JP7232131B2 - Manufacturing method of gelatin filament yarn - Google Patents

Manufacturing method of gelatin filament yarn Download PDF

Info

Publication number
JP7232131B2
JP7232131B2 JP2019113008A JP2019113008A JP7232131B2 JP 7232131 B2 JP7232131 B2 JP 7232131B2 JP 2019113008 A JP2019113008 A JP 2019113008A JP 2019113008 A JP2019113008 A JP 2019113008A JP 7232131 B2 JP7232131 B2 JP 7232131B2
Authority
JP
Japan
Prior art keywords
gelatin
filament yarn
producing
mass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019113008A
Other languages
Japanese (ja)
Other versions
JP2020204119A (en
Inventor
智一 伊勢
弘毅 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Wool Textile Co Ltd
Original Assignee
Japan Wool Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Wool Textile Co Ltd filed Critical Japan Wool Textile Co Ltd
Priority to JP2019113008A priority Critical patent/JP7232131B2/en
Publication of JP2020204119A publication Critical patent/JP2020204119A/en
Priority to JP2022116319A priority patent/JP7299387B2/en
Application granted granted Critical
Publication of JP7232131B2 publication Critical patent/JP7232131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Woven Fabrics (AREA)

Description

本発明は主として医療用途に有用なゼラチンフィラメント糸の製造方法に関する。 The present invention relates primarily to a method for producing gelatin filament yarns useful for medical applications.

ゼラチンは生体適合性のある高分子であり、細胞培養基材や手術時の臓器の一時的代替のための構造物の材料として用いられている。従来のゼラチン繊維は破断伸度が低くて折れやすく、また長繊維(フィラメント糸)は膠着しやすく解舒が困難なため、織物、編物、組み紐といった長繊維からなる繊維構造物を作成することは困難であった。特許文献1には、ゼラチンとポリエチレングリコール等の水溶性直鎖状高分子を含む水溶液を、空気中に押し出して紡糸することが提案されている。特許文献2には、ゼラチン溶液を凝固浴に吐出させてゲル状繊維とし、取り出して延伸し、残存する溶液を除去することが提案されている。特許文献3には、ゼラチン水溶液をゾル状態となるように加温し、空気中で紡糸した後、架橋剤溶液に浸漬して架橋させることが提案されている。 Gelatin is a biocompatible polymer and is used as a structural material for cell culture substrates and temporary replacement of organs during surgery. Conventional gelatin fibers have a low breaking elongation and are easy to break, and long fibers (filament yarns) tend to stick together and are difficult to unwind. It was difficult. Patent Document 1 proposes extruding an aqueous solution containing gelatin and a water-soluble linear polymer such as polyethylene glycol into the air for spinning. Patent Literature 2 proposes jetting a gelatin solution into a coagulation bath to form gel-like fibers, taking them out, stretching them, and removing the remaining solution. Patent Document 3 proposes heating an aqueous gelatin solution to a sol state, spinning in the air, and then immersing it in a cross-linking agent solution for cross-linking.

特開2012-167397号公報JP 2012-167397 A 特開2005-120527号公報JP 2005-120527 A 特開2005-163204号公報JP 2005-163204 A

しかし、前記のような従来技術で得られたゼラチン繊維からなる長繊維(フィラメント)は、巻き取った糸の解舒が困難でフィラメントを得ることができなかった。またゼラチン繊維にアルデヒド類を用いた化学架橋を施し、破断伸度の大きいゼラチン繊維が提案されているが、架橋成分に問題があり、細胞培養や臓器代替繊維構造物には用いることができなかった。 However, the long fibers (filaments) made of gelatin fibers obtained by the above-described prior art have been difficult to unwind from, and filaments could not be obtained. In addition, gelatin fibers with high breaking elongation have been proposed by chemically cross-linking gelatin fibers using aldehydes. rice field.

本発明は、前記従来の問題を解決するため、巻き取った糸の解舒ができ、医療用途に好適なゼラチンフィラメント糸の製造方法を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a method for manufacturing a gelatin filament yarn suitable for medical use, in which the wound yarn can be unwound.

本発明のゼラチンフィラメント糸の製造方法は、ゼラチン水溶液からゼラチンフィラメント糸製造する方法であって、
前記ゼラチン水溶液を100質量%としたとき、ゼラチンが50質量%を超え70質量%以下、水溶性高分子含まないか又は水溶性高分子0質量%を超え10質量%以下含、化学架橋成分は含まず、水30質量%以上50質量%未満の割合で含み
前記ゼラチン水溶液の気液混合物を減圧脱泡して紡糸液とし、
前記紡糸液を押し出し、加熱紡糸筒を通過させて乾式紡糸することにより、
ゼラチンを主成分とし、水溶性高分子は含まないか又は水溶性高分子は0質量%を超え10質量%以下含み、化学架橋成分は含まず、糸断面が扁平かつ中実であるゼラチンフィラメント糸を得ることを特徴とする。
The method for producing a gelatin filament yarn of the present invention is a method for producing a gelatin filament yarn from an aqueous gelatin solution ,
When the gelatin aqueous solution is 100% by mass, the gelatin is more than 50% by mass and 70% by mass or less, the water-soluble polymer is not included or the water-soluble polymer is more than 0% by mass and 10% by mass or less . Does not contain a cross-linking component, contains water at a ratio of 30% by mass or more and less than 50% by mass,
The gas-liquid mixture of the gelatin aqueous solution is degassed under reduced pressure to obtain a spinning solution,
By extruding the spinning solution and passing it through a heated spinning cylinder for dry spinning,
A gelatin filament yarn containing gelatin as a main component, containing no water-soluble polymer or containing more than 0% by mass and 10% by mass or less of a water-soluble polymer, containing no chemical cross-linking component, and having a flat and solid cross section. is characterized by obtaining

本発明のゼラチンフィラメント糸は、ゼラチンを主成分とするフィラメント糸であって、化学架橋成分は含まず、糸断面が扁平かつ中実であることにより、巻き取った糸の解舒ができ、織物、編み物、組み紐などに加工することができる。このゼラチンフィラメント糸は、医療用途等に好適である。 The gelatin filament yarn of the present invention is a filament yarn containing gelatin as a main component, does not contain a chemical cross-linking component, and has a flat and solid cross section, so that the wound yarn can be unwound and the fabric can be used. , can be processed into knitted fabrics, braided cords, etc. This gelatin filament yarn is suitable for medical applications and the like.

