JP7227088B2 - Measurement method for measuring the inside of a specimen - Google Patents

Measurement method for measuring the inside of a specimen Download PDF

Info

Publication number
JP7227088B2
JP7227088B2 JP2019119841A JP2019119841A JP7227088B2 JP 7227088 B2 JP7227088 B2 JP 7227088B2 JP 2019119841 A JP2019119841 A JP 2019119841A JP 2019119841 A JP2019119841 A JP 2019119841A JP 7227088 B2 JP7227088 B2 JP 7227088B2
Authority
JP
Japan
Prior art keywords
electrode plates
equal
coplanar electrode
equal ratio
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119841A
Other languages
Japanese (ja)
Other versions
JP2021004842A (en
Inventor
裕之 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019119841A priority Critical patent/JP7227088B2/en
Publication of JP2021004842A publication Critical patent/JP2021004842A/en
Application granted granted Critical
Publication of JP7227088B2 publication Critical patent/JP7227088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、例えば、コンクリート製品内部に空洞等が存在するか否かを判断する供試体の内部を計測する計測方法に関するものである。 TECHNICAL FIELD The present invention relates to a measuring method for measuring the inside of a specimen for determining, for example, whether or not a cavity or the like exists inside a concrete product.

例えば、コンクリートの骨材の配合を行う場合、「表乾状態(表面乾燥飽水状態)」にあることを前提とし、骨材の密度を求め、各種の配合設計に準じて配合している。ここで、「表乾状態」とは、押し固められた骨材の内部の空隙は水分で満たされた状態にあり、骨材の表面は水分を含まない状態にあることが前提となっている。
一般に、骨材の表乾状態を判定するには、JIS A1109に規格化されたフローコーン法が採用されている。これによると、截頭円錐状を呈するフローコーンに骨材を充填し、突き棒で突くことによって所定固さに突き固め、その後、徐々にフローコーンを上方に向かって引上げ、突き固められた骨材が崩れるか、崩れないかの境界付近の状態を表乾状態として判断している。
For example, when mixing aggregates for concrete, it is assumed that the concrete is in a "surface dry state (surface dry saturated state)", the density of the aggregates is obtained, and the aggregates are mixed according to various mixing designs. Here, the "surface dry state" is premised on a state in which the voids inside the compacted aggregate are filled with water and the surface of the aggregate does not contain water. .
In general, the flow cone method standardized in JIS A1109 is used to determine the surface dry state of aggregates. According to this, a flow cone having a truncated cone shape is filled with aggregate, rammed with a ramming rod to a predetermined hardness, and then the flow cone is gradually pulled upward to form the rammed bone. The state near the boundary where the material crumbles or does not crumble is judged as the surface dry state.

ところが、これらの表乾状態の判断には、骨材が崩れた正確なデータが必要となる。特に、正確な判断を行うには経験則が必要となり、不慣れな測定者は、正確な判断ができない場合も生じ得る。
特に、上述したフローコーン法は、「天然骨材」と呼ばれる砂や砂利等に対して実施されるものであるが、近年、この「天然骨材」の供給量が減少し、多くの代替物が骨材として用いられている。例えば、砕砂、高炉スラグ、ゴミ溶融スラグ、再生骨材等の所謂「低品位」の骨材が多く利用されている。これらの低品位の骨材は、表面がガラス質性状や多孔質性状を呈することがあり、天然骨材とは明らかに異なる表乾特性を有することがある。そのため、フローコーン法では砕砂等の骨材に対して正確な表乾状態を判定することが特に困難となっている。
However, accurate data of collapsed aggregates are required for judging the surface dry state. In particular, an empirical rule is required to make an accurate judgment, and an inexperienced measurer may not be able to make an accurate judgment.
In particular, the above-mentioned flow cone method is carried out on sand, gravel, etc. called "natural aggregate", but in recent years, the supply of this "natural aggregate" has decreased, and many substitutes is used as aggregate. For example, so-called "low-grade" aggregates such as crushed sand, blast furnace slag, molten waste slag, and recycled aggregates are often used. These low-grade aggregates may have a glassy or porous surface, and may have surface drying properties that are distinctly different from those of natural aggregates. Therefore, in the flow cone method, it is particularly difficult to accurately determine the surface dry state of aggregates such as crushed sand.

例えば、JIS規格化されたフローコーンの形状と異なる自立角或いは広径等のサイズによって形成された新しい基準の表乾判定用フローコーンを用いる方法、赤外線の反射率を利用して水分量を計測するもの(非特許文献1参照)、乾湿状態における電気抵抗の変化を利用するもの(非特許文献2参照)、遠心脱水法を利用するもの(非特許文献3参照)等が知られている。 For example, a method using a new standard flow cone for determining surface dryness formed with a size such as a free-standing angle or a wide diameter that is different from the shape of the flow cone standardized by JIS, and measuring the moisture content using infrared reflectance. (see Non-Patent Document 1), using changes in electrical resistance in dry and wet conditions (see Non-Patent Document 2), using centrifugal dehydration (see Non-Patent Document 3), and the like.

竹内一真、外3名 「細骨材の表乾判定試験方法に関する基 礎的研究」、コンクリート工学年次論文集、Vol.25、No. 1、2003、p77-p82Kazuma Takeuchi, et al., ``Fundamental research on surface dry judgment test method for fine aggregate'', Proceedings of the Japan Concrete Institute, Vol. 25, No. 1, 2003, p77-p82 山本大介、外4名 「海砂代替骨材としての砕砂の表乾判定 方法に関する検討」、土木学会第59回年次学術講演会、平成16 年9月、p491-p492Daisuke Yamamoto, 4 others, ``Study on method for judging surface dryness of crushed sand as sea sand substitute aggregate'', 59th Annual Conference of Japan Society of Civil Engineers, September 2004, p491-492 鈴木一雄、外1名 「細骨材の簡易表乾決定法に関する一検 討」、第48回セメント技術大会講演集、1994、p156-p 159Kazuo Suzuki, et al., ``Study on Simple Method for Determining Surface Dryness of Fine Aggregate,'' Proceedings of the 48th Cement Technology Conference, 1994, p.156-p.159 特開2006-329801号公報JP-A-2006-329801 特許第6343708号公報Japanese Patent No. 6343708

非特許文献1では、異なる自立角及びサイズによって形成されたフローコーンを利用しており、表乾状態の判断に従来と同様にある程度の経験則が必要となり、精度の良い再現性を求めることが困難であった。また、骨材の種類や性状に応じて、最適なフローコーンを適宜選択する必要があり、複数種類のフローコーンを予め準備しておく必要があった。
特に、非特許文献1の赤外線の反射率を利用するものは、一般に水に吸収し易い赤外線波長(1.46μm)と、水に吸収され難い赤外線波長(1.6μm)の二種類の波長を利用し、主に骨材として「シラス」を対象として測定したデータによって算出されていたから、その他の低品位骨材に対する作用について開示されていなかった。
In Non-Patent Document 1, flow cones formed with different self-supporting angles and sizes are used, and a certain amount of empirical rules are required to determine the surface dry state as in the past, and accurate reproducibility is required. It was difficult. In addition, it is necessary to appropriately select the optimum flow cone according to the type and properties of the aggregate, and it is necessary to prepare a plurality of types of flow cones in advance.
In particular, non-patent document 1, which utilizes infrared reflectance, uses two wavelengths: an infrared wavelength (1.46 μm) that is generally easily absorbed by water and an infrared wavelength (1.6 μm) that is difficult to be absorbed by water. Since it was calculated based on the data measured mainly for "Shirasu" as an aggregate, the effect on other low-grade aggregates was not disclosed.

非特許文献2では、砕砂を測定対象の試料として各種の測定を実施し、種々の結果を総合することにより、フローコーン法が最も妥当性を有する結果が得られ、その他の方法は非特許文献2の測定結果では特に優れた特性を示すものではなかった。
非特許文献3では、高精度に表乾状態を判断することが可能になるが、対象となる骨材を遠心分離装置にセットし、試料に応じて数G~数千Gの遠心力を与える必要があり、表乾状態の判定のための装置が大がかりとなり、簡易な表乾状態の判定に適さないことがあった。
In Non-Patent Document 2, various measurements were carried out using crushed sand as a sample to be measured, and by synthesizing various results, the flow cone method obtained the most appropriate result, and the other methods are Non-Patent Document The measurement results of No. 2 did not show particularly excellent characteristics.
In Non-Patent Document 3, it is possible to determine the surface dry state with high accuracy, but the target aggregate is set in a centrifuge and a centrifugal force of several G to several thousand G is applied depending on the sample. Therefore, the apparatus for judging the surface dryness becomes large-scaled, and is not suitable for simple judgment of the surface dryness.

一方、現今のコンクリート構造物の耐久性の向上は、シラン系表面含浸材を表面に塗布し、浸透させ、コンクリート内部に撥水層を形成させる工法が注目されている。
この撥水層を施すことにより水分の侵入を抑制し、塩分や水分等のコンクリートの劣化因子の浸入を抑制することでコンクリートの耐久性を高めることができる。例えば、『北海道開発局道路設計要領』にはシラン系表面含浸材の製品選定の目安として、凍害対策では、浸透深さが6mm以上あるものと規定されている。このようなことから、表面含浸工法を適用する場合、形成された撥水層で管理する方が施工品質を高められる。そこで、本発明者らは含水率の高低による電気的変化を利用し、コンクリートの撥水層厚を推定する方法として、特許文献2を提案した。
On the other hand, in order to improve the durability of concrete structures at present, attention is paid to a construction method in which a silane-based surface impregnating material is applied to the surface and permeated to form a water-repellent layer inside the concrete.
By applying this water-repellent layer, it is possible to suppress the infiltration of water and to suppress the infiltration of degrading factors such as salt and water, thereby enhancing the durability of the concrete. For example, the "Hokkaido Development Bureau Road Design Guidelines" stipulates that the permeation depth should be 6 mm or more as a criterion for product selection of silane-based surface impregnating materials for countermeasures against frost damage. For this reason, when the surface impregnation method is applied, the quality of construction can be improved by managing with the formed water-repellent layer. Therefore, the present inventors proposed a method for estimating the thickness of the water-repellent layer of concrete by using the electrical change due to the level of water content.

本発明者らは、特許文献2で電極板面積の電極板2枚を一対とし、前記一対の電極板相互の中心位置から各電極板幅の中心位置までの水平面距離と前記一対の電極板面積の比からなる等比共面電極定数を一定とした等比共面電極を具備し、前記一対の前記等比共面電極に高周波を印加し、前記電極板相互の中心位置までの水平面距離と静電容量に依存する表示値との間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きを撥水層厚に関係する傾き情報とし、また、前記静電容量に依存する表示値の切片は表層付近の含水率と関係する情報として出力する撥水層の厚みを測定できる計測方法を発明した。
これにより、含水率によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難い供試体を計測する計測方法を提示した。
In Patent Document 2, the present inventors consider two electrode plates having an electrode plate area as a pair, and the horizontal distance from the center position of the pair of electrode plates to the center position of the width of each electrode plate and the area of the pair of electrode plates A geometric coplanar electrode having a constant geometric coplanar electrode constant consisting of a ratio of is applied to the pair of the geometric coplanar electrodes, and a horizontal plane distance to the center position between the electrode plates and The characteristic of the linear function equation is obtained between the displayed value that depends on the capacitance, the slope of the characteristic of the linear function equation is used as the slope information related to the thickness of the water-repellent layer, and the capacitance depends on the We invented a measurement method that can measure the thickness of the water-repellent layer, in which the intercept of the displayed value is output as information related to the water content near the surface layer.
Thus, a measurement method for measuring a specimen in which even if the resistance value and the dielectric constant change with the water content, the effect of the water content does not change was presented.

しかし、通電により測定すると、抵抗値が温度、成分により低下し、それに伴って誘電率も金属イオンによって変化する。更に、含水率によって導電率、誘電率の周波数特性も変化する。そこで、電気的特性の変化が少なく、電極板の位置、電極板の面積、印加電圧の高さによって電界の乱れが検出され易い供試体の内部を計測する方法が求められていた。 However, when measured by applying current, the resistance value decreases depending on the temperature and composition, and the dielectric constant changes accordingly depending on the metal ions. Furthermore, the frequency characteristics of conductivity and dielectric constant also change depending on the water content. Therefore, there has been a demand for a method of measuring the inside of a specimen in which changes in electrical characteristics are small and disturbances in the electric field are easily detected depending on the position of the electrode plate, the area of the electrode plate, and the height of the applied voltage.

また、特に、コンクリートの打設の際、窓枠等の下側ではコンクリート中にジャンカ(豆板)等の内部空洞等が形成されることがある。これらの空洞等の欠陥は外部からでは把握し難い。特に、コンクリートの打設が終了した後、型枠を外している際にその内部空洞を発見しても基本的修繕を行うことができない。そこで、コンクリートの打設中においても空洞の検出が可能であり、供試体の内部を計測する方法が求められていた。
そして、コンクリートの打設中においても、コンクリートの型枠を外さない埋設型枠でも、コンクリートの内部空洞の異常検出ができる測定方法が求められていた。
In particular, when concrete is cast, internal cavities such as janka (bean board) may be formed in the concrete below the window frame. Defects such as these cavities are difficult to grasp from the outside. In particular, even if the internal cavity is found while the formwork is being removed after the concrete has been placed, basic repairs cannot be carried out. Therefore, there has been a demand for a method for measuring the inside of a specimen that can detect cavities even during concrete placement.
Further, there has been a demand for a measuring method capable of detecting abnormalities in internal cavities of concrete, even during concrete placement, even with an embedded formwork that does not remove the concrete formwork.

