JP7229231B2 - heat treated oil composition - Google Patents

heat treated oil composition Download PDF

Info

Publication number
JP7229231B2
JP7229231B2 JP2020510883A JP2020510883A JP7229231B2 JP 7229231 B2 JP7229231 B2 JP 7229231B2 JP 2020510883 A JP2020510883 A JP 2020510883A JP 2020510883 A JP2020510883 A JP 2020510883A JP 7229231 B2 JP7229231 B2 JP 7229231B2
Authority
JP
Japan
Prior art keywords
heat
seconds
oil composition
petroleum resin
treated oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510883A
Other languages
Japanese (ja)
Other versions
JPWO2019189135A1 (en
Inventor
立樹 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of JPWO2019189135A1 publication Critical patent/JPWO2019189135A1/en
Application granted granted Critical
Publication of JP7229231B2 publication Critical patent/JP7229231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/16Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing cycloaliphatic monomer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/92Carboxylic acids
    • C10M129/93Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/10Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Fats And Perfumes (AREA)

Description

本発明は、熱処理油組成物に関する。 The present invention relates to heat treated oil compositions.

鋼材などの金属材料においては、その性質の改善を目的として、焼入れ、焼戻し、焼なまし、焼ならしなどの熱処理が施される。これらの熱処理の中で、焼入れは、加熱された金属材料を冷却剤中に浸漬して所定の焼入れ組織に変態させる処理であり、この焼入れによって、処理物は非常に硬くなる。例えばオーステナイト状態にある加熱された鋼材を冷却剤中に浸漬し、上部臨界速度以上で冷却すると、マルテンサイトなどの焼入れ組織に変態させることができる。 Metal materials such as steel are subjected to heat treatments such as quenching, tempering, annealing, and normalizing for the purpose of improving their properties. Among these heat treatments, quenching is a process in which a heated metal material is immersed in a coolant to transform into a predetermined quenched structure, and this quenching makes the treated material very hard. For example, if a heated steel material in an austenitic state is immersed in a coolant and cooled at an upper critical velocity or higher, it can be transformed into a quenched structure such as martensite.

冷却剤としては、一般に油系または水系の熱処理剤が用いられる。油系の熱処理剤(熱処理油)を用いた金属材料の焼入れについて説明すると、加熱された金属材料を冷却剤である熱処理油に投入した場合、通常は3つの段階を経て冷却される。具体的には、(1)金属材料が熱処理油の蒸気膜で覆われる第1段階(蒸気膜段階)、(2)蒸気膜が破れて沸騰が起こる第2段階(沸騰段階)、(3)金属材料の温度が熱処理油の沸点以下となり、対流により熱が奪われる第3段階(対流段階)である。そして、各段階では金属材料の周囲の雰囲気が異なることを原因として冷却速度は異なっており、第2段階(沸騰段階)の冷却速度が最も速い。 As the cooling agent, an oil-based or water-based heat treatment agent is generally used. Explaining the quenching of a metal material using an oil-based heat treatment agent (heat treatment oil), when a heated metal material is put into heat treatment oil as a coolant, it is usually cooled through three stages. Specifically, (1) the first stage (steam film stage) in which the metal material is covered with a steam film of heat-treated oil (2) the second stage (boiling stage) in which the steam film is broken and boiling occurs, (3) In the third stage (convection stage), the temperature of the metal material becomes lower than the boiling point of the heat-treated oil, and heat is taken away by convection. At each stage, the cooling rate is different due to the different atmosphere around the metal material, and the cooling rate is the fastest in the second stage (boiling stage).

一般に、熱処理油においては、蒸気膜段階から沸騰段階に移行した際に急激に冷却速度が速くなる。金属材料が単純な平面形状ではない場合、金属材料の表面で蒸気膜段階と沸騰段階とが混在しやすくなる。そして、該混在が起こった場合には、蒸気膜段階と沸騰段階との冷却速度の差によって金属材料の表面で極めて大きな温度差が生じる。そして、この温度差によって、熱応力や変態応力が発生して金属材料に歪が生じる。それ故、金属材料の熱処理、特に焼入れにおいては、その熱処理条件に適した熱処理油の選定が重要であり、その選定が不適切な場合には、金属材料に歪が生じるとともに、十分な焼入れ硬さが得られないことがある。 Generally, in heat-treated oil, the cooling rate rapidly increases when the vapor film stage is shifted to the boiling stage. If the metal material does not have a simple planar shape, the vapor film stage and the boiling stage tend to coexist on the surface of the metal material. When this mixture occurs, an extremely large temperature difference occurs on the surface of the metal material due to the difference in cooling rate between the vapor film stage and the boiling stage. This temperature difference causes thermal stress and transformation stress, which causes strain in the metal material. Therefore, in the heat treatment of metal materials, especially in quenching, it is important to select a heat treatment oil that is suitable for the heat treatment conditions. Sometimes you can't get it.

熱処理油は、JIS K2242:2012で1種から3種まで分類されており、焼入れに使用するのは1種の1号油および2号油、2種の1号油および2号油である。
JIS K2242:2012では、冷却性能の目安として800℃から400℃までの冷却秒数が規定され、1種1号では5.0秒以下、1種2号では4.0秒以下、2種1号では5.0秒以下、2種2号では6.0秒以下と定められている。
この冷却秒数が短いほど冷却性能が高く、金属材料が硬くなる。一般に、焼入れ後の金属の硬さと歪とはトレードオフの関係にあり、硬いほど歪は大きくなる。
工業的には油剤の冷却性を示す指標として、300℃秒数も用いられている。300℃秒数とは、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である。
Heat-treated oils are classified into types 1 to 3 according to JIS K2242:2012, and those used for quenching are No. 1 oil and No. 2 oil, and No. 1 oil and No. 2 oil are used for quenching.
JIS K2242: 2012 specifies the number of seconds for cooling from 800 ° C to 400 ° C as a guideline for cooling performance, 5.0 seconds or less for Class 1 No. 1, 4.0 seconds or less for Class 1 No. 2, Class 2 1 No. 5.0 seconds or less, Class 2 No. 2 6.0 seconds or less.
The shorter the cooling seconds, the higher the cooling performance and the harder the metal material. In general, there is a trade-off relationship between the hardness and strain of metal after quenching, and the harder the metal, the greater the strain.
Industrially, the 300° C. seconds is also used as an index showing the cooling performance of the oil. The 300° C. seconds is the cooling time from 800° C. to 300° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242:2012.

油剤の冷却性を示す指標として、蒸気膜段階の開始から終了する温度(特性温度)に到達するまでの秒数(特性秒数;蒸気膜長さ)も用いられる。一般に、蒸気膜段階が長くなると、蒸気膜段階と沸騰段階とが混在する時間も長くなり、歪が大きくなる傾向があり、特性秒数が短く、特性温度が低いほど冷却性が高いとされる。JISK 2242:2012では、特性温度も規定されており、1種1号では480℃以上、1種2号では580℃以上、2種1号では500℃以上、2種2号では600℃以上と定められている。
この1種の1号油および2号油は低い油温で使用されるコールド油に相当し、2種の1号油はより高い油温で使用できるセミホット油に相当し、2種の2号油は高い油温で使用できるホット油に相当する。
The number of seconds (characteristic seconds; vapor film length) from the start of the vapor film stage to the temperature at which the vapor film phase ends (characteristic temperature) is also used as an indicator of the cooling properties of the fluid. In general, the longer the vapor film stage, the longer the period during which the vapor film stage and the boiling stage coexist, which tends to increase strain, and the shorter the characteristic seconds and the lower the characteristic temperature, the higher the cooling performance. . JISK 2242:2012 also defines the characteristic temperature, which is 480°C or higher for Type 1 No. 1, 580°C or higher for Type 1 No. 2, 500°C or higher for Type 2 No. 1, and 600°C or higher for Type 2 No. 2. It is defined.
The one type of No. 1 oil and No. 2 oil correspond to cold oil used at low oil temperature, the two types of No. 1 oil correspond to semi-hot oil that can be used at higher oil temperature, and the two types of No. 2 The oil corresponds to hot oil which can be used at high oil temperatures.

ユーザーは目的の硬さと歪を得るために、上記のような指標を元に焼入れ油を選択する。例えば、歪が問題となる自動車用の歯車部品などの焼入れには、上記2種1号油が広く用いられている。これは、上記1種油では歪が大きくなることに加え、部品によっては硬度が高すぎるためである。また、上記2種2号油では歪は小さくなるものの、硬度が不足するためである。 The user selects the quenching oil based on the above indicators in order to obtain the desired hardness and distortion. For example, the Class 2 No. 1 oil is widely used for quenching gear parts for automobiles where distortion is a problem. This is because the type 1 oil causes a large strain and the hardness of some parts is too high. In addition, although the above Class 2 No. 2 oil reduces strain, it lacks hardness.

ところで、自動車用変速機や減速機などの部品は、ほとんどの場合が大量生産され、1つのトレイに大量の処理物を段積みして一度に焼入れを行ういわゆる団体焼入れが行われている。その際に、段積みした部品をセットした位置により、冷却性能にばらつきが生じ、部品ごとの硬さや歪にばらつきが生じるという問題がある。例えば、下部にセットした部品の硬さが高く、上部にセットした部品の硬さが低くなる、などである。以上の状況に鑑み、特許文献1~4の技術が提案されている。 By the way, in most cases, parts such as transmissions and speed reducers for automobiles are mass-produced, and so-called group quenching is performed in which a large amount of processed materials are stacked on one tray and quenched at once. At that time, there is a problem that the cooling performance varies depending on the position where the stacked parts are set, and the hardness and distortion of each part also varies. For example, the hardness of the parts set at the bottom is high, and the hardness of the parts set at the top is low. In view of the above situation, the techniques of Patent Documents 1 to 4 have been proposed.

