JP7232453B2 - Diabetic retinopathy, cataract and/or nephropathy model laboratory animal - Google Patents

Diabetic retinopathy, cataract and/or nephropathy model laboratory animal Download PDF

Info

Publication number
JP7232453B2
JP7232453B2 JP2018173609A JP2018173609A JP7232453B2 JP 7232453 B2 JP7232453 B2 JP 7232453B2 JP 2018173609 A JP2018173609 A JP 2018173609A JP 2018173609 A JP2018173609 A JP 2018173609A JP 7232453 B2 JP7232453 B2 JP 7232453B2
Authority
JP
Japan
Prior art keywords
hatching
weeks
medaka
age
nephropathy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173609A
Other languages
Japanese (ja)
Other versions
JP2019187410A (en
Inventor
慎一 苣田
晶彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Kyorin University
Original Assignee
Kake Educational Institution
Kyorin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kake Educational Institution, Kyorin University filed Critical Kake Educational Institution
Publication of JP2019187410A publication Critical patent/JP2019187410A/en
Application granted granted Critical
Publication of JP7232453B2 publication Critical patent/JP7232453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Farming Of Fish And Shellfish (AREA)

Description

本発明は、糖尿病網膜症、白内障及び/又は腎症モデル実験動物に関する。 The present invention relates to diabetic retinopathy, cataract and/or nephropathy model experimental animals.

糖尿病網膜症は糖尿病の三大合併症の一つであり、成人の主要な失明原因である。臨床診断や病理解剖により症状の進展や治療の効果を確認することはできる。しかし、糖尿病網膜症の病理学的特徴や進展のメカニズムの解明はできていない。糖尿病網膜症を分子細胞レベルで深く理解するためにも同様な症状を示す実験動物はとても重要である。
糖尿病性腎症も三大合併症の一つであり、代表的な二次性糸球体疾患である。日本では1998年以来慢性透析療法導入症例疾患の第1位となっている。糖尿病網膜症と同様に、病理生理学的特徴や進展のメカニズムに不明な点が多く、予防や治療のためにも分子細胞レベルで深く理解する必要がある。
II型糖尿病性腎症の部分的特徴を示す代表的な実験動物は、C57BL/6Jマウスをストレプトゾトシン処理により膵臓を破壊し、又FVBマウスを遺伝的にI型糖尿病にし、又II型糖尿病になり易いdb/dbマウスを利用し、又遺伝的背景としてインスリン抵抗性の性質をもつBlack and tan, branchyury(BTBR)マウスを利用し、それらの糖尿病の特徴をもつマウスを遺伝子操作により高血圧体質にしたマウス、又は1対の腎臓のうち1つを外科的に除去することで腎機能を低下させ、1つの腎臓への負荷が増加したマウスとされている(Betz&Conway, Recent advances in animal models of diabetic nephropathy. Nephron Experimental Nephropathy 2014;126,191-195)。以上のII型糖尿病性腎症モデルマウスはヒトの糖尿病性腎症の初期の病変を示し、病変の原因解明において貢献できる実験動物であるが、病変が起こるまでに薬剤処理、遺伝子操作、外科的処置といったヒトと明らかに異なる経緯があり、生活習慣病とは異なるという問題が生じている。
近年,動物実験における3R(使用数の削減[Reduce],苦痛の軽減[Refinement],代替法の活用[Replacement])は実験動物福祉の国際原則として広く認知され,哺乳動物の利用は厳しく規制され始めた。代替法の一つとして,小型魚類の利用が勧められている。特に医薬品開発などの産業の分野では小型魚類の重要性が増している。例えば、新薬候補化合物を選出する化合物スクリーニング法の次世代の手法として、whole-animal drug screening法が普及し始めており、それにゼブラフィッシュが利用されている。
ゼブラフィッシュを用いた網膜症モデルの報告がある(非特許文献1)。ゼブラフィッシュとヒトの眼は構造において大きな類似性があり、眼の発達や視力障害に関する研究に広く利用されている(非特許文献2)。体長が3cm以下の小型魚類であり、実験動物げっ歯類よりも低コストで小スペースで維持できる利点がある。ゲノム編集及び遺伝子組換えも比較的容易に行え(非特許文献3)、糖尿病網膜症の形態学的解析だけでなく、それに関連する変異系統の利用により原因遺伝子の特定に貢献できると期待される。
同様に、ゼブラフィッシュを用いた糖尿病性腎症に関する報告がある(Olsen AS, Sarras MP, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus Wound Repair Regen 2010,18(5):532-542.)。ゼブラフィッシュとメダカを含む魚類も、腎臓の構造についてヒトやげっ歯類と類似性があり、モデル生物作製の試みや、腎症に関する遺伝子の機能を解析する研究に利用される(Seman NA, He B, Ojala JRM, Mohamud WNW, Ostenson CG, Brismar K, Gu HF. Genetic and biological effects of sodium-chloride cotranspoter (SLC12A3) in diabetic nephropathy. American Journal of Nephropathy 201440:408-416)。
メダカも現在ではゼブラフィッシュの有用さに並ぶ実験小型魚類であり、ゲノム編集及び遺伝子組換えも比較的容易に行える(非特許文献3)。
しかしながら、ヒトの糖尿病網膜症及び又白内障又腎症の症状のうち全てを示すモデル実験動物はない。
ところで、レプチン受容体は食欲抑制ホルモンであるレプチンの受容体である。Tartagliaら及びLeeらによって遺伝性肥満(db/db)マウスの病因遺伝子として同定された(非特許文献5、5)。本発明者は、TILLING法によりレプチン受容体欠損(LepRKO)メダカを作出し、LepRKOメダカが野生型メダカと比べて摂餌量が多く、成長が早いことを報告した(非特許文献6、7、特許文献1)。また、糖代謝に異常を示し、特定の給餌量(表1)による飼育下において空腹時高血糖を示すことを報告した(非特許文献8、9、10、11、12)。
ゼブラフィッシュを用いた網膜症モデルの報告では、ゼブラフィッシュを高濃度グルコース液に浸すことで全身を高血糖状態に保ち、網膜内顆粒層の菲薄化を誘導することができる(非特許文献1)。ただしその他の症状は出ていない。
メダカでは、高脂肪食給餌後に空腹時高血糖を示した報告があるが、糖尿病が関与する網膜症及び白内障の報告はない(非特許文献13)。
Diabetic retinopathy is one of the three major complications of diabetes and a leading cause of blindness in adults. It is possible to confirm the progress of symptoms and the effect of treatment by clinical diagnosis and pathological autopsy. However, the pathological characteristics of diabetic retinopathy and the mechanism of progression have not been elucidated. Experimental animals exhibiting similar symptoms are very important for deep understanding of diabetic retinopathy at the molecular and cellular level.
Diabetic nephropathy is also one of the three major complications, and is a typical secondary glomerular disease. Since 1998, it has been the number one disease for which chronic dialysis therapy is introduced in Japan. As with diabetic retinopathy, there are many unclear points about the pathophysiological characteristics and progression mechanisms, and a deep understanding at the molecular and cellular level is necessary for prevention and treatment.
Representative experimental animals showing partial features of type II diabetic nephropathy include C57BL/6J mice with pancreatic destruction by streptozotocin treatment and FVB mice genetically rendered type I and type II diabetic. Using fragile db/db mice and Black and tan, branchyury (BTBR) mice with a genetic background of insulin resistance, these diabetic-characterized mice were genetically engineered to be predisposed to hypertension. Mice or mice in which renal function is reduced by surgically removing one of a pair of kidneys and the load on one kidney is increased (Betz & Conway, Recent advances in animal models of diabetic nephropathy Nephron Experimental Nephropathy 2014;126, 191-195). The type II diabetic nephropathy model mouse described above exhibits early lesions of human diabetic nephropathy and is an experimental animal that can contribute to the elucidation of the cause of lesions. There is a clearly different process from humans, such as treatment, and there is a problem that it is different from lifestyle-related diseases.
In recent years, the 3Rs (Reduce number of animals used [Reduce], Refinement [Refinement], Utilization of alternative methods [Replacement]) in animal experiments have been widely recognized as international principles of laboratory animal welfare, and the use of mammals is strictly regulated. I started. As an alternative method, the use of small fish is recommended. Especially in the field of industry such as drug development, the importance of small fish is increasing. For example, the whole-animal drug screening method has begun to spread as a next-generation method of compound screening method for selecting new drug candidate compounds, and zebrafish is used for it.
There is a report on a retinopathy model using zebrafish (Non-Patent Document 1). Zebrafish and human eyes have a great similarity in structure, and are widely used in research on eye development and visual impairment (Non-Patent Document 2). It is a small fish with a body length of 3 cm or less, and has the advantage of being less expensive and less space-saving than laboratory rodents. Genome editing and genetic recombination can be performed relatively easily (Non-Patent Document 3), and it is expected that not only the morphological analysis of diabetic retinopathy but also the use of related mutant strains will contribute to the identification of the causative gene. .
Similarly, there is a report on diabetic nephropathy using zebrafish (Olsen AS, Sarras MP, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus Wound Repair Regen 2010, 18(5):532- 542.). Fish, including zebrafish and medaka, also have renal structures similar to those of humans and rodents, and are used to create model organisms and to analyze the functions of genes related to nephropathy (Seman NA, He B, Ojala JRM, Mohamud WNW, Ostenson CG, Brismar K, Gu HF. Genetic and biological effects of sodium-chloride cotranspoter (SLC12A3) in diabetic nephropathy. American Journal of Nephropathy 201440:408-416).
Medaka is currently a small experimental fish that is as useful as zebrafish, and genome editing and genetic recombination can be performed relatively easily (Non-Patent Document 3).
However, no experimental animal model exhibits all of the symptoms of diabetic retinopathy and/or cataract or nephropathy in humans.
By the way, the leptin receptor is the receptor for leptin, an appetite suppressing hormone. It was identified by Tartaglia et al. and Lee et al. The present inventors produced leptin receptor-deficient (LepRKO) medaka by the TILLING method, and reported that LepRKO medaka has a higher food intake and grows faster than wild-type medaka (Non-Patent Documents 6, 7, Patent document 1). In addition, it was reported that abnormalities in glucose metabolism were exhibited, and fasting hyperglycemia was exhibited in breeding with a specific feed amount (Table 1) (Non-Patent Documents 8, 9, 10, 11, 12).
In a report of a retinopathy model using zebrafish, immersing zebrafish in a high-concentration glucose solution can maintain the whole body in a hyperglycemic state and induce thinning of the intraretinal granular layer (Non-Patent Document 1). . However, no other symptoms were observed.
There is a report that medaka showed fasting hyperglycemia after feeding with a high-fat diet, but there is no report of diabetes-related retinopathy and cataract (Non-Patent Document 13).