殊に、コンクリート構造物の性能を確保するには、コンクリートが型枠内に密実に充填されていることが重要である。コンクリートの運搬中や施工中の予期せぬトラブル等の要因で充填不良が発生し、型枠表面で豆板(ジャンカ)や鉄筋周辺での内部空洞等の欠陥が発生することもある。これらの欠陥は施工中には把握しにくく、コンクリート硬化後に型枠をはずして初めて明らかになるか、脱型後も表層コンクリートに覆われているから、目視では確認できないこともある。
最近では生産性向上の面から脱型作業が省略できるようコンクリートやモルタルで作成された埋設型枠が採用されている。特に、埋設型枠はコンクリートの充填状況は脱型後も把握できない。しかし、埋設型枠と充填コンクリートとの間に空隙を発生させずに一体性を確保する必要があり、何らかの方法で確認しておく必要がある。
In particular, in order to ensure the performance of the concrete structure, it is important that the concrete is densely filled in the formwork. Insufficient filling may occur due to factors such as unexpected troubles during transportation or construction of concrete, and defects such as junka on the surface of the formwork and internal cavities around the reinforcing bars may occur. These defects are difficult to detect during construction, and may become apparent only after the formwork is removed after the concrete has hardened.
Recently, from the aspect of productivity improvement, buried formwork made of concrete or mortar has been adopted so that stripping work can be omitted. In particular, it is not possible to grasp the state of concrete filling in the embedded formwork even after demolding. However, it is necessary to ensure integrity without creating a gap between the embedded formwork and the filling concrete, and it is necessary to confirm this in some way.

そこで、本願発明は、供試体の電気的特性によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難い供試体の内部を計測する計測方法の提供を目的とするものである。 Therefore, the present invention provides a measurement method for measuring the inside of a test piece in which the results are not different depending on the electrical characteristics of the test piece, and even if the resistance value and dielectric constant change due to the moisture content, the effect is unlikely to appear. It is intended for

請求項1の発明の供試体の内部を計測する計測方法は、導電体からなる同一縦横比及び同一の電極板面積Sからなる短冊状の電極板を絶縁シート10に複数併設してなる等比共面電極板21,22の総面積nSを任意に選択し、選択された前記等比共面電極板21,22相互を短絡し、正極と負極の一対を形成し、前記一対の等比共面電極板21,22に100Hz以上の周波数を印加する電源eと、前記一対の等比共面電極板21,22相互の中心位置0から各等比共面電極板21,22の中心位置±s0までの電極間の距離、即ち、電極間隔tを具備し、前記等比共面電極板21,22相互の配置は、前記等比共面電極板21,22相互の中心位置0からπtに平行板電極が存在する電界到達距離と見做して、前記一対の等比共面電極板21,22相互の静電容量を算出するものである。
コンクリートの打設中においても、標準となる静電容量が既知のコンクリートと比較して、空洞の検出によって供試体(コンクリート)の静電容量が低くなるから、仮に、コンクリートの打設中においても、コンクリートの型枠を外さない埋設金型においても、コンクリートの内部空洞の検出ができる。
The measuring method for measuring the inside of a specimen according to the invention of claim 1 is equal ratio, in which a plurality of strip-shaped electrode plates made of a conductor and having the same aspect ratio and the same electrode plate area S are arranged side by side on an insulating sheet 10. The total area nS of the coplanar electrode plates 21 and 22 is arbitrarily selected, the selected equal ratio coplanar electrode plates 21 and 22 are short-circuited to form a pair of a positive electrode and a negative electrode, and the equal ratio coplanar electrode plates 21 and 22 are formed. A power supply e for applying a frequency of 100 Hz or more to the plane electrode plates 21 and 22, and a power supply e that rotates from the center position 0 between the pair of equal ratio coplanar electrode plates 21 and 22 to the center positions ± of the equal ratio coplanar electrode plates 21 and 22. The distance between the electrodes up to s0 , that is, the electrode spacing t, is provided, and the mutual arrangement of the equal ratio coplanar electrode plates 21 and 22 is from the center position 0 of the equal ratio coplanar electrode plates 21 and 22 to πt , the capacitance between the pair of equal-ratio coplanar electrode plates 21 and 22 is calculated.
Even during concrete placement, the capacitance of the specimen (concrete) becomes lower due to the detection of cavities compared to concrete with a known standard capacitance. , the internal cavity of concrete can be detected even in an embedded mold without removing the concrete formwork.

ここで、上記等比共面電極板21,22は、導電体からなる同一縦横比及び同一面積からなる短冊状の電極板で、その一面を絶縁シート10で絶縁したものである。複数併設してなる同一縦横比及び同一電極板面積Sからなる短冊状とは、正方形または長方形の何れでもよい。
また、上記電源eは、100Hz以上の周波数を印加とは、商用電源のノイズの影響がなく、tanδの測定値に影響がでなければよい。測定環境が水濡れ場所であるから、感電を防止する意味からも電圧をできるだけ上げないで計測するので印加電圧は100V以下が望ましい。周波数は100Hz以上、30MHz以下の範囲が望ましい。できれば、1MHz~30MHzで使用するのが望ましい。
Here, the equal ratio coplanar electrode plates 21 and 22 are strip-shaped electrode plates made of a conductor and having the same aspect ratio and the same area. The strip shape having the same aspect ratio and the same electrode plate area S may be either a square or a rectangle.
Further, the power source e applies a frequency of 100 Hz or more, which means that there should be no influence of noise from the commercial power source and no influence on the measured value of tan δ. Since the measurement environment is a wet place, the applied voltage is desirably 100 V or less because the measurement is performed without increasing the voltage as much as possible in order to prevent electric shock. The frequency is desirably in the range of 100 Hz or more and 30 MHz or less. If possible, it is desirable to use 1 MHz to 30 MHz.

そして、上記一対の等比共面電極板21,22は、前記等比共面電極板21,22の総面積nSを任意に選択し、選択された前記等比共面電極板21,22の相互を短絡させ、正極と負極の一対を形成するものである。
更に、上記電極間隔tとは、一対の等比共面電極板21,22相互の中心位置Oと一対の等比共面電極板21,22の中心位置±s0から他方の等比共面電極板21,22の中心位置±s0までの距離である。
更にまた、上記等比共面電極板21,22相互の配置は、平行板電極であれば、その間の距離は対向平均距離dとなる。しかし、等比共面電極板21,22を使用するので等比共面電極板21,22相互の距離は、2πd/2=πdとなる。したがって、距離πdは、電界の到達深さの推定値の相加平均値である。
For the pair of equal ratio coplanar electrode plates 21 and 22, the total area nS of the equal ratio coplanar electrode plates 21 and 22 is arbitrarily selected, and the selected equal ratio coplanar electrode plates 21 and 22 are They are short-circuited to form a pair of a positive electrode and a negative electrode.
Further, the electrode spacing t is defined by the distance from the center position O between the pair of equal ratio coplanar electrode plates 21 and 22 and the center position ±s 0 of the pair of equal ratio coplanar electrode plates 21 and 22 to the other equal ratio coplanar electrode plate. It is the distance to the center position ±s 0 of the electrode plates 21 and 22 .
Furthermore, if the equal-ratio coplanar electrode plates 21 and 22 are arranged as parallel plate electrodes, the distance between them is the facing average distance d. However, since the equal ratio coplanar electrode plates 21 and 22 are used, the mutual distance between the equal ratio coplanar electrode plates 21 and 22 is 2πd/2=πd. The distance πd is therefore the arithmetic mean value of the estimated depth of penetration of the electric field.

請求項2の発明の供試体の内部を計測する計測方法において、前記導電体からなる同一の縦横比及び同一の電極板面積Sからなり、複数併設してなる等比共面電極板21,22、前記等比共面電極板21,22の組み合わせを異にした複数の角度から、コンクリート中の充填不良を発見できるから、等比共面電極板21,22の組み合わせ角度によって見落とすことなく検出が可能である。特に、複数併設してなる等比共面電極板21,22の組み合わせ総面積をS,2S,3S,・・・,(nは整数)とすることにより、コンクリート中の充填不良を発見でき易い。コンクリート中の充填不良の発生は、静電容量の低下によって推定できる。 In the measuring method for measuring the inside of a specimen according to the invention of claim 2, a plurality of equal-ratio coplanar electrode plates 21 and 22, which are made of the conductor and have the same aspect ratio and the same electrode plate area S, are arranged side by side. In addition, since it is possible to detect filling defects in concrete from a plurality of angles with different combinations of the equal ratio coplanar electrode plates 21 and 22, detection can be performed without overlooking depending on the combination angle of the equal ratio coplanar electrode plates 21 and 22. It is possible. In particular, by setting the combined total area of the equal ratio coplanar electrode plates 21 and 22 to be S, 2S, 3S, . . Occurrence of poor filling in concrete can be estimated from the decrease in capacitance.

請求項3の発明の供試体の内部を計測する計測方法においては、導電体からなる同一縦横比及び同一電極板面積Sからなる複数併設してなる等比共面電極板21,22は、絶縁基板に形成した前記等比共面電極板21,22の枚数等の組み合わせにより複数種類の前記等比共面電極板21,22を組み合わせたものであるから、短絡により各種の同一面積から組み合わせることによって複数併設してなる等比共面電極板21,22を組み合わせて連結形成できるから、必要な形態の電極を構成できる。
複数併設してなる等比共面電極板21,22の組み合わせ総面積をS,2S,3S,・・・とすることにより、特定の面積を算出し易い。
In the measuring method for measuring the inside of the specimen according to the invention of claim 3, the equal ratio coplanar electrode plates 21 and 22, which are made of conductors and have the same aspect ratio and the same electrode plate area S, are insulated. Since a plurality of types of the equal ratio coplanar electrode plates 21 and 22 are combined according to the combination of the number of the equal ratio coplanar electrode plates 21 and 22 formed on the substrate, it is possible to combine various types of equal ratio coplanar electrode plates 21 and 22 by short-circuiting. By combining a plurality of equal-ratio coplanar electrode plates 21 and 22 arranged side by side, the electrodes can be formed in a required form.
A specific area can be easily calculated by setting the combined total area of a plurality of equal ratio coplanar electrode plates 21 and 22 to be S, 2S, 3S, . . .

請求項4の発明の供試体の内部を計測する計測方法においては、同一縦横比及び同一電極板面積Sからなる複数併設した等比共面電極板21,22は、その表裏の面を絶縁物でモールドしたものであるから、この等比共面電極板21,22は両面が絶縁コンクリートの型枠内に配設でき、コンクリートを打設している最中にコンクリート中に内部空洞等が形成されているか否かを判断できる。
特に、等比共面電極板21,22は、その表裏の面を絶縁物でモールドしたものであるから、スチレンボード、合板型枠等の内側及び/または外側に等比共面電極板21,22を配設することができる。
In the measuring method for measuring the inside of a specimen according to the invention of claim 4, a plurality of equal-ratio coplanar electrode plates 21 and 22 having the same aspect ratio and the same electrode plate area S are provided so that the front and back surfaces are made of an insulating material. Since the electrode plates 21 and 22 are molded with , both sides of the equal ratio coplanar electrode plates 21 and 22 can be placed in the formwork of the insulating concrete, and an internal cavity or the like is formed in the concrete while the concrete is being poured. It is possible to determine whether or not
In particular, since the equal ratio coplanar electrode plates 21 and 22 are molded with insulating material on the front and back surfaces, the equal ratio coplanar electrode plates 21 and 22 are placed inside and/or outside a styrene board, plywood formwork, or the like. 22 can be provided.

請求項1にかかる発明の供試体の内部を計測する計測方法は、同一縦横比及び同一の電極板面積Sからなる等比共面電極板21,22の総面積nSを任意に選択し、選択された前記等比共面電極板21,22で正極と負極の対を形成し、前記一対の等比共面電極板21,22に100Hz以上の周波数の交流を印加する。前記一対の等比共面電極板21,22の中心位置0から各等比共面電極板21,22の中心位置±s0までの距離、即ち、電極間隔tに対し、前記等比共面電極板21,22相互の中心位置±s0からπtに平行板電極が存在する場合の電界到達距離と見做して、前記一対の等比共面電極板21,22相互の静電容量を算出する。 In the measuring method for measuring the inside of a specimen according to the first aspect of the invention, the total area nS of the equal ratio coplanar electrode plates 21 and 22 having the same aspect ratio and the same electrode plate area S is arbitrarily selected and selected. The equal ratio coplanar electrode plates 21 and 22 form a pair of positive and negative electrodes, and an alternating current with a frequency of 100 Hz or higher is applied to the pair of equal ratio coplanar electrode plates 21 and 22 . The distance from the center position 0 of the pair of equal ratio coplanar electrode plates 21 and 22 to the center position ±s 0 of each equal ratio coplanar electrode plate 21 and 22, that is, the distance between the electrodes t, the equal ratio coplanar Assuming that the electric field reach distance when parallel plate electrodes are present at the center position ±s 0 to πt between the electrode plates 21 and 22, the capacitance between the pair of equal-ratio coplanar electrode plates 21 and 22 is given by calculate.

この等比共面電極板21,22の総面積をS,2S,3S,・・・とすることにより、コンクリートを打設した状態、コンクリートを打設している状態で内部空洞等が形成されていると何れかの等比共面電極板21,22で内部空洞の存在の影響がでるから、静電容量C[F]の値が低下する。
静電容量C[F]=ε・S/dは、
但し、C;静電容量[F] ε;誘電体の誘電率[F/m]
S;電極板面積[m2] d;対向平均距離[m]
である。
By setting the total area of the equal ratio coplanar electrode plates 21 and 22 to be S, 2S, 3S, . Since the existence of internal cavities affects either of the equal ratio coplanar electrode plates 21 and 22, the value of the capacitance C[F] decreases.
The capacitance C[F]=ε・S/d is
However, C: capacitance [F] ε: dielectric constant [F/m]
S; electrode plate area [m 2 ] d; average facing distance [m]
is.

因みに、水の誘電率 80.4
空気の誘電率 1.00×10-12
合成樹脂の誘電率 2~6×103
は、静電容量C[F]の値が低下すると、静電容量C[F]はε・S/dで算出される。このとき、誘電率は水の誘電率80以上と影響が大きく、空気の誘電率1/1012と影響が小さいから、内部空洞が存在すれば、二層または三層としてその影響が出てきて、静電容量C[F]の値として変化する。
Incidentally, the dielectric constant of water is 80.4
Dielectric constant of air 1.00×10 -12
Dielectric constant of synthetic resin 2~6×10 3
, when the value of the capacitance C[F] decreases, the capacitance C[F] is calculated by ε·S/d. At this time, the dielectric constant of water has a large effect of 80 or more, and the dielectric constant of air has a small effect of 1/10 12 . , changes as the value of the capacitance C[F].

