WO2018151135A1 - Mental illness animal model and method for producing same - Google Patents

Mental illness animal model and method for producing same Download PDF

Info

Publication number
WO2018151135A1
WO2018151135A1 PCT/JP2018/005019 JP2018005019W WO2018151135A1 WO 2018151135 A1 WO2018151135 A1 WO 2018151135A1 JP 2018005019 W JP2018005019 W JP 2018005019W WO 2018151135 A1 WO2018151135 A1 WO 2018151135A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
het
stress
mental illness
drug
Prior art date
Application number
PCT/JP2018/005019
Other languages
French (fr)
Japanese (ja)
Inventor
正啓 岡
哲嗣 盛山
悦啓 米田
洋一 宮本
聡 辻井
貴俊 疋田
真規子 森田
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, 国立大学法人京都大学 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Priority to JP2018568553A priority Critical patent/JP7012310B2/en
Publication of WO2018151135A1 publication Critical patent/WO2018151135A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a mental disease model animal and a method for producing the same.
  • the present invention also provides a method for screening a prophylactic or therapeutic agent for a mental illness using the animal model for mental illness, a method for evaluating the efficacy and / or harmfulness of the prophylactic or therapeutic agent, and a method for screening a biomarker for psychiatric disease. And so on.
  • Depression refers to a state in which depression continues, such as depression, which interferes with general life and social activities. Therefore, elucidation of the cause of psychiatric disorders such as schizophrenia, dementia, and depression, and establishment of effective treatment and prevention methods are desired.
  • Some psychiatric disease model animals have been reported so far (Patent Documents 1 and 2). However, these psychiatric disorders are complex diseases that develop due to a combination of genetic factors and environmental factors such as stress, and a plurality of appropriate model animals are necessary for establishing effective treatments and prevention methods.
  • Drug addiction is one of the mental illnesses. When the effect of a drug is cut off, a strong desire (craving) for the drug is generated and the drug is used without controlling the craving. .
  • abnormalities of the nervous system in the brain have been revealed as a cause of drug addiction.
  • drugs that cause drug dependence drugs that cause only mental dependence and drugs that cause both mental and physical dependence. Alcohol, morphine, and heroin cause physical dependence as well as mental dependence. In contrast, nicotine, stimulants, and cocaine cause strong mental dependence but not physical dependence.
  • Drug dependence is classified into three categories: drug abuse, drug dependence, and drug addiction. Representative examples of chronic poisoning include stimulant psychosis with hallucinations and delusions as the main symptom, and organic solvent psychosis characterized by “immobility syndrome”.
  • KPNA Caryopherin ⁇
  • Intra ⁇ is a nuclear transport factor and is also called importin ⁇ . So far, it has been reported that the expression of KPNA4 is decreased in the superior temporal gyrus of schizophrenic patients (Non-patent Document 1). It has also been reported that a single nucleotide polymorphism of KPNA4 is significantly seen in schizophrenic patients, and that the mutation is associated with a decrease in the KPNA4 gene (Non-patent Document 1). Similarly, it has been reported that the expression of KPNA3 tends to decrease in schizophrenic patients (Non-patent Document 1).
  • Non-Patent Documents 2 to 4 it has been suggested that the single nucleotide polymorphism of KPNA3 is associated with schizophrenia, alcohol dependence, and opiate dependence.
  • Non-patent Document 5 mice in which the KPNA1 gene is mutated do not exhibit abnormalities in the nervous system or abnormal behavior.
  • Non-patent Document 6 mice in which the KPNA1 gene was knocked out, abnormal development of female genital organs and abnormal gene regulation of estrogen receptor have been reported (Non-patent Document 6).
  • the problem to be solved by the present invention is to provide a model animal for mental disorders such as schizophrenia.
  • a model animal for mental illness can be created by losing the function of the KPNA1 (importin ⁇ 1) gene in the animal. Completed.
  • the inventors have also found that a mental disease model animal can be created by applying stress to such an animal, and have completed the present invention.
  • the present invention provides the following: [1] A method for producing a non-human model animal of mental illness, comprising the step of (a) losing the function of all or part of the non-human animal caryopherin ⁇ (KPNA) 1 gene or a homologue thereof.
  • a model animal for mental illness can be provided.
  • a model animal for mental illness whose onset is induced by stress can be provided.
  • FIG. 1 shows the result of a new object recognition test.
  • Vertical axis discrimination ratio (discrimination ratio,%)
  • WT wild type
  • Het hetero knockout
  • KO homo knockout
  • FIG. 2 shows the amount of self-issued movement for one hour in the open field test. Vertical axis: amount of action (total distance, cm / hour).
  • A Normal breeding (group housed)
  • B Isolated breeding (isolation housed).
  • WT wild type
  • Het hetero knockout
  • KO homo knockout
  • isolation-WT WT given social isolation stress
  • isolation-Het Het given social isolation stress
  • isolation-KO KO given social isolation stress .
  • FIG. 3 shows the result of the elevated plus maze test.
  • FIG. 4 shows the results of the Y-shaped maze test. Upper row: amount of action (total distance, cm / 15 minutes), lower row: alternation (%).
  • FIG. 5 shows the results of the prepulse inhibition test. Upper row: startle response, lower row: prepulse inhibition (PPI,%). Lower horizontal axis: prepulse intensity (dB).
  • FIG. 6 shows the results of the passive avoidance test.
  • FIG. 7 shows the results of the forced swimming test. Vertical axis: immobility time (Immobility time, seconds).
  • FIG. 7 shows the results of the forced swimming test. Vertical axis: immobility time (Immobility time, seconds).
  • FIG. 8 shows plasma corticosterone concentration (ng / ml).
  • FIG. 9-1 shows the monoamine concentration (% of WT) in the prefrontal cortex.
  • FIG. 9-2 shows the monoamine concentration (% of WT) in the prefrontal cortex.
  • A Normal breeding
  • B Isolated breeding.
  • WT wild type
  • Het hetero knockout
  • KO homo knockout
  • isolation-WT WT given social isolation stress
  • isolation-Het Het given social isolation stress
  • isolation-KO KO given social isolation stress
  • HVA content homovanillic acid content
  • 3-MT content 3-methoxytyramine content
  • 5-HT content serotonin content.
  • FIG. 10-1 shows the monoamine concentration (% relative to WT) in the nucleus accumbens.
  • WT wild type, Het: hetero knockout, KO: homo knockout
  • isolation-WT WT given social isolation stress
  • isolation-Het Het given social isolation stress
  • isolation-KO KO given social isolation stress .
  • NE content norepinephrine content
  • DOPAC content 3,4-dihydroxyphenylacetic acid content
  • DA content dopamine content.
  • FIG. 10-2 shows the monoamine concentration (% relative to WT) in the nucleus accumbens.
  • FIG. 11 shows the post-drug behavioral amount (total distance, cm / hour) on the seventh day of daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP).
  • A physiological saline administration group
  • B PCP administration group.
  • FIG. 12 shows the results of an elevated plus maze test after daily administration of saline or PCP.
  • Upper row amount of action (total distance, cm / 15 minutes), middle row: stay time of open arm (Time in open arm,%), lower row: number of times to enter open arm (Entry to open arm).
  • FIG. 13 shows the results of a Y-shaped maze test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). Upper row: amount of action (total distance, cm / 15 minutes), lower row: alternation (%).
  • A physiological saline administration group
  • B PCP administration group.
  • FIG. 14 shows the results of a prepulse inhibition test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP).
  • Upper row startle response
  • lower row prepulse inhibition (PPI,%)
  • Lower horizontal axis prepulse intensity (dB).
  • B PCP administration group.
  • FIG. 15 shows the results of a passive avoidance test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). Vertical axis: Time to enter the room that received the electric shock (latency to step through, seconds).
  • A physiological saline administration group
  • B PCP administration group.
  • WT wild type, Het: hetero knockout, KO: homo knockout
  • PCP-WT WT given drug (PCP) stress
  • PCP-Het Het given drug (PCP) stress
  • PCP-KO drug (PCP) ) Stressed KO.
  • the present invention relates to a method for producing a non-human model animal of mental illness, comprising (a1) the function of all or part of the non-human animal caryopherin ⁇ (KPNA) 1 gene or a homologue thereof. Is provided (hereinafter, also referred to as “the method of the present invention”).
  • mental illness refers to a disease caused by functional or organic disorders of the brain or heart.
  • Mental illnesses include schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, drug addiction and the like.
  • KPNA Caryoferrin alpha
  • homolog refers to a group of highly similar genes having the same evolutionary origin. Homologs are classified into two types, “orthologs” and “paralogs”. An ortholog refers to a homolog that was the same gene at the time of species branching. Paralog refers to a homolog created by gene duplication.
  • Step (a1) may be performed by knocking out the KPNA1 gene or a homologous gene thereof.
  • Gene knockout refers to deletion of a target gene by destroying a specific gene.
  • Methods for knocking out a certain gene include, for example, a method of eliminating the expression of a functional protein by replacing the drug resistance gene with the whole or a part of the target gene using homologous recombination, or a site such as the Cre / Lox P system.
  • Methods known in the art such as a method using a specific recombination reaction and a genome editing technology using TALEN or CRISPR-Cas9 can be used.
  • a knockout mouse an ES cell having a target gene disruption is selected, a chimeric individual is prepared using the cell and a mouse embryo, and a cross of several generations is generated from a chimeric individual having germ cells derived from the ES cell. Will create an individual with the target gene disruption.
  • a knockout animal can be produced by a method that combines gene target disruption using somatic cells and a cloning technique.
  • the “knockout” may be a homo knockout or a hetero knockout.
  • the knockout of the KPNA1 gene or its homologous gene may be carried out by dropping one or more exons of the gene.
  • a part of an exon may be dropped off, or an entire exon may be dropped off.
  • consecutive exons may be dropped, or separated exons may be dropped.
  • One or more introns of the gene may be dropped together with one or more exons.
  • a part of the intron may be dropped or the entire intron may be dropped.
  • one or more exons selected from the first exon (exon 1) to the 14th exon (exon 14) may be dropped.
  • exon 2 in which the initiation codon of KPNA1 protein is present may be removed.
  • exon 2 and exon 3 may be dropped.
  • step (a1) may be performed by knocking down the KPNA1 gene or its homologous gene.
  • Gene knockdown refers to decreasing the transcription level of a specific gene or inhibiting translation from a specific gene. Unlike gene knockout, which destroys the gene itself, knockdown greatly diminishes the function of the gene but does not completely lose it.
  • Methods for knocking down a gene include, for example, methods well known in the art, such as an antisense method for introducing RNA corresponding to the antisense strand of mRNA into a cell, and an RNAi method using siRNA, shRNA, microRNA, etc. Can be used. Knockdown efficiency can be confirmed by measuring changes in mRNA level or protein expression level.
  • Methods for measuring mRNA levels include, but are not limited to, real-time quantitative PCR (qPCR) and Northern blotting.
  • methods for measuring protein expression levels include, but are not limited to, Western blotting and ELISA.
  • the knockdown efficiency is not particularly limited as long as it can be used as the mental disease model animal of the present invention by applying stress to the obtained knockdown animal (step (b1)).
  • the knockdown of the KPNA1 gene or its homologous gene may be performed by targeting one or more exons of the gene.
  • a part of an exon may be targeted, or the entire exon may be targeted.
  • successive exons may be targeted, or distant exons may be targeted.
  • one or more exons selected from exons 1 to 14 may be targeted.
  • exon 2 may be targeted.
  • exon 2 and exon 3 may be targeted.
  • the method of the present invention further comprises the step of stressing the non-human animal obtained in step (b1) (a1).
  • the stress applied in step (b1) is social isolation stress.
  • the stress imparted in step (b1) is drug stress.
  • drugs include, but are not limited to, phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, ⁇ 9-tetrahydrocannabinol ( ⁇ 9-THC).
  • the mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression.
  • the stress applied in step (b1) is drug stress and the mental disorder is drug addiction.
  • step (a1) is performed by knocking out the KPNA1 gene or a homolog thereof homologously.
  • non-human animal a non-human animal having the KPNA1 gene or a homologue thereof can be used.
  • the non-human animal is a non-human mammal.
  • non-human mammals include mice, rats, hamsters, guinea pigs, rabbits, ferrets, dogs, cats, goats, minipigs, pigs, sheep, cows, yaks, horses, donkeys, alpaca, common marmosets, monkeys, chimpanzees,
  • Non-limiting examples include bonobos, orangutans, and gorillas.
  • the non-human mammal is an animal selected from the group consisting of a mouse, rat, hamster, guinea pig, rabbit, dog, cat, goat, minipig, pig, sheep, cow, monkey and chimpanzee.
  • the present invention is also referred to as a “non-human model animal of the mental illness or a progeny animal thereof” produced by the method of the present invention (hereinafter, “non-human model animal of the present invention or a progeny animal thereof”). )I will provide a.
  • “Progeny animal” refers to a progeny animal obtained by further mating the non-human model animal of the present invention. The mating may be a mating between the non-human model animals of the present invention or a mating with an animal other than the non-human model animals of the present invention.
  • the present invention relates to (i) an increase in plasma corticosterone concentration, (ii) a decrease in pre-frontal cortex 5-HT concentration, and (iii) 5-HT in the nucleus accumbens.
  • Non-human animals or their progeny animals that exhibit one or more of the conditions selected from the group consisting of decreasing concentrations are provided.
  • the present invention provides a tissue or cell isolated from the above-described non-human model animal of the present invention or a progeny animal thereof.
  • tissue means any tissue obtained from the non-human model animals of the present invention or their progeny animals.
  • epithelial tissues such as the epithelium, glandular epithelium, absorptive epithelium, sensory epithelium, and respiratory epithelium
  • connective tissues such as the dermis, subcutaneous tissue, submucosa, periosteum, fascia, tendon, and vascular outer membrane
  • Cartilage tissue bone tissue, blood, lymph, muscle tissue (such as skeletal muscle tissue, smooth muscle tissue, and myocardial tissue), nerve tissue, and embryonic tissue, but are not limited thereto.
  • Cell means any cell obtained from a non-human model animal of the present invention or a progeny animal thereof.
  • Examples include epithelial cells, endothelial cells, fibroblasts, bone cells, muscle cells, nerve cells, blood cells, immune cells, adipocytes, mast cells, pigment cells, germ cells, progenitor cells, and stem cells. It is not limited to.
  • the present invention provides a method for screening a preventive or therapeutic agent for mental illness, comprising the steps of (a2) administering a test substance to the non-human model animal of the present invention or a progeny animal thereof (b2 And (c2) comparing the results of the behavioral task before and after the administration of the test substance.
  • the present invention relates to a method for evaluating the efficacy and / or harmfulness of a test substance on mental illness, comprising: (a3) a test substance in a non-human model animal of the present invention or a progeny animal thereof. (B3) A step of imposing a behavioral task on the animal obtained in step (a3), and (c3) comparing the results of the behavioral task before and after the administration of the test substance is provided. .
  • Administration of the test substance in steps (a2) and (a3) is not particularly limited, and the test substance can be administered orally or parenterally.
  • Parenteral routes of administration include, but are not limited to, nasal, ocular, otic, intravenous, intraarterial, ventricular, intraperitoneal, intramuscular, intradermal, and subcutaneous routes.
  • the dose of the test substance can be appropriately set according to the type of active ingredient, the size of the molecule, the route of administration, the type of animal to be administered, the drug acceptability of the administration subject, body weight, age, and the like.
  • Behavioral tasks in steps (b2) and (b3) include open field test, elevated plus maze test, light / dark selection test, Y-shaped maze test, T-shaped maze test, new object recognition test, prepulse inhibition (PPI) test, latent inhibition test, passive avoidance test, forced swimming test, tail suspension test, but are not limited thereto.
  • Conditions and means known in the art are used as specific conditions and means for these tests. For example, Proc Natl Acad Sci US A. 2007 Sep 4: 104 (36): 14501-6. Examples include the conditions and means described in the section of the embodiment.
  • the present invention provides a method for screening a biomarker for mental illness, comprising: (a4) a non-human model animal of the present invention or a progeny animal thereof, and a wild-type animal of the same species as the animal. (B4) Step (b4) The nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a4) is examined, and transcription of the nucleic acid, protein, metabolite, or lipid in each animal Alternatively, a method is provided comprising the steps of comparing expression patterns, and (c4) selecting nucleic acids, proteins, metabolites, or lipids that are indicative of mental illness based on the results of the comparison in step (b4).
  • biological sample examples include cells, tissues (normal tissues and diseased tissues), whole blood, plasma, serum, lymph, cerebrospinal fluid, pleural effusion, ascites, gastric fluid, bile, pancreatic juice, intestinal fluid, joint fluid, tears, Examples include but are not limited to body fluids such as aqueous humor, saliva, sputum, nasal discharge, sweat, amniotic fluid, milk, and urine, and feces.
  • the biological sample may be prepared into a state suitable for use in the above method using, for example, a buffer.
  • the biological sample may be used fresh or may be used after a freezing treatment or a formalin fixing treatment. Alternatively, a biological sample stored at an appropriate temperature after collection may be used.
  • qPCR real-time quantitative PCR
  • Northern blotting Northern blotting
  • Western blotting Western blotting
  • ELISA ELISA
  • the present invention further provides the following: [1 ′] A method for causing symptoms and / or disorders related to mental illness in a non-human animal, comprising: (a ′) all or part of the cariopherin ⁇ (KPNA) 1 gene of the non-human animal or a homolog thereof A method comprising the step of losing the function of [2 ′] (b ′) The method according to [1 ′], further comprising applying stress to the non-human animal obtained in step (a ′); [3 ′] The method according to [2 ′], wherein the stress is social isolation stress; [4 ′] The method according to [2 ′], wherein the stress is drug stress; [5 ′] The method according to [4 ′], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, ⁇ 9-tetrahydrocannabinol ( ⁇ 9-THC); [6 ′
  • [11 ′] A non-human model animal of mental illness or a progeny thereof produced by the method according to any one of [1 ′] to [10 ′]; [12 ′] Tissue or cell isolated from the animal according to [11 ′]; [13 ′] A screening method for a preventive or therapeutic agent for mental illness, (A ′) administering a test substance to the animal according to [11 ′], A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of the test substance; [14 ′] A method for evaluating the efficacy and / or harmfulness of a test substance to mental illness, (A ′) administering a test substance to the animal according to [11 ′], A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of
  • symptoms and / or disorders associated with mental disorders refers to mental disorders (eg, schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, drug dependence) )
  • mental disorders eg, schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, drug dependence
  • symptoms and / or disorders in non-human animals include decreased self-issued dynamics, restlessness, increased impulsivity, increased immobility time in forced swimming tests, decreased recognition of new objects, sensorimotor integration Examples include, but are not limited to, disability and disability learning.
  • the present invention still further provides the following: [16 ′] a non-human animal model of mental illness that has lost the function of all or part of the karyopherin ⁇ (KPNA) 1 gene or a homologue thereof; [17 ′] The animal according to [16 ′], which is stressed; [18 ′] The animal according to [17 ′], wherein the stress is social isolation stress; [19 ′] The animal according to [17 ′], wherein the stress is drug stress; [20 ′] The animal according to [19 ′], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, ⁇ 9-tetrahydrocannabinol ( ⁇ 9-THC); [21 ′] The mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression [16 ′] to [20 ′ ] The animal according to any one of [22
  • the present invention still further provides the following: [31 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin ⁇ (KPNA) 1 gene or a homolog thereof as a non-human model animal for mental illness; [32 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin ⁇ (KPNA) 1 gene or a homolog thereof for the manufacture of a prophylactic or therapeutic drug for mental illness; [33 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin alpha (KPNA) 1 gene or a homolog thereof for screening for preventive or therapeutic agents for mental illness; [34 ′] A non-human animal that has lost the function of all or part of the caryopherin ⁇ (KPNA) 1 gene or a homolog thereof for evaluating the efficacy and / or harmfulness of a test substance on mental illness use; [35 ′] use of a non-human animal
  • Kpna1-Het mice were prepared by the following method.
  • the mouse KPNA1 gene is on chromosome 16 and is composed of 14 exons.
  • the start codon of KPNA1 protein exists in the second exon. Accordingly, the second exon and the third exon were removed using the Cre / loxP system to obtain a mouse deficient in expression of the KPNA1 protein.
  • a targeting vector (SEQ ID NO: 4) having a neomycin resistance gene).
  • the prepared targeting vector was introduced into ES cells by electroporation.
  • the ES cells after gene introduction were cultured in the presence of G418. Thereafter, screening of ES cells in which DNA recombination occurred as expected was performed by PCR and Southern blotting.
  • the ES cells thus obtained were introduced into a mouse fertilized egg, returned to the mouse body, and implanted to obtain a chimeric mouse.
  • the chimeric mouse and C57BL / 6J mouse were mated to obtain a transgenic mouse in which the region composed of the second exon and the third exon of the mouse KPNA1 gene was sandwiched between loxP recombination sequences.
  • the obtained transgenic mice were crossed with CAG-FLPe mice (transgenic mice expressing the recombinant enzyme FLPe systemically).
  • the selection marker cassette sandwiched between the FRT recombination sequences was removed from the mouse genome.
  • the obtained transgenic mice were crossed with CAG-Cre mice (transgenic mice expressing the recombinant enzyme Cre systemically).
  • the resulting transgenic mouse was named Kpna1-Het mouse.
  • a Kpna1-Het (NE10) mouse having a gene background of C57BL / 6J was obtained by crossing Kpna1-Het with C57BL / 6J for 10 generations or more.
  • Kpna1-Het (NE10) mice sibling knockout mice (KO), hetero mice (Het), and wild type mice (WT) were obtained from their offspring.
  • Genotypes were confirmed by performing PCR on genomic DNA purified from a part of the mouse tail tissue using the primers shown in the following table. PCR was performed according to a conventional method.
  • mice continue to be reared in normal cages (21 x 32 x 13 cm) and small cages (12.5 x 20 x 11 cm) White paper was wrapped around each and divided into groups for rearing.
  • phencyclidine hydrochloride [1- (1-phenylcyclohexane) piperidine hydrochloride: PCP] (10 mg / kg, 10 mL / kg, subcutaneous administration) was applied from 5 to 6 weeks after birth. It was administered once daily by subcutaneous injection for 7 days. In the control group, physiological saline was administered in the same schedule instead of PCP. On the seventh day, an open field test was conducted.
  • New object recognition test A box of width 40 cm x depth 40 cm x height 27 cm was used. Mice were habituated and acclimatized for 3 minutes in an empty box for 3 consecutive days. On the fourth day, two objects of the same shape, color and size were first placed in the box and trained for 5 minutes. Immediately after the training was finished, it was returned to the home cage. After 15 minutes, the mouse was placed in a box in which one of the two objects was replaced with a different new object and allowed to search for 5 minutes (retention). A video was taken of the training and retention for 5 minutes each. The behaviors taken for 5 minutes were followed and analyzed with EthoVision XT 8.5. The difference in time for searching for two objects was determined.
  • Elevated cross maze test Four arms measuring 30 cm in length and 7 cm in width were placed as a cross maze at a height of 30 cm from the floor. Of the four arms, two were open arms without walls and two were closed arms with walls 20 cm high. A mouse was placed in the center of this elevated cross maze. The video of the action for 15 minutes was recorded immediately after. 15 minutes of behavior in the cross maze was analyzed with EthoVision XT 8.5, total distance traveled (total distance, cm / 15 min), staying in open arm within the total time the mouse stayed in closed arm and open arm The time taken (Time in open arm,%) and the number of times the player entered the open arm (Entry to open arm) were measured.
  • Prepulse Inhibition Test The startle response to sound stimuli was measured by The SR-LAB TM Startle Response System (San Diego Instruments). The target animal was placed in an acrylic tube and conditioned for 30 minutes with 70 dB white noise. Then, after 40 milliseconds of white noise, one of six types of pre-pulses (white noise only, 74 dB, 78 dB, 82 dB, 86 dB, 90 dB) was given for 20 milliseconds. Subsequently, after a silence period of 100 milliseconds, a startle sound stimulus of 120 dB was given for 40 milliseconds, and the startle response at the startle sound was measured.
  • SR-LAB TM Startle Response System San Diego Instruments
  • PPI Prepulse inhibition
  • Passive avoidance test A device in which a bright room brightened by lighting and a dark room with a floor provided with a grid connected to an electric shock generator was connected. On the first day, the mouse was placed in the light room, and the time until it entered the dark room was measured. After entering the dark room, the door between the bright room and the dark room was closed, and an electric shock of 0.3 mA, 60 Hz was applied for 1 second. Then, it returned to the home cage. After 24 hours, it was put into a bright room and the time until entering the dark room was measured.
  • FIG. 11 shows the behavioral amount after drug administration on day 7 of daily administration of physiological saline or PCP.
  • physiological saline was administered every day, there was no difference in the amount of behavior after administration between WT, Het, and KO (A).
  • PCP was administered every day, the amount of behavior after drug administration on day 7 significantly increased in the order of WT, Het, and KO.
  • One way ANOVA p 0.0034. *, P ⁇ 0.05.
  • PCP-KO KO mice subjected to drug stress
  • PCP-KO can be used as behavioral models for drug addiction and schizophrenia.
  • FIG. 12 shows the results of the elevated plus maze test after daily administration of physiological saline or PCP.
  • FIG. 13 shows the results of a Y-shaped maze test after daily administration of physiological saline or PCP.
  • physiological saline was administered every day, there was no difference in the amount of behavior and alternation (%) in the Y-shaped maze test in WT, Het, and KO (A).
  • FIG. 14 shows the results of the prepulse inhibition test after daily administration of physiological saline or PCP.
  • PCP-WT vs. PCP-KO, *, p ⁇ 0.05 This indicates that there is a disorder of sensorimotor integration in KO mice subjected to drug stress (PCP-KO). That is, KO mice given drug stress can be used as behavioral models for schizophrenia.
  • KO PCP-KO
  • the psychiatric disease model animal of the present invention can be used as an animal model corresponding to psychiatric diseases such as schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, and drug dependence. Therefore, it is useful as a model animal for developing a therapeutic drug for mental illness.
  • biomarkers for mental illness can be screened by using the psychiatric disease model animal of the present invention. Therefore, the present invention is useful in the medical field and drug development.
  • SEQ ID NO: 1 primer KPNA1-F1 SEQ ID NO: 2: primer KPNA1-R1 SEQ ID NO: 3: primer KPNA1-R2 SEQ ID NO: 4: KPNA1 targeting vector

