JP7240667B2 - Reinforced soil structure and soil structure reinforcement method - Google Patents

Reinforced soil structure and soil structure reinforcement method Download PDF

Info

Publication number
JP7240667B2
JP7240667B2 JP2019030309A JP2019030309A JP7240667B2 JP 7240667 B2 JP7240667 B2 JP 7240667B2 JP 2019030309 A JP2019030309 A JP 2019030309A JP 2019030309 A JP2019030309 A JP 2019030309A JP 7240667 B2 JP7240667 B2 JP 7240667B2
Authority
JP
Japan
Prior art keywords
water permeability
soil structure
water
improving body
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019030309A
Other languages
Japanese (ja)
Other versions
JP2020133311A (en
Inventor
有史 足立
岳郎 西嶋
誠 木村
良介 渦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Hazama Ando Corp
Original Assignee
Kyoto University
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Hazama Ando Corp filed Critical Kyoto University
Priority to JP2019030309A priority Critical patent/JP7240667B2/en
Publication of JP2020133311A publication Critical patent/JP2020133311A/en
Application granted granted Critical
Publication of JP7240667B2 publication Critical patent/JP7240667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、河川や海岸、ため池などにおける堤防や防潮堤、えん堤といった土構造物に関する技術であり、より具体的には、土構造物本体よりも透水係数が低い「止水性改良体」と土構造物本体よりも透水係数が高い「透水性改良体」によって補強された土構造物、及びその方法に関するものである。 The present invention is a technology related to soil structures such as embankments, seawalls, and dikes in rivers, coasts, and reservoirs. The present invention relates to a soil structure reinforced with a "permeability improver" having a higher permeability coefficient than the soil structure itself, and a method therefor.

高度経済成長期に集中的に整備されてきた建設インフラストラクチャー(以下、「建設インフラ」という。)は、既に相当な老朽化が進んでいることが指摘されている。平成26年には「道路の老朽化対策の本格実施に関する提言(社会資本整備審議会)」がとりまとめられ、平成24年の笹子トンネルの例を挙げて「近い将来、橋梁の崩落など人命や社会装置に関わる致命的な事態を招くであろう」と警鐘を鳴らし、建設インフラの維持管理の重要性を強く唱えている。このような背景のもと、国は道路法施行規則の一部を改正する省令を公布し、具体的な建設インフラの点検方法、主な変状の着目箇所、判定事例写真などを示した定期点検要領を策定している。 It has been pointed out that the construction infrastructure (hereinafter referred to as "construction infrastructure"), which was intensively developed during the high economic growth period, has already deteriorated considerably. In 2014, the “Proposals for full-scale implementation of measures to deal with aging roads (Social Infrastructure Development Council)” were compiled. It will lead to a fatal situation related to the equipment," he warned, strongly advocating the importance of maintenance of construction infrastructure. Against this background, the national government issued a ministerial ordinance to partially revise the Enforcement Regulations of the Road Act, and issued a regular ordinance indicating specific inspection methods for construction infrastructure, points to focus on major deformations, and photographs of judgment cases. We have established inspection guidelines.

代表的な建設インフラとしては、ダムや橋梁といった構造物のほか、海岸堤防や河川堤防、防潮堤などを挙げることができる。我が国の海岸線の総延長は、約35,000kmと世界でも6番目に長く、当然ながら海岸保全地区など必要箇所には海岸堤防が構築されており、その機能はもとより膨大な延長があるという点からも極めて重要な建設インフラといえる。 Typical construction infrastructures include structures such as dams and bridges, as well as coastal embankments, river embankments, and seawalls. The total length of Japan's coastline is about 35,000 km, the sixth longest in the world. It is also an extremely important construction infrastructure.

海岸堤防は、基本的には海岸法(昭和三十一年五月十二日法律第百一号)にしたがって計画され構築されている。この海岸法は、愛知県を中心に甚大な被害を受けた昭和28年9月の台風13号が契機となり昭和31年に制定された。つまり多くの海岸堤防は、構築されて以降すでに相当の期間が経過しており、2010年時点でおよそ4割の施設が50年以上経過しているといわれている。そのため、海岸堤防の劣化診断を行うための点検がますます重要視されているところである. Coastal levees are basically planned and constructed in accordance with the Coastal Law (Law No. 101 of May 12, 1956). This coastal law was enacted in 1956, triggered by Typhoon No. 13 in September 1953, which caused extensive damage mainly in Aichi Prefecture. In other words, a considerable amount of time has already passed since many coastal levees were built, and as of 2010, it is said that about 40% of the facilities have been in place for 50 years or more. Therefore, inspections for diagnosing the deterioration of coastal embankments are becoming more and more important.

河川や海岸等における堤防や防潮堤など(以下、総称して「土構造物」という。)は、盛土を行うことによって構築されるのが一般的であり、断面(堤体延長方向に対して直角な横断面)視が概ね台形であって、河川や海がある堤外地側(以下、「表側」という。)と堤内地側(以下、「裏側」という。)それぞれにのり面が形成される。 Embankments and seawalls on rivers and coasts (hereinafter collectively referred to as "soil structures") are generally constructed by embankment. A right-angled cross section) is generally trapezoidal, and slopes are formed on the side of the embankment where the river and the sea are located (hereinafter referred to as the "front side") and on the land side of the embankment (hereinafter referred to as the "back side"). be.

土構造物が盛土体であることから、特に表側のり面ののり尻(のり面の下端)付近における洗掘や越流水によって裏側で発生する洗堀、土構造物の裏側で生じるパイピング、浸透水による盛土本体(つまり堤体)の強度劣化(以下、「浸透破壊」という。)といった現象は常に懸念されるところである。ましてや多くの土構造物は完成から相当の年月が経過していることから、既に洗掘され、パイピングが生じ、あるいは浸透破壊が進行しているものも少なくない。 Since the soil structure is an embankment, scouring occurs on the back side due to scouring and overflow water, especially near the toe of the slope (lower end of the slope) on the front side, piping that occurs on the back side of the soil structure, seepage water Phenomena such as deterioration of the strength of the embankment body (that is, the embankment body) (hereinafter referred to as “seepage failure”) are always a matter of concern. In addition, since many earthen structures have been completed for a considerable amount of time, many of them have already been scoured, piped, or seepage failure has progressed.

また、現地の状況によっては、砂や砂質土からなる透水性地盤や、液状化層を含む地盤など、軟弱層の上に土構造物が構築されることもあり、この場合は、地震時によって基礎地盤が液状化することで土構造物そのものも不安定化するおそれがある。 Depending on local conditions, soil structures may be built on soft layers such as permeable ground made of sand or sandy soil, or ground containing liquefaction layers. Due to the liquefaction of the foundation ground, there is a risk that the soil structure itself will also become unstable.

著しい洗掘等が生じた土構造物に対しては、補強対策が実施される。従来、土構造物を補強する工法としては、表側、裏側ともにのり面の外側(つまり堤体の外側)に止水性の地盤改良体や鋼矢板などの構造体を形成する工法が主流であった。しかしながら、この地盤改良体を形成するには、三点式杭打機を使用した深層混合処理など比較的大規模な施工機械を配置するスペースが必要となり、そのため対象となる延長を考えると相当のコストや工期を要し、容易に事業化することができないという問題もある。 Reinforcement measures will be implemented for soil structures that have suffered severe scouring. Conventionally, as a method of reinforcing soil structures, the mainstream method was to form structures such as water-blocking soil improvement materials and steel sheet piles on the outside of the slope on both the front and back sides (that is, on the outside of the embankment). . However, in order to form this soil improvement body, a space for arranging relatively large-scale construction machines such as deep mixing treatment using a three-point pile driver is required, so considering the target length, considerable cost and There is also the problem that it requires a long construction period and cannot be easily commercialized.

