JP2019049483A - Method for measuring thickness of water repellent layer - Google Patents

Method for measuring thickness of water repellent layer Download PDF

Info

Publication number
JP2019049483A
JP2019049483A JP2017174124A JP2017174124A JP2019049483A JP 2019049483 A JP2019049483 A JP 2019049483A JP 2017174124 A JP2017174124 A JP 2017174124A JP 2017174124 A JP2017174124 A JP 2017174124A JP 2019049483 A JP2019049483 A JP 2019049483A
Authority
JP
Japan
Prior art keywords
electrode
repellent layer
water repellent
water
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174124A
Other languages
Japanese (ja)
Other versions
JP6343708B1 (en
Inventor
岩瀬 裕之
Hiroyuki Iwase
裕之 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017174124A priority Critical patent/JP6343708B1/en
Application granted granted Critical
Publication of JP6343708B1 publication Critical patent/JP6343708B1/en
Publication of JP2019049483A publication Critical patent/JP2019049483A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To enable the measurement of the thickness of a water repellent layer without being affected by change, if any, in resistance value and dielectric constant in relation to water content.SOLUTION: A high frequency output is applied to an equal ratio coplanar electrode in which an equal ratio coplanar electrode constant S/t of a ratio of a horizontal surface distance t to a center position of mutual electrode plates is constant, with two electrode plate of an area S forming a pair. Characteristics of a linear function are acquired between the horizontal surface distance t to the center position of the mutual electrode plates and an indicated value Cd dependent on electrostatic capacitance C, and an output is acquired with (an inverse number 1/a) of the inclination of the characteristics of the linear function as inclination information related to water repellent layer thickness, and also with an intercept b of the indicated value Cd dependent on the electrostatic capacitance C as initial information related to a water content near a surface layer. Thus, the penetration depth or the like of an applied silane-based surface impregnation material is measured, and the water repellent layer thickness of the silane-based surface impregnation material is measured.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリート表面にコーティングした撥水層の厚みを供試体の内部と表層部との含水率の差を計測する計測電極及びその計測方法に関するもので、例えば、塗布したシラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を供試体の内部と表層部との含水率の差を計測する計測電極、及びその計測電極を用いた計測方法に属するものである。   The present invention relates to a measurement electrode for measuring the difference in moisture content between the inside of a sample and the surface layer portion of a thickness of a water repellent layer coated on a concrete surface, and a method for measuring the same. Belongs to a measurement electrode for measuring the difference in water content between the inside of the sample and the surface layer and the measurement method using the measurement electrode. It is a thing.

例えば、コンクリートの骨材の配合を行う場合、「表乾状態(表面乾燥飽水状態)」にあることを前提とし、骨材の密度を求め、各種の配合設計に準じて配合している。ここで、「表乾状態」とは、押し固められた骨材の内部の空隙は水分で満たされた状態にあり、骨材の表面は水分を含まない状態にあることが前提となっている。
一般に、骨材の表乾状態を判定するには、JIS A1109に規格化されたフローコーン法が採用されている。これによると、截頭円錐状を呈するフローコーンに骨材を充填し、突き棒で突くことによって所定固さに突き固め、その後、徐々にフローコーンを上方に向かって引上げ、突き固められた骨材が崩れるか、崩れないかの境界付近の状態を表乾状態として判断している。
For example, in the case of blending concrete aggregate, it is assumed that the surface is in a “surface dry state (surface dry saturated state)”, the density of the aggregate is determined, and blending is performed according to various blending designs. Here, the "surface dry state" is based on the premise that the internal space of the compacted aggregate is filled with moisture, and the surface of the aggregate is free of moisture. .
Generally, the flow cone method standardized in JIS A1109 is employed to determine the surface dry state of aggregate. According to this, the aggregate is filled into a frustoconical flow cone, and the end is pressed to a predetermined hardness by pushing with a push rod, and then the flow cone is gradually pulled upward and the pressed bone is compacted. The condition near the boundary whether the material collapses or does not collapse is judged as the surface dry condition.

ところが、これらの表乾状態の判断には、骨材が崩れた正確なデータが必要となる。特に、正確な判断を行うには経験則が必要となる。そのため、不慣れな測定者は、正確な判断ができない場合もある。
特に、上述したフローコーン法は、主に「天然骨材」と呼ばれる砂や砂利等に対して実施されるものであるが、近年、この「天然骨材」の供給量が減少し、多くの代替物が骨材として用いられている。例えば、砕砂、高炉スラグ、ゴミ溶融スラグ、再生骨材等の所謂「低品位」の骨材が多く利用されている。これらの低品位の骨材は、表面がガラス質性状や多孔質性状を呈することがあり、天然骨材とは明らかに異なる表乾特性を有することがある。そのため、フローコーン法では砕砂等の骨材に対して正確な表乾状態を判定することが特に困難となっている。
例えば、JIS規格化されたフローコーンの形状と異なる自立角或いは広径等のサイズによって形成された新しい基準の表乾判定用コーンを用いる方法、赤外線の反射率を利用して水分量を計測するもの(非特許文献1参照)、乾湿状態における電気抵抗の変化を利用するもの(非特許文献2参照)、遠心脱水法を利用するもの(非特許文献3参照)などが知られている。
However, these determinations of surface dryness require accurate data in which the aggregate is broken. In particular, heuristics are needed to make accurate decisions. Therefore, an unaccustomed measurer may not be able to make an accurate judgment.
In particular, the flow cone method described above is mainly applied to sand, gravel, etc. called “natural aggregate”, but in recent years, the supply amount of this “natural aggregate” has decreased, and Alternatives are used as aggregate. For example, so-called "low grade" aggregates such as crushed sand, blast furnace slag, refuse melting slag, recycled aggregate and the like are widely used. These low-grade aggregates may exhibit vitreous or porous properties on their surfaces, and may have surface-drying characteristics which are clearly different from those of natural aggregates. Therefore, in the flow cone method, it is particularly difficult to determine an accurate surface dry state for aggregates such as crushed sand.
For example, a method of using a new standard surface dry judgment cone formed by a size such as a self-supporting angle or a wide diameter different from the shape of a flow cone standardized by JIS, the moisture content is measured using infrared reflectance The thing (refer nonpatent literature 1), the thing using change of electric resistance in a wet and dry state (refer nonpatent literature 2), the thing using centrifugal dehydration method (refer nonpatent literature 3), etc. are known.

竹内一真、外3名 「細骨材の表乾判定試験方法に関する基礎的研究」、コンクリート工学年次論文集、Vol.25、No.1、2003、p77−p82Takeuchi, Kazuma, 3 others "Basic research on surface dry judgment test method of fine aggregate", Annual Proceedings of Concrete Engineering, Vol. 25, No. 1, 2003, p77-p82 山本大介、外4名 「海砂代替骨材としての砕砂の表乾判定方法に関する検討」、土木学会第59回年次学術講演会、平成16年9月、p491−p 492Daisuke Yamamoto, 4 others "Consideration on the method for determining the surface dryness of crushed sand as sand and sand substitute aggregate", 59th Annual Conference of the Japan Society of Civil Engineers, September 2004, p 491- 492 鈴木一雄、外1名 「細骨材の簡易表乾決定法に関する一検討」、第48回セメント技術大会講演集、1994、p156−p159Kazuo Suzuki, 1 other person “A study on simple method for determination of fine aggregate by surface dry”, Proceedings of the 48th Cement Technology Conference, 1994, p156-p159 特開2006−329801号公報JP, 2006-329801, A