特許文献1では、上記2種1号油と同程度の冷却性能を持ちながら、団体焼入れ時の冷却性能のばらつきを低減する熱処理油組成物が提案されている。具体的には、5%留出温度が300℃以上400℃以下の低沸点基油5質量%以上50質量%未満と、5%留出温度が500℃以上の高沸点基油50質量%を超え95%以下とからなる混合基油を含むことを特徴とする熱処理油組成物である。
特許文献2では、40℃動粘度が5mm/s以上60mm/s以下である基油を組成物全量基準で50質量%以上95質量%以下と、40℃動粘度が300mm/s以上である基油を組成物全量基準で5質量%以上50質量%以下と、αオレフィン共重合体とを配合することにより、団体焼入れ時の冷却性能のばらつきを低減できる熱処理油組成物が提案されている。
特許文献3では、上記2種1号油と同程度の冷却性能を持ちながら、団体焼入れ時の冷却性能のばらつきを低減する熱処理油組成物として、蒸気膜破断剤として石油樹脂を含み、特性秒数が1.00秒以下であるとともに、300℃秒数が6.00秒以上14.50秒以下であることを特徴とする熱処理油組成物が提案されている。
特許文献4では、高い冷却性能を発揮できる熱処理油組成物として、40℃における動粘度が4mm/s以上、20mm/s以下の基油に、アルケニル若しくはアルキルコハク酸イミドを配合してなる熱処理油組成物が提案されている。
Patent Literature 1 proposes a heat-treated oil composition that has a cooling performance comparable to that of the Class 2 No. 1 oil while reducing variations in cooling performance during group quenching. Specifically, 5% by mass or more and less than 50% by mass of a low boiling point base oil with a 5% distillation temperature of 300°C or higher and 400°C or lower and 50% by mass of a high boiling point base oil with a 5% distillation temperature of 500°C or higher A heat-treated oil composition comprising a mixed base oil consisting of more than 95% and less.
In Patent Document 2, a base oil having a 40° C. kinematic viscosity of 5 mm 2 /s or more and 60 mm 2 /s or less is 50% by mass or more and 95% by mass or less based on the total amount of the composition, and a 40° C. kinematic viscosity of 300 mm 2 /s or more. A heat-treated oil composition that can reduce variations in cooling performance during group quenching by blending 5% by mass or more and 50% by mass or less of the base oil based on the total amount of the composition and an α-olefin copolymer has been proposed. ing.
In Patent Document 3, as a heat-treated oil composition that has the same cooling performance as the above-mentioned Type 2 No. 1 oil and reduces the variation in cooling performance during group quenching, petroleum resin is included as a vapor film breaking agent, and a characteristic second is 1.00 seconds or less and the 300° C. seconds is 6.00 seconds or more and 14.50 seconds or less.
In Patent Document 4, as a heat-treated oil composition capable of exhibiting high cooling performance, alkenyl or alkylsuccinimide is blended with a base oil having a kinematic viscosity at 40° C. of 4 mm 2 /s or more and 20 mm 2 /s or less. A heat treating oil composition has been proposed.

特開2007-009238号公報Japanese Patent Application Laid-Open No. 2007-009238 特開2013-194262号公報JP 2013-194262 A 特開2016-151054号公報JP 2016-151054 A 特開2010-229479号公報JP 2010-229479 A

冷却性能、焼入れ硬度、および焼入れ歪においてバランスがよい熱処理油組成物が求められている。 There is a demand for a heat-treating oil composition that has a good balance of cooling performance, quenching hardness, and quenching strain.

本発明は以下の通りである。
[1] (A)基油および(B)蒸気膜破断剤を含み、
JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6秒未満であり、
前記成分(B)は、石油樹脂を含む、熱処理油組成物。
[2] 冷却曲線から得られる特性秒数が1秒以上である、[1]に記載の熱処理油組成物。
[3] 冷却曲線から得られる特性秒数が2.5秒以下である、[1]または[2]に記載の熱処理油組成物。
[4] 前記石油樹脂の軟化点が40~150℃である、[1]~[3]のいずれかに記載の熱処理油組成物。
[5] 前記石油樹脂の数平均分子量(Mn)が200~5,000である、[1]~[4]のいずれかに記載の熱処理油組成物。
[6] 前記石油樹脂は、炭素数4~10の脂肪族オレフィン類、脂肪族ジオレフィン類、またはオレフィン性不飽和結合を有する炭素数8以上の芳香族化合物から選ばれる少なくとも1種の不飽和化合物が重合または共重合した樹脂である、[1]~[5]のいずれかに記載の熱処理油組成物。
[7] 前記石油樹脂は、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族-芳香族共重合系石油樹脂、ジシクロペンタジエン系石油樹脂、およびジシクロペンタジエン-芳香族共重合系石油樹脂、ならびにこれらの水添石油樹脂および変性石油樹脂から選択される少なくとも1種である、[1]~[6]のいずれかに記載の熱処理油組成物。
[8] 40℃動粘度が1~100mm/sである、[1]~[7]のいずれかに記載の熱処理油組成物。
[9] 前記成分(A)は、40℃動粘度が1~50mm/sである低粘度基油および40℃動粘度が50mm/s超550mm/s以下である高粘度基油を含む、[1]~[8]のいずれかに記載の熱処理油組成物。
[10] 300℃秒数が4秒以上6秒未満である、[1]~[9]のいずれかに記載の熱処理油組成物。
[11] 前記石油樹脂の含有量が、組成物全量基準で0.1~90質量%である、[1]~[10]のいずれかに記載の熱処理油組成物。
[12] 前記成分(A)の含有量が、組成物全量基準で10~99.9質量%である、[1]~[11]のいずれかに記載の熱処理油組成物。
[13] さらに、(C)光輝性改良剤を含む、[1]~[12]のいずれかに記載の熱処理油組成物。
[14] [1]~[13]のいずれかに記載の熱処理油組成物を用いて、金属材料を処理することを特徴とする、金属材料の焼入れ方法。
[15] 前記成分(A)および前記成分(B)を混合することを含む、[1]~[13]のいずれかに記載の熱処理油組成物の製造方法。
The present invention is as follows.
[1] comprising (A) a base oil and (B) a vapor film breaker,
300 ° C. seconds, which is the cooling time from 800 ° C. to 300 ° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012, is less than 6 seconds,
The heat-treated oil composition, wherein the component (B) contains a petroleum resin.
[2] The heat-treated oil composition according to [1], wherein the characteristic number of seconds obtained from the cooling curve is 1 second or more.
[3] The heat-treated oil composition according to [1] or [2], wherein the characteristic number of seconds obtained from the cooling curve is 2.5 seconds or less.
[4] The heat-treated oil composition according to any one of [1] to [3], wherein the petroleum resin has a softening point of 40 to 150°C.
[5] The heat-treated oil composition according to any one of [1] to [4], wherein the petroleum resin has a number average molecular weight (Mn) of 200 to 5,000.
[6] The petroleum resin contains at least one unsaturated compound selected from aliphatic olefins having 4 to 10 carbon atoms, aliphatic diolefins, or aromatic compounds having 8 or more carbon atoms and having an olefinically unsaturated bond. The heat-treated oil composition according to any one of [1] to [5], wherein the compound is a polymerized or copolymerized resin.
[7] The petroleum resin includes an aliphatic petroleum resin, an aromatic petroleum resin, an aliphatic-aromatic copolymer petroleum resin, a dicyclopentadiene petroleum resin, and a dicyclopentadiene-aromatic copolymer petroleum resin. , and at least one selected from these hydrogenated petroleum resins and modified petroleum resins, the heat-treated oil composition according to any one of [1] to [6].
[8] The heat-treated oil composition according to any one of [1] to [7], which has a kinematic viscosity of 1 to 100 mm 2 /s at 40°C.
[9] The component (A) includes a low-viscosity base oil having a kinematic viscosity at 40°C of 1 to 50 mm 2 /s and a high-viscosity base oil having a kinematic viscosity at 40°C of more than 50 mm 2 /s and not more than 550 mm 2 /s. The heat-treated oil composition according to any one of [1] to [8], comprising:
[10] The heat-treated oil composition according to any one of [1] to [9], wherein the number of seconds at 300°C is 4 seconds or more and less than 6 seconds.
[11] The heat-treated oil composition according to any one of [1] to [10], wherein the content of the petroleum resin is 0.1 to 90% by mass based on the total amount of the composition.
[12] The heat-treated oil composition according to any one of [1] to [11], wherein the content of component (A) is 10 to 99.9% by mass based on the total amount of the composition.
[13] The heat-treated oil composition according to any one of [1] to [12], further comprising (C) a gloss improver.
[14] A method for quenching a metal material, which comprises treating the metal material with the heat-treated oil composition according to any one of [1] to [13].
[15] The method for producing a heat-treated oil composition according to any one of [1] to [13], comprising mixing the component (A) and the component (B).

本発明によれば冷却性能、焼入れ硬度、および焼入れ歪のバランスがよい熱処理油組成物が提供される。 According to the present invention, there is provided a heat-treated oil composition with well-balanced cooling performance, quenching hardness, and quenching strain.

以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において任意に変更して実施することができる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention.

本発明は、(A)基油および(B)蒸気膜破断剤を含む熱処理油組成物に関する。本発明の熱処理油組成物は、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6秒未満であり、前記成分(B)は、石油樹脂を含む。
本発明の熱処理油組成物は冷却性能、焼入れ硬度、および焼入れ歪のバランスに優れる。
The present invention relates to a heat treated oil composition comprising (A) a base oil and (B) a vapor film breaker. The heat-treated oil composition of the present invention has a cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012, and the cooling time from 800 ° C. to 300 ° C. is less than 6 seconds at 300 ° C. Yes, the component (B) contains a petroleum resin.
The heat-treating oil composition of the present invention has an excellent balance of cooling performance, quenching hardness, and quenching distortion.

特許文献1~3(特開2007-009238号公報、特開2013-194262号公報、特開2016-151054号公報)に記載の熱処理油組成物は、冷却時間が長く、焼入れ歪が低減されるが自動車部品等の輸送部品(例えばギアやベアリング)などへ適用するには焼入れ硬さが不十分な場合があり、より一層の硬度増加が求められる。一方、特許文献4(特開2010-229479号公報)に記載の熱処理油組成物は冷却時間が短く、焼入れ硬さが高いが、焼入れ歪が大きく、複雑な形状の部品などへの適用は難しい。高い焼入れ硬度と低減された焼入れ歪とを両立し得る熱処理油組成物が依然として求められている。 The heat-treated oil compositions described in Patent Documents 1 to 3 (JP-A-2007-009238, JP-A-2013-194262, JP-A-2016-151054) have a long cooling time and reduced quenching strain. However, there are cases where the quenching hardness is insufficient for application to transportation parts such as automobile parts (for example, gears and bearings), and a further increase in hardness is required. On the other hand, the heat-treated oil composition described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2010-229479) has a short cooling time and high quenching hardness, but has a large quenching strain and is difficult to apply to parts with complicated shapes. . There is still a need for a heat treatment oil composition that can achieve both high quenching hardness and reduced quenching strain.

好ましい態様の熱処理油組成物は、高い焼入れ硬度と低減された焼入れ歪とを両立することができる。本態様の熱処理油組成物は自動車部品等の輸送部品(例えばギアやベアリング)、特に、大型部品に好適に使用できる。 The heat treatment oil composition of the preferred embodiment can achieve both high quenching hardness and reduced quenching distortion. The heat-treated oil composition of this embodiment can be suitably used for transportation parts such as automobile parts (for example, gears and bearings), particularly large parts.

以下、各成分について詳細に説明する。本明細書に記載された数値範囲の上限値および下限値は任意に組み合わせることができる。例えば、「A~B」および「C~D」が記載されている場合、「A~D」および「C~B」の範囲も本発明に範囲に含まれる。また、本明細書に記載された数値範囲「下限値~上限値」は下限値以上、上限値以下であることを意味する。 Each component will be described in detail below. The upper and lower limits of the numerical ranges described herein can be arbitrarily combined. For example, if "AB" and "CD" are recited, the ranges "AD" and "CB" are also included in the scope of the invention. Further, the numerical range "lower limit to upper limit" described in this specification means that the range is equal to or higher than the lower limit and equal to or lower than the upper limit.