特開2014-147378号公報JP 2014-147378 A

Gleeson M, et al., Acta Diabetologica, 44(3):157-163, 2007Gleeson M, et al., Acta Diabetologica, 44(3):157-163, 2007 Goldsmith P and Harris WA, Seminars in Cell and Developmental Biology 14(1):11-18, 2003Goldsmith P and Harris WA, Seminars in Cell and Developmental Biology 14(1):11-18, 2003 Kawahara A, et al., Chapter 8 in Targeted genome editing using site-specific nucleases, 119-131, 2014Kawahara A, et al., Chapter 8 in Targeted genome editing using site-specific nucleases, 119-131, 2014 Tartaglia LA, et al., Cell, 83: 1263-1271,1995Tartaglia LA, et al., Cell, 83: 1263-1271, 1995 Lee GH, et a., Nature, 379:632-635,1996Lee GH, et al., Nature, 379:632-635,1996 苣田慎一, 比較内分泌学会学術誌, 40(152):101~103, 2014Shinichi Kamata, Journal of Comparative Endocrinology, 40(152):101~103, 2014 Chisada S, et al., Gen Comp Endocrinol, 195: 9-20,2014Chisada S, et al., Gen Comp Endocrinol, 195: 9-20, 2014 Chisada S, et al., Abstracts of 7th Aquatic Animal Models for Human Disease Conference, 152 page, 2014Chisada S, et al., Abstracts of 7th Aquatic Animal Models for Human Disease Conference, 152 page, 2014 Chisada S, et al., 第20回小型魚類研究会要旨集,42 page, 2014Chisada S, et al., Abstracts of the 20th Small Fish Research Meeting, 42 page, 2014 Chisada S, et al., 第21回小型魚類研究会要旨集,33 page, 2015Chisada S, et al., Abstracts of the 21st Small Fish Research Meeting, 33 page, 2015 Chisada S, et al., Abstracts of 9th European zebrafish meeting, P2-O32, 2015Chisada S, et al., Abstracts of 9th European zebrafish meeting, P2-O32, 2015 Chisada S, et al., Abstracts of Aquatic model organisms for human disease and toxicology research, 22 page, 2016Chisada S, et al., Abstracts of Aquatic model organisms for human disease and toxicology research, 22 pages, 2016 Mastumoto et al., Disease Models & Mechanisms, 3:431-440, 2010Mastumoto et al., Disease Models & Mechanisms, 3:431-440, 2010

このような状況のもと、糖尿病網膜症、白内障、腎症などのモデル実験動物の開発が望まれていた。 Under these circumstances, development of experimental animal models for diabetic retinopathy, cataract, nephropathy, etc. has been desired.

本発明者は、上記課題を解決するために鋭意検討を行った結果、レプチン受容体が欠損された小型実験魚類を所定の給餌法で飼育することにより、糖尿病網膜症、白内障及び/又は腎症モデル実験動物を作出することに成功し、本発明を完成するに至った。 As a result of intensive studies in order to solve the above problems, the present inventors have found that diabetic retinopathy, cataract and/or nephropathy can be caused by breeding small experimental fish lacking leptin receptors according to a predetermined feeding method. We have succeeded in producing a model experimental animal, and have completed the present invention.

すなわち、本発明は以下の通りである。
(1)レプチン受容体の機能的欠損を有する実験用小型魚類を、孵化してから孵化後6週齢までの任意の時期から孵化後20週齢以上にわたり、孵化後週齢と給餌量との比が下記値の範囲内となるように給餌して飼育することを特徴とする、前記実験用小型魚類に糖尿病網膜症、白内障及び/又は腎症を発症させる方法。
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96
(2)孵化後週齢と給餌量との比が下記値の範囲内となるように給餌して飼育する、(1)に記載の方法。
給餌量(mg/尾/日)/ 孵化後週齢 =1.0~1.96(孵化後19週齢まで。ただし孵化後4週齢を除く)、0.69~1.34(孵化後4週齢、及び孵化後20週齢以降)
(3)レプチン受容体の機能的欠損が、レプチン受容体欠損ホモ接合体である、(1)又は(2)に記載の方法。
(4)実験用小型魚類がメダカ又はゼブラフィッシュである(1)~(3)のいずれか1項に記載の方法。
(5)(1)~(4)のいずれか1項に記載の方法で作製された、糖尿病網膜症、白内障及び/又は腎症モデル魚類。
(6)レプチン受容体の機能的欠損を有する実験用小型魚類を、孵化してから孵化後6週齢までの任意の時期から孵化後20週齢以上にわたり、孵化後週齢と給餌量との比が下記値の範囲内となるように給餌して飼育することを特徴とする、糖尿病網膜症、白内障及び/又は腎症モデル魚類の製造方法。
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96
(7)孵化後週齢と給餌量との比が下記値の範囲内となるように給餌して飼育する、(6)に記載の方法。
給餌量(mg/尾/日)/ 孵化後週齢 =1.0~1.96(孵化後19週齢まで。ただし孵化後4週齢を除く)、0.69~1.34(孵化後4週齢、及び孵化後20週齢以降)
(8)(5)に記載のモデル魚類に候補物質を接触させることを特徴とする、糖尿病網膜症、白内障及び/又は腎症の治療薬のスクリーニング方法。
That is, the present invention is as follows.
(1) Experimental small fish with a functional deficiency in leptin receptors were treated at any time from hatching to 6 weeks after hatching to 20 weeks or more after hatching, and the age after hatching and the amount of food fed. A method for causing diabetic retinopathy, cataract and/or nephropathy in the small experimental fish, characterized by feeding and rearing such that the ratio is within the range of the following values.
Feeding amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.96
(2) The method according to (1), wherein the ratio of the post-hatch age in weeks to the feed amount is within the following range.
Feeding amount (mg/tail/day)/age in weeks after hatching = 1.0-1.96 (up to 19 weeks after hatching, excluding 4 weeks after hatching), 0.69-1.34 (4 weeks after hatching and 20 weeks after hatching) weeks of age and later)
(3) The method according to (1) or (2), wherein the leptin receptor functional deficiency is a leptin receptor deficiency homozygote.
(4) The method according to any one of (1) to (3), wherein the small experimental fish is killifish or zebrafish.
(5) A fish model of diabetic retinopathy, cataract and/or nephropathy prepared by the method according to any one of (1) to (4).
(6) Experimental small fish with a functional defect in the leptin receptor are treated at any time from hatching to 6 weeks after hatching to 20 weeks or more after hatching, and the age after hatching and the amount of food fed A method for producing diabetic retinopathy, cataract and/or nephropathy model fish, characterized by feeding and breeding so that the ratio is within the range of the following values.
Feeding amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.96
(7) The method according to (6), wherein the ratio of the post-hatch age in weeks to the feed amount is within the following range.
Feeding amount (mg/tail/day)/age in weeks after hatching = 1.0-1.96 (up to 19 weeks after hatching, excluding 4 weeks after hatching), 0.69-1.34 (4 weeks after hatching and 20 weeks after hatching) weeks of age and later)
(8) A method for screening therapeutic agents for diabetic retinopathy, cataract and/or nephropathy, which comprises contacting the model fish of (5) with a candidate substance.

本発明により、糖尿病網膜症、白内障及び/又は腎症モデル(糖尿病網膜症、白内障、腎症、又はこれらの組み合わせのモデル)の実験動物が提供される。本発明の実験動物(例えば20週齢から28週齢のLepRKOメダカ)を用いて、小スペース・低費用で多数の薬剤スクリーニングを行うことが可能となる。
本発明は、II型糖尿病網膜症、白内障及び/又は腎症を示すメダカの提供を含む。II型糖尿病網膜症メダカは既存のモデル動物と同様にヒトで認められている部分的な糖尿病網膜症の所見を持つ。しかし、既存のモデル動物より早期に、そして顕著な網膜症、白内障及び/又は腎症を示す。そして、小型魚類を用いた最初のII型糖尿病網膜症、白内障及び/又は腎症の病理組織学的特徴を持つメダカである。本発明により実験動物福祉の国際原則として広く認知される動物実験3Rも克服でき,つまり、哺乳動物の利用の規制、及び小型魚類への代替に対応でき、研究の推進や薬剤スクリーニング等の分野でも大きな意義を持つ。
The present invention provides experimental animals for diabetic retinopathy, cataract and/or nephropathy models (models of diabetic retinopathy, cataract, nephropathy, or a combination thereof). Using the experimental animals of the present invention (for example, 20-week-old to 28-week-old LepRKO medaka fish), it is possible to perform a large number of drug screenings in a small space and at low cost.
The present invention includes providing medaka fish exhibiting type II diabetic retinopathy, cataract and/or nephropathy. Type II diabetic retinopathy medaka has findings of partial diabetic retinopathy recognized in humans as well as existing model animals. However, it exhibits earlier and more pronounced retinopathy, cataract and/or nephropathy than existing animal models. And it is the first medaka with histopathological characteristics of type II diabetic retinopathy, cataract and/or nephropathy using small fish. With the present invention, it is possible to overcome the 3Rs of animal experiments, which are widely recognized as international principles of laboratory animal welfare. have great significance.