非特許文献1では、異なる自立角及びサイズによって形成されたフローコーンを利用しており、表乾状態の判断に従来と同様にある程度の経験則が必要となり、精度の良い再現性を求めることが困難であった。また、骨材の種類や性状に応じて、最適なフローコーンを適宜選択する必要があり、複数種類のフローコーンを予め準備しておく必要があった。
特に、非特許文献1の赤外線の反射率を利用するものは、一般に水に吸収やすい赤外線波長(1.46μm)と、水に吸収され難い赤外線波長(1.6μm)の二種類の波長を利用し、主に骨材として「シラス」を対象として測定したデータによって算出されていたから、その他の低品位骨材に対する作用について開示されていなかった。
また、非特許文献2では、砕砂を測定対象の試料として各種の測定を実施し、種々の結果を総合することにより、フローコーン法が最も妥当性を有する結果が得られ、その他の方法は非特許文献2の測定結果では特に優れた特性を示すものではなかった。
そして、非特許文献3では、高精度に表乾状態を判断することが可能になるが、対象となる骨材を遠心分離装置にセットし、試料に応じて数G〜数千Gの遠心力を与える必要があり、表乾状態の判定のための装置が大がかりとなり、簡易な表乾状態の判定に適さないことがあった。
Non-Patent Document 1 uses flow cones formed by different self-supporting angles and sizes, and a certain degree of empirical rule is required for the determination of the surface dry state as in the prior art, and accurate repeatability is sought. It was difficult. Moreover, it was necessary to select the optimal flow cone suitably according to the kind and property of aggregate, and it was necessary to prepare multiple types of flow cone in advance.
In particular, those utilizing the infrared reflectance of Non-Patent Document 1 generally use two types of wavelengths: an infrared wavelength (1.46 μm) that is easily absorbed by water and an infrared wavelength (1.6 μm) that is not easily absorbed by water. And since it was calculated by the data which measured "Shirasu" as an aggregate mainly, it was not disclosed about the action to other low grade aggregate.
In Non-Patent Document 2, various measurements are carried out using crushed sand as a sample to be measured, and by combining various results, the result that the flow cone method has the most appropriate result can be obtained, and the other methods are not. The measurement results of Patent Document 2 did not show particularly excellent characteristics.
And in Non-Patent Document 3, although it becomes possible to judge the surface dry state with high accuracy, the target aggregate is set in the centrifugal separator, and the centrifugal force of several G to several G according to the sample In some cases, the apparatus for determining the surface dry state is bulky and is not suitable for simple determination of the surface dry state.

一方、現今のコンクリート構造物の耐久性の向上は、シラン系表面含浸材を表面に塗布し、浸透させ、コンクリート内部に撥水層を形成させる工法が注目されている。
この撥水層を施すことにより水分の侵入を抑制し、塩分や水分等のコンクリートの劣化因子の浸入を抑制することでコンクリートの耐久性を高めることができる。例えば、『北海道開発局道路設計要領』にはシラン系表面含浸材の製品選定の目安として、凍害対策では、浸透深さが6mm以上あるものと規定している。
しかし、その施工された撥水層厚を確かめるには、コンクリートに穿設して観察する方法がある。このコンクリートに穿設する方法は、施工製品に傷をつけることになり、必ずしも好ましい方法ではなかった。そこで、事前に作製した供試体への塗布量と撥水層厚との関係から、塗布量で管理されているが、その施工実態は不明である。
表面含浸材により形成される撥水層厚は、コンクリートの含水率に影響されることが報告されている。含水率が高いと浸透深さが小さくなる。施工現場において降雨や日射等の影響で含水率が場所によって異なることが考えられる。このため、現場における撥水層厚は、供試体に塗布した量による推定値とは誤差が生じることも考えられる。また、既存のコンクリート構造物に塗布する場合は、別途作製した供試体が残っていない場合が多く、供試体への塗布量と撥水層厚との関係を求めることができない。
このようなことから、表面含浸工法を適用する場合、形成された撥水層で管理する方が施工品質を高められる。そこで、本発明者らは含水率の高低による電気的変化を利用し、コンクリートの撥水層厚を推定する方法を究明している。
On the other hand, for the improvement of the durability of the present concrete structure, a method of applying a silane-based surface impregnating material to the surface and permeating the surface, and forming a water repellent layer inside the concrete has attracted attention.
By applying the water repellent layer, the penetration of water can be suppressed, and the penetration of deterioration factors of the concrete such as salt and water can be suppressed, whereby the durability of the concrete can be enhanced. For example, “Hokkaido Development Bureau Road Design Guidelines” stipulates that the penetration depth is 6 mm or more in the measures against frost damage as a standard of product selection of silane-based surface impregnation material.
However, in order to confirm the thickness of the applied water repellent layer, there is a method of drilling in concrete and observing. This method of drilling in concrete would damage the construction product and was not necessarily the preferred method. Then, although it is managed by application amount from the relationship between the application amount to the test object produced beforehand, and the water-repellent layer thickness, the construction actual condition is unknown.
The water repellent layer thickness formed by the surface impregnating material is reported to be affected by the moisture content of concrete. The higher the moisture content, the smaller the penetration depth. At the construction site, the moisture content may be different depending on the location due to the influence of rainfall or solar radiation. For this reason, it is also conceivable that the water repellent layer thickness at the site may cause an error from the estimated value by the amount applied to the sample. Moreover, when apply | coating to the existing concrete structure, the test body produced separately does not remain in many cases, and it can not obtain | require the relationship between the application quantity to a test object, and the water-repellent layer thickness.
From such a thing, when applying a surface impregnation method, the quality of construction can be enhanced by managing with the formed water repellent layer. Therefore, the present inventors have investigated a method of estimating the water repellent layer thickness of concrete using electrical changes due to the water content ratio.

そこで、本発明者らは、特許文献1で比較的簡易な構成の骨材の表乾状態判定法を提供した。即ち、これは絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製する基準試料調製工程と、絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製するとともに、導電性を有するイオン化物質を添加し、更に攪拌するイオン化試料調製工程と、前記基準試料調製工程によって調製された含水率の異なる複数の基準試料及び前記イオン化試料調製工程によって調製された含水率の異なる複数のイオン化試料を、所定形状の測定用容器の中にそれぞれ充填し、試料表面を平滑化する充填平滑工程と、前記測定用容器にそれぞれ充填された前記基準試料及び前記イオン化試料の前記試料表面に高周波容量式水分計の測定部を当接し、高周波容量を測定する高周波容量測定工程と、前記高周波容量式水分計によって示される表示値及び前記基準試料または前記イオン化試料の含水率の関係を示す基準試料及び添加試料を作成し、略比例関係を示す前記基準試料に対し、前記添加試料の傾きが変化する表乾点を特定し、表乾状態を判定する表乾判定工程とを具備するものである。   Therefore, the present inventors have provided a method of determining the surface dry state of aggregate with a relatively simple configuration in Patent Document 1 That is, this is mixing and stirring water in the aggregate in the bone-drying state, and mixing and stirring the water in the aggregate in the bone-drying state and the reference sample preparation step of preparing each to a predetermined moisture content respectively The ionized sample preparation step of preparing an ionized substance having conductivity and adding the ionized material having conductivity and stirring the mixture, and a plurality of reference samples having different water contents prepared by the reference sample preparation step and the ionized sample preparation step And filling the plurality of ionized samples having different moisture contents prepared in the above into the measurement container having a predetermined shape and smoothing the sample surface, and the reference sample filled in the measurement container. And a measurement step of measuring a high frequency capacity by bringing a measurement portion of the high frequency capacity moisture meter into contact with the surface of the sample of the ionized sample, and the high frequency capacity moisture meter A reference sample indicating the relationship between the indicated value and the moisture content of the reference sample or the ionized sample, and the addition sample are prepared, and a surface dry point at which the inclination of the addition sample changes with respect to the reference sample It comprises the table dry judging process which specifies and judges the surface dry state.

これにより、コンクリートの含水率を測定する水分計を改良し、静電容量を計測することにより、一対の電極板の距離を変化させることで電極板から発生する電界がコンクリート中に到達する深さを変化させ、電界が撥水層内にあれば静電容量は一定の割合で減少し、電界が含水率の高い模擬非撥水層に到達すれば静電容量の減少割合が変化することから、この変曲点を撥水層と普通層の境界とし、実測値に比較的近い値が得られている。
しかし、特許文献1のコンクリートが含水する水は、純粋のH2Oは良好な絶縁体であり、その純粋のH2Oを測定していると、その測定中に抵抗値が低下する。また、それに伴って誘電率も金属イオンによって変化し、含水率によって導電率、誘電率の周波数特性として変化する。また、容積の大きい測定対象であると、電極板の位置、電極板の面積、電界を決定する印加電圧の高さによって電界の広がり、電界密度が変化するから、これらの問題点を介在させた計算が必要になってくる。
Thereby, the moisture meter which measures the moisture content of concrete is improved, and the electric field generated from the electrode plate reaches the concrete by changing the distance between the pair of electrode plates by measuring the capacitance. When the electric field is in the water repellent layer, the capacitance decreases at a constant rate, and when the electric field reaches the high water content simulated non-water repellent layer, the rate of decrease in capacitance changes. The inflection point is defined as the boundary between the water repellent layer and the ordinary layer, and a value relatively close to the measured value is obtained.
However, in the water containing concrete of Patent Document 1, pure H 2 O is a good insulator, and when the pure H 2 O is measured, the resistance decreases during the measurement. Also, along with that, the dielectric constant also changes depending on the metal ion, and changes as the frequency characteristic of conductivity and dielectric constant depending on the water content. Also, if the measurement target is a large volume, the electric field spreads and the electric field density changes depending on the position of the electrode plate, the area of the electrode plate, and the height of the applied voltage that determines the electric field. Calculation will be needed.