また、等比共面電極板21,22の総面積nSを任意に選択し、選択された等比共面電極板21,22の相互を短絡させることにより任意の総面積nSが得られる。
そして、正極と負極の一対を形成し、一対の等比共面電極板21,22に100Hz以上の周波数の交流を電源eとして印加するものであるから、商用周波数の電源の影響を排除できるから、印加する電圧として電圧値を小さくできる。また、周波数を高くすることにより、静電容量C[F]として正確な値を検出できる。
等比共面電極板21,22相互の配置は、等比共面電極板21,22相互の中心位置Oを中心から半径の長さπtに平行板電極が存在する場合の電界到達距離と見做しているから、原理的には、矛盾がない。
Further, by arbitrarily selecting the total area nS of the equal ratio coplanar electrode plates 21 and 22 and short-circuiting the selected equal ratio coplanar electrode plates 21 and 22 to each other, an arbitrary total area nS can be obtained.
A pair of a positive electrode and a negative electrode are formed, and an alternating current with a frequency of 100 Hz or more is applied to the pair of equal-ratio coplanar electrode plates 21 and 22 as the power source e, so that the influence of the commercial frequency power source can be eliminated. , the voltage value to be applied can be reduced. Also, by increasing the frequency, an accurate value can be detected as the capacitance C[F].
The mutual arrangement of the equal ratio coplanar electrode plates 21 and 22 is regarded as the electric field reaching distance in the case where the parallel plate electrodes are present at a radius πt from the center position O of the equal ratio coplanar electrode plates 21 and 22 . In principle, there is no contradiction.

請求項2にかかる発明の供試体の内部を計測する計測方法は、導電体からなる同一縦横比及び同一電極板面積Sからなる複数併設してなる等比共面電極板21,22は、等比共面電極板21,22の組み合わせを異にした、例えば、総面積をS,2S,3S,・・・と変化させた測定により、静電容量C[F]の最小値に内部空洞等が形成されているとして意味を持たせると、何れかの角度で内部空洞の存在の影響がでてくるから、その静電容量C[F]の小さい原因は内部空洞等と想定することができる。また、鉄筋等によって、電界に乱れが出ても、折れ線近似として数値に大きな違いがでてこない。
等比共面電極板21,22相互の配置は、その中心位置0を中心から等比共面電極板21,22相互の中心位置±s0からπtが平行板電極の存在する電界到達距離と見做しており、原理的に正確な電界強度を説明するものであり、測定値から得られる誤差が少ない。
The measuring method for measuring the inside of the specimen of the invention according to claim 2 is such that a plurality of equal ratio coplanar electrode plates 21 and 22 made of conductors and having the same aspect ratio and the same electrode plate area S are arranged side by side. By changing the combination of the coplanar electrode plates 21 and 22, for example, by changing the total area to S, 2S, 3S, . is formed, the influence of the existence of the internal cavity will appear at some angle, so it can be assumed that the cause of the small capacitance C [F] is the internal cavity, etc. . Also, even if the electric field is disturbed by reinforcing bars or the like, there is no significant difference in numerical values as a polygonal line approximation.
The mutual arrangement of the equal ratio coplanar electrode plates 21 and 22 is such that from the center position 0 to the center position ±s 0 between the equal ratio coplanar electrode plates 21 and 22 πt is the electric field reaching distance where the parallel plate electrodes exist. It is assumed that it is an accurate description of the electric field strength in principle, and the error that can be obtained from the measured value is small.

請求項3にかかる発明の供試体の内部を計測する計測方法は、導電体からなる同一縦横比及び同一電極板面積Sからなる複数併設してなる等比共面電極板21,22は、絶縁基板に形成した等比共面電極板21,22の組み合わせとしたものであるから、請求項1または請求項2に記載の効果に加えて、絶縁基板面に等比共面電極板21,22を標準化することができるから、絶縁基板に形成した複数からなる等比共面電極板21,22を形成すれば、その選択により任意の等比共面電極板21,22の総面積をS,2S,3S,・・・を形成することができる。 In the measuring method for measuring the inside of a specimen according to the third aspect of the invention, a plurality of equal-ratio coplanar electrode plates 21 and 22 made of conductors and having the same aspect ratio and the same electrode plate area S are insulated. Since it is a combination of the equal ratio coplanar electrode plates 21 and 22 formed on the substrate, in addition to the effect described in claim 1 or 2, the equal ratio coplanar electrode plates 21 and 22 are formed on the surface of the insulating substrate. can be standardized. Therefore, if a plurality of equal ratio coplanar electrode plates 21 and 22 are formed on an insulating substrate, the total area of arbitrary equal ratio coplanar electrode plates 21 and 22 can be set to S, 2S, 3S, . . . can be formed.

請求項4にかかる発明の供試体の内部を計測する計測方法は、導電体からなる同一縦横比及び同一電極板面積Sからなる複数併設してなる等比共面電極板21,22は、その表裏の面を絶縁物でモールドしたものであるから、請求項1乃至請求項3の何れか1つに記載の供試体の内部を計測するものであるから、絶縁基板面に型枠に貼着等の配設した形態としても使用できる。また、コンクリート中に埋設可能であるから、等比共面電極板21,22は、その表裏の面を誘電体でモールドしているから、スチレンボード、合板型枠等の内側及び/または外側に等比共面電極板21,22を配設することができる。勿論、埋設型枠にも埋設使用が可能である。 In the measuring method for measuring the inside of a specimen according to the fourth aspect of the invention, a plurality of equal ratio coplanar electrode plates 21 and 22 made of conductors and having the same aspect ratio and the same electrode plate area S are arranged side by side. Since the front and back surfaces of the specimen are molded with an insulating material, the inside of the specimen according to any one of claims 1 to 3 is measured. It can also be used as a form in which it is arranged. Further, since the electrode plates 21 and 22 can be embedded in concrete, the front and back surfaces of the equal ratio coplanar electrode plates 21 and 22 are molded with a dielectric, so that they can be installed inside and/or outside a styrene board, plywood formwork, or the like. Equal ratio coplanar electrode plates 21, 22 can be provided. Of course, it is also possible to use the embedded formwork for embedding.

図1は電極の基本的説明図で、(a)は平行板電極、(b)は共面電極板の電界が浅いとき、(c)は電界が深いときの説明図である。FIG. 1 is a basic illustration of the electrodes, in which (a) is a parallel plate electrode, (b) is a shallow electric field of the coplanar electrode plate, and (c) is a deep electric field. 図2は本発明の実施の形態の供試体の内部を計測する計測方法の基本的説明図で、上が平面図、下が説明のための要部断面図である。FIG. 2 is a basic explanatory diagram of a measuring method for measuring the inside of a specimen according to the embodiment of the present invention, the top being a plan view and the bottom being a cross-sectional view of the main part for explanation. 図3は本発明の実施の形態の供試体の内部を計測する計測方法で使用する等比共面電極板の平面図を示す説明図で、(a)は1対の等比共面電極板、(b)は10対の等比共面電極板、(c)はその一つの使用の形態を示す説明図である。FIG. 3 is an explanatory diagram showing a plan view of equal ratio coplanar electrode plates used in the measuring method for measuring the inside of the test piece according to the embodiment of the present invention, where (a) is a pair of equal ratio coplanar electrode plates. , (b) is ten pairs of equal-ratio coplanar electrode plates, and (c) is an explanatory view showing one form of use thereof. 図4は本発明の実施の形態において電界密度の可視化の説明図である。FIG. 4 is an explanatory diagram of visualization of the electric field density in the embodiment of the present invention. 図5は本発明の実施の形態の供試体の内部を計測する計測方法の一層モデルの説明図である。FIG. 5 is an explanatory diagram of a one-layer model of the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図6は本発明の実施の形態の供試体の内部を計測する計測方法の型枠と被検類似コンクリートの二層モデルの確認特性図である。FIG. 6 is a confirmation characteristic diagram of a two-layer model of the formwork and test-like concrete of the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図7は本発明の実施の形態の供試体の内部を計測する計測方法の厚さを変化させたモルタル板と水性ゲルの二層モデルの確認特性図である。FIG. 7 is a confirmation characteristic diagram of a two-layer model of a mortar plate and a water-based gel with different thicknesses according to the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図8は本発明の実施の形態の供試体の内部を計測する計測方法のモルタル板とスチレンボードとの二層モデルの確認特性図である。FIG. 8 is a confirmation characteristic diagram of a two-layer model of a mortar plate and a styrene board in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図9は本発明の実施の形態の供試体の内部を計測する計測方法の型枠、厚さを変化させたスチレンボードと水性ゲルの三層モデルの確認特性図である。FIG. 9 is a confirmation characteristic diagram of a three-layer model of a formwork, a styrene board with different thicknesses, and an aqueous gel in a measuring method for measuring the inside of a specimen according to the embodiment of the present invention. 図10は本発明の実施の形態の供試体の内部を計測する計測方法ではモルタル板が100[mm]で限界であることの確認特性図である。FIG. 10 is a characteristic diagram for confirming that the mortar plate is limited to 100 [mm] in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図11は本発明の実施の形態の供試体の内部を計測する計測方法の二層モデル及び三層モデルの確認特性図である。FIG. 11 is a confirmation characteristic diagram of the two-layer model and the three-layer model of the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図12は本発明の実施の形態の供試体の内部を計測する計測方法の二層モデル及び三層モデルの静電容量の計算の説明図である。FIG. 12 is an explanatory diagram of the calculation of the capacitance of the two-layer model and the three-layer model of the measurement method for measuring the inside of the specimen according to the embodiment of the present invention. 図13は本発明の実施の形態の供試体の内部を計測する計測方法の三層モデルの合成傾きと実測傾きの説明図である。13A and 13B are explanatory diagrams of the synthetic inclination and the measured inclination of the three-layer model of the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図14は本発明の実施の形態の供試体の内部を計測する計測方法のモルタルとスチレンボードとの三層モデルの合成傾きと実測傾きの説明図である。14A and 14B are explanatory diagrams of the synthetic inclination and the measured inclination of the three-layer model of the mortar and the styrene board in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図15は本発明の実施の形態の供試体の内部を計測する計測方法のモルタル型枠を想定する、(a)100mm、(b)76mm、(c)は32mmの合成傾きと実測値の事例の説明図である。Fig. 15 is an example of synthetic inclination and measured values of (a) 100 mm, (b) 76 mm, and (c) 32 mm, assuming a mortar formwork for the measurement method for measuring the inside of the specimen according to the embodiment of the present invention. is an explanatory diagram of . 図16は本発明の実施の形態の供試体の内部を計測する計測方法の四層モデルの合成傾きと実測傾きの測定で内部空洞推定されない説明図である。FIG. 16 is an explanatory diagram showing that an internal cavity is not estimated in the measurement of the synthetic inclination and the actually measured inclination of the four-layer model of the measurement method for measuring the inside of the specimen according to the embodiment of the present invention. 図17は本発明の実施の形態の供試体の内部を計測する計測方法の鉄筋が埋設されている場合のモデルの合成傾きと実測傾きの説明図である。17A and 17B are explanatory diagrams of the synthetic inclination and the measured inclination of the model when reinforcing bars are embedded in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図18は本発明の実施の形態の供試体の内部を計測する計測方法の鉄筋の埋設方向を異にした場合のモデルの合成傾きと実測傾きの説明図である。18A and 18B are explanatory diagrams of model synthetic inclinations and measured inclinations when the reinforcing bars are laid in different directions in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図19は本発明の実施の形態の供試体の内部を計測する計測方法の水性ゲル中のスチレンボード、鉄筋のモデルの傾きの逆数と厚さの説明図である。FIG. 19 is an explanatory diagram of the reciprocal of the inclination and the thickness of the model of the styrene board and reinforcing bars in the aqueous gel of the measuring method for measuring the inside of the specimen according to the embodiment of the present invention. 図20は本発明の実施の形態の供試体の内部を計測する計測方法の水性ゲル中の鉄筋とスチレンボードの傾きの逆数と厚さの説明図である。FIG. 20 is an explanatory diagram of the reciprocal of the inclination and the thickness of the reinforcing bars in the aqueous gel and the styrene board in the measuring method for measuring the inside of the specimen according to the embodiment of the present invention.

以下、本発明の実施の形態の供試体の内部を計測する計測方法について、図面を用いて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 A measuring method for measuring the inside of a specimen according to an embodiment of the present invention will be described below with reference to the drawings. In addition, in the embodiment, the same symbols and the same reference numerals in the drawings denote the same or corresponding functional parts, so redundant description thereof will be omitted here.

[実施の形態]
まず、本実施の形態の供試体の内部を計測する計測方法の基本原理から説明する。
図1(a)に示すように、1対の電極の電極板面積Sが平行板で、その間に誘電率εの誘電体を挟んだ場合の静電容量C[F]を得る構成を有している。平行する電極板面積Sは、平行に対立する電極板間の対向平均距離dだけ離して配設された状態としている。このときの電極板面積Sを平行板とする静電容量C[F]は、電極板面積Sと電極板間に挟む誘電体の誘電率εに比例し、電極板間の対向平均距離dに反比例するという特性があり、静電容量C[F]は次式で表される。
C=ε・S/d
ここで、C[F] 静電容量
S[m2] 電極板面積
d[m] 対向平均距離
ε[F/m] 電極板間の誘電体の誘電率
である。
[Embodiment]
First, the basic principle of the measuring method for measuring the inside of the specimen according to the present embodiment will be described.
As shown in FIG. 1(a), the electrode plate area S of a pair of electrodes is a parallel plate, and has a configuration to obtain a capacitance C [F] when a dielectric having a dielectric constant ε is sandwiched between them. ing. The parallel electrode plate area S is in a state in which the electrode plates are spaced apart by an average facing distance d between the parallel opposing electrode plates. At this time, the electrostatic capacitance C[F] with the electrode plate area S as a parallel plate is proportional to the electrode plate area S and the dielectric constant ε of the dielectric sandwiched between the electrode plates, and is proportional to the opposing average distance d between the electrode plates. There is a characteristic of being inversely proportional, and the capacitance C[F] is expressed by the following equation.
C=ε・S/d
where C[F] capacitance
S [m 2 ] Electrode plate area
d[m] Opposing average distance
ε [F/m] is the permittivity of the dielectric between the electrode plates.