さらに、表側、裏側ともに止水性の地盤改良体を形成するという従来工法では、止水性は向上するものの排水機能が著しく低下するため、一旦海水や河川水が堤体内に浸透してしまうと堤体内に浸透水が滞水され、その結果、浸透破壊を生じるおそれがあるという問題も指摘することができる。特に、地震時においては堤体内の浸透水が要因となり、堤体そのものの液状化が生じ、この場合は堤防の変形が長期化することが知られている。 Furthermore, in the conventional construction method of forming a ground improvement material with water cutoff properties on both the front and back sides, although the water cutoff performance is improved, the drainage function is significantly reduced. It is also possible to point out the problem that permeated water is stagnant in the water, and as a result, there is a risk of permeation failure. In particular, it is known that during an earthquake, seepage water within the levee body causes liquefaction of the levee body itself, and in this case deformation of the levee becomes prolonged.

そこで特許文献1では、堤体と一体になるようにポーラスコンクリート製のせん断補強工を川裏ののり尻に敷設することによって、堤体内の浸透水を川裏側から排水し、堤体の強度低下を防止する技術について提案している。 Therefore, in Patent Document 1, by laying a shear reinforcement work made of porous concrete at the bottom of the slope on the back of the river so that it is integrated with the levee body, the infiltrated water in the levee body is drained from the back side of the river, and the strength of the levee body is reduced. We are proposing a technology to prevent

特開2006-200249号公報Japanese Patent Application Laid-Open No. 2006-200249

既述したとおり、土構造物を補強する従来技術は、表側、裏側ともに止水性の地盤改良体を形成するため堤体内に浸透水が滞水されるという問題があり、また相当のコストや工期を要することから容易に事業化することができないという問題がある。さらに、表側、裏側ともに堤体外に地盤改良体を形成するため、堤体そのものの強度が増加することはなく、地震時における堤体内のすべりや液状化による沈下を防止することはできないという問題もある。特許文献1は、ポーラスコンクリート製のせん断補強工を敷設することで、川裏側からの排水機能を確保するとともに、川裏側の堤体をせん断補強するものであるが、川表側における洗掘等を防止することはできず、また川表側の堤体を補強するものではないため地震に対する補強効果を期待することもできない。 As mentioned above, the conventional technology for reinforcing soil structures has the problem that infiltrating water is retained in the cut-off wall due to the formation of a water-stopping ground improvement body on both the front and back sides. There is a problem that it cannot be easily commercialized because it requires Furthermore, since the ground improvement body is formed outside the levee body on both the front and back sides, the strength of the levee body itself does not increase, and there is also the problem that it is not possible to prevent settlement due to slipping or liquefaction inside the levee body during an earthquake. be. In Patent Document 1, by laying a shear reinforcement work made of porous concrete, the drainage function from the back side of the river is secured and the embankment body on the back side of the river is shear reinforced. It cannot be prevented, and since it does not reinforce the embankment on the front side of the river, it cannot be expected to have a reinforcing effect against earthquakes.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち表裏側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図ることができ、しかも地震時における堤体内のすべりや液状化による沈下の防止を図ることができる土構造物、及びその方法を提供することである。これにより、堤体内の地下水を速やかに排水することができ、盛土の強度低下を防止することができる。 The object of the present invention is to solve the problems of the prior art, that is, to prevent scouring on the front and back sides, piping that occurs on the back side, and seepage failure of the levee body, and further An object of the present invention is to provide a soil structure capable of preventing subsidence due to slippage and liquefaction, and a method therefor. As a result, the groundwater in the cut-off wall can be quickly drained, and the reduction in strength of the embankment can be prevented.

本願発明は、堤体内のうち表側に比較的透水性が低い「止水性改良体」を構築するとともに、堤体内のうち裏側に比較的透水性が高い「透水性改良体」を構築することによって、表裏側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図る、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。 The present invention constructs a "water stoppage improving body" with relatively low water permeability on the front side of the bank body and constructs a "water permeability improving body" with relatively high water permeability on the back side of the bank body. , scouring on the front and back sides, piping that occurs on the back side, and prevention of percolation failure of the embankment.

本願発明の補強された土構造物は、表側のり面と裏側のり面を有し、さらに「本体部」とこの本体部よりも透水性が低い「止水性改良体」、本体部よりも透水性が高い「透水性改良体」を備えたものである。なお止水性改良体は、セメント系材料を主体とし、のり尻を含む表側のり面の一部に形成され、一方の透水性改良体は、セメント系材料を主体とし、のり尻を含む裏側のり面の一部に形成される。 The reinforced soil structure of the present invention has a front side slope and a back side slope, and further includes a "main body" and a "water stop improving body" having lower water permeability than the main body, and water permeability than the main body. It is equipped with a "permeability improver" with high permeability. The water stop improving body is mainly made of cement material and is formed on a part of the front slope including the bottom of the slope, while the water permeability improving body is mainly made of cement material and is formed on the back slope including the bottom of the slope. formed in part of

本願発明の補強された土構造物は、止水性改良体や透水性改良体がのり尻を超えてのり面の外側(つまり堤体の外側)の地盤の一部にも形成されたものとすることもできる。 In the reinforced soil structure of the present invention, the water cut-off improving body and the permeability improving body are also formed in a part of the ground outside the slope surface (that is, outside the bank body) beyond the toe of the slope. can also

本願発明の補強された土構造物は、プレキャストコンクリート製の止水性改良体や透水性改良体を利用したものとすることもできる。 The reinforced earthen structure of the present invention can also utilize a precast concrete water stop improving body or water permeability improving body.

本願発明の補強された土構造物は、止水性改良体や透水性改良体が延長方向(堤体の軸方向)に間隔を空けて断続的に形成されたものとすることもできる。 The reinforced soil structure of the present invention can also be one in which the water stop improving bodies and the water permeability improving bodies are intermittently formed at intervals in the extension direction (the axial direction of the bank body).

本願発明の土構造物補強方法は、表側のり面と裏側のり面を有する既設の土構造物を補強する方法であって、止水性改良体形成工程と透水性改良体形成工程を備えた方法である。このうち止水性改良体形成工程では、土構造物のうちのり尻を含む表側のり面の一部に、土構造物(堤体本体)よりも透水性が低い「止水性改良体」を形成する。一方の透水性改良体形成工程では、土構造物のうちのり尻を含む裏側のり面の一部に、土構造物(堤体本体)よりも透水性が高い透水性改良体を形成する。 The soil structure reinforcement method of the present invention is a method for reinforcing an existing soil structure having a front side slope and a back side slope, and is a method comprising a step of forming a water stop improving body and a step of forming a water permeability improving body. be. Among these, in the step of forming a water stop improving body, a "water stop improving body" having a lower water permeability than the soil structure (bank body) is formed on a part of the front slope surface including the toe of the soil structure. . On the other hand, in the water permeability improving body forming step, a water permeability improving body having a higher water permeability than the soil structure (bank body) is formed on a part of the back slope surface including the toe of the soil structure.

本願発明の土構造物補強方法は、機械攪拌工法、高圧噴射攪拌工法、又は薬液注入工法を用い、セメント系固化材で土構造物の地盤改良を行うことによって、止水性改良体を形成する方法とすることもできる。 The soil structure reinforcement method of the present invention uses a mechanical agitation method, a high-pressure injection agitation method, or a chemical injection method to improve the ground of the soil structure with a cement-based solidification material, thereby forming a waterproof improved body. can also be

本願発明の土構造物補強方法は、水中不分離性のポーラスコンクリートによる固化体を形成することによって、透水性改良体を形成する方法とすることもできる。 The soil structure reinforcement method of the present invention can also be used as a method of forming a water permeability improving body by forming a solidified body of underwater inseparable porous concrete.

