JP2004321098A - Method for suppressing development of pigmented epithelium of fishes - Google Patents

Method for suppressing development of pigmented epithelium of fishes Download PDF

Info

Publication number
JP2004321098A
JP2004321098A JP2003121420A JP2003121420A JP2004321098A JP 2004321098 A JP2004321098 A JP 2004321098A JP 2003121420 A JP2003121420 A JP 2003121420A JP 2003121420 A JP2003121420 A JP 2003121420A JP 2004321098 A JP2004321098 A JP 2004321098A
Authority
JP
Japan
Prior art keywords
fish
zebrafish
development
blue
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121420A
Other languages
Japanese (ja)
Inventor
Shusuke Horie
秀典 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2003121420A priority Critical patent/JP2004321098A/en
Publication of JP2004321098A publication Critical patent/JP2004321098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

<P>PROBLEM TO BE SOLVED: To develop a technique for controlling development of pigmented epithelium on body surface of a fish body, particularly zebrafish so as to be able to readily observe kinetics of the inside of the fish body from the outside of the fish body. <P>SOLUTION: The method for suppressing development of pigmented epithelium of fishes comprises breeding fishes having a pyramid and retinal rod of blue, green and red in an aquarium having white substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ゼブラフィッシュの体表面の色素上皮の発達を制御する方法の開発に関する。更に詳しくは、色素上皮の発達を抑制することにより機能蛋白質の動態をより鮮明により長時間捉まえることを可能ならしめることに関する。
【0002】
【従来の技術】
従来、発生生物学ではショウジョウバエや線虫によって研究が行われてきたが、脊椎動物ではあまり有効な実験動物がなかった。魚体内の成分の動態を観察するには、魚体をすり潰して顕微鏡で観察したりしていたが、最近特許第3354918号公報(特許文献1)に記載のような透明メダカを選択交配により作出し、外部から生きた状態で連続的に観察する方法が開発された。
【0003】
【特許文献1】
特許第3354918号公報
【0004】
【発明が解決しようとする課題】
魚体外部から魚体内部の動態を容易に観察出来るように、魚体、特にゼブラフィッシュの体表面の色素上皮の発達を制御する手法の開発を課題とする。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意努力をした結果、受精卵の段階から特定の波長環境下で飼育することが有効であることを見出した。
【0006】
すなわち、本発明は、
(1) 青、緑、赤の錐体並びにカン体を有する魚類を、下地白の水槽で飼育することを特徴とする魚類の色素上皮の発達抑制方法、
(2) 青、緑、赤の錐体並びにカン体を有する魚類が、ゼブラフィッシュであることを特徴とする(1)記載の色素上皮の発達抑制方法、
(3) 青、緑、赤の錐体並びにカン体を有する魚類を、受精卵の状態から下地白の水槽で飼育することにより、体表面の色素を抑制した魚類を育成することを特徴とする魚類育成方法、
に関する。
【0007】
本発明におけるゼブラフィッシュとは、脊椎動物の新しいモデル実験動物として注目されている魚で、その胚は発生のほぼ全ての時期で透明であり、そのため微分干渉顕微鏡で生きた脳の中の神経細胞等を直接観察できるという特徴を有している。また、1細胞期にRNA、DNAを微量注入することができ、トランスジェニック作製に応用できるという利点もある。しかし、体表面に色素上皮が発達しているため、脳内の観察に支障をきたしている。
【0008】
更に、最近開発され注目されている研究方法にGFP(Green Fluorescent Protein)DNAを、研究したいタンパク質DNAに連結し1細胞期に導入し、蛍光ラベルされたタンパク質を直接蛍光顕微鏡で観察しその機能解析を行う方法がある。
【0009】
脳が透明なので神経特異的なタンパク質を選べば、どのように脳内で神経ネットワークが形成されてくるかを蛍光顕微鏡で直接観察し解析することができる。また、細胞機能に重要なタンパク質であれば、その細胞内での挙動を直接観察し機能の解明に結びつけることができる。
【0010】
ゼブラフィッシュは飼育が簡単で、1回に50〜200個の卵を産み、3ヶ月で生殖可能な成魚になるので、研究材料が容易に入手でき安定したトランスジェニックの作製が可能である。
【0011】
我々の研究によりゼブラフィッシュはヒトと同様の光受容体を持ち、青、緑、赤に対する各受容体(3種類の錐体)と明暗を感知するカン体を持っており、視覚が発達していることが分った。このことを利用して、脳内の観察に支障をきたしている体表面の色素上皮の発達を阻止したものが本発明である。
本発明を具体的に説明するために、実施例を示すが本発明はこれに限定されるものではない。
【0012】
【発明の実施の形態】
【実施例】
1.ゼブラフィッシュをメイティング(雌雄を一緒にして受精卵を得ること)した。
2.授精後24時間以上生存していた受精卵を6種の異なった光環境で飼育した。
3.光源は観賞魚用蛍光灯を用い、水槽の上部に設置した。
4.飼育水槽をプラスチックの入れ物に入れ、全面を黒い紙で覆い、光漏れのない通気口を設けた。
5.上面の中央部に3cm×3cmの穴を開け、そこにフィルターをセットした。
6.3種類のガラスフィルター(シグマ光機社製)を用いた。
▲1▼ 青フィルター(420−500nm)
▲2▼ 緑フィルター(450−600nm)
▲3▼ 赤フィルター(540nm<)
更に、窓のない全面遮光の
▲4▼ 暗黒環境
そして周りが透明な水槽で2種類の下地色
▲5▼ 下地白
▲6▼ 下地黒
の合計6種類の光飼育条件下で受精卵を飼育した。
その結果を図で表す。
【0013】
図1は、下地白で飼育し、受精後1週間経過したゼブラフィッシュを示しているが、色素上皮の大きさが抑えられていることがわかる。
図2は、青いフィルターを経由した光環境で飼育し、受精後1週間経過したゼブラフィッシュを示しているが、この段階ですでに色素上皮が顕著に発達している。
【0014】
図3は、受精後37日間下地白で飼育後、3日間青フィルター環境で飼育したゼブラフィッシュを示しているが、色素上皮は小さいままで、脳内の透明性が高いことがわかる。
【0015】
図4は、青いフィルター環境で受精後40日間飼育したゼブラフィッシュを示しているが、色素上皮の広がりが大きく、体表面の大半が色素上皮で覆われている。
【0016】
なお、細胞の数及びサイズを比較したところ、数については光環境による差異は見られず、サイズは青色では偏平に大きく広がったが、下地白では多くの細胞は小さく凝集していることが分った。
【0017】
以上のことから、発生過程の光飼育環境で決定された色素上皮の性質は、成熟後の光環境を変えても影響を受けないこと及び下地白で飼育されたゼブラフィッシュの脳内の透明性は青フィルターに比べて高いことが分った。
【0018】
また、他の光環境については暗黒や下地黒では下地白に比べ色素上皮の発達が強化はされるが、青フィルターほどではない。
緑フィルターや赤フィルターの下で飼育した場合、色素上皮の広がりは暗黒、下地黒に比べ小さくなっているが、下地白よりは明らかに広がっていた。
【0019】
以上の結果をまとめてみると、色素上皮の広がりの小さい順は
下地白<赤色フィルター、緑色フィルター<暗黒、下地黒<青色フィルター
となる。
【0020】
すなわち、脳内の機能蛋白質の動態をより鮮明により長時間捉まえるために、ゼブラフィッシュ体表面の色素上皮の発達を制御するには、下地白の水槽で飼育することが肝要であることを見出した。
【0021】
そして、このことによりGFP(Green Fluorescent Protein)を伴った神経細胞に特異的なタンパク質を遺伝子導入し発現させた場合、脳内での神経系の形成過程を鮮明に観察することができるようになる。
【0022】
なお、下地白の水槽で飼育することによって、この体表面の色素上皮の発達を制御できる魚種としては、ゼブラフィッシュの他に、青、緑、赤の錐体並びにカン体を有する魚類にも適用できる。
また、ゼブラフィッシュでは野生型、トランスジェニックゼブラフィッシュと広範に適用することができる。
