JP7240115B2 - 情報処理装置及びその方法及びコンピュータプログラム - Google Patents

情報処理装置及びその方法及びコンピュータプログラム Download PDF

Info

Publication number
JP7240115B2
JP7240115B2 JP2018163624A JP2018163624A JP7240115B2 JP 7240115 B2 JP7240115 B2 JP 7240115B2 JP 2018163624 A JP2018163624 A JP 2018163624A JP 2018163624 A JP2018163624 A JP 2018163624A JP 7240115 B2 JP7240115 B2 JP 7240115B2
Authority
JP
Japan
Prior art keywords
depth
reliability
contour
corresponding points
information processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018163624A
Other languages
English (en)
Other versions
JP2020034525A (ja
Inventor
真志 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018163624A priority Critical patent/JP7240115B2/ja
Priority to US16/552,028 priority patent/US11393116B2/en
Publication of JP2020034525A publication Critical patent/JP2020034525A/ja
Application granted granted Critical
Publication of JP7240115B2 publication Critical patent/JP7240115B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/564Depth or shape recovery from multiple images from contours
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/421Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation by analysing segments intersecting the pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/752Contour matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • G06V10/993Evaluation of the quality of the acquired pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は、複数のカメラより得た画像から、奥行き情報を取得する技術に関するものである。
近年、現実空間に仮想空間の情報をリアルタイムに重ね合せて利用者に提示する複合現実感に関する研究が行われている。複合現実感の中で利用される描画処理装置は、ビデオカメラなどの撮像装置によって撮像された現実の映像の全域、または一部を、撮像装置の位置姿勢に応じて生成した仮想空間の画像(CG)に重畳した合成画像を生成する。このとき、現実空間の映像から特定の被写体領域を検出して被写体の三次元形状を推定することで、仮想空間に現実物体を合成することができる。ここで三次元形状を推定する手段として、複数のカメラを用いたステレオ計測法がある。ステレオ計測法は、撮像装置のキャリブレーションにより焦点距離やカメラ間の位置姿勢といったカメラパラメータを推定しておき、撮像画像の対応点とカメラパラメータから三角測量の原理によって奥行きを推定するものである。
しかしながら、ステレオ計測法では、特徴の少ない場所では対応点を検出することが難しく、正しい三次元位置や奥行きを推定できないという問題がある。かかる点に鑑み、ステレオ計測において奥行きを改善する手法も提案されている。例えば、特許文献1ではテクスチャの密度変化や消失点に向かう直線などを奥行き手掛かり情報として用いて撮像画像の対応点の精度を向上することで、ステレオ計測で得た奥行き情報を改善している。
特許文献2、特許文献3では、特徴の少ない被写体の検出を行う際に輪郭線上の点を対応点として対応付けを行うことで特徴の少ない被写体に対しても奥行きの計測を可能としている。また、特許文献3では平面近似による補正を行うことで精度よく被写体の奥行きを推定している。その他にも赤外線のパターンを投影して特徴を付与して左右の撮像画像で対応付けする方法もある。
特開2013-185905号公報 特開2013-134706号公報 特開2015-82288号公報
しかしながら、経年変化やキャリブレーションの微小な誤差、昇温変化などにより撮像装置間の相対位置姿勢にずれが発生している場合は左右の対応付けがずれてしまい、正しい奥行きを得ることはできない。また、特許文献2、3のように複数の撮像画像間で輪郭とエピポーラ線の交点を対応付ける場合は、輪郭の形状によって大きな奥行き誤差が発生するという課題もある。