なお、電極板面積S相互間に印加する高周波の電源eとしては、発明者らが取扱いに慣れていることから、市販の高周波容量式水分計(HI-520:(株)ケツト科学研究所製、高周波容量式(20MHz))の電極から高周波を取出して出力させた。
発明者らの実験では、LCRメータに替えて高周波容量式水分計を用いると、結果的に、一般的なLCRメータでは、電極等の浮遊静電容量の影響を考慮する必要があるが、市販の高周波容量式水分計の方が有用であった。
As the high-frequency power supply e applied between the electrode plate areas S, the inventors are accustomed to handling it, so a commercially available high-frequency capacitive moisture meter (HI-520: manufactured by , high-frequency capacitive (20 MHz)).
In the experiment of the inventors, when a high-frequency capacitive moisture meter is used in place of the LCR meter, as a result, it is necessary to consider the influence of the stray capacitance of the electrodes, etc. in a general LCR meter, but commercially available A high-frequency capacitive moisture meter was more useful.

供試材料の骨材に水分を含ませると、静電容量Cが水分の増加に伴って増加する現象が生じる。通常、静電容量Cは誘電正接「tanδ」からすれば、「抵抗成分の電流Ir/静電容量成分の電流Ic」で挟む角度を「tan」で近似表現している。式は
tanδ ≒ Ir/Ic
となる。
しかし、水の誘電率80程度の値は、温度の変化に伴って変化し、印加する周波数によっても変化する。また、水を加えると化学反応が生じ、その印加時間等によっても変化する。これはイオンによる溶融等の作用によるものが大である。
また、静電容量CをC=ε・S/dとして静電容量を算出しているが、電極板面積S間に挟まれた領域を抵抗体として捉えることもできる。
When water is added to the aggregate of the test material, a phenomenon occurs in which the capacitance C increases as the water content increases. Normally, the capacitance C is approximated by "tan", which is the angle between "current Ir of the resistance component/current Ic of the capacitance component", from the dielectric loss tangent "tan δ". ceremony
tan δ ≈ Ir/Ic
becomes.
However, the value of the dielectric constant of water, which is about 80, changes with changes in temperature and also changes with the applied frequency. In addition, when water is added, a chemical reaction occurs, and changes depending on the application time and the like. This is largely due to the action of melting by ions.
Also, the capacitance is calculated by setting the capacitance C to C=ε·S/d, but the region sandwiched between the electrode plate areas S can also be regarded as a resistor.

次に、本発明の実施の形態で使用する図1(b)及び図1(c)並びに図2に示す電極板21,22について検討する。
電極板面積Sの電極板の中心の中心位置0から他方の電極板の中心位置0までの電極間隔tと電極板面積Sの比S/tが一定であるような電極を発明者らが作製した。この電極間隔tと電極板面積Sの比S/tが一定な電極を、ここでは『等比共面電極』と呼ぶこととする。また、電極板21,22について、電極間隔tとして定義しているが、垂直面であってもよいし、所定の傾きであってもよい。電極板21,22は等比共面電極である。
ここでは、電極板間の対向平均距離dとの違いを明確にするため電極間隔tという。そして、ここでは、S/t=constを『等比共面電極定数』という。
なお、シールド電極板23,24の電極間隔t1は、電極板面積Sには影響を与えないので説明を省略することとする。
Next, the electrode plates 21 and 22 shown in FIGS. 1(b) and 1(c) and FIG. 2 used in the embodiment of the present invention will be examined.
The inventors produced electrodes such that the ratio S/t between the electrode plate area S and the electrode interval t from the center position 0 of the center of the electrode plate of the electrode plate area S to the center position 0 of the other electrode plate is constant. bottom. An electrode having a constant ratio S/t between the electrode interval t and the electrode plate area S is called an "equal ratio coplanar electrode" here. Further, the electrode plates 21 and 22 are defined as the electrode spacing t, but may be a vertical plane or a predetermined inclination. Electrode plates 21 and 22 are equal ratio coplanar electrodes.
Here, the term "electrode spacing t" is used to clarify the difference from the average opposing distance d between the electrode plates. Here, S/t=const is referred to as a "equivalent coplanar electrode constant".
Note that the electrode spacing t 1 between the shield electrode plates 23 and 24 does not affect the electrode plate area S, so a description thereof will be omitted.

ここで、電極間隔tに円周率πを乗算した値を対向平均距離dと設定する。
π・t=d
t=d/π
となる。
したがって、
S/t=S・π/d
となる。円周率πが一定、等比共面電極定数S/dが常に一定となる。
また、静電容量Cは、C=ε・S/dにより、誘電率ε、即ち、含水率が深さ方向に変化しなければ静電容量Cは一定となる。
そして、電極間隔tを順次大きくしていくと、電界が含水率の高い部分に到達したとき、静電容量Cは初めて変化し、その変化した位置の値が電界の深さとなる。
Here, a value obtained by multiplying the electrode interval t by the circular constant π is set as the facing average distance d.
π・t=d
t = d/π
becomes.
therefore,
S/t=S·π/d
becomes. The circular constant π is constant, and the geometric coplanar electrode constant S/d is always constant.
Further, the capacitance C is constant according to C=ε·S/d, unless the dielectric constant ε, that is, the water content, changes in the depth direction.
As the electrode interval t is gradually increased, when the electric field reaches a portion with a high water content, the capacitance C changes for the first time, and the value at the changed position becomes the depth of the electric field.

更に、発明者らは、等比共面電極21,22について究明した。
等比共面電極21,22の電極Sの電極板長は100mmで一定とし、電極板幅を変化させて等比共面電極定数S/t=100とした。この場合、電極板幅は電極間隔tと相殺するため、電極板間の対向平均距離dと等比共面電極21,22の電極間隔tは同一(電極板間の対向平均距離d=電極間隔t)とした。ここで、一対の等比共面電極21,22の電極板面積Sが異なる電極板を除外した。
Furthermore, the inventors investigated the equal ratio coplanar electrodes 21 and 22 .
The electrode plate length of the electrode S of the equal ratio coplanar electrodes 21 and 22 was fixed at 100 mm, and the electrode plate width was varied to obtain a equal ratio coplanar electrode constant S/t=100. In this case, since the electrode plate width cancels out the electrode spacing t, the opposing average distance d between the electrode plates and the electrode spacing t of the equal ratio coplanar electrodes 21 and 22 are the same (the opposing average distance d between the electrode plates = the electrode spacing t). Here, electrode plates having different electrode plate areas S of the pair of equal-ratio coplanar electrodes 21 and 22 are excluded.

双方の電極板面積Sに高周波電力(交流電圧)の電源eを印加し、その間に帯状の電界を発生させて、この電界上にある供試材料の静電容量Cを測定した。電界の形状は、境界条件等により円弧状や楕円形状になると考えられるが、「電極間隔に比例した深さまでの誘電物性量の評価は可能(所哲郎:「表面深さ分解能を有する誘電計測による高分子電気絶縁材料の劣化診断技術の開発」平成16-18年度 科学研究費補助金成果報告書」参照)と言われていることから、対向する電極板間の対向平均距離dと電界到達深さが単純に比例する円弧状と仮定した。電極板を並列に配置し、電界が供試材料中を透過するようにし、電極板の対向平均距離dを変化させることで、電界が到達する深さが変化するように想定した。 A power source e of high frequency power (AC voltage) was applied to both electrode plate areas S, a belt-shaped electric field was generated in the meantime, and the capacitance C of the test material on this electric field was measured. The shape of the electric field is thought to be arc-shaped or elliptical depending on the boundary conditions, etc., but it is possible to evaluate the dielectric physical quantity up to a depth proportional to the electrode spacing (Tetsuro Tokoro: "By dielectric measurement with surface depth resolution Development of deterioration diagnosis technology for polymeric electrical insulating materials” 2004-2006 Scientific Research Grant Result Report”), the average distance d between opposing electrode plates and the depth of electric field reach It is assumed that the arc is simply proportional to the It was assumed that the electrode plates were arranged in parallel to allow the electric field to pass through the test material, and that the depth reached by the electric field was changed by changing the opposing average distance d of the electrode plates.

なお、静電容量aと静電容量bと静電容量cの和の三層からなる静電容量(3層モデル)Cは、
1/a+1/b+1/c=1/d
となる。
図4は、発明者らが確認したもので、図1の(b)及び図1の(c)を前提とすることに、矛盾がないことの証左である。図2では、上層部U及び下層部Dの幅に関係なく、電界の平均が中心位置Oを中心とし、半径の長さ2πt/2=πtに平行板電極が存在する場合の電界到達距離の単純平均距離に相当するものである。
特に、電流回路と相違し、電源eの電圧のポテンシャルを維持した静電界に近似した状態になるから、電界の平均が中心位置Oとして半径の長さπtに平行板電極と同様、電界到達距離における単純平均距離に相当する。
In addition, the capacitance (three-layer model) C composed of three layers, the sum of capacitance a, capacitance b, and capacitance c, is
1/a+1/b+1/c=1/d
becomes.
FIG. 4 was confirmed by the inventors, and proves that there is no contradiction in the premises of FIGS. 1(b) and 1(c). In FIG. 2, regardless of the widths of the upper layer portion U and the lower layer portion D, the average of the electric field is centered at the center position O, and the electric field reaching distance is This corresponds to a simple average distance.
In particular, unlike a current circuit, the state is similar to that of an electrostatic field that maintains the potential of the voltage of the power supply e. corresponds to the simple average distance in

図2に示すように、誘電体の誘電率εは、当然、含水率に応じて変化する。また、対向平均距離dは円弧状の電界の対向平均距離長になる。電極板間の対向平均距離dが小さいと、電界は被検体試料の上層部U、電極板間の対向平均距離dの増加とともに静電容量Cは減少する。電界が含水率の高い下層部Dに到達すると誘電率εも変化する。 As shown in FIG. 2, the permittivity ε of the dielectric naturally changes according to the water content. Also, the facing average distance d is the facing average distance length of the arc-shaped electric field. When the average facing distance d between the electrode plates is small, the electric field is applied to the upper layer U of the sample under test, and the capacitance C decreases as the average facing distance d between the electrode plates increases. When the electric field reaches the lower layer D having a high water content, the dielectric constant ε also changes.

したがって、論理的には、この被検体試料の変曲点が上層部Uと下層部Dの境界となると考えられていた。
このときの上層部Uの推定値は、実測で確認した確認値に近い値が得られた。しかし、上層部Uが薄いと変曲点がすぐ現れ、変曲点の判定が困難となる。また、厚さ測定のために電極板の幅を狭くした場合には、精度が落ちるという欠点がある。即ち、最初から電界が下層部D側に影響を与えていると推定される。
そこで、発明者らは、上層部Uと下層部Dとの関係を無視し、低含水率層の誘電率を「0」として厚さを変化させた解析プログラムによって、静電容量Cと電極間隔tの関係を示した電界の全体を観測した。
Therefore, logically, it was thought that the inflection point of this test sample was the boundary between the upper layer portion U and the lower layer portion D. FIG.
The estimated value of the upper layer U at this time was close to the confirmed value confirmed by the actual measurement. However, if the upper layer U is thin, the point of inflection appears immediately, making it difficult to determine the point of inflection. Further, when the width of the electrode plate is narrowed for thickness measurement, there is a drawback that the accuracy is lowered. That is, it is presumed that the electric field affects the lower layer D side from the beginning.
Therefore, the inventors neglected the relationship between the upper layer portion U and the lower layer portion D, and used an analysis program in which the dielectric constant of the low water content layer was set to "0" and the thickness was changed. We observed the entire electric field that showed the relationship of t.

図4は、図1の(b)及び図1の(c)を前提とするものである。図2では、上層部U及び下層部Dの幅に関係なく、電界の平均が中心位置0を中心として半径の長さ2πt/2=πtに平行板電極が存在する場合の電界到達距離の単純平均距離に相当するものである。
特に、電流回路と相違し、電源eの電圧のポテンシャルを維持した静電界に近似した状態になるから、電界の平均が中心位置0として半径の長さπtに平行板電極と同様、電界到達距離における単純平均距離に相当する。
FIG. 4 is based on FIGS. 1(b) and 1(c). In FIG. 2, regardless of the widths of the upper layer portion U and the lower layer portion D, the average electric field is simply It corresponds to the average distance.
In particular, unlike a current circuit, the state is similar to that of an electrostatic field that maintains the potential of the voltage of the power source e. corresponds to the simple average distance in

発明者等の実験は図3の構成によって電極板21,22の電極板面積Sを、
電極板面積S=9000[mm2],電極中心間隔t=90[mm]、
電極板面積S=5000[mm2],電極中心間隔t=50[mm]、
電極板面積S=2000[mm2],電極中心間隔t=20[mm]
で等比共面電極定数S/t=100とした。また、電極間隔t=20~90[mm]を可変可能としている。
なお、中央部分のシールド電極23,24は、電極板面積S1、電極間隔t1とした。この実験では、電極間隔tを変化させ、計測深さによって変化する誘電率εの影響のみを計測した。
In the experiment of the inventors, the electrode plate area S of the electrode plates 21 and 22 is
Electrode plate area S=9000 [mm 2 ], electrode center interval t=90 [mm],
Electrode plate area S=5000 [mm 2 ], electrode center interval t=50 [mm],
Electrode plate area S=2000 [mm 2 ], electrode center interval t=20 [mm]
, the geometric coplanar electrode constant S/t=100. Further, the electrode interval t=20 to 90 [mm] can be varied.
In addition, the shield electrodes 23 and 24 in the central portion have an electrode plate area of S 1 and an electrode interval of t 1 . In this experiment, the electrode interval t was changed, and only the influence of the dielectric constant ε that changed with the measurement depth was measured.