そこで、本願発明は、含水率によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難く、撥水層の厚みを測定できる供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法によっての提供を目的とするものである。   Therefore, according to the present invention, even if the resistance value and the dielectric constant change depending on the water content, the effect is unlikely to appear even if the result does not change depending on the water content, and the inside and surface layer of the specimen from which the thickness of the water repellent layer can be measured An object of the present invention is to provide a measurement electrode for measuring a difference in moisture content with a part and a measurement method using the measurement electrode.

請求項1の発明の供試体の内部と表層部との含水率の差を計測する計測電極は、同一面積の電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tの比からなる等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極の両側に高周波出力を印加し、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で特定の一次関数の特性を得て、前記一次関数の特性の傾きaを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bを表層付近の含水率と関係する初期情報として出力を得るものである。   The measurement electrode for measuring the difference in the moisture content between the inside of the sample of the invention of the present invention and the surface layer portion is a pair of electrode plates having the same area of the electrode plate area S, and the electrode plate area S and the electrode The equal ratio coplanar electrode constant S / t, which is the ratio of the horizontal distance t to the center position between the plates, is constant, and except for the different areas of the pair of equal ratio coplanar electrodes An output is applied, and a characteristic of a specific linear function is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd depending on the capacitance C, and a slope a of the characteristic of the linear function Is the inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is output as initial information related to the moisture content near the surface layer.

ここで、上記等比共面電極は、電極板相互の中心位置までの供試体の水平面距離tと各電極板面積Sの比が一定であればよい。特に、それを満足するのが等比共面電極定数S/tである。但し、等比共面電極定数S/tが同一でも、一対の電極板面積が異なるものを除く。
また、上記等比共面電極定数S/tの水平面距離tは、直線距離上の対向する電極板間の対向平均距離dと同一とすることもできる。しかし、水平面距離tとか、対向平均距離dは、その電界の形態が決まるので、両者を同一とし、算出式で相殺されるのが望ましい。
そして、上記一次関数の特性の傾きは、その特性の傾きまたはその特性の傾きの逆数1/aとすることができる。いずれにせよ、一定の等比共面電極の両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を描ければよい。
Here, the ratio of the horizontal surface distance t of each of the test pieces to the central position between the electrode plates and the area S of each electrode plate may be constant. In particular, it is the isometric coplanar electrode constant S / t that satisfies it. However, even if the geometrical ratio coplanar electrode constant S / t is the same, those having a different pair of electrode plate areas are excluded.
Further, the horizontal distance t of the above-mentioned equal ratio coplanar electrode constant S / t can be made equal to the facing average distance d between the facing electrode plates on the linear distance. However, since the form of the electric field is determined for the horizontal distance t and the facing average distance d, it is desirable that the both be the same and be offset by the calculation formula.
The slope of the characteristic of the linear function can be the slope of the characteristic or the reciprocal 1 / a of the inclination of the characteristic. In any case, a high frequency output is applied to the equal ratio coplanar electrodes on both sides of a fixed equal ratio coplanar electrode, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C The characteristics of the linear function may be drawn between the two.

請求項2の発明の供試体の内部と表層部との含水率の差を計測する計測電極の前記等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたものである。
ここで、等比共面電極定数S/tの水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間距離dと同一であると電界が円弧を描き、その円弧の中心位置に電極板間距離dがあると仮定することができる。
The horizontal distance t of the equal ratio coplanar electrode constant S / t of the measurement electrode for measuring the difference in the moisture content between the inside of the specimen of the invention of the present invention and the surface layer portion is the facing average distance between the opposing electrode plates It is identical to d.
Here, if the horizontal distance t of the uniform coplanar electrode constant S / t and the value obtained by multiplying the horizontal distance t by the circular ratio π is equal to the inter-plate distance d, the electric field draws an arc, and It can be assumed that there is a distance d between the electrode plates at the center position.

請求項3の発明の供試体の内部と表層部との含水率の差を計測する計測電極の前記一次関数の特性の傾きは、その特性の傾きの逆数1/aとしたものである。
ここで、上記特性の傾きaは、その逆数1/aとして使用してもよい。
The slope of the characteristic of the linear function of the measurement electrode for measuring the difference in the moisture content between the inside of the specimen of the invention according to the third aspect of the present invention and the surface portion is the reciprocal 1 / a of the inclination of the characteristic.
Here, the slope a of the characteristic may be used as its reciprocal 1 / a.

請求項4の発明の供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tと各電極板面積Sとの比の等比共面電極定数S/tが一定で、かつ、一対の等比共面電極の面積が各々異なるものを除く等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を得て、前記一次関数の特性の傾きの(逆数1/a)を撥水層厚に関係する傾きa情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。   The measurement method using a measurement electrode for measuring the difference in moisture content between the inside of the specimen of the invention according to the invention and the surface layer portion uses two electrode plates having an electrode plate area S as a pair. The ratio of the ratio of the horizontal plane distance t to the center position of the electrode plates to the area of each electrode plate S is constant, and the area of the pair of equal ratio coplanar electrodes is different. The high-frequency output is applied to the uniform ratio coplanar electrodes except for the above, and the characteristic of the linear function is obtained between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the electrostatic capacitance C. (Reciprocal number 1 / a) of the slope of the characteristic of the property is the slope a information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is an initial stage related to the moisture content near the surface layer An output is obtained as information.

ここで、上記等比共面電極は、一対の等比共面電極の電極板面積が各々異なるものを除き、等比共面電極の両側に高周波を印加し、電極板相互の中心位置までの供試体の水平面距離tと電極板面積Sの比が一定であればよい。特に、それを満足するのが等比共面電極定数S/tである。
また、上記等比共面電極定数S/tの水平面距離tは、直線距離上の対向する電極板間の対向平均距離dと同一とすることもできる。しかし、水平面距離tとか、対向平均距離dは、その静電界、電界によって、その形態が決まるので、同一とし、算出式で相殺されるのが望ましい。
そして、上記一次関数の特性の傾きは、その特性の傾きまたはその特性の傾きの逆数1/aとすることができる。いずれにせよ、一定の等比共面電極の両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を描ければよい。
Here, except that the electrode plate areas of the pair of equal ratio coplanar electrodes are different from each other, the high ratio is applied to both sides of the equal ratio coplanar electrodes to reach the center positions of the electrode plates. The ratio of the horizontal distance t of the specimen to the electrode plate area S may be constant. In particular, it is the isometric coplanar electrode constant S / t that satisfies it.
Further, the horizontal distance t of the above-mentioned equal ratio coplanar electrode constant S / t can be made equal to the facing average distance d between the facing electrode plates on the linear distance. However, it is preferable that the horizontal distance t and the facing average distance d be the same because they are determined by the electrostatic field and the electric field, and they should be offset by a calculation formula.
The slope of the characteristic of the linear function can be the slope of the characteristic or the reciprocal 1 / a of the inclination of the characteristic. In any case, a high frequency output is applied to the equal ratio coplanar electrodes on both sides of a fixed equal ratio coplanar electrode, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C The characteristics of the linear function may be drawn between the two.

請求項1にかかる供試体の内部と表層部との含水率の差を計測する計測電極の発明は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tとの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極に高周波出力を加え、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。   The invention of the measurement electrode for measuring the difference in the moisture content between the inside of the test piece and the surface layer portion according to claim 1 comprises two electrode plates having an electrode plate area S as a pair, and the electrode plate area S and the electrode plate mutually The high ratio output is added to the equi-coplanar electrode except for the cases where the ratio of the ratio to the horizontal distance t to the center position of the is constant S / t is constant and the area of the pair of non-coplanar electrodes is different. The characteristic between the horizontal surface distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C is obtained, and the slope a (reciprocal number 1 / a) of the characteristic of the linear function is a water repellent layer Inclination information related to the thickness is obtained, and the intercept b of the display value Cd dependent on the capacitance C is output as initial information related to the moisture content near the surface layer.