本発明はかかる問題に鑑み成されたものであり、撮像装置のキャリブレーション後に撮像装置間の物理的なずれが生じた場合であっても、対応点の信頼度を求め、その信頼度から、正しい奥行きを推定する技術を提供しようとするものである。
この課題を解決するため、例えば本発明の情報処理装置は以下の構成を備える。すなわち、
複数の撮像装置から撮像した撮像画像を取得する画像取得手段と、
前記撮像装置で取得した画像から被写体の輪郭を抽出する輪郭の抽出手段と、
前記各画像間の輪郭と各画像を通過するエピポーラ線との交点を対応点とする対応付け手段と、
前記対応点の奥行きを算出する奥行き算出手段と、
前記交点における前記輪郭の接線方向と前記エピポーラ線との成す角度から、前記対応点の前記奥行きの信頼度を求める信頼度の抽出手段と、
前記頼度から前記対応点の前記奥行きを補正する奥行き補正手段とを有する。
本発明によれば、複数の撮像装置に何らかの原因で位置ずれが生じた場合であっても、誤った奥行が算出されるのを抑制できる。
実施形態における情報処理装置のブロック構成図。 実施形態の情報処理装置の利用形態を示す図。 対応点検出を説明するための図。 実施形態における対応点の位置補正処理を示すフローチャート。 撮像装置間の相対位置に変化があった場合の、被写体の輪郭の位置変化を示す図。 被写体輪郭の輪郭上の位置による誤差が異なることを説明するための図。 被写体をステレオ計測する様を示す図。 輪郭の対応点がずれた場合とずれていない場合の奥行の関係と、信頼度との関係を示す図。 第1の実施形態に係る奥行の補正処理を示すフローチャート。 奥行きに掛けるローパスフィルタを説明するための図。 補正後の奥行きと真の奥行きとの関係を示す図。 変形例1の情報処理装置の処理のフローチャート。 変形例1の情報処理装置の処理のフローチャート。 変形例2における補正処理を説明するための図。
以下、添付図面に従って本発明に係る実施形態を詳細に説明する。なお、以下に示す実施形態における構成は一例に過ぎず、本発明は図示された構成に限定されるものではない。
図1は主として情報処理装置のブロック構成図、図2は情報処理装置の利用形態を示している。
実施形態の情報処理装置1000は、2つの撮像装置100a、100bと、2つの表示装置200a,200bとが一体になったHMD2000を接続する。撮像装置100a,100bの2つにより、ステレオ撮影を可能とする。また2つの表示装置200a,200bは操作者の左右の目に対応するものであるが、1つの表示画面を左右に領域に分割して、それらの領域で画像を表示しても良い。なお、撮像装置100a,100bは、互いに同期し、例えば30フレーム/秒で撮像を行うものとする。
情報処理装置1000は、画像取得部1010、データ記憶部1020、被写体抽出部1030、輪郭抽出部1040、画像間対応付け部1050、奥行き推定部1060、信頼度算出部1070、奥行き補正部1080、モデル生成部1090、表示画像生成部1100、画像出力部200を有する。また、情報処理装置1000は、これら画像取得部1010などの構成要素を制御する制御部1500を有する。この制御部1500は、CPUなどで構成されるものである。なお、被写体抽出部1030などの処理内容を主体とする構成要素は、制御部1500が実行するソフトウェアで実現しても構わない。
画像取得部1010は、撮像装置100a,100bによる撮像画像を取得し、取得した撮像画像をデータ記憶部1020に供給する。データ記憶部1020は、画像取得部1010から供給される撮像画像を格納する。なお、データ記憶部1030は、仮想物体のデータ、および被写体抽出に用いる色や形状認識情報等の情報も記憶する。
被写体抽出部1030は、2つの撮像画像それぞれから特定の被写体領域を抽出する。例えば、被写体の色を事前に登録しておき撮像画像から登録色領域を抽出する。輪郭抽出部1040は、被写体抽出部1030で抽出した被写体領域から輪郭を抽出する。なお、輪郭の並び順の情報も取得する。例えば、被写体領域に対して輪郭追跡を行って輪郭位置および、連結情報を取得する。
画像間対応付け部1050は、輪郭抽出部1040で得た輪郭情報を用いて2つの撮像画像間の対応点を検出する。例えば、図3に示すように各撮像画像で輪郭とエピポーラ線500の交点を求め、撮像画像間で対応付けた交点を対応点とする。
奥行き推定部1060は、画像間対応付け部1050で対応付けた点を用いて対応点の三次元位置を推定する。例えば、撮像装置100a,100bが有するカメラパラメータ(主点、焦点距離や、それら2つの撮像装置間の相対位置姿勢)をあらかじめ算出しておくことで、三角測量の原理から対応点の三次元位置を算出できる。
信頼度算出部1070は、画像間対応付け部1050において輪郭とエピポーラ線の交点における信頼度を、輪郭の交点の接線方向とエピポーラ線が示す方向との成す角度に基づき算出する(詳細後述)。奥行き補正部1080は、奥行き推定部1060で得た奥行きと、信頼度算出部1070で得た信頼度から三次元位置(奥行き)を補正する。モデル生成部1090は、輪郭情報と奥行き補正部1080で補正した対応点の三次元位置を用いて被写体の三次元モデルを生成する。