図3(a)は図2の平面概念図を実施物に対応させたものである。絶縁シート10は、図3(a)に示すように、電気を通さない0.1~5[mm]厚のプラスチックフィルムで、図3(b)は全面がプラスチックフィルムでそのプラスチックフィルム面に剥離可能に合成接着剤で電極板1a~1jが接合されている。但し、図3(a)に示す絶縁シート10に貼着した電極板1a~1j及び1a~1jその中心に中心位置±s0を設けて、図示しない測定装置に接続するリード線を接続している。 FIG. 3(a) is a schematic plan view of FIG. 2 corresponding to an actual product. The insulating sheet 10 is, as shown in FIG. 3(a), a plastic film with a thickness of 0.1 to 5 [mm] that does not conduct electricity. The electrode plates 1a to 1j are joined with a synthetic adhesive, if possible. However, the electrode plates 1a to 1j and 1a to 1j attached to the insulating sheet 10 shown in FIG. there is

図3(b)に示す絶縁シート10に貼着した電極板1a~10jは、その中心に中心位置±s0を設けている。各電極板1a~1jは、プラスチックフィルム面に剥離可能に合成接着剤で接合されている。また、本実施の形態の各電極板1a~10jは、10対の電極板1a~1jからなっているが、本発明を実施する場合には、これに限ったことではない。
但し、図3(b)に示す絶縁シート10に貼着した電極板1a~10a、1b~10bは、その中心に中心位置±s0を設けて、図示しないパターンを測定装置に接続するためリード線で接続している。また、電極板1a~1jと電極板1a~1jは所望のパターン対を形成するために、剥離自在でプリント基板の導電体相互が短絡できるように配線されている。
The electrode plates 1a to 10j attached to the insulating sheet 10 shown in FIG. 3(b) have a central position ±s 0 at the center. Each of the electrode plates 1a to 1j is bonded to the plastic film surface with a synthetic adhesive so that it can be peeled off. Further, each of the electrode plates 1a-10j in this embodiment consists of 10 pairs of electrode plates 1a-1j, but the present invention is not limited to this.
However, the electrode plates 1a to 10a and 1b to 10b attached to the insulating sheet 10 shown in FIG. connected by a line. Further, the electrode plates 1a to 1j and the electrode plates 1a to 1j are wired so as to be detachable and short-circuited between the conductors of the printed circuit board in order to form desired pattern pairs.

なお、電極板群1Aは電極板1a~1jで構成され、電極板群1Bは電極板1a~1jで構成されており、中心位置0-0を線対称として、電極板群1Aと電極板群1Bは対称性の電極配置となっている。電極板1a~1jは、図3(c)のように、電極板群1Aの電極板1a及び電極板1eを削除した電極板で構成され、また、電極板群1Bについても、電極板群1Bは電極板1a及び電極板1eを削除した電極板で構成されている。また、電極板1b~1d及び電極板1f~1jの下部で短絡板2A及び短絡板3Aで短絡し、また、短絡板2B及び短絡板3Bにより2対の電極を形成している。
短絡板2A及び短絡板3A並びに短絡板2B及び短絡板3Bの電極板1a~1jの下部を短絡したものを形成しておき、電極板1a及び電極板1eを削除するように構成してもよい。何れにせよ、電極板1a~1jが対で対応できればよい。
The electrode plate group 1A is composed of the electrode plates 1a to 1j, and the electrode plate group 1B is composed of the electrode plates 1a to 1j. 1B has a symmetrical electrode arrangement. As shown in FIG. 3(c), the electrode plates 1a to 1j are formed by removing the electrode plates 1a and 1e from the electrode plate group 1A. is composed of electrode plates from which the electrode plates 1a and 1e are omitted. Short-circuiting plates 2A and 3A are provided under the electrode plates 1b to 1d and the electrode plates 1f to 1j, and two pairs of electrodes are formed by the shorting plates 2B and 3B.
The electrode plates 1a to 1j of the short-circuit plate 2A and the short-circuit plate 3A and the short-circuit plate 2B and the short-circuit plate 3B may be formed by short-circuiting the lower portions of the electrode plates 1a to 1j, and the electrode plate 1a and the electrode plate 1e may be omitted. . In any case, it suffices if the electrode plates 1a to 1j can be paired.

図5では、 HYPERLINK "mailto:上層部41と下層部42を一体としqeZc4mw@.l94d<" 上層部Uと下層部Dを一体とした一層モデルにより、合板型枠、モルタル板、スチレンボードの実測を行った。これは、同一材料であるコンクリートであることから、静電容量Cと誘電率εが同一となるべきである。
結果、静電容量Cは、合板型枠、モルタル板は殆ど電極間距離と静電容量の関係は一定であった。スチレンボードのみ若干特性が変化しているのは、表面の荒れ、及びその部分的な接触圧の違いによって変化していると判断される。念のため、発明者らは、スチレンボードのみ繰り返し実験し、その周波数によって生ずる要因であること、静電容量C[pF]が特定値に特定されることを確認した。
In Fig. 5, HYPERLINK "mailto: plywood formwork, mortar board, and styrene board are measured using a one-layer model in which upper layer 41 and lower layer 42 are integrated and qeZc4mw@.l94d<" upper layer U and lower layer D are integrated. did Since this is concrete, which is the same material, the capacitance C and dielectric constant ε should be the same.
As a result, the relationship between the distance between the electrodes and the capacitance was almost constant for the plywood formwork and the mortar plate. The slight change in properties only for the styrene board is considered to be caused by surface roughness and partial contact pressure differences. Just to make sure, the inventors repeated experiments only with the styrene board and confirmed that the capacitance C [pF] was specified as a specific value, and that it was a factor caused by the frequency.

図6は、水性ゲル(87%は水分)、ポリビニールアルコール(90%)、食塩(3%)の重量比で、二層モデルとして使用する物性をコンクリートに近似させた被検類似コンクリートを作成した。
水性ゲル(87%)と被検類似コンクリートの二層モデルで実験を行った。図6はその例示であり、水性ゲルと被検類似コンクリートとの二層モデルである。ここで、静電容量C[pF]を求めると、電極間隔tに比例した静電容量となる。即ち、線形に変化した出力(静電容量)となる。被検類似コンクリートも線形の特性であり、図示ではW=190[Kg/m3]、W=160[Kg/m3]も傾き傾向が同様であることがわかる。
Figure 6 shows the weight ratio of aqueous gel (87% water), polyvinyl alcohol (90%), and salt (3%) to create a test-like concrete that approximates the physical properties of concrete used as a two-layer model. bottom.
Experiments were carried out on a two-layer model of aqueous gel (87%) and the test-like concrete. FIG. 6 is an example of this, which is a two-layer model of aqueous gel and test-like concrete. Here, when the capacitance C [pF] is obtained, it becomes the capacitance proportional to the electrode interval t. That is, the output (capacitance) changes linearly. The similar concrete to be tested also has a linear characteristic, and it can be seen that the inclination tendency is the same for W=190 [Kg/m 3 ] and W=160 [Kg/m 3 ].

図7はモルタル板と水性ゲルの二層モデルの例示である。
図7では、モルタル板と水性ゲルの二層としても結果は同じである。但し、モルタル板は厚みが増加すると、静電容量が減少している。これは、砂粒付近にある空気粒を加えるためと思慮される。
図8はモルタル板とスチレンボードは各直線の傾きの逆数と厚さとの関係を求めると線形となる。即ち、傾きの逆数と厚さとは比例関係になる。
FIG. 7 is an illustration of a two-layer model of mortar board and water gel.
In FIG. 7, the result is the same even with two layers of mortar board and aqueous gel. However, as the thickness of the mortar plate increases, the capacitance decreases. It is believed that this is due to the addition of air grains in the vicinity of sand grains.
In FIG. 8, the relationship between the reciprocal of the slope of each straight line and the thickness of the mortar board and the styrene board is linear. That is, there is a proportional relationship between the reciprocal of the slope and the thickness.

図9に示すように、型枠板とスチレンボードと水性ゲルとを三層モデルとしても静電容量C[pF]を出力とする結果は同じ線形の特性となる。スチレンボードは、スチレンボード44[mm]のように、厚くなると静電容量の違いが少なくなっている。この変化は、図5と同様な特性であることがわかる。 As shown in FIG. 9, even if the form plate, the styrene board, and the aqueous gel are assumed to be a three-layer model, the same linear characteristic is obtained when the capacitance C [pF] is output. A styrene board, such as a 44 [mm] styrene board, has a smaller difference in capacitance as it becomes thicker. It can be seen that this change has the same characteristics as in FIG.

厚さ32mm,76mm、100mmのモルタル板を用いて同様に合成した傾きγと実測値δとの関係を図10に示す。厚さ32mm,76mmのモルタル板でも合板型枠と同様に線形関係が得られた。モルタル等で作成された埋設型枠でも型枠中の空隙厚さが推定できる。しかし、厚さが100mmのモルタル板では測定で得られる傾きは小さくなり推定が困難であった。電極板面積Sや電極間隔tを大きくした電極にするなどして感度を上げる必要がある。
図11に示すように、電極間隔tと静電容量と二層モデルと三層モデルの関係を示すことを、二層モデル、三層モデルでも実施できる。
合板型枠+水性ゲルは、二層モデルY=aX+eであり、スチレンボード(11mm)+水性ゲルの傾きは二層モデルY=bX+fである。
また、スチレンボード(スチレンボード)+合板型枠+水性ゲルは、三層モデルY=δX+gである。
FIG. 10 shows the relationship between the slope γ and the measured value δ similarly synthesized using mortar plates with thicknesses of 32 mm, 76 mm and 100 mm. A linear relationship was obtained for the 32 mm and 76 mm thick mortar plates as well as the plywood formwork. The void thickness in the formwork can be estimated even for the formwork made of mortar or the like. However, with a mortar plate having a thickness of 100 mm, the inclination obtained by measurement was small, and estimation was difficult. It is necessary to increase the sensitivity by increasing the electrode plate area S and the electrode interval t.
As shown in FIG. 11, the relationship between the electrode spacing t, the capacitance, the two-layer model, and the three-layer model can also be shown in the two-layer model and the three-layer model.
Plywood formwork + aqueous gel is the two-layer model Y = aX + e, and the slope of the styrene board (11 mm) + aqueous gel is the two-layer model Y = bX + f.
Also, styrene board (styrene board) + plywood formwork + aqueous gel is a three-layer model Y = δX + g.

図11において、合板型枠+水性ゲルは、二層モデルのY=aX+eの傾きである。また、スチレンボード(11mm)+水性ゲルの傾きは二層モデルY=bX+fである。そして、スチレンボード(スチレンボード)+合板型枠+水性ゲルは、三層モデルの実測した傾きY=δX+gである。更に、cは二層モデルを合成した傾きである。
したがって、静電容量は1/a+1/b=1/cで二層モデルを合わせた傾きγを表し、1/a+1/b+1/c=1/δが三層モデルを合成した傾きとなる。
In FIG. 11, plywood formwork+aqueous gel is the slope of Y=aX+e of the two-layer model. In addition, the slope of the styrene board (11 mm) + aqueous gel is the two-layer model Y = bX + f. And, styrene board (styrene board) + plywood formwork + aqueous gel is actually measured inclination Y = δX + g of the three-layer model. Furthermore, c is the slope of the synthesized two-layer model.
Therefore, the capacitance is 1/a+1/b=1/c, which represents the slope γ of the combined two-layer model, and 1/a+1/b+1/c=1/δ is the combined slope of the three-layer model.

合板型枠について図12を用いて更に検討すると、合成傾きγ、実測傾きδとの関係を追及すると、図12から、図13の合成傾きγと、実測傾きδとには、線形関係が得られた。
したがって、合成傾きγと、実測傾きδとの線形関係から、空隙厚さの推定が得られた。
Further examination of the plywood formwork using FIG. 12 shows that the relationship between the synthetic inclination γ and the measured inclination δ is investigated. From FIG. was taken.
Therefore, an estimate of the void thickness was obtained from the linear relationship between the composite slope γ and the measured slope δ.

図14の1/α(型枠用合板)+1/β(空隙)=1/γ(合成した傾き)で静電容量C[pF]を求めると、型枠用合板は一定の傾きα=0.128、また、実測した傾きδから換算したγは0.018であるから、
1/0.128+1/β=1/0.018
1/β=47.7
となる。
上式は型枠用合板の厚さは一定の傾きであり、実測した傾きから換算した。
この式より1/αを求めると、1/β=47.7になる。
結果、空隙厚さは49.7になる。
When the capacitance C [pF] is obtained from 1/α (plywood for formwork) + 1/β (air gap) = 1/γ (combined slope) in Fig. 14, the plywood for formwork has a constant slope α = 0 .128, and γ converted from the actually measured slope δ is 0.018,
1/0.128+1/β=1/0.018
1/β=47.7
becomes.
In the above formula, the thickness of the formwork plywood has a constant slope, and the slope was converted from the actually measured slope.
When 1/α is calculated from this formula, 1/β=47.7.
The resulting air gap thickness is 49.7.

図15(a)から(c)において、合成傾きγと実測値δの間には、32[mm]のモルタル板は、76[mm]のモルタル板でも、線形関係が得られた。しかし、図14の(c)に燃せるように、100[mm]のモルタル板は特定できるだけの数値ではなくばら付きを見せた。
勿論、100[mm]のモルタ板に線形関係を持たせるには、電極の幅を広め、電圧を上昇させて、感度を上げればよい。
In FIGS. 15A to 15C, a linear relationship was obtained between the synthetic slope γ and the measured value δ for both the 32 [mm] mortar plate and the 76 [mm] mortar plate. However, as shown in FIG. 14(c), the 100 [mm] mortar plate showed variations rather than specific numerical values.
Of course, in order to make the 100 [mm] mortar plate have a linear relationship, the width of the electrodes should be widened, the voltage should be increased, and the sensitivity should be increased.

図16は、スチレンボードの厚みを変化させ、型枠、水性ゲル、水性ゲルの四層モデルである。スチレンボードの厚みの変化を検出できないから、内部空洞の検出は困難である。 FIG. 16 shows a four-layer model consisting of a formwork, aqueous gel, and aqueous gel with varying thicknesses of styrene boards. It is difficult to detect internal cavities because changes in the thickness of the styrene board cannot be detected.

図17は、鉄筋を配設した方向と電界方向を同一としたモデルで、鉄筋の本数の増加で鉄筋が電界の通り道となり、水性ゲルなしでは傾きが大きくなる。
また、水性ゲルありの場合、鉄筋は領域Aで鉄筋はゲル領域Aのみ増加で、傾き小である。水性ゲルなしの場合、鉄筋は領域Bで鉄筋は増加し、傾き小である。スチレンボードの厚み中に鉄筋を埋設している。
FIG. 17 shows a model in which the direction in which the reinforcing bars are arranged and the direction of the electric field are the same. As the number of reinforcing bars increases, the reinforcing bars become paths for the electric field, and without the aqueous gel, the inclination increases.
In addition, in the case where aqueous gel is present, the reinforcing bar increases only in the area A and the reinforcing bar increases only in the gel area A, and the slope is small. In the case of no aqueous gel, the number of reinforcing bars increases in region B and the inclination is small. Reinforcing bars are embedded in the thickness of the styrene board.