[成分(A):基油]
基油としては、特に制限はなく、従来、熱処理油の基油として使用されている鉱油および合成油の中から任意のものを適宜選択して用いることができる。
[Component (A): base oil]
The base oil is not particularly limited, and can be appropriately selected and used from mineral oils and synthetic oils conventionally used as base oils for heat-treated oils.

鉱油としては、溶剤精製、水添精製等の通常の精製法により得られた、パラフィン基系鉱油、中間基系鉱油およびナフテン基系鉱油等、あるいは、フィッシャートロプシュプロセス等により製造されるワックス(ガストゥリキッドワックス)や鉱油系ワックスを異性化することによって製造されるもの等が挙げられる。これらの鉱油は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
鉱油は、API(米国石油協会)の基油カテゴリーにおいて、グループ1、2、3のいずれかに分類される。鉱油は、基油カテゴリーのグループ2及びグループ3に分類される鉱油が好ましく、グループ3に分類される鉱油がより好ましい。
Mineral oils include paraffin-based mineral oils, intermediate-based mineral oils and naphthenic-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrorefining, or waxes (gas liquid wax) and those produced by isomerizing mineral oil waxes. These mineral oils may be used alone or in combination of two or more.
Mineral oils are classified as Groups 1, 2 or 3 in the API (American Petroleum Institute) base oil category. Mineral oils are preferably mineral oils classified in groups 2 and 3 of the base oil category, more preferably mineral oils classified in group 3.

合成油としては、炭化水素系合成油、エーテル系合成油等が挙げられる。炭化水素系合成油としては、アルキルベンゼン、アルキルナフタレン等を挙げることができる。エーテル系合成油としては、ポリオキシアルキレングリコール、ポリフェニルエーテル等が挙げられる。これらの合成油は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、基油として、前記鉱油1種以上と前記合成油1種以上とを組み合わせて用いてもよい。
Synthetic oils include hydrocarbon-based synthetic oils, ether-based synthetic oils, and the like. Alkylbenzene, alkylnaphthalene, etc. can be mentioned as hydrocarbon system synthetic oil. Examples of ether-based synthetic oils include polyoxyalkylene glycol and polyphenyl ether. These synthetic oils may be used alone or in combination of two or more.
As the base oil, one or more of the mineral oils and one or more of the synthetic oils may be used in combination.

基油の粘度については特に制限はない。基油の40℃における動粘度は、1~50mm/sであることが好ましく、5~40mm/sであることがより好ましく、7~30mm/sであることがさらに好ましく、10~25mm/sであることが特に好ましい。基油の40℃動粘度を上記範囲とすることにより、成分(A)に基づく本質的な冷却性能を確保して、特性秒数および300℃秒数を後述する範囲にしやすくできる。
なお、成分(A)の基油が、2種以上の基油が混合された基油である場合、混合基油の動粘度が上記範囲を満たすことが好ましい。
本明細書において、所定の温度における動粘度は、JIS K2283:2000に準拠して測定された値を意味する。
There are no particular restrictions on the viscosity of the base oil. The kinematic viscosity of the base oil at 40° C. is preferably 1 to 50 mm 2 /s, more preferably 5 to 40 mm 2 /s, even more preferably 7 to 30 mm 2 /s, further preferably 10 to 50 mm 2 /s. 25 mm 2 /s is particularly preferred. By setting the 40° C. kinematic viscosity of the base oil within the above range, essential cooling performance based on the component (A) can be ensured, and the characteristic seconds and 300° C. seconds can be easily set within the ranges described later.
When the base oil of component (A) is a mixture of two or more base oils, the kinematic viscosity of the mixed base oil preferably satisfies the above range.
As used herein, kinematic viscosity at a given temperature means a value measured according to JIS K2283:2000.

基油の含有量は、組成物全量基準で、10~99.9質量%であることが好ましく、50~99質量%であることがより好ましく、70~98質量%であることがさらに好ましく、85~95質量%であることが特に好ましい。上記範囲であれば適切な冷却性能、硬さとすることができる。 The content of the base oil is preferably 10 to 99.9% by mass, more preferably 50 to 99% by mass, and even more preferably 70 to 98% by mass, based on the total amount of the composition. 85 to 95 mass % is particularly preferred. Appropriate cooling performance and hardness can be obtained within the above range.

本発明の一実施形態において、基油は、40℃動粘度が1~50mm/s(より好ましくは5~35mm/s、さらに好ましくは9~25mm/s)である低粘度基油および40℃動粘度が50mm/s超550mm/s以下(より好ましくは55~500mm/s、さらに好ましくは60~450mm/s)である高粘度基油を含む。
混合基油における低粘度基油および高粘度基油の配合は、熱処理油組成物中に、組成物全量基準で、低粘度基油を30~99.9質量%(より好ましくは35~95質量%、さらに好ましくは40~90質量%)および高粘度基油を0~70質量%(より好ましくは2~60質量%、さらに好ましくは5~45質量%)含有することが好ましい。
In one embodiment of the present invention, the base oil is a low-viscosity base oil having a 40° C. kinematic viscosity of 1 to 50 mm 2 /s (more preferably 5 to 35 mm 2 /s, still more preferably 9 to 25 mm 2 /s). and a high-viscosity base oil having a 40° C. kinematic viscosity of more than 50 mm 2 /s and 550 mm 2 /s or less (more preferably 55 to 500 mm 2 /s, still more preferably 60 to 450 mm 2 /s).
The blending of the low-viscosity base oil and the high-viscosity base oil in the mixed base oil is based on the total amount of the composition, and the low-viscosity base oil is 30 to 99.9% by mass (more preferably 35 to 95% by mass). %, more preferably 40 to 90% by mass) and 0 to 70% by mass (more preferably 2 to 60% by mass, still more preferably 5 to 45% by mass) of a high viscosity base oil.

本発明の他の一実施形態において、基油は、40℃動粘度が1~30mm/s(より好ましくは5~30mm/s、さらに好ましくは9~25mm/s)である低粘度基油および40℃動粘度が30~500mm/s(より好ましくは55~500mm/s、さらに好ましくは60~450mm/s)である高粘度基油を含む。
混合基油における低粘度基油および高粘度基油の配合は、熱処理油組成物中に、組成物全量基準で、低粘度基油を30~99.9質量%(より好ましくは35~95質量%、さらに好ましくは40~90質量%)および高粘度基油を0~70質量%(より好ましくは2~60質量%、さらに好ましくは5~45質量%)含有することが好ましい。
In another embodiment of the present invention, the base oil has a 40° C. kinematic viscosity of 1 to 30 mm 2 /s (more preferably 5 to 30 mm 2 /s, still more preferably 9 to 25 mm 2 /s). It contains a base oil and a high-viscosity base oil having a 40° C. kinematic viscosity of 30 to 500 mm 2 /s (more preferably 55 to 500 mm 2 /s, still more preferably 60 to 450 mm 2 /s).
The blending of the low-viscosity base oil and the high-viscosity base oil in the mixed base oil is based on the total amount of the composition, and the low-viscosity base oil is 30 to 99.9% by mass (more preferably 35 to 95% by mass). %, more preferably 40 to 90% by mass) and 0 to 70% by mass (more preferably 2 to 60% by mass, still more preferably 5 to 45% by mass) of a high viscosity base oil.

[成分(B):蒸気膜破断剤]
熱処理油組成物は、蒸気膜破断剤として石油樹脂を含む。石油樹脂を用いることにより、蒸気膜段階を短くでき、金属材料の表面で蒸気膜段階と沸騰段階とを混在しにくくできる。これにより、焼入れ時に部品ごとの冷却性能のばらつき(硬さや歪のばらつき)を生じにくくできる。また、複雑な形状の部品であっても、部品の場所ごとの冷却性能のばらつきを生じにくくできるため、各部品の歪を抑制できる。さらに、石油樹脂を含有することによって、熱処理の初期段階の特性秒数を短くすることができ、これにより熱処理の初期段階から優れた冷却性能を付与できる。これに加えて、石油樹脂を用いることにより、金属材料の熱処理を繰り返し行った際に、熱処理油組成物の冷却性能の経時変化を抑制できる。したがって、石油樹脂を用いることにより、熱処理油組成物の寿命を延長することができる。石油樹脂がこれらの効果を発揮できる理由は、石油樹脂の熱可塑性、基油への優れた溶解性であると考えられる。
[Component (B): Vapor film breaking agent]
The heat treated oil composition contains a petroleum resin as a vapor film breaker. By using petroleum resin, the vapor film stage can be shortened, and the mixture of the vapor film stage and the boiling stage on the surface of the metal material can be made difficult. As a result, variation in cooling performance (variation in hardness and distortion) for each component can be made less likely to occur during quenching. In addition, even if the component has a complicated shape, it is possible to suppress the distortion of each component because it is possible to suppress variations in the cooling performance depending on the location of the component. Furthermore, by containing petroleum resin, the characteristic number of seconds in the initial stage of heat treatment can be shortened, thereby providing excellent cooling performance from the initial stage of heat treatment. In addition, by using a petroleum resin, it is possible to suppress temporal changes in the cooling performance of the heat-treated oil composition when the metal material is repeatedly heat-treated. Therefore, by using a petroleum resin, the life of the heat-treated oil composition can be extended. The reason why the petroleum resin can exhibit these effects is considered to be the thermoplasticity of the petroleum resin and its excellent solubility in the base oil.