本願発明の補強された土構造物、及び土構造物補強方法には、次のような効果がある。
(1)堤体のうちのり尻を含む表側のり面の一部に「止水性改良体」を形成することによって、表側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図ることができる。
(2)堤体のうちのり尻を含む裏側のり面の一部に「透水性改良体」を形成することによって、堤体内の浸透水を排水することができ、その結果、裏側の洗掘を防止し、地震時における堤体のせん断強度の低下を防ぐことができるとともに液状化被害を回避することができる。
(3)堤体のうち表側に止水性改良体、裏側に透水性改良体を形成することによって、表側あるいは裏側の一方にのみ改良体を形成したケースや、表側と裏側の両方に止水性改良体を形成したケースよりも、地震時における堤体の沈下を低減することができる。
The reinforced earth structure and earth structure reinforcement method of the present invention have the following effects.
(1) By forming a "water stop improving body" on a part of the front side of the slope including the toe of the bank, it is possible to prevent scouring on the front side, piping that occurs on the back side, and seepage failure of the bank. can be done.
(2) By forming a "permeability improver" on a part of the back side of the slope including the toe of the cut-off wall, it is possible to drain permeated water from inside the cut-off wall, thereby preventing scouring on the back side. It is possible to prevent the shear strength of the embankment from decreasing during an earthquake and avoid liquefaction damage.
(3) By forming a water stop improving body on the front side of the embankment and a water permeability improving body on the back side, a case where the improved body is formed only on either the front side or the back side, or a water stop improvement on both the front side and the back side It is possible to reduce the subsidence of the embankment during an earthquake, compared to a case with a body.

河川や海岸等における堤防や防潮堤といった一般的な土構造物の断面図。Cross-sectional view of general soil structures such as embankments and seawalls in rivers, coasts, etc. 本願発明の補強された土構造物を示す断面図。1 is a cross-sectional view showing a reinforced soil structure of the present invention; FIG. 河川の水位が上昇したときの本願発明の補強された土構造物を示す断面図。FIG. 4 is a cross-sectional view showing the reinforced soil structure of the present invention when the water level of the river rises; のり面の外側に張り出して形成された止水性改良体と透水性改良体を備えた補強された土構造物を示す断面図。FIG. 4 is a cross-sectional view showing a reinforced soil structure provided with a water-stopping improver and a water-permeability improver formed to protrude to the outside of the slope; (a)は断続的に形成された止水性改良体を備えた補強された土構造物を示す正面図、(b)は一連の止水性改良体を備えた補強された土構造物を示す正面図。(a) is a front view showing a reinforced earth structure with intermittently formed water stoppage improvers, and (b) is a front view showing a reinforced earth structure with a series of water stoppage improvers. figure. 本願発明の土構造物補強方法の主な工程を示す施工フロー図。FIG. 2 is a construction flow diagram showing main steps of the soil structure reinforcement method of the present invention. 解析を行った5つのケースを示すモデル図。A model diagram showing five cases analyzed. (a)はケースごとの解析結果をグラフで示す結果図、(b)はケースごとの解析結果を表で示す結果図。(a) is a graph showing the analysis results for each case, and (b) is a table showing the analysis results for each case.

本願発明の補強された土構造物、及び土構造物補強方法の実施形態の例を図に基づいて説明する。 An embodiment of a reinforced soil structure and a soil structure reinforcement method according to the present invention will be described with reference to the drawings.

1.定義
本願発明の実施形態の例を説明するにあたって、はじめにここで用いる用語の定義を示しておく。
1. Definitions Before describing examples of embodiments of the present invention, definitions of terms used herein will be given first.

(表側と裏側)
図1は、河川や海岸等における堤防や防潮堤といった一般的な土構造物Dmの断面図である。一般的な土構造物Dmは、河川や海岸に沿って(図では紙面奥行方向に)相当に長い延長で構築される盛土体であり、またこの図に示すようにその断面形状は概ね台形とされることが多い。土構造物Dmは、河川や海からの浸水を遮るものであり、換言すれば河川や海がある堤外地側(図では左側)と、その反対側となる堤内地側(図では右側)を分離するものである。便宜上ここでは、堤外地側のことを「表側」ということとし、堤内地側のことを「裏側」ということとする。
(front side and back side)
FIG. 1 is a cross-sectional view of a general soil structure Dm such as an embankment or a seawall in a river, coast, or the like. A typical earthen structure Dm is an embankment constructed along a river or coast (in the depth direction of the paper surface in the figure) with a fairly long extension, and as shown in this figure, its cross-sectional shape is roughly trapezoidal. It is often done. The soil structure Dm is to block the inundation from the river and the sea. It separates. For the sake of convenience, the side of the embankment will be referred to as the "front side" and the side of the embankment will be referred to as the "back side."

(表側のり面と裏側のり面)
上記のとおり土構造物Dmの断面形状は概ね台形とされることから、その両側面(図では左右の側面)にはのり面が形成される。左右2つののり面を区別するため、便宜上ここでは、土構造物Dmの表側に形成されるのり面のことを「表側のり面Sf」ということとし、土構造物Dmの裏側に形成されるのり面のことを「裏側のり面Sr」ということとする。同様に、表側のり面Sfの下端となるのり尻(のり先ともいう。)のことを「表側のり尻Tf」ということとし、裏側のり面Srの下端となるのり尻のことを「裏側のり尻Tr」ということとする。
(front side slope and back side slope)
As described above, since the cross-sectional shape of the soil structure Dm is generally trapezoidal, slope surfaces are formed on both side surfaces (left and right side surfaces in the figure). In order to distinguish between the left and right slopes, the slope formed on the front side of the soil structure Dm is here referred to as the "front slope Sf" for the sake of convenience, and the slope formed on the back side of the soil structure Dm. The surface will be referred to as "back side slope surface Sr". Similarly, the bottom of the seam (also referred to as the top of the seam) that is the lower end of the front seam Sf is referred to as the "front seam Tf", and the bottom of the seam that is the lower end of the back seam Sr is the "back seam". Tr”.

2.補強された土構造物
次に、本願発明の補強された土構造物について、図を参照しながら詳しく説明する。なお、本願発明の土構造物補強方法は、いわば本願発明の補強された土構造物を構築する方法であり、したがってまずは本願発明の補強された土構造物について説明し、その後に本願発明の土構造物補強方法について説明することとする。また便宜上ここでは、河川堤防として機能する補強された土構造物として説明するが、本願発明の補強された土構造物は河川堤防に限らず海岸堤防や防潮堤、あるいは砂防ダムや堰堤といった機能を有する土構造物としても利用することができる。
2. Reinforced Soil Structure Next, the reinforced earth structure of the present invention will be described in detail with reference to the drawings. The soil structure reinforcement method of the present invention is, so to speak, a method of constructing the reinforced soil structure of the present invention. A structure reinforcement method will be described. For the sake of convenience, a reinforced soil structure that functions as a river embankment will be described here, but the reinforced soil structure of the present invention is not limited to a river embankment, but can also function as a coastal embankment, a seawall, an erosion control dam, or a dam. It can also be used as a soil structure with