図18は、鉄筋を配設した方向と電界方向を直角としたモデルで、鉄筋の本数の増加は、鉄筋が電界と並行しないから、ほぼ同じ傾きとなる。
また、水性ゲルありの場合、鉄筋は領域A、領域Bのみ増加で変化が生じない。
図19は、鉄筋を配設した方向と電界方向を同一としたモデルで、鉄筋の本数の増加で鉄筋が電界の通り道となり、水性ゲルなしでは傾きが大きくなる。
また、水性ゲル中に鉄筋を配設したものであるから、鉄筋は領域Aでスチレンボードの厚みを変更しても、中に鉄筋を埋設している。
FIG. 18 is a model in which the direction in which the reinforcing bars are arranged and the direction of the electric field are perpendicular to each other. As the number of reinforcing bars increases, the inclination is almost the same because the reinforcing bars are not parallel to the electric field.
In addition, in the case of the presence of the aqueous gel, the reinforcing bars are increased only in the area A and the area B, and no change occurs.
FIG. 19 shows a model in which the direction in which the reinforcing bars are arranged and the direction of the electric field are the same. As the number of reinforcing bars increases, the reinforcing bars become paths for the electric field, and the inclination increases without the aqueous gel.
Further, since the reinforcing bars are arranged in the aqueous gel, even if the thickness of the styrene board is changed in the area A, the reinforcing bars are embedded therein.

図20は、スチレンボードと水性ゲル中の鉄筋の関係を示したものである。
無筋の三層モデルと同じく、傾きの逆数との間のかぶり部分に重点状態を推定する方法は適用できると思慮される。
このように、発明者らは電極の中心s0から各電極板中心0までの電極間隔tと電極板面積Sの比S、tが一定であるような等比共面電極を作製した。静電容量を用いて型枠中のコンクリートの充填推定方法を推定し、また、埋設型枠に模したモルタル板等にも適用でき、鉄筋の影響についても適用できるので、それらをまとめることとする。
FIG. 20 shows the relationship between the styrene board and the reinforcing bars in the aqueous gel.
It is considered that the method of estimating the weighted state can be applied to the fog portion between the reciprocal of the slope and the unreinforced three-layer model.
In this way, the inventors fabricated equal ratio coplanar electrodes in which the ratios S, t between the electrode spacing t from the center s 0 of the electrode to the center 0 of each electrode plate and the electrode plate area S are constant. It is possible to estimate the filling estimation method of concrete in the formwork using the capacitance, and it can also be applied to the mortar plate that simulates the embedded formwork, and it can also be applied to the influence of reinforcing bars. .

〈1〉 一層モデル
等比共面電極を用いてウレタン塗装した合板型枠、モルタル板、スチレンボードの静電容量を測定した。それぞれ合板型枠、埋設型枠、空隙を想定している。厚さ12mmの合板型枠は4枚、厚さ55mmのスチレンボードは10枚重ねた。
前記モルタル板は、W/C=40%の1:3モルタルで厚さ100mmのものを炉乾燥させて絶乾状態として測定した。合板型枠は気乾状態のものを測定した。周辺からの電気的なノイズの影響を少なくするため断熱材用のポリスチレンフォ一ムを2枚重ねた上に測定する供試体を置き、その上に電極を置き、更にポリスチレンフォーム4枚、電極と供試体を密着させるために2kgの重りを置いた。各材料における電極中心0までの電極間隔tが大きくなっても表示値の値は変化せず略一定となった。S/dが一定であり、電極中心0までの電極間隔tを大きくし、電界が到達する位置を深くしても誘電率εが変化しなければ静電容量は同じ値となる。
<1> Single-layer model Using a geometric coplanar electrode, the capacitance of a urethane-coated plywood formwork, mortar board, and styrene board was measured. Plywood formwork, embedded formwork, and voids are assumed respectively. Four plywood forms with a thickness of 12 mm and ten styrene boards with a thickness of 55 mm were stacked.
The mortar plate was a 1:3 mortar with a W/C ratio of 40% and a thickness of 100 mm. The plywood formwork was measured in an air-dried state. In order to reduce the influence of electrical noise from the surroundings, the specimen to be measured is placed on top of two sheets of polystyrene foam for heat insulation, and the electrodes are placed on top of it. A 2 kg weight was placed on the specimen to ensure close contact. Even if the electrode interval t to the electrode center 0 in each material was increased, the displayed value did not change and remained substantially constant. Even if S/d is constant, the electrode interval t to the electrode center 0 is increased, and the position where the electric field reaches is deepened, the capacitance remains the same if the dielectric constant ε does not change.

〈2〉 二層モデル(合板型枠およびコンクリート)
型枠中のコンクリートを想定して、練り上がったフレッシュコンクリートをビニール袋に入れ、その上に合板型枠を置いて静電容量を測定した。コンクリートはW/C=50%とし単位水量を160kg/m3と190kg/m3の2種類とした。コンクリート及びモルタルの配合を表1に示す。
<2> Two-layer model (plywood formwork and concrete)
Assuming concrete in the formwork, the fresh concrete that was kneaded was placed in a plastic bag, and a plywood formwork was placed on it to measure the capacitance. Concrete was set to W/C=50% and two types of unit water content, 160 kg/m 3 and 190 kg/m 3 , were used. Table 1 shows the mix of concrete and mortar.

Figure 0007227088000001

粗骨材は長良川産の玉砕石(最大寸法15mm、表乾密度2.62)を用い、細骨材には長良川産の粗砂(F.M.2.76、表乾密度2.61)と細砂(F.M.1.43、表乾密度2.60)を7:3の割合で混合したものを用いた。また、フレッシュコンクリートの静電容量は水分が水和に消費され変化する経時変化があるため、常に同じ条件で計測できるようフレッシュコンクリートを模した水性ゲルを作成した。
Figure 0007227088000001

Coarse aggregate used is crushed stone from Nagaragawa (maximum size 15 mm, dry surface density 2.62), and coarse sand from Nagaragawa (FM 2.76, dry surface density 2.61) is used for fine aggregate. and fine sand (FM 1.43, surface dry density 2.60) at a ratio of 7:3. In addition, since the capacitance of fresh concrete changes over time as water is consumed for hydration, we created a water-based gel simulating fresh concrete so that measurements can always be made under the same conditions.

水性ゲルはPVA(ボリビニルアルコール)で作成し、質量の87%が水分である。水性ゲルの静電容量は、3%の食塩を含む水性ゲルとしたところ約220[pF]であった。コンクリートは単位水量160kg/m3のものは約180[pF]、190kg/m3のものは約190[pF]であった。水を入れたビニール袋でも測定したが液体では不安定になり測定に支障をきたしたため、ある程度の荷重が支えられる骨格構造を持つ水性ゲルを使用した。
その測定結果を図6に示す。コンクリート、水性ゲルとも静電容量Cと電極間距離tとには線形関係が得られた。
The aqueous gel is made of PVA (polyvinyl alcohol) and 87% of its mass is water. The electrostatic capacity of the aqueous gel containing 3% sodium chloride was about 220 [pF]. Concrete with a unit water content of 160 kg/m 3 was about 180 [pF], and that with a unit water content of 190 kg/m 3 was about 190 [pF]. A water-filled plastic bag was also used for the measurement, but the liquid was unstable and interfered with the measurement.
The measurement results are shown in FIG. A linear relationship was obtained between the capacitance C and the inter-electrode distance t for both concrete and aqueous gel.

なお、静電容量の大きいフレッシュコンクリートや水性ゲルの上に静電容量の小さい合板型枠を置く二層モデルとすると、傾きが現れた。単位水量が大きいと静電容量も大きく二層モデル測定の様子なっている。また、水性ゲルの静電容量はコンクリートよりも大きな値であるが、経時変化がないため、安定した計測が可能であることから、今後の本発明者らの実験においては、コンクリートの代わりに水性ゲルを使用することとした。 In addition, when a two-layer model in which a plywood formwork with a small capacitance is placed on top of fresh concrete or water gel with a large capacitance, a slope appears. If the unit amount of water is large, the capacitance is also large, which is similar to the two-layer model measurement. In addition, although the capacitance of aqueous gel is larger than that of concrete, it does not change over time, so stable measurement is possible. I decided to use gel.

〈3〉 二層モデル(モルタル板及びスチレンボード)
水性ゲルの上にモルタル板及びスチレンボードを配置した二層モデルとし、モルタル板の厚さ及びスチレンボードの重ね厚さを変化させた。モルタル板の厚さは18、32、47、76、100mmとし、スチレンボードは1~10枚を重ねて厚さは5.5~55[mm]とした。
図10にモルタル板の測定結果の一部を示す。合板型枠と同様に静電容量Cと電極間隔tとには線形関係が得られた。モルタル板が厚くなるほど直線の傾きは小さくなった。スチレンボードでも同じ傾向を示した。電極間隔tと静電容量Cの各測定値で回帰分析を行い直線の傾き(a)、切片(b)、決定係数(R2)を求め表2に示す。
<3> Two-layer model (mortar board and styrene board)
A two-layer model was created by placing a mortar board and a styrene board on top of the aqueous gel, and the thickness of the mortar board and the layered thickness of the styrene board were varied. The thickness of the mortar plate was 18, 32, 47, 76 and 100 mm, and the thickness of the styrene board was 5.5 to 55 [mm] by stacking 1 to 10 sheets.
FIG. 10 shows part of the measurement results of the mortar plate. As with the plywood formwork, a linear relationship was obtained between the capacitance C and the electrode spacing t. The steeper the mortar plate, the smaller the slope of the straight line. The styrene board showed the same tendency. Table 2 shows the slope (a), intercept (b), and coefficient of determination (R2) of the straight line obtained by performing regression analysis on the measured values of the electrode spacing t and the capacitance C.

Figure 0007227088000002

モルタル板及びスチレンボードの厚さが大きくなると直線の傾き(a)は小さくなり、反比例の関係となった。傾きの逆数1/aを用いれば1/aと厚さは正比例の関係になると考えられる。各厚さにおける直線の傾きの逆数1/aとモルタル板及びスチレンボードの厚さとの関係を図8に示す。
各材料において傾きの逆数と厚さとには線形関係が得られた。
即ち、空隙の厚さと傾きβの関係を図8のように予め求めておけば,求めたbの値から空洞の厚さが推定できる。厚さ32mm,76mm、100mmのモルタル板を用いて同様に合成した傾きγと実測値δとの関係を図10に示す。厚さ32mm,76mmのモルタル板でも合板型枠と同様に線形関係が得られた。モルタル等で作成された埋設型枠でも型枠中の空隙厚さが推定できる。しかし、厚さが100mmのモルタル板では測定で得られる傾きは小さくなり推定が困難であった。電極板面積Sや電極間隔tを大きくした電極にするなどして感度を上げ,更に、深い位置まで精度良くする必要がある。
Figure 0007227088000002

As the thickness of the mortar board and the styrene board increased, the slope (a) of the straight line decreased, showing an inversely proportional relationship. If the reciprocal of the slope, 1/a, is used, it is considered that 1/a and the thickness are directly proportional to each other. FIG. 8 shows the relationship between the reciprocal 1/a of the slope of the straight line at each thickness and the thickness of the mortar board and the styrene board.
A linear relationship was obtained between the reciprocal of the slope and the thickness for each material.
That is, if the relationship between the thickness of the air gap and the slope β is obtained in advance as shown in FIG. 8, the thickness of the cavity can be estimated from the obtained value of b. FIG. 10 shows the relationship between the slope γ and the measured value δ similarly synthesized using mortar plates with thicknesses of 32 mm, 76 mm and 100 mm. A linear relationship was obtained for the 32 mm and 76 mm thick mortar plates as well as the plywood formwork. The void thickness in the formwork can be estimated even for the formwork made of mortar or the like. However, with a mortar plate having a thickness of 100 mm, the inclination obtained by measurement was small, and estimation was difficult. It is necessary to increase the sensitivity by increasing the electrode plate area S and the electrode interval t, and to improve the accuracy even at deep positions.

〈4〉 三層モデルの型枠近傍の空隙推定
水性ゲルの上に空隙を模したスチレンボードを配置し、その上に合板型枠を載せた三層モデルとして等比共面電極で静電容量を計測した。水性ゲルと合板型枠の間に挟むスチレンボ一ドの枚数を変化させて、空隙厚さを5.5~55mmに調整した。
<4> Estimation of voids near the formwork of a three-layer model A styrene board that simulates voids is placed on top of the aqueous gel, and a plywood formwork is placed on top of it to form a three-layer model. was measured. The thickness of the gap was adjusted to 5.5 to 55 mm by changing the number of styrene boards sandwiched between the aqueous gel and the plywood formwork.

図11に電極間隔tと静電容量Cとの関係を示す。この三層モデルでも電極間隔tと静電容量Cとの間には、線形関係が得られた。スチレンボードの厚さが大きくなるほど直線の傾きは小さくなった。
二層モデルで求めた合板型枠と水性ゲルでの回帰直線の傾きをaとし,各スチレンボードの厚さで求めたスチレンボードと水性ゲルでの回帰直線の傾きをbとして次の図11に記載の式で合成した三層モデルとして傾きγを求めた。
スチレンボードと合板型枠の三層モデルで求めた回帰直線の傾きの実測値δとともに表3に示す。合成した傾きγと実測値δの関係を図12に示す。
FIG. 11 shows the relationship between the electrode spacing t and the capacitance C. As shown in FIG. A linear relationship was obtained between the electrode spacing t and the capacitance C also in this three-layer model. The slope of the straight line decreased as the thickness of the styrene board increased.
Let a be the slope of the regression line between the plywood formwork and the water gel obtained from the two-layer model, and b be the slope of the regression line between the styrene board and the water gel obtained from each thickness of the styrene board. The slope γ was obtained as a three-layer model synthesized by the described formula.
Table 3 shows the measured values .delta. FIG. 12 shows the relationship between the combined slope γ and the measured value δ.