Abstract

The present invention relates to a method for producing a nonhuman mental illness animal model, wherein the method includes (a) a step for inducing a partial or complete loss of functionality of a karyopherin α (KPNA) 1 gene or homolog thereof in a nonhuman animal. The present invention also relates to a nonhuman mental illness animal model produced by this method, or to a progeny animal of this nonhuman mental illness animal model, and to a tissue or cell isolated from the animal. The present invention further relates to a method for screening, by using the animal, a drug for preventing or treating a mental illness; a method, by using the animal, for evaluating the efficacy and/or toxicity of a test substance for a mental illness; and a method for screening, by using the animal, a biomarker for mental illness.

Description

精神疾患モデル動物およびその製造方法Psychiatric disease model animal and method for producing the same
 本発明は、精神疾患モデル動物およびその製造方法に関する。本発明はまた、当該精神疾患モデル動物を用いた精神疾患の予防または治療薬のスクリーニング方法、当該予防または治療薬の効能および/または有害性を評価する方法、ならびに精神疾患のバイオマーカーのスクリーニング方法などに関する。 The present invention relates to a mental disease model animal and a method for producing the same. The present invention also provides a method for screening a prophylactic or therapeutic agent for a mental illness using the animal model for mental illness, a method for evaluating the efficacy and / or harmfulness of the prophylactic or therapeutic agent, and a method for screening a biomarker for psychiatric disease. And so on.
 近年、日本国内での精神疾患患者数は大幅に増加しており、平成26年には約396万人と報告されている。統合失調症、認知症、うつ病などの患者が比較的多いとされている。統合失調症は、およそ100人に1人弱がかかる頻度の高い病気である。その症状は、妄想および幻覚などのいわゆる「陽性症状」と、無表情、無気力、活動低下、注意力欠陥、会話の鈍化、認知障害、ひきこもりなどのいわゆる「陰性症状」とに分類される。統合失調症の原因は未だ解明されていない。認知症は、記憶、思考、理解、計算、学習、言語、判断などの知的能力に障害が見られる状態であり、生活・社会活動全般に支障をきたす。うつ病とは、気分の落ち込みなどの抑うつ状態が続き、生活・社会活動全般に支障をきたす状態を指す。したがって、統合失調症、認知症、うつ病をはじめとする精神疾患の原因の解明、ならびに有効な治療法および予防法の確立が望まれている。これまでに、精神疾患モデル動物がいくつか報告されている(特許文献1および2)。しかしながら、これらの精神疾患は遺伝要因とストレスなどの環境要因の組み合わせにより発症する複合疾患であり、複数の適切なモデル動物が有効な治療法および予防法の確立に必要である。 In recent years, the number of mental illness patients in Japan has increased significantly, and in 2014 it was reported to be about 3.96 million. There are relatively many patients with schizophrenia, dementia, and depression. Schizophrenia is a frequent illness that takes nearly 1 in 100 people. The symptoms are classified into so-called “positive symptoms” such as delusions and hallucinations, and so-called “negative symptoms” such as expressionlessness, lethargy, decreased activity, attention deficit, speech dullness, cognitive impairment, and withdrawal. The cause of schizophrenia has not yet been elucidated. Dementia is a condition in which intellectual abilities such as memory, thought, understanding, calculation, learning, language, and judgment are impaired, and it impedes general life and social activities. Depression refers to a state in which depression continues, such as depression, which interferes with general life and social activities. Therefore, elucidation of the cause of psychiatric disorders such as schizophrenia, dementia, and depression, and establishment of effective treatment and prevention methods are desired. Some psychiatric disease model animals have been reported so far (Patent Documents 1 and 2). However, these psychiatric disorders are complex diseases that develop due to a combination of genetic factors and environmental factors such as stress, and a plurality of appropriate model animals are necessary for establishing effective treatments and prevention methods.
 薬物依存症も精神疾患の1つであり、薬物の効果が切れてくると、薬物が欲しいという強い欲求(渇望)がわいてきて、その渇望をコントロールできずに薬物を使ってしまう状態をいう。現在、薬物依存症の原因として、脳内の神経系の異常が明らかになっている。薬物依存症を引き起こす薬物には、精神依存だけを引き起こす薬物と、精神依存と身体依存の両方を引き起こす薬物の2種類がある。アルコール、モルヒネ、ヘロインは、精神依存のみならず身体依存も引き起こす。これに対し、ニコチン、覚せい剤、コカインは強い精神依存を引き起こすが、身体依存は引き起こさない。薬物依存症は薬物乱用・薬物依存・薬物中毒の3つに分類される。慢性中毒の代表としては、幻覚や妄想を主症状とする覚せい剤精神病、「無動機症候群」を特徴とする有機溶剤精神病などが挙げられる。 Drug addiction is one of the mental illnesses. When the effect of a drug is cut off, a strong desire (craving) for the drug is generated and the drug is used without controlling the craving. . Currently, abnormalities of the nervous system in the brain have been revealed as a cause of drug addiction. There are two types of drugs that cause drug dependence: drugs that cause only mental dependence and drugs that cause both mental and physical dependence. Alcohol, morphine, and heroin cause physical dependence as well as mental dependence. In contrast, nicotine, stimulants, and cocaine cause strong mental dependence but not physical dependence. Drug dependence is classified into three categories: drug abuse, drug dependence, and drug addiction. Representative examples of chronic poisoning include stimulant psychosis with hallucinations and delusions as the main symptom, and organic solvent psychosis characterized by “immobility syndrome”.
 カリオフェリンα(KPNA)は核輸送因子であり、インポーティンαとも呼ばれる。これまでに、統合失調症患者の上側頭回においてKPNA4の発現が減少していることが報告されている(非特許文献1)。また、KPNA4の一塩基多型が統合失調症患者で有意に見られ、その変異がKPNA4遺伝子の減少と関連していることも報告されている(非特許文献1)。同様に、統合失調症患者においてKPNA3の発現が減少している傾向があることが報告されている(非特許文献1)。また、KPNA3の一塩基多型が、統合失調症、アルコール依存症、アヘン依存症と関連があることが示唆されている(非特許文献2~4)。一方、KPNA1遺伝子を変異させたマウスは、神経系の異常や行動異常を表さないことが報告されている(非特許文献5)。KPNA1遺伝子をノックアウトさせたマウスでは、雌の生殖器の発生異常およびエストロゲン受容体の遺伝子制御異常が報告されている(非特許文献6)。 Caryopherin α (KPNA) is a nuclear transport factor and is also called importin α. So far, it has been reported that the expression of KPNA4 is decreased in the superior temporal gyrus of schizophrenic patients (Non-patent Document 1). It has also been reported that a single nucleotide polymorphism of KPNA4 is significantly seen in schizophrenic patients, and that the mutation is associated with a decrease in the KPNA4 gene (Non-patent Document 1). Similarly, it has been reported that the expression of KPNA3 tends to decrease in schizophrenic patients (Non-patent Document 1). In addition, it has been suggested that the single nucleotide polymorphism of KPNA3 is associated with schizophrenia, alcohol dependence, and opiate dependence (Non-Patent Documents 2 to 4). On the other hand, it has been reported that mice in which the KPNA1 gene is mutated do not exhibit abnormalities in the nervous system or abnormal behavior (Non-patent Document 5). In mice in which the KPNA1 gene was knocked out, abnormal development of female genital organs and abnormal gene regulation of estrogen receptor have been reported (Non-patent Document 6).
特許第4106030号公報Japanese Patent No. 4106030 特許第5277353号公報Japanese Patent No. 5277353
 本発明の解決課題は、統合失調症などの精神疾患のモデル動物を提供することである。 The problem to be solved by the present invention is to provide a model animal for mental disorders such as schizophrenia.
 本発明者らは、上記課題を解決するために鋭意研究を行った結果、動物においてKPNA1(インポーティンα1)遺伝子の機能を失わせることにより、精神疾患モデル動物を作成できることを見出し、本発明を完成させた。また、かかる動物にストレスを与えることによっても、精神疾患モデル動物を作成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that a model animal for mental illness can be created by losing the function of the KPNA1 (importin α1) gene in the animal. Completed. The inventors have also found that a mental disease model animal can be created by applying stress to such an animal, and have completed the present invention.
 すなわち、本発明は、以下のものを提供する:
[1]精神疾患の非ヒトモデル動物を製造する方法であって、(a)非ヒト動物のカリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失させる段階を含む、方法;
[2](b)段階(a)で得られた非ヒト動物にストレスを与える段階をさらに含む、[1]に記載の方法;
[3]ストレスが社会孤立ストレスである、[2]に記載の方法;
[4]ストレスが薬物によるストレスである、[2]に記載の方法;
[5]薬物がフェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)である、[4]に記載の方法;
[6]精神疾患が、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である、[1]~[5]のいずれか一つに記載の方法;
[7]精神疾患が薬物依存症である、[4]または[5]に記載の方法;
[8]段階(a)が、KPNA1遺伝子またはそのホモログをホモでノックアウトすることによって実施される、[1]~[7]のいずれか一つに記載の方法;
[9]非ヒト動物が非ヒト哺乳動物である、[1]~[8]のいずれか一つに記載の方法;
[10]非ヒト哺乳動物が、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である、[9]に記載の方法;
[11][1]~[10]のいずれか一つに記載の方法によって製造された、精神疾患の非ヒトモデル動物またはそれらの子孫動物;
[12][11]に記載の動物から単離された組織または細胞;
[13]精神疾患の予防または治療薬のスクリーニング方法であって、
(a)[11]に記載の動物に被験物質を投与する段階、
(b)段階(a)で得られた動物に行動課題を課す段階、および
(c)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;
[14]被験物質の精神疾患への効能および/または有害性を評価する方法であって、
(a)[11]に記載の動物に被験物質を投与する段階、
(b)段階(a)で得られた動物に行動課題を課す段階、および
(c)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;ならびに
[15]精神疾患のバイオマーカーのスクリーニング方法であって、
(a)[11]に記載の動物、および当該動物と同種の野生型動物のそれぞれから生体試料を採取する段階、
(b)段階(a)で得られた生体試料中の核酸、タンパク質、代謝産物、または脂質を調べ、それぞれの動物における核酸、タンパク質、代謝産物、または脂質の転写または発現パターンを比較する段階、および
(c)段階(b)における比較の結果に基づいて、精神疾患の指標となる核酸、タンパク質、代謝産物、または脂質を選択する段階
を含む、方法。
That is, the present invention provides the following:
[1] A method for producing a non-human model animal of mental illness, comprising the step of (a) losing the function of all or part of the non-human animal caryopherin α (KPNA) 1 gene or a homologue thereof. Method;
[2] The method according to [1], further comprising the step of stressing the non-human animal obtained in step (b) (a);
[3] The method according to [2], wherein the stress is social isolation stress;
[4] The method according to [2], wherein the stress is drug stress;
[5] The method according to [4], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC);
[6] Any of [1] to [5], wherein the mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression A method according to claim 1;
[7] The method according to [4] or [5], wherein the mental illness is drug dependence;
[8] The method according to any one of [1] to [7], wherein step (a) is performed by knocking out the KPNA1 gene or a homolog thereof homologously;
[9] The method according to any one of [1] to [8], wherein the non-human animal is a non-human mammal;
[10] The non-human mammal is an animal selected from the group consisting of mice, rats, hamsters, guinea pigs, rabbits, dogs, cats, goats, minipigs, pigs, sheep, cows, monkeys and chimpanzees. [9] The method described in;
[11] A non-human model animal of mental illness or a progeny thereof produced by the method according to any one of [1] to [10];
[12] A tissue or cell isolated from the animal according to [11];
[13] A screening method for a preventive or therapeutic agent for mental illness,
(A) administering a test substance to the animal according to [11],
(B) a method comprising imposing a behavioral task on the animal obtained in step (a), and (c) comparing the results of the behavioral task before and after administration of the test substance;
[14] A method for evaluating the efficacy and / or harmfulness of a test substance to mental illness,
(A) administering a test substance to the animal according to [11],
A method comprising: (b) imposing a behavioral task on the animal obtained in step (a); and (c) comparing the results of the behavioral task before and after administration of the test substance; and [15] mental illness A biomarker screening method for
(A) collecting a biological sample from each of the animal according to [11] and a wild-type animal of the same species as the animal,
(B) examining the nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a) and comparing the transcription or expression pattern of the nucleic acid, protein, metabolite, or lipid in each animal; And (c) selecting a nucleic acid, protein, metabolite, or lipid that is indicative of mental illness based on the result of the comparison in step (b).
 本発明によれば、精神疾患のモデル動物を提供することができる。また、本発明のある特定の実施形態によれば、ストレスによってその発症が誘発される精神疾患のモデル動物を提供することができる。 According to the present invention, a model animal for mental illness can be provided. In addition, according to a specific embodiment of the present invention, a model animal for mental illness whose onset is induced by stress can be provided.
図1は新規物体認識試験の結果を示す。縦軸:判別率(discrimination ratio、%)、WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト。FIG. 1 shows the result of a new object recognition test. Vertical axis: discrimination ratio (discrimination ratio,%), WT: wild type, Het: hetero knockout, KO: homo knockout. 図2はオープンフィールド試験における1時間の自発行動量を示す。縦軸:行動量(total distance、cm/時間)。A:通常飼育(group housed)、B:孤立飼育(isolation housed)。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 2 shows the amount of self-issued movement for one hour in the open field test. Vertical axis: amount of action (total distance, cm / hour). A: Normal breeding (group housed), B: Isolated breeding (isolation housed). WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図3は高架式十字迷路試験の結果を示す。上段:行動量(total distance、cm/15分)、中段:open armの滞在時間(Time in open arm、%)、下段:open armに入る回数(Entries to open arm)。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 3 shows the result of the elevated plus maze test. Upper row: amount of action (total distance, cm / 15 minutes), middle row: stay time of open arm (Time in open arm,%), lower row: number of times to enter open arm (Entry to open arm). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図4はY字型迷路試験の結果を示す。上段:行動量(total distance、cm/15分)、下段:交替反応(alternation)(%)。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 4 shows the results of the Y-shaped maze test. Upper row: amount of action (total distance, cm / 15 minutes), lower row: alternation (%). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図5はプレパルスインヒビション試験の結果を示す。上段:驚愕反応(Startle response)、下段:プレパルスインヒビション(PPI、%)。下段の横軸:プレパルス強度(dB)。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 5 shows the results of the prepulse inhibition test. Upper row: startle response, lower row: prepulse inhibition (PPI,%). Lower horizontal axis: prepulse intensity (dB). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図6は受動回避試験の結果を示す。縦軸:電気ショックを受けた部屋へ入るまでの時間(latency to step through、秒)。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 6 shows the results of the passive avoidance test. Vertical axis: Time to enter the room that received the electric shock (latency to step through, seconds). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図7は強制水泳試験の結果を示す。縦軸:不動時間(Immobility time、秒)。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 7 shows the results of the forced swimming test. Vertical axis: immobility time (Immobility time, seconds). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図8は血漿中コルチコステロン濃度(ng/ml)を示す。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。FIG. 8 shows plasma corticosterone concentration (ng / ml). A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . 図9-1は大脳皮質前頭前野のモノアミン濃度(WTに対する%)を示す。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。NE content:ノルエピネフリン含量、DOPAC content:3,4-ジヒドロキシフェニル酢酸含量、DA content:ドーパミン含量。FIG. 9-1 shows the monoamine concentration (% of WT) in the prefrontal cortex. A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . NE content: norepinephrine content, DOPAC content: 3,4-dihydroxyphenylacetic acid content, DA content: dopamine content. 図9-2は大脳皮質前頭前野のモノアミン濃度(WTに対する%)を示す。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。HVA content:ホモバニール酸含量、3-MT content:3-メトキシチラミン含量、5-HT content:セロトニン含量。FIG. 9-2 shows the monoamine concentration (% of WT) in the prefrontal cortex. A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . HVA content: homovanillic acid content, 3-MT content: 3-methoxytyramine content, 5-HT content: serotonin content. 図10-1は側坐核のモノアミン濃度(WTに対する%)を示す。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。NE content:ノルエピネフリン含量、DOPAC content:3,4-ジヒドロキシフェニル酢酸含量、DA content:ドーパミン含量。FIG. 10-1 shows the monoamine concentration (% relative to WT) in the nucleus accumbens. A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . NE content: norepinephrine content, DOPAC content: 3,4-dihydroxyphenylacetic acid content, DA content: dopamine content. 図10-2は側坐核のモノアミン濃度(WTに対する%)を示す。A:通常飼育、B:孤立飼育。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、isolation-WT:社会孤立ストレスを与えたWT、isolation-Het:社会孤立ストレスを与えたHet、isolation-KO:社会孤立ストレスを与えたKO。HVA content:ホモバニール酸含量、3-MT content:3-メトキシチラミン含量、5-HT content:セロトニン含量。FIG. 10-2 shows the monoamine concentration (% relative to WT) in the nucleus accumbens. A: Normal breeding, B: Isolated breeding. WT: wild type, Het: hetero knockout, KO: homo knockout, isolation-WT: WT given social isolation stress, isolation-Het: Het given social isolation stress, isolation-KO: KO given social isolation stress . HVA content: homovanillic acid content, 3-MT content: 3-methoxytyramine content, 5-HT content: serotonin content. 図11は生理食塩水(saline)あるいはフェンシクリジン塩酸塩(PCP)の連日投与7日目の薬物投与後行動量(total distance、cm/時間)を示す。A:生理食塩水投与群、B:PCP投与群。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、PCP-WT:薬物(PCP)ストレスを与えたWT、PCP-Het:薬物(PCP)ストレスを与えたHet、PCP-KO:薬物(PCP)ストレスを与えたKO。FIG. 11 shows the post-drug behavioral amount (total distance, cm / hour) on the seventh day of daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). A: physiological saline administration group, B: PCP administration group. WT: wild type, Het: hetero knockout, KO: homo knockout, PCP-WT: WT given drug (PCP) stress, PCP-Het: Het given drug (PCP) stress, PCP-KO: drug (PCP) ) Stressed KO. 