したがって、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で、一次関数方程式の特性を得て、前記一次関数方程式の傾きの(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Therefore, when the water repellent layer formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each specimen is expressed as the water repellent layer You can also Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, a high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant. The characteristic of the linear function equation is obtained, and (reciprocal number 1 / a) of the inclination of the linear function equation is used as the inclination information related to the water repellent layer thickness, and the display value Cd depending on the capacitance C The segment b obtains an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

請求項2にかかる供試体の内部と表層部との含水率の差を計測する計測電極の発明の前記等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一位置としたものであるから、請求項1に記載の効果に加えて、等比共面電極定数S/tが一定を充足する水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間距離dとが同一であるから、電界が円弧を描き、その円弧の中心に電極板間距離dを回帰直線として算出することができる。   The horizontal distance t of the equal ratio coplanar electrode constant S / t of the invention of the measurement electrode for measuring the difference in the moisture content between the inside of the specimen according to claim 2 and the surface layer portion is the facing average between the facing electrode plates In addition to the effects described in claim 1, since the same position as the distance d, the horizontal distance t and the horizontal distance t at which the equal ratio coplanar electrode constant S / t satisfies a constant value Since the value obtained by multiplying is the same as the inter-plate distance d, the electric field draws an arc, and the inter-plate distance d can be calculated as a regression line at the center of the arc.

請求項3にかかる供試体の内部と表層部との含水率の差を計測する計測電極の発明の前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたものであるから、請求項1または請求項2に記載の効果に加えて、前記一次関数方程式の特性の傾きの逆数1/aを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。   The slope of the characteristic of the linear function equation of the invention of the measuring electrode for measuring the difference in the moisture content between the inside of the specimen according to claim 3 and the surface portion is the reciprocal 1 / a of the inclination of the characteristic. From the above, in addition to the effect described in claim 1 or claim 2, the reciprocal 1 / a of the slope of the characteristic of the linear function equation is the slope information related to the water repellent layer thickness, and The intercept b of the dependent display value Cd obtains an output as initial information related to the moisture content near the surface layer.

請求項4にかかる供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法の発明は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tとの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極に高周波出力を加え、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。   The invention of the measurement method using a measurement electrode for measuring the difference in moisture content between the inside of the specimen and the surface layer portion according to claim 4 makes two electrode plates of the electrode plate area S a pair, and the electrode plate area S Isometric ratio coplanar electrode constant S / t of the ratio of the ratio to the horizontal distance t to the center position of the electrode plates and the area of the pair of equal ratio coplanar electrodes is constant. A high frequency output is added to obtain a characteristic between the horizontal distance t to the center position of the electrode plates and a display value Cd depending on the capacitance C, and a slope a (reciprocal 1 / reciprocal of the characteristic of the linear function equation is obtained. Let a) be inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C obtain an output as initial information related to the moisture content near the surface layer.

したがって、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きの(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Therefore, when the water repellent layer formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each specimen is expressed as the water repellent layer You can also Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, a high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant. The characteristic of the linear function equation is obtained, and (reciprocal number 1 / a) of the inclination of the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and the display value Cd depending on the capacitance C The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

図1は本発明の実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の図示した基本的説明図である。FIG. 1 is a basic explanatory view illustrating a measurement electrode for measuring the difference in moisture content between the inside of the test piece and the surface layer according to the embodiment of the present invention and a measurement method using the measurement electrode. 図2は本発明の実施の形態の基本的構成図である。FIG. 2 is a basic block diagram of the embodiment of the present invention. 図3は本発明の実施の形態で使用する含水率が模擬非撥水層一定の場合の表示値との関係を示す説明図である。FIG. 3 is an explanatory view showing the relationship between the water content used in the embodiment of the present invention and the display value in the case where the simulated non-water repellent layer is constant. 図4は本発明の実施の形態で使用する模擬供試体によると水平面距離と表示値との関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the horizontal distance and the display value according to the simulated specimen used in the embodiment of the present invention. 図5は本発明の実施の形態で使用する回帰直線の傾きと切片の関係を示す説明図である。FIG. 5 is an explanatory view showing the relationship between the slope and the intercept of the regression line used in the embodiment of the present invention. 図6は本発明の実施の形態で使用する各含水率における切片の関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship of the intercept at each moisture content used in the embodiment of the present invention. 図7は本発明の実施の形態で使用する各含水率における傾きの逆数の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship of the reciprocal of the slope in each moisture content used in the embodiment of the present invention. 図8は本発明の実施の形態で測定するコンクリート供試体の配合を示す説明図である。FIG. 8 is an explanatory view showing the composition of the concrete sample to be measured in the embodiment of the present invention. 図9は本発明の実施の形態で測定するコンクリート供試体の骨材の物性を示す説明図である。FIG. 9 is an explanatory view showing the physical properties of the aggregate of the concrete sample to be measured in the embodiment of the present invention. 図10は本発明の実施の形態で測定するコンクリート供試体の静電容量の変化を示す特性図である。FIG. 10 is a characteristic diagram showing the change of the capacitance of the concrete sample to be measured in the embodiment of the present invention. 図11は本発明の実施の形態で測定する傾きの逆数と撥水層厚を示す特性図である。FIG. 11 is a characteristic diagram showing the reciprocal of the inclination and the water repellent layer thickness measured in the embodiment of the present invention. 図12は本発明の実施の形態で測定する傾斜含水率分布を持つ静置1日の供試体の表示値の特性図である。FIG. 12 is a characteristic diagram of the display value of the test sample of stationary day 1 having the inclined water content distribution measured in the embodiment of the present invention. 図13は本発明の実施の形態で測定する傾斜含水率分布を持つ静置7日の供試体の表示値の特性図である。FIG. 13 is a characteristic diagram of the display value of the specimen of stationary 7 days having the inclined water content distribution measured in the embodiment of the present invention. 図14は本発明の実施の形態で測定した実測値と推定値を示す測定結果図である。FIG. 14 is a measurement result diagram showing measured values and estimated values measured in the embodiment of the present invention.

以下、本発明の実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。   Hereinafter, a measurement electrode for measuring the difference in moisture content between the inside of the specimen and the surface layer portion of the embodiment of the present invention and a measurement method using the measurement electrode will be described based on the drawings. Note that, in the embodiment, the same symbols and symbols in the drawings are the same or corresponding functional parts, and therefore the description thereof will not be repeated here.

[実施の形態]
まず、供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の基本原理から説明する。
本発明では、一対の電極が平行板で、その間に誘電率εの誘電体を挟んだコンデンサの構成を利用している。平行する電極板の電極板面積Sは、並行に対立する電極板間の対向平均距離dだけ離して配設された状態としている。このときの電極板面積Sの電極板を平行板コンデンサの静電容量Cは、電極板面積Sと電極板間に挟む誘電体の誘電率εに比例し、電極板間の対向平均距離dに反比例するという特性があり、静電容量Cは次式で表される。
C=ε・S/d
ここで、C(F) 静電容量
S(m2) 対向する電極板間の電極板面積
d(m) 対向する電極板間の対向平均距離
ε(F/m) 電極板間の誘電体の誘電率
である。
Embodiment
First, a measurement electrode for measuring the difference in moisture content between the inside of the sample and the surface layer portion and the basic principle of the measurement method using the measurement electrode will be described.
In the present invention, a pair of electrodes is a parallel plate, and the configuration of a capacitor in which a dielectric of dielectric constant ε is sandwiched therebetween is used. The electrode plate area S of the parallel electrode plates is in the state of being disposed apart by the facing average distance d between the electrode plates opposite to each other in parallel. The capacitance C of the electrode plate of the electrode plate area S at this time is proportional to the dielectric constant ε of the dielectric between the electrode plate area S and the electrode plate, and the capacitance C of the electrode plate is S The capacitance C is expressed by the following equation.
C = ε · S / d
Where C (F) capacitance
S (m 2 ) Electrode plate area between facing electrode plates
d (m) opposing average distance between opposing electrode plates
ε (F / m) is the dielectric constant of the dielectric between the electrode plates.