図1は本発明の一実施形態のゼラチンフィラメント糸の断面図である。FIG. 1 is a cross-sectional view of a gelatin filament yarn according to one embodiment of the present invention. 図2は同、実施例1で得られたゼラチンフィラメント糸の走査型電子顕微鏡(日立FLEX SEM1000型,倍率200倍)の断面写真である。FIG. 2 is a cross-sectional photograph of the gelatin filament yarn obtained in Example 1, taken with a scanning electron microscope (Hitachi FLEX SEM1000, magnification: 200). 図3は同、実施例1で得られたゼラチンフィラメント糸の走査型電子顕微鏡(日立FLEX SEM1000型,倍率100倍)の側面写真である。FIG. 3 is a side view photograph of the gelatin filament yarn obtained in Example 1, taken with a scanning electron microscope (Hitachi FLEX SEM1000, magnification: 100). 図4は本発明の一実施例で使用する紡糸機の模式的説明図である。FIG. 4 is a schematic illustration of a spinning machine used in one embodiment of the present invention. 図5は本発明の実施例及び比較例のゼラチンフィラメント糸の熱架橋前の強伸度グラフである。FIG. 5 is a strength and elongation graph of gelatin filament yarns of Examples and Comparative Examples of the present invention before thermal crosslinking. 図6は本発明の実施例1のゼラチンフィラメント糸の熱架橋後の強伸度グラフである。FIG. 6 is a strength and elongation graph after thermal crosslinking of the gelatin filament yarn of Example 1 of the present invention. 図7は本発明の実施例4のゼラチンフィラメント糸の組み紐の側面写真である。FIG. 7 is a side view photograph of a braid of gelatin filament yarns of Example 4 of the present invention. 図8Aは本発明の一実施形態のゼラチンフィラメント糸の乾燥状態の写真(倍率13倍)、図8Bは同、湿潤状態の写真(倍率13倍)である。FIG. 8A is a photograph of a gelatin filament yarn of one embodiment of the present invention in a dry state (magnification of 13 times), and FIG. 8B is a photograph of the same in a wet state (magnification of 13 times).

本発明は、ゼラチンを主成分とするフィラメント糸である。主成分とは90質量%以上をいう。化学架橋成分は含まない。有害物質を加えないためである。本発明のフィラメント糸は、糸断面が扁平かつ中実であることが特徴である。本発明の製造方法とも関係するが、本発明では加熱紡糸筒を使用し、この加熱紡糸筒を出た位置では、ゼラチンフィラメント糸は中空状体であり、巻き取ると中空がつぶれて断面が扁平かつ中実になる。前記ゼラチンフィラメント糸の断面扁平度は、長径/短径が2以上であることが好ましく、さらに好ましくは長径/短径が2.2以上である。前記ゼラチンフィラメント糸断面は、くびれがあってもよい。その他さまざまな扁平形状を含む。糸断面が扁平であることにより、巻き取った糸の解舒ができる。 The present invention is a filament yarn containing gelatin as a main component. A main component means 90 mass % or more. Contains no chemical cross-linking components. This is because no harmful substances are added. The filament yarn of the present invention is characterized by having a flat and solid yarn cross section. Although related to the manufacturing method of the present invention, the hot spinning tube is used in the present invention, and the gelatin filament yarn is hollow at the position after exiting this hot spinning tube, and when wound, the hollow is crushed and the cross section is flat. and become solid. The cross-sectional flatness of the gelatin filament yarn is preferably 2 or more in the ratio of major axis/minor axis, more preferably 2.2 or more in the ratio of major axis/minor axis. The gelatin filament thread cross section may have a constriction. Other various flat shapes are included. The flatness of the cross section of the yarn allows the wound yarn to be unwound.

前記ゼラチンフィラメント糸はゼラチン100質量%でもよいし、水溶性高分子を含ませてもよい。水溶性高分子を含ませると伸度が高くなり、織物、編み物、組み紐などに加工しやすくなる。前記水溶性高分子はポリエチレングリコールが好ましい。前記ポリエチレングリコールの分子量は500以上5000未満が好ましい。ポリエチレングリコールの添加量はフィラメント糸に対して0.01~10質量%が好ましく、さらに好ましくは0.1~8質量%である。 The gelatin filament yarn may be 100 mass % gelatin, or may contain a water-soluble polymer. Incorporation of water-soluble polymer increases elongation and facilitates processing into woven fabrics, knitted fabrics, braided cords, and the like. The water-soluble polymer is preferably polyethylene glycol. The molecular weight of the polyethylene glycol is preferably 500 or more and less than 5000. The amount of polyethylene glycol added is preferably 0.01 to 10% by mass, more preferably 0.1 to 8% by mass, based on the filament yarn.

前記フィラメント糸は、乾燥状態では外観は白く不透明であるが、水で濡れて湿潤状態になると瞬時に透明になる。これはゼラチンとポリエチレングリコールの間の空隙が水分で満たされることにより生じていると思われ、細胞培養基材や手術時の臓器の一部代替のための構造物として用いられる際に糸の湿潤状態が外観で判別できることから、非常に有用な特性である。図8A-Bに乾燥状態と湿潤状態の外観写真を示す。 The filament yarn is white and opaque in appearance when dry, but instantly becomes transparent when wet with water. It is thought that this is caused by the voids between gelatin and polyethylene glycol being filled with water, and when used as a cell culture substrate or a structure for replacing a part of an organ during surgery, wetting of the thread This is a very useful characteristic because the condition can be determined by appearance. Figures 8A-B show external photographs of the dry state and wet state.