図12は生理食塩水(saline)あるいはPCPの連日投与後の高架式十字迷路試験の結果を示す。上段:行動量(total distance、cm/15分)、中段:open armの滞在時間(Time in open arm、%)、下段:open armに入る回数(Entries to open arm)。A:生理食塩水投与群、B:PCP投与群。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、PCP-WT:薬物(PCP)ストレスを与えたWT、PCP-Het:薬物(PCP)ストレスを与えたHet、PCP-KO:薬物(PCP)ストレスを与えたKO。FIG. 12 shows the results of an elevated plus maze test after daily administration of saline or PCP. Upper row: amount of action (total distance, cm / 15 minutes), middle row: stay time of open arm (Time in open arm,%), lower row: number of times to enter open arm (Entry to open arm). A: physiological saline administration group, B: PCP administration group. WT: wild type, Het: hetero knockout, KO: homo knockout, PCP-WT: WT given drug (PCP) stress, PCP-Het: Het given drug (PCP) stress, PCP-KO: drug (PCP) ) Stressed KO. 図13は生理食塩水(saline)あるいはフェンシクリジン塩酸塩(PCP)の連日投与後のY字型迷路試験の結果を示す。上段:行動量(total distance、cm/15分)、下段:交替反応(alternation)(%)。A:生理食塩水投与群、B:PCP投与群。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、PCP-WT:薬物(PCP)ストレスを与えたWT、PCP-Het:薬物(PCP)ストレスを与えたHet、PCP-KO:薬物(PCP)ストレスを与えたKO。FIG. 13 shows the results of a Y-shaped maze test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). Upper row: amount of action (total distance, cm / 15 minutes), lower row: alternation (%). A: physiological saline administration group, B: PCP administration group. WT: wild type, Het: hetero knockout, KO: homo knockout, PCP-WT: WT given drug (PCP) stress, PCP-Het: Het given drug (PCP) stress, PCP-KO: drug (PCP) ) Stressed KO. 図14は生理食塩水(saline)あるいはフェンシクリジン塩酸塩(PCP)の連日投与後のプレパルスインヒビション試験の結果を示す。上段:驚愕反応(Startle response)、下段:プレパルスインヒビション(PPI、%)。下段の横軸:プレパルス強度(dB)。A:生理食塩水投与群、B:PCP投与群。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、PCP-WT:薬物(PCP)ストレスを与えたWT、PCP-Het:薬物(PCP)ストレスを与えたHet、PCP-KO:薬物(PCP)ストレスを与えたKO。FIG. 14 shows the results of a prepulse inhibition test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). Upper row: startle response, lower row: prepulse inhibition (PPI,%). Lower horizontal axis: prepulse intensity (dB). A: physiological saline administration group, B: PCP administration group. WT: wild type, Het: hetero knockout, KO: homo knockout, PCP-WT: WT given drug (PCP) stress, PCP-Het: Het given drug (PCP) stress, PCP-KO: drug (PCP) ) Stressed KO. 図15は生理食塩水(saline)あるいはフェンシクリジン塩酸塩(PCP)の連日投与後の受動回避試験の結果を示す。縦軸:電気ショックを受けた部屋へ入るまでの時間(latency to step through、秒)。A:生理食塩水投与群、B:PCP投与群。WT:野生型、Het:ヘテロノックアウト、KO:ホモノックアウト、PCP-WT:薬物(PCP)ストレスを与えたWT、PCP-Het:薬物(PCP)ストレスを与えたHet、PCP-KO:薬物(PCP)ストレスを与えたKO。FIG. 15 shows the results of a passive avoidance test after daily administration of physiological saline (saline) or phencyclidine hydrochloride (PCP). Vertical axis: Time to enter the room that received the electric shock (latency to step through, seconds). A: physiological saline administration group, B: PCP administration group. WT: wild type, Het: hetero knockout, KO: homo knockout, PCP-WT: WT given drug (PCP) stress, PCP-Het: Het given drug (PCP) stress, PCP-KO: drug (PCP) ) Stressed KO.
 1つの実施態様では、本発明は、精神疾患の非ヒトモデル動物を製造する方法であって、(a1)非ヒト動物のカリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失させる段階を含む方法(以下、「本発明の方法」ともいう)を提供する。 In one embodiment, the present invention relates to a method for producing a non-human model animal of mental illness, comprising (a1) the function of all or part of the non-human animal caryopherin α (KPNA) 1 gene or a homologue thereof. Is provided (hereinafter, also referred to as “the method of the present invention”).
 本明細書において、「精神疾患」とは、脳または心の機能的・器質的障害によって引き起こされる疾患を指す。精神疾患として、統合失調症、双極性障害、多動性障害、学習障害、認知症、うつ病、薬物依存症などが挙げられる。 In this specification, “mental illness” refers to a disease caused by functional or organic disorders of the brain or heart. Mental illnesses include schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, drug addiction and the like.
 カリオフェリンα(KPNA)は、哺乳類、鳥類、は虫類、両生類、魚類など、様々な生物において広く見られる。また、出芽酵母では1種類、線虫やハエでは3種類、マウスでは6種類、ヒトでは7種類のサブタイプが存在することが知られている。以下の表に示すとおり、マウスとヒトではサブタイプごとに略称表記が異なる。
Figure JPOXMLDOC01-appb-T000001
Caryoferrin alpha (KPNA) is widely found in various organisms such as mammals, birds, reptiles, amphibians and fish. In addition, it is known that there are 1 type of budding yeast, 3 types of nematodes and flies, 6 types of mice, and 7 types of humans. As shown in the following table, the abbreviations differ for each subtype between mouse and human.
Figure JPOXMLDOC01-appb-T000001
 その他の例示的な哺乳動物におけるKPNA1について、以下の表に説明する。
Figure JPOXMLDOC01-appb-T000002
The following table describes KPNA1 in other exemplary mammals.
Figure JPOXMLDOC01-appb-T000002
 本明細書において、「ホモログ」とは、進化的な起源を同じくする類似性の高い遺伝子の一群を指す。ホモログは「オーソログ」と「パラログ」の2種類に分類される。オーソログは、種分岐の際に同じ遺伝子だったホモログを指す。パラログは、遺伝子重複によって生じたホモログを指す。 In this specification, “homolog” refers to a group of highly similar genes having the same evolutionary origin. Homologs are classified into two types, “orthologs” and “paralogs”. An ortholog refers to a homolog that was the same gene at the time of species branching. Paralog refers to a homolog created by gene duplication.
 段階(a1)は、KPNA1遺伝子またはそのホモログ遺伝子を、ノックアウトさせることによって実施してもよい。遺伝子のノックアウトとは、特定の遺伝子を破壊することによって、その標的遺伝子を欠損させることを指す。ある遺伝子をノックアウトする方法としては、例えば、相同組換えを利用して、薬剤耐性遺伝子を標的遺伝子の全体あるいは一部分と入れ替えることにより機能タンパク質の発現を無くす方法や、Cre/Lox Pシステムなどの部位特異的組換え反応を利用する方法、TALENやCRISPR-Cas9を利用するゲノム編集技術などの、当技術分野で公知の方法を用いることができる。例えば、ノックアウトマウスの場合、標的遺伝子破壊を起こしたES細胞を選抜し、その細胞とマウス胚を用いてキメラ個体を作成し、ES細胞に由来する生殖細胞を持つキメラ個体から、数代の交配によって、標的遺伝子破壊を持つ個体が作出される。家畜などの場合では、体細胞を用いた遺伝子標的破壊とクローン技術とを組み合わせた方法によって、ノックアウト動物を作出することができる。本発明において、「ノックアウト」はホモノックアウトであってもよく、ヘテロノックアウトであってもよい。 Step (a1) may be performed by knocking out the KPNA1 gene or a homologous gene thereof. Gene knockout refers to deletion of a target gene by destroying a specific gene. Methods for knocking out a certain gene include, for example, a method of eliminating the expression of a functional protein by replacing the drug resistance gene with the whole or a part of the target gene using homologous recombination, or a site such as the Cre / Lox P system. Methods known in the art such as a method using a specific recombination reaction and a genome editing technology using TALEN or CRISPR-Cas9 can be used. For example, in the case of a knockout mouse, an ES cell having a target gene disruption is selected, a chimeric individual is prepared using the cell and a mouse embryo, and a cross of several generations is generated from a chimeric individual having germ cells derived from the ES cell. Will create an individual with the target gene disruption. In the case of livestock and the like, a knockout animal can be produced by a method that combines gene target disruption using somatic cells and a cloning technique. In the present invention, the “knockout” may be a homo knockout or a hetero knockout.
 KPNA1遺伝子またはそのホモログ遺伝子のノックアウトは、当該遺伝子の1または複数のエキソンを脱落させることによって実施してもよい。この場合、あるエキソンの一部分を脱落させてもよく、あるエキソンの全体を脱落させてもよい。複数のエキソンを脱落させる場合、連続するエキソンを脱落させてもよく、あるいは離れたエキソンを脱落させてもよい。1または複数のエキソンと共に、当該遺伝子の1または複数のイントロンを脱落させてもよい。この場合、イントロンの一部分を脱落させてもよく、イントロンの全体を脱落させてもよい。マウスKPNA1遺伝子をノックアウトする場合、1番目のエキソン(エキソン1)~14番目のエキソン(エキソン14)から選択される、1または複数のエキソンを脱落させてもよい。例えば、KPNA1タンパク質の開始コドンが存在するエキソン2を脱落させてもよい。あるいは、エキソン2とエキソン3を脱落させてもよい。 The knockout of the KPNA1 gene or its homologous gene may be carried out by dropping one or more exons of the gene. In this case, a part of an exon may be dropped off, or an entire exon may be dropped off. When dropping a plurality of exons, consecutive exons may be dropped, or separated exons may be dropped. One or more introns of the gene may be dropped together with one or more exons. In this case, a part of the intron may be dropped or the entire intron may be dropped. When knocking out the mouse KPNA1 gene, one or more exons selected from the first exon (exon 1) to the 14th exon (exon 14) may be dropped. For example, exon 2 in which the initiation codon of KPNA1 protein is present may be removed. Alternatively, exon 2 and exon 3 may be dropped.
 あるいは、段階(a1)は、KPNA1遺伝子またはそのホモログ遺伝子を、ノックダウンさせることによって実施してもよい。遺伝子のノックダウンとは、特定の遺伝子の転写量を減少させること、あるいは特定の遺伝子からの翻訳を阻害することを指す。遺伝子そのものを破壊する遺伝子ノックアウトとは異なり、ノックダウンは、遺伝子の機能を大きく減弱させるものの完全には失わせない。ある遺伝子をノックダウンする方法としては、例えば、mRNAのアンチセンス鎖に相当するRNAを細胞に導入するアンチセンス法、siRNA、shRNA、microRNAなどを用いるRNAi法などの、当技術分野で周知の方法を用いることができる。ノックダウン効率は、mRNAレベルやタンパク質発現レベルの変化を測定することで確認できる。mRNAレベルを測定する方法としては、リアルタイム定量PCR(qPCR)、Northern Blottingが挙げられるが、これらに限定されない。タンパク質発現レベルを測定する方法としては、Western Blotting、ELISAが挙げられるが、これらに限定されない。本発明において、ノックダウン効率は、得られたノックダウン動物にストレスを与える(段階(b1))ことによって本発明の精神疾患モデル動物として利用できる限り、特に限定されないが、例えば、約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約96%、約97%、約98%、または約99%の効率である。 Alternatively, step (a1) may be performed by knocking down the KPNA1 gene or its homologous gene. Gene knockdown refers to decreasing the transcription level of a specific gene or inhibiting translation from a specific gene. Unlike gene knockout, which destroys the gene itself, knockdown greatly diminishes the function of the gene but does not completely lose it. Methods for knocking down a gene include, for example, methods well known in the art, such as an antisense method for introducing RNA corresponding to the antisense strand of mRNA into a cell, and an RNAi method using siRNA, shRNA, microRNA, etc. Can be used. Knockdown efficiency can be confirmed by measuring changes in mRNA level or protein expression level. Methods for measuring mRNA levels include, but are not limited to, real-time quantitative PCR (qPCR) and Northern blotting. Examples of methods for measuring protein expression levels include, but are not limited to, Western blotting and ELISA. In the present invention, the knockdown efficiency is not particularly limited as long as it can be used as the mental disease model animal of the present invention by applying stress to the obtained knockdown animal (step (b1)). About 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95 %, About 96%, about 97%, about 98%, or about 99% efficiency.
 KPNA1遺伝子またはそのホモログ遺伝子のノックダウンは、当該遺伝子の1または複数のエキソンを標的とすることによって実施してもよい。この場合、あるエキソンの一部分を標的としてもよく、あるエキソンの全体を標的としてもよい。複数のエキソンを標的とする場合、連続するエキソンを標的としてもよく、あるいは離れたエキソンを標的としてもよい。マウスKPNA1遺伝子をノックダウンする場合、エキソン1~14から選択される1または複数のエキソンを標的としてもよい。例えば、エキソン2を標的としてもよい。あるいは、エキソン2とエキソン3を標的としてもよい。 The knockdown of the KPNA1 gene or its homologous gene may be performed by targeting one or more exons of the gene. In this case, a part of an exon may be targeted, or the entire exon may be targeted. When targeting multiple exons, successive exons may be targeted, or distant exons may be targeted. When knocking down the mouse KPNA1 gene, one or more exons selected from exons 1 to 14 may be targeted. For example, exon 2 may be targeted. Alternatively, exon 2 and exon 3 may be targeted.
 ある特定の実施形態では、本発明の方法は、(b1)段階(a1)で得られた非ヒト動物にストレスを与える段階をさらに含む。 In a particular embodiment, the method of the present invention further comprises the step of stressing the non-human animal obtained in step (b1) (a1).
 1つの実施形態では、段階(b1)で与えられるストレスは社会孤立ストレスである。他の実施形態では、段階(b1)で与えられるストレスは薬物によるストレスである。薬物の例としては、フェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)が挙げられるが、これらに限定されない。 In one embodiment, the stress applied in step (b1) is social isolation stress. In another embodiment, the stress imparted in step (b1) is drug stress. Examples of drugs include, but are not limited to, phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC).
 別の実施形態では、精神疾患は、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である。さらに別の実施形態では、段階(b1)で与えられるストレスが薬物によるストレスであり、精神疾患が薬物依存症である。 In another embodiment, the mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression. In yet another embodiment, the stress applied in step (b1) is drug stress and the mental disorder is drug addiction.
 さらに別の実施形態では、段階(a1)が、KPNA1遺伝子またはそのホモログをホモでノックアウトすることによって実施される。 In yet another embodiment, step (a1) is performed by knocking out the KPNA1 gene or a homolog thereof homologously.
 本明細書において用いられる「非ヒト動物」としては、KPNA1遺伝子またはそのホモログを有する、ヒト以外の動物を用いることができる。1つの実施形態では、非ヒト動物は非ヒト哺乳動物である。非ヒト哺乳動物の例としては、マウス、ラット、ハムスター、モルモット、ウサギ、フェレット、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、ヤク、ウマ、ロバ、アルパカ、コモンマーモセット、サル、チンパンジー、ボノボ、オランウータン、およびゴリラが挙げられるが、これらに限定されない。特定の実施形態では、非ヒト哺乳動物は、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である。 As the “non-human animal” used in the present specification, a non-human animal having the KPNA1 gene or a homologue thereof can be used. In one embodiment, the non-human animal is a non-human mammal. Examples of non-human mammals include mice, rats, hamsters, guinea pigs, rabbits, ferrets, dogs, cats, goats, minipigs, pigs, sheep, cows, yaks, horses, donkeys, alpaca, common marmosets, monkeys, chimpanzees, Non-limiting examples include bonobos, orangutans, and gorillas. In certain embodiments, the non-human mammal is an animal selected from the group consisting of a mouse, rat, hamster, guinea pig, rabbit, dog, cat, goat, minipig, pig, sheep, cow, monkey and chimpanzee.
 他の実施態様では、本発明は、本発明の方法によって製造された、精神疾患の非ヒトモデル動物またはそれらの子孫動物(以下、「本発明の非ヒトモデル動物またはそれらの子孫動物」ともいう)を提供する。「子孫動物」とは、本発明の非ヒトモデル動物をさらに交配して得られる子孫動物を指す。交配は、本発明の非ヒトモデル動物同士の交配であってもよく、本発明の非ヒトモデル動物以外の動物との交配であってもよい。 In another embodiment, the present invention is also referred to as a “non-human model animal of the mental illness or a progeny animal thereof” produced by the method of the present invention (hereinafter, “non-human model animal of the present invention or a progeny animal thereof”). )I will provide a. “Progeny animal” refers to a progeny animal obtained by further mating the non-human model animal of the present invention. The mating may be a mating between the non-human model animals of the present invention or a mating with an animal other than the non-human model animals of the present invention.
 後述するように(実施例の項を参照のこと)、本発明の方法によって製造された精神疾患モデルマウスでは、血漿中コルチコステロン濃度の増加、大脳皮質前頭前野の5-HT濃度の減少、および/または側坐核の5-HT濃度の減少が見られる。したがって、別の実施態様では、本発明は、(i)血漿中コルチコステロン濃度の増加、(ii)大脳皮質前頭前野の5-HT濃度の減少、および(iii)側坐核の5-HT濃度の減少からなる群から選択される状態の1つ以上を示す、非ヒト動物またはそれらの子孫動物を提供する。 As will be described later (see the Examples section), in psychiatric disease model mice produced by the method of the present invention, plasma corticosterone concentration increased, cerebral prefrontal cortex 5-HT concentration decreased, And / or a decrease in the nucleus accumbens 5-HT concentration. Accordingly, in another embodiment, the present invention relates to (i) an increase in plasma corticosterone concentration, (ii) a decrease in pre-frontal cortex 5-HT concentration, and (iii) 5-HT in the nucleus accumbens. Non-human animals or their progeny animals that exhibit one or more of the conditions selected from the group consisting of decreasing concentrations are provided.
 別の実施態様では、本発明は、上述した本発明の非ヒトモデル動物またはそれらの子孫動物から単離された組織または細胞を提供する。「組織」は、本発明の非ヒトモデル動物またはそれらの子孫動物から得られる任意の組織を意味する。例えば、上皮組織(被蓋上皮、腺上皮、吸収上皮、感覚上皮、および呼吸上皮など)、結合組織(真皮、皮下組織、粘膜下組織、骨膜、筋膜、腱、および血管の外膜など)、軟骨組織、骨組織、血液、リンパ液、筋組織(骨格筋組織、平滑筋組織、および心筋組織など)、神経組織、ならびに胚組織が挙げられるが、これらに限定されない。「細胞」は、本発明の非ヒトモデル動物またはそれらの子孫動物から得られる任意の細胞を意味する。例えば、上皮細胞、内皮細胞、繊維芽細胞、骨細胞、筋細胞、神経細胞、血液細胞、免疫細胞、脂肪細胞、肥満細胞、色素細胞、生殖細胞、前駆細胞、および幹細胞が挙げられるが、これらに限定されない。 In another embodiment, the present invention provides a tissue or cell isolated from the above-described non-human model animal of the present invention or a progeny animal thereof. “Tissue” means any tissue obtained from the non-human model animals of the present invention or their progeny animals. For example, epithelial tissues (such as the epithelium, glandular epithelium, absorptive epithelium, sensory epithelium, and respiratory epithelium), connective tissues (such as the dermis, subcutaneous tissue, submucosa, periosteum, fascia, tendon, and vascular outer membrane) , Cartilage tissue, bone tissue, blood, lymph, muscle tissue (such as skeletal muscle tissue, smooth muscle tissue, and myocardial tissue), nerve tissue, and embryonic tissue, but are not limited thereto. “Cell” means any cell obtained from a non-human model animal of the present invention or a progeny animal thereof. Examples include epithelial cells, endothelial cells, fibroblasts, bone cells, muscle cells, nerve cells, blood cells, immune cells, adipocytes, mast cells, pigment cells, germ cells, progenitor cells, and stem cells. It is not limited to.
 さらに別の実施態様では、本発明は、精神疾患の予防または治療薬のスクリーニング方法であって、(a2)本発明の非ヒトモデル動物またはそれらの子孫動物に被験物質を投与する段階、(b2)段階(a2)で得られた動物に行動課題を課す段階、および(c2)該被験物質の投与前後において、行動課題の結果を比較する段階を含む方法を提供する。 In yet another embodiment, the present invention provides a method for screening a preventive or therapeutic agent for mental illness, comprising the steps of (a2) administering a test substance to the non-human model animal of the present invention or a progeny animal thereof (b2 And (c2) comparing the results of the behavioral task before and after the administration of the test substance.