高周波源としては、発明者らが取り扱いに慣れていることから、市販の高周波容量式水分計(HI−520:(株)ケツト科学研究所製、高周波容量式(20MHz))の電極17,18からの高周波出力を用いた。
なお、発明者らの実験では、LCRメータに替えて高周波容量式水分計を用いているが、結果的に、静電容量Cの値を測定するものではなく、その出力を中継するものであり、誘電率εによって供試材料(骨材)の静電容量Cを高周波(20MHz)で測定値を算出するものではない。
一般的なLCRメータを使用すると、電極17,18等の浮遊静電容量の影響を考慮する必要があり、結果的に、市販の高周波容量式水分計の方が有用であると思慮する。
As the high frequency source, since the inventors are used to handling, a commercially available high-frequency capacitive moisture meter (HI-520: manufactured by Ketto Scientific Research Institute, Inc., high-frequency capacitive type (20 MHz)) electrodes 17 and 18 The high frequency output from was used.
In the experiments of the inventors, a high-frequency capacitive moisture meter is used instead of the LCR meter, but as a result, the value of the capacitance C is not measured, but the output is relayed. The capacitance C of the test material (aggregate) is not calculated based on the dielectric constant ε at a high frequency (20 MHz).
If a general LCR meter is used, it is necessary to consider the influence of stray capacitances of the electrodes 17, 18, etc. As a result, it is considered that a commercially available high frequency capacitive moisture meter is more useful.

まず、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加する現象が生じる。通常、静電容量Cは誘電正接tanδからすれば、
抵抗成分の電流Ir/コンデンサ容量成分の電流Icで現され、式は
tanδ=Ir/Ic
となる。
しかし、水の誘電率80程度は温度の変化に伴って変化するし、印加する周波数によっても変化する、また、化学反応が生じており、その印加時間等によっても変化する。これはイオンによる溶融等の作用によるものが大である。
また、静電容量CをC=ε・S/dとして算出しているが、電極間に挟まれた領域を抵抗体として捉えることもできる。
そこで、現象として、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加するから、その事象のみ捉えることとした。
静電容量Cが水分の増加に伴って増加する増加分を予めモルタル、コンクリート等各種供試材料で求めておいた換算式で換算し、水分量として表示する。ここで換算式がない供試材料では、市販の高周波容量式水分計のダイレクトモード(Dモード)に切り替え、静電容量Cと相関のある数値を表示値Cdとして表示している。念のため、発明者らが使用したダイレクトモードの表示値は「0〜2999」の間で表示される。
First, when water is included in the aggregate of the test material, a phenomenon occurs in which the capacitance C increases with the increase of water. Usually, when the capacitance C is calculated from the dielectric loss tangent tan δ,
It is expressed by the current Ir of the resistance component / the current Ic of the capacitor capacitance component, and the equation is
tan δ = Ir / Ic
It becomes.
However, the dielectric constant of about 80 of water changes with the change of temperature and also changes with the frequency applied, and a chemical reaction occurs and also changes with the application time and the like. This is largely due to the action of melting by ions and the like.
Moreover, although the electrostatic capacitance C is calculated as C = (epsilon) * S / d, the area | region pinched | interposed between electrodes can also be caught as a resistor.
Therefore, as the phenomenon, when the aggregate of the test material is made to contain water, the capacitance C increases with the increase of water, so it was decided to capture only that event.
The amount of increase in capacitance C as the water content increases is converted in accordance with a conversion formula previously obtained using mortar, concrete, and various other test materials, and is displayed as the water content. Here, in the test material having no conversion formula, the mode is switched to the direct mode (D mode) of a commercially available high-frequency capacitive moisture meter, and a numerical value correlated with the capacitance C is displayed as a display value Cd. As a precaution, the display value of the direct mode used by the inventors is displayed between "0 and 2999".

双方の電極板に高周波出力(交流電圧)を印加し、その間に帯状の電界を発生させて、この電界上にある供試材料の静電容量Cを測定した。電界の形状は、境界条件等により円弧状や楕円形状になると考えられるが、「電極間隔に比例した深さまでの誘電物性量の評価は可能(所哲郎:「表面深さ分解能を有する誘電計測による高分子電気絶縁材料の劣化診断技術の開発」平成16−18年度 科学研究費補助金成果報告書」参照)と言われていることから、電極板間の対向平均距離dと電界到達深さが単純に比例する円弧状と仮定した。電極板を並列に配置し、電界が供試材料中を透過するようにし、電極板中心間距離dを変化させることで、電界が到達する深さが変化するように想定した。   A high frequency output (AC voltage) was applied to both electrode plates, and a band-like electric field was generated therebetween, and the capacitance C of the test material on this electric field was measured. The shape of the electric field is considered to be arc-like or elliptical depending on the boundary conditions etc. However, "It is possible to evaluate the amount of dielectric physical properties to a depth proportional to the electrode spacing (S. Tetsuro:" by dielectric measurement with surface depth resolution Since it is said that “Development diagnosis technology for polymer electrical insulation materials” (FY 2004-2006 Grant-in-Aid for Scientific Research Grants), the opposing distance d between the electrode plates and the depth of the electric field It was assumed that it was a circular arc shape that was simply proportional. The electrode plates were arranged in parallel, and the electric field was transmitted through the test material, and it was assumed that the depth to which the electric field reached changes by changing the center distance d of the electrode plates.

また、誘電体の誘電率εは含水率に応じて変化する。また、電極板中心間距離dは円弧状の電界の対向平均距離長になる。電極板間の対向平均距離dが小さいと、電界は模擬撥水層41のみにあり、電極板間の対向平均距離dの増加とともに静電容量Cは減少する。電界が含水率の高い模擬非撥水層42に到達すると誘電率εも変化し、表示値Cdの減少する割合が変化する。
したがって、論理的には、この変曲点が模擬撥水層41と模擬非撥水層42の境界となる。このときの撥水層厚の推定値は、実測で確認した確認値に近い値が得られた。しかし、模擬撥水層41が薄いと変曲点がすぐ現れ、変曲点の判定が困難となる。また、薄い撥水層厚測定用に電極板の幅を狭くした場合には精度が落ちるという欠点がある。即ち、最初から電界が模擬非撥水層42側に影響を与えていると推定される。
Further, the dielectric constant ε of the dielectric changes in accordance with the water content. Further, the distance d between the electrode plate centers is the facing average distance of the arc-like electric field. When the facing average distance d between the electrode plates is small, the electric field exists only in the simulated water repellent layer 41, and the capacitance C decreases with the increase in the facing average distance d between the electrode plates. When the electric field reaches the simulated non-water repellent layer 42 having a high water content, the dielectric constant ε also changes, and the reduction rate of the display value Cd changes.
Therefore, logically, this inflection point is the boundary between the simulated water repellent layer 41 and the simulated non-water repellent layer 42. The estimated value of the water repellent layer thickness at this time was close to the confirmed value confirmed by the measurement. However, if the simulated water repellent layer 41 is thin, an inflection point appears immediately, which makes it difficult to determine the inflection point. In addition, when the width of the electrode plate is narrowed for thin water-repellent layer thickness measurement, there is a disadvantage that the accuracy is lowered. That is, it is estimated that the electric field affects the side of the non-water repellent layer 42 from the beginning.

次に、本発明の実施の形態で使用する図1に示す電極板21,22,21A,22Aについて検討する。
一方の電極板の中心位置から他方の電極板の中心位置までの水平面距離tと電極板面積Sの比S/tが一定であるような電極を作製した。この水平面距離tと電極板面積Sの比S/tが一定な電極を、ここでは『等比共面電極』と呼ぶこととする。また、電極板21,22,21A,22Aについて、水平面距離tとして定義しているが、垂直面であってもよいし、所定の傾きであってもよい。ここでは、電極板間の対向平均距離dとの違いを明確にするため水平面距離tという。そして、ここでは、S/t=constを『等比共面電極定数』という。
Next, the electrode plates 21, 22, 21A, 22A shown in FIG. 1 used in the embodiment of the present invention will be examined.
An electrode was manufactured such that the ratio S / t of the horizontal plate distance t from the center position of one electrode plate to the center position of the other electrode plate and the electrode plate area S was constant. An electrode in which the ratio S / t of the horizontal plane distance t to the electrode plate area S is constant is referred to as a "equal ratio coplanar electrode". Further, although the horizontal distance t is defined for the electrode plates 21, 22, 21A, 22A, it may be a vertical surface or may have a predetermined inclination. Here, in order to clarify the difference with the facing average distance d between electrode plates, it is called horizontal surface distance t. Here, S / t = const is referred to as "equal ratio coplanar electrode constant".