表示画像生成部1100は、データ記憶部1020に保存された撮像画像と、仮想物体のデータ、さらには、モデル生成部1090で生成したモデルとを合成した、左右の2つの表示画像を生成する。そして、表示画像生成部1100は、生成した表示画像を表示装置200a,200bそれぞれに出力し、表示させる。
以上、実施形態における情報処理装置の構成要素を説明した。次に、図4のフローチャートにしたがって、本実施形態の情報処理装置1000の処理内容を説明する。なお、同図に係る処理に係るプログラムは、制御部1500内の不図示のメモリに格納されているものとする。
ステップS2010にて、制御部1500は、画像取得部1010を介して撮像装置100a、100bが撮像している画像を取得する。例えば、画像取得部1010は、撮像装置100a,100bが撮像した画像を取得するためのビデオキャプチャーカードである。
ステップS2020にて、制御部1500は、被写体抽出部1030および輪郭抽出部1040を制御し、画像取得部1010で取得した撮像画像(2つ)から被写体領域および輪郭を抽出する。抽出方法は特に問わないが、例えば、被写体抽出部1030は、機械学習により事前に被写体の特徴を学習して被写体を抽出しても良いし、被写体の色を登録して被写体を抽出してもよい。また、輪郭抽出部1040は、抽出した被写体領域に対して輪郭追跡を行うことで被写体の輪郭を抽出すればよい。
ステップS2030にて、制御部1500は、画像間対応付け部1050および奥行き推定部1060を制御し、エピポーラ線と輪郭の交点を算出させ、撮像画像間の交点を対応付ける。まず、図3に示すように各撮像画像で輪郭とエピポーラ線の交点を求め、撮像画像間で各交点を対応付ける。次に、撮像装置100a,100bのカメラパラメータ(主点、焦点距離、相対位置姿勢)と対応点からステレオ計測を行い交点の三次元位置を算出する。
ステップS2040にて、制御部1500は信頼度算出部1070を制御し、ステップS2030で求めた三次元位置の信頼度を算出させる。ここで信頼度とは、撮像装置100a,100bの相対位置姿勢に誤差が生じた際の奥行きの誤差の影響度合いを示す。
例えば、図5に示すように2つの撮像装置100a,100bをキャリブレーションしてステレオ平行化すると、エピポーラ線500は2つの画像間で平行になる。しかしながら、経年変化や温度変化の影響によりキャリブレーション後に撮像装置100a,100bの相対位置姿勢が動いた場合、ステレオ計測の計算上のパラメータ(エピポーラ線の位置)は変わらないが、画像上の被写体の位置が図5の輪郭610から輪郭620に変化することがある。
その結果、図6に示すようにエピポーラ線と輪郭の交点がずれる。ここで、エピポーラ線と輪郭の交点における、輪郭線の接線方向とエピポーラ線との成す角度が直交するとき、元の検出位置とのずれ700は小さい。しかし、上記交点における輪郭線の接線方向とエピポーラ線との成す角度が小さい、別な表現で言えば、上記交点における輪郭線の接線方向がエピポーラ線と平行に近い場合の検出点のずれ710が大きくなる。つまり、ずれ700の位置の奥行き誤差は小さいが、ずれ710の奥行き誤差は大きくなる。このように、エピポーラ線と輪郭の接線方向との成す角度の大きさが奥行きの誤差に影響を与えている。そこでエピポーラ線と輪郭との交点における、その輪郭の接線方向とエピポーラ線の成す角度から信頼度を定義する。
ここで、信頼度rを0~1の実数範囲で表現するものとする。交点位置における輪郭の接線方向とエピポーラ線との成す角度をθとした場合、信頼度rは簡単には式(1)で表現できる。
r=1-|cosθ| …(1)
ここで、rが“1”に近いほど信頼度は高いことをしめし、“0”に近づくほど信頼度は低いこと表すことになる。
また、対応点の正確度を信頼度に加えても良い。例えば、ある対応点に対して撮像装置100a,100bのエピポーラ線と輪郭の接線方向との成す角度が一致している方が対応の正確度が高い。そこで、その角度の差分をφとして、信頼度rを次式(2)で表現しても良い。
r=(1-|cosθ|)・cosφ …(2)
その他、2つの撮像画像における対応点の画素値の差から対応の正確度を求め、信頼度に付与しても良い。
ステップS2050にて、制御部1500は奥行き補正部1080を制御し、ステップS2030で求めた輪郭の奥行きを、ステップS2040で求めた信頼度に基づいて補正する。
次に輪郭の奥行きの補正処理をより詳細に説明する。
図7の被写体の奥行きをステレオ計測する場合、輪郭に沿った奥行きは図8に示すように連続性を持って変化する。なお、図8における、左端垂直軸は奥行きを示し、水平軸は輪郭上の予め設定した位置を始点とし、その始点から例えば反時計回りになぞった輪郭線上の位置を示している。また、右端垂直軸は、信頼度を表している。実施形態では、信頼度が0~1の範囲内としているので、図示の“1”を超える値は便宜的なものと理解されたい。
ここで、参照符号810は、対応点がずれた状態でステレオ計測した奥行きを示し、参照符号820は真の奥行きを表している。また、参照符号830は信頼度を示し、図示の通り0~1の値範囲で分布している。
図示の通り、ステレオ計測の奥行き810と真の奥行き820は輪郭の場所によって差があり、信頼度830の小さくなる場合の対応点は、大きな奥行き誤差が発生していることが判る。また、信頼度830の大きい場所では、ステレオ計測の奥行き810と真の奥行き820の差が小さいことも判る。