(全体構成)
図2は、本願発明の補強された土構造物100を示す断面図である。この図に示すように補強された土構造物100は、断面中央部に位置する本体部110と、表側に形成される止水性改良体120、裏側に形成される透水性改良体130を含んで形成される。本体部110は盛土材を主体として形成され、止水性改良体120と透水性改良体130はセメント系材料を主体として形成するとよい。また、止水性改良体120は、表側のり尻Tfを含む表側のり面Sfの一部に形成されるもので、その透水性は本体部110よりも低い(つまり止水性が高い)。一方の透水性改良体130は、裏側のり尻Trを含む裏側のり面Srの一部に形成されるもので、その透水性は本体部110よりも高い(つまり排水性が高い)。
(overall structure)
FIG. 2 is a cross-sectional view of the reinforced earthen structure 100 of the present invention. As shown in this figure, a reinforced soil structure 100 includes a main body 110 located in the central part of the cross section, a water stop improving body 120 formed on the front side, and a water permeability improving body 130 formed on the back side. It is formed. It is preferable that the main body 110 is mainly formed of embankment material, and the water cut-off improver 120 and the permeability improver 130 are mainly formed of a cement-based material. Moreover, the water stopping improving body 120 is formed on a part of the front side slope surface Sf including the front side slope bottom Tf, and its water permeability is lower than that of the main body portion 110 (that is, the water stopping property is high). On the other hand, the water permeability improving body 130 is formed on a part of the back side slope surface Sr including the back side slope Tr, and has a higher water permeability than the main body portion 110 (that is, a higher drainage property).

図2に示すように、本体部110と止水性改良体120、透水性改良体130はそれぞれ傾斜面を有しており、本体部110の傾斜面(表側)と止水性改良体120の傾斜面によって一連の表側のり面Sfが形成され、本体部110の傾斜面(裏側)と透水性改良体130の傾斜面によって一連の裏側のり面Srが形成される。その結果、本願発明の補強された土構造物100は、本体部110と止水性改良体120の一部(地上部)、そして透水性改良体130の一部(地上部)によって、その断面視が概ね台形状となる。 As shown in FIG. 2, the body portion 110, the water blocking improver 120, and the water permeability improving body 130 each have an inclined surface. A series of front-side slopes Sf are formed by , and a series of back-side slopes Sr are formed by the inclined surface (back side) of the main body 110 and the sloped surface of the water permeability improver 130 . As a result, the reinforced soil structure 100 of the present invention has a cross-sectional view of is roughly trapezoidal.

本願発明の補強された土構造物100は、新設の構造物として構築することもできるし、既存の土構造物Dmを補強することで構築することもできる。新設の構造物として構築する場合は、計画した形状や寸法となるように本体部110と止水性改良体120、透水性改良体130を設置して構築する。一方、既存の土構造物Dmを補強する場合は、土構造物Dmのうち表側の一部に止水性改良体120を構築するとともに、土構造物Dmのうち裏側の一部に透水性改良体130を構築し、土構造物Dmのうち残った部分を本体部110とすることで構築するとよい。 The reinforced soil structure 100 of the present invention can be constructed as a new structure, or can be constructed by reinforcing an existing soil structure Dm. When constructing a new structure, the main body 110, the water blocking improver 120, and the water permeability improver 130 are installed and constructed so as to have the planned shape and dimensions. On the other hand, when reinforcing the existing soil structure Dm, the water stop improving body 120 is constructed on a part of the front side of the soil structure Dm, and the water permeability improving body is constructed on a part of the back side of the soil structure Dm. 130 is constructed, and the remaining portion of the soil structure Dm is used as the main body 110. As shown in FIG.

(止水性改良体)
止水性改良体120は、図3に示すように河川の水位が上昇したときに本体部110へ浸透する水を抑制する機能と、河川が高水位の状態(図3の状態)から水位が低下した状態(図2の状態)となる際の洗掘(特に表側のり尻Tf付近の洗掘)を防止する機能を有する。そのため止水性改良体120は、表側のり尻Tfを含む表側のり面Sfの一部に形成され、その透水性が本体部110よりも低く(つまり止水性が高く)なるように形成される。また、地震時における補強部材としても機能するように、つまり相当の強度(せん断強度や曲げ強度)を有するように、止水性改良体120はセメント系材料を主体として形成するとよい。
(Improved water stoppage)
As shown in FIG. 3, the water cut-off improving body 120 has a function of suppressing water permeating into the main body 110 when the water level of the river rises, and a function of suppressing water that permeates the main body 110 when the water level of the river rises. It has a function of preventing scouring (especially scouring near the toe of slope Tf on the front side) when it is in a state (the state of FIG. 2). Therefore, the water stopping improving body 120 is formed on a part of the front side slope surface Sf including the front side slope bottom Tf, and is formed so that its water permeability is lower than that of the main body portion 110 (that is, the water stopping property is higher). Moreover, the waterproof improving body 120 is preferably made mainly of a cement-based material so as to function as a reinforcing member in the event of an earthquake, that is, to have considerable strength (shear strength and bending strength).

止水性改良体120は、所定の透水性(止水性)や強度を満たすように、あるいは施工性を考慮したうえで設計される。特に透水性や強度に関しては、豪雨時や地震時においても、補強された土構造物100が異常な沈下や変状を生じないよう、あるいは本体部110の液状化が生じないよう設計することが望ましい。具体的には、豪雨時に想定される河川水位、そして地震時荷重を与条件とし、数値解析(例えばFEM解析)によって得られた結果に基づいて、止水性改良体120の透水性や強度を設計するとよい。 The water stopping improving body 120 is designed so as to satisfy predetermined water permeability (water stopping) and strength, or considering workability. In particular, regarding water permeability and strength, it is necessary to design the reinforced soil structure 100 so that it does not undergo abnormal subsidence or deformation, or that the main body 110 does not liquefy even during heavy rains or earthquakes. desirable. Specifically, the river water level assumed during heavy rain and the load at the time of earthquake are given as conditions, and the water permeability and strength of the water cutoff improvement body 120 are designed based on the results obtained by numerical analysis (for example, FEM analysis). do it.

止水性改良体120を形成するにあたっては、既設の土構造物Dm(あるいは本体部110)の一部に対して地盤改良を行うことで形成することができる。この場合、機械攪拌工法や高圧噴射攪拌工法、あるいは薬液注入工法によって、土構造物Dm(あるいは本体部110)の一部をセメント系固化材で改良するとよい。あるいは、止水性改良体120をコンクリート製として設計し、場所打ちコンクリートによる固化体やプレキャストコンクリートの固化体を所定位置に設置することで止水性改良体120を形成することもできる。 In forming the water cut-off improvement body 120, it can be formed by performing ground improvement on a part of the existing soil structure Dm (or the main body part 110). In this case, a part of the soil structure Dm (or main body 110) may be improved with a cement-based solidifying material by a mechanical agitation method, a high-pressure injection agitation method, or a chemical injection method. Alternatively, the water stopping improving body 120 can be designed as concrete, and the water stopping improving body 120 can be formed by placing a solidified body of cast-in-place concrete or a solidified body of precast concrete at a predetermined position.