 さらに別の実施態様では、本発明は、被験物質の精神疾患への効能および/または有害性を評価する方法であって、(a3)本発明の非ヒトモデル動物またはそれらの子孫動物に被験物質を投与する段階、(b3)段階(a3)で得られた動物に行動課題を課す段階、および(c3)該被験物質の投与前後において、行動課題の結果を比較する段階を含む方法を提供する。 In yet another embodiment, the present invention relates to a method for evaluating the efficacy and / or harmfulness of a test substance on mental illness, comprising: (a3) a test substance in a non-human model animal of the present invention or a progeny animal thereof. (B3) A step of imposing a behavioral task on the animal obtained in step (a3), and (c3) comparing the results of the behavioral task before and after the administration of the test substance is provided. .
 段階(a2)および(a3)における被験物質の投与は特に限定されず、被験物質は経口的または非経口的に投与されうる。非経口的な投与経路としては、例えば、経鼻、眼、耳、静脈内、動脈内、心室、腹腔内、筋肉内、皮内、および皮下経路が挙げられるが、これらに限定されない。被験物質の投与量は、有効成分の種類、分子の大きさ、投与経路、投与対象となる動物の種類、投与対象の薬物受容性、体重、年齢等に応じて、適宜設定されうる。 Administration of the test substance in steps (a2) and (a3) is not particularly limited, and the test substance can be administered orally or parenterally. Parenteral routes of administration include, but are not limited to, nasal, ocular, otic, intravenous, intraarterial, ventricular, intraperitoneal, intramuscular, intradermal, and subcutaneous routes. The dose of the test substance can be appropriately set according to the type of active ingredient, the size of the molecule, the route of administration, the type of animal to be administered, the drug acceptability of the administration subject, body weight, age, and the like.
 段階(b2)および(b3)における「行動課題」としては、オープンフィールド試験、高架式十字迷路試験、明暗選択試験、Y字型迷路試験、T字型迷路試験、新規物体認識試験、プレパルスインヒビション(PPI)試験、レイテントインヒビション試験、受動回避試験、強制水泳試験、尾懸垂試験が挙げられるが、これらに限定されない。これらの試験の具体的な条件・手段は当技術分野で公知の条件・手段が用いられる。例えば、Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14501-6を参照のこと。例として、実施例の項で説明される条件・手段が挙げられる。 “Behavioral tasks” in steps (b2) and (b3) include open field test, elevated plus maze test, light / dark selection test, Y-shaped maze test, T-shaped maze test, new object recognition test, prepulse inhibition (PPI) test, latent inhibition test, passive avoidance test, forced swimming test, tail suspension test, but are not limited thereto. Conditions and means known in the art are used as specific conditions and means for these tests. For example, Proc Natl Acad Sci US A. 2007 Sep 4: 104 (36): 14501-6. Examples include the conditions and means described in the section of the embodiment.
 さらに別の実施態様では、本発明は、精神疾患のバイオマーカーのスクリーニング方法であって、(a4)本発明の非ヒトモデル動物またはそれらの子孫動物、および当該動物と同種の野生型動物のそれぞれから生体試料を採取する段階、(b4)段階(a4)で得られた生体試料中の核酸、タンパク質、代謝産物、または脂質を調べ、それぞれの動物における核酸、タンパク質、代謝産物、または脂質の転写または発現パターンを比較する段階、および(c4)段階(b4)における比較の結果に基づいて、精神疾患の指標となる核酸、タンパク質、代謝産物、または脂質を選択する段階を含む方法を提供する。 In yet another embodiment, the present invention provides a method for screening a biomarker for mental illness, comprising: (a4) a non-human model animal of the present invention or a progeny animal thereof, and a wild-type animal of the same species as the animal. (B4) Step (b4) The nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a4) is examined, and transcription of the nucleic acid, protein, metabolite, or lipid in each animal Alternatively, a method is provided comprising the steps of comparing expression patterns, and (c4) selecting nucleic acids, proteins, metabolites, or lipids that are indicative of mental illness based on the results of the comparison in step (b4).
 「生体試料」としては、例えば、細胞、組織(正常組織および病変組織)、全血、血漿、血清、リンパ液、脳脊髄液、胸水、腹水、胃液、胆汁、膵液、腸液、関節液、涙、眼房水、唾液、喀痰、鼻汁、汗、羊水、乳汁、および尿などの体液、ならびに糞便が挙げられるが、これらに限定されない。生体試料は、例えばバッファーなどを用いて、上記方法において用いるために適した状態へと調製されてもよい。生体試料は、新鮮なまま用いてもよく、あるいは、凍結処理やホルマリン固定処理を行った後に用いてもよい。あるいは、採取後、適当な温度下で保管した生体試料を用いてもよい。核酸、タンパク質、代謝産物、または脂質の転写または発現パターンの測定方法としては、当技術分野で公知の方法を用いることができる。例えば、リアルタイム定量PCR(qPCR)、Northern Blotting、Western Blotting、ELISAが挙げられるが、これらに限定されない。 Examples of the “biological sample” include cells, tissues (normal tissues and diseased tissues), whole blood, plasma, serum, lymph, cerebrospinal fluid, pleural effusion, ascites, gastric fluid, bile, pancreatic juice, intestinal fluid, joint fluid, tears, Examples include but are not limited to body fluids such as aqueous humor, saliva, sputum, nasal discharge, sweat, amniotic fluid, milk, and urine, and feces. The biological sample may be prepared into a state suitable for use in the above method using, for example, a buffer. The biological sample may be used fresh or may be used after a freezing treatment or a formalin fixing treatment. Alternatively, a biological sample stored at an appropriate temperature after collection may be used. As a method for measuring the transcription or expression pattern of nucleic acids, proteins, metabolites, or lipids, methods known in the art can be used. Examples include, but are not limited to, real-time quantitative PCR (qPCR), Northern blotting, Western blotting, and ELISA.
 本発明はさらに、以下のものを提供する:
[1’]非ヒト動物に精神疾患に関連する症状および/または障害を起こさせる方法であって、(a’)該非ヒト動物のカリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失させる段階を含む、方法;
[2’](b’)段階(a’)で得られた非ヒト動物にストレスを与える段階をさらに含む、[1’]に記載の方法;
[3’]ストレスが社会孤立ストレスである、[2’]に記載の方法;
[4’]ストレスが薬物によるストレスである、[2’]に記載の方法;
[5’]薬物がフェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)である、[4’]に記載の方法;
[6’]精神疾患が、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である、[1’]~[5’]のいずれか一つに記載の方法;
[7’]精神疾患が薬物依存症である、[4’]または[5’]に記載の方法;
[8’]段階(a’)が、KPNA1遺伝子またはそのホモログをホモでノックアウトすることによって実施される、[1’]~[7’]のいずれか一つに記載の方法;
[9’]非ヒト動物が非ヒト哺乳動物である、[1’]~[8’]のいずれか一つに記載の方法;
[10’]非ヒト哺乳動物が、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である、[9’]に記載の方法;
[11’][1’]~[10’]のいずれか一つに記載の方法によって製造された、精神疾患の非ヒトモデル動物またはそれらの子孫動物;
[12’][11’]に記載の動物から単離された組織または細胞;
[13’]精神疾患の予防または治療薬のスクリーニング方法であって、
(a’)[11’]に記載の動物に被験物質を投与する段階、
(b’)段階(a’)で得られた動物に行動課題を課す段階、および
(c’)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;
[14’]被験物質の精神疾患への効能および/または有害性を評価する方法であって、
(a’)[11’]に記載の動物に被験物質を投与する段階、
(b’)段階(a’)で得られた動物に行動課題を課す段階、および
(c’)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;ならびに
[15’]精神疾患のバイオマーカーのスクリーニング方法であって、
(a’)[11’]に記載の動物、および当該動物と同種の野生型動物のそれぞれから生体試料を採取する段階、
(b’)段階(a’)で得られた生体試料中の核酸、タンパク質、代謝産物、または脂質を調べ、それぞれの動物における核酸、タンパク質、代謝産物、または脂質の転写または発現パターンを比較する段階、および
(c’)段階(b’)における比較の結果に基づいて、精神疾患の指標となる核酸、タンパク質、代謝産物、または脂質を選択する段階
を含む、方法。
The present invention further provides the following:
[1 ′] A method for causing symptoms and / or disorders related to mental illness in a non-human animal, comprising: (a ′) all or part of the cariopherin α (KPNA) 1 gene of the non-human animal or a homolog thereof A method comprising the step of losing the function of
[2 ′] (b ′) The method according to [1 ′], further comprising applying stress to the non-human animal obtained in step (a ′);
[3 ′] The method according to [2 ′], wherein the stress is social isolation stress;
[4 ′] The method according to [2 ′], wherein the stress is drug stress;
[5 ′] The method according to [4 ′], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC);
[6 ′] The mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression, [1 ′] to [5 ′ ] The method according to any one of
[7 ′] The method according to [4 ′] or [5 ′], wherein the mental illness is drug dependence;
[8 ′] The method according to any one of [1 ′] to [7 ′], wherein step (a ′) is performed by knocking out the KPNA1 gene or a homologue thereof homologously;
[9 ′] The method according to any one of [1 ′] to [8 ′], wherein the non-human animal is a non-human mammal;
[10 ′] The non-human mammal is an animal selected from the group consisting of mouse, rat, hamster, guinea pig, rabbit, dog, cat, goat, minipig, pig, sheep, cow, monkey and chimpanzee. '] Method;
[11 ′] A non-human model animal of mental illness or a progeny thereof produced by the method according to any one of [1 ′] to [10 ′];
[12 ′] Tissue or cell isolated from the animal according to [11 ′];
[13 ′] A screening method for a preventive or therapeutic agent for mental illness,
(A ′) administering a test substance to the animal according to [11 ′],
A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of the test substance;
[14 ′] A method for evaluating the efficacy and / or harmfulness of a test substance to mental illness,
(A ′) administering a test substance to the animal according to [11 ′],
A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of the test substance; and [15 '] A screening method for biomarkers of mental illness,
(A ′) collecting a biological sample from each of the animal according to [11 ′] and a wild-type animal of the same species as the animal,
(B ′) Examine the nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a ′) and compare the transcription or expression pattern of the nucleic acid, protein, metabolite, or lipid in each animal And (c ′) selecting a nucleic acid, protein, metabolite, or lipid that is indicative of mental illness based on the results of the comparison in step (b ′).
 本明細書において、「精神疾患に関連する症状および/または障害」とは、精神疾患(例えば、統合失調症、双極性障害、多動性障害、学習障害、認知症、うつ病、薬物依存症)において見られる異常な行動や状態を指す。非ヒト動物におけるかかる症状および/または障害の例としては、自発行動量の低下、落ち着きのなさ、衝動性の増加、強制水泳試験における不動時間の増加、新規物体の認識の低下、感覚運動統合の障害、忌避学習の障害が挙げられるが、これらに限定されない。 As used herein, “symptoms and / or disorders associated with mental disorders” refers to mental disorders (eg, schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, drug dependence) ) Refers to the abnormal behavior or condition seen in Examples of such symptoms and / or disorders in non-human animals include decreased self-issued dynamics, restlessness, increased impulsivity, increased immobility time in forced swimming tests, decreased recognition of new objects, sensorimotor integration Examples include, but are not limited to, disability and disability learning.
 本発明はまたさらに、以下のものを提供する:
[16’]カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している、精神疾患の非ヒトモデル動物;
[17’]ストレスを与えられた、[16’]に記載の動物;
[18’]ストレスが社会孤立ストレスである、[17’]に記載の動物;
[19’]ストレスが薬物によるストレスである、[17’]に記載の動物;
[20’]薬物がフェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)である、[19’]に記載の動物;
[21’]精神疾患が、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である、[16’]~[20’]のいずれか一つに記載の動物;
[22’]精神疾患が薬物依存症である、[19’]または[20’]に記載の動物;
[23’]KPNA1遺伝子またはそのホモログがホモでノックアウトされている、[16’]~[22’]のいずれか一つに記載の動物;
[24’]非ヒト哺乳動物である、[16’]~[23’]のいずれか一つに記載の動物;
[25’]マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である、[24’]に記載の動物;
[26’][16’]~[25’]のいずれか一つに記載の動物の子孫動物;
[27’][16’]~[26’]のいずれか一つに記載の動物から単離された組織または細胞;
[28’]精神疾患の予防または治療薬のスクリーニング方法であって、
(a’)[16’]~[26’]のいずれか一つに記載の動物に被験物質を投与する段階、
(b’)段階(a’)で得られた動物に行動課題を課す段階、および
(c’)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;
[29’]被験物質の精神疾患への効能および/または有害性を評価する方法であって、
(a’)[16’]~[26’]のいずれか一つに記載の動物に被験物質を投与する段階、
(b’)段階(a’)で得られた動物に行動課題を課す段階、および
(c’)該被験物質の投与前後において、行動課題の結果を比較する段階
を含む、方法;ならびに
[30’]精神疾患のバイオマーカーのスクリーニング方法であって、
(a’)[16’]~[26’]のいずれか一つに記載の動物、および当該動物と同種の野生型動物のそれぞれから生体試料を採取する段階、
(b’)段階(a’)で得られた生体試料中の核酸、タンパク質、代謝産物、または脂質を調べ、それぞれの動物における核酸、タンパク質、代謝産物、または脂質の転写または発現パターンを比較する段階、および
(c’)段階(b’)における比較の結果に基づいて、精神疾患の指標となる核酸、タンパク質、代謝産物、または脂質を選択する段階
を含む、方法。
The present invention still further provides the following:
[16 ′] a non-human animal model of mental illness that has lost the function of all or part of the karyopherin α (KPNA) 1 gene or a homologue thereof;
[17 ′] The animal according to [16 ′], which is stressed;
[18 ′] The animal according to [17 ′], wherein the stress is social isolation stress;
[19 ′] The animal according to [17 ′], wherein the stress is drug stress;
[20 ′] The animal according to [19 ′], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC);
[21 ′] The mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression [16 ′] to [20 ′ ] The animal according to any one of
[22 ′] The animal according to [19 ′] or [20 ′], wherein the mental illness is drug dependence;
[23 ′] The animal according to any one of [16 ′] to [22 ′], wherein the KPNA1 gene or a homologue thereof is homozygously knocked out;
[24 ′] The animal according to any one of [16 ′] to [23 ′], which is a non-human mammal;
[25 ′] The animal according to [24 ′], which is an animal selected from the group consisting of a mouse, rat, hamster, guinea pig, rabbit, dog, cat, goat, minipig, pig, sheep, cow, monkey and chimpanzee ;
[26 ′] The progeny animal of the animal according to any one of [16 ′] to [25 ′];
[27 ′] Tissue or cell isolated from the animal according to any one of [16 ′] to [26 ′];
[28 ′] A screening method for a preventive or therapeutic agent for mental illness,
(A ′) administering a test substance to the animal according to any one of [16 ′] to [26 ′],
A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of the test substance;
[29 ′] A method for evaluating the efficacy and / or harmfulness of a test substance to mental illness,
(A ′) administering a test substance to the animal according to any one of [16 ′] to [26 ′],
A method comprising: (b ′) imposing a behavioral task on the animal obtained in step (a ′); and (c ′) comparing the results of the behavioral task before and after administration of the test substance; and [30 '] A screening method for biomarkers of mental illness,
(A ′) collecting a biological sample from each of the animal according to any one of [16 ′] to [26 ′] and a wild-type animal of the same species as the animal,
(B ′) Examine the nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a ′) and compare the transcription or expression pattern of the nucleic acid, protein, metabolite, or lipid in each animal And (c ′) selecting a nucleic acid, protein, metabolite, or lipid that is indicative of mental illness based on the results of the comparison in step (b ′).
 本発明はまたさらに、以下のものを提供する:
[31’]精神疾患の非ヒトモデル動物としての、カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している非ヒト動物の使用;
[32’]精神疾患の予防または治療薬の製造のための、カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している非ヒト動物の使用;
[33’]精神疾患の予防または治療薬のスクリーニングのための、カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している非ヒト動物の使用;
[34’]被験物質の精神疾患への効能および/または有害性の評価のための、カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している非ヒト動物の使用;
[35’]精神疾患のバイオマーカーのスクリーニングのための、カリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失している非ヒト動物の使用;
[36’]非ヒト動物がストレスを与えられている、[31’]~[35’]のいずれか一つに記載の使用;
[37’]ストレスが社会孤立ストレスである、[36’]に記載の使用;
[38’]ストレスが薬物によるストレスである、[36’]に記載の使用;
[39’]薬物がフェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)である、[38’]に記載の使用;
[40’]精神疾患が、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である、[31’]~[39’]のいずれか一つに記載の使用;
[41’]精神疾患が薬物依存症である、[38’]または[39’]に記載の使用;
[42’]非ヒト動物においてKPNA1遺伝子またはそのホモログがホモでノックアウトされている、[31’]~[41’]のいずれか一つに記載の使用;
[43’]非ヒト動物が非ヒト哺乳動物である、[31’]~[42’]のいずれか一つに記載の使用;ならびに
[44’]非ヒト哺乳動物が、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である、[43’]に記載の使用。
The present invention still further provides the following:
[31 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin α (KPNA) 1 gene or a homolog thereof as a non-human model animal for mental illness;
[32 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin α (KPNA) 1 gene or a homolog thereof for the manufacture of a prophylactic or therapeutic drug for mental illness;
[33 ′] Use of a non-human animal that has lost the function of all or part of the caryopherin alpha (KPNA) 1 gene or a homolog thereof for screening for preventive or therapeutic agents for mental illness;
[34 ′] A non-human animal that has lost the function of all or part of the caryopherin α (KPNA) 1 gene or a homolog thereof for evaluating the efficacy and / or harmfulness of a test substance on mental illness use;
[35 ′] use of a non-human animal that has lost the function of all or part of the caryopherin alpha (KPNA) 1 gene or a homolog thereof for screening for biomarkers of mental illness;
[36 ′] The use according to any one of [31 ′] to [35 ′], wherein the non-human animal is stressed;
[37 ′] Use according to [36 ′], wherein the stress is social isolation stress;
[38 ′] Use according to [36 ′], wherein the stress is drug stress;
[39 ′] The use according to [38 ′], wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC);
[40 ′] The mental illness is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression [31 ′] to [39 ′ ] Use according to any one of
[41 ′] Use according to [38 ′] or [39 ′], wherein the mental illness is drug dependence;
[42 ′] The use according to any one of [31 ′] to [41 ′], wherein the KPNA1 gene or a homolog thereof is homo knocked out in a non-human animal;
[43 ′] The use according to any one of [31 ′] to [42 ′], wherein the non-human animal is a non-human mammal; and [44 ′] the non-human mammal is a mouse, rat, hamster The use according to [43 ′], which is an animal selected from the group consisting of guinea pig, rabbit, dog, cat, goat, minipig, pig, sheep, cow, monkey and chimpanzee.
 本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明が属する技術分野の当業者によって一般的に理解されるものと同一の意味を有する。用語「約」は、当業者により理解され、それが使用されている文脈に応じてある程度変化する。「約」は、典型的に、当該用語が付されている数値の±10%、より典型的には±5%、より典型的には±4%、より典型的には±3%、より典型的には±2%、さらにより典型的には±1%の範囲の数値を意味する。 It should be understood that the terms used in this specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The term “about” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which it is used. “About” is typically ± 10%, more typically ± 5%, more typically ± 4%, more typically ± 3% of the numerical value to which the term is attached. It typically means a value in the range of ± 2%, and even more typically ± 1%.