前記フィラメント糸の最大強度は0.3cN/dtex以上、破断伸度は20%以上であるのが好ましい。最大強度と伸度が前記の範囲であれば、織物、編み物、組み紐などに加工しやすくなる。前記において、dtexはdecitexの略語であり、当業界で一般的に使用されている語句である。 The filament yarn preferably has a maximum strength of 0.3 cN/dtex or more and a breaking elongation of 20% or more. If the maximum strength and elongation are within the above ranges, it becomes easy to process into woven fabrics, knitted fabrics, braided cords, and the like. In the above, dtex is an abbreviation of decitex, a term generally used in the industry.

前記フィラメント糸は熱架橋することが耐水性を上げるために好ましい。熱架橋は化学架橋に比べて架橋剤を使用しない点で安全である。熱架橋の温度は100~150℃、加熱時間は24時間~96時間、真空度10kPa以下が好ましい。これにより、熱架橋時の酸化劣化を防止できる。大気中で熱処理すると、酸化劣化が進んで物性が低下する問題がある。前記条件で熱架橋させると、耐水性が向上し水に溶けにくくなる。熱架橋は、フィラメント糸で行ってもよいし、織物、編み物、組み物等に加工した後に行ってもよい。織物、編み物、組み物等に加工する場合は、加工後に熱架橋するのが好ましい。熱架橋により、フィラメント糸は37℃の温水で20時間浸漬しても形状を維持し、溶解しない状態となる。 It is preferable that the filament yarn is thermally crosslinked in order to increase the water resistance. Thermal cross-linking is safer than chemical cross-linking in that no cross-linking agent is used. It is preferable that the thermal crosslinking temperature is 100 to 150° C., the heating time is 24 to 96 hours, and the degree of vacuum is 10 kPa or less. Oxidative deterioration at the time of thermal crosslinking can thereby be prevented. When heat-treated in the atmosphere, there is a problem that oxidation deterioration progresses and the physical properties deteriorate. When thermally crosslinked under the above conditions, the water resistance is improved and the polymer becomes difficult to dissolve in water. Thermal cross-linking may be performed on filament yarns, or after processing into woven fabrics, knitted fabrics, braided fabrics, and the like. When processed into woven fabrics, knitted fabrics, braids, etc., it is preferable to thermally crosslink after processing. Due to the thermal cross-linking, the filament yarn maintains its shape even after being immersed in hot water at 37° C. for 20 hours, and is not dissolved.

本発明のゼラチンフィラメント糸の製造方法は、次の工程を含む。
(1)ゼラチン濃度が50質量%を超え70質量%以下となるように、水を加えてゼラチン水溶液の気液混合物とする工程。このときにポリエチレングリコールなどの水溶性高分子を添加してもよい。
(2)前記ゼラチン水溶液の気液混合物を減圧脱泡して紡糸液とする工程。
(3)前記紡糸液を押し出し、加熱紡糸筒を通過させて乾式紡糸する工程。
(4)好ましい工程として、熱架橋工程。
The manufacturing method of the gelatin filament yarn of the present invention includes the following steps.
(1) A step of adding water to form a gas-liquid mixture of an aqueous gelatin solution so that the gelatin concentration is more than 50% by mass and 70% by mass or less. At this time, a water-soluble polymer such as polyethylene glycol may be added.
(2) Degassing the gas-liquid mixture of the aqueous gelatin solution under reduced pressure to obtain a spinning solution.
(3) A step of extruding the spinning solution and passing it through a heated spinning tube for dry spinning.
(4) A preferred step is a thermal cross-linking step.

前記工程(1)において、ゼラチンを加熱水に溶解するのが好ましい。溶解温度は40~90℃が好ましい。溶解した後、フィルトレーションして異物やごみなどを除去してもよい。
前記工程(2)において、減圧脱泡時の真空度は5~30kPaであるのが好ましい。これにより効率よく気体(気泡)を除去できる。この工程においても40~90℃に保持するのが好ましい。
In the step (1), gelatin is preferably dissolved in heated water. The melting temperature is preferably 40-90°C. After dissolution, filtration may be performed to remove foreign matter, dust, and the like.
In the step (2), the degree of vacuum during degassing under reduced pressure is preferably 5 to 30 kPa. Thereby, gas (bubbles) can be removed efficiently. It is preferable to keep the temperature at 40 to 90° C. in this step as well.

前記工程(3)において、紡糸液も40~90℃に保持して押し出すのが好ましい。前記加熱紡糸筒は、温度120~180℃に保持し、かつ押し出し物の滞留時間は5秒以上とするのが好ましい。これにより、押し出し物から急激に水分が除去され、糸条が形成される。 In the step (3), the spinning solution is also preferably extruded while being kept at 40 to 90°C. It is preferable that the hot spinning tube is maintained at a temperature of 120 to 180° C. and the residence time of the extrudate is 5 seconds or longer. This causes a rapid removal of water from the extrudate to form threads.

前記加熱紡糸筒は垂直方向に向いている。そして、加熱紡糸筒を出た位置では、ゼラチンフィラメント糸は中空状体であり、巻き取ると中空がつぶれて断面が扁平かつ中実になる。 The hot spinning tube is vertically oriented. The gelatin filament yarn is hollow at the position after exiting the hot spinning tube, and when it is wound, the hollow is crushed and the cross section becomes flat and solid.