症状を誘発する特定の給餌量、症状を誘発しない給餌量、及び各週齢の平均体重を示す図である。 太線:症状を誘発する特定の給餌量(平均)であり、表1に相当。斜線領域:症状を誘発する特定の給餌量の下限及び上限量域。灰色領域:症状を誘発しなかった給餌量。破線:症状を誘発する特定の給餌量(平均)を給餌した際の体重値。FIG. 1 shows specific symptom-inducing feeding amounts, non-symptom-inducing feeding amounts, and average body weights at each age. Bold line: specific feeding dose (average) that induces symptoms, corresponding to Table 1. Shaded area: lower and upper dose range for a particular feeding dose that induces symptoms. Gray area: feeding dose that did not induce symptoms. Dashed line: body weight values when fed a specific symptom-inducing food intake (mean). 本発明の方法により飼育されたLepRKOメダカと野生型メダカの空腹時血糖値を示す図である。黒色カラム:野生型メダカ、白色カラム:LepRKOメダカを示す。*p<0.001FIG. 2 shows fasting blood glucose levels of LepRKO medaka and wild-type medaka bred by the method of the present invention. Black columns: wild-type medaka, white columns: LepRKO medaka. *p<0.001 本発明の方法により飼育されたLepRKOメダカと野生型メダカの摂餌1時間後の血漿インスリン濃度を示す図である。黒色カラム:野生型メダカ、白色カラム:LepRKOメダカを示す。*p<0.001FIG. 2 shows plasma insulin concentrations in LepRKO medaka and wild-type medaka raised by the method of the present invention 1 hour after feeding. Black columns: wild-type medaka, white columns: LepRKO medaka. *p<0.001 孵化後28週齢に観察された不透明な水晶体を持つLepRKOメダカの写真である。A:野生型メダカ、B:LepRKOメダカを示す。It is a photograph of LepRKO medaka with an opaque lens observed at 28 weeks of age after hatching. A: Wild-type medaka, B: LepRKO medaka. 不透明な水晶体を持つLepRKOメダカの水晶体の組織学的な観察像を示す図である。A1, A2:野生型メダカ、B1, B2:LepRKOメダカ、アスタリスク:水腫、黒▲:モルガニー小体、A1, B1のスケール:100 um 、A2, B2のスケール:50 umを示す。FIG. 10 is a diagram showing a histological observation image of the lens of LepRKO medaka having an opaque lens. A1, A2: wild-type medaka, B1, B2: LepRKO medaka, asterisk: edema, black ▲: Morgani corpuscle, scale of A1 and B1: 100 um, scale of A2 and B2: 50 um. 不透明な水晶体を持つLepRKOメダカの網膜の組織学的な観察像を示す図である。A:野生型メダカ、B:LepRKOメダカ、a:網膜色素上皮細胞層、b:メラニン色素層、c:視細胞層、d:外顆粒層、e:外網状層、f:内顆粒層、g:内網状層、h:視神経細胞層、i:視神経線維、アスタリスク:毛細血管のうっ血を示す。FIG. 10 is a diagram showing a histological observation image of the retina of LepRKO medaka with an opaque lens. A: wild-type medaka, B: LepRKO medaka, a: retinal pigment epithelial cell layer, b: melanin pigment layer, c: photoreceptor layer, d: outer nuclear layer, e: outer reticular layer, f: inner nuclear layer, g : inner plexiform layer, h: optic nerve cell layer, i: optic nerve fiber, asterisk: indicates capillary congestion. 特定の給餌量(表1、図1)による飼育におけるLepRKOメダカと野生型メダカの血中クレアチニン濃度を示す。黒色カラム:野生型、白色カラム:LepRKOメダカを示す。aの差は、Studentのt検定によりp<0.05で、bの差はマン・ホイットニーのU検定によりp<0.01で統計的に有意差があることを示す。Fig. 1 shows blood creatinine concentrations of LepRKO medaka and wild-type medaka in breeding with specific feed amounts (Table 1, Fig. 1). Black columns: wild type, white columns: LepRKO medaka. Differences in a are p<0.05 by Student's t-test, and differences in b are p<0.01 by Mann-Whitney U-test. 特定の給餌量(表1、図1)による飼育におけるLepRKOメダカと野生型メダカの20週齢の腎臓の組織学的な観察像を示す。A:野生型メダカ、B:LepRKOメダカを示す。スケールは20umを示す。20-week-old kidney histological images of LepRKO medaka and wild-type medaka bred with specific feed amounts (Table 1, FIG. 1) are shown. A: Wild-type medaka, B: LepRKO medaka. The scale indicates 20um. 特定の給餌量(表1、図1)による飼育におけるLepRKOメダカと野生型メダカの30週齢の腎臓の組織学的な観察像を示す。A:野生型メダカ、BとC:LepRKOメダカを示す。図Bの黒▲:糸球体毛細血管腔、図Bのアスタリスク:輸入・出動脈の拡張、図9Cの矢印:メサンギウム基質の増生、図9Cの黒▲:硝子様物質、スケールは20umを示す。30-week-old kidney histological images of LepRKO medaka and wild-type medaka bred with specific feed amounts (Table 1, FIG. 1) are shown. A: wild-type medaka, B and C: LepRKO medaka. Black ▴ in FIG. B: glomerular capillary space, asterisk in FIG. B: dilation of afferent and efferent arteries, arrow in FIG. 9C: hyperplasia of mesangial matrix, black ▴ in FIG. 9C: hyaline-like substance, scale indicates 20 μm. 特定の給餌量(表1、図1)による飼育におけるLepRKOメダカと野生型メダカの40週齢の腎臓の組織学的な観察像を示す。A:野生型メダカ、B:LepRKOメダカを示す。図10B、アスタリスク:ボーマン嚢腔の拡張、図10B、黒▲:糸球体毛細血管腔の拡張、スケールは20umを示す。40-week-old kidney histological images of LepRKO medaka and wild-type medaka bred with specific feed amounts (Table 1, FIG. 1) are shown. A: Wild-type medaka, B: LepRKO medaka. FIG. 10B, asterisk: dilation of Bowman's capsule space, FIG. 10B, black triangle: dilation of glomerular capillary space, scale indicates 20 um.

1.概要
本発明者は、レプチン受容体欠損メダカを特定の給餌量により飼育し、そのメダカの血糖値及びインスリン濃度を測定することにより、II型糖尿病様症状を持つことを示した。さらに、そのメダカが糖尿病網膜症・白内障モデル動物、及び糖尿病性腎症モデル動物として有用性であることを見出した。本発明は、これらの知見により完成された発明である。
1. Overview The present inventors bred leptin receptor-deficient medaka with a specific feeding amount, and measured the blood glucose level and insulin concentration of the medaka, thereby showing that the medaka has type II diabetes-like symptoms. Furthermore, the inventors have found that the medaka fish are useful as diabetic retinopathy/cataract model animals and diabetic nephropathy model animals. The present invention is an invention completed based on these findings.

本発明は、II型糖尿病から網膜症、白内障及び/又は腎症を再現する新規病態モデル実験動物、及びその作出方法、そして新規病態モデル実験動物の利用方法を提供することを目的とする。本発明者らは、上記目的に鑑み、鋭意検討を行った結果、LepRKOメダカが、特定の給餌量(表1、図1)による飼育下で、空腹時高血糖、及び網膜症、白内障及び/又は腎症の病理組織学的特徴を維持することを見出した。

Figure 0007232453000001
An object of the present invention is to provide a novel pathological model experimental animal that reproduces retinopathy, cataract and/or nephropathy from type II diabetes, a method for producing the same, and a method for using the novel pathological model experimental animal. The present inventors have conducted intensive studies in view of the above purpose, and as a result, LepRKO medaka under breeding with a specific feeding amount (Table 1, Figure 1), fasting hyperglycemia, and retinopathy, cataract and / or maintained histopathological features of nephropathy.
Figure 0007232453000001

更に驚くべきことに、既存のII型糖尿病網膜症の症状を持つ実験動物と比較して、LepRKOメダカで得られた病変は、比較的早期に誘発され、かつその病変は顕著であることを見出した。その病変は、視神経線維層に走行する血管の顕著なうっ血、それによる網膜実質の圧排、網膜の重度の菲薄化、網膜剥離、水晶体線維の変性などの病理組織学的特徴と不透明な水晶体の形成などであった。例えば、本発明では、LepRKOメダカは28週齢に水晶体の変性(白内障)を発症した。これは既存のモデル動物と比較して明らかに早期に発症する。例えば、これまでの報告では、モデルげっ歯類は40週齢や76週齢で水晶体が変性する。
腎病変に関しては、既存のモデルげっ歯類と比べて特別に早期に病変が観察されるわけではない。げっ歯類で早期に糖尿病性腎症の病変を示すのは、Black and tan, branchyury(BTBR)マウスが例としてあげられ、その病変は22週齢に観察される(Betz&Conway, Recent advances in animal models of diabetic nephropathy. Nephron Experimental Nephropathy 2014;126,191-195)。しかし、BTBRマウスを含む多くの既存のモデルげっ歯類がヒトと異なるのは、正常な血中クレアチニン濃度にもかかわらず腎病変を示すことである。ヒトでは通常、糖尿病性腎症になると腎機能が低下し、クレアチニンを体外に排出できず血中クレアチニン濃度が上昇する。LepRKOメダカは、II型糖尿病の特徴をもつとともに、孵化後20週齢から血中クレアチニン濃度が上昇し、腎臓の著変は認められないが、30週齢以降には野生型メダカと比較して、血中クレアチニン濃度が有意に上昇し、ヒトやモデルげっ歯類で観察される糖尿病性腎症で特徴的な病変も観察される。さらに既存のモデルげっ歯類は、糖尿病の性質をもたせ、かつ遺伝子操作により高血圧の性質をもたせる必要がある。一方、LepRKOメダカは、特定の給餌量(表1、図1)のみで、高血圧が原因と推測される糸球体毛細血管腔、ボーマン嚢腔の拡張等が観察される。また、本発明では、レプチン受容体が機能的に欠損している小型魚類であれば、薬剤、外科的処理又は遺伝子操作することなく、特定の給餌量(表1、図1)による飼育のみで空腹時高血糖、及び網膜症、白内障及び/又は腎症の病理組織学的特徴を維持することが可能となる。
Surprisingly, compared with experimental animals with existing symptoms of type II diabetic retinopathy, the lesions obtained in LepRKO medaka were induced relatively early and the lesions were remarkable. rice field. The lesion is characterized by histopathologic features such as marked congestion of blood vessels running to the optic nerve fiber layer, consequent compression of the retinal parenchyma, severe retinal thinning, retinal detachment, degeneration of lens fibers, and formation of an opaque lens. And so on. For example, in the present invention, LepRKO medaka developed lens degeneration (cataract) at 28 weeks of age. This is clearly early onset compared to existing model animals. For example, previous reports have shown that model rodents undergo lens degeneration at 40 and 76 weeks of age.
Regarding renal lesions, lesions are not observed particularly early compared to existing model rodents. An example of early diabetic nephropathy lesions in rodents is the Black and tan, branchyury (BTBR) mouse, in which lesions are observed at 22 weeks of age (Betz & Conway, Recent advances in animal models). of diabetic nephropathy. Nephron Experimental Nephropathy 2014;126, 191-195). However, many existing model rodents, including BTBR mice, differ from humans by exhibiting renal lesions despite normal blood creatinine levels. In humans, when diabetic nephropathy occurs, renal function usually declines, creatinine cannot be excreted from the body, and the blood creatinine concentration increases. LepRKO medaka has the characteristics of type II diabetes, and the blood creatinine level rises from 20 weeks after hatching, and no significant changes in kidneys are observed. , the blood creatinine concentration is significantly increased, and lesions characteristic of diabetic nephropathy observed in humans and model rodents are also observed. In addition, existing model rodents need to be predisposed for diabetes and genetically engineered for hypertension. On the other hand, in LepRKO medaka, dilation of glomerular capillary cavities, Bowman's capsule, etc., presumed to be caused by hypertension, is observed only at specific feeding amounts (Table 1, Fig. 1). In addition, in the present invention, small fish functionally deficient in leptin receptors can be bred only with specific feeding amounts (Table 1, Fig. 1) without drugs, surgical treatment or genetic manipulation. Fasting hyperglycemia and histopathological features of retinopathy, cataract and/or nephropathy can be preserved.