 以下に実施例を示して本発明をより詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものではない。 Hereinafter, the present invention will be described in more detail and specifically with reference to examples. However, the examples do not limit the scope of the present invention.
1. 研究材料
 Kpna1-Hetマウスを以下の手法で作成した。
 マウスKPNA1遺伝子は16番染色体上にあり、14個のエキソンから構成される。そして、2番目のエキソンにKPNA1タンパク質の開始コドンが存在している。そこで、2番目のエキソンと3番目のエキソンをCre/loxPシステムを利用して脱落させることにより、KPNA1タンパク質の発現を欠損したマウスを得た。
1. Study Materials Kpna1-Het mice were prepared by the following method.
The mouse KPNA1 gene is on chromosome 16 and is composed of 14 exons. And the start codon of KPNA1 protein exists in the second exon. Accordingly, the second exon and the third exon were removed using the Cre / loxP system to obtain a mouse deficient in expression of the KPNA1 protein.
 具体的には、まず、loxP組換え配列で挟まれた、マウスKPNA1遺伝子のゲノム領域の2番目のエキソンと3番目のエキソンからなる領域、および選択マーカーカセット(両側にFRT組換え配列が配置されたネオマイシン耐性遺伝子)を有するターゲティングベクター(配列番号4)を作製した。次に、作製したターゲティングベクターを、エレクトロポレーション法によりES細胞に導入した。遺伝子導入後のES細胞をG418存在下で培養した。その後、PCR法とサザンブロット法により、想定した通りのDNA組み換えが起きたES細胞のスクリーニングを行った。このようにして得られたES細胞をマウス受精卵に導入し、マウス体内にもどして着床させることでキメラマウスを得た。さらに、そのキメラマウスとC57BL/6Jマウスとを交配させ、マウスKPNA1遺伝子の2番目のエキソンと3番目のエキソンからなる領域がloxP組換え配列で挟まれているトランスジェニックマウスを得た。次に、得られたトランスジェニックマウスをCAG-FLPe マウス(全身性に組換え酵素FLPeを発現するトランスジェニックマウス)と交配させた。これにより、FRT組換え配列で挟まれた選択マーカーカセットをマウスゲノム中から取り除いた。続いて、得られたトランスジェニックマウスをCAG-Cre マウス(全身性に組換え酵素Creを発現するトランスジェニックマウス)と交配させた。得られたトランスジェニックマウスをKpna1-Hetマウスと命名した。Kpna1-HetをC57BL/6Jと10世代以上の交配を行うことにより、遺伝子背景がC57BL/6JであるKpna1-Het(NE10)マウスを得た。Kpna1-Het(NE10)マウス同士を交配させることにより、その子孫から同胞であるノックアウトマウス(KO)、ヘテロマウス(Het)、野生型マウス(WT)を得た。 Specifically, first, a region consisting of the second and third exons of the mouse KPNA1 gene genomic region sandwiched between loxP recombination sequences, and a selection marker cassette (FRT recombination sequences are arranged on both sides). A targeting vector (SEQ ID NO: 4) having a neomycin resistance gene). Next, the prepared targeting vector was introduced into ES cells by electroporation. The ES cells after gene introduction were cultured in the presence of G418. Thereafter, screening of ES cells in which DNA recombination occurred as expected was performed by PCR and Southern blotting. The ES cells thus obtained were introduced into a mouse fertilized egg, returned to the mouse body, and implanted to obtain a chimeric mouse. Furthermore, the chimeric mouse and C57BL / 6J mouse were mated to obtain a transgenic mouse in which the region composed of the second exon and the third exon of the mouse KPNA1 gene was sandwiched between loxP recombination sequences. Next, the obtained transgenic mice were crossed with CAG-FLPe mice (transgenic mice expressing the recombinant enzyme FLPe systemically). As a result, the selection marker cassette sandwiched between the FRT recombination sequences was removed from the mouse genome. Subsequently, the obtained transgenic mice were crossed with CAG-Cre mice (transgenic mice expressing the recombinant enzyme Cre systemically). The resulting transgenic mouse was named Kpna1-Het mouse. A Kpna1-Het (NE10) mouse having a gene background of C57BL / 6J was obtained by crossing Kpna1-Het with C57BL / 6J for 10 generations or more. By mating Kpna1-Het (NE10) mice, sibling knockout mice (KO), hetero mice (Het), and wild type mice (WT) were obtained from their offspring.
 マウスの尾部組織の一部より精製したゲノムDNAに対して以下の表に記載のプライマーを用いてPCRを行うことにより、遺伝子型を確認した。PCRは常法に従って実施した。
Figure JPOXMLDOC01-appb-T000003
Genotypes were confirmed by performing PCR on genomic DNA purified from a part of the mouse tail tissue using the primers shown in the following table. PCR was performed according to a conventional method.
Figure JPOXMLDOC01-appb-T000003
 PCR反応後、1%アガロースゲルにて電気泳動を行った。622bpのPCR産物のみが確認されたものを野生型マウス(WT)と判断した。622bpと420bpの2本のPCR産物が確認されたものをKpna1-Hetマウス(Het)と判断した。420bpのPCR産物のみが確認されたものをノックアウトマウス(KO)と判断した。全ての実験は同胞であるオスのKO、Het、およびWTを用いた。遺伝子組換えマウスの使用については京都大学組換えDNA実験安全委員会の承認を受け、京都大学組換えDNA実験安全管理規定に従った。 After the PCR reaction, electrophoresis was performed on a 1% agarose gel. Those in which only a 622 bp PCR product was confirmed were determined to be wild type mice (WT). Those in which two PCR products of 622 bp and 420 bp were confirmed were judged as Kpna1-Het mice (Het). Those in which only the 420 bp PCR product was confirmed were determined to be knockout mice (KO). All experiments used siblings male KO, Het, and WT. The use of transgenic mice was approved by the Kyoto University Recombinant DNA Experiment Safety Committee and complied with the Kyoto University Recombinant DNA Experiment Safety Management Regulations.
1-1. 社会孤立ストレスの負荷方法
 マウスを、生後5週から8週にかけて、通常の飼育ケージ(21×32×13 cm)にて集団飼育を続ける群と、小ケージ(12.5×20×11 cm)の周囲に白い紙を巻き、孤立飼育を行う群に分けた。
1-1. Method of applying social isolation stress From the 5th to 8th week of life, mice continue to be reared in normal cages (21 x 32 x 13 cm) and small cages (12.5 x 20 x 11 cm) White paper was wrapped around each and divided into groups for rearing.
1-2. 薬物ストレスの負荷方法
 薬物ストレスを与えるマウスに、フェンシクリジン塩酸塩[1-(1-phenylcyclohexyl) piperidine hydrochloride:PCP](10mg/kg、10mL/kg、皮下投与)を生後5週から6週にかけて7日間皮下注射により、1日1回投与した。対照群にはPCPに代えて生理食塩水を同じスケジュールで投与した。7日目にオープンフィールド試験を行った。
1-2. Method of applying drug stress To mice subjected to drug stress, phencyclidine hydrochloride [1- (1-phenylcyclohexane) piperidine hydrochloride: PCP] (10 mg / kg, 10 mL / kg, subcutaneous administration) was applied from 5 to 6 weeks after birth. It was administered once daily by subcutaneous injection for 7 days. In the control group, physiological saline was administered in the same schedule instead of PCP. On the seventh day, an open field test was conducted.
2. 行動実験
 生後8週齢より、京都大学大学院医学研究科メディカルイノベーションセンター動物施設において、新規物体認識試験、オープンフィールド試験、高架式十字迷路試験、Y字型迷路試験、プレパルスインヒビション(PPI)試験、受動回避試験、強制水泳試験を行った。すべての行動実験は京都大学動物実験委員会の承認を受け、京都大学における動物実験の実施に関する規程に従った。
2. Behavioral experiments From the age of 8 weeks of age, new object recognition tests, open field tests, elevated plus maze tests, Y-shaped maze tests, prepulse inhibition (PPI) tests at the Animal Innovation Center Animal Facility, Kyoto University Graduate School of Medicine A passive avoidance test and a forced swimming test were conducted. All behavioral experiments were approved by the Kyoto University Animal Experiment Committee and followed the rules for conducting animal experiments at Kyoto University.
2-1. 新規物体認識試験
 幅40cm×奥行き40cm×高さ27cmの箱を用いた。マウスを3日間連続で、5分間、物体のない箱内を探索させ、馴化させた。4日目に、まず、同一の形状、色および大きさの2つの物体を箱内に置き、5分間探索させた(training)。trainingの終了後すぐに、ホームケージに戻した。15分後に、2つの物体の内1つが異なる新規物体に置き換えられた箱内にマウスを入れ、5分間探索させた(retention)。trainingとretentionの各5分間の行動をビデオ撮影した。撮影した5分間の行動をEthoVision XT 8.5で追跡、解析した。2つの物体を探索する時間の差を求めた。
2-1. New object recognition test A box of width 40 cm x depth 40 cm x height 27 cm was used. Mice were habituated and acclimatized for 3 minutes in an empty box for 3 consecutive days. On the fourth day, two objects of the same shape, color and size were first placed in the box and trained for 5 minutes. Immediately after the training was finished, it was returned to the home cage. After 15 minutes, the mouse was placed in a box in which one of the two objects was replaced with a different new object and allowed to search for 5 minutes (retention). A video was taken of the training and retention for 5 minutes each. The behaviors taken for 5 minutes were followed and analyzed with EthoVision XT 8.5. The difference in time for searching for two objects was determined.
2-2. オープンフィールド試験
 幅40cm×奥行き40cm×高さ27cmの箱の中心にマウスを置いた。直後から60分間の行動をビデオ撮影した。60分間の総移動距離(cm/1時間)をビデオ解析システムEthoVision XT 8.5(Noldus)で解析し、新規環境における自発行動量を測定した。
2-2. Open field test A mouse was placed in the center of a box 40 cm wide x 40 cm deep x 27 cm high. A 60-minute video was recorded immediately afterwards. The total moving distance (cm / 1 hour) for 60 minutes was analyzed with a video analysis system EthoVision XT 8.5 (Noldus), and the self-issued movement amount in a new environment was measured.
2-3. 高架式十字迷路試験
 長さ30cm×幅7cmの4本のアームを十字迷路として、床から30cmの高さに設置した。4本のアームのうち、2本は壁の無いopen arm、2本は高さ20cmの壁があるclosed armとした。この高架式十字迷路の中心にマウスを置いた。直後から15分間の行動をビデオ撮影した。十字迷路内の15分間の行動をEthoVision XT 8.5で解析し、総移動距離(total distance、cm/15分)、マウスがclosed armとopen armに滞在した合計の時間の内open armに滞在した時間(Time in open arm、%)およびopen armに進入した回数(Entries to open arm)を測定した。
2-3. Elevated cross maze test Four arms measuring 30 cm in length and 7 cm in width were placed as a cross maze at a height of 30 cm from the floor. Of the four arms, two were open arms without walls and two were closed arms with walls 20 cm high. A mouse was placed in the center of this elevated cross maze. The video of the action for 15 minutes was recorded immediately after. 15 minutes of behavior in the cross maze was analyzed with EthoVision XT 8.5, total distance traveled (total distance, cm / 15 min), staying in open arm within the total time the mouse stayed in closed arm and open arm The time taken (Time in open arm,%) and the number of times the player entered the open arm (Entry to open arm) were measured.
2-4. Y字型迷路試験
 3本のアームが長さ42cm、深さ15cm、アーム間の角度が120°のY字型迷路を設置した。Y字型迷路の中心にマウスを置いた。直後から15分間の行動をビデオ撮影した。撮影した15分間の行動をEthoVision XT 8.5で追跡、解析した。総移動距離(cm/15分)を測定した。加えて、マウスが全てのアームに侵入した回数と、続けて3回異なるアームに入った回数(交替行動数)を数え、alternation(%)を算出した。alternation(%)は以下の式で表される:
 [式1]
alternation(%)=交替行動数÷(総侵入回数-2)×100
2-4. Y-shaped maze test A Y-shaped maze in which three arms were 42 cm long, 15 cm deep, and the angle between the arms was 120 ° was installed. A mouse was placed in the center of the Y-shaped maze. The video of the action for 15 minutes was recorded immediately after. The captured 15-minute behavior was tracked and analyzed with EthoVision XT 8.5. The total travel distance (cm / 15 minutes) was measured. In addition, the number of times that the mouse entered all the arms and the number of times that the mouse entered three different arms (number of replacement actions) were counted, and the alternation (%) was calculated. Alternation (%) is represented by the following formula:
[Formula 1]
alternation (%) = number of alternations / (total number of intrusions -2) x 100
2-5. プレパルスインヒビション試験
  The SR-LAB(商標) Startle Response System(San Diego Instruments)により音刺激に対する驚愕反応を測定した。アクリル製の筒に対象の動物を入れ、70dBのホワイトノイズによる30分間の馴らしを行った。その後、40ミリ秒のホワイトノイズの後に、6種類のプレパルスのいずれか(ホワイトノイズのみ、74dB、78dB、82dB、86dB、90dB)を20ミリ秒与えた。続けて100ミリ秒の無音時間の後に、40ミリ秒間、120dBの驚愕音刺激を与え、驚愕刺激音時の驚愕反応を測定した。各プレパルスと驚愕音刺激の組み合わせは各7回ランダムに提示した。驚愕音刺激後のインターバル時間は25ミリ秒から60ミリ秒の間でランダムに与えた。測定したデータからプレパルスインヒビション(PPI,%)を算出した。PPI(%)は以下の式で表される:
 [式2]
{1-(プレパルスありでの驚愕反応の大きさ)/(プレパルスなしでの驚愕反応の大きさ)}×100
2-5. Prepulse Inhibition Test The startle response to sound stimuli was measured by The SR-LAB ™ Startle Response System (San Diego Instruments). The target animal was placed in an acrylic tube and conditioned for 30 minutes with 70 dB white noise. Then, after 40 milliseconds of white noise, one of six types of pre-pulses (white noise only, 74 dB, 78 dB, 82 dB, 86 dB, 90 dB) was given for 20 milliseconds. Subsequently, after a silence period of 100 milliseconds, a startle sound stimulus of 120 dB was given for 40 milliseconds, and the startle response at the startle sound was measured. Each combination of prepulse and startle sound stimulus was randomly presented 7 times each. The interval time after the startle sound stimulation was randomly given between 25 milliseconds and 60 milliseconds. Prepulse inhibition (PPI,%) was calculated from the measured data. PPI (%) is represented by the following formula:
[Formula 2]
{1- (magnitude of startle response with prepulse) / (magnitude of startle response without prepulse)} × 100
2-6. 受動回避試験
 照明で明るくした明室と、電気ショック発生装置とつなげたグリッドを備える床が設置された暗室とが連結されている装置を用いた。1日目にマウスを明室に入れ、暗室に入室するまでの時間を測定した。暗室に入室後、明室と暗室の間の扉を閉め、0.3mA、60Hzの電気ショックを1秒間与えた。その後、ホームケージに戻した。24時間後に、明室に入れ、暗室に入室するまでの時間を測定した。
2-6. Passive avoidance test A device in which a bright room brightened by lighting and a dark room with a floor provided with a grid connected to an electric shock generator was connected. On the first day, the mouse was placed in the light room, and the time until it entered the dark room was measured. After entering the dark room, the door between the bright room and the dark room was closed, and an electric shock of 0.3 mA, 60 Hz was applied for 1 second. Then, it returned to the home cage. After 24 hours, it was put into a bright room and the time until entering the dark room was measured.
2-7. 強制水泳試験
 直径13.5cm×高さ20cmの筒に室温の水を高さ14cmまで入れ、その中心にマウスを置いた。直後から6分間の行動をビデオ撮影した。6分間の不動時間(秒)をストップウォッチで測定し、水中環境における不動時間を測定した。
2-7. Forced swimming test Water at room temperature was put in a cylinder having a diameter of 13.5 cm and a height of 20 cm to a height of 14 cm, and a mouse was placed in the center. The video of the action for 6 minutes was recorded immediately after. The immobility time (second) for 6 minutes was measured with a stopwatch, and the immobility time in the underwater environment was measured.
3. 血漿中コルチコステロン濃度測定
 イソフルランにより十分に麻酔をかけたマウスより血液を採取し、血漿中のコルチコステロン濃度をEIAキット(Cayman Chemical Company)を用いて測定した。
3. Measurement of plasma corticosterone concentration Blood was collected from a mouse sufficiently anesthetized with isoflurane, and the corticosterone concentration in plasma was measured using an EIA kit (Cayman Chemical Company).
4. 脳内モノアミン量測定
 イソフルランにより十分に麻酔をかけたマウスより脳を素早く取り出し、1mm厚の冠状断スライスを調製した。スライスより大脳皮質前頭前野と側坐核を分離し、凍結保存した。凍結サンプルを、イソプロテレノールを内部標準として含む0.2M 過塩素酸溶液に入れ、超音波ホモジェナイザー(TAITEC)を用いて氷中で破砕した。30分の均質化後、得られた溶液を4℃で15分間、20,000gの遠心分離に供した。上澄み液を0.45μm Cosmospin filter H(ナカライテスク)にて濾過した。高速液体クロマトグラフィー法により、3-メトキシ-4-ヒドロキシフェニルグリコール(MHPG)、ノルエピネフリン(NE)、ピネフリン(Epi)、3,4-ジヒドロキシフェニル酢酸(DOPAC)、ノルメタネフリン(NM)、ドーパミン(DA)、5-ハイドロキシインドール酢酸(5-HIAA)、ホモバニール酸(HVA)、3-メトキシチラミン(3-MT)、および5-ヒドロキシトリプタミン(5-HT)の量を測定した。
4). Measurement of the amount of monoamine in the brain The brain was quickly removed from a mouse sufficiently anesthetized with isoflurane, and a 1 mm thick coronal slice was prepared. The prefrontal cortex and nucleus accumbens were separated from the slice and stored frozen. The frozen sample was placed in a 0.2 M perchloric acid solution containing isoproterenol as an internal standard, and crushed in ice using an ultrasonic homogenizer (TAITEC). After homogenization for 30 minutes, the resulting solution was subjected to centrifugation at 20,000 g for 15 minutes at 4 ° C. The supernatant was filtered through 0.45 μm Cosmospin filter H (Nacalai Tesque). By high performance liquid chromatography, 3-methoxy-4-hydroxyphenyl glycol (MHPG), norepinephrine (NE), pinephrine (Epi), 3,4-dihydroxyphenylacetic acid (DOPAC), normetanephrine (NM), dopamine (DA) , 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), 3-methoxytyramine (3-MT), and 5-hydroxytryptamine (5-HT) were measured.
5. 統計処理
 全ての統計処理はGraph pad Prism 6.0 (Graph pad software)を用いて行った。2群比較としてt検定を行った。他はANOVA解析を行い、Bonferroni多重比較により有意差を検定した。
5). Statistical processing All statistical processing was performed using Graph pad Prism 6.0 (Graph pad software). A t-test was performed as a 2-group comparison. For others, ANOVA analysis was performed, and significant differences were tested by Bonferroni multiple comparison.
6. 結果
 上述した試験の結果を以下に示す。
6). Result The result of the test mentioned above is shown below.
6-1. 新規物体認識試験
 結果を図1に示す。通常飼育したWTでは、TrainingとRetentionでの2つの物体の識別率に有意差が見られた。このことは、通常飼育したWTは新規物体を認識できることを示している。**, p<0.01。これに対して、HetとKOでは、TrainingとRetentionでの2つの物体の識別率に有意差が見られなかった(n.s.:not significant)。このことは、通常飼育したHetとKOは新規物体を認識できない、すなわち認知機能が低下していることを示している。WT, n=9;Het, n=10;KO, n=11。すなわち、HetとKOマウスはストレスを与えない状態であっても、学習障害、認知症の行動モデルとして用いることができる。
6-1. The results of the new object recognition test are shown in FIG. In the WT that was normally bred, there was a significant difference in the discrimination rate between the two objects in Training and Retention. This indicates that a normally raised WT can recognize a new object. **, p <0.01. On the other hand, between Het and KO, no significant difference was found in the discrimination rate between the two objects in Training and Retention (ns: not significant). This indicates that normally raised Het and KO cannot recognize a new object, that is, the cognitive function is lowered. WT, n = 9; Het, n = 10; KO, n = 11. That is, Het and KO mice can be used as behavioral models for learning disabilities and dementia even in a state where no stress is applied.
6-2. オープンフィールド試験
 結果を図2に示す。通常飼育したWT、Het、KOは新規環境における自発行動量に差は無かった(A)。One way ANOVA p=0.8419。WT, n=9;Het, n=10;KO, n=11。社会孤立ストレスを与えたKOマウス(isolation-KO)は有意に自発行動量の低下を認めた(B)。One way ANOVA p=0.0074。*, p<0.05。WT, n=10;Het, n=14;KO, n=9。