Figure 0007227088000003
Figure 0007227088000003

合成した三層モデルでの傾きγと実測した傾きδとには線形関係が得られた。この関係を用いると施工中の型枠とコンクリートとの間の空隙厚さを推定できる。合板型枠の規格厚さは一定であるため傾きαは一定である。空隙の厚さ(スチレンボードの厚さ)が未知の場合,実測で傾きδを求めれば、図11の式より傾きβの値が求まる。
空隙の厚さと傾きβの関係を図8のように予め求めておけば,求めたbの値から空洞の厚さが推定できる。厚さ32mm,76mm、100mmのモルタル板を用いて同様に合成した傾きγと実測値δとの関係を図10に示す。厚さ32mm,76mmのモルタル板でも合板型枠と同様に線形関係が得られた。モルタル等で作成された埋設型枠でも型枠中の空隙厚さが推定できる。しかし、厚さが100mmのモルタル板では測定で得られる傾きは小さくなり推定が困難であった。電極板面積Sや電極間隔tを大きくした電極にするなどして感度を上げ,更に、深い位置まで精度良くする必要がある。
A linear relationship was obtained between the slope γ in the synthesized three-layer model and the slope δ measured. This relationship can be used to estimate the void thickness between the formwork and the concrete during construction. Since the standard thickness of the plywood formwork is constant, the inclination α is constant. When the thickness of the void (the thickness of the styrene board) is unknown, the value of the slope β can be obtained from the equation in FIG. 11 by obtaining the slope δ by actual measurement.
If the relationship between the thickness of the gap and the slope β is obtained in advance as shown in FIG. 8, the thickness of the cavity can be estimated from the obtained value of b. FIG. 10 shows the relationship between the slope γ and the measured value δ similarly synthesized using mortar plates with thicknesses of 32 mm, 76 mm and 100 mm. A linear relationship was obtained for the 32 mm and 76 mm thick mortar plates as well as the plywood formwork. The void thickness in the formwork can be estimated even for the formwork made of mortar or the like. However, with a mortar plate having a thickness of 100 mm, the inclination obtained by measurement was small, and estimation was difficult. It is necessary to increase the sensitivity by increasing the electrode plate area S and the electrode interval t, and to improve the accuracy even at deep positions.

〈5〉 四層モデルの空洞の推定
導電体としての鉄筋が。静電容量に与える影響について検討した。
[1]コンクリートが全く充填されていない状態、
[2]コンクリートは型枠内部に充填されているが鉄筋には届いていない状態、
[3]コンクリートが鉄筋位置まで充填されているがかぶり部分は未充填の状態
の3つの状態を想定した。
鉄筋を電界と平行に配置した状態で[1]、[2]、[3]の検討を行い、電界と直交に配置した状態では[2]のみを行った。
<5> Estimation of cavities in the four-layer model Reinforcing bars as conductors. The effect on capacitance was investigated.
[1] A state in which concrete is not filled at all,
[2] Concrete is filled inside the formwork but does not reach the reinforcing bars.
[3] Concrete is filled up to the position of the reinforcing bars, but the cover part is not filled.
[1], [2], and [3] were examined with the rebars arranged parallel to the electric field, and only [2] was conducted with the rebars arranged perpendicular to the electric field.

図17乃至図19に鉄筋の配置状況を示す。電界と平行に配置した状態では2枚のスチレンボードの間に縦11×90mmの間隙を設け、鉄筋として直径10mmのステンレス丸鋼を1~3本配置した。
電界と直交に配置した状態では、2枚のスチレンボードの間に11×11mmの間隙を40mm間隔に配置し、直径10mmの丸鋼を1~7本配置した。
17 to 19 show the arrangement of reinforcing bars. A space of 11×90 mm was provided between the two styrene boards when they were arranged parallel to the electric field, and 1 to 3 stainless steel round bars with a diameter of 10 mm were arranged as reinforcing bars.
In the state of arranging perpendicularly to the electric field, a gap of 11×11 mm was arranged between two styrene boards at intervals of 40 mm, and 1 to 7 round steels with a diameter of 10 mm were arranged.

[1]では、ポリスチレンフォームの上にスチレンボードを10枚置き、その上に丸鋼を配置したスチレンボード、合板型枠を置き測定した。型枠表面から丸鋼中心までの領域Aは11mmになる。
[2]では、水性ゲルの上に丸鋼を配置したスチレンボード、合板型枠を配置した。丸鋼を配置したスチレンボードと水性ゲル及び合板型枠の間にスチレンボードを挿入し、型枠から丸鋼中心までの領域A、鉄筋中心から水性ゲルまでの領域Bを変化させた。鉄筋中心から型枠までの領域A及び鉄筋中心から水性ゲルまでの領域Bは11、22、33mmである。
[3]では、厚さ22mmの水性ゲルの中心に丸鋼を3本配置したものを作成した。丸鋼を配置した水性ゲルと下部の基板とした水性ゲルとの間及び上部の合板型枠との問にスチレンボードを挿入した.それぞれ電極間隔tと静電容量Cの関係を求め、回帰直線の傾きを求めた。
この結果を表4及び表5に示す。
In [1], 10 styrene boards were placed on the polystyrene foam, and a styrene board with a round bar and a plywood formwork were placed thereon for measurement. The area A from the mold surface to the center of the round steel is 11 mm.
In [2], a styrene board and a plywood formwork were placed on top of the aqueous gel. A styrene board was inserted between the styrene board on which the round steel was arranged and the aqueous gel and the plywood formwork, and the area A from the formwork to the center of the round steel and the area B from the center of the reinforcing bar to the aqueous gel were changed. The area A from the center of the reinforcing bar to the formwork and the area B from the center of the reinforcing bar to the aqueous gel are 11, 22 and 33 mm.
In [3], three round bars were placed in the center of a water-based gel with a thickness of 22 mm. Styrene boards were inserted between the water-based gel on which the round bars were arranged and the water-based gel used as the lower substrate, and between the upper plywood formwork. The relationship between the electrode spacing t and the capacitance C was determined, and the slope of the regression line was determined.
The results are shown in Tables 4 and 5.

Figure 0007227088000004
Figure 0007227088000004

Figure 0007227088000005
Figure 0007227088000005

型枠表面から鉄筋中心までの型枠中にコンクリートが充填されていない状態、即ち、水性ゲルがない状態[1]では鉄筋が存在すると傾きは大きくなり、鉄筋本数の増加とともに大きくなった。コンクリートは型枠内部に充填されているが鉄筋には届いていない状態[2]では、型枠から鉄筋までの領域Aが11mmと一定の場合、鉄筋本数の増加にともなって傾きが大きくなった。 In the state where concrete is not filled in the formwork from the formwork surface to the center of the reinforcing bar, that is, in the state without aqueous gel [1], the inclination increases with the presence of reinforcing bars, and increases as the number of reinforcing bars increases. In the state [2] where the concrete is filled inside the formwork but does not reach the reinforcing bars, when the area A from the formwork to the reinforcing bars is constant at 11 mm, the slope increases as the number of reinforcing bars increases. .

また、鉄筋中心から水性ゲルまでの領域Bが大きくなると傾きが大きくなった。[2]に示したような無筋の場合は空隙が大きくなると傾きは小さくなるが、鉄筋が存在すると逆の現象が現れた。鉄筋が電界と直交に配置された場合は、鉄筋の本数にかかわらず略同じ傾きであった。静電容量の測定には型枠中の鉄筋が影響すると考えられる。しかし、使用した鉄筋は直径10mmの丸鋼が1種類のみであり、鉄筋が与える影響については、鉄筋径や配筋状態等、更に検討する必要がある。 In addition, the slope increased as the region B from the center of the reinforcing bar to the aqueous gel increased. As shown in [2], the slope becomes smaller as the gap increases, but the opposite phenomenon appears when there are reinforcing bars. When the reinforcing bars were arranged orthogonally to the electric field, the inclination was almost the same regardless of the number of reinforcing bars. It is considered that the reinforcing bars in the formwork affect the capacitance measurement. However, the rebars used were only one kind of round steel with a diameter of 10 mm, and it is necessary to further study the influence of the rebars on the diameter of the rebars, the state of the rebar arrangement, and the like.

コンクリートが鉄筋位置まで充填されている状態、即ち、水性ゲル中に鉄筋がある状態[3]では、鉄筋と型枠の間に空隙がある場合は、空隙の厚さが増加するとともに傾きは小さくなった。表2の無筋の場合と比較すると、空隙の厚さの増加に伴う傾きの減少は鉄筋がある場合はその割合は小さくなったが、無筋の二層モデルと同じく傾きの逆数と空隙の厚さは線形が得られた。有筋の場合でも、コンクリートが鉄筋位置まで充填されていれば、鉄筋の存在の影響は受けるが、型枠と鉄筋との間のかぶり部分に充填状態を推定する方法は適用できると考える。
鉄筋と基板となる水性ゲルとの間に空隙が有る場合は、空隙の厚さ及び鉄筋の存在に関わらず傾きはほぼ一定となり、無筋の内部空洞がある場合(四層モデル)と同じく鉄筋および空隙の存在の影響は現れなかった。
In the state where the concrete is filled up to the position of the reinforcing bar, that is, the state where the reinforcing bar is in the aqueous gel [3], if there is a gap between the reinforcing bar and the formwork, the thickness of the gap increases and the slope decreases. became. Compared to the case without reinforcing bars in Table 2, the decrease in slope with increasing thickness of the voids was smaller when there were reinforcing bars. A linear thickness was obtained. Even in the case of reinforced concrete, if the concrete is filled up to the position of the reinforcing bar, the presence of the reinforcing bar will affect the concrete.
When there is a gap between the reinforcing bar and the aqueous gel that serves as the substrate, the inclination is almost constant regardless of the thickness of the gap and the presence of the reinforcing bar. and the presence of voids did not appear.

以上のように、本実施の形態の供試体の内部を計測する計測方法は、導電体からなる同一の縦横比及び同一の電極板面積Sからなる短冊状の電極板21,22を絶縁シート10に複数併設してなる等比共面電極板21,22と、前記等比共面電極板21,22の総面積nSを任意に選択し、前記等比共面電極板21,22の相互を選択に従って短絡板2A,3A,2B,3Bで短絡し、正極と負極の一対を形成し、前記一対の等比共面電極板21,22に100Hz以上の周波数の交流を印加する電源eと、前記一対の等比共面電極板21,22相互の中心位置0から各等比共面電極板21,22の中心位置±s0までの距離電極間隔tを具備し、前記等比共面電極板21,22相互の配置は、前記等比共面電極板21,22相互の中心位置s0からπtに平行板電極が存在する場合の電界到達距離と見做して、前記一対の等比共面電極板21,22相互の静電容量を算出するものである。 As described above, the measuring method for measuring the inside of the specimen according to the present embodiment employs the strip-shaped electrode plates 21 and 22 made of conductors having the same aspect ratio and the same electrode plate area S, and the insulating sheet 10 . and the total area nS of the equal ratio coplanar electrode plates 21 and 22 are arbitrarily selected, and the equal ratio coplanar electrode plates 21 and 22 are mutually a power supply e that short-circuits the short-circuit plates 2A, 3A, 2B, and 3B according to selection to form a pair of positive and negative electrodes and applies an alternating current with a frequency of 100 Hz or more to the pair of equal-ratio coplanar electrode plates 21 and 22; The distance electrode interval t from the center position 0 of the pair of equal ratio coplanar electrode plates 21 and 22 to the center position ±s 0 of each equal ratio coplanar electrode plate 21 and 22, and the equal ratio coplanar electrode The mutual arrangement of the plates 21 and 22 is regarded as the electric field reaching distance when parallel plate electrodes are present at the center position s 0 to πt of the equal ratio coplanar electrode plates 21 and 22, and the equal ratio of the pair of equal ratio coplanar electrode plates 21 and 22 is The capacitance between the coplanar electrode plates 21 and 22 is calculated.

本実施の形態の供試体の内部を計測する計測方法は、同一ノイズ縦横比及び同一の電極板面積Sからなる等比共面電極板21,22の総面積nSを任意に選択し、選択された前記等比共面電極板21,22で正極と負極の対を形成し、前記一対の等比共面電極板21,22に100Hz以上の周波数の交流を印加する。前記一対の等比共面電極板21,22の中心位置0から各等比共面電極板21,22の中心位置±s0までの電極間隔tに対し、前記等比共面電極板21,22相互の中心位置±s0からπtに平行板電極が存在する場合の電界到達距離と見做して、前記一対の等比共面電極板21,22相互の静電容量を算出する。 In the measuring method for measuring the inside of the specimen according to the present embodiment, the total area nS of the equal ratio coplanar electrode plates 21 and 22 having the same noise aspect ratio and the same electrode plate area S is arbitrarily selected and selected. The equal ratio coplanar electrode plates 21 and 22 form a pair of positive and negative electrodes, and an alternating current with a frequency of 100 Hz or higher is applied to the pair of equal ratio coplanar electrode plates 21 and 22 . With respect to the electrode distance t from the center position 0 of the pair of equal ratio coplanar electrode plates 21 and 22 to the center position ±s 0 of each of the equal ratio coplanar electrode plates 21 and 22, the equal ratio coplanar electrode plates 21 and 22 The capacitance between the pair of equal-ratio coplanar electrode plates 21 and 22 is calculated by assuming that the electric field reaches the distance when parallel plate electrodes are present between the center positions ±s 0 and πt of each other.

この等比共面電極板21,22の総面積をS,2S,3S,・・・とすることにより、コンクリートを打設した状態、コンクリートを打設している状態で内部空洞等が形成されていると何れかの等比共面電極板21,22で内部空洞の存在の影響がでるから、静電容量C[F]の値が低下する。静電容量C[F]=ε・S/dである。 By setting the total area of the equal ratio coplanar electrode plates 21 and 22 to be S, 2S, 3S, . Since the existence of internal cavities affects either of the equal ratio coplanar electrode plates 21 and 22, the value of the capacitance C[F] decreases. Capacitance C[F]=ε·S/d.