2.白内障、網膜症及び/又は腎症モデル魚類の作製
本発明の方法においては、レプチン受容体の機能的欠損を有する実験用小型魚類を飼育する。「レプチン受容体の機能的欠損」とは、レプチン受容体が本来有する正常な機能を十分に発揮できない状態を意味し、レプチン受容体がノックアウトされたことも含まれる。レプチン受容体の機能的欠損を有する実験用小型魚類は、ゲノムDNAの変異、もしくは組換えを伴う遺伝子変異魚、もしくは遺伝子改変魚であり、また他の遺伝子の変異・改変の有無を問わない。
2. Production of cataract, retinopathy and/or nephropathy model fish
In the method of the present invention, small laboratory fish having a functional defect in the leptin receptor are bred. The term "leptin receptor functional deficiency" means a state in which the leptin receptor is unable to fully exhibit its original normal function, and includes knockout of the leptin receptor. Experimental small fish with a functional defect in the leptin receptor are gene-mutated fish accompanied by genomic DNA mutation or recombination, or genetically-modified fish, regardless of the presence or absence of other gene mutations or modifications.

飼育の対象魚類、すなわちレプチン受容体の機能的欠損を有する魚類は、実験用小型魚類であり、例えばメダカ、ゼブラフィッシュ、又はキンギョである。本発明においては、使用する魚類がレプチン受容体の機能的欠損を有する実験用小型魚類であれば特に限定されるものではなく、例えばレプチン受容体がノックアウトされたメダカ(LepRKOメダカ)、レプチン受容体がノックアウトされたゼブラフィッシュなどを挙げることができる。 The target fish for breeding, ie fish with a functional defect in the leptin receptor, are small laboratory fish, for example killifish, zebrafish or goldfish. In the present invention, the fish to be used is not particularly limited as long as it is a small experimental fish having a functional defect in the leptin receptor. is knocked out, and the like.

レプチン受容体をノックアウトックアウトされたメダカの作製手法は公知であり(Chisada S, et al., Gen Comp Endocrinol, 195: 9-20,2014、Taniguchi et al, Genome Biol, 7(12):R116, 2006)、この方法により作製されたメダカを使用することができる。但し、これらの公知手法に限定されるものではない。
また、レプチン受容体をノックアウトックアウトされたゼブラフィッシュは、ゲノム編集技術(Kawahara A, et al., Chapter 8 in Targeted genome editing using site-specific nucleases, 119-131, 2014)を用いることにより比較的容易に作製できる。
このようにして得られたレプチン受容体欠損魚類を、所定範囲を伴う特定の給餌量(表1、図1)、及び個体密度で飼育する。
Techniques for producing medaka with knockout leptin receptors are known (Chisada S, et al., Gen Comp Endocrinol, 195: 9-20, 2014, Taniguchi et al, Genome Biol, 7(12):R116, 2006), and medaka produced by this method can be used. However, it is not limited to these known methods.
In addition, zebrafish in which the leptin receptor is knocked out can be relatively easily obtained by using genome editing technology (Kawahara A, et al., Chapter 8 in Targeted genome editing using site-specific nucleases, 119-131, 2014). can be made.
The leptin receptor-deficient fish thus obtained are reared at specific feed rates (Table 1, Figure 1) with defined ranges and population densities.

「所定範囲」とは、孵化後の各週齢において、表1に示す給餌量(mg)の20%以上20%以下の範囲であり、レプチン受容体の機能的欠損を有する実験用小型魚類を、孵化後週齢と給餌量との関係(比)が下記式Iを満たすように給餌して飼育することを特徴とする。
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96 (I)
上記式Iを満たす範囲は、図1では斜線で示す範囲となり、この値は、腹の十分な膨らみを維持する量の指標となる。
本発明においては、19週齢までのいずれか1つの週齢、または19週齢までの週齢のうち2~4つの週齢において、給餌量を減らすことができる。減量するときの給餌量と孵化後週齢との比(式Iの値)は、0.69~1.34である。
減量する週齢は、魚の腹の膨らみ、腹持ち、餌の粒径、給餌した餌の水槽外の流出などの要素を考慮して適宜決定することができる。メダカの腹を十分に膨らました状態を維持するためには、粒径の大きい餌の給餌に比べて、粒径の小さい餌の場合には多めに給餌する必要がある。これは、粒径が小さい場合は、水面に浮遊してる時間が長く流出しやすい(水槽は循環水槽)、あるいは、消化が早い(フンが出るのが早い)等の影響が予測されるためである。上記比を満たす給餌は、減量行為であっても、メダカにとっては「腹の十分な膨らみを維持する量」を与えられ続けていることを意味する。
例えば、孵化後4週齢や8週齢では前週齢と比べて大きい粒径の餌を使用し始めることから、この週齢(4週齢、8週齢、又は両方の週齢)において上記比が0.69~1.34の範囲となるように給餌する。同様に、12週齢、13週齢及び20週齢以降も、4週齢及び8週齢のときと同様に考えることができる。
従って、本発明の好ましい態様では、孵化後19週齢までは、基本的には式Iの値が1.0~1.96となるように給餌するが、孵化後4週齢、8週齢、12週齢及び13週齢のうち少なくとも1つの週齢、並びに20週齢以降は、0.69~1.34となるように給餌する。好ましくは、基本的に式Iの値が1.0~1.96となるように給餌するが、孵化後4週齢及び20週齢以降は0.69~1.34となるように給餌する。
The "predetermined range" is a range of 20% or more and 20% or less of the feeding amount (mg) shown in Table 1 at each week of age after hatching. It is characterized by feeding and rearing so that the relationship (ratio) between the post-hatch age in weeks and the feeding amount satisfies the following formula I.
Feeding amount (mg/tail/day)/age in weeks after hatch = 0.69-1.96 (I)
The range that satisfies the above formula I is the shaded range in FIG. 1, and this value is an index of the amount that maintains a sufficient swelling of the belly.
In the present invention, the amount of feed can be reduced at any one week of age up to 19 weeks of age, or at 2 to 4 weeks of age up to 19 weeks of age. The ratio of the amount of food fed to the age after hatching when weight is reduced (the value of Formula I) is between 0.69 and 1.34.
The age at which the weight is to be reduced can be appropriately determined in consideration of factors such as swelling of the stomach of the fish, longevity of the fish, particle size of the food, and outflow of the fed food from the tank. In order to keep the belly of the medaka sufficiently swollen, it is necessary to feed the medaka with a larger amount of food with a small particle size than with a food with a large particle size. This is because if the particle size is small, it is predicted that it will float on the surface of the water for a long time and is likely to flow out (the water tank is a circulating tank), or it will be digested quickly (feces will come out quickly). be. Feeding that satisfies the above ratio means that the medaka continues to be fed with "an amount that maintains a sufficient swelling of the belly" even if the weight is reduced.
For example, at 4 weeks old and 8 weeks after hatching, we started using food with a larger particle size than the previous week, so at this age (4 weeks old, 8 weeks old, or both weeks old), the above ratio be in the range of 0.69 to 1.34. Similarly, 12-week-old, 13-week-old and 20-week-old and beyond can be considered in the same manner as 4-week-old and 8-week-old.
Therefore, in a preferred embodiment of the present invention, until the age of 19 weeks after hatching, the feeding is basically carried out so that the value of formula I is 1.0 to 1.96, but 4 weeks, 8 weeks and 12 weeks of age after hatching. and at least one of 13 weeks of age, and after 20 weeks of age, feed to 0.69-1.34. Preferably, the value of Formula I is essentially between 1.0 and 1.96, but between 0.69 and 1.34 after 4 weeks of age and 20 weeks after hatch.

給餌の開始時期は、孵化してから孵化後6週齢までの任意の時期であり、給餌の終了時期は孵化後20週齢以降の任意の時期である。
具体的給餌量は、例えば、6週齢では、1日1尾あたり8.4mg±1.2mgであり、16週齢では、1日1尾あたり20.0mg±4.0mgである。20週齢の給餌量は、1日1尾あたり22.3mg±4.3mgであり、28週齢では23.3±2.7mgである。29週齢以降は式I(給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.34)に従い給餌する。
Feeding can be started any time from hatching to 6 weeks after hatching, and feeding can be finished any time after 20 weeks after hatching.
The specific feeding amount is, for example, 8.4 mg±1.2 mg per fish per day at 6 weeks of age, and 20.0 mg±4.0 mg per fish per day at 16 weeks of age. The feeding amount at 20 weeks of age is 22.3±4.3 mg per fish per day, and at 28 weeks of age it is 23.3±2.7 mg. After 29 weeks of age, feed according to formula I (feed amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.34).