次に図面を用いて説明する。図1は本発明の一実施例で得られたゼラチンフィラメント糸1の走査型電子顕微鏡(日立FLEX SEM1000型,倍率200倍)の断面写真のトレース図面である。このゼラチンフィラメント糸1は扁平状でかつくびれ2が観察される。L1は長径、L2は短径である。この形状は、中心部が中空部であったものが巻き取り時につぶれて形成されたものである。これは加熱紡糸筒の下部でゼラチンフィラメント糸をカットして観察し、確認した。加熱紡糸筒を出た位置で中空になる理由は、加熱紡糸筒内で急激に水分が除去されるためと思われる。また、表面のスキン層3と、内部のコア層4が観察される。スキン層3は加熱紡糸筒において急激に水分が除去されて形成し、内部コア層4はゆっくり水分が除去されて形成したものと思われる。 Next, it demonstrates using drawing. FIG. 1 is a trace drawing of a cross-sectional photograph taken with a scanning electron microscope (Hitachi FLEX SEM 1000, magnification 200) of a gelatin filament yarn 1 obtained in an example of the present invention. This gelatin filament yarn 1 is flat and constriction 2 is observed. L1 is the major axis and L2 is the minor axis. This shape was formed by collapsing a hollow center portion during winding. This was confirmed by observing the gelatin filament yarn cut at the bottom of the hot spinning tube. The reason for the hollowness at the position after exiting the hot spinning tube is thought to be that water is rapidly removed in the hot spinning tube. A surface skin layer 3 and an inner core layer 4 are also observed. It is believed that the skin layer 3 was formed by rapidly removing moisture in the hot spinning tube, and the inner core layer 4 was formed by slowly removing moisture.

実施例1-2(ゼラチンにポリエチレングリコールを混合)と実施例3(ゼラチン100質量%)を比較すると、最大強度までの挙動は共通するが、ゼラチン100質量%は最大強度の点で破断してしまう。ところが、ゼラチンにポリエチレングリコールを混合した組成は最大強度の50%以上の強度を保って破断伸度まで進む。おそらく配向分子の滑りが生じているものと推定される。本発明のゼラチンフィラメント糸は、このように特異な強伸度特性を示す。このスキン-コア構造も巻き取った糸の解舒に寄与していると思われる。すなわち、表面がスキン層であれば、糸同士の膠着は防げる。 Comparing Example 1-2 (mixture of polyethylene glycol with gelatin) and Example 3 (100% by mass of gelatin), the behavior up to the maximum strength is common, but 100% by mass of gelatin breaks at the point of maximum strength. put away. However, the composition in which polyethylene glycol is mixed with gelatin maintains a strength of 50% or more of the maximum strength and advances to breaking elongation. It is presumed that the sliding of the oriented molecules probably occurs. The gelatin filament yarn of the present invention thus exhibits unique strength and elongation properties. It is believed that this skin-core structure also contributes to the unwinding of the wound yarn. That is, if the surface is a skin layer, sticking between threads can be prevented.

図2は同、ゼラチンフィラメント糸の走査型電子顕微鏡(日立FLEX SEM1000型,倍率100倍)の断面写真、図3は同、側面写真である。 FIG. 2 is a cross-sectional photograph of a gelatin filament yarn taken with a scanning electron microscope (Hitachi FLEX SEM1000, magnification: 100 times), and FIG. 3 is a side photograph of the same.

図4は本発明の一実施例で使用するフィラメント製造装置10の模式的説明図である。シリンジ11に入れたゼラチン水溶液の紡糸液12をノズル13から空気中に押し出す。ノズル13は通常の丸断面でよい。ノズル13の下には加熱紡糸筒14が直結している。加熱紡糸筒14は14a-14dの4区画からなり、それぞれの区画で温度制御が可能となっている。得られたゼラチンフィラメント糸15はガイドロール16を通過して巻き取り機17に巻き取られる。 FIG. 4 is a schematic illustration of the filament manufacturing apparatus 10 used in one embodiment of the present invention. A spinning solution 12 of an aqueous gelatin solution contained in a syringe 11 is extruded from a nozzle 13 into the air. Nozzle 13 may be of normal circular cross-section. A heated spinning tube 14 is directly connected to the bottom of the nozzle 13 . The heated spinning tube 14 is composed of four sections 14a to 14d, and the temperature of each section can be controlled. The obtained gelatin filament thread 15 passes through a guide roll 16 and is wound on a winder 17 .

以下、実施例を用いてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
測定方法は下記のとおりである。
<フィラメント糸断面>
走査型電子顕微鏡(日立FLEX SEM1000型,倍率500倍)の写真で観察した。
<その他>
JIS又は業界の規定する測定方法に従って測定した。
A more specific description will be given below using examples. In addition, the present invention is not limited to the following examples.
The measuring method is as follows.
<Filament thread cross section>
It was observed with a photograph of a scanning electron microscope (Hitachi FLEX SEM 1000 type, magnification 500 times).
<Others>
It was measured according to the measurement method prescribed by JIS or the industry.