6-2. The open field test results are shown in FIG. There was no difference in the amount of self-issued WT, Het, and KO reared normally in the new environment (A). One way ANOVA p = 0.8419. WT, n = 9; Het, n = 10; KO, n = 11. KO mice subjected to social isolation stress (isolation-KO) showed a significant decrease in spontaneous movement (B). One way ANOVA p = 0.0004. *, P <0.05. WT, n = 10; Het, n = 14; KO, n = 9.
6-3. 高架式十字迷路試験
 結果を図3に示す。通常飼育したWT、Het、KOは高架式十字迷路試験における行動量、open armの滞在時間、open armに入る回数に差は無かった(A)。WT, n=9; Het, n=10; KO, n=11。社会孤立ストレスを与えたKOマウス(isolation-KO)は有意に高架式十字迷路試験における行動量の増加を認めた(B上段、One way ANOVA p=0.0383)。*, p<0.05。また、社会孤立ストレスを与えた場合、WT、Het、KOの順に、open armの滞在時間(%)が有意に増加した(B中段、One way ANOVA p=0.0003)。さらに、社会孤立ストレスを与えた場合、WT、Het、KOの順に、open armに入る回数が有意に増加した(B下段、One way ANOVA p<0.0001)。*, p<0.05、***, p<0.001、***, p<0.0001。WT, n=10;Het, n=14;KO, n=9。このことは、社会孤立ストレスを与えたHetマウス(isolation-Het)およびKOマウス(isolation-KO)で、迷路試験での落ち着きのなさと衝動性の増加がある事を示す。すなわち、社会孤立ストレスを与えたHetマウスおよびKOマウスは、統合失調症、双極性障害、多動性障害の行動モデルとして用いることができる。
6-3. The results of the elevated plus maze test are shown in FIG. WT, Het, and KO bred normally did not differ in the amount of behavior in the elevated plus maze test, the stay time of the open arm, and the number of times they entered the open arm (A). WT, n = 9; Het, n = 10; KO, n = 11. KO mice subjected to social isolation stress (isolation-KO) significantly increased the amount of behavior in the elevated plus maze test (B upper row, One way ANOVA p = 0.0383). *, P <0.05. Moreover, when social isolation stress was given, the stay time (%) of open arm increased significantly in the order of WT, Het, and KO (B middle stage, One way ANOVA p = 0.0003). Furthermore, when social isolation stress was applied, the number of times the arm entered the open arm increased in the order of WT, Het, and KO (lower B, One way ANOVA p <0.0001). *, P <0.05, ***, p <0.001, ***, p <0.0001. WT, n = 10; Het, n = 14; KO, n = 9. This indicates that the Het mice (isolation-Het) and KO mice (isolation-KO) subjected to social isolation stress have increased restlessness and impulsivity in the maze test. That is, Het mice and KO mice subjected to social isolation stress can be used as behavior models for schizophrenia, bipolar disorder, and hyperactivity disorder.
6-4. Y字型迷路試験
 結果を図4に示す。通常飼育したWT、Het、KOでは、Y字型迷路試験における行動量とalternation(%)に差は無かった(A)。WT, n=9;Het, n=10;KO, n=11。社会孤立ストレスを与えたKOマウス(isolation-KO)は有意にY字型迷路試験における行動量の増加を認めた(B上段、One way ANOVA p=0.0347)。*, p<0.05。alternation(%)には差が無かった(B下段、One way ANOVA p=0.7173)。WT, n=10;Het, n=14;KO, n=9。このことは、社会孤立ストレスを与えたKOマウス(isolation-KO)において、短期記憶に差は無いが、迷路試験で落ち着きがないことを示す。
6-4. The results of the Y-shaped maze test are shown in FIG. In WT, Het, and KO bred normally, there was no difference in the amount of behavior and alternation (%) in the Y-shaped maze test (A). WT, n = 9; Het, n = 10; KO, n = 11. KO mice subjected to social isolation stress (isolation-KO) significantly increased the amount of behavior in the Y-shaped maze test (B upper row, One way ANOVA p = 0.0347). *, P <0.05. There was no difference in alternation (%) (lower B, One way ANOVA p = 0.7173). WT, n = 10; Het, n = 14; KO, n = 9. This shows that there is no difference in short-term memory in KO mice (isolation-KO) subjected to social isolation stress, but there is no calmness in the maze test.
6-5. プレパルスインヒビション試験
 結果を図5に示す。通常飼育したWT、Het、KOでは、プレパルスインヒビション試験における驚愕反応とPPI(%)に差は無かった。WT, n=9;Het, n=10;KO, n=11。社会孤立ストレスを与えたKOマウス(isolation-KO)では、プレパルスインヒビション試験における驚愕反応に差は無かった(B上段、One way ANOVA p=0.8297)。一方、社会孤立ストレスを与えた場合、WT、Het、KOの順に、PPI(%)の低下が見られた(B下段、Two way ANOVA p=0.0007)。*, p<0.05。WT, n=10;Het, n=14;KO, n=9。このことは、社会孤立ストレスを与えたHetマウス(isolation-Het)およびKOマウス(isolation-KO)で、感覚運動統合の障害がある事を示す。すなわち、社会孤立ストレスを与えたHetマウス(isolation-Het)およびKOマウス(isolation-KO)は統合失調症モデルとして用いることができる。
6-5. The results of the prepulse inhibition test are shown in FIG. There was no difference in startle response and PPI (%) in the prepulse inhibition test in WT, Het, and KO bred normally. WT, n = 9; Het, n = 10; KO, n = 11. There was no difference in startle response in the prepulse inhibition test in KO mice subjected to social isolation stress (B upper row, One way ANOVA p = 0.8297). On the other hand, when social isolation stress was applied, the PPI (%) decreased in the order of WT, Het, and KO (lower B, Two way ANOVA p = 0.007). *, P <0.05. WT, n = 10; Het, n = 14; KO, n = 9. This indicates that there is a disturbance of sensorimotor integration in Het mice (isolation-Het) and KO mice (isolation-KO) subjected to social isolation stress. That is, Het mice (isolation-Het) and KO mice (isolation-KO) subjected to social isolation stress can be used as schizophrenia models.
6-6. 受動回避試験
 結果を図6に示す。通常飼育したWT、Het、KOは、電気ショックを受けた翌日(Day2)において、電気ショックを受けた部屋へ入るまでの時間(縦軸)が有意に増加した(A)。****, p<0.0001。これは、忌避学習できていることを示す。WT, n=10;Het, n=6;KO, n=9。社会孤立ストレスを与えたWT(isolation-WT)、Het(isolation-Het)は、電気ショックを受けた翌日(Day2)において、電気ショックを受けた部屋へ入るまでの時間(縦軸)が有意に増加した(B)。**, p<0.01、****, p<0.0001。これに対して、社会孤立ストレスを与えたKO(isolation-KO)では有意差がみられず(n.s.: not significant)、忌避学習に障害が見られた(B)。WT, n=10;Het, n=14;KO, n=9。すなわち、社会孤立ストレスを与えたKOマウス(isolation-KO)は統合失調症、学習障害、認知症の行動モデルとして用いることができる。
6-6. The results of the passive avoidance test are shown in FIG. WT, Het, and KO bred normally had significantly increased time (vertical axis) until they entered the room that received the electric shock (Day 2) the day after receiving the electric shock (Day 2). ***, p <0.0001. This indicates that repellent learning is possible. WT, n = 10; Het, n = 6; KO, n = 9. WT (isolation-WT) and Het (isolation-Het) that applied social isolation stress significantly increased the time (vertical axis) to enter the room that received the electric shock the day after receiving the electric shock (Day 2). Increased (B). **, p <0.01, ***, p <0.0001. On the other hand, no significant difference was observed in KO (isolation-KO) applied with social isolation stress (ns: not significant), and obstacles were observed in repelling learning (B). WT, n = 10; Het, n = 14; KO, n = 9. That is, KO mice subjected to social isolation stress (isolation-KO) can be used as behavioral models for schizophrenia, learning disorders, and dementia.
6-7. 強制水泳試験
 結果を図7に示す。通常飼育したWT、Het、KOでは、強制水泳試験における不動時間に差は無かった(A)。WT, n=11;Het, n=10;KO, n=9。社会孤立ストレスを与えたKOマウス(isolation-KO)では、有意に強制水泳試験における不動時間の増加が見られた(B)。One way ANOVA p=0.0023。*, p<0.05、**, p<0.01。WT, n=10;Het, n=14;KO, n=9。このことは、社会孤立ストレスを与えたKOマウス(isolation-KO)は、うつ傾向が強いことを示している。すなわち、社会孤立ストレスを与えたKOマウス(isolation-KO)はうつ病、統合失調症の行動モデルとして用いることができる。
6-7. The results of the forced swimming test are shown in FIG. There was no difference in the immobility time in the forced swimming test in WT, Het, and KO bred normally (A). WT, n = 11; Het, n = 10; KO, n = 9. KO mice subjected to social isolation stress (isolation-KO) showed a significant increase in immobility time in the forced swimming test (B). One way ANOVA p = 0.0003. *, P <0.05, **, p <0.01. WT, n = 10; Het, n = 14; KO, n = 9. This indicates that KO mice subjected to social isolation stress (isolation-KO) have a strong tendency to depression. That is, KO mice subjected to social isolation stress (isolation-KO) can be used as behavioral models for depression and schizophrenia.
6-8. 血漿中コルチコステロン濃度
 結果を図8に示す。通常飼育したWT、Het、KOでは、血漿中コルチコステロン濃度に差は無かった(A)。WT, n=10;Het, n=10;KO, n=9。社会孤立ストレスを与えたKOマウス(isolation-KO)では、有意に血漿中コルチコステロン濃度の増加が見られた(B)。One way ANOVA p=0.0088。*, p<0.05。WT, n=10;Het, n=14;KO, n=9。
6-8. Plasma corticosterone concentration The results are shown in FIG. There was no difference in plasma corticosterone concentration among WT, Het, and KO bred normally (A). WT, n = 10; Het, n = 10; KO, n = 9. In KO mice subjected to social isolation stress (isolation-KO), a significant increase in plasma corticosterone concentration was observed (B). One way ANOVA p = 0.0088. *, P <0.05. WT, n = 10; Het, n = 14; KO, n = 9.
6-9. 大脳皮質前頭前野のモノアミン濃度
 結果を図9-1および図9-2に示す。通常飼育したWT、Het、KOでは、順に、大脳皮質前頭前野のDA濃度が有意に増加した(A)。*, p<0.05。WT, n=8;Het, n=5;KO, n=6。社会孤立ストレスを与えたWT(isolation-WT)、Het(isolation-Het)、KO(isolation-KO)では、順に、大脳皮質前頭前野の5-HT濃度が減少する傾向が見られた(B)。WT, n=6;Het, n=7;KO, n=5。
6-9. Preamine cortex monoamine concentration The results are shown in FIGS. 9-1 and 9-2. In WT, Het, and KO bred normally, the DA concentration in the prefrontal cortex was significantly increased in order (A). *, P <0.05. WT, n = 8; Het, n = 5; KO, n = 6. In WT (isolation-WT), Het (isolation-Het), and KO (isolation-KO) that applied social isolation stress, there was a tendency for the 5-HT concentration in the prefrontal cortex to decrease in turn (B). . WT, n = 6; Het, n = 7; KO, n = 5.
6-10. 側坐核のモノアミン濃度
 結果を図10-1および図10-2に示す。通常飼育したWT、Het、KOでは、側坐核のモノアミン濃度に差は無かった(A)。*, p<0.05。WT, n=8;Het, n=5;KO, n=6。社会孤立ストレスを与えたWT(isolation-WT)、Het(isolation-Het)、KO(isolation-KO)では、順に、側坐核の5-HT濃度が減少する傾向が見られた(B)。WT, n=6;Het, n=7;KO, n=5。
6-10. Results of monoamine concentration in nucleus accumbens are shown in FIGS. 10-1 and 10-2. There was no difference in the monoamine concentration in the nucleus accumbens in WT, Het, and KO reared normally (A). *, P <0.05. WT, n = 8; Het, n = 5; KO, n = 6. In WT (isolation-WT), Het (isolation-Het), and KO (isolation-KO) applied with social isolation stress, the 5-HT concentration in the nucleus accumbens tended to decrease in turn (B). WT, n = 6; Het, n = 7; KO, n = 5.
6-11. 生理食塩水あるいはPCPの連日投与7日目の薬物投与後行動量
 結果を図11に示す。生理食塩水を連日投与した場合、WT、Het、KO間で投与後行動量に差は無かった(A)。WT, n=7; Het, n=6; KO, n=5。PCPを連日投与した場合、7日目の薬物投与後行動量は、WT、Het、KOの順に有意に増加した。One way ANOVA p=0.0034。*, p<0.05。WT, n=5; Het, n=6; KO, n=5。このことは、薬物ストレスを与えたKOマウス(PCP-KO)はPCPに対する感受性が増加していることを示している。すなわち、薬物ストレスを与えたKOマウス(PCP-KO)は薬物依存症、統合失調症の行動モデルとして用いることができる。
6-11. FIG. 11 shows the behavioral amount after drug administration on day 7 of daily administration of physiological saline or PCP. When physiological saline was administered every day, there was no difference in the amount of behavior after administration between WT, Het, and KO (A). WT, n = 7; Het, n = 6; KO, n = 5. When PCP was administered every day, the amount of behavior after drug administration on day 7 significantly increased in the order of WT, Het, and KO. One way ANOVA p = 0.0034. *, P <0.05. WT, n = 5; Het, n = 6; KO, n = 5. This indicates that KO mice subjected to drug stress (PCP-KO) have increased sensitivity to PCP. That is, KO mice subjected to drug stress (PCP-KO) can be used as behavioral models for drug addiction and schizophrenia.
6-12. 生理食塩水あるいはPCPの連日投与後の高架式十字迷路試験
 結果を図12に示す。生理食塩水を連日投与した場合においてもPCPを連日投与した場合においても、WT、Het、KO間で高架式十字迷路試験における行動量に差は無かった(A上段、B上段)。WT, n=8; Het, n=8; KO, n=5; PCP-WT, n=5; PCP-Het, n=7; PCP-KO, n=6。PCPを連日投与した場合、WT、Het、KOの順に、open armの滞在時間(%)が有意に増加した(B中段、One way ANOVA p=0.0084)。また、PCPを連日投与した場合、WT、Het、KOの順に、open armに入る回数が有意に増加した(B下段、One way ANOVA p=0.0154)。*, P<0.05。このことは、薬物ストレスを与えたKOマウス(PCP-KO)で衝動性の増加があることを示す。すなわち、薬物ストレスを与えたKOマウスは統合失調症、双極性障害、多動性障害の行動モデルとして用いることができる。
6-12. FIG. 12 shows the results of the elevated plus maze test after daily administration of physiological saline or PCP. There was no difference in the amount of behavior in the elevated plus maze test between WT, Het, and KO even when physiological saline was administered every day or when PCP was administered every day (A upper stage, B upper stage). WT, n = 8; Het, n = 8; KO, n = 5; PCP-WT, n = 5; PCP-Het, n = 7; PCP-KO, n = 6. When PCP was administered every day, the open arm stay time (%) increased significantly in the order of WT, Het, and KO (B middle row, One way ANOVA p = 0.004). In addition, when PCP was administered every day, the number of times to enter open arm significantly increased in the order of WT, Het, and KO (B lower row, One way ANOVA p = 0.154). *, P <0.05. This indicates that there is an increase in impulsivity in KO mice subjected to drug stress (PCP-KO). That is, KO mice given drug stress can be used as behavioral models for schizophrenia, bipolar disorder, and hyperactivity disorder.
6-13. 生理食塩水あるいはPCPの連日投与後のY字型迷路試験
 結果を図13に示す。生理食塩水を連日投与した場合、WT、Het、KOでは、Y字型迷路試験における行動量とalternation(%)に差は無かった(A)。WT, n=8; Het, n=8; KO, n=5。PCPを連日投与した場合、WT、Het、KOの順に、Y字型迷路試験における行動量が有意に増加した(B上段、One way ANOVA p=0.0013)。*, p<0.05、**, p<0.01。Alternation(%)には差が無かった(B下段、One way ANOVA p=0.2351)。WT, n=5; Het, n=7; KO, n=6。このことは、薬物ストレスを与えたKOマウス(PCP-KO)において、短期記憶に差は無いが、迷路試験で落ち着きがないことを示す。
6-13. FIG. 13 shows the results of a Y-shaped maze test after daily administration of physiological saline or PCP. When physiological saline was administered every day, there was no difference in the amount of behavior and alternation (%) in the Y-shaped maze test in WT, Het, and KO (A). WT, n = 8; Het, n = 8; KO, n = 5. When PCP was administered every day, the amount of behavior in the Y-shaped maze test increased significantly in the order of WT, Het, and KO (B upper row, One way ANOVA p = 0.0014). *, P <0.05, **, p <0.01. There was no difference in Alternation (%) (B lower row, One way ANOVA p = 0.2351). WT, n = 5; Het, n = 7; KO, n = 6. This indicates that there is no difference in short-term memory in KO mice subjected to drug stress (PCP-KO), but there is no rest in the maze test.
6-14. 生理食塩水あるいはPCPの連日投与後のプレパルスインヒビション試験
 結果を図14に示す。生理食塩水を連日投与した場合においてもPCPを連日投与した場合においても、WT、Het、KO間でプレパルスインヒビション試験における驚愕反応に差は無かった(A上段、B上段)。WT, n=9; Het, n=8; KO, n=6; PCP-WT, n=5; PCP-Het, n=7; PCP-KO, n=8。PCPを連日投与した場合、WT、Het、KOの順に、PPI(%)の低下が見られた(B下段)。PCP-WT vs PCP-KO, *, p<0.05。このことは、薬物ストレスを与えたKOマウス(PCP-KO)で、感覚運動統合の障害があることを示す。すなわち、薬物ストレスを与えたKOマウスは統合失調症の行動モデルとして用いることができる。
6-14. FIG. 14 shows the results of the prepulse inhibition test after daily administration of physiological saline or PCP. There was no difference in startle response in the prepulse inhibition test between WT, Het, and KO even when physiological saline was administered daily or when PCP was administered daily (A upper stage, B upper stage). WT, n = 9; Het, n = 8; KO, n = 6; PCP-WT, n = 5; PCP-Het, n = 7; PCP-KO, n = 8. When PCP was administered daily, a decrease in PPI (%) was observed in the order of WT, Het, and KO (lower B). PCP-WT vs. PCP-KO, *, p <0.05. This indicates that there is a disorder of sensorimotor integration in KO mice subjected to drug stress (PCP-KO). That is, KO mice given drug stress can be used as behavioral models for schizophrenia.
6-15. 生理食塩水あるいはPCPの連日投与後の受動回避試験
 結果を図15に示す。生理食塩水を連日投与した場合、WT、Het、KOは、電気ショックを受けた翌日(Day2)において、電気ショックを受けた部屋へ入るまでの時間(縦軸)が有意に増加した(A)。****, p<0.0001、**, p<0.01。WT, n=8; Het, n=8; KO, n=5。PCPを連日投与した場合、WT(PCP-WT)、Het(PCP-Het)は、電気ショックを受けた翌日(Day2)において、電気ショックを受けた部屋へ入るまでの時間(縦軸)が有意に増加した(B)。****, p<0.0001、**, p<0.01。これに対して、KO(PCP-KO)は有意差がみられず(n.s.: not significant)、忌避学習に障害がみられた(B)。WT, n=5; Het, n=7; KO, n=6。すなわち、薬物ストレスを与えたKOマウス(PCP-KO)は統合失調症、学習障害、認知症の行動モデルとして用いることができる。
6-15. The results of the passive avoidance test after daily administration of physiological saline or PCP are shown in FIG. When physiological saline was administered every day, WT, Het, and KO significantly increased the time (vertical axis) to enter the room that received the electric shock on the day after receiving the electric shock (Day 2) (A) . ***, p <0.0001, **, p <0.01. WT, n = 8; Het, n = 8; KO, n = 5. When PCP was administered daily, WT (PCP-WT) and Het (PCP-Het) had significant time (vertical axis) to enter the room that received the electric shock on the day after receiving the electric shock (Day 2). (B). ***, p <0.0001, **, p <0.01. In contrast, KO (PCP-KO) showed no significant difference (ns: not significant), and obstacles were observed in repellent learning (B). WT, n = 5; Het, n = 7; KO, n = 6. That is, KO mice subjected to drug stress (PCP-KO) can be used as behavioral models for schizophrenia, learning disorders, and dementia.
 本発明の精神疾患モデル動物は、統合失調症、双極性障害、多動性障害、学習障害、認知症、うつ病、薬物依存症などの精神疾患に対応する動物モデルとして用いることができる。それゆえ、精神疾患の治療薬を開発するためのモデル動物として有用である。また、本発明の精神疾患モデル動物を用いることで、精神疾患のバイオマーカーをスクリーニングすることができる。したがって、本発明は、医療分野や医薬品開発において有用である。 The psychiatric disease model animal of the present invention can be used as an animal model corresponding to psychiatric diseases such as schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, depression, and drug dependence. Therefore, it is useful as a model animal for developing a therapeutic drug for mental illness. In addition, biomarkers for mental illness can be screened by using the psychiatric disease model animal of the present invention. Therefore, the present invention is useful in the medical field and drug development.
SEQ ID NO:1: primer KPNA1-F1
SEQ ID NO:2: primer KPNA1-R1
SEQ ID NO:3: primer KPNA1-R2
SEQ ID NO:4: KPNA1ターゲティングベクター
SEQ ID NO: 1: primer KPNA1-F1
SEQ ID NO: 2: primer KPNA1-R1
SEQ ID NO: 3: primer KPNA1-R2
SEQ ID NO: 4: KPNA1 targeting vector