石油樹脂は、ナフサなど石油類の熱分解によるエチレンなどのオレフィン製造時に副生物として得られる炭素数4~10の脂肪族オレフィン類もしくは脂肪族ジオレフィン類、またはオレフィン性不飽和結合を有する炭素数8以上の芳香族化合物から選ばれる1種または2種以上の不飽和化合物を重合または共重合して得られる樹脂である。例えば、石油樹脂はC5留分を主原料とする、ジシクロペンタジエンおよび芳香族化合物を含む不飽和化合物を共重合して得られる樹脂(ジシクロペンタジエン-芳香族共重合系石油樹脂)である。
これらの石油樹脂は、例えば、脂肪族オレフィン類および/または脂肪族ジオレフィン類を重合した「脂肪族系石油樹脂」、オレフィン性不飽和結合を有する芳香族化合物を重合した「芳香族系石油樹脂」、脂肪族オレフィン類および/または脂肪族ジオレフィン類と、オレフィン性不飽和結合を有する芳香族化合物とを共重合した「脂肪族-芳香族共重合系石油樹脂」に大別できる。
この炭素数4~10の脂肪族オレフィン類としては、ブテン、ペンテン、ヘキセン、ヘプテンなどが挙げられる。また、炭素数4~10の脂肪族ジオレフィン類としては、ブタジエン、ペンタジエン、イソプレン、シクロペンタジエン、ジシクロペンタジエン、メチルペンタジエンなどが挙げられる。オレフィン性不飽和結合を有する炭素数8以上の芳香族化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエン、ビニルキシレン、インデン、メチルインデン、エチルインデンなどが挙げられる。
また、石油樹脂の原料化合物は、その全てがナフサなど石油類の熱分解によるオレフィン製造時の副生物である必要はなく、化学合成された不飽和化合物を用いてもよい。例えば、シクロペンタジエンやジシクロペンタジエン(DCPD)の重合により得られる「ジシクロペンタジエン系石油樹脂」や、これらシクロペンタジエンやジシクロペンタジエンとオレフィン性不飽和結合を有する芳香族化合物を共重合させて得られる「ジシクロペンタジエン-芳香族共重合系石油樹脂」(例えばジシクロペンタジエン-スチレン系石油樹脂)を用いることができる。
Petroleum resins are aliphatic olefins or aliphatic diolefins having 4 to 10 carbon atoms obtained as by-products in the production of olefins such as ethylene by thermal decomposition of petroleum such as naphtha, or carbon numbers having olefinically unsaturated bonds. It is a resin obtained by polymerizing or copolymerizing one or more unsaturated compounds selected from eight or more aromatic compounds. For example, the petroleum resin is a resin (dicyclopentadiene-aromatic copolymer petroleum resin) obtained by copolymerizing unsaturated compounds containing dicyclopentadiene and aromatic compounds, the main raw material of which is C5 fraction.
These petroleum resins include, for example, "aliphatic petroleum resins" obtained by polymerizing aliphatic olefins and/or aliphatic diolefins, and "aromatic petroleum resins" obtained by polymerizing aromatic compounds having olefinically unsaturated bonds. and "aliphatic-aromatic copolymer petroleum resins" obtained by copolymerizing aliphatic olefins and/or aliphatic diolefins with aromatic compounds having olefinically unsaturated bonds.
Examples of aliphatic olefins having 4 to 10 carbon atoms include butene, pentene, hexene and heptene. Examples of aliphatic diolefins having 4 to 10 carbon atoms include butadiene, pentadiene, isoprene, cyclopentadiene, dicyclopentadiene and methylpentadiene. Examples of aromatic compounds having 8 or more carbon atoms and having an olefinically unsaturated bond include styrene, α-methylstyrene, β-methylstyrene, vinyltoluene, vinylxylene, indene, methylindene and ethylindene.
Further, the raw material compounds for the petroleum resin need not all be by-products of the production of olefins by thermal decomposition of petroleum such as naphtha, and chemically synthesized unsaturated compounds may be used. For example, "dicyclopentadiene petroleum resin" obtained by polymerization of cyclopentadiene or dicyclopentadiene (DCPD), or obtained by copolymerizing these cyclopentadiene or dicyclopentadiene with an aromatic compound having an olefinically unsaturated bond. "Dicyclopentadiene-aromatic copolymer petroleum resin" (eg, dicyclopentadiene-styrene petroleum resin) can be used.

本明細書において、石油樹脂は、水添石油樹脂、変性石油樹脂等の石油樹脂の誘導体を含む。
水添石油樹脂は、上記石油樹脂に水素原子を添加した水素化石油樹脂である。水素添加により、分子中の二重結合の全部または一部が水素化される。したがって、水添石油樹脂は、完全水添石油樹脂であっても、部分水添石油樹脂であってもよい。部分水添のものを用いると、冷却性に優れたり、軟化点が低いため製造容易である。
変性石油樹脂としては、前記石油樹脂をカルボン酸等に代表される酸性官能基により変性した酸変性石油樹脂や、該酸変性石油樹脂をアルコール、アミン、アルカリ金属、アルカリ土類金属等の化合物により反応修飾した樹脂が挙げられる。酸変性石油樹脂としては石油樹脂を不飽和カルボン酸または不飽和カルボン酸無水物により変性したカルボン酸変性石油樹脂、酸無水物変性石油樹脂が挙げられる。不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸などの不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和多価カルボン酸類;マレイン酸モノメチル、フマル酸モノエチル等の不飽和多価カルボン酸の部分エステル類;などが挙げられ、不飽和カルボン酸無水物としては、例えば無水マレイン酸、無水イタコン酸等の不飽和多価カルボン酸無水物が挙げられる。
As used herein, petroleum resins include derivatives of petroleum resins such as hydrogenated petroleum resins and modified petroleum resins.
A hydrogenated petroleum resin is a hydrogenated petroleum resin obtained by adding hydrogen atoms to the above petroleum resin. Hydrogenation hydrogenates all or part of the double bonds in the molecule. Therefore, the hydrogenated petroleum resin may be a fully hydrogenated petroleum resin or a partially hydrogenated petroleum resin. Partially hydrogenated products are easy to produce because they are excellent in cooling properties and have a low softening point.
Examples of modified petroleum resins include acid-modified petroleum resins obtained by modifying the above-mentioned petroleum resins with acidic functional groups such as carboxylic acids, and acid-modified petroleum resins obtained by modifying the above-mentioned petroleum resins with compounds such as alcohols, amines, alkali metals and alkaline earth metals. Reaction modified resins are included. Acid-modified petroleum resins include carboxylic acid-modified petroleum resins obtained by modifying petroleum resins with unsaturated carboxylic acids or unsaturated carboxylic acid anhydrides, and acid anhydride-modified petroleum resins. Examples of unsaturated carboxylic acids include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid and citraconic acid; monomethyl maleate, monoethyl fumarate and the like. partial esters of unsaturated polycarboxylic acids; and the like, and examples of unsaturated carboxylic acid anhydrides include unsaturated polycarboxylic acid anhydrides such as maleic anhydride and itaconic anhydride.

石油樹脂は、合成したものを用いてもよいし、市販されている製品を用いてもよい。
石油樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
A synthesized petroleum resin may be used, or a commercially available product may be used.
The petroleum resin may be used alone or in combination of two or more.

一実施形態において、石油樹脂は、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族-芳香族共重合系石油樹脂、ジシクロペンタジエン系石油樹脂、およびジシクロペンタジエン-芳香族共重合系石油樹脂、ならびにこれらの水添石油樹脂および変性石油樹脂から選択される少なくとも1種である。 In one embodiment, the petroleum resin is an aliphatic petroleum resin, an aromatic petroleum resin, an aliphatic-aromatic copolymer petroleum resin, a dicyclopentadiene petroleum resin, and a dicyclopentadiene-aromatic copolymer petroleum resin. resin, and at least one selected from these hydrogenated petroleum resins and modified petroleum resins.

中でも、石油樹脂としては、特性秒数を短縮することができる点で脂肪族-芳香族共重合石油樹脂、水添脂肪族-芳香族共重合石油樹脂が好ましく、特に水添脂肪族-芳香族共重合石油樹脂が好ましい。例えば、石油樹脂は、ジシクロペンタジエン-芳香族共重合系の水添石油樹脂である。 Among them, as the petroleum resin, an aliphatic-aromatic copolymer petroleum resin and a hydrogenated aliphatic-aromatic copolymer petroleum resin are preferable in that the characteristic seconds can be shortened, and in particular, a hydrogenated aliphatic-aromatic Copolymerized petroleum resins are preferred. For example, the petroleum resin is a dicyclopentadiene-aromatic copolymer hydrogenated petroleum resin.

石油樹脂の数平均分子量(Mn)は、特性秒数の点で、200~5000であることが好ましく、250~2500であることがより好ましく、300~1500であることがさらに好ましい。ここで、数平均分子量(Mn)は、VPO法により測定することができる。 The number average molecular weight (Mn) of the petroleum resin is preferably 200 to 5,000, more preferably 250 to 2,500, and even more preferably 300 to 1,500 in terms of characteristic seconds. Here, the number average molecular weight (Mn) can be measured by the VPO method.

石油樹脂は、軟化点が40℃以上であることが好ましく、40℃以上150℃以下であることがより好ましく、60℃以上150℃以下であることがより一層好ましく、80℃以上140℃以下であることがさらに好ましく、85℃以上130℃以下であることがよりさらに好ましく、85℃以上120℃以下であることが特に好ましい。本明細書において「軟化点」はJIS K2207:2006の環球法により測定することができる。軟化点を40℃以上とすることにより、焼入れ時に部品ごとの冷却性能のばらつき(硬さや歪のばらつき)をより生じにくくできるとともに、部品が複雑な形状の場合、該部品の場所ごとの冷却性能のばらつきを生じにくくすることができ、各部品の歪を抑制できる。さらに、軟化点を40℃以上とすることにより、熱処理を繰り返し行った際の冷却性能の経時変化(特性秒数の経時的な増加および動粘度の経時的な低下)をより抑制できるとともに、熱処理の初期段階での特性秒数を短くすることができる。また、石油樹脂の軟化点を150℃以下とすることにより、熱処理油組成物によって金属材料等の被加工物を冷却した後の、該被加工物表面のべたつきを低減できる。石油樹脂の軟化点は、石油樹脂の重合の度合い、変性成分、変性の度合いにより調整できる。
なお、石油樹脂として、2種以上の材料を用いる場合、全ての材料が上記軟化点の範囲であることが好ましい。
The softening point of the petroleum resin is preferably 40° C. or higher, more preferably 40° C. or higher and 150° C. or lower, even more preferably 60° C. or higher and 150° C. or lower, and 80° C. or higher and 140° C. or lower. more preferably 85° C. or higher and 130° C. or lower, and particularly preferably 85° C. or higher and 120° C. or lower. As used herein, the "softening point" can be measured by the ring and ball method of JIS K2207:2006. By setting the softening point to 40 ° C or higher, it is possible to make it less likely that variations in cooling performance (variation in hardness and strain) will occur for each part during quenching, and if the part has a complicated shape, cooling performance for each location of the part can be made less likely to occur, and distortion of each component can be suppressed. Furthermore, by setting the softening point to 40 ° C. or higher, it is possible to further suppress the change in cooling performance over time (increase in characteristic seconds and decrease in kinematic viscosity over time) when heat treatment is repeated, and heat treatment. can shorten the characteristic seconds at the initial stage of . In addition, by setting the softening point of the petroleum resin to 150° C. or less, it is possible to reduce the stickiness of the surface of the work piece such as a metal material after the work piece is cooled with the heat-treated oil composition. The softening point of the petroleum resin can be adjusted by adjusting the degree of polymerization of the petroleum resin, the modified component, and the degree of modification.
When two or more materials are used as the petroleum resin, it is preferable that all the materials have softening points within the above range.