【0023】
【発明の効果】
本発明により、魚体、特にゼブラフィッシュの脳内での神経系の形成過程を鮮明に観察することを可能とする。
【図面の簡単な説明】
【図1】下地白で飼育し、受精後1週間経過したゼブラフィッシュを示す図。
【図2】青いフィルターを経由した光環境で飼育し、受精後1週間経過したゼブラフィッシュを示す図。
【図3】受精後37日間下地白で飼育後、3日間青フィルター環境で飼育したゼブラフィッシュを示す図。
【図4】青いフィルター環境で受精後40日間飼育したゼブラフィッシュを示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the development of a method for controlling the development of pigment epithelium on the body surface of zebrafish. More specifically, the present invention relates to enabling the dynamics of functional proteins to be captured more clearly and for a longer time by suppressing the development of pigment epithelium.
[0002]
[Prior art]
Historically, developmental biology has been studied with Drosophila and nematodes, but vertebrates have not been very effective in experimental animals. In order to observe the dynamics of the components in the fish body, the fish body was ground and observed with a microscope. Recently, a transparent medaka as described in Japanese Patent No. 3354918 (Patent Document 1) has been produced by selective crossing. A method of continuously observing a living state from the outside has been developed.
[0003]
[Patent Document 1]
Japanese Patent No. 3354918
[Problems to be solved by the invention]
It is an object of the present invention to develop a method for controlling the development of pigment epithelium on the surface of a fish body, particularly a zebrafish, so that the dynamics inside the fish body can be easily observed from the outside of the fish body.
[0005]
[Means for Solving the Problems]
The present inventors have made intensive efforts to solve the above-mentioned problems, and as a result, have found that it is effective to breed under a specific wavelength environment from the stage of fertilized eggs.
[0006]
That is, the present invention
(1) A method for suppressing the development of pigment epithelium in fish, comprising breeding fish having blue, green, and red cones and can bodies in a white aquarium,
(2) The method for suppressing the development of pigment epithelium according to (1), wherein the fish having blue, green and red cones and can bodies is zebrafish,
(3) By raising fish having blue, green, and red cones and can bodies in a fermented egg state in an aquarium with a white ground, fishes with suppressed pigment on the body surface are raised. Fish breeding method,
About.
[0007]
The zebrafish in the present invention is a fish that has been attracting attention as a new model experimental animal for vertebrates, and its embryos are transparent at almost all stages of development, so that neurons in the brain that live by differential interference microscopy Etc. can be observed directly. In addition, there is an advantage that a very small amount of RNA and DNA can be injected at one cell stage, and the method can be applied to transgenic production. However, the development of pigment epithelium on the body surface hinders observation in the brain.
[0008]
Furthermore, in a recently developed and attracting research method, GFP (Green Fluorescent Protein) DNA is linked to the protein DNA to be studied, introduced into the one-cell stage, and the fluorescence-labeled protein is directly observed with a fluorescence microscope to analyze its function. There is a way to do it.
[0009]
Since the brain is transparent, if a nerve-specific protein is selected, how a neural network is formed in the brain can be directly observed and analyzed with a fluorescence microscope. In addition, if the protein is important for cell function, its behavior in the cell can be directly observed to clarify the function.
[0010]
Zebrafish is easy to breed, lays 50 to 200 eggs at a time, and becomes a reproductive adult fish in three months, so that research materials are easily available and stable transgenics can be produced.
[0011]
According to our research, zebrafish have photoreceptors similar to humans, each receptor for blue, green, and red (three types of cones) and a can body that senses light and dark. I found out. The present invention utilizes this fact to prevent the development of pigment epithelium on the body surface, which hinders observation in the brain.
The present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
【Example】
1. The zebrafish was mated (to obtain fertilized eggs by combining the sexes).