Claims (15)

  1.  精神疾患の非ヒトモデル動物を製造する方法であって、(a)非ヒト動物のカリオフェリンα(KPNA)1遺伝子またはそのホモログの全部または一部の機能を喪失させる段階を含む、方法。 A method for producing a non-human animal model of mental illness, comprising the step of (a) losing the function of all or part of the non-human animal caryopherin α (KPNA) 1 gene or a homologue thereof.
  2.  (b)段階(a)で得られた非ヒト動物にストレスを与える段階をさらに含む、請求項1に記載の方法。 The method according to claim 1, further comprising the step of: (b) applying stress to the non-human animal obtained in step (a).
  3.  ストレスが社会孤立ストレスである、請求項2に記載の方法。 3. The method according to claim 2, wherein the stress is social isolation stress.
  4.  ストレスが薬物によるストレスである、請求項2に記載の方法。 The method according to claim 2, wherein the stress is stress caused by a drug.
  5.  薬物がフェンシクリジン、ジゾシルピン(MK801)、メタンフェタミン、アンフェタミン、コカイン、モルヒネ、カンナビノイド、Δ9-テトラヒドロカンナビノール(Δ9-THC)である、請求項4に記載の方法。 5. The method according to claim 4, wherein the drug is phencyclidine, dizocilpine (MK801), methamphetamine, amphetamine, cocaine, morphine, cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC).
  6.  精神疾患が、統合失調症、双極性障害、多動性障害、学習障害、認知症、およびうつ病から選択される1つ以上の疾患である、請求項1~5のいずれか一項に記載の方法。 The psychiatric disorder is one or more diseases selected from schizophrenia, bipolar disorder, hyperactivity disorder, learning disorder, dementia, and depression. the method of.
  7.  精神疾患が薬物依存症である、請求項4または5に記載の方法。 The method according to claim 4 or 5, wherein the mental illness is drug dependence.
  8.  段階(a)が、KPNA1遺伝子またはそのホモログをホモでノックアウトすることによって実施される、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein step (a) is carried out by knocking out the KPNA1 gene or a homologue thereof homologously.
  9.  非ヒト動物が非ヒト哺乳動物である、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the non-human animal is a non-human mammal.
  10.  非ヒト哺乳動物が、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ヤギ、ミニブタ、ブタ、ヒツジ、ウシ、サルおよびチンパンジーからなる群から選択される動物である、請求項9に記載の方法。 The non-human mammal is an animal selected from the group consisting of mice, rats, hamsters, guinea pigs, rabbits, dogs, cats, goats, minipigs, pigs, sheep, cows, monkeys and chimpanzees. Method.
  11.  請求項1~10のいずれか一項に記載の方法によって製造された、精神疾患の非ヒトモデル動物またはそれらの子孫動物。 A non-human model animal of mental illness or a progeny thereof produced by the method according to any one of claims 1 to 10.
  12.  請求項11に記載の動物から単離された組織または細胞。 A tissue or cell isolated from the animal according to claim 11.
  13.  精神疾患の予防または治療薬のスクリーニング方法であって、
    (a)請求項11に記載の動物に被験物質を投与する段階、
    (b)段階(a)で得られた動物に行動課題を課す段階、および
    (c)該被験物質の投与前後において、行動課題の結果を比較する段階
    を含む、方法。
    A method for screening a preventive or therapeutic agent for mental illness,
    (A) administering a test substance to the animal according to claim 11;
    (B) A method comprising the steps of imposing a behavioral task on the animal obtained in step (a), and (c) comparing the results of the behavioral task before and after administration of the test substance.
  14.  被験物質の精神疾患への効能および/または有害性を評価する方法であって、
    (a)請求項11に記載の動物に被験物質を投与する段階、
    (b)段階(a)で得られた動物に行動課題を課す段階、および
    (c)該被験物質の投与前後において、行動課題の結果を比較する段階
    を含む、方法。
    A method for evaluating the efficacy and / or harmfulness of a test substance to mental illness, comprising:
    (A) administering a test substance to the animal according to claim 11;
    (B) A method comprising the steps of imposing a behavioral task on the animal obtained in step (a), and (c) comparing the results of the behavioral task before and after administration of the test substance.
  15.  精神疾患のバイオマーカーのスクリーニング方法であって、
    (a)請求項11に記載の動物、および当該動物と同種の野生型動物のそれぞれから生体試料を採取する段階、
    (b)段階(a)で得られた生体試料中の核酸、タンパク質、代謝産物、または脂質を調べ、それぞれの動物における核酸、タンパク質、代謝産物、または脂質の転写または発現パターンを比較する段階、および
    (c)段階(b)における比較の結果に基づいて、精神疾患の指標となる核酸、タンパク質、代謝産物、または脂質を選択する段階
    を含む、方法。
    A method for screening a biomarker for mental illness,
    (A) collecting a biological sample from each of the animal according to claim 11 and a wild-type animal of the same species as the animal,
    (B) examining the nucleic acid, protein, metabolite, or lipid in the biological sample obtained in step (a) and comparing the transcription or expression pattern of the nucleic acid, protein, metabolite, or lipid in each animal; And (c) selecting a nucleic acid, protein, metabolite, or lipid that is indicative of mental illness based on the result of the comparison in step (b).
PCT/JP2018/005019 2017-02-15 2018-02-14 Mental illness animal model and method for producing same WO2018151135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568553A JP7012310B2 (en) 2017-02-15 2018-02-14 Mental illness model animals and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026027 2017-02-15
JP2017-026027 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018151135A1 true WO2018151135A1 (en) 2018-08-23