石油樹脂は、冷却性能の面から、JIS K 0061:2001に準拠して測定される20℃における密度が、0.5~1.5g/cmであることが好ましく、0.7~1.3g/cmであることがより好ましく、0.8~1.1g/cmであることがさらに好ましい。From the viewpoint of cooling performance, the petroleum resin preferably has a density of 0.5 to 1.5 g/cm 3 at 20° C. measured according to JIS K 0061:2001, and preferably 0.7 to 1.0 g/cm 3 . It is more preferably 3 g/cm 3 and even more preferably 0.8 to 1.1 g/cm 3 .

石油樹脂の臭素価は、冷却性能の面から20g/100g以下が好ましく、10g/100g以下がより好ましく、8g/100g以下がさらに好ましい。また、臭素価は低いほど好ましく、下限は特に制限されないが、通常、1.0g/100g以上、1.5g/100g以上、または1.9g/100g以上である。ここで、臭素価は、JIS K 2605:1996に準拠して測定される。 The bromine number of the petroleum resin is preferably 20 g/100 g or less, more preferably 10 g/100 g or less, and even more preferably 8 g/100 g or less in terms of cooling performance. In addition, the lower the bromine number, the better. Although the lower limit is not particularly limited, it is usually 1.0 g/100 g or more, 1.5 g/100 g or more, or 1.9 g/100 g or more. Here, the bromine number is measured according to JIS K 2605:1996.

石油樹脂の色相としては、JIS K 6901:2008に準拠して測定されるハーゼン色数は50以下が好ましく、40以下がより好ましく、30以下がさらに好ましい。また、ハーゼン色数は低いほど好ましく、下限は特に制限されないが、通常、3以上、5以上、または7以上である。 As for the hue of the petroleum resin, the Hazen color number measured according to JIS K 6901:2008 is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less. Further, the lower the Hazen color number, the better, and although the lower limit is not particularly limited, it is usually 3 or more, 5 or more, or 7 or more.

石油樹脂の含有量は、組成物全量基準で、0.1~90質量%であることが好ましい。0.1質量%以上であれば冷却性能が向上し得る。石油樹脂は一般に粘度が高く、配合量が多いほど組成物の粘度が増大する傾向がある。90質量%以下であれば、適正粘度の点で好ましい。石油樹脂の含有量は、粘度および冷却性能の面から、0.1~60質量%がより好ましく、1~35質量%が更に好ましく、2~25質量%が一層好ましく、4~15質量%が特に好ましい。 The petroleum resin content is preferably 0.1 to 90% by mass based on the total amount of the composition. If it is 0.1% by mass or more, the cooling performance can be improved. Petroleum resins generally have a high viscosity, and there is a tendency for the viscosity of the composition to increase as the blending amount increases. If it is 90% by mass or less, it is preferable from the point of proper viscosity. The content of the petroleum resin is more preferably 0.1 to 60% by mass, still more preferably 1 to 35% by mass, even more preferably 2 to 25% by mass, and 4 to 15% by mass from the viewpoint of viscosity and cooling performance. Especially preferred.

熱処理油組成物は、石油樹脂以外の蒸気膜破断剤を含んでもよい。他の蒸気膜破断剤としては、テルペン樹脂、テルペン樹脂の誘導体、ロジン、ロジンの誘導体等が挙げられる。他の蒸気膜破断剤の含有量は、組成物全量基準で、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。特に好ましくは、熱処理油組成物は石油樹脂以外の蒸気膜破断剤を含まない。
一実施形態の熱処理油組成物は、蒸気膜破断剤としてαオレフィン共重合体を含まない。
一実施形態の熱処理油組成物は、蒸気膜破断剤としてアスファルトを含まない。
The heat treated oil composition may contain vapor film breakers other than petroleum resins. Other vapor film breakers include terpene resins, terpene resin derivatives, rosin, rosin derivatives, and the like. The content of other vapor film breaking agents is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less, based on the total amount of the composition. Particularly preferably, the heat treated oil composition does not contain vapor film breakers other than petroleum resins.
The heat treated oil composition of one embodiment does not include an alpha olefin copolymer as a vapor film breaker.
The heat treated oil composition of one embodiment does not contain asphalt as a vapor film breaker.

[成分(C):光輝性改良剤]
熱処理油組成物は、光輝性改良剤を含んでもよい。光輝性改良剤を含むことで、被処理物の外観を良好にすることができる。光輝性改良剤としては、例えば、油脂や油脂脂肪酸、アルケニルコハク酸イミド、置換ヒドロキシ芳香族カルボン酸エステル誘導体等が挙げられる。これらの光輝性改良剤は、1種単独でまたは2種以上を組み合わせて用いてもよい。
光輝性改良剤の含有量は、組成物全量基準で、好ましくは0.01~5質量%、より好ましくは0.02~3質量%である。
[Component (C): Brightness improver]
The heat treated oil composition may also contain a shine improver. By including the glossiness improver, the appearance of the treated object can be improved. Examples of the gloss improver include oils and fats, fatty acids, alkenylsuccinimides, substituted hydroxyaromatic carboxylic acid ester derivatives, and the like. These luster improvers may be used singly or in combination of two or more.
The content of the glossiness improver is preferably 0.01 to 5% by mass, more preferably 0.02 to 3% by mass, based on the total amount of the composition.

[成分(D):金属系清浄分散剤]
熱処理油組成物は、金属系清浄分散剤を含んでもよい。金属系清浄分散剤を含むことで、冷却性能を高めることができる。(B)蒸気膜破断剤として使用される石油樹脂とともに(D)金属系清浄分散剤を含むことにより、優れた冷却性能を発揮でき、焼入れ時の硬度のより一層の向上効果が得られる。
[Component (D): Metallic detergent/dispersant]
The heat treated oil composition may contain a metallic detergent-dispersant. Cooling performance can be enhanced by including a metallic detergent-dispersant. By including (D) the metal-based detergent-dispersant together with (B) the petroleum resin used as the vapor film breaking agent, excellent cooling performance can be exhibited, and the effect of further improving the hardness during quenching can be obtained.

(D)金属系清浄分散剤としては、例えば、アルカリ金属原子およびアルカリ土類金属原子から選ばれる金属原子(好ましくはアルカリ土類金属原子)を含有する有機金属系化合物が挙げられ、具体的には、金属サリシレート、金属フェネートおよび金属スルホネート等が挙げられる。金属原子としては、ナトリウム原子、カルシウム原子、マグネシウム原子、またはバリウム原子が好ましく、カルシウム原子、またはマグネシウム原子がより好ましく、カルシウム原子がさらに好ましい。すなわち、一実施形態において、(D)金属系清浄分散剤はカルシウムサリシレート、カルシウムフェネートおよびカルシウムスルホネートの少なくとも1種を含む。金属系清浄分散剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of (D) metallic detergent-dispersants include organometallic compounds containing metal atoms selected from alkali metal atoms and alkaline earth metal atoms (preferably alkaline earth metal atoms). include metal salicylates, metal phenates and metal sulfonates. The metal atom is preferably a sodium atom, a calcium atom, a magnesium atom, or a barium atom, more preferably a calcium atom or a magnesium atom, and still more preferably a calcium atom. Thus, in one embodiment, (D) the metallic detergent-dispersant comprises at least one of calcium salicylate, calcium phenate and calcium sulfonate. The metallic detergent-dispersant may be used alone or in combination of two or more.

(D)金属系清浄分散剤の含有量は、組成物全量基準で、0~10質量%が好ましく、0.01~8質量%がより好ましく、0.05~5質量%がさらに好ましい。上記範囲であると基油への分散性および優れた冷却性能の観点で好ましい。 (D) The content of the metallic detergent-dispersant is preferably 0 to 10% by mass, more preferably 0.01 to 8% by mass, and even more preferably 0.05 to 5% by mass, based on the total amount of the composition. The above range is preferable from the viewpoint of dispersibility in the base oil and excellent cooling performance.

[成分(E):その他の添加剤]
熱処理油組成物は、酸化防止剤等のその他の添加剤をさらに含有してもよい。その他の添加剤の含有量は、組成物基準で、10質量%以下であることが好ましく、0.01~5質量%であることがより好ましい。
[Component (E): other additives]
The heat treated oil composition may further contain other additives such as antioxidants. The content of other additives is preferably 10% by mass or less, more preferably 0.01 to 5% by mass, based on the composition.

(酸化防止剤)
酸化防止剤としては、従来熱処理油の酸化防止剤として使用されている公知の酸化防止剤の中から、任意のものを適宜選択して用いることができる。例えば、アミン系酸化防止剤、フェノール系酸化防止剤等が挙げられる。
(Antioxidant)
As the antioxidant, an arbitrary one can be appropriately selected and used from known antioxidants conventionally used as antioxidants for heat-treated oils. Examples thereof include amine-based antioxidants and phenol-based antioxidants.

アミン系酸化防止剤としては、例えばジフェニルアミン、炭素数3~20のアルキル基を有するアルキル化ジフェニルアミン等のジフェニルアミン系酸化防止剤;α-ナフチルアミン、炭素数3~20のアルキル置換フェニル-α-ナフチルアミン等のナフチルアミン系酸化防止剤;等が挙げられる。 Examples of amine-based antioxidants include diphenylamine-based antioxidants such as diphenylamine and alkylated diphenylamine having an alkyl group with 3 to 20 carbon atoms; α-naphthylamine, alkyl-substituted phenyl-α-naphthylamine with 3-20 carbon atoms naphthylamine-based antioxidant; and the like.

フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール系酸化防止剤;4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)等のジフェノール系酸化防止剤;ヒンダードフェノール系酸化防止剤;等が挙げられる。 Phenolic antioxidants include, for example, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, octadecyl-3-(3,5-di monophenolic antioxidants such as -tert-butyl-4-hydroxyphenyl)propionate; 4,4'-methylenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6 -tert-butylphenol) and other diphenol-based antioxidants; hindered phenol-based antioxidants;

これらの酸化防止剤は、1種単独でまたは2種以上を組み合わせて用いてもよい。
酸化防止剤の含有量は、組成物全量基準で、好ましくは0.01~10質量%、より好ましくは0.03~5質量%、更に好ましくは0.05~3質量%である。
You may use these antioxidants individually by 1 type or in combination of 2 or more types.
The content of the antioxidant is preferably 0.01 to 10% by mass, more preferably 0.03 to 5% by mass, still more preferably 0.05 to 3% by mass, based on the total amount of the composition.