2. Fertilized eggs that had survived for at least 24 hours after insemination were bred in six different light environments.
3. The light source used was a fluorescent lamp for ornamental fish, and was installed above the aquarium.
4. The breeding aquarium was placed in a plastic container, covered entirely with black paper, and provided with a light-tight vent.
5. A 3 cm × 3 cm hole was made in the center of the upper surface, and a filter was set there.
6. Three types of glass filters (manufactured by Sigma Koki Co., Ltd.) were used.
(1) Blue filter (420-500nm)
(2) Green filter (450-600nm)
(3) Red filter (540nm <)
In addition, fertilized eggs were reared under a total of six types of light rearing conditions, including four types of ground colors in a dark environment and a transparent aquarium with no window, and four types of ground colors in a dark aquarium without windows. .
The results are shown graphically.
[0013]
FIG. 1 shows zebrafish bred on white ground and one week after fertilization, showing that the size of the pigment epithelium is suppressed.
FIG. 2 shows a zebrafish that was reared in a light environment through a blue filter and passed one week after fertilization. At this stage, the pigment epithelium has already been significantly developed.
[0014]
FIG. 3 shows zebrafish reared on white ground for 37 days after fertilization and reared in a blue filter environment for 3 days. It can be seen that the pigment epithelium remains small and the brain has high transparency.
[0015]
FIG. 4 shows a zebrafish bred for 40 days after fertilization in a blue filter environment, where the pigment epithelium has a large spread and most of the body surface is covered with the pigment epithelium.
[0016]
When the number and size of the cells were compared, there was no difference in the number depending on the light environment, and it was found that the number was large and flat in blue, but that many cells were small and aggregated in white underground. Was.
[0017]
Based on the above, the properties of the pigment epithelium determined in the light-raising environment during development were not affected by changing the light environment after maturation, and the transparency in the brain of zebrafish bred on white ground. Was higher than the blue filter.
[0018]
In other light environments, the development of the pigment epithelium is enhanced in the dark and underground black as compared to underground white, but not as much as in the blue filter.
When bred under a green filter or a red filter, the extent of pigment epithelium was darker and smaller than underground black, but was clearly wider than underground white.
[0019]
Summarizing the above results, the order in which the extent of the pigment epithelium is small is: ground white <red filter, green filter <dark filter, ground black <blue filter.
[0020]
In other words, in order to control the development of pigment epithelium on the surface of the zebrafish body in order to capture the dynamics of functional proteins in the brain more clearly and for a longer period of time, it was important to raise them in an aquarium with a white basement. Was.
[0021]
Then, when a gene specific to a nerve cell accompanied by GFP (Green Fluorescent Protein) is transfected and expressed, the formation process of the nervous system in the brain can be clearly observed. .
[0022]
In addition, as a fish species that can control the development of the pigment epithelium on the body surface by breeding in a white aquarium, in addition to zebrafish, blue, green, red cones and fish having a can body Applicable.
In addition, zebrafish can be widely applied to wild-type and transgenic zebrafish.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, it becomes possible to observe clearly the formation process of the nervous system in a fish body, especially a zebrafish brain.
[Brief description of the drawings]
FIG. 1 is a diagram showing zebrafish bred on white ground and one week after fertilization.
FIG. 2 is a diagram showing a zebrafish that was raised in a light environment through a blue filter and one week after fertilization.
FIG. 3 is a diagram showing zebrafish bred in a blue filter environment for 3 days after breeding on white ground for 37 days after fertilization.
FIG. 4 is a diagram showing zebrafish bred in a blue filter environment for 40 days after fertilization.