(透水性改良体)
透水性改良体130は、図3に示すように河川の水位が上昇したときに本体部110へ浸透した水を外部に排水する機能と、その排水の際に生じる洗掘(特に裏側のり尻Tr付近の洗掘)を防止する機能を有する。そのため透水性改良体130は、裏側のり尻Trを含む裏側のり面Srの一部に形成され、その透水性が本体部110よりも高く(つまり排水性が高く)なるように形成される。また、地震時における補強部材としても機能するように、つまり相当の強度(せん断強度や曲げ強度)を有するように、透水性改良体130はセメント系材料を主体として形成するとよい。なお、透水性改良体130から排水された水を所定位置まで流すため、透水性改良体130の延長方向に沿って図2に示す排水溝140を設置することもできる。
(Permeability improver)
As shown in FIG. 3, the water permeability improving body 130 has a function of draining water that has penetrated into the main body 110 when the water level of the river rises, and a function of scouring (especially the back side slope Tr It has a function to prevent scouring in the vicinity. Therefore, the water permeability improving body 130 is formed on a part of the back slope surface Sr including the back slope bottom Tr, and is formed so that the water permeability thereof is higher than that of the main body portion 110 (that is, the drainage property is high). Moreover, the water permeability improving body 130 is preferably made mainly of a cement-based material so as to function as a reinforcing member in the event of an earthquake, that is, to have considerable strength (shear strength and bending strength). In order to allow the water drained from the water permeability improver 130 to flow to a predetermined position, a drainage ditch 140 shown in FIG.

透水性改良体130は、所定の透水性(排水性)や強度を満たすように、あるいは施工性を考慮したうえで設計される。特に透水性や強度に関しては、豪雨時や地震時においても、補強された土構造物100が異常な沈下や変状を生じないよう、あるいは本体部110の液状化被害が生じないよう設計することが望ましい。具体的には、豪雨時に想定される河川水位、そして地震時荷重を与条件とし、数値解析(例えばFEM解析)によって得られた結果に基づいて、透水性改良体130の透水性や強度を設計するとよい。また透水性改良体130は、図3に示すように、地上に位置するA部と、軟弱層に位置するB部、支持層に位置するC部に分け、目標とする安定性能に応じて、A部とB部、C部をそれぞれ異なる物性(強度や透水性など)の材料で設計することもできる。例えば、すべり安定性の面で下層ほど強度を大きくする条件で設計することもできるし、あるいは上部の砂層のパイピング抵抗を高めるために上部砂層に位置する透水性改良体130(図3ではB部)の透水係数をのり尻部より低下させる条件で設計することもできる。 The water permeability improving body 130 is designed so as to satisfy predetermined water permeability (drainability) and strength, or considering workability. In particular, regarding water permeability and strength, the reinforced soil structure 100 should be designed so as not to cause abnormal subsidence or deformation, or to prevent liquefaction damage to the main body 110 even during heavy rains or earthquakes. is desirable. Specifically, the river water level assumed during heavy rain and the load at the time of earthquake are given as conditions, and the permeability and strength of the permeability improving body 130 are designed based on the results obtained by numerical analysis (for example, FEM analysis). do it. In addition, as shown in FIG. 3, the water permeability improving body 130 is divided into a portion A located on the ground, a portion B located in the weak layer, and a portion C located in the support layer. The A part, the B part, and the C part can also be designed with materials having different physical properties (strength, water permeability, etc.). For example, in terms of slip stability, it is possible to design under the condition that the lower layer has higher strength, or to increase the piping resistance of the upper sand layer, the permeability improver 130 (B section in FIG. 3) located in the upper sand layer ) can also be designed under the condition that the hydraulic conductivity of ) is lower than that of the toe of the slope.

透水性改良体130は、コンクリート製の固化体を設置することで形成することができる。この場合、場所打ちコンクリートによって固化体を設置することもできるし、プレキャストコンクリートの固化体を設置することもできる。ただし、透水性改良体130は適当な透水性(排水性)が要求されることから、多孔質のコンクリート(以下、「ポーラスコンクリート」という。)製の固化体を利用することが望ましい。また、透水性改良体130が排水機能を有するため、排水時にセメント分(モルタル分)が流出しないよう水中不分離性のコンクリートによる固化体とするとよい。 The permeability improving body 130 can be formed by installing a solidified body made of concrete. In this case, the solidified body can be installed with cast-in-place concrete, or the solidified body of precast concrete can be installed. However, since the water permeability improving body 130 is required to have appropriate water permeability (drainability), it is desirable to use a solidified body made of porous concrete (hereinafter referred to as "porous concrete"). Further, since the water permeability improving body 130 has a drainage function, it is preferable to use a solidified body made of concrete that is inseparable in water so that the cement component (mortar component) does not flow out during drainage.

水中不分離性のポーラスコンクリートの配合設計を行うにあたっては、目詰まりを防ぐように、つまり適当な空隙率を確保するように骨材の粒径を選定し、水中不分離性を具備するように水中不分離材を添加するとともに、施工性に配慮して高性能減水剤を添加するよう配合するとよい。 When designing the mixture of porous concrete that is inseparable in water, the grain size of the aggregate should be selected to prevent clogging, that is, to secure an appropriate porosity, and to provide inseparability in water. In addition to adding an underwater non-separating material, it is preferable to add a high performance water reducing agent in consideration of workability.

(改良体の形成範囲)
図2や図3に示す補強された土構造物100は、支持層の上に堆積した軟弱層(砂や砂質土からなる透水性地盤や、液状化層など)の上に構築されていることから、この図に示す止水性改良体120と透水性改良体130は、軟弱層を貫通してさらに支持層に根入れするように形成されている。もちろん、軟弱層の強度によっては、支持層に根入れすることなく軟弱層にのみ根入れするように止水性改良体120や透水性改良体130を形成することもできるし、支持層に根入れすることなく支持層上に載置するように止水性改良体120や透水性改良体130を形成することもできる。
(Formation range of improved body)
The reinforced soil structure 100 shown in FIGS. 2 and 3 is built on a weak layer (a permeable ground made of sand or sandy soil, a liquefaction layer, etc.) deposited on the support layer. Therefore, the water blocking improver 120 and the water permeability improver 130 shown in this figure are formed so as to penetrate the soft layer and further penetrate into the support layer. Of course, depending on the strength of the soft layer, the water stop improving body 120 and the water permeability improving body 130 can be formed so as to be embedded only in the soft layer without being embedded in the support layer, or they can be embedded in the support layer. The water stop improving body 120 and the water permeability improving body 130 can also be formed so as to be placed on the support layer without the coating.

また止水性改良体120と透水性改良体130は、その一部が表側のり面Sfや裏側のり面Srの外側に形成されたものとすることもできる。具体的には図4に示すように、表側のり面Sfや裏側のり面Srを超えて、つまり表側のり尻Tfよりも河川側(図では左側)、あるいは裏側のり尻Trよりも河川の反対側(図では右側)に張り出し、その張り出した範囲の地盤(軟弱層と支持層)下にも止水性改良体120や透水性改良体130の一部を形成するわけである。図2と図4を比較すると、図4に示す止水性改良体120と透水性改良体130は、表側のり面Sfや裏側のり面Srから張り出した部分だけ大きく形成されている。そのため、補強された土構造物100の構築にかかる工期やコストは増大するものの、表側のり尻Tfや裏側のり尻Tr付近における洗掘防止機能や、地震時における補強機能は向上する。したがって、図4に示すような形式の止水性改良体120と透水性改良体130は、状況に応じて適宜設計するとよい。 Also, the water stop improving body 120 and the water permeability improving body 130 may be partially formed outside the front side slope Sf and the back side slope Sr. Specifically, as shown in FIG. 4, it is located beyond the front side slope Sf and the back side slope Sr, that is, on the river side of the front side slope Tf (left side in the figure), or on the opposite side of the river from the back side slope Tr. (Right side in the drawing), and a part of the water stop improving body 120 and the water permeability improving body 130 is formed under the ground (soft layer and support layer) in the overhanging range. A comparison of FIGS. 2 and 4 reveals that the water-blocking improving body 120 and the water-permeable improving body 130 shown in FIG. 4 are formed so as to be large only at the portions protruding from the front side slope Sf and the back side slope Sr. Therefore, although the construction period and cost for constructing the reinforced soil structure 100 increase, the scouring prevention function in the vicinity of the front side slope Tf and the rear side slope bottom Tr and the reinforcement function in the event of an earthquake are improved. Therefore, the water stop improving body 120 and the water permeability improving body 130 of the type shown in FIG. 4 may be appropriately designed according to the situation.