1日の給餌量は、4回以上(例えば4回~6回)に分けて給餌する。1回の給餌後は、1時間以上時間を開ける。
個体密度は、1リットルあたり1尾~4尾である。
上記以外の飼育環境は、一般的な方法と同じであり、例えばメダカの場合、水温25-28℃、pH6.8-7.5、電気伝導率200-450μS/cm、0.2 mg NH4+/L以下、0.1 mg NO2-/L以下、20 mg NO3-/L以下、硬度20-100 mg CaCO3/L以下、循環型ろ過付き集合水槽の使用、明期/暗期=14時間/10時間である(Naruse et al, Exp Anim, 59(1):13-23, 2010)。
餌はタンパク質、脂質、食物繊維、粗灰分、Ca、リンを含む一般的な水産用飼料と同様な餌で良い。表1、図1ではおとひめA[タンパク質53%以上、脂質8%以上、食物繊維3%以下、粗灰分16%以下、Ca2.3%以上、リン1.5%以上]及びB1,B2[タンパク質50%以上、脂質10%以上、食物繊維3%以下、粗灰分16%以下、Ca2.0%以上、リン1.5%以上](日清丸紅飼料株式会社)の量を示した。
Feeding should be divided into 4 or more times (for example, 4 to 6 times) per day. After one feeding, wait at least 1 hour.
Individual densities range from 1 to 4 fish per liter.
The breeding environment other than the above is the same as the general method. mg NO2-/L or less, 20 mg NO3-/L or less, hardness 20-100 mg CaCO3/L or less, use of a collection tank with circulation filtration, light/dark period = 14 hours/10 hours (Naruse et al. al, Exp Anim, 59(1):13-23, 2010).
The feed may be similar to general fish feed containing protein, lipid, dietary fiber, coarse ash, Ca and phosphorus. In Table 1 and Figure 1, Otohime A [protein 53% or more, lipid 8% or more, dietary fiber 3% or less, crude ash content 16% or less, Ca 2.3% or more, phosphorus 1.5% or more] and B1, B2 [protein 50% or more, 10% or more fat, 3% or less dietary fiber, 16% or less crude ash, 2.0% or more Ca, 1.5% or more phosphorus] (Marubeni Nisshin Feed Co., Ltd.).

この方法で給餌することにより、高血糖、網膜症、白内障、腎症、又はこれらの疾患の2つ以上の組合せが発症する。これらの症状の発症時期は限定されるものではない。
なお、メダカの場合、例えば以下のア~オに該当するとII型糖尿病から網膜症、白内障及び又は腎症を再現することが難しいため、これらに該当しないようにする。
Feeding in this manner causes hyperglycemia, retinopathy, cataracts, nephropathy, or a combination of two or more of these diseases. The onset time of these symptoms is not limited.
In the case of medaka, it is difficult to reproduce retinopathy, cataract, and/or nephropathy from type II diabetes if, for example, the following conditions a to e apply, so these conditions should be avoided.

ア.図1における斜線領域以下の量を給餌し続けた場合。
イ.孵化後6週齢以内に図1における斜線領域の量(式Iの値が0.69~1.96の範囲外の量)の給餌を開始しなかった場合。
ウ.孵化後6週齢以内に図1における斜線領域の量(式Iの値が0.69~1.96の範囲内の量)の給餌を開始したとしても、それを孵化後20週齢以降まで継続しなかった場合。
エ.個体密度を5尾/1L以上で飼育した場合。
オ.1日の給餌量を3度以内で給餌した場合。
ah. When the amount of feeding below the hatched area in FIG. 1 is continued.
stomach. If the amount of feeding in the hatched area in FIG. 1 (the amount outside the range of 0.69 to 1.96 for formula I) is not started within 6 weeks of age after hatching.
hare. Even if the amount of the shaded area in Fig. 1 (the amount within the range of 0.69 to 1.96 in formula I) was started within 6 weeks after hatching, it was not continued until after 20 weeks after hatching. case.
workman. When breeding at an individual density of 5 fish / 1L or more.
E. If the daily feeding amount is fed within 3 times.

上記「ア-エ」の場合、レプチン受容体欠損メダカは、摂餌量不足、密度効果により成長不良となり、過食による糖尿病症状を示さない。つまり糖尿病網膜症、白内障及び/又は腎症を示さない。「オ」の場合、餌が過剰に水底に残り、水質の悪化により成長不良となり、同様に糖尿病網膜症、白内障及び/又は腎症を示さない。 In the case of "a-e" above, the leptin receptor-deficient medaka shows poor growth due to insufficient food intake and density effects, and does not show diabetic symptoms due to overeating. That is, it does not show diabetic retinopathy, cataracts and/or nephropathy. In the case of "E", the food remains excessively on the bottom of the water, the deterioration of the water quality results in poor growth, and similarly no diabetic retinopathy, cataract and/or nephropathy.

II型糖尿病から網膜症、白内障及び又は腎症を再現するモデル実験動物としてレプチン受容体の機能的欠損を有する実験用小型魚類を選択することによって、特定の給餌量(表1、図1)による飼育のみで、既存のII型糖尿病網膜症の症状を持つ実験動物と比較して、比較的早期にかつ顕著な糖尿病網膜症及び/又は白内障の病理組織学的特徴の誘発が可能となる。そして既存のII型糖尿病性腎症の症状をもつ実験動物と比較して、特段に遅くない時期に、病理組織学的特徴を誘発し、多くのモデルげっ歯類にない腎機能の低下を誘発することができる。 By selecting experimental small fish with a functional deficiency in leptin receptors as model experimental animals that reproduce retinopathy, cataract and/or nephropathy from type II diabetes, specific feeding amounts (Table 1, Figure 1) Breeding alone makes it possible to induce marked histopathological characteristics of diabetic retinopathy and/or cataract relatively early compared to experimental animals with existing symptoms of type II diabetic retinopathy. and induces histopathological features and a decline in renal function not seen in most rodent models, not later than in experimental animals with pre-existing type II diabetic nephropathy symptoms. can do.

レプチン受容体を機能的に欠損する哺乳動物と異なり、ホモ変異接合体でも繁殖能力を持ち、安定的な系統の維持、及び個体の確保が可能となる。遺伝的背景が均一な系統であるにも関わらず個体差が生じるとしても、統計的に処理するのに十分な個体の確保が容易である。また、糖尿病網膜症のモデルげっ歯類等と比べて、比較的早期に顕著な病理組織学的特徴を示す。従って、比較的早期に経時的な病理組織学的特徴の解析が可能となる。例えば、LepRKOメダカを用いてII型糖尿病から網膜症、白内障及び/又は腎症を再現しつつ、経時的に病変の進行状況を追っていくことによって、病理生理学的メカニズムの解明を短期間(例、28週齢以内)に行うことが可能となる。そして既存のII型糖尿病性腎症の症状をもつ実験動物と比較して、特段に遅くない時期に、特別に薬剤処理と遺伝子操作をすることなく、特定の給餌量(表1、図1)で飼育することで、病理組織学的特徴を誘発し、多くのモデルげっ歯類にない腎機能の低下を誘発することができる。例えば、II型糖尿病から網膜症、白内障及び又は腎症を再現したLepRKOメダカ、あるいは、特定の給餌量(表1、図1)で飼育した20週齢から28週齢(網膜症及び/又は白内障の場合)、又は20週齢から40週齢(腎症の場合)のLepRKOメダカを複数尾用いて、げっ歯類と比較して小スペース・低費用で薬剤スクリーニングを行うことが可能となる。 Unlike mammals that are functionally deficient in leptin receptors, even homozygous mutants have reproductive ability, making it possible to maintain stable strains and secure individuals. It is easy to secure enough individuals for statistical processing, even if individual differences occur in spite of being a strain with a uniform genetic background. In addition, compared with model rodents of diabetic retinopathy, etc., it exhibits remarkable histopathological characteristics relatively early. Therefore, it is possible to analyze histopathological characteristics over time relatively early. For example, by reproducing retinopathy, cataract and/or nephropathy from type II diabetes using LepRKO medaka and following the progression of lesions over time, elucidation of the pathophysiological mechanism can be achieved in a short period of time (e.g., within 28 weeks of age). And compared with experimental animals with existing type II diabetic nephropathy symptoms, at a time not particularly late, without special drug treatment and genetic manipulation, a specific feeding amount (Table 1, Figure 1) can induce histopathological features and a decline in renal function absent in many model rodents. For example, LepRKO medaka that reproduces retinopathy, cataract and/or nephropathy from type II diabetes, or 20-week-old to 28-week-old (retinopathy and/or cataract) bred with a specific feeding amount (Table 1, Figure 1) Using multiple LepRKO medaka at 20 to 40 weeks of age (in the case of nephropathy), it is possible to perform drug screening in a smaller space and at a lower cost than rodents.

本発明のモデル魚類は、糖尿病網膜症のモデルげっ歯類等と比べて、比較的早期に顕著な病理組織学的特徴を示す。従って、II型糖尿病から網膜症、白内障及び/又は腎症を再現したLepRKOメダカ、もしくは、特定の給餌量(表1、図1)で飼育した20週齢から28週齢のLepRKOメダカを目的の尾数用いて、比較的早期に経時的な病理組織学的特徴の解析が可能となり、さらには、げっ歯類と比較して小スペース・低費用で多数の薬剤スクリーニングを行うことが可能となる。既存の糖尿病性腎症のモデルげっ歯類では糖尿病と高血圧の性質を併発するために複数の処置が必要だが、LepRKOメダカを用いれば、眼病変の観察と同じように、特定の給餌量(表1、図1)で飼育するだけで経時的に病変の進行を追うことができる。従って、ヒトで言えば、生活習慣病の進行に類似した状況を解析することができる。 The model fish of the present invention exhibits remarkable histopathological characteristics at a relatively early stage compared to diabetic retinopathy model rodents and the like. Therefore, LepRKO medaka that reproduces retinopathy, cataract and / or nephropathy from type II diabetes, or LepRKO medaka aged 20 weeks to 28 weeks bred with a specific feeding amount (Table 1, Figure 1) By using the number of tails, it is possible to analyze histopathological characteristics over time relatively early, and to perform a large number of drug screenings in a small space and at a low cost compared to rodents. In existing diabetic nephropathy model rodents, multiple treatments are required due to the concurrent nature of diabetes and hypertension. 1, Fig. 1), it is possible to follow the progression of lesions over time. Therefore, in humans, it is possible to analyze situations similar to the progression of lifestyle-related diseases.