(実施例1)
ゼラチンとして新田ゼラチン社製、(ゼリー強度262g 原料:アルカリ処理牛骨)を使用し、ゼラチン57.0gとポリエチレングリコール(分子量1000)3.0gを混合し、水40gを加えて100gとし、80℃に加温して溶解し、10kPaの真空下で脱泡して紡糸原液を得た。
この紡糸原液を樹脂シリンジに充填し、内径0.61mmの樹脂製ノズルを装着して保温ホルダーに入れて温度を57℃に調整し、末端より0.1MPaの加圧空気を送ってノズルから原液を押し出した。
ノズルから押し出した原液を垂直に設置した内径200mmのステンレス管にヒーターを巻き付けた長さ2mの加熱紡糸筒に上から通して150℃の温度で加熱して乾燥し、下端の筒出口で速度10m/minでモノフィラメント糸を巻き取った。滞留時間は12秒であった。
得られたゼラチンモノフィラメント糸を20℃、65%RH環境下で24時間静置した後、島津製作所製オートグラフASX-Gにて、試料長さ100mm、引張速度100mm/分でJIS-L1013法に準拠して引張強さと破断伸度を測定した。糸の繊度は長さ10mのフィラメント糸を採取して重量を測定し、10000mに換算して繊度を算出した。フィラメント糸形状は光学顕微鏡にて観察した。
得られたモノフィラメント糸のサンプル10個の平均値の強伸度特性は、繊度357dtex、最大強度123cN、繊度当たりの強度0.34cN/dtex、破断伸度42.6%であった。また、繊維の断面形状は図1-2に示すように扁平でくびれが見られた。繊維断面の長径L1は0.283mm、短径L2は0.121mm、長径/短径は2.34であった。このモノフィラメント糸は扁平でくびれがあるため巻き取ったフィラメント糸同士が膠着せず、連続で解舒することができた。このモノフィラメント糸の前記強伸度平均値に近い強伸度グラフを図5に示す。また、実施例1のゼラチンフィラメント糸を140℃、48時間、真空度1kPaの条件で熱架橋させた。熱架橋前は37℃の温水で20時間浸漬すると溶解したが、熱架橋させると、37℃の温水で20時間浸漬しても形状を維持し、溶解しなかった。このことから、耐水性が向上し、水に溶けにくくなることが確認できた。
処理後のモノフィラメント糸のサンプル10個の平均値の強伸度特性は、最大強度129.6cN、繊度当たりの強度0.36cN/dtex、破断伸度8.5%であった。熱架橋後のモノフィラメント糸の前記強伸度平均値に近い強伸度グラフを図6に示す。図5の実施例1の熱架橋無しのゼラチンフィラメント糸に比べると、引っ張り強さはやや高くなるが、伸度は大幅に低くなった。これは架橋が進んだからと判断される。
(Example 1)
Nitta Gelatin Co., Ltd. (jelly strength: 262 g raw material: alkali-treated bovine bone) was used as gelatin. The mixture was heated to 0° C. and dissolved, and defoamed under a vacuum of 10 kPa to obtain a spinning dope.
This spinning dope is filled in a resin syringe, a resin nozzle with an inner diameter of 0.61 mm is attached, the syringe is placed in a heat insulating holder, the temperature is adjusted to 57°C, and pressurized air of 0.1 MPa is sent from the end of the syringe to the dope through the nozzle. pushed out.
The undiluted solution extruded from the nozzle is passed from the top through a heated spinning tube with a length of 2 m, in which a heater is wrapped around a stainless steel tube with an inner diameter of 200 mm, which is installed vertically, and dried by heating at a temperature of 150 ° C. At the outlet of the lower end, the speed is 10 m. /min. The residence time was 12 seconds.
The obtained gelatin monofilament yarn was allowed to stand in an environment of 20° C. and 65% RH for 24 hours, and then was subjected to JIS-L1013 method using Autograph ASX-G manufactured by Shimadzu Corporation with a sample length of 100 mm and a tensile speed of 100 mm/min. Tensile strength and elongation at break were measured according to the standards. The fineness of the yarn was calculated by measuring the weight of a filament yarn having a length of 10 m and converting it to 10000 m. The filament thread shape was observed with an optical microscope.
Ten samples of the obtained monofilament yarn had average strength and elongation properties of fineness of 357 dtex, maximum strength of 123 cN, strength per fineness of 0.34 cN/dtex, and elongation at break of 42.6%. Also, the cross-sectional shape of the fiber was flat and constricted as shown in FIG. 1-2. The major axis L1 of the fiber cross section was 0.283 mm, the minor axis L2 was 0.121 mm, and the major axis/minor axis was 2.34. Since this monofilament yarn was flat and constricted, the wound filament yarns did not stick together and could be continuously unwound. A strength and elongation graph close to the strength and elongation average value of this monofilament yarn is shown in FIG. Also, the gelatin filament yarn of Example 1 was thermally crosslinked at 140° C. for 48 hours at a degree of vacuum of 1 kPa. Before thermal cross-linking, it dissolved when immersed in warm water of 37°C for 20 hours, but after thermal cross-linking, it maintained its shape and did not dissolve even when immersed in warm water of 37°C for 20 hours. From this, it has been confirmed that the water resistance is improved and the composition becomes less soluble in water.
The average strength and elongation properties of 10 samples of the monofilament yarn after treatment were 129.6 cN maximum strength, 0.36 cN/dtex per fineness, and 8.5% elongation at break. FIG. 6 shows a strength and elongation graph close to the strength and elongation average value of the monofilament yarn after thermal cross-linking. Compared to the non-thermally crosslinked gelatin filament yarn of Example 1 in FIG. 5, the tensile strength was slightly higher, but the elongation was significantly lower. This is considered to be due to the progress of cross-linking.

(実施例2)
ゼラチンを58.2g、ポリエチレングリコール(分子量1000)を1.8gとした以外は実施例1と同様に液調整・紡糸し、ゼラチンモノフィラメント糸を得た。得られたモノフィラメント糸のサンプル10個の平均値の強伸度特性は、繊度310dtex、最大強度100cN、繊度当たりの強度0.32cN/dtex、破断伸度22.4%であった。繊維の断面形状は扁平で、表面にはくぼみが見られた。繊維断面の長径L1は0.273mm、短径L2は0.103mm、長径/短径は2.65であった。このモノフィラメント糸は扁平でくびれがあるため巻き取ったフィラメント糸同士が膠着せず、連続で解舒することができた。このモノフィラメント糸の前記強伸度平均値に近い強伸度グラフを図5に示す。
実施例2のゼラチンフィラメント糸は、140℃、48時間、真空度1kPaの条件で熱架橋させた。熱架橋前は37℃の温水で20時間浸漬すると溶解したが、熱架橋させると、37℃の温水で20時間浸漬しても形状を維持し、溶解しなかった。このことから、耐水性が向上し、水に溶けにくくなることが確認できた。
(Example 2)
A gelatin monofilament yarn was obtained by adjusting the solution and spinning in the same manner as in Example 1 except that 58.2 g of gelatin and 1.8 g of polyethylene glycol (molecular weight: 1000) were used. Ten samples of the obtained monofilament yarn had average strength and elongation properties of fineness of 310 dtex, maximum strength of 100 cN, strength per fineness of 0.32 cN/dtex, and elongation at break of 22.4%. The cross-sectional shape of the fiber was flat, and depressions were observed on the surface. The major axis L1 of the fiber cross section was 0.273 mm, the minor axis L2 was 0.103 mm, and the major axis/minor axis was 2.65. Since this monofilament yarn was flat and constricted, the wound filament yarns did not stick together and could be continuously unwound. A strength and elongation graph close to the strength and elongation average value of this monofilament yarn is shown in FIG.
The gelatin filament yarn of Example 2 was thermally crosslinked at 140° C. for 48 hours at a degree of vacuum of 1 kPa. Before thermal cross-linking, it dissolved when immersed in warm water of 37°C for 20 hours, but after thermal cross-linking, it maintained its shape and did not dissolve even when immersed in warm water of 37°C for 20 hours. From this, it has been confirmed that the water resistance is improved and the composition becomes less soluble in water.