上記から、実施形態では、信頼度の大きい対応点の奥行きが保持(維持)されるように、奥行きの補正を行う。具体的には、輪郭に沿った奥行き変化を関数化し、最小二乗法により任意の関数に近似する。ここで、対応点iのステレオ計測の奥行きをdi、近似関数の奥行きをf(i)、信頼度をriとすれば、最小二乗法における誤差関数は次式(3)で定義できる。
E=Σ(di-f(i))×ri …(3)
ここで実施形態における奥行き補正部1080が行う補正処理を図9のフローチャートにしたがって説明する。
ステップS3010にて、奥行き補正部1080は、図10に示すように奥行きの変化関数にローパスフィルタを掛けて平滑化関数840を求める。また、ステップS3020にて、奥行き補正部1080は、ローパスフィルタ後の関数から近似関数の次数や近似範囲を推定する。このとき近似関数や近似範囲は複数の関数の重ね合わせで表現してもよい。例えば、輪郭上の位置0~300の奥行き変化は2次関数、輪郭位置300~700の奥行き変化は4次関数で近似してもよい。
ステップS3030にて、奥行き補正部1080は、ステレオ計測の奥行き関数に対して2次関数や4次関数、線形関数などで近似する。ここで、近似関数の誤差が大きい場合には、近似関数を変更して再計算してもよいし、ローパスフィルタの奥行きで補正してもよい。
次にステップS3040にて、奥行き補正部1080は、ステップS3030で求めた近似関数により対応点の新しい奥行きを算出する。なお、複数の近似関数を重ね合わせた場合には、奥行きの連続性を考慮して1つの対応点に対して複数の近似関数の奥行きを平均化する。図11に補正後の輪郭に沿った奥行き860と真の奥行き820との関係を示す。また、撮像装置毎に補正した奥行きの差が大きい場合は、ノイズとして除外してもよい。
以上の処理により、撮像装置間のキャリブレーション後に経年変化や温度変化により相対位置姿勢が変わった場合でも、ステレオ計測による奥行きを正しく推定することができ、複合現実感において被写体を違和感なく仮想空間に合成することができる。
[変形例1]
上記実施形態では、奥行き補正の方法として輪郭に沿った奥行きの変化関数に対して、n次関数で近似する方法を説明したが、より複雑な関数で近似しても良い。具体的には、輪郭に沿った奥行き関数に対して予め機械学習を用いて奥行き変化を学習しておき、学習結果を用いて奥行きと信頼度から奥行きを補正しても良い。
本変形例1における、制御部1500による、学習データの生成処理を図12のフローチャートを参照して説明する。
ステップS4010にて、制御部1500は、複数の仮想空間における撮像装置のカメラパラメータを設定する。ステップS4020にて、制御部1500は、被写体の仮想モデルを表示し撮像画像を取得する。ステップS4030にて、制御部1500は、ステップS4020で得た複数の撮像装置の撮像画像に対して、先の説明した実施形態と同様に対応点を求め、ステレオ計測により誤差のない教師信号(奥行き)を計算する。
ステップS4040にて、制御部1500は、経年変化や昇温変化をしたとみなして仮想撮像装置の位置姿勢を微小変化させる。ただし、仮想撮像装置のステレオ計測に用いる計算用のカメラパラメータは変化させない。ステップS4050にて、制御部1500は、微小変化させた仮想撮像装置の撮像画像を取得(生成)する。
ステップS4060にて、制御部1500は、ステップS4050で得た撮像画像とステップS4010で設定したカメラパラメータから入力データ(奥行き、および信頼度)を算出する。十分なデータを生成したら最後に、ステップS4070にて、制御部1500は、作成した入力データ、および教師信号を用いて機械学習を行う。例えば、輪郭位置1~10の入力データを入力したとき、輪郭位置1~10の教師信号が得られるように学習する。なお、被写体の位置や形状によって補正する輪郭の長さが異なるため、学習時には補正する輪郭の長さや奥行きの最大最小の範囲が同一になるように正規化してもよい。 学習が終わったら、学習結果を用いて奥行きの補正を行う。本変形例1における対応点の奥行き補正フローを図13に示す。
まず、先の説明した実施形態と同様に、制御部1500は、ステップS3010とステップS3020から近似関数の近似範囲を求める。なお、本変形例ではステップS3020における近似関数は機械学習の回帰モデルにより自動的に決定される。ステップS5020にて、制御部1500は、推論結果を用いて補正範囲の奥行きを補正する。
[変形例2]
上記変形例1では近似関数の近似範囲を求め、範囲内の入力データから範囲内の奥行きを推定したが、必ずしも近似範囲を決める必要はない。例えば、任意の対応点の近傍にある複数の対応点の奥行き、および信頼度から注目している対応点の奥行きを補正しても良い。
具体的には、図14に示すように対応点900に注目し、予め設定された範囲、例えば対応点を中心に、前後50個分の対応点910の奥行きと信頼度から対応点900の奥行きを補正する。同様にすべての対応点に対して補正処理行うことで近似範囲を求めることなく奥行きを補正することができる。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
1000…情報処理装置、1010…画像取得部、1020…データ記憶部、1030…被写体抽出部、1040…輪郭抽出部、1050…画像間対応付け部、1060…奥行き推定部、1070…信頼度算出部、1080…奥行き補正部、1090…モデル生成部、1100…表示画像生成部、2000…HMD,100a,1001b…撮像装置、200a,200b…表示装置