Claims (3)

青、緑、赤の錐体並びにカン体を有する魚類を、下地白の水槽で飼育することを特徴とする魚類の色素上皮の発達抑制方法。A method for suppressing the development of pigment epithelium of fish, comprising breeding fish having blue, green, and red cones and can bodies in a white aquarium. 青、緑、赤の錐体並びにカン体を有する魚類が、ゼブラフィッシュであることを特徴とする請求項1記載の色素上皮の発達抑制方法。2. The method according to claim 1, wherein the fish having blue, green, and red cones and can bodies is zebrafish. 青、緑、赤の錐体並びにカン体を有する魚類を、受精卵の状態から下地白の水槽で飼育することにより、体表面の色素を抑制した魚類を育成することを特徴とする魚類育成方法。A fish breeding method characterized by breeding fish having blue, green, and red cones and can bodies from a fertilized egg state in a white aquarium, thereby breeding fish with suppressed pigment on the body surface. .
JP2003121420A 2003-04-25 2003-04-25 Method for suppressing development of pigmented epithelium of fishes Pending JP2004321098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121420A JP2004321098A (en) 2003-04-25 2003-04-25 Method for suppressing development of pigmented epithelium of fishes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121420A JP2004321098A (en) 2003-04-25 2003-04-25 Method for suppressing development of pigmented epithelium of fishes