(実施例3)
ポリエチレングリコールを添加しない以外は実施例1と同様に実施した。このモノフィラメント糸は扁平でくびれがあるため巻き取ったフィラメント糸同士が膠着せず、連続で解舒することができた。得られたモノフィラメント糸のサンプル10個の平均値の強伸度特性は、繊度306dtex、引張強度79cN、繊度当たりの強度0.26cN/dtex、破断伸度1.1%であった。このモノフィラメント糸の前記強伸度平均値に近い強伸度グラフを図5に示す。繊維の断面形状は扁平で、繊維断面の長径L1は0.250mm、短径L2は0.095mm、長径/短径は2.63であった。
実施例3のゼラチンフィラメント糸は、140℃、48時間、真空度1kPaの条件で熱架橋させた。熱架橋前は37℃の温水で20時間浸漬すると溶解したが、熱架橋させると、37℃の温水で20時間浸漬しても形状を維持し、溶解しなかった。このことから、耐水性が向上し、水に溶けにくくなることが確認できた。
(Example 3)
The procedure was carried out in the same manner as in Example 1, except that polyethylene glycol was not added. Since this monofilament yarn was flat and constricted, the wound filament yarns did not stick together and could be continuously unwound. Ten samples of the obtained monofilament yarn had average strength and elongation properties of fineness of 306 dtex, tensile strength of 79 cN, strength per fineness of 0.26 cN/dtex, and elongation at break of 1.1%. A strength and elongation graph close to the strength and elongation average value of this monofilament yarn is shown in FIG. The cross-sectional shape of the fiber was flat, and the major axis L1 of the fiber cross section was 0.250 mm, the minor axis L2 was 0.095 mm, and the major axis/minor axis was 2.63.
The gelatin filament yarn of Example 3 was thermally crosslinked at 140° C. for 48 hours at a degree of vacuum of 1 kPa. Before thermal cross-linking, it dissolved when immersed in warm water of 37°C for 20 hours, but after thermal cross-linking, it maintained its shape and did not dissolve even when immersed in warm water of 37°C for 20 hours. From this, it has been confirmed that the water resistance is improved and the composition becomes less soluble in water.

(比較例1)
実施例1と同様に準備した紡糸液を、紡糸の際に加熱紡糸筒を使用せず、室温でモノフィラメント糸を巻き取った。モノフィラメント糸の断面形状は円形(中実)となり、巻き取ったフィラメント糸が膠着して解除することができず、長繊維を得ることができなかった。
以上の結果を表1にまとめて示す。表1のデータは紡糸後1日後のデータであり(熱架橋無し)、測定数10の平均値である。
(Comparative example 1)
A spinning solution prepared in the same manner as in Example 1 was used to wind a monofilament yarn at room temperature without using a heated spinning tube during spinning. The cross-sectional shape of the monofilament thread became circular (solid), and the wound filament thread was agglutinated and could not be released, failing to obtain long fibers.
The above results are summarized in Table 1. The data in Table 1 are the data one day after spinning (no thermal cross-linking) and are the average values of 10 measurements.

Figure 0007232131000001
Figure 0007232131000001

表1に示すとおり、実施例1~3のゼラチンフィラメント糸は、巻き取った糸の解舒ができる糸であった。この糸は、織物、編み物、組み紐などに加工できることも確認できた。 As shown in Table 1, the gelatin filament yarns of Examples 1 to 3 were yarns capable of being unwound from a wound yarn. It has also been confirmed that this thread can be processed into woven fabrics, knitted fabrics, braided cords, and the like.

(実施例4)
実施例1で得られたモノフィラメント糸を16本用いて、組み紐を作成した。得られた組み紐は内径0.5mm、外径0.9mmの筒状で、安定な形状を維持できるものであった。図7はこのゼラチンフィラメント糸の組み紐の側面写真である。
(Example 4)
Using 16 monofilament yarns obtained in Example 1, a braid was produced. The resulting braid had a cylindrical shape with an inner diameter of 0.5 mm and an outer diameter of 0.9 mm, and could maintain a stable shape. FIG. 7 is a side view photograph of the braid of this gelatin filament yarn.