既述したとおり一般的な土構造物Dmは、河川や海岸に沿って相当に長い延長で構築される。同様に、本願発明の補強された土構造物100も、河川や海岸に沿って(図2や図4では紙面奥行方向に)相当に長い延長で構築するとより好適となる。この場合、当然ながら止水性改良体120と透水性改良体130も相当な延長で形成されるが、図5に示すように、延長方向において一連のものとして形成することもできるし、断続的に形成することもできる。図5は、表側のり面Sf(裏側のり面Sr)を正面から見た補強された土構造物100を示す正面図であり、このうち図5(a)では隙間Gpを設けつつ複数(この図では4つ)の止水性改良体120や透水性改良体130が断続的に形成されており、図5(b)では隙間Gpを設けることなく連続した止水性改良体120や透水性改良体130が形成されている。 As already mentioned, a general earthen structure Dm is constructed with a considerably long extension along a river or coast. Similarly, the reinforced earthen structure 100 of the present invention is also better constructed in fairly long extensions (in the depth direction of the paper in FIGS. 2 and 4) along rivers and coasts. In this case, the water-blocking improver 120 and the water-permeable improver 130 are naturally formed with a considerable extension, but as shown in FIG. can also be formed. FIG. 5 is a front view showing the reinforced earthen structure 100 when the front slope Sf (back slope Sr) is viewed from the front. 4) water stop improving bodies 120 and water permeability improving bodies 130 are intermittently formed, and in FIG. is formed.

3.土構造物補強方法
次に本願発明の土構造物補強方法について図6を参照しながら説明する。なお、本願発明の土構造物補強方法は、いわばここまで説明した補強された土構造物100を構築する方法であり、したがって補強された土構造物100で説明した内容と重複する説明は避け、本願発明の土構造物補強方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「1.定義」の説明を含め「2.補強された土構造物」で記載したものと同様である。
3. Earth Structure Reinforcement Method Next, the soil structure reinforcement method of the present invention will be described with reference to FIG. The soil structure reinforcement method of the present invention is a method of constructing the reinforced soil structure 100 described so far, so explanations overlapping with the contents described in the reinforced soil structure 100 are avoided. Only the contents specific to the soil structure reinforcement method of the present invention will be explained. That is, the contents not described here are the same as those described in "2. Reinforced soil structure" including the description of "1. Definition".

図6は、本願発明の土構造物補強方法の主な工程を示す施工フロー図である。まず、止水性改良体120や透水性改良体130を形成する位置を示す測量を行ったり、必要な機器を搬入して所定位置に配置したり、その日の施工手順を確認するといった準備工を行う。 FIG. 6 is a construction flow diagram showing main steps of the soil structure reinforcement method of the present invention. First, preparatory work is carried out, such as surveying to indicate the positions for forming the water stoppage improving body 120 and the water permeability improving body 130, carrying in necessary equipment and arranging them at predetermined positions, and confirming the construction procedure for the day. .

準備が整うと、既設の土構造物Dmのうち表側の一部に止水性改良体120を形成する。具体的には、機械攪拌工法や高圧噴射攪拌工法、あるいは薬液注入工法を用い、土構造物Dmに対してセメント系固化材による地盤改良を行う(Step10)ことで、止水性改良体120を形成する。 When the preparations are complete, a water cut-off improving body 120 is formed on part of the front side of the existing soil structure Dm. Specifically, using a mechanical agitation method, a high-pressure injection agitation method, or a chemical injection method, ground improvement is performed on the soil structure Dm with a cement-based solidification material (Step 10), thereby forming the waterproof improvement body 120. do.

一方、既設の土構造物Dmのうち裏側の一部には透水性改良体130を形成する。具体的には、水中不分離性のポーラスコンクリート製固化体を所定位置に設置する(Step20)ことで、透水性改良体130を形成する。このとき、透水性改良体130を形成するため土構造物Dmのうち当該部分の盛土材は撤去する場合は、掘削高さが所定高以上となるなど現場の状況に応じて適宜土留め工を併用したうえで撤去作業を行うとよい。なお、透水性改良体130を形成した後に、図2に示す排水溝140を、透水性改良体130の延長方向に沿って設置することもできる。 On the other hand, a permeability improver 130 is formed on part of the back side of the existing soil structure Dm. Specifically, the water permeability improver 130 is formed by placing a solidified body made of porous concrete that is inseparable in water at a predetermined position (Step 20). At this time, if the embankment material of the relevant portion of the soil structure Dm is to be removed to form the permeability improver 130, appropriate earth retaining work will be carried out according to the situation at the site, such as when the excavation height is above a predetermined height. It is better to use them together before carrying out the removal work. After forming the water permeability improver 130, the drain groove 140 shown in FIG. 2 can be installed along the extension direction of the water permeability improver 130.

止水性改良体120を形成する工程と透水性改良体130を形成する工程は、どちらか一方の工程を先行して行うこともできるし、両方の工程を同時に(並行して)行うこともできる。計画した範囲すべての止水性改良体120と透水性改良体130を形成すると、後片付けを行って、作業を終了する。 Either the step of forming the water blocking improver 120 or the step of forming the water permeability improver 130 can be performed first, or both steps can be performed simultaneously (in parallel). . When the water stoppage improving body 120 and the water permeability improving body 130 are formed in the entire planned range, clean up is performed and the work is finished.

4.解析結果
以下、本願発明の効果を確認するために本願の発明者らが実施した解析結果について説明する。図7は、解析を行った5つのケースを示すモデル図であり、図8は、これらケースごとの解析結果を示す結果図である。
4. Results of Analysis The results of analysis performed by the inventors of the present application to confirm the effects of the present invention will be described below. FIG. 7 is a model diagram showing five cases in which the analysis was performed, and FIG. 8 is a result diagram showing the analysis results for each of these cases.

まず、図7を参照しながら本解析を行った5つのケースについて説明する。図7(a)は既設の土構造物Dmに対して対策を行っていないケース(以下、「無対策のケース」という。)であり、図7(b)は既設の土構造物Dmのうち表側に止水性改良体120を形成したケース(以下、「対策1のケース」という。)、図7(c)は既設の土構造物Dmのうち裏側に透水性改良体130を形成したケース(以下、「対策2のケース」という。)、図7(d)は既設の土構造物Dmのうち表側と裏側に止水性改良体120を形成したケース(以下、「対策3のケース」という。)、図7(e)は既設の土構造物Dmのうち表側に止水性改良体120、裏側に透水性改良体130を形成した本願発明のケース(以下、「対策4のケース」という。)である。なお図7に示すように、軟弱層が砂層(液状化層)、支持層が粘性土層という条件で解析を行っている。 First, referring to FIG. 7, the five cases in which this analysis was performed will be described. FIG. 7(a) shows a case in which no countermeasures are taken for the existing soil structure Dm (hereinafter referred to as "case without countermeasures"), and FIG. 7(b) shows A case in which a water cut-off improving body 120 is formed on the front side (hereinafter referred to as “case of countermeasure 1”), FIG. Hereinafter referred to as "measure 2 case"), and FIG. 7(d) shows a case in which water cut-off improvement bodies 120 are formed on the front and back sides of the existing soil structure Dm (hereinafter referred to as "measure 3 case"). ), FIG. 7(e) shows a case of the present invention in which a water cut-off improving body 120 is formed on the front side of an existing soil structure Dm and a water permeability improving body 130 is formed on the back side (hereinafter referred to as "measure 4 case"). is. As shown in FIG. 7, the analysis is performed under the condition that the soft layer is a sand layer (liquefaction layer) and the support layer is a cohesive soil layer.

