026982A (ja) 2010-07-27 2012-02-09 Panasonic Electric Works Sunx Co Ltd 検査装置

Also Published As

Publication number Publication date
US20200410657A1 (en) 2020-12-31
JP2021119474A (ja) 2021-08-12
CN111937033A (zh) 2020-11-13
JPWO2019194044A1 (ja) 2020-12-17
US11436717B2 (en) 2022-09-06
JP6876940B2 (ja) 2021-05-26
WO2019194044A1 (ja) 2019-10-10
EP3779873A4 (en) 2021-06-02
EP3779873A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP7241292B2 (ja) 処理方法およびそれを利用した処理装置
JP7087397B2 (ja) 基板の欠陥検査装置、基板の欠陥検査方法及び記憶媒体
WO2019159419A1 (ja) 処理方法およびそれを利用した処理装置
Chauhan et al. Detection of bare PCB defects by image subtraction method using machine vision
JP4533689B2 (ja) パターン検査方法
JP2021057042A (ja) 製品の分類システムおよび製品の分類方法
JPH11153550A (ja) 欠陥検査方法及び欠陥検査装置
US11847400B2 (en) Methods and systems for generating shape data for electronic designs
US7032208B2 (en) Defect inspection apparatus
KR101022187B1 (ko) 기판 검사 장치
JPS61212708A (ja) 多層パターン欠陥検出方法及びその装置
CN112561852A (zh) 图像判断装置和图像判断方法
WO2019189026A1 (ja) 処理方法およびそれを利用した処理装置
WO2023204240A1 (ja) 処理方法およびそれを利用した処理装置
JP4629086B2 (ja) 画像欠陥検査方法および画像欠陥検査装置
WO2024181209A1 (ja) 処理方法およびそれを利用した処理装置
JP7291914B2 (ja) 処理方法およびそれを利用した処理装置
WO2021033372A1 (ja) 処理方法およびそれを利用した処理装置
Choi et al. Fast and accurate automatic wafer defect detection and classification using machine learning based SEM image analysis
WO2023238384A1 (ja) 試料観察装置および方法
JP4467591B2 (ja) 試料検査装置、及び、試料検査方法
JP2023100280A (ja) 検査対象の外面上の欠陥の有無を検出する検査システムおよび検査方法
CN114894801A (zh) 检查系统、检查方法及检查程序
US20060093961A1 (en) Method of verifying electron beam data
JP2000019121A (ja) パターン検査装置、パターン検査方法、パターン検査用プログラムを記録した記録媒体、及びパターン検査用データを記録した記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R151 Written notification of patent or utility model registration

Ref document number: 7241292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151