本発明のゼラチンフィラメント糸は、巻き取ったフィラメント糸同士が膠着せず、連続で解舒することができ、実生産するのに好適である。また、強度及び伸度があり、織物、編み物、組み紐などに加工できる。この織物、編み物、組み紐などは人工血管、腸管などのステントに有用である。また、織物、編物、組み紐等の繊維構造物に加工することで、創傷被覆材や手術時の保護・支持材等の医療用資材、細胞培養基材等の再生医療用基材などに有用である。さらに熱架橋すると耐水性も向上する。 The gelatin filament yarn of the present invention is suitable for practical production because wound filament yarns do not stick together and can be continuously unwound. It also has strength and elongation, and can be processed into woven fabrics, knitted fabrics, braided cords, and the like. The woven fabric, knitted fabric, braided cord, etc. are useful for artificial blood vessels, stents for intestinal tracts, and the like. In addition, by processing it into fiber structures such as woven fabrics, knitted fabrics, and braids, it is useful for medical materials such as wound dressings, protective and support materials during surgery, and regenerative medicine substrates such as cell culture substrates. be. Furthermore, thermal cross-linking improves water resistance.

1,15 ゼラチンフィラメント糸
2 くびれ
3 表面スキン層
4 内部コア層
10 フィラメント製造装置
11 シリンジ
12 紡糸液
13 ノズル
14 加熱紡糸筒
16 ガイドロール
17 巻き取り機
Reference Signs List 1, 15 Gelatin filament thread 2 Constriction 3 Surface skin layer 4 Inner core layer 10 Filament production device 11 Syringe 12 Spinning solution 13 Nozzle 14 Hot spinning tube 16 Guide roll 17 Winding machine

Claims (13)

ゼラチンを含む水溶液からゼラチンフィラメント糸製造する方法であって、
前記ゼラチンを含む水溶液を100質量%としたとき、ゼラチンが50質量%を超え70質量%以下、水溶性高分子含まないか又は水溶性高分子0質量%を超え10質量%以下含、化学架橋成分は含まず、水30質量%以上50質量%未満の割合で含み
前記ゼラチンを含む水溶液の気液混合物を減圧脱泡して紡糸液とし、
前記紡糸液を押し出し、加熱紡糸筒を通過させて乾式紡糸することにより、
ゼラチンを主成分とし、水溶性高分子は含まないか又は水溶性高分子は0質量%を超え10質量%以下含み、化学架橋成分は含まず、糸断面が扁平かつ中実であるゼラチンフィラメント糸を得ることを特徴とするゼラチンフィラメント糸の製造方法。
A method for producing a gelatin filament yarn from an aqueous solution containing gelatin, comprising:
When the aqueous solution containing gelatin is taken as 100% by mass, the gelatin is more than 50% by mass and 70% by mass or less, and the water-soluble polymer is not included or the water-soluble polymer is more than 0% by mass and 10% by mass or less . , does not contain a chemical cross-linking component, contains water in a proportion of 30% by mass or more and less than 50% by mass,
degassing the gas-liquid mixture of the gelatin-containing aqueous solution under reduced pressure to obtain a spinning solution;
By extruding the spinning solution and passing it through a heated spinning cylinder for dry spinning,
A gelatin filament yarn containing gelatin as a main component, containing no water-soluble polymer or containing more than 0% by mass and 10% by mass or less of a water-soluble polymer, containing no chemical cross-linking component, and having a flat and solid cross section. A method for producing a gelatin filament yarn, characterized by obtaining
前記加熱紡糸筒は、温度120~180℃、かつ押し出し物の滞留時間が5秒以上である請求項1に記載のゼラチンフィラメント糸の製造方法。 2. The method for producing a gelatin filament yarn according to claim 1, wherein the heated spinning tube has a temperature of 120 to 180° C. and a retention time of the extrudate is 5 seconds or longer. 前記加熱紡糸筒は垂直方向に向いている請求項1又は2に記載のゼラチンフィラメント糸の製造方法。 3. The method for producing a gelatin filament yarn according to claim 1 or 2, wherein the heat spinning tube is oriented vertically. 前記加熱紡糸筒を出た位置では、ゼラチンフィラメント糸は中空状体であり、巻き取ると中空がつぶれて断面が扁平になる請求項1~3のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 4. The production of the gelatin filament yarn according to any one of claims 1 to 3, wherein the gelatin filament yarn is hollow at the position after exiting the hot spinning tube, and when wound, the hollow is crushed and the cross section is flattened. Method. 前記フィラメント糸はさらに熱架橋されており、前記熱架橋の温度は100~150℃、加熱時間は24時間~96時間、真空度10kPa以下である請求項1~4のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 5. The filament yarn according to any one of claims 1 to 4, wherein the filament yarn is further thermally crosslinked at a temperature of 100 to 150°C, a heating time of 24 hours to 96 hours, and a degree of vacuum of 10 kPa or less. A method for producing a gelatin filament yarn. 前記ゼラチンフィラメント糸の断面扁平度は、長径/短径が2以上である請求項1~5のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 The method for producing a gelatin filament yarn according to any one of claims 1 to 5 , wherein the gelatin filament yarn has a cross-sectional flatness of 2 or more in terms of major axis/minor axis. 前記ゼラチンフィラメント糸断面は、くびれがある請求項1~のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 The method for producing a gelatin filament yarn according to any one of claims 1 to 6 , wherein the gelatin filament yarn cross section has a constriction. 前記水溶性高分子はポリエチレングリコールである請求項1~のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 The method for producing a gelatin filament yarn according to any one of claims 1 to 7 , wherein the water-soluble polymer is polyethylene glycol. 前記ポリエチレングリコールの分子量は500以上5000未満である請求項に記載のゼラチンフィラメント糸の製造方法。 9. The method for producing a gelatin filament yarn according to claim 8 , wherein the polyethylene glycol has a molecular weight of 500 or more and less than 5000. 前記ポリエチレングリコールの添加量はフィラメント糸に対して0.01~10質量%である請求項8又は9に記載のゼラチンフィラメント糸の製造方法。 10. The method for producing a gelatin filament yarn according to claim 8 or 9, wherein the amount of polyethylene glycol added is 0.01 to 10% by mass relative to the filament yarn. 前記フィラメント糸は、乾燥状態では外観は白く不透明であるが、水に濡れて湿潤状態になると瞬時に透明になり、湿潤状態になったことが外観で判別できる請求項1~10のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 11. The filament yarn according to any one of claims 1 to 10, wherein the appearance of the filament yarn is white and opaque in a dry state, but when it is wetted with water and is in a wet state, it instantly becomes transparent, and the wet state can be determined by the appearance . A method for producing the gelatin filament yarn according to the above item . 前記フィラメント糸はさらに熱架橋されており、前記熱架橋により、37℃の温水で20時間浸漬しても形状を維持し、溶解しない請求項1~11のいずれかに記載のゼラチンフィラメント糸の製造方法。 The production of the gelatin filament yarn according to any one of claims 1 to 11 , wherein the filament yarn is further thermally crosslinked, and due to the thermal crosslinking, it maintains its shape and does not dissolve even when immersed in hot water at 37°C for 20 hours. Method. 前記ゼラチンフィラメント糸の強伸度曲線は、最大強度の後に破断伸度までの伸度が10%以上ある請求項1~12のいずれか1項に記載のゼラチンフィラメント糸の製造方法。 The method for producing a gelatin filament yarn according to any one of claims 1 to 12 , wherein the strength-elongation curve of the gelatin filament yarn has an elongation to breaking elongation after maximum strength of 10% or more.
JP2019113008A 2019-06-18 2019-06-18 Manufacturing method of gelatin filament yarn Active JP7232131B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019113008A JP7232131B2 (en) 2019-06-18 2019-06-18 Manufacturing method of gelatin filament yarn
JP2022116319A JP7299387B2 (en) 2019-06-18 2022-07-21 Gelatin filament yarn and fiber structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113008A JP7232131B2 (en) 2019-06-18 2019-06-18 Manufacturing method of gelatin filament yarn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022116319A Division JP7299387B2 (en) 2019-06-18 2022-07-21 Gelatin filament yarn and fiber structure using the same