図に示す河川水位を条件として与え、さらに20秒間の地震動を与え、図7に示す5つのケースそれぞれに対してFEM解析を行って本体部110の沈下量を求めた。その結果、図8(a)に示すように、地震動が生じると5ケースともに天端の沈下が始まり、地震動が終了したときに5ケースとも沈下量が最大値となった。その最大沈下量を示す図8(b)を見ると、無対策のケースで最も大きな沈下量(86cm)を示し、対策4のケースで最も小さな沈下量(34cm)を示していることが分かる。ここで大きな沈下量を示しているケースは本体部110に液状化が生じていることが推定される一方で、本願発明(対策4のケース)では沈下量を抑制できており、すなわち基礎地盤の液状化による堤体の沈下被害を低減することができる。 The river water level shown in the figure was given as a condition, and further 20 seconds of seismic motion was given, and the FEM analysis was performed for each of the five cases shown in FIG. As a result, as shown in Fig. 8(a), all 5 cases began to subside when seismic motion occurred, and all 5 cases showed maximum subsidence when the seismic motion ended. Looking at Fig. 8(b) showing the maximum amount of settlement, it can be seen that the case without countermeasures shows the largest amount of settlement (86 cm), and the case of countermeasure 4 shows the smallest amount of settlement (34 cm). Here, in cases where a large amount of subsidence is shown, it is presumed that liquefaction has occurred in the main body 110. On the other hand, in the present invention (case of measure 4), the amount of subsidence can be suppressed, that is, the foundation ground It is possible to reduce the subsidence damage of the embankment due to liquefaction.

また図8(b)のうち沈下減少率を見ると、表側に止水性改良体120を形成した対策1のケースにおける沈下減少率が15%であり、裏側に透水性改良体130を形成した対策2のケースにおける沈下減少率が20%である。つまり、両方の沈下減少率を加えた値(15+20=35%)と比べても、対策4のケースの沈下減少率(61%)の方が大きいことが分かる。すなわち本願発明(対策4のケース)は、対策1のケース単独の効果と対策2のケース単独の効果を単に加えた以上の効果が期待でき、換言すれば表側の止水性改良体120と裏側の透水性改良体130が相互に有機的に機能することでより大きな効果を発揮することが理解できる。 Also, looking at the settlement reduction rate in FIG. 8B, the settlement reduction rate in the case of Measure 1 in which the water stop improving body 120 is formed on the front side is 15%, and the countermeasure in which the water permeability improving body 130 is formed on the back side The subsidence reduction rate in case 2 is 20%. In other words, it can be seen that the subsidence reduction rate (61%) of the case of Measure 4 is larger than the sum of both subsidence reduction rates (15+20=35%). That is, the present invention (case of measure 4) can expect an effect more than simply adding the effect of the case of measure 1 alone and the effect of the case of measure 2 alone. It can be understood that the water permeability improver 130 exhibits a greater effect by organically functioning with each other.

本願発明の補強された土構造物、及び土構造物補強方法は、河川堤防や海岸堤防、防潮堤、あるいは砂防ダムや堰堤など、一方側(表側)に水が滞留する土構造物に利用することができる。本願発明によれば、海岸堤防や河川堤防を効果的に補強することができ、すなわち建設インフラの長寿命化に寄与することを考えれば、本願発明は産業上利用できるばかりでなく社会的にも大きな貢献が期待できる発明といえる。 The reinforced soil structure and soil structure reinforcement method of the present invention are used for soil structures such as river embankments, coastal embankments, seawalls, sabo dams and dams where water remains on one side (front side). be able to. According to the present invention, it is possible to effectively reinforce coastal embankments and river embankments, that is, considering that it contributes to the extension of the life of construction infrastructure, the present invention is not only industrially applicable but also socially useful. It can be said that this is an invention that can be expected to make a significant contribution.

100 補強された土構造物
110 (補強された土構造物の)本体部
120 (補強された土構造物の)止水性改良体
130 (補強された土構造物の)透水性改良体
140 (補強された土構造物の)排水溝
Dm 土構造物
Sf 表側のり面
Sr 裏側のり面
Tf 表側のり尻
Tr 裏側のり尻
Gp 隙間
100 Reinforced Soil Structure 110 Body Part (of Reinforced Soil Structure) 120 Water Cutoff Improvement (of Reinforced Soil Structure) 130 Permeability Improvement (of Reinforced Soil Structure) 140 (Reinforcement Drainage ditch Dm Earthen structure Sf Front side slope Sr Back side slope Tf Front side slope bottom Tr Back side slope bottom Gp Gap

Claims (7)