本発明の一実施形態において、熱処理油組成物における、(A)基油および(B)蒸気膜破断剤の合計含有量は、組成物全量(100質量%)基準で、80~100質量%であることが好ましく、90~99.75質量%であることがより好ましく、95~99.5質量%であることが特に好ましい。
本発明の一実施形態において、熱処理油組成物における、(A)基油、(B)蒸気膜破断剤、(C)光輝性改良剤、および(D)金属系清浄分散剤の合計含有量は、組成物全量(100質量%)基準で、90~100質量%であることが好ましく、95~100質量%であることがより好ましく、97.5~100質量%であることが特に好ましい。
In one embodiment of the present invention, the total content of (A) base oil and (B) vapor film breaker in the heat-treated oil composition is 80 to 100% by mass based on the total amount (100% by mass) of the composition. preferably 90 to 99.75% by mass, particularly preferably 95 to 99.5% by mass.
In one embodiment of the present invention, the total content of (A) base oil, (B) vapor film breaker, (C) brightness improver, and (D) metallic detergent/dispersant in the heat-treated oil composition is , Based on the total amount of the composition (100% by mass), it is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and particularly preferably 97.5 to 100% by mass.

[熱処理油組成物の物性]
本実施形態の熱処理油組成物は、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である「300℃秒数」が6秒未満であることを要する。300℃秒数が6秒以上であると、硬度が不足する傾向がある。当該300℃秒数は、硬度の面から、4秒以上6秒未満がより好ましく、4.5秒以上6秒未満がさらに好ましく、5秒以上6秒未満が特に好ましい。
熱処理油組成物の300℃秒数を上記範囲とするためには、(A)基油の含有量および動粘度、(B)蒸気膜破断剤(特に石油樹脂)の含有量、軟化点および数平均分子量(D)金属系清浄分散剤の含有量および構造等を上述した実施形態の範囲内とすることが好ましい。
[Physical properties of heat-treated oil composition]
In the heat-treated oil composition of the present embodiment, the cooling time from 800 ° C. to 300 ° C. in the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012, "300 ° C. seconds" is 6. Must be less than seconds. If the 300° C. seconds is 6 seconds or longer, the hardness tends to be insufficient. From the viewpoint of hardness, the 300° C. seconds is more preferably 4 seconds or more and less than 6 seconds, still more preferably 4.5 seconds or more and less than 6 seconds, and particularly preferably 5 seconds or more and less than 6 seconds.
In order to make the 300 ° C. seconds of the heat-treated oil composition within the above range, (A) the content and kinematic viscosity of the base oil, (B) the content, softening point and number of the vapor film breaking agent (especially petroleum resin) It is preferable that the content, structure, etc. of the average molecular weight (D) metal-based detergent-dispersant be within the range of the above-described embodiment.

上記範囲の300℃秒数を有する熱処理油組成物は、例えば、JIS K2242:2012における1種1号油または2号油と同程度の冷却性能を有する熱処理油(コールド油)として使用することができる。一実施形態の熱処理油組成物は、従来のコールド油と比較して焼入れ歪を低減でき、低減された焼入れ歪および高い焼入れ硬度を両立し得る。 A heat-treated oil composition having a 300° C. second in the above range can be used as a heat-treated oil (cold oil) having cooling performance equivalent to that of Class 1 No. 1 oil or No. 2 oil in JIS K2242: 2012, for example. can. The heat-treated oil composition of one embodiment can reduce quenching strain compared to conventional cold oil, and can achieve both reduced quenching strain and high quenching hardness.

一実施形態の熱処理油組成物は、冷却性能の点から、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から400℃に至るまでの冷却時間である「400℃秒数」が1.0~5.0秒であることが好ましく、1.5~4.0秒であることがより好ましく、2.0~3.5秒であることがさらに好ましい。 In terms of cooling performance, the heat-treated oil composition of one embodiment has a cooling time from 800 ° C. to 400 ° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012 "400 ℃ Seconds" is preferably 1.0 to 5.0 seconds, more preferably 1.5 to 4.0 seconds, even more preferably 2.0 to 3.5 seconds.

本実施形態の熱処理油組成物は、歪低減の面から、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線から得られる特性秒数(蒸気膜長さ)が1秒以上であることが好ましく、1.2秒以上であることがより好ましく、1.4秒以上であることがさらに好ましい。また、焼入れ時の部品ごとの冷却性能のばらつき低減の面から、2.5秒以下が好ましく、2.0秒以下がより好ましく、1.5秒以下がさらに好ましい。
例えば、冷却曲線から得られる特性秒数(蒸気膜長さ)は、1秒以上2.5秒以下、1秒以上2.0秒以下、1秒以上1.5秒以下、1.2秒以上2.5秒以下、1.2秒以上2.0秒以下、1.2秒以上1.5秒以下、1.4秒以上2.5秒以下、1.4秒以上2.0秒以下、または1.4秒以上1.5秒以下である。
熱処理油組成物の特性秒数を上記範囲とするためには、(A)基油の含有量および動粘度、(B)蒸気膜破断剤(特に石油樹脂)の含有量、軟化点および数平均分子量(D)金属系清浄分散剤の含有量および構造等を上述した実施形態の範囲内とすることが好ましい。
In terms of strain reduction, the heat-treated oil composition of the present embodiment has a characteristic number of seconds (steam film length) obtained from a cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012, which is 1 second or more. is preferably , more preferably 1.2 seconds or longer, and even more preferably 1.4 seconds or longer. In addition, from the viewpoint of reducing variations in cooling performance for each component during quenching, the time is preferably 2.5 seconds or less, more preferably 2.0 seconds or less, and even more preferably 1.5 seconds or less.
For example, the characteristic number of seconds (vapor film length) obtained from the cooling curve is 1 second or more and 2.5 seconds or less, 1 second or more and 2.0 seconds or less, 1 second or more and 1.5 seconds or less, 1.2 seconds or more. 2.5 seconds or less, 1.2 seconds or more and 2.0 seconds or less, 1.2 seconds or more and 1.5 seconds or less, 1.4 seconds or more and 2.5 seconds or less, 1.4 seconds or more and 2.0 seconds or less, Alternatively, it is 1.4 seconds or more and 1.5 seconds or less.
In order to make the characteristic seconds of the heat-treated oil composition within the above range, (A) the content and kinematic viscosity of the base oil, (B) the content, softening point and number average of the vapor film breaking agent (especially petroleum resin) It is preferable that the content, structure, etc. of the molecular weight (D) metal-based detergent-dispersant be within the range of the above-described embodiment.

特性秒数は、より具体的には、以下の(1)、(2)により算出できる。
(1)JIS K2242:2012の冷却性能試験方法に準拠して、810℃に加熱した銀試料を熱処理油組成物に投入し、時間をx軸、該銀試料表面の温度をy軸とした冷却曲線を求める。
(2)前記冷却曲線から、接線交差法により、熱処理油組成物の蒸気膜段階が終了する温度(特性温度)に到達するまでの秒数を算出し、該秒数を特性秒数とする。
なお、上記(1)では、測定時間の間隔を1/100秒とすることが好ましい。
More specifically, the characteristic number of seconds can be calculated by the following (1) and (2).
(1) In accordance with the cooling performance test method of JIS K2242: 2012, a silver sample heated to 810 ° C. is put into a heat-treated oil composition, and cooling is performed with time on the x axis and the temperature of the silver sample surface on the y axis. find the curve.
(2) From the cooling curve, the number of seconds until reaching the temperature (characteristic temperature) at which the vapor film stage of the heat-treated oil composition ends is calculated by the tangent intersection method, and the number of seconds is defined as the number of characteristic seconds.
In (1) above, it is preferable to set the measurement time interval to 1/100 second.

熱処理油組成物の40℃における動粘度としては、300℃秒数の観点から、1~100mm/sが好ましい。
熱処理油組成物の100℃における動粘度としては、20mm/s以下が好ましい。
The kinematic viscosity at 40° C. of the heat-treated oil composition is preferably 1 to 100 mm 2 /s from the viewpoint of 300° C. seconds.
The kinematic viscosity at 100° C. of the heat-treated oil composition is preferably 20 mm 2 /s or less.

[熱処理油組成物の製造方法]
実施形態の熱処理油組成物の製造方法は、特に制限されない。例えば、実施形態の製造方法は、(A)基油および(B)蒸気膜破断剤、ならびに必要に応じて(C)光輝性改良剤、(D)金属系清浄分散剤および(E)その他の成分を混合することを含む。成分(A)~(E)は、いかなる方法で配合されてもよく、配合の順序およびその手法は限定されない。
[Method for producing heat-treated oil composition]
The method for producing the heat-treated oil composition of the embodiment is not particularly limited. For example, the manufacturing method of the embodiment includes (A) a base oil and (B) a vapor film breaker, and optionally (C) a glitter improver, (D) a metallic detergent and dispersant and (E) other Including mixing the ingredients. Components (A) to (E) may be blended in any manner, and the order and method of blending are not limited.

[熱処理油組成物の用途、焼入れ方法]
実施形態の熱処理油組成物は、金属材料の熱処理において、優れた冷却性能を発揮できるので、例えば、炭素鋼、ニッケル-マンガン鋼、クロム-モリブデン鋼、マンガン鋼等の各種合金鋼に焼入れを行う際の熱処理油として好適に用いることができる。特に、実施形態の熱処理油組成物は焼入れ歪を抑制しつつ、向上した焼入れ硬さを達成しうることから、例えば、自動車用歯車などの歯車、金属材料などの団体焼入れに用いられる焼入れ油などとして好適に使用することができる。
実施形態の熱処理油組成物を用いて、金属材料を焼入れ処理する際の当該熱処理油組成物の温度範囲は、通常の焼入れ処理の温度である60~150℃の範囲に設定してもよいし、170~250℃の高温に設定してもよい。
本発明の一実施形態は、金属材料の熱処理方法を提供する。具体的には、該熱処理方法は、上記実施形態の熱処理油組成物を用いて、金属材料を熱処理することを含む。
本発明の一実施形態は、金属材料の焼入れ方法を提供する。具体的には、上記実施形態の熱処理油組成物を用いて、金属材料を処理することを特徴とするものである。好ましい態様において、金属材料の焼入れ方法は、金属材料の団体焼入れにおいて、上記実施形態の熱処理油組成物を用いて金属材料を処理することを特徴とするものである。本発明の一実施形態は、上記実施形態の熱処理油組成物を用いて金属材料を処理することを含む、金属材料の団体焼入れ方法を提供する。
一実施形態において、金属材料の焼入れ方法は、40~200℃の油温下で金属材料を処理することを含む。
例えばオーステナイト状態にある加熱された鋼材を冷却剤中に浸漬し、上部臨界速度以上で冷却すると、マルテンサイトなどの焼入れ組織に変態させることができる。
[Usage of heat-treated oil composition, quenching method]
Since the heat treatment oil composition of the embodiment can exhibit excellent cooling performance in heat treatment of metal materials, for example, various alloy steels such as carbon steel, nickel-manganese steel, chromium-molybdenum steel, and manganese steel are quenched. It can be suitably used as a heat-treated oil at the time. In particular, the heat-treated oil composition of the embodiment can achieve improved quenching hardness while suppressing quenching strain. can be preferably used as.
The temperature range of the heat-treated oil composition when the metal material is quenched using the heat-treated oil composition of the embodiment may be set in the range of 60 to 150 ° C., which is the temperature of normal quenching treatment. , 170-250°C.
One embodiment of the present invention provides a method of heat treating a metallic material. Specifically, the heat treatment method includes heat-treating a metal material using the heat-treated oil composition of the above embodiment.
One embodiment of the present invention provides a method of hardening a metallic material. Specifically, the heat treatment oil composition of the above embodiment is used to treat a metal material. In a preferred embodiment, the method for quenching a metal material is characterized by treating the metal material using the heat-treating oil composition of the above embodiment in group quenching of the metal material. One embodiment of the present invention provides a method of group quenching a metal material, comprising treating the metal material with the heat treatment oil composition of the above embodiment.
In one embodiment, a method of quenching a metallic material includes treating the metallic material under an oil temperature of 40-200°C.
For example, if a heated steel material in an austenitic state is immersed in a coolant and cooled at an upper critical velocity or higher, it can be transformed into a quenched structure such as martensite.