3.スクリーニング方法
本発明の方法により飼育されたレプチン受容体欠損魚類は、糖尿病網膜症、白内障及び/又は腎症のモデル魚類である。従って、当該モデル魚類を用いて、糖尿病網膜症、白内障及び/又は腎症の治療薬をスクリーニングすることができる。
したがって、本発明は、前記モデル魚類に候補物質を接触又は投与することを特徴とする、糖尿病網膜症、白内障及び/又は腎症の治療薬のスクリーニング方法を提供する。
3. Screening Method The leptin receptor-deficient fish bred by the method of the present invention is a model fish for diabetic retinopathy, cataract and/or nephropathy. Therefore, the model fish can be used to screen therapeutic agents for diabetic retinopathy, cataract and/or nephropathy.
Therefore, the present invention provides a screening method for therapeutic agents for diabetic retinopathy, cataract and/or nephropathy, which comprises contacting or administering a candidate substance to the model fish.

本発明のモデル魚類は、所定期間、所定量の餌を給餌すると、糖尿病網膜症、白内障、腎症、又はこれらの組み合わせの表現型(疾患症状)を呈することを見い出した。この知見に基づき、任意の物質について、当該モデル魚類の糖尿病網膜症、白内障及び/又は腎症を緩和又は軽減する効果を有することを確認できれば、その物質は、抗網膜症薬、抗白内障薬、及び/又は抗腎症薬として使用可能である。
候補物質は特に限定されず、既存の薬剤(例えば既存の網膜症薬、既存の白内障薬、既存の腎症薬)でもよく、その他に、例えばペプチド、低分子化合物、高分子化合物、これらの塩又は前駆体等のあらゆる形態であってもよい。
It was found that the model fish of the present invention exhibited phenotypes (disease symptoms) of diabetic retinopathy, cataract, nephropathy, or a combination thereof when fed with a predetermined amount of food for a predetermined period of time. Based on this knowledge, if any substance can be confirmed to have the effect of alleviating or alleviating diabetic retinopathy, cataract and/or nephropathy in the model fish, the substance is an anti-retinopathy drug, an anti-cataract drug, and/or can be used as an anti-nephropathic agent.
Candidate substances are not particularly limited, and may be existing drugs (e.g., existing retinopathy drugs, existing cataract drugs, existing nephropathy drugs), as well as peptides, low-molecular-weight compounds, high-molecular-weight compounds, and salts thereof. Alternatively, it may be in any form such as a precursor.

本発明のスクリーニングは、具体的には以下の工程を含む。
(a)本発明のモデル魚類に候補物質を接触させる工程
(b)前記接触させた魚類の糖尿病網膜症、白内障及び/又は腎症の軽減を検査する工程
本発明のスクリーニング方法において、「接触」とは、候補物質をモデル魚類に投与する態様がある。投与には経口であると非経口であるとを問わない。すなわち、候補物質の投与経路は、薬剤の投与に一般的に採用されている経路であれば、特に限定されるものではなく、例えば経口、経皮、注射等が挙げられる。本発明のモデル魚類を入れた水槽に、候補物質を添加することで、魚類の体表から候補物質が吸収される態様(経皮吸収)も、「接触」に含まれる。
The screening of the present invention specifically includes the following steps.
(a) a step of contacting the model fish of the present invention with a candidate substance (b) a step of examining reduction of diabetic retinopathy, cataract and/or nephropathy in the contacted fish There is an embodiment in which a candidate substance is administered to a model fish. Administration can be oral or parenteral. That is, the route of administration of the candidate substance is not particularly limited as long as it is a route commonly used for administration of drugs, and examples thereof include oral, transdermal, and injection routes. "Contact" also includes a mode in which the candidate substance is absorbed from the body surface of the fish (percutaneous absorption) by adding the candidate substance to an aquarium containing the model fish of the present invention.

工程(b)で検査の対象となる項目は、以下の(i)~(xv)の少なくとも一つである。
(i) 血糖値
(ii) 血中インスリン濃度
(iii) 水晶体線維の空胞化・液状化
(iv) 水晶体線維の水腫の形成
(v) 水晶体線維の変性(モルガニー小体の形成を含む)
(vi) 網膜毛細血管のうっ血、及びそれによる網膜の圧排
(vii) 網膜色素上皮層、視細胞層、外顆粒層、外網状層、内顆粒層、内網状層又は神経線維層における菲薄化
(viii) 視神経細胞数の減少
(ix) 糸球体毛細血管腔及び輸入・出動脈の拡張
(x) 糸球体の腫大
(xi) メサンギウム基質の増生
(xii) 糸球体毛細血管腔内における硝子様物質の貯留
(xiii) ボーマン嚢腔の拡張
(xiv) 糸球体係蹄の萎縮
(xv) 血中クレアチニン濃度
Items to be inspected in step (b) are at least one of the following (i) to (xv).
(i) Blood sugar level
(ii) blood insulin concentration
(iii) Vacuolization/liquefaction of lens fibers
(iv) Formation of lens fiber edema
(v) degeneration of lens fibers (including formation of Morganey bodies);
(vi) congestion of retinal capillaries and consequent retinal compression;
(vii) thinning in the retinal pigment epithelial layer, photoreceptor layer, outer nuclear layer, outer reticular layer, inner nuclear layer, inner reticular layer or nerve fiber layer;
(viii) decreased number of optic nerve cells
(ix) dilatation of the glomerular capillary lumen and afferent and efferent arteries
(x) glomerular swelling
(xi) growth of mesangial matrix
(xii) retention of hyaline material within the glomerular capillary lumen;
(xiii) Dilation of Bowman's space
(xiv) glomerular loop atrophy
(xv) blood creatinine concentration

前記述べた上記項目の少なくとも1つが、候補物質の接触により改善した場合は、候補物質は、抗網膜症薬、抗白内障薬及び/又は抗腎症薬として選択することができる。 A candidate substance can be selected as an anti-retinopathic agent, an anti-cataract agent and/or an anti-nephropathic agent if at least one of the above mentioned items is ameliorated by contact with the candidate substance.

実施例
以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
Examples Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited by these examples.

[参考例1]
レプチン受容体欠損メダカの作製
LepRKOメダカは、公知方法により作製した(Chisada S, et al., Gen Comp Endocrinol, 195: 9-20,2014)。
[Reference example 1]
Generation of leptin receptor-deficient medaka fish
LepRKO medaka was produced by a known method (Chisada S, et al., Gen Comp Endocrinol, 195: 9-20, 2014).

特定の給餌量(表1、図1)によるレプチン受容体欠損メダカの飼育
1.方法
LepRKOメダカとともに対照群として野生型メダカ(Kyoto-Cab系統)を用いた。これらのメダカを水温26±1度、長日条件14時間明期10時間暗期に調整した環境で飼育した。LepRKOメダカは、野生型メダカと比べて、単位時間当たりの摂餌量が1.5-1.7倍多いことを報告している(Chisada S, et al., Gen Comp Endocrinol, 195: 9-20,2014)。従って、LepRKOメダカは表1の通りの量を、野生型メダカにはその66%量を給餌した。1回の給餌量は、水槽内のメダカが30分以内に食べきれる量である。従って、表1、図1に示す1日当たりの給餌量を給餌する際は、その量を5-7回に分けて給餌した。使用した餌を表2に示す。

Figure 0007232453000002
Breeding of leptin receptor-deficient medaka with specific feeding amounts (Table 1, Fig. 1) 1. Method
Wild-type medaka (Kyoto-Cab strain) was used as a control group together with LepRKO medaka. These medaka were reared in an environment adjusted to a water temperature of 26±1°C and a long day condition of 14 hours light and 10 hours dark. LepRKO medaka has been reported to consume 1.5-1.7 times more food per unit time than wild-type medaka (Chisada S, et al., Gen Comp Endocrinol, 195: 9-20, 2014). . Therefore, the amount shown in Table 1 was fed to LepRKO medaka, and 66% of the amount was fed to wild-type medaka. The amount of food to be fed at one time is the amount that the medaka in the tank can eat within 30 minutes. Therefore, when feeding the amount of feed per day shown in Table 1 and Fig. 1, the amount was divided into 5 to 7 times. The bait used is shown in Table 2.
Figure 0007232453000002

特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血糖値
1.方法
LepRKOメダカ及び野生型メダカを用いた。通常、特定の給餌量(表1、図1)による飼育下ではLepRKOメダカは孵化後5-12週間のうちに空腹時高血糖を示す。空腹時血糖値は、特定の給餌量(表1、図1)により飼育したメダカを18時間絶食させた後に測定した血糖値である。今回は、肉眼観察的に水晶体が正常な孵化後10週齢と不透明な水晶体を持つ個体を含む28週齢の血糖値を測定した。
Blood glucose level of leptin receptor-deficient medaka in breeding with specific feeding amount (Table 1, Fig. 1) 1. Method
LepRKO medaka and wild-type medaka were used. Normally, LepRKO medaka show fasting hyperglycemia within 5-12 weeks after hatching when reared with specific feeding amounts (Table 1, Fig. 1). The fasting blood glucose level is the blood glucose level measured after 18 hours of fasting of medaka raised with a specific feeding amount (Table 1, Fig. 1). In this study, blood glucose levels were measured at 10 weeks after hatching with macroscopically normal lenses and at 28 weeks of age including individuals with opaque lenses.

2.結果
孵化後10週齢においては、LepRKOメダカと野生型メダカの空腹時血糖値に有意な差はなかったが、孵化後28週齢におけるLepRKOメダカの空腹時血糖値は野生型メダカのそれと比べて高く、その差は統計的に有意であった(図2)。
2. Results At 10 weeks after hatching, there was no significant difference in fasting blood glucose levels between LepRKO medaka and wild-type medaka. high and the difference was statistically significant (Fig. 2).