因みに、誘電率εは、合成樹脂の誘電率>水の誘電率>空気の誘電率
であり、静電容量C[F]の値が低下すると、静電容量C[F]はε・S/dで算出される。このとき、誘電率は水の誘電率80以上と影響が大きく、空気の誘電率1/1012と影響が小さいから、内部空洞が存在すれば、二層または三層としてその影響が出てきて、静電容量C[F]の値として変化する。
Incidentally, the dielectric constant ε is the dielectric constant of synthetic resin > the dielectric constant of water > the dielectric constant of air. d. At this time, the dielectric constant of water has a large effect of 80 or more, and the dielectric constant of air has a small effect of 1/10 12 . , changes as the value of the capacitance C[F].

また、等比共面電極板21,22の総面積nSを任意に選択し、選択された等比共面電極板21,22の相互を短絡させることにより任意の総面積nSが得られる。
そして、正極と負極の一対を形成し、一対の等比共面電極板21,22に100Hz以上の周波数の交流を電源eとして印加するものであるから、商用周波数の電源の影響を排除できるから、印加する電圧として電圧値を小さくできる。また、周波数を高くすることにより、静電容量C[F]として正確な値を検出できる。
等比共面電極板21,22相互の配置は、等比共面電極板21,22相互の中心位置0を中心から半径の長さπtに平行板電極が存在する場合の電界到達距離と見做しているから、原理的には、矛盾がない。
そして、本実施の形態の供試体の内部を計測する計測方法は、前記導電体からなる同一縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、前記等比共面電極板21,22の組み合わせを異にした測定により、最小値に意味を持たせたものである。
Further, by arbitrarily selecting the total area nS of the equal ratio coplanar electrode plates 21 and 22 and short-circuiting the selected equal ratio coplanar electrode plates 21 and 22 to each other, an arbitrary total area nS can be obtained.
A pair of a positive electrode and a negative electrode are formed, and an alternating current with a frequency of 100 Hz or more is applied to the pair of equal-ratio coplanar electrode plates 21 and 22 as the power source e, so that the influence of the commercial frequency power source can be eliminated. , the voltage value to be applied can be reduced. Also, by increasing the frequency, an accurate value can be detected as the capacitance C[F].
The mutual arrangement of the equal ratio coplanar electrode plates 21 and 22 is regarded as the electric field reaching distance in the case where the parallel plate electrodes are present at a radial length πt from the center position 0 of the equal ratio coplanar electrode plates 21 and 22 . In principle, there is no contradiction.
In the measuring method for measuring the inside of the specimen according to the present embodiment, a plurality of equal-ratio coplanar electrode plates 21 and 22 each having the same length-to-width ratio and the same electrode plate area S made of the conductor are arranged side by side. , the minimum value is made meaningful by the measurement with different combinations of the equal ratio coplanar electrode plates 21 and 22 .

本実施の形態の供試体の内部を計測する計測方法は、導電体からなる同一縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、等比共面電極板21,22の組み合わせを異にした、例えば、総面積をS,2S,3S,・・・と変化させた測定により、静電容量C[F]の最小値に内部空洞等が形成されているとして意味を持たせると、何れかの角度で内部空洞の存在の影響がでてくるから、その静電容量C[F]の小さい原因は内部空洞等と想定することができる。また、鉄筋等によって、電界に乱れが出ても、折れ線近似として数値に大きな違いがでてこない。
等比共面電極板21,22相互の配置は、その中心位置Oを中心から等比共面電極板21,22相互の中心位置±s0からπtが平行板電極の存在する電界到達距離と見做しており、原理的に正確な電界強度を説明するものであり、測定値から得られる誤差が少ない。
In the measuring method for measuring the inside of the specimen according to the present embodiment, a plurality of equal ratio coplanar electrode plates 21 and 22 made of conductors and having the same aspect ratio and the same electrode plate area S are arranged side by side. Measurements were performed by changing the combination of the coplanar electrode plates 21 and 22, for example, by changing the total area to S, 2S, 3S, . If it is formed, the effect of the existence of the internal cavity will appear at some angle, so it can be assumed that the cause of the small capacitance C[F] is the internal cavity or the like. Also, even if the electric field is disturbed by reinforcing bars or the like, there is no significant difference in numerical values as a polygonal line approximation.
The mutual arrangement of the equal ratio coplanar electrode plates 21 and 22 is such that from the center position O of the equal ratio coplanar electrode plates 21 and 22 to the center position ±s 0 to πt is the electric field reaching distance where the parallel plate electrodes exist. It is assumed that it is an accurate description of the electric field strength in principle, and the error that can be obtained from the measured value is small.

更に、本実施の形態の供試体の内部を計測する計測方法は、前記導電体からなる同一の縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、絶縁基板に形成した前記等比共面電極板21,22の組み合わせにより複数種類の前記等比共面電極板21,22の組み合わせとしたものである。 Furthermore, the measuring method for measuring the inside of the specimen according to the present embodiment uses a plurality of equal-ratio coplanar electrode plates 21 and 22 which are made of the conductor and have the same aspect ratio and the same electrode plate area S. is a combination of a plurality of types of equal ratio coplanar electrode plates 21 and 22 formed on an insulating substrate.

更にまた、本実施の形態の供試体の内部を計測する計測方法は、導電体からなる同一の縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、絶縁基板に形成した等比共面電極板21,22の組み合わせとしたものであるから、絶縁基板面に等比共面電極板21,22を標準化することができるから、絶縁基板に形成した複数からなる等比共面電極板21,22を形成すれば、その選択により任意の等比共面電極板21,22の総面積をS,2S,3S,・・・を形成することができる。 Furthermore, the measuring method for measuring the inside of the specimen according to the present embodiment employs a plurality of equal-ratio coplanar electrode plates 21 and 22 each made of a conductor and having the same aspect ratio and the same electrode plate area S. is a combination of the equal ratio coplanar electrode plates 21 and 22 formed on the insulating substrate. If a plurality of equal ratio coplanar electrode plates 21 and 22 are formed, the total area of any equal ratio coplanar electrode plates 21 and 22 can be formed as S, 2S, 3S, . can.

本実施の形態の供試体の内部を計測する計測方法は、前記導電体からなる同一の縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、その表裏の面を絶縁物でモールドしたものである。 In the measuring method for measuring the inside of the specimen according to the present embodiment, a plurality of equal-ratio coplanar electrode plates 21 and 22 made of the conductor and having the same aspect ratio and the same electrode plate area S are arranged side by side. The front and back surfaces are molded with an insulating material.

本実施の形態の供試体の内部を計測する計測方法は、導電体からなる同一の縦横比及び同一の電極板面積Sからなる複数併設してなる等比共面電極板21,22は、その表裏の面を絶縁物でモールドしたものであり、供試体の内部を計測するものであるから、絶縁基板面に型枠に貼着等の配設した形態としても使用できる。また、コンクリート中に埋設可能であるから、等比共面電極板21,22は、その表裏の面を誘電体でモールドしているから、スチレンボード、合板型枠等の内側及び/または外側に等比共面電極板21,22を配設することができる。勿論、埋設型枠にも埋設使用が可能である。 In the measuring method for measuring the inside of the specimen according to the present embodiment, a plurality of equal-ratio coplanar electrode plates 21 and 22 made of conductors and having the same aspect ratio and the same electrode plate area S are arranged side by side. Since the front and back surfaces are molded with an insulating material, and the inside of the specimen is measured, it can be used as a configuration in which it is attached to a mold on the surface of the insulating substrate. Further, since the electrode plates 21 and 22 can be embedded in concrete, the front and back surfaces of the equal ratio coplanar electrode plates 21 and 22 are molded with a dielectric, so that they can be installed inside and/or outside a styrene board, plywood formwork, or the like. Equal ratio coplanar electrode plates 21, 22 can be provided. Of course, it is also possible to use the embedded formwork for embedding.

10 絶縁フィルム
21,22 等比共面電極板
U 上層部
D 下層部
t 電極間隔
d 対向平均距離
S 電極板面積
C 静電容量
ε 誘電率
S/t 等比共面電極定数
10 Insulating films 21, 22 Equal ratio coplanar electrode plate U Upper layer portion D Lower layer portion t Electrode spacing d Opposing average distance S Electrode plate area C Capacitance ε Permittivity S/t Equal ratio coplanar electrode constant

Claims (1)

導電体からなる同一縦横比及び同一面積からなる短冊状の電極板を絶縁シートに複数併設してなる等比共面電極板と、
前記等比共面電極板の総面積を任意に選択し、前記等比共面電極板の相互を選択に従って短絡し、正極と負極の一対を形成し、前記一対の等比共面電極板に100Hz以上の周波数の交流を印加する電源と、
前記選択した一対の等比共面電極板相互の中心位置から前記選択した各等比共面電極板の中心位置までの距離tを具備し、
前記等比共面電極板は、その表裏の面を絶縁物でモールドしたものであり、
前記等比共面電極板相互の配置は、前記等比共面電極板相互の中心位置からπtに平行板電極が存在する場合の電界到達距離と見做して、前記一対の等比共面電極板相互の静電容量を算出し、
前記選択した一対の等比共面電極板面積Sと前記距離tとの比からなる等比共面電極定数S/tが一定となる条件で前記面積S及び前記距離tを変化させたときの前記静電容量の変化を計測することを特徴とする供試体の内部を計測する計測方法。
a equal-ratio coplanar electrode plate formed by arranging a plurality of strip-shaped electrode plates made of a conductor and having the same aspect ratio and the same area on an insulating sheet;
The total area of the equal ratio coplanar electrode plates is arbitrarily selected, the equal ratio coplanar electrode plates are selectively short-circuited to form a pair of positive and negative electrodes, and the pair of equal ratio coplanar electrode plates are a power supply that applies alternating current with a frequency of 100 Hz or higher;
a distance t from the center position between the selected pair of equal-ratio coplanar electrode plates to the center position of each of the selected equal-ratio coplanar electrode plates;
The equal ratio coplanar electrode plate has front and back surfaces molded with an insulating material,
The mutual arrangement of the equal ratio coplanar electrode plates is regarded as the electric field reaching distance when parallel plate electrodes exist at πt from the center position of the equal ratio coplanar electrode plates, and the pair of equal ratio coplanar electrodes Calculate the capacitance between the electrode plates,
When the area S and the distance t are changed under the condition that the equal ratio coplanar electrode constant S/t, which is the ratio of the selected pair of equal ratio coplanar electrode plate areas S and the distance t, is constant. A measuring method for measuring the inside of a specimen, characterized by measuring a change in the capacitance.
JP2019119841A 2019-06-27 2019-06-27 Measurement method for measuring the inside of a specimen Active JP7227088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119841A JP7227088B2 (en) 2019-06-27 2019-06-27 Measurement method for measuring the inside of a specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119841A JP7227088B2 (en) 2019-06-27 2019-06-27 Measurement method for measuring the inside of a specimen

Publications (2)

Publication Number Publication Date
JP2021004842A JP2021004842A (en) 2021-01-14
JP7227088B2 true JP7227088B2 (en) 2023-02-21

Family

ID=74098170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119841A Active JP7227088B2 (en) 2019-06-27 2019-06-27 Measurement method for measuring the inside of a specimen

Country Status (1)

Country Link
JP (1) JP7227088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022109496A (en) 2021-01-15 2022-07-28 エスペック株式会社 Snow making apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043197A (en) 2003-05-27 2005-02-17 Oyo Corp Concrete inspection method by electromagnetic wave, and concrete inspection device by electromagnetic wave
JP2015121472A (en) 2013-12-24 2015-07-02 国立大学法人岩手大学 Cavity part detection system of concrete body, and cavity part detection method of concrete body
JP2019049483A (en) 2017-09-11 2019-03-28 岩瀬 裕之 Method for measuring thickness of water repellent layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043197A (en) 2003-05-27 2005-02-17 Oyo Corp Concrete inspection method by electromagnetic wave, and concrete inspection device by electromagnetic wave
JP2015121472A (en) 2013-12-24 2015-07-02 国立大学法人岩手大学 Cavity part detection system of concrete body, and cavity part detection method of concrete body
JP2019049483A (en) 2017-09-11 2019-03-28 岩瀬 裕之 Method for measuring thickness of water repellent layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩瀬裕之、武藤丈瑠、加藤絢子,等比共面電極板と静電容量形近接センサーを用いたコンクリートの充填状況推定方法に関する研究,コンクリート工学年次論文集,2019年06月15日,Vol.41, No. 1, 2019,1253-1258

Also Published As

Publication number Publication date
JP2021004842A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
Sengul et al. Electrical resistivity measurements for quality control during concrete construction
Chen et al. The effects of specimen parameters on the resistivity of concrete
Azarsa et al. Electrical resistivity of concrete for durability evaluation: a review
Madhavi et al. Electrical conductivity of concrete
Berrocal et al. Electrical resistivity measurements in steel fibre reinforced cementitious materials
Instruments Application Report
Qian et al. Experimental investigation on properties of interface between concrete layers
Maierhofer et al. Influence of concrete properties on the detection of voids with impulse-thermography
Polder Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation
Chehab et al. Specimen geometry study for direct tension test based on mechanical tests and air void variation in asphalt concrete specimens compacted by superpave gyratory compactor
Ismail et al. Corrosion rate of ordinary and high-performance concrete subjected to chloride attack by AC impedance spectroscopy
US20110188626A1 (en) Damage Evaluation Apparatus, and Damage Evaluation Method
Sadowski New non-destructive method for linear polarisation resistance corrosion rate measurement
Rajabipour et al. Procedure to interpret electrical conductivity measurements in cover concrete during rewetting
Yehia et al. Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR
JP7227088B2 (en) Measurement method for measuring the inside of a specimen
Joshaghani et al. Concrete pavements curing evaluation with non-destructive tests
Minagawa et al. Relationship of apparent electrical resistivity measured by four-probe method with water content distribution in concrete
Villagran Zaccardi et al. Electrical resistivity measurement of unsaturated concrete samples
JP2020034423A (en) Method for estimating compressive strength of concrete
Meng et al. Nondestructive corrosion evaluation of reinforced concrete bridge decks with overlays: an experimental study
Hao et al. Study on evaluation method of mud-pumping of cement concrete bridge deck pavement
JP2014125757A (en) Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
JP6343708B1 (en) Water repellent layer thickness measurement method
Liu et al. Moisture uptake in concrete under freezing–thawing exposure

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7227088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150