Publications (2)

Publication Number Publication Date
JP2020204119A JP2020204119A (en) 2020-12-24
JP7232131B2 true JP7232131B2 (en) 2023-03-02

Family

ID=73837044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113008A Active JP7232131B2 (en) 2019-06-18 2019-06-18 Manufacturing method of gelatin filament yarn

Country Status (1)

Country Link
JP (1) JP7232131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101144B2 (en) * 2019-06-18 2022-07-14 日本毛織株式会社 Gelatin hollow fiber and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120527A (en) 2003-10-17 2005-05-12 Ryohei Fukae Method for producing gelatin fiber
WO2010010817A1 (en) 2008-07-22 2010-01-28 株式会社カネカ Fiber for artificial hair and artificial hair product using the same
JP2012237083A (en) 2011-05-13 2012-12-06 Kansai Univ Fiber using aqueous solution containing gelatin and polyhydric alcohol, and dry spinning method of hollow fiber
US20160130729A1 (en) 2013-05-31 2016-05-12 Eth Zurich Improved Spinning Process and Novel Gelatin Fibers
WO2018235745A1 (en) 2017-06-20 2018-12-27 日本毛織株式会社 Biocompatible long-fiber nonwoven fabric, production method therefor, three-dimensional scaffold for cell culturing, and cell culturing method using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993562A (en) * 1973-01-11 1974-09-05

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120527A (en) 2003-10-17 2005-05-12 Ryohei Fukae Method for producing gelatin fiber
WO2010010817A1 (en) 2008-07-22 2010-01-28 株式会社カネカ Fiber for artificial hair and artificial hair product using the same
JP2012237083A (en) 2011-05-13 2012-12-06 Kansai Univ Fiber using aqueous solution containing gelatin and polyhydric alcohol, and dry spinning method of hollow fiber
US20160130729A1 (en) 2013-05-31 2016-05-12 Eth Zurich Improved Spinning Process and Novel Gelatin Fibers
WO2018235745A1 (en) 2017-06-20 2018-12-27 日本毛織株式会社 Biocompatible long-fiber nonwoven fabric, production method therefor, three-dimensional scaffold for cell culturing, and cell culturing method using same

Also Published As

Publication number Publication date
JP2020204119A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP0636716B1 (en) Water soluble polyvinyl alcohol-based fiber
JP3783239B2 (en) Dispersion spinning method for poly (tetrafluoroethylene) and related polymers
JP6115592B2 (en) Hollow porous membrane
JP2002522144A (en) Method of forming dyed knitting suture
JP7299387B2 (en) Gelatin filament yarn and fiber structure using the same
KR101589746B1 (en) Hollow fiber membrane and method for manufacturing the same
JP3887703B2 (en) Gelatin fiber and method for producing the same
KR20170079531A (en) Lyocell Fiber and the method for making it
JP7232131B2 (en) Manufacturing method of gelatin filament yarn
JP7101144B2 (en) Gelatin hollow fiber and its manufacturing method
JP4957141B2 (en) Cellulose fatty acid mixed ester hollow fiber
JP4009911B2 (en) Method for producing gelatin fiber
WO2004111117A1 (en) Stretched polytetrafluoroethylene formed article, method for production thereof, and composite article
JP2010240581A (en) Filter material
JPH04222217A (en) Polyphenylene sulfide fiber and production thereof
JPS591710A (en) Poly(p-phenylene terephthalamide) fiber of novel structure and its preparation
CN115287799B (en) Carboxylated chitosan hollow yarn and preparation method thereof
JP2006322131A (en) Split type conjugate fiber and method for producing the same
EP0327696A2 (en) High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
JPH0429765B2 (en)
JP7556148B2 (en) Monofilament and its manufacturing method
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JPS63126911A (en) Ultrafine fiber of tetrafluoroethylene resin and production thereof
JP4687473B2 (en) Cellulose fatty acid ester fiber and method for producing the same
JP3359730B2 (en) Polyester monofilament for industrial materials with improved wet heat durability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230217

R150 Certificate of patent or registration of utility model

Ref document number: 7232131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150