特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血漿インスリン濃度
1.方法
「特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血糖値」測定に用いたメダカと同時に同じ条件で飼育したメダカを用い、それらの摂餌1時間後の血漿インスリン濃度を公知方法(Kubo et al., Exp Eye Res, 73:375-381, 2001)に基づいて測定した。ただし、孵化後10週齢のメダカは採血するには小さいため、孵化後28週齢の血漿インスリン濃度のみを測定した。
Plasma insulin concentration of leptin receptor-deficient medaka in rearing with a specific feeding amount (Table 1, Fig. 1) 1. Method "Blood glucose level of leptin receptor-deficient medaka raised with a specific amount of food (Table 1, Figure 1)" Using medaka used for measurement and raised under the same conditions at the same time, plasma 1 hour after feeding Insulin concentration was measured based on a known method (Kubo et al., Exp Eye Res, 73:375-381, 2001). However, 10-week-old medaka are too small for blood collection, so only plasma insulin concentrations at 28-week-old were measured.

2.結果
孵化後28週齢におけるLepRKOメダカの摂餌1時間後の血漿インスリン濃度は野生型メダカのそれと比べて明らかに低かった(図3)。従って、実施例2で得た結果を考慮すると、LepRKOメダカはインスリン分泌不全による高血糖を示し、それらはII型糖尿病様症状と共通することが明らかとなった。
2. Results The plasma insulin concentration of LepRKO medaka at 28 weeks of age after hatching 1 hour after feeding was clearly lower than that of wild-type medaka (Fig. 3). Therefore, considering the results obtained in Example 2, it was clarified that LepRKO medaka shows hyperglycemia due to insulin secretory deficiency, and that these symptoms are common to type II diabetes-like symptoms.

特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの眼の組織学的解析
1.方法
「特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血糖値」及び「特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血中クレアチニン濃度」測定に用いたメダカ及びそれと同時に同じ条件で飼育したメダカを用い、ブアン固定液及び10%中性緩衝ホルマリン固定液で固定後、常法によりパラフィン切片とし、ヘマトキシリン・エオシン染色を施して組織学的に観察した。
Histological analysis of the eyes of leptin receptor-deficient medaka fish reared with specific feeding amounts (Table 1, Fig. 1) 1. Method "blood glucose level of leptin receptor-deficient medaka in breeding with a specific feeding amount (Table 1, Figure 1)" and "blood creatinine in leptin receptor-deficient medaka in breeding with a specific feeding amount (Table 1, Figure 1) Using the medaka used for the concentration measurement and the medaka raised under the same conditions at the same time, after fixing with Bouin's fixative and 10% neutral buffered formalin fixative, paraffin sections were made by a conventional method, and tissues were stained with hematoxylin and eosin. scientifically observed.

2.眼に関する結果
空腹時高血糖を示し、及び摂餌1時間後の血漿インスリン濃度が低いLepRKOメダカが出現した同一水槽内で、水晶体が白濁したメダカが出現していた(図4)。眼の組織学的解析の結果、水晶体線維の空胞化・断片化、水腫の形成(図5アスタリスク)、モルガニー小体(図5黒三角)の形成を含む顕著な水晶体の変性を観察した。また、網膜視神経層に網膜毛細血管のうっ血を認め(図6アスタリスク)、管腔拡張した血管による網膜の圧排が観察された。さらに、網膜色素上皮層(図6a)、視細胞層(図6c)、外顆粒層(図6d)、外網状層(図6e)、内顆粒層(図6f)、内網状層(図6g)、神経線維層(図6i)において菲薄化が見られ、視神経細胞(図6h)の数も減少していた。
2. Results Regarding Eyes In the same aquarium where LepRKO medaka showing fasting hyperglycemia and low plasma insulin concentration 1 hour after feeding appeared, medaka with cloudy lens appeared (Fig. 4). As a result of histological analysis of the eyes, marked lens degeneration including vacuolization/fragmentation of lens fibers, formation of edema (asterisks in FIG. 5), and formation of Morganey bodies (black triangles in FIG. 5) was observed. In addition, congestion of retinal capillaries was observed in the retinal optic nerve layer (asterisk in FIG. 6), and retinal compression due to the luminally dilated blood vessels was observed. In addition, the retinal pigment epithelial layer (Fig. 6a), photoreceptor layer (Fig. 6c), outer nuclear layer (Fig. 6d), outer reticular layer (Fig. 6e), inner nuclear layer (Fig. 6f), inner reticular layer (Fig. 6g) , thinning was seen in the nerve fiber layer (Fig. 6i), and the number of optic nerve cells (Fig. 6h) was also reduced.

網膜毛細血管のうっ血、及びそれによる網膜の圧排はヒトの糖尿病網膜症で認められる重要所見である。本実施例で、空腹時高血糖を示し、及び摂餌1時間後の血漿インスリン濃度が低いLepRKOメダカが出現した同一水槽由来のメダカ6尾のうち2例に水晶体の変性、全例に毛細血管のうっ血、網膜の菲薄化が認められたので、毛細血管のうっ血と網膜の菲薄化は水晶体の変性に先行して発症したと考察できた。
3.腎臓に関する結果
空腹時高血糖を示し、及び摂餌1時間後の血漿インスリン濃度が低いLepRKOメダカが出現した同一水槽内から、20週齢、30週齢、40週齢のLepRKOメダカを回収し、腎臓の組織学的解析を行った。20週齢では、野生型メダカと比較してもLepRKOメダカの腎糸球体には著変は認められなかった(図8)。30週齢になると、LepRKOメダカの腎臓では糸球体毛細血管腔(図9B、黒▲)及び輸入・出動脈の拡張(図9B、アスタリスク)が認められた。また、糸球体の腫大(図9C)、メサンギウム基質の増生(図9C、矢印)、糸球体毛細血管腔内における硝子様物質の貯留(図9C、黒▲)が認められた。40週齢になると、LepRKOメダカの病変が30週齢から進行している様子が認められた。例えば、ボーマン嚢腔の拡張(図10B、アスタリスク)、糸球体毛細血管腔の拡張(図10B、黒▲)、糸球体係蹄の委縮(図10Bの左の糸球体)である。これらはヒトの糖尿病性腎症で認められる重要所見である。本実施例で、空腹時高血糖を示し、及び摂餌1時間後の血漿インスリン濃度が低いLepRKOメダカが出現した同一水槽由来のメダカ6尾のうち5例に糸球体毛細血管腔、ボーマン嚢腔の拡張等、1例にメサンギウム基質の増生、糸球体毛細血管腔内における硝子様物質の貯留が認められた。ヒトでは、前者は糖尿病後の高血圧を原因とし、後者は糖尿病後の新生血管の増殖の前兆に関わる。従って、メダカでは糖尿病、高血圧、新生血管の増殖の順に糖尿病性腎症が引き起こされたと考察できた。また、これらの組織学的解析結果は、血中のクレアチニン濃度の上昇を伴う。
Congestion of retinal capillaries and consequent retinal compression is an important finding observed in human diabetic retinopathy. In this example, LepRKO medaka that showed fasting hyperglycemia and a low plasma insulin concentration after 1 hour of feeding appeared. Out of 6 medaka fish derived from the same tank, 2 cases had degeneration of the lens, and all had capillary vessels. Congestion of the capillaries and thinning of the retina were observed.
3. 20-week-old, 30-week-old, and 40-week-old LepRKO medaka were collected from the same tank in which LepRKO medaka with fasting hyperglycemia and low plasma insulin concentration 1 hour after feeding appeared, Histological analysis of the kidney was performed. At 20 weeks of age, no significant change was observed in the renal glomeruli of LepRKO medaka compared to wild-type medaka (Fig. 8). At 30 weeks of age, glomerular capillary lumen (Fig. 9B, black ▴) and expansion of afferent and efferent arteries (Fig. 9B, asterisk) were observed in the kidney of LepRKO medaka. In addition, swelling of the glomerulus (Fig. 9C), hyperplasia of the mesangial matrix (Fig. 9C, arrow), and hyaline-like substance retention in the glomerular capillary lumen (Fig. 9C, black ▴) were observed. At 40 weeks of age, it was observed that lesions in LepRKO medaka progressed from 30 weeks of age. For example, dilation of Bowman's space (Fig. 10B, asterisk), dilation of the glomerular capillary lumen (Fig. 10B, black triangles), and atrophy of the glomerular loop (left glomerulus in Fig. 10B). These are key findings observed in human diabetic nephropathy. In this example, 5 out of 6 medaka fish derived from the same tank in which LepRKO medaka fish that showed fasting hyperglycemia and low plasma insulin concentration after 1 hour of feeding appeared, glomerular capillary space, Bowman's space In one case, hyperplasia of the mesangial matrix and hyaline-like substance retention in the lumen of the glomerular capillaries were observed. In humans, the former is responsible for postdiabetic hypertension and the latter is a precursor to postdiabetic neovascular proliferation. Therefore, it can be considered that diabetic nephropathy was induced in medaka in the order of diabetes, hypertension, and proliferation of new blood vessels. Moreover, these histological analysis results are accompanied by an increase in blood creatinine concentration.

特定の給餌量(表1、図1)による飼育におけるレプチン受容体欠損メダカの血中クレアチニン濃度
1.方法
孵化後20、40週齢のLepRKOメダカ及び野生型メダカを用いた。採血は、特定の給餌量(表1、図1)により飼育したメダカを18時間絶食させた後に得た血液を用いて測定した。採血後のメダカは、実施例4の方法に従い、腎臓の組織学的解析を行った。
2.結果
孵化後20週齢、40週齢において、LepRKOメダカと野生型メダカの血中クレアチニン濃度の平均値の差は統計的に有意であり、孵化後20週齢から40週齢にかけて差は広がっていた(図7)。
Blood creatinine concentration of leptin receptor-deficient medaka in breeding with specific feeding amount (Table 1, Fig. 1) 1. Method LepRKO medaka and wild-type medaka at 20 and 40 weeks of age after hatching were used. Blood collection was measured using the blood obtained after fasting for 18 hours from medaka raised with specific feeding amounts (Table 1, Fig. 1). The medaka after blood collection was subjected to histological analysis of the kidney according to the method of Example 4.
2. Results At 20 and 40 weeks after hatching, the difference in mean blood creatinine concentration between LepRKO medaka and wild-type medaka was statistically significant, and the difference widened from 20 to 40 weeks after hatching. (Fig. 7).