Claims (6)

  1. 複数の撮像装置から撮像した撮像画像を取得する画像取得手段と、
    前記撮像装置で取得した画像から被写体の輪郭を抽出する輪郭の抽出手段と、
    前記各画像間の輪郭と各画像を通過するエピポーラ線との交点を対応点とする対応付け手段と、
    前記対応点の奥行きを算出する奥行き算出手段と、
    前記交点における前記輪郭の接線方向と前記エピポーラ線との成す角度から、前記対応点の前記奥行きの信頼度を求める信頼度の抽出手段と、
    前記頼度から前記対応点の前記奥行きを補正する奥行き補正手段と
    を有することを特徴とする情報処理装置。
  2. 前記奥行き補正手段は、信頼度の大きい対応点の奥行きが保持されるように補正することを特徴とする請求項1に記載の情報処理装置。
  3. 前記奥行き補正手段は、輪郭と奥行きの変化と信頼度を機械学習によって学習し、対応点の奥行きを補正することを特徴とする請求項2に記載の情報処理装置。
  4. 前記奥行き補正手段は、対応点の近傍の奥行きと信頼度を機械学習によって学習し、対応点の奥行きを補正することを特徴とする請求項2に記載の情報処理装置。
  5. 情報処理装置の制御方法であって、
    複数の撮像装置から撮像した撮像画像を取得する画像取得工程と、
    前記撮像装置で取得した画像から被写体の輪郭を抽出する輪郭の抽出工程と、
    前記各画像間の輪郭と各画像を通過するエピポーラ線との交点を対応点とする対応付け工程と、
    前記対応の奥行きを算出する奥行き算出工程と、
    前記交点における前記輪郭の接線方向と前記エピポーラ線との成す角度から、前記対応点の前記奥行きの信頼度を求める信頼度の抽出工程と、
    前記頼度から前記対応点の前記奥行きを補正する奥行き補正工程と
    を有することを特徴とする情報処理装置の制御方法。
  6. コンピュータが読み込み実行することで、前記コンピュータに、請求項5に記載の方法の各工程を実行させるためのコンピュータプログラム。
JP2018163624A 2018-08-31 2018-08-31 情報処理装置及びその方法及びコンピュータプログラム Active JP7240115B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018163624A JP7240115B2 (ja) 2018-08-31 2018-08-31 情報処理装置及びその方法及びコンピュータプログラム
US16/552,028 US11393116B2 (en) 2018-08-31 2019-08-27 Information processing apparatus, method thereof, and non-transitory computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163624A JP7240115B2 (ja) 2018-08-31 2018-08-31 情報処理装置及びその方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2020034525A JP2020034525A (ja) 2020-03-05
JP7240115B2 true JP7240115B2 (ja) 2023-03-15