ここで、水平面距離tに円周率πを乗算した値を電極板間距離dと設定する。
π・t=d
t=d/π
となる。
したがって、
S/t=S・π/d
となる。円周率πが一定、等比共面電極定数S/dが常に一定となる。
また、静電容量Cは、C=ε・S/dにより、誘電率ε、即ち、含水率が深さ方向に変化しなければ静電容量Cは一定となる。
そして、水平面距離tを順次大きくしていくと、電界が含水率の高い部分に到達したとき、静電容量Cは初めて変化し、その変化した位置の値が模擬撥水層41の深さとなる。
Here, a value obtained by multiplying the horizontal distance t by the circle ratio π is set as the inter-plate distance d.
π · t = d
t = d / π
It becomes.
Therefore,
S / t = S · π / d
It becomes. The circle ratio π is constant, and the uniform coplanar electrode constant S / d is always constant.
In addition, the capacitance C is constant, if the dielectric constant ε, that is, the water content does not change in the depth direction, according to C = ε · S / d.
Then, when the horizontal distance t is sequentially increased, when the electric field reaches a portion with high water content, the capacitance C changes for the first time, and the value of the changed position becomes the depth of the simulated water repellent layer 41 .

発明者らは、更に、等比共面電極21,22,21A,22A(以下、これらを「等比共面電極20」とまとめて呼ぶこととする)について究明する。
水平面距離tが4、8、12、16、20mmの5種類の等比共面電極20を作製した。等比共面電極20の電極板長は100mmで一定とし、電極板幅を変化させて等比共面電極定数S/t=100とした。この場合、電極板幅は水平面距離tと相殺するため、電極板間の対向平均距離dと等比共面電極20の水平面距離tは同一(電極板間の対向平均距離d=水平面距離t)とした。ここで、一対の等比共面電極20の面積が異なる電極板を除外した。
The inventors further investigate iso-coplanar electrodes 21, 22, 21A and 22A (hereinafter, these will be collectively referred to as “e-coplanar electrode 20”).
Five types of equal ratio coplanar electrodes 20 having horizontal surface distances t of 4, 8, 12, 16, and 20 mm were produced. The electrode plate length of the equal ratio coplanar electrode 20 was constant at 100 mm, and the electrode plate width was changed to set the equal ratio coplanar electrode constant S / t = 100. In this case, since the width of the electrode plate offsets the horizontal distance t, the facing average distance d between the electrode plates and the horizontal distance t of the equal ratio coplanar electrode 20 are the same (the facing average distance d between the electrode plates d = horizontal distance t) And Here, electrode plates having different areas of the pair of equal ratio coplanar electrodes 20 were excluded.

電極板の材料としては、図2に示すように、プラスチックフィルム11に銅箔テープ10を貼り付け、更に、プラスチックフィルム11を25mmのポリスチレンフォーム12に貼り付けた。電極板としての銅箔テープ10にはビニール被覆銅線15,16を取り付けて延長し、市販の高周波容量式水分計の電極17及び電極18と接触させた。なお、図2においてはリード線としてのビニール被覆銅線15,16の長さが異なるが、試験回路では均一長さとしている。回路的には対称性を持たせ、反対側に引き出している。
特に、両方のビニール被覆銅線15,16を近づけると、静電浮遊容量の影響を受け、出力の表示値Cdに影響するため、お互いに離し、その影響が最小値になるようにした。電極21A(21)及び電極22A(22)の上面と模擬供試体の上面のみを導通とするため、模擬供試体の他の上面を電気的に絶縁するためラップフィルム14を敷いている。
また、銅箔テープ10と供試体を密着させるため2kgの錘13をポリスチレンフォーム12の上に置いた。
As a material of an electrode plate, as shown in FIG. 2, the copper foil tape 10 was stuck on the plastic film 11, and also the plastic film 11 was stuck on the polystyrene foam 12 of 25 mm. Vinyl coated copper wires 15 and 16 were attached to the copper foil tape 10 as an electrode plate and extended, and brought into contact with the electrodes 17 and 18 of a commercially available high-frequency capacitive moisture meter. Although the lengths of the vinyl-coated copper wires 15 and 16 as lead wires are different in FIG. 2, they are uniform in length in the test circuit. The circuit has symmetry and is drawn out on the opposite side.
In particular, when both vinyl coated copper wires 15 and 16 are brought close to each other, they are influenced by the electrostatic stray capacitance and affect the displayed value Cd of the output, so they are separated from each other so that the influence becomes the minimum value. In order to electrically connect only the upper surface of the electrode 21A (21) and the electrode 22A (22) to the upper surface of the simulated sample, a wrap film 14 is applied to electrically insulate the other upper surface of the simulated sample.
Also, a 2 kg weight 13 was placed on the polystyrene foam 12 in order to bring the copper foil tape 10 into close contact with the test piece.

このようにして製作した等比共面電極20を用いて、一定の含水率とした模擬供試体を作製し、ケイカル板及びコンクリートの表示値Cdの特性を測定した。ケイカル板は厚さ5mmで加工し易く、また、吸水率も高く、吸水速度も速いため模擬供試体として採用した。
厚さ5mm×縦100mm×幅100mmの模擬供試体を105℃の下で24時間炉乾燥させたものを含水率0%の状態とし、この状態における模擬供試体の質量を下に1枚ずつ所定の含水率となるような質量の水とともにポリ袋に入れ吸水させた後に密閉した模擬供試体を作成した。そして、図3に示すような、模擬供試体の全体を100%としたときの含水率0、6、12%のケイカル板を製作した。なお、コンクリートは含水率0、4、6.4%の立方体を製作した。
Using the equal ratio coplanar electrode 20 manufactured in this manner, a simulated specimen with a constant water content was manufactured, and the characteristics of the display value Cd of the carbon plate and the concrete were measured. A caikale plate is easily processed at a thickness of 5 mm, has a high water absorption rate, and has a high water absorption rate, and was adopted as a simulated specimen.
A sample of 5 mm in thickness x 100 mm in length x 100 mm in width is subjected to oven drying at 105 ° C. for 24 hours to obtain a water content of 0%. The sample was placed in a plastic bag with water of such a mass as to cause water absorption, and was then absorbed to make a sealed test sample. Then, as shown in FIG. 3, a caical plate having a moisture content of 0, 6, 12% when the whole of the simulated specimen was 100% was manufactured. In addition, concrete manufactured cubes with a moisture content of 0, 4 and 6.4%.

ここで、ケイカル板の絶乾密度は約0.7g/cm3とコンクリートに比べて1/3程度であるから、含水している水量も同じ含水率ではコンクリートの約1/3になる。同じ含水率のケイカル板を8枚重ねた等比共面電極20を作製し、表示値Cdの値を計測した。
また、コンクリートは水とセメントの比55%で作製した100×100×400mmのコンクリート模擬供試体を100mm角の立方体に切断し、水で飽和させ表乾状態(含水率6.4%)としたものと、同じ寸法で含水率4.0%及び0%となるように調整したものをポリ袋に入れ密閉し、水を均一に吸着させて、所定の含水率の模擬供試体を得た。
ここで、模擬供試体の水平面距離tと表示値Cdの関係を図3に示す。
Here, since the bone dry plate has an absolute dry density of about 0.7 g / cm 3 , which is about 1/3 of that of concrete, the amount of water containing water is about 1⁄3 of that of concrete with the same water content. Eight equal carbon content plates having the same water content were stacked to prepare an equal ratio coplanar electrode 20, and the value of the display value Cd was measured.
The concrete was prepared by cutting a 100 × 100 × 400 mm concrete simulation specimen prepared with a 55% water / cement ratio into cubes of 100 mm square and saturated with water to obtain a surface dry state (water content: 6.4%) What was adjusted so that the moisture content and the moisture content of the same dimensions as that of the one were adjusted to 4.0% and 0% was put in a plastic bag and sealed, and water was uniformly adsorbed to obtain a simulated specimen of a predetermined moisture content.
Here, the relationship between the horizontal distance t of the simulated specimen and the display value Cd is shown in FIG.