Family

ID=63169382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005019 WO2018151135A1 (en) 2017-02-15 2018-02-14 Mental illness animal model and method for producing same

Country Status (2)

Country Link
JP (1) JP7012310B2 (en)
WO (1) WO2018151135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190064001A (en) * 2017-11-30 2019-06-10 한국과학기술연구원 Animal model of schizophrenia using cocaine administration and manufacturing method thereof
CN114010623A (en) * 2021-12-01 2022-02-08 河北医科大学 Method for quickly constructing depression mouse model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118537A2 (en) * 2014-02-05 2015-08-13 Yeda Research And Development Co. Ltd. Micro-rnas and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone- associated medical conditions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118537A2 (en) * 2014-02-05 2015-08-13 Yeda Research And Development Co. Ltd. Micro-rnas and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone- associated medical conditions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GLINSKY, G. V.: "An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway", CELL CYCLE, vol. 7, no. 16, 15 August 2008 (2008-08-15), pages 2570 - 2583, XP009122425 *
MORIYAMA, T. ET AL.: "Targeted disruption of one of the importin alpha family members leads to female functional incompetence in delivery", FEBS JOURNAL, vol. 278, no. 9, 22 March 2011 (2011-03-22), pages 1561 - 1572, XP055537919 *
SHMIDT, T. ET AL.: "Normal brain development in importin-alpha5 deficient mice", NATURE CELL BIOLOGY, vol. 9, no. 12, December 2007 (2007-12-01), pages 1337 - 1339, XP055537920 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190064001A (en) * 2017-11-30 2019-06-10 한국과학기술연구원 Animal model of schizophrenia using cocaine administration and manufacturing method thereof
KR102111729B1 (en) 2017-11-30 2020-05-15 한국과학기술연구원 Animal model of schizophrenia using cocaine administration and manufacturing method thereof
CN114010623A (en) * 2021-12-01 2022-02-08 河北医科大学 Method for quickly constructing depression mouse model

Also Published As

Publication number Publication date
JPWO2018151135A1 (en) 2019-12-12
JP7012310B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
Ure et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome
Melrose et al. Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice
Yu et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable
Kannan et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy
Wolinsky et al. The Trace Amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia
Kim et al. Axon regeneration in young adult mice lacking Nogo-A/B
Miczek et al. Aggressive behavioral phenotypes in mice
Tsika et al. Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration
McDowell et al. Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice
JP2016516399A (en) Transgenic non-human organism having non-functional TSPO gene
Chow et al. Modeling an anti-amyloid combination therapy for Alzheimer’s disease
Hori et al. AUTS2 regulation of synapses for proper synaptic inputs and social communication
Kojima et al. Genetic disruption of the alternative splicing of drebrin gene impairs context-dependent fear learning in adulthood
Wang et al. Sh3rf2 haploinsufficiency leads to unilateral neuronal development deficits and autistic-like behaviors in mice
Reid et al. Further molecular characterisation of the OVT73 transgenic sheep model of Huntington's disease identifies cortical aggregates
Berkowicz et al. Brinp1−/− mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density
CN109512819B (en) Autism mouse model, construction method and application thereof
WO2018151135A1 (en) Mental illness animal model and method for producing same
Tasnim et al. The developmental timing of spinal touch processing alterations predicts behavioral changes in genetic mouse models of autism spectrum disorders
JP4568463B2 (en) Drebrin A expression-suppressed animal neuron and non-human model animal
Cross Investigation of social olfaction in a Neuroligin 3 Knockout mouse model
KR102659588B1 (en) Gng8 knock-out brain neurodevelopment disorder animal model
Eltokhi Dissecting hormonal and transient effects in Shankopathies associated with autism spectrum disorder
Barendrecht Characterization of the new htau-KI mouse model for Alzheimer’s disease with a focus on the role of immune cells during progressing cerebral amyloidosis
JP2005504528A (en) Animal model with fragmented Fgf14 gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753548

Country of ref document: EP

Kind code of ref document: A1