Family

ID=69641446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163624A Active JP7240115B2 (ja) 2018-08-31 2018-08-31 情報処理装置及びその方法及びコンピュータプログラム

Country Status (2)

Country Link
US (1) US11393116B2 (ja)
JP (1) JP7240115B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513677B (zh) * 2018-09-28 2024-10-11 松下知识产权经营株式会社 纵深取得装置、纵深取得方法以及记录介质
US20230186550A1 (en) * 2021-12-09 2023-06-15 Unity Technologies Sf Optimizing generation of a virtual scene for use in a virtual display environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140670A1 (en) 2003-11-20 2005-06-30 Hong Wu Photogrammetric reconstruction of free-form objects with curvilinear structures
JP2015005237A (ja) 2013-06-24 2015-01-08 オリンパス株式会社 検出装置、学習装置、検出方法、学習方法及びプログラム
JP2015035658A (ja) 2013-08-07 2015-02-19 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置
JP2016061687A (ja) 2014-09-18 2016-04-25 ファナック株式会社 輪郭線計測装置およびロボットシステム
JP2017092983A (ja) 2017-01-25 2017-05-25 キヤノン株式会社 画像処理装置、画像処理方法、画像処理プログラム、および撮像装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920306A (en) * 1954-04-12 1960-01-05 Jersey Prod Res Co Correlator for zero crossing pulses obtained from seismograms
US2866899A (en) * 1955-12-12 1958-12-30 Itt Electronic spectroanalysis computer
US4154788A (en) * 1971-03-16 1979-05-15 The United States Of America As Represented By The Secretary Of The Navy Process for making a plastic antenna reflector
US4210968A (en) * 1975-12-16 1980-07-01 Lindseth Roy O Seismic exploration technique
US4155098A (en) * 1977-06-28 1979-05-15 Rca Corporation Groove depth estimation system using diffractive groove effects
US5684890A (en) * 1994-02-28 1997-11-04 Nec Corporation Three-dimensional reference image segmenting method and apparatus
US6718062B1 (en) * 2000-05-30 2004-04-06 Microsoft Corporation System and method for matching curves of multiple images representing a scene
TW201005673A (en) * 2008-07-18 2010-02-01 Ind Tech Res Inst Example-based two-dimensional to three-dimensional image conversion method, computer readable medium therefor, and system
WO2012029298A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 撮影装置および画像処理方法
JP5719198B2 (ja) 2011-03-07 2015-05-13 キヤノン株式会社 プリントシステム、情報処理装置、制御方法、およびプログラム
JP5777507B2 (ja) * 2011-12-27 2015-09-09 キヤノン株式会社 情報処理装置、情報処理方法、及びそのプログラム
JP5414947B2 (ja) * 2011-12-27 2014-02-12 パナソニック株式会社 ステレオ撮影装置
JP2013185905A (ja) 2012-03-07 2013-09-19 Sony Corp 情報処理装置及び方法、並びにプログラム
JP5703255B2 (ja) * 2012-04-27 2015-04-15 株式会社東芝 画像処理装置、画像処理方法およびプログラム
JP5818857B2 (ja) 2013-10-24 2015-11-18 キヤノン株式会社 情報処理装置およびその制御方法
US9674504B1 (en) * 2015-12-22 2017-06-06 Aquifi, Inc. Depth perceptive trinocular camera system
US20180068459A1 (en) * 2016-09-08 2018-03-08 Ford Global Technologies, Llc Object Distance Estimation Using Data From A Single Camera
US10755428B2 (en) * 2017-04-17 2020-08-25 The United States Of America, As Represented By The Secretary Of The Navy Apparatuses and methods for machine vision system including creation of a point cloud model and/or three dimensional model
CN109284653A (zh) * 2017-07-20 2019-01-29 微软技术许可有限责任公司 基于计算机视觉的细长物体检测
US10572760B1 (en) * 2017-11-13 2020-02-25 Amazon Technologies, Inc. Image text localization
JP7081142B2 (ja) * 2017-12-26 2022-06-07 富士通株式会社 情報処理装置、情報処理方法、及びプログラム
JP6981247B2 (ja) * 2017-12-27 2021-12-15 富士通株式会社 情報処理装置、情報処理方法、及び情報処理プログラム
GB2572755B (en) * 2018-04-05 2020-06-10 Imagination Tech Ltd Matching local image feature descriptors
US10733761B2 (en) * 2018-06-29 2020-08-04 Zoox, Inc. Sensor calibration
WO2020221443A1 (en) * 2019-04-30 2020-11-05 Huawei Technologies Co., Ltd. Scale-aware monocular localization and mapping
US10937178B1 (en) * 2019-05-09 2021-03-02 Zoox, Inc. Image-based depth data and bounding boxes
US11315274B2 (en) * 2019-09-20 2022-04-26 Google Llc Depth determination for images captured with a moving camera and representing moving features