図3に示すように、コンクリートとケイカル板の含水率が一定であれば、水平面距離tを変えても表示値Cdが略一定であることが判る。表示値Cd及びコンクリートまたはケイカル板等の供試体が判れば、供試体の含水率が特定されることになる。ここで、表示値Cdの誤差はケイカル板、コンクリートの全体関に対する含水率分布の特性の違い、個体による含水率の違いによるものと推定される。
また、各含水率における電極板中心位置までの水平面距離tが大きくなっても、小さくなっても表示値Cdの値は変化せず、略一定となっていることが確認された。
そして、等比共面電極定数S/tとして一定であれば、電極中心位置までの水平面距離tを大きくして電界が到達する位置を深くしても、誘電率ε(含水率)が変化しなければ表示値Cdは同じ値となる。そして、含水率が高くなると表示値Cdの値は大きくなるという結果が得られた。これにより表示値Cdが含水率に依存することが判る。
As shown in FIG. 3, it can be seen that the display value Cd is substantially constant even if the horizontal surface distance t is changed, if the water content of the concrete and the carbon plate is constant. Once the indicated value Cd and the specimen such as concrete or caulcal plate are known, the moisture content of the specimen is specified. Here, it is presumed that the error of the indicated value Cd is due to the difference in the characteristic of the moisture content distribution to the caulcal board and the general relation of the concrete, and the difference in the moisture content depending on the individual.
In addition, even if the horizontal distance t to the electrode plate center position at each moisture content increases, it is confirmed that the value of the display value Cd does not change and becomes substantially constant even if the horizontal distance t decreases.
Then, if the equi-coplanar electrode constant S / t is constant, the dielectric constant ε (water content) changes even if the horizontal distance t to the electrode center position is increased and the position where the electric field reaches is deepened. If not, the display value Cd is the same value. Then, the result was obtained that the value of the display value Cd becomes larger as the moisture content becomes higher. From this, it can be seen that the indicated value Cd depends on the water content.

次に、この等比共面電極20を用いて模擬撥水層41の模擬供試体の測定を行う。
図2及び図3に示す含水率6.4%及び4.0%のコンクリート立方体の上に0、6、12%のケイカル板を1枚または2枚または3枚載せて、各電極板の積層状態で表示値Cdを測定した。ケイカル板は含水率が低い模擬撥水層41を、コンクリートは含水率が高い模擬非撥水層42を模擬した2層模擬供試体モデルとした。
Next, measurement of the simulated specimen of the simulated water repellent layer 41 is performed using this equal ratio coplanar electrode 20.
1 or 2 or 3 sheets of 0, 6 and 12% silicon plates are placed on the concrete cubes with water content of 6.4% and 4.0% shown in FIG. 2 and FIG. 3, and lamination of each electrode plate The display value Cd was measured in the state. The carbon plate is a two-layer simulated specimen model in which the simulated water repellent layer 41 having a low water content is simulated, and the concrete non-water repellent layer 42 having a high water content is simulated.

図4に示すように、誘電率ε、含水率6.4%のコンクリートの上に含水率0%のケイカル板を1、2、3枚重ねて電極板中心位置までの水平面距離tと各表示値Cdの関係を図示した。
図4に示すように、厚さ5mmのケイカル板が1枚と薄い場合には直線の傾きが大きく、3枚重ねて15mmとした厚い場合には傾きが小さくなっている。
また、ケイカル板の厚さに左右されないx=0のときのy軸と交わるy軸の交点、即ち、表示値Cdの切片bは略同じ値になっている。その値は図3に示した含水率が0%のケイカル板を重ねた場合の表示値Cd=1270に近い値を示した。他の含水率のケイカル板を用いたものでも直線関係、即ち、表示値Cdの一次関数方程式
表示値Cd=ax+b=ax+1270
表示値Cdは縦軸(y)、xは横軸である。
が得られた。表示値Cdの切片bを図5に示す。
コンクリート及びケイカル板の含水率、及び重ねたケイカル板の枚数を変化させて測定して得られた水平面距離tと、表示値Cdの関係を最小自乗法により直線回帰して求めた各直線の傾きaとx=0のy軸(表示値Cd)と交わる交点が表示値Cdとなる。
As shown in FIG. 4, one, two, three, or four pieces of silicon boards with a moisture content of 0% are stacked on concrete having a dielectric constant ε and a moisture content of 6.4%, and the horizontal distance t to the electrode plate center position and each display The relationship of the value Cd is illustrated.
As shown in FIG. 4, the inclination of the straight line is large when the thickness of 5 mm of the silicon plate is as thin as one, and the inclination is small when the thickness of three laminated sheets is 15 mm.
Further, the intersection point of the y-axis intersecting the y-axis at x = 0 which does not depend on the thickness of the caiscal plate, that is, the intercept b of the display value Cd is substantially the same value. The value showed a value close to the indicated value Cd = 1270 in the case of overlapping the silica plates having a water content of 0% shown in FIG. A linear relationship, ie, a linear function equation of the display value Cd, is also used in the case of using a calcium carbonate of other moisture content
Display value Cd = ax + b = ax + 1270
The display value Cd is the vertical axis (y), and x is the horizontal axis.
was gotten. The intercept b of the indicated value Cd is shown in FIG.
The slope of each straight line obtained by linear regression of the relationship between the display value Cd and the horizontal distance t obtained by changing the moisture content of concrete and caycal board and the number of stacked caical boards and changing it. An intersection point of a and x = 0 y axis (display value Cd) is a display value Cd.

模擬撥水層41に見立てたケイカル板の含水率と模擬非撥水層42に見立てたコンクリートの含水率の差が大きいほど、回帰直線の傾きが大きくなった。これは、ケイカル板の静電容量Caのインピーダンスとコンクリートの静電容量Cbのインピーダンスが直列接続されていると見做されると、インピーダンスの比較によってCa≫Cbであるとき、直列接続するとコンデンサの容量のインピーダンスが大きいCaに仕事量が依存されることになる。
特に、コンクリートの含水率が4%で上に載せたケイカル板の含水率が12%と、あまり両者の含水量の差が大きくない場合には、ケイカル板の枚数を増やすと傾きがマイナスになり、回帰直線の相関係数も小さくなる。
また、模擬撥水層41の厚さが大となると、即ち、ケイカル板の枚数が増えると傾きが小さくなった。ケイカル板の含水率が同じ場合、図6に示す含水率と切片の関係で示すように、重ねる枚数を変化させても切片bの値は略同じになった。特に、含水率が一定であり、含水量に変化がないので、何枚用いても同じになると推定される。
また、これにより、模擬撥水層41は含水率が非常に小さいことから、望ましい測定方法であると思慮される。
The larger the difference between the moisture content of the cical plate regarded as the simulated water repellent layer 41 and the moisture content of concrete regarded as the simulated non-water repellent layer 42, the larger the inclination of the regression line. It is considered that if the impedance of the capacitance Ca of the caical plate and the impedance of the capacitance Cb of concrete are considered to be connected in series, when Ca 接 続 Cb by the comparison of impedances, the capacitors are connected in series The amount of work is dependent on Ca, which has a large capacitance impedance.
In particular, when the moisture content of concrete is 4% and the moisture content of the cical plate placed above is 12%, the difference between the moisture content of the two is not so large, the inclination becomes negative when the number of cical plates is increased. , The correlation coefficient of the regression line also decreases.
In addition, when the thickness of the simulated water repellent layer 41 was large, that is, as the number of the silica plates was increased, the inclination was reduced. In the case where the moisture content of the caycal plate is the same, as shown by the relationship between the moisture content and the segment shown in FIG. 6, the values of the segment b become substantially the same even if the number of overlapping sheets is changed. In particular, since the water content is constant and there is no change in the water content, it is estimated that the same can be obtained regardless of how many sheets are used.
Also, it is considered that the simulated water repellent layer 41 is a desirable measurement method because the moisture content is very small.