以下、本発明について実施例を参照して詳述するが、本発明の技術的範囲はこれに限定されるものではない。
実施例および比較例で用いた各原料並びに各実施例および各比較例の熱処理油組成物の各物性の測定は、以下に示す要領に従って求めたものである。
The present invention will be described in detail below with reference to examples, but the technical scope of the present invention is not limited to these.
The raw materials used in Examples and Comparative Examples and the physical properties of the heat-treated oil compositions of Examples and Comparative Examples were measured according to the following procedures.

(1)動粘度
JIS K2283:2000に準じ、ガラス製毛管式粘度計を用いて、40℃における動粘度および100℃における動粘度を測定した。
(2)熱処理油組成物の冷却性能
JIS K2242:2012に規定される冷却性能試験方法に準拠して、810℃に加熱した銀試料を熱処理油組成物に投入し、銀試料の冷却曲線を求め、以下の「特性秒数」および「300℃秒数」を算出した。銀試料の投入前の熱処理油組成物の油温は、全実施例および全比較例において80℃とした。
<特性秒数および特性温度>
上記冷却曲線において、JIS K2242:2012に準拠して、蒸気膜段階が終了する温度(特性温度)を算出し、該温度に到達するまでの秒数を特性秒数とした。
<300℃秒数>
上記冷却曲線における800℃から300℃に至るまでの冷却時間を300℃秒数とした。
<400℃秒数>
上記冷却曲線における800℃から400℃に至るまでの冷却時間を400℃秒数とした。
(3)石油樹脂の物性
(i)軟化点
JIS K2207:2006に準じて測定した。
(ii)数平均分子量(Mn)
VPO法により測定した。
(iii)密度
JIS K 0061:2001に準拠して20℃における密度を測定した。
(iv)色相
JIS K 6901:2008に準拠してハーゼン色数を測定した。
(v)臭素価
JIS K 2605:1996に準拠して測定した。
(1) Kinematic Viscosity According to JIS K2283:2000, kinematic viscosity at 40° C. and kinematic viscosity at 100° C. were measured using a glass capillary viscometer.
(2) Cooling performance of heat-treated oil composition In accordance with the cooling performance test method specified in JIS K2242: 2012, a silver sample heated to 810 ° C. is put into the heat-treated oil composition, and the cooling curve of the silver sample is obtained. , the following "characteristic seconds" and "300°C seconds" were calculated. The oil temperature of the heat-treated oil composition before adding the silver sample was 80° C. in all examples and all comparative examples.
<Characteristic seconds and characteristic temperature>
In the above cooling curve, the temperature at which the vapor film stage ends (characteristic temperature) was calculated according to JIS K2242:2012, and the number of seconds until reaching that temperature was defined as the characteristic number of seconds.
<Number of seconds at 300°C>
The cooling time from 800° C. to 300° C. in the cooling curve was defined as 300° C. seconds.
<Number of seconds at 400°C>
The cooling time from 800° C. to 400° C. in the cooling curve was defined as 400° C. seconds.
(3) Physical properties of petroleum resin (i) Softening point Measured according to JIS K2207:2006.
(ii) number average molecular weight (Mn)
It was measured by the VPO method.
(iii) Density The density at 20°C was measured according to JIS K 0061:2001.
(iv) Hue Hazen color number was measured according to JIS K 6901:2008.
(v) Bromine number Measured according to JIS K 2605:1996.

[実施例1~3、比較例1~5]
下記の表1に示すように、基油に下記表1に示す各成分を配合して、基油およびこれら各成分を含有する実施例および比較例の熱処理油組成物を調製し、調製した熱処理油組成物について、以下の硬さおよび歪の評価を行った。実施例および比較例の熱処理油組成物の性状および評価結果を下記表1に示す。
[Examples 1 to 3, Comparative Examples 1 to 5]
As shown in Table 1 below, each component shown in Table 1 below was blended with the base oil to prepare the heat-treated oil compositions of Examples and Comparative Examples containing the base oil and these components, and the prepared heat-treated The following hardness and strain evaluations were performed on the oil composition. The properties and evaluation results of the heat-treated oil compositions of Examples and Comparative Examples are shown in Table 1 below.

<硬さおよび歪の評価>
焼入れ評価用材料として、円筒形状の肌焼鋼(外径:φ85mm、高さ:44mm、肉厚:4mm、材質:クロム-モリブデン鋼 SCM415)を用いて下記の条件で熱処理(団体焼入れ)等を行い、さらに、下記の項目について評価した。平均楕円率が小さいほど焼入れ歪が小さく、平均内部硬度が大きいほど焼入れ硬さが高い。平均有効硬化層深さおよび平均内部硬度の値が大きいほど、焼入れ後の処理物の硬度が高く、冷却性能に優れる熱処理油であることを示す。
<熱処理等条件>
熱処理条件:浸炭工程930℃×150分、カーボンポテンシャル(CP)=1.1質量%
拡散工程:930℃×60分、CP=0.8質量%
均熱工程:850℃×20分、CP=0.8質量%
油冷条件:油温80℃、油冷時間10分、撹拌20Hz
焼戻し条件:180℃×60分
セット方法:刀掛け(焼入れワーク8個、4個×2段)
<評価項目>
・平均楕円率(mm)
・平均内部硬度(焼入れ材料1.5mm内部、HV)
・平均有効硬化層深さ(mm)
<Evaluation of hardness and strain>
As a material for quenching evaluation, a cylindrical case-hardened steel (outer diameter: φ85 mm, height: 44 mm, wall thickness: 4 mm, material: chromium-molybdenum steel SCM415) is used, and heat treatment (group quenching) is performed under the following conditions. Furthermore, the following items were evaluated. The smaller the average ellipticity, the smaller the quenching strain, and the larger the average internal hardness, the higher the quenching hardness. The larger the average effective case depth and the average internal hardness, the higher the hardness of the treated product after quenching, indicating that the heat treatment oil has excellent cooling performance.
<Conditions such as heat treatment>
Heat treatment conditions: Carburizing process 930°C x 150 minutes, carbon potential (CP) = 1.1% by mass
Diffusion process: 930°C x 60 minutes, CP = 0.8 mass%
Soaking process: 850 ° C. x 20 minutes, CP = 0.8 mass%
Oil cooling conditions: oil temperature 80°C, oil cooling time 10 minutes, agitation 20 Hz
Tempering conditions: 180°C x 60 minutes Setting method: Sword rack (8 hardened workpieces, 4 x 2 stages)
<Evaluation items>
・Average ellipticity (mm)
・Average internal hardness (hardened material 1.5 mm inside, HV)
・Average effective hardened layer depth (mm)

Figure 0007229231000001
Figure 0007229231000001

表1で使用した成分は、以下のとおりである。
1.基油(成分(A))
基油1:パラフィン系鉱油(40℃動粘度14mm/s)(低粘度基油)
基油2:パラフィン系鉱油(40℃動粘度75mm/s)(高粘度基油)
基油3:APIの基油カテゴリーのグループ3に分類される鉱油(40℃動粘度9.8mm/s)(低粘度基油)
基油4:パラフィン系鉱油(40℃動粘度9.8mm/s)(低粘度基油)
基油5:パラフィン系鉱油(40℃動粘度20mm/s)(低粘度基油)
基油6:パラフィン系鉱油(40℃動粘度120mm/s)(高粘度基油)
基油7:パラフィン系鉱油(40℃動粘度60mm/s)(高粘度基油)
基油8:パラフィン系鉱油(40℃動粘度200mm/s)(高粘度基油)
基油9:パラフィン系鉱油(40℃動粘度424mm/s)(高粘度基油)
2.蒸気膜破断剤(成分(B))
石油樹脂1:部分水添脂肪族-芳香族共重合系石油樹脂(C5留分を主原料とする、ジシクロペンタジエン/芳香族共重合系の水添石油樹脂;軟化点110℃、数平均分子量760、20℃での密度:1.05g/cm、色相(ハーゼン色数):25、臭素価:6g/100g)
αオレフィン共重合体:100℃動粘度2000mm/sのαオレフィン共重合体
3.添加剤
酸化防止剤:フェノール系酸化防止剤
光輝性改良剤:油脂脂肪酸
The ingredients used in Table 1 are as follows.
1. Base oil (component (A))
Base oil 1: paraffinic mineral oil (40° C. kinematic viscosity 14 mm 2 /s) (low viscosity base oil)
Base oil 2: Paraffinic mineral oil (40° C. kinematic viscosity 75 mm 2 /s) (high viscosity base oil)
Base oil 3: Mineral oil (40°C kinematic viscosity 9.8 mm 2 /s) (low viscosity base oil) classified in Group 3 of the API base oil category
Base oil 4: Paraffinic mineral oil (40° C. kinematic viscosity 9.8 mm 2 /s) (low viscosity base oil)
Base oil 5: paraffinic mineral oil (40° C. kinematic viscosity 20 mm 2 /s) (low viscosity base oil)
Base oil 6: Paraffinic mineral oil (40° C. kinematic viscosity 120 mm 2 /s) (high viscosity base oil)
Base oil 7: Paraffinic mineral oil (40° C. kinematic viscosity 60 mm 2 /s) (high viscosity base oil)
Base oil 8: Paraffinic mineral oil (40° C. kinematic viscosity 200 mm 2 /s) (high viscosity base oil)
Base oil 9: Paraffinic mineral oil (40° C. kinematic viscosity 424 mm 2 /s) (high viscosity base oil)
2. Vapor film breaking agent (component (B))
Petroleum resin 1: Partially hydrogenated aliphatic-aromatic copolymer petroleum resin (hydrogenated petroleum resin of dicyclopentadiene/aromatic copolymer based on C5 fraction; softening point 110 ° C., number average molecular weight 760, density at 20° C.: 1.05 g/cm 3 , hue (Hazen color number): 25, bromine number: 6 g/100 g)
α-olefin copolymer: α-olefin copolymer having a kinematic viscosity of 2000 mm 2 /s at 100° C.3. Additive Antioxidant: Phenolic antioxidant Brightness improver: Fatty acid

表1に示すように、(B)蒸気膜破断剤として石油樹脂を含み、かつ、300℃秒数が6秒未満である実施例の熱処理油組成物は、430Hv以上の平均内部硬度を有し、かつ、平均楕円率の値が小さいことが確認された。
これに対し、300℃秒数が6秒以上であり、かつ/または、石油樹脂を含まない場合には、所望の硬度および低歪(平均楕円率)の少なくとも一方または両方が得られなかった。
As shown in Table 1, (B) the heat-treated oil composition of the example containing a petroleum resin as a vapor film breaker and having a 300° C. second time of less than 6 seconds has an average internal hardness of 430 Hv or more. , and that the value of the average ellipticity is small.
On the other hand, when the number of seconds at 300° C. was 6 seconds or more and/or no petroleum resin was contained, at least one or both of desired hardness and low strain (average ellipticity) could not be obtained.