Claims (6)

レプチン受容体の機能的欠損を有するメダカを、孵化してから孵化後6週齢までの任意の時期から孵化後20週齢以上にわたり、孵化後週齢と給餌量との関係が下記式を満たすように給餌して飼育することを特徴とする、前記メダカに糖尿病網膜症、白内障及び/又は腎症を発症させる方法。
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96
The relationship between the age after hatching and the amount of food supplied satisfies the following formula at any time from hatching to 6 weeks after hatching to 20 weeks after hatching in medaka with a functional deficiency of leptin receptors. A method for causing diabetic retinopathy, cataract and/or nephropathy in the medaka , characterized by feeding and rearing as described above.
Feeding amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.96
孵化後週齢と給餌量との関係が下記式を満たすように給餌して飼育する、請求項1に記載の方法。
給餌量(mg/尾/日)/ 孵化後週齢 =1.0~1.96(孵化後19週齢まで。但し孵化後4週齢を除く)、0.69~1.34(孵化後4週齢、及び孵化後20週齢以降)
2. The method according to claim 1, wherein the relationship between the age after hatching and the feeding amount satisfies the following formula.
Feeding amount (mg/tail/day)/age in weeks after hatching = 1.0-1.96 (up to 19 weeks after hatching, excluding 4 weeks after hatching), 0.69-1.34 (4 weeks after hatching and 20 weeks after hatching) weeks of age and later)
レプチン受容体の機能的欠損が、レプチン受容体欠損ホモ接合体である、請求項1又は2に記載の方法。 3. The method of claim 1 or 2, wherein the leptin receptor functional deficiency is a leptin receptor deficiency homozygote. レプチン受容体の機能的欠損を有するメダカを、孵化してから孵化後6週齢までの任意の時期から孵化後20週齢以上にわたり、孵化後週齢と給餌量との関係が下記式を満たすように給餌して飼育することを特徴とする、糖尿病網膜症、白内障及び/又は腎症モデルメダカの製造方法。
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96
The relationship between the age after hatching and the amount of food supplied satisfies the following formula at any time from hatching to 6 weeks after hatching to 20 weeks after hatching in medaka with a functional deficiency of leptin receptors. A method for producing diabetic retinopathy, cataract and/or nephropathy model medaka , characterized by feeding and rearing as follows.
Feeding amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.96
孵化後週齢と給餌量との関係が下記式を満たすように給餌して飼育する、請求項に記載の方法。
給餌量(mg/尾/日)/ 孵化後週齢 =1.0~1.96(孵化後19週齢まで。ただし孵化後4週齢を除く)、0.69~1.34(孵化後4週齢、及び孵化後20週齢以降)
5. The method according to claim 4 , wherein the relationship between the age after hatching and the feeding amount satisfies the following formula.
Feeding amount (mg/tail/day)/age in weeks after hatching = 1.0-1.96 (up to 19 weeks after hatching, excluding 4 weeks after hatching), 0.69-1.34 (4 weeks after hatching and 20 weeks after hatching) weeks of age and later)
レプチン受容体の機能的欠損を有するメダカを、孵化してから孵化後6週齢までの任意の時期から孵化後20週齢以上にわたり、孵化後週齢と給餌量との関係が下記式:
給餌量(mg/尾/日)/ 孵化後週齢 =0.69~1.96
を満たすように給餌して飼育することにより、糖尿病網膜症、白内障及び/又は腎症モデルメダカを作製し、当該メダカに候補物質を接触させることを特徴とする、糖尿病網膜症、白内障及び/又は腎症の治療薬のスクリーニング方法。
Medaka with a functional defect in the leptin receptor were tested at any time from hatching to 6 weeks after hatching to 20 weeks or more after hatching, and the relationship between the age after hatching and the amount of feed was calculated using the following formula:
Feeding amount (mg/tail/day)/age in weeks after hatching = 0.69 to 1.96
A diabetic retinopathy, cataract and/or nephropathy model medaka is produced by feeding and rearing so as to meet the requirements, and the candidate substance is brought into contact with the medaka . A screening method for therapeutic agents for nephropathy.
JP2018173609A 2017-09-15 2018-09-18 Diabetic retinopathy, cataract and/or nephropathy model laboratory animal Active JP7232453B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177416 2017-09-15
JP2017177416 2017-09-15

Publications (2)

Publication Number Publication Date
JP2019187410A JP2019187410A (en) 2019-10-31
JP7232453B2 true JP7232453B2 (en) 2023-03-03

Family

ID=68388284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173609A Active JP7232453B2 (en) 2017-09-15 2018-09-18 Diabetic retinopathy, cataract and/or nephropathy model laboratory animal

Country Status (1)

Country Link
JP (1) JP7232453B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346480A (en) 2000-06-08 2001-12-18 Yuko Wakamatsu Transparent oryzias latipes
JP2002058486A (en) 2000-08-17 2002-02-26 Univ Hiroshima Highly estrogen-sensitive killifish
JP2004321098A (en) 2003-04-25 2004-11-18 Fuji Xerox Co Ltd Method for suppressing development of pigmented epithelium of fishes
JP2007519394A (en) 2003-05-19 2007-07-19 クアーク・バイオテック・インコーポレイテッド Use of the ENDO180 receptor for diagnosis and treatment of disease
WO2007096985A1 (en) 2006-02-24 2007-08-30 National University Corporation Nagoya University Method for preparing fish embryo
JP2008220329A (en) 2007-03-15 2008-09-25 Mie Univ Method for measuring ingestion amount of every fish individual
JP2010529947A (en) 2006-12-22 2010-09-02 ベラス ヘルス(インターナショナル)リミテッド Methods, compounds, and compositions for treating metabolic diseases and diabetes
JP2014147378A (en) 2013-02-04 2014-08-21 Fisheries Research Agency Method for breeding fish having high feed efficiency
JP2016034945A (en) 2009-03-23 2016-03-17 クォーク ファーマシューティカルズ インコーポレーティッドQuark Pharmaceuticals,Inc. Compounds, compositions and methods of treating cancer and fibrotic diseases
JP2017109944A (en) 2015-12-15 2017-06-22 花王株式会社 In vivo fatty acid content increasing agent

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346480A (en) 2000-06-08 2001-12-18 Yuko Wakamatsu Transparent oryzias latipes
JP2002058486A (en) 2000-08-17 2002-02-26 Univ Hiroshima Highly estrogen-sensitive killifish
JP2004321098A (en) 2003-04-25 2004-11-18 Fuji Xerox Co Ltd Method for suppressing development of pigmented epithelium of fishes
JP2007519394A (en) 2003-05-19 2007-07-19 クアーク・バイオテック・インコーポレイテッド Use of the ENDO180 receptor for diagnosis and treatment of disease
WO2007096985A1 (en) 2006-02-24 2007-08-30 National University Corporation Nagoya University Method for preparing fish embryo
JP2010529947A (en) 2006-12-22 2010-09-02 ベラス ヘルス(インターナショナル)リミテッド Methods, compounds, and compositions for treating metabolic diseases and diabetes
JP2008220329A (en) 2007-03-15 2008-09-25 Mie Univ Method for measuring ingestion amount of every fish individual
JP2016034945A (en) 2009-03-23 2016-03-17 クォーク ファーマシューティカルズ インコーポレーティッドQuark Pharmaceuticals,Inc. Compounds, compositions and methods of treating cancer and fibrotic diseases
JP2014147378A (en) 2013-02-04 2014-08-21 Fisheries Research Agency Method for breeding fish having high feed efficiency
JP2017109944A (en) 2015-12-15 2017-06-22 花王株式会社 In vivo fatty acid content increasing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苣田 慎一,レプチン受容体KOメダカの解析―摂餌制御系、摂餌量、成長、脂肪蓄積に関して―,Vol.40 No.152,日本,2014年05月,p.101-103,URL:https://www.jstage.jst.go.jp/article/nl2008jsce/40/152/40_101/_pdf

Also Published As

Publication number Publication date
JP2019187410A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
Kanow et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye
Olsen et al. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus
Grompe et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I
Ordway et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse
Wang et al. A mouse model for Glut-1 haploinsufficiency
Esmaeili et al. Premature death of TDP‐43 (A 315 T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis
Collin et al. Alms1-disrupted mice recapitulate human Alström syndrome
Kuro-o et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing
Jolly et al. Ovine ceroid‐lipofuscinosis: a model of Batten's disease
KR20120039742A (en) Steatohepatitis-liver cancer model animal
JP2012080830A (en) Non-human model animal of human non-alcoholic steatohepatitis (nash)
Cheng et al. Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes
Ofelio et al. Histological development of the long‐snouted seahorse Hippocampus guttulatus during ontogeny
Lindsey et al. Inherited diseases and variations
WO2024139464A1 (en) Use of cytoglobin in preparation of drugs for prevention and/or treatment of diabetes
Clements et al. Animal Models in Toxicologic Research: Rodents
JP7232453B2 (en) Diabetic retinopathy, cataract and/or nephropathy model laboratory animal
JP4386906B2 (en) Diabetes model
Skapek et al. Persistent expression of cyclin D1 disrupts normal photoreceptor differentiation and retina development
Sato et al. Dose-dependent prevention of sugar cataracts in galactose-fed dogs by the aldose reductase inhibitor M79175
Dyer et al. Peripheral neuropathy associated with functional islet cell adenomas in SV40 transgenic mice
Chick et al. Studies in the diabetic mutant mouse: IV. DBM, a modified diabetic mutant produced by outcrossing of the original strain
WO2018151135A1 (en) Mental illness animal model and method for producing same
Ishikawa et al. Brain structures of a medaka mutant, el (eyeless), in which eye vesicles do not evaginate
Conley et al. Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7232453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150