Publications (1)

Publication Number Publication Date
JP2004321098A true JP2004321098A (en) 2004-11-18

Family

ID=33499996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121420A Pending JP2004321098A (en) 2003-04-25 2003-04-25 Method for suppressing development of pigmented epithelium of fishes

Country Status (1)

Country Link
JP (1) JP2004321098A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893938A (en) * 2012-11-12 2013-01-30 湖南师范大学 Subfamily distant hybridization method for Xenocypris davidi Bleeker and Erythroculter ilishaeformis Bleeker
CN109220912A (en) * 2018-09-28 2019-01-18 广东工业大学 A kind of zebra fish conservation cultural method
JP2019187410A (en) * 2017-09-15 2019-10-31 学校法人杏林学園 Diabetic retinopathy, cataract and/or nephropathy model experimental animal
CN112715435A (en) * 2021-01-13 2021-04-30 叶繁全 Method for preparing zebra fish thrombus model by using ferric chloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893938A (en) * 2012-11-12 2013-01-30 湖南师范大学 Subfamily distant hybridization method for Xenocypris davidi Bleeker and Erythroculter ilishaeformis Bleeker
JP2019187410A (en) * 2017-09-15 2019-10-31 学校法人杏林学園 Diabetic retinopathy, cataract and/or nephropathy model experimental animal
JP7232453B2 (en) 2017-09-15 2023-03-03 学校法人杏林学園 Diabetic retinopathy, cataract and/or nephropathy model laboratory animal
CN109220912A (en) * 2018-09-28 2019-01-18 广东工业大学 A kind of zebra fish conservation cultural method
CN112715435A (en) * 2021-01-13 2021-04-30 叶繁全 Method for preparing zebra fish thrombus model by using ferric chloride

Similar Documents

Publication Publication Date Title
Spence et al. The behaviour and ecology of the zebrafish, Danio rerio
Roux et al. Anemonefish, a model for eco-evo-devo
Zacarías‐Soto et al. Spawning and larval development of the four‐sided sea cucumber, Isostichopus badionotus (Selenka 1867), under controlled conditions
Ptatscheck et al. Are meiofauna a standard meal for macroinvertebrates and juvenile fish?
CN111134056B (en) Method for hatching fertilized eggs of medaka in seawater
Roux et al. A star is born again: Methods for larval rearing of an emerging model organism, the False clownfish Amphiprion ocellaris
CN104673815B (en) Compound piggyBac recombinant vectors and its preparation method and application
Penalva et al. Establishment of the miniature fish species Danionella translucida as a genetically and optically tractable neuroscience model
JP2009072138A (en) Method and apparatus for culturing pleuronectiformes fish
Lee et al. Improving zebrafish laboratory welfare and scientific research through understanding their natural history
Archambeault et al. Reproduction, larviculture and early development of the Bluebanded goby, Lythrypnus dalli, an emerging model organism for studies in evolutionary developmental biology and sexual plasticity
Sanjayasari et al. Optimising environmental conditions for nursery culture of juvenile Greenshell™ mussels (Perna canaliculus)
Medoc et al. A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator
Presnell et al. Multigenerational laboratory culture of pelagic ctenophores and CRISPR–Cas9 genome editing in the lobate Mnemiopsis leidyi
Reinhard et al. Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae)
JP2004321098A (en) Method for suppressing development of pigmented epithelium of fishes
CN109089957A (en) A kind of cultural method and device improving zebra fish juvenile fish survival rate
Kim et al. Breeding of zebrafish in the laboratory environment for research development
Butler et al. Development of the visual system in social poison frog tadpoles
Frédérich et al. Colour differentiation in a coral reef fish throughout ontogeny: habitat background and flexibility
Fernlund Isaksson et al. Resource-dependent investment in male sexual traits in a viviparous fish
Wang et al. Effects of different substrates on settlement and growth of pearl oyster (Pinctada maxima) larvae in hatcheries
Okano et al. The effects of particle surface texture on silk secretion by the caddisfly Goera japonica during case construction
Velasco et al. Survival and growth of hatchery‐produced postlarvae and spat of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus
Dionísio et al. Snails, slugs and cephalopods