支持層の上に構築され表側が湛水される土構造物において、
本体部と、該本体部よりも透水性が低い止水性改良体と、該本体部よりも透水性が高い透水性改良体と、を備え、
前記止水性改良体は、セメント系材料を主体とし、のり尻を含む表側のり面の一部に形成され、
前記透水性改良体は、セメント系材料を主体とし、のり尻を含む裏側のり面の一部に形成され、
前記透水性改良体は、支持層に根入れされた、
ことを特徴とする補強された土構造物。
In a soil structure built on a support layer and flooded on the front side ,
comprising a main body, a water stoppage improving body having lower water permeability than the main body, and a water permeability improving body having higher water permeability than the main body,
The water blocking improver is mainly made of a cement-based material and is formed on a part of the slope on the front side including the bottom of the slope,
The water permeability improving body is mainly made of a cement-based material and is formed on a part of the back side slope including the bottom of the slope,
The permeability improver is embedded in a support layer,
A reinforced soil structure characterized by:
支持層の上に堆積した軟弱層の上に構築され、built on a soft layer deposited on a support layer,
前記透水性改良体は、地上に位置する部分と、軟弱層に位置する部分、支持層に位置する部分で、それぞれせん断強度及び/又は曲げ強度が異なり、下層ほどせん断強度及び/又は曲げ強度が大きい、The water permeability improving body has different shear strengths and/or bending strengths in the part located on the ground, the part located in the soft layer, and the part located in the support layer, and the shear strength and/or the bending strength increase in the lower layers. big,
ことを特徴とする請求項1記載の補強された土構造物。A reinforced earth structure according to claim 1, characterized in that:
支持層の上に堆積した軟弱層の上に構築され、
前記透水性改良体は、地上に位置する部分と、軟弱層に位置する部分で、それぞれ透水性が異なり、地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高い
ことを特徴とする請求項1記載の補強された土構造物。
built on a soft layer deposited on a support layer,
The water permeability improving body has different water permeability between the part located on the ground and the part located in the soft layer, and the water permeability of the part located in the soft layer is higher than the water permeability of the part located on the ground.
A reinforced earth structure according to claim 1, characterized in that:
前記透水性改良体が、プレキャストコンクリート製である、
ことを特徴とする請求項1乃至請求項3のいずれかに記載の補強された土構造物。
The water permeability improving body is made of precast concrete,
A reinforced soil structure according to any one of claims 1 to 3, characterized in that:
支持層の上に構築され表側が湛水される既設の土構造物を補強する方法において、
前記土構造物のうちのり尻を含む表側のり面の一部に、該土構造物よりも透水性が低い止水性改良体を形成する止水性改良体形成工程と、
前記土構造物のうちのり尻を含む裏側のり面の一部に、該土構造物よりも透水性が高い透水性改良体を形成する透水性改良体形成工程と、を備え
前記透水性改良体形成工程では、支持層に根入れするように前記透水性改良体を形成する、
ことを特徴とする土構造物補強方法。
A method for reinforcing an existing soil structure constructed on a support layer and flooded on the front side , comprising the steps of:
a step of forming a water stoppage improver having a lower water permeability than the soil structure on a portion of the front slope surface including the toe of the soil structure;
a water permeability improver forming step of forming a water permeability improver having higher water permeability than the soil structure on a part of the back slope surface including the toe of the soil structure.
In the water permeability improving body forming step, the water permeability improving body is formed so as to be embedded in the support layer.
A soil structure reinforcement method characterized by:
前記土構造物は、支持層の上に堆積した軟弱層の上に構築され、The earthen structure is built on a soft layer deposited on a support layer,
前記透水性改良体のうち、地上に位置する部分と、軟弱層に位置する部分、支持層に位置する部分で、それぞれ異なるせん断強度及び/又は曲げ強度となるように、かつ下層ほどせん断強度及び/又は曲げ強度が大きくなるように設計する工程を、さらに備え、Of the water permeability improving body, the portion located on the ground, the portion located in the weak layer, and the portion located in the support layer have different shear strengths and / or bending strengths, and the lower layers have shear strengths and bending strengths. / Or further comprising a step of designing so that the bending strength is increased,
前記透水性改良体形成工程では、下層ほどせん断強度及び/又は曲げ強度が大きい前記透水性改良体を形成する、In the water permeability improving body forming step, the water permeability improving body having higher shear strength and/or bending strength is formed in lower layers.
ことを特徴とする請求項5記載の補強された土構造物補強方法。The method for reinforcing a reinforced soil structure according to claim 5, characterized in that:
前記土構造物は、支持層の上に堆積した軟弱層の上に構築され、The earthen structure is built on a soft layer deposited on a support layer,
前記透水性改良体のうち、地上に位置する部分と、軟弱層に位置する部分で、それぞれ異なる透水性となるように、かつ地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高くなるように設計する工程を、さらに備え、Of the water permeability improving body, the part located on the ground and the part located in the soft layer have different water permeability, and the part located in the soft layer is higher than the water permeability of the part located on the ground. Further comprising a step of designing to increase water permeability,
前記透水性改良体形成工程では、地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高い前記透水性改良体を形成する、In the water permeability improving body forming step, the water permeability improving body is formed so that the water permeability of the portion located in the soft layer is higher than the water permeability of the portion located on the ground.
ことを特徴とする請求項5記載の補強された土構造物補強方法。The method for reinforcing a reinforced soil structure according to claim 5, characterized in that:
JP2019030309A 2019-02-22 2019-02-22 Reinforced soil structure and soil structure reinforcement method Active JP7240667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030309A JP7240667B2 (en) 2019-02-22 2019-02-22 Reinforced soil structure and soil structure reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030309A JP7240667B2 (en) 2019-02-22 2019-02-22 Reinforced soil structure and soil structure reinforcement method

Publications (2)

Publication Number Publication Date
JP2020133311A JP2020133311A (en) 2020-08-31
JP7240667B2 true JP7240667B2 (en) 2023-03-16

Family

ID=72262728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030309A Active JP7240667B2 (en) 2019-02-22 2019-02-22 Reinforced soil structure and soil structure reinforcement method

Country Status (1)

Country Link
JP (1) JP7240667B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214145A (en) 2005-02-03 2006-08-17 Dai Nippon Construction Reinforcing structure of levee and reinforcing method
JP2006274655A (en) 2005-03-29 2006-10-12 National Institute For Rural Engineering Drain structure of banking levee body and its construction method
JP2011038302A (en) 2009-08-11 2011-02-24 Hazama Corp Structure and method for reinforcing sloped ground
JP2011153449A (en) 2010-01-27 2011-08-11 East Japan Railway Co Method for creating soil improvement body
JP2014015716A (en) 2012-07-05 2014-01-30 Taisei Corp Construction method for earth retaining wall
JP2018100506A (en) 2016-12-19 2018-06-28 学校法人東京理科大学 Bank reinforcement structure
JP2018204391A (en) 2017-06-08 2018-12-27 株式会社シーマコンサルタント Gabion and slope reinforcing structure using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566501B2 (en) * 1996-12-20 2004-09-15 株式会社ホクコン Porous block using tuff as aggregate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214145A (en) 2005-02-03 2006-08-17 Dai Nippon Construction Reinforcing structure of levee and reinforcing method
JP2006274655A (en) 2005-03-29 2006-10-12 National Institute For Rural Engineering Drain structure of banking levee body and its construction method
JP2011038302A (en) 2009-08-11 2011-02-24 Hazama Corp Structure and method for reinforcing sloped ground
JP2011153449A (en) 2010-01-27 2011-08-11 East Japan Railway Co Method for creating soil improvement body
JP2014015716A (en) 2012-07-05 2014-01-30 Taisei Corp Construction method for earth retaining wall
JP2018100506A (en) 2016-12-19 2018-06-28 学校法人東京理科大学 Bank reinforcement structure
JP2018204391A (en) 2017-06-08 2018-12-27 株式会社シーマコンサルタント Gabion and slope reinforcing structure using the same

Also Published As

Publication number Publication date
JP2020133311A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
CN105507335B (en) Steel sheet-pile cofferdam foundation pit back cover structure and construction method
KR100970766B1 (en) Process for reinforcing base and preventing wash-out of earth under the bridges
JP5445351B2 (en) Filling reinforcement structure
CN105040595B (en) Main Pier of Bridges cushion cap foundation pit supporting construction on riverbed, gentle slope basement rock and construction method thereof
JP6370295B2 (en) Embankment reinforcement structure and its construction method
JP2006214145A (en) Reinforcing structure of levee and reinforcing method
Burcharth et al. Types and functions of coastal structures
Smith Types of marine concrete structures
JP7240667B2 (en) Reinforced soil structure and soil structure reinforcement method
Zwanenburg et al. Lessons learned from dike failures in recent decades
CN105064373A (en) Foundation pit supporting structure for bridge main pier bearing platform on riverway abrupt slope bed rock and construction method of foundation pit supporting structure
JP2011214252A (en) Structure for reinforcing embankment
CN204875807U (en) Bridge owner mound cushion cap underground structure on basement rock of river course abrupt slope
JP2023036157A (en) Reinforced earth structure, and earth structure reinforcing method
CN212223936U (en) A protective structure that is used for mountain area to adopt sand river course inner bridge pile foundation to expose disease
CN220550600U (en) Sea wall bridge pile foundation stand column anti-corrosion structure
Hawkswood et al. Foundations to precast marine structures
CN220414126U (en) Buried stone concrete retaining wall revetment suitable for water treatment engineering
Sitharam et al. Geotechnical considerations for coastal reservoirs
JP2008081960A (en) Ocean wave protection structure
Allsop Historical experience of vertical breakwaters in the United Kingdom
Huber et al. The Importance of Geotechnical Engineering in Waterfront Design
Liu et al. Improvement of underwater soft subsoil in tidal zones by vacuum preloading technique
Brater et al. Michigans Demonstration Erosion Control Program
CN116950141A (en) Anti-corrosion structure for pile foundation upright post of seawall bridge and construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230224

R150 Certificate of patent or registration of utility model

Ref document number: 7240667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150