本発明の範囲は以上の説明に拘束されることはなく、上記例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施し得る。なお、本明細書に記載した全ての文献及び刊行物は、その目的にかかわらず参照によりその全体を本明細書に組み込むものとする。また、本明細書は、本願の優先権主張の基礎となる日本国特許出願である特願2018-062470号(2018年3月28日出願)の特許請求の範囲、明細書の開示内容を包含する。 The scope of the present invention is not limited to the above description, and other than the above examples can be appropriately changed and implemented without impairing the gist of the present invention. All documents and publications mentioned herein are hereby incorporated by reference in their entirety regardless of their purpose. In addition, this specification includes the claims and the disclosure of the specification of Japanese Patent Application No. 2018-062470 (filed on March 28, 2018), which is the basis for claiming priority of this application. do.

本発明の熱処理油組成物は、金属材料の焼入れ等の熱処理加工の際に好適に使用することができる。
The heat treatment oil composition of the present invention can be suitably used for heat treatment such as quenching of metal materials.

Claims (14)

(A)基油および(B)蒸気膜破断剤を含み、
JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6秒未満であり、
前記成分(B)は、石油樹脂を含み、
前記成分(A)は、40℃動粘度が1~50mm /sであり、かつ、40℃動粘度が1~50mm /sである低粘度基油および40℃動粘度が50mm /s超550mm /s以下である高粘度基油を含み、
前記成分(A)の含有量は、組成物全量基準で、70~98質量%であり、
前記石油樹脂の含有量は、組成物全量基準で、2~25質量%である、熱処理油組成物。
(A) a base oil and (B) a vapor film breaker,
300 ° C. seconds, which is the cooling time from 800 ° C. to 300 ° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012, is less than 6 seconds,
The component (B) contains a petroleum resin,
The component (A) is a low-viscosity base oil having a 40° C. kinematic viscosity of 1 to 50 mm 2 /s and a 40° C. kinematic viscosity of 1 to 50 mm 2 /s, and a 40° C. kinematic viscosity of 50 mm 2 /s. containing a high viscosity base oil that is greater than 550 mm 2 /s or less,
The content of the component (A) is 70 to 98% by mass based on the total amount of the composition,
The heat-treated oil composition, wherein the content of the petroleum resin is 2 to 25% by mass based on the total amount of the composition .
冷却曲線から得られる特性秒数が1秒以上である、請求項1に記載の熱処理油組成物。 2. The heat-treated oil composition according to claim 1, wherein the characteristic number of seconds obtained from the cooling curve is 1 second or more. 冷却曲線から得られる特性秒数が2.5秒以下である、請求項1または2に記載の熱処理油組成物。 3. The heat-treated oil composition according to claim 1, wherein the characteristic number of seconds obtained from the cooling curve is 2.5 seconds or less. 前記石油樹脂の軟化点が40~150℃である、請求項1~3のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 3, wherein the petroleum resin has a softening point of 40 to 150°C. 前記石油樹脂の数平均分子量(Mn)が200~5,000である、請求項1~4のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 4, wherein the petroleum resin has a number average molecular weight (Mn) of 200 to 5,000. 前記石油樹脂は、炭素数4~10の脂肪族オレフィン類、脂肪族ジオレフィン類、またはオレフィン性不飽和結合を有する炭素数8以上の芳香族化合物から選ばれる少なくとも1種の不飽和化合物が重合または共重合した樹脂である、請求項1~5のいずれか1項に記載の熱処理油組成物。 In the petroleum resin, at least one unsaturated compound selected from aliphatic olefins having 4 to 10 carbon atoms, aliphatic diolefins, or aromatic compounds having 8 or more carbon atoms having an olefinically unsaturated bond is polymerized. or a copolymerized resin, according to any one of claims 1 to 5. 前記石油樹脂は、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族-芳香族共重合系石油樹脂、ジシクロペンタジエン系石油樹脂、およびジシクロペンタジエン-芳香族共重合系石油樹脂、ならびにこれらの水添石油樹脂および変性石油樹脂から選択される少なくとも1種である、請求項1~6のいずれか1項に記載の熱処理油組成物。 The petroleum resin includes an aliphatic petroleum resin, an aromatic petroleum resin, an aliphatic-aromatic copolymer petroleum resin, a dicyclopentadiene petroleum resin, and a dicyclopentadiene-aromatic copolymer petroleum resin, and these The heat-treated oil composition according to any one of claims 1 to 6, which is at least one selected from hydrogenated petroleum resins and modified petroleum resins. 40℃動粘度が1~100mm/sである、請求項1~7のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 7, which has a 40°C kinematic viscosity of 1 to 100 mm 2 /s. 300℃秒数が4秒以上6秒未満である、請求項1~のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 8 , wherein the number of seconds at 300°C is 4 seconds or more and less than 6 seconds. 前記成分(A)の含有量は、組成物全量基準で、85~95質量%であり、前記石油樹脂の含有量は、組成物全量基準で、4~15質量%である、請求項1~9のいずれか一項に記載の熱処理油組成物。The content of the component (A) is 85 to 95% by mass based on the total amount of the composition, and the content of the petroleum resin is 4 to 15% by mass based on the total amount of the composition. 10. The heat-treated oil composition according to any one of 9. さらに、(C)光輝性改良剤を含む、請求項1~10のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 10 , further comprising (C) a gloss improver. 前記成分(C)の含有量は、組成物全量基準で、0.01~5質量%である、請求項11に記載の熱処理油組成物。The heat-treated oil composition according to claim 11, wherein the content of component (C) is 0.01 to 5% by mass based on the total amount of the composition. 請求項1~1のいずれか1項に記載の熱処理油組成物を用いて、金属材料を処理することを特徴とする、金属材料の焼入れ方法。 A method for quenching a metal material, which comprises treating the metal material with the heat-treated oil composition according to any one of claims 1 to 12 . 前記成分(A)および前記成分(B)を混合することを含む、請求項1~1のいずれか1項に記載の熱処理油組成物の製造方法。 A method for producing a heat-treated oil composition according to any one of claims 1 to 12 , comprising mixing said component (A) and said component (B).
JP2020510883A 2018-03-28 2019-03-26 heat treated oil composition Active JP7229231B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018062470 2018-03-28
JP2018062470 2018-03-28
PCT/JP2019/012789 WO2019189135A1 (en) 2018-03-28 2019-03-26 Heat-treatment oil composition

Publications (2)

Publication Number Publication Date
JPWO2019189135A1 JPWO2019189135A1 (en) 2021-04-08
JP7229231B2 true JP7229231B2 (en) 2023-02-27

Family

ID=68061769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510883A Active JP7229231B2 (en) 2018-03-28 2019-03-26 heat treated oil composition

Country Status (5)

Country Link
US (1) US20210009917A1 (en)
JP (1) JP7229231B2 (en)
CN (1) CN111886349A (en)
TW (1) TWI805724B (en)
WO (1) WO2019189135A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150119A (en) * 2021-12-14 2022-03-08 江苏鑫露新材料有限公司 Heat-stable quenching oil additive composition and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327191A (en) 2001-05-02 2002-11-15 Idemitsu Kosan Co Ltd Thermally treating oil composition
WO2007000976A1 (en) 2005-06-28 2007-01-04 Idemitsu Kosan Co., Ltd. Heat treatment oil composition
WO2009016942A1 (en) 2007-07-27 2009-02-05 Idemitsu Kosan Co., Ltd. Heat-treatment oil composition
JP2013194262A (en) 2012-03-16 2013-09-30 Idemitsu Kosan Co Ltd Heat treating oil composition
WO2016133093A1 (en) 2015-02-18 2016-08-25 出光興産株式会社 Heat-treatment oil composition
WO2016132860A1 (en) 2015-02-18 2016-08-25 出光興産株式会社 Heat treatment oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567640A (en) * 1970-03-25 1971-03-02 Park Chem Co Quench oil composition and method of use
ATE307908T1 (en) * 2001-12-18 2005-11-15 Lubrizol Corp QUENCHING OIL COMPOSITIONS
CN107109503B (en) * 2015-01-21 2019-11-15 出光兴产株式会社 Vapor film breaking agent and heat-treating oil composition
CN107151728B (en) * 2017-05-08 2018-11-02 三河市炬峰生物能源有限公司 A kind of genetically engineered soybean oil type metal heat treatmet quenching oil and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327191A (en) 2001-05-02 2002-11-15 Idemitsu Kosan Co Ltd Thermally treating oil composition
WO2007000976A1 (en) 2005-06-28 2007-01-04 Idemitsu Kosan Co., Ltd. Heat treatment oil composition
WO2009016942A1 (en) 2007-07-27 2009-02-05 Idemitsu Kosan Co., Ltd. Heat-treatment oil composition
JP2013194262A (en) 2012-03-16 2013-09-30 Idemitsu Kosan Co Ltd Heat treating oil composition
WO2016133093A1 (en) 2015-02-18 2016-08-25 出光興産株式会社 Heat-treatment oil composition
WO2016132860A1 (en) 2015-02-18 2016-08-25 出光興産株式会社 Heat treatment oil composition

Also Published As

Publication number Publication date
JPWO2019189135A1 (en) 2021-04-08
CN111886349A (en) 2020-11-03
US20210009917A1 (en) 2021-01-14
TW201942347A (en) 2019-11-01
WO2019189135A1 (en) 2019-10-03
TWI805724B (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP4691405B2 (en) Heat treated oil composition
JP5930981B2 (en) Heat treated oil composition
KR101186698B1 (en) Quenching oil for reduced pressure quenching and method for quenching
JP5792108B2 (en) Heat treatment method
JP7229231B2 (en) heat treated oil composition
JP6569145B2 (en) Heat treated oil composition
JP4659264B2 (en) Heat treated oil composition
JP6657544B2 (en) Heat treated oil composition
JPWO2019189136A1 (en) Heat treatment oil composition
JP2005513201A (en) Quenching oil composition
EP1466023B1 (en) Quenching oil compositions
JP2024146557A (en) Heat treatment oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150