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140670A1 (en) 2003-11-20 2005-06-30 Hong Wu Photogrammetric reconstruction of free-form objects with curvilinear structures
JP2015005237A (ja) 2013-06-24 2015-01-08 オリンパス株式会社 検出装置、学習装置、検出方法、学習方法及びプログラム
JP2015035658A (ja) 2013-08-07 2015-02-19 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置
JP2016061687A (ja) 2014-09-18 2016-04-25 ファナック株式会社 輪郭線計測装置およびロボットシステム
JP2017092983A (ja) 2017-01-25 2017-05-25 キヤノン株式会社 画像処理装置、画像処理方法、画像処理プログラム、および撮像装置

Also Published As

Publication number Publication date
US11393116B2 (en) 2022-07-19
US20200074659A1 (en) 2020-03-05
JP2020034525A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
US10825198B2 (en) 3 dimensional coordinates calculating apparatus, 3 dimensional coordinates calculating method, 3 dimensional distance measuring apparatus and 3 dimensional distance measuring method using images
US11805861B2 (en) Foot measuring and sizing application
CN109313814B (zh) 照相机校准系统
US9759548B2 (en) Image processing apparatus, projector and projector system including image processing apparatus, image processing method
JP5745178B2 (ja) 3次元測定方法、装置及びシステム、並びに画像処理装置
Naroditsky et al. Automatic alignment of a camera with a line scan lidar system
JP5578844B2 (ja) 情報処理装置、情報処理方法及びプログラム
KR100934564B1 (ko) 정보 처리 장치 및 정보 처리 방법
CN103366360B (zh) 信息处理设备和信息处理方法
US10771776B2 (en) Apparatus and method for generating a camera model for an imaging system
EP3497618B1 (en) Independently processing plurality of regions of interest
US8571303B2 (en) Stereo matching processing system, stereo matching processing method and recording medium
CN111028205B (zh) 一种基于双目测距的眼睛瞳孔定位方法及装置
CN101996416A (zh) 3d人脸捕获方法和设备
JP7240115B2 (ja) 情報処理装置及びその方法及びコンピュータプログラム
CN112686961A (zh) 一种深度相机标定参数的修正方法、装置
CN107339938A (zh) 一种用于单目立体视觉自标定的异型标定块及标定方法
CN115862124A (zh) 视线估计方法、装置、可读存储介质及电子设备
Liu et al. A new method for calibrating depth and color camera pair based on Kinect
JP2021051347A (ja) 距離画像生成装置及び距離画像生成方法
CN109902695B (zh) 一种面向像对直线特征匹配的线特征矫正与提纯方法
WO2019087253A1 (ja) ステレオカメラのキャリブレーション方法
CN113140031B (zh) 三维影像建模系统、方法及应用其的口腔扫描设备
JP2016156702A (ja) 撮像装置および撮像方法
CN113587895A (zh) 双目测距方法及装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R151 Written notification of patent or utility model registration

Ref document number: 7240115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151