また、ケイカル板が3枚(15mm厚さ)の場合、水平面距離tが4mm、8mmの電極では表示値Cdは変化しないことから、電界が含水率の高い模擬非撥水層42には大きな影響がないと推定される。
模擬非撥水層42に届きはじめる12mm、16mm以上で急激に大きくなると推定していたが、表示値Cdは連続的に増大し、水平面距離tと表示値Cdには直線関係が得られ、不連続点は発生しなかった。電界形状について電極板が対向状態で円弧状になるとも推定されるが、等比共面電極20相互間に直列接続されたインピーダンスとしての静電容量の和と同じで、供試体中での電界の形状や含水率の差の影響調査等の詳しい解析が今後検討課題となる。
In addition, in the case of three caical plates (15 mm thick), the display value Cd does not change with electrodes having a horizontal distance t of 4 mm and 8 mm, so the electric field has a large effect on the simulated non-water repellent layer 42 with high moisture content It is presumed that there is no
Although it was estimated that the display value Cd would increase rapidly at 12 mm and 16 mm or more starting to reach the simulated non-water repellent layer 42, the display value Cd would increase continuously and a linear relationship was obtained between the horizontal distance t and the display value Cd. No continuous points occurred. The electric field shape is also presumed to be an arc when the electrode plates face each other in the opposite state, but the electric field in the sample is the same as the sum of the capacitances as impedances connected in series between equal ratio coplanar electrodes 20. Detailed analysis, such as investigation of the influence of the difference in the shape of the water content and the moisture content, will be the subject for future study.

コンクリートの含水率が6%及び4%で重ねるケイカル板の含水率が、0%及び12%としたケイカル板の厚さを変化させて得られたそれぞれの回帰直線の傾きの逆数1/aとケイカル板の厚さとの関係を図7に示す。それぞれ傾きの逆数1/aとケイカル板の厚さには一次関数方程式で示すことができる直線関係が得られた。
このことより傾きの逆数1/aと撥水層厚の関係を供試体毎に予め求めておけば、等比共面電極20で測定し得られた水平面距離tと表示値Cdの回帰直線の傾きaまたは傾きの逆数1/aから撥水層厚が推定できることになる。
The moisture content of the caking plate piled up at 6% and 4% of the concrete content, the reciprocal of the slope 1 / a of the regression line obtained by changing the thickness of the caking plate with 0% and 12%, respectively The relationship with the thickness of the caycal plate is shown in FIG. The linear relationship which can be shown by a linear function equation was obtained for the reciprocal 1 / a of the slope and the thickness of the caycal plate, respectively.
From this, if the relationship between the reciprocal 1 / a of the slope and the thickness of the water repellent layer is determined in advance for each sample, the regression line of the horizontal distance t and the display value Cd obtained by measuring with the equal ratio coplanar electrode 20 The water repellent layer thickness can be estimated from the slope a or the reciprocal 1 / a of the slope.

次に、これら得られた模擬供試体のデーを用いて検討する。
まず、模擬撥水層41を形成したコンクリート模擬供試体を等比共面電極20で測定し、模擬供試体で得られたような回帰直線の傾きの逆数1/aと撥水層厚との関係を検討する。
コンクリートは3種類の配合のものを用いた。当該コンクリートの配合及び28日圧縮強度を図8に示す。
水とセメント比(図8ではW/Cと記す)は40、55、70%とした。一般的な構造物に使用されている水とセメント比55%で空気量も5%程度の普通コンクリート、及び比較的高強度を想定した水とセメント比40%のものと、比較的低品質のコンクリートを想定した水セメント比70%の低強度でAE剤(界面活性剤の一種で、コンクリート打設作業能率の向上及び耐凍性を向上させる混和剤)を使用せずに空気量が小さくなるようにしたものとした。使用したセメントは、早強セメントを用いた。
なお、使用した骨材の物性を念のため図9に示した。粗骨材は長良川産の玉砕石を用い、細骨材には長良川産の粗砂と細砂を7:3の割合で混合したものを用いた。
ここで、s/aは細骨材率(全骨材の体積に占める細骨材の体積の割合)で、ここではs/a=40%とした。また、S1は細骨材のうち粗いもの、S2は細骨材のうち細かいもの、Gは粗い骨材である。
Next, it examines using the day of these obtained mock specimens.
First, a concrete simulation sample on which a simulation water repellent layer 41 was formed was measured with a uniform ratio coplanar electrode 20, and the reciprocal 1 / a of the slope of the regression line as obtained for the simulation sample and the water repelling layer thickness Examine the relationship.
The concrete used three types of compounding. The composition of the concrete and the 28-day compressive strength are shown in FIG.
The water to cement ratio (referred to as W / C in FIG. 8) was 40, 55, 70%. Relatively low quality such as ordinary concrete with 55% water / cement ratio and 5% air content, which are used in general structures, and 40% water / cement ratio assuming relatively high strength The amount of air can be reduced without using an AE agent (a type of surfactant, an additive that improves the efficiency of concrete placement and the freeze resistance) at a low water-cement ratio of 70% assuming concrete. It was decided to be. The cement used was early-strength cement.
The physical properties of the used aggregate are shown in FIG. The coarse aggregate used grated stone from Nagara River, and the fine aggregate was a mixture of coarse sand and fine sand from Nagara River at a ratio of 7: 3.
Here, s / a is a fine aggregate rate (the ratio of the volume of the fine aggregate to the volume of the total aggregate), and in this case, s / a = 40%. Moreover, S1 is a coarse thing among fine aggregates, S2 is a fine thing among fine aggregates, G is a coarse aggregate.

養生は、図8に示すように、脱型後28日間水中養生及び気中養生の2種類とした。
100mm×100mm×400mmの角柱の供試体を作製し、養生後、コンクリートカッターを用いて切断し、50mm×100mm×130mmとした。100mm×130mmの切断面に表面含浸材が供試体側面に垂れないように土手を作った後、炉で乾燥させ、絶乾状態にし、更に、表面含浸材を塗布した。
表面含浸材はトーケン樹脂化学株式会社製(製品名 S−7;以下、単に「T社製」という)と、大同塗料株式会社製(製品名 アクアシール1400;以下、単に「D社製」という)を用いた。T社製は液体状であり、D社製はジェル状である。
どちらも成分はシラン系で標準使用量が200g/m2とされていた。塗布量は100g/m2〜500g/m2とし、一部の供試体数は50及び800g/m2を塗布した。供試体数は全部で68個であった。
As shown in FIG. 8, two types of curing were used: curing in water and curing in air for 28 days after demolding.
A specimen of a square column of 100 mm × 100 mm × 400 mm was prepared, and after curing, it was cut using a concrete cutter to make 50 mm × 100 mm × 130 mm. After making a bank on a 100 mm × 130 mm cut surface so that the surface impregnating material does not drip on the side surface of the sample, it was dried in an oven to be completely dried, and further, the surface impregnating material was applied.
The surface impregnating material is manufactured by TOOKEN CHEMICAL CO., LTD. (Product name S-7; hereinafter simply referred to as "made by T company") and Daido Paint Co., Ltd. (product name aqua seal 1400; hereinafter referred to simply as "made by company D") Was used. The product of company T is liquid, and the product of company D is gel.
Both of the components were silanes, and the standard amount used was 200 g / m 2 . The coating amount was set to 100g / m 2 ~500g / m 2 , a portion of the specimen number was applied 50 and 800 g / m 2. The number of specimens was 68 in all.

模擬撥水層41が形成されるよう塗布後4日以上静置した後、供試体を容器内に入れて水浸させた。水の深さは供試体の高さとし、供試体の底面と側面から4日間吸水させた。模擬撥水層41は吸水速度が非常に低く、模擬非撥水層42は吸水速度が高いことから模擬供試体と同じく含水率が小さい模擬撥水層41と含水率が高い模擬非撥水層42の2層供試体モデルを構成した。
図10は水とセメント比55%で水中養生したものに、T社製の表面含浸材を100、300、500g/m2塗布したものの、電極板中心位置までの水平面距離tと表示値Cdとの関係を示す。模擬供試体と同様に電極板中心位置までの水平距離tと静電容量Cに依存する表示値Cdには直線関係(線形特性)が得られることを示す。
計測後、各供試体を割裂させ、実際に形成された撥水層厚を測定した。測定は中心部とその両側25mmの位置の部分での値を平均化した。塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、切片bは略同じ値になり、撥水層部分の含水率は同一と考えられる。
表面含浸材の塗布量は100、300、500g/m2であるが、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなっている。
このように、図10に示す電極で計測した表示値Cdと電極中心までの距離tとの関係を1次関数として求めた傾きaを求めます。図10の4.8mm、10.2mmや14.0mm)のように、この供試体を割って実際の撥水層厚さを求めておく。
After leaving for 4 days or more after application so as to form the simulated water repellent layer 41, the sample was placed in a container and immersed in water. The depth of water was set to the height of the specimen, and water was allowed to absorb from the bottom and the side of the specimen for 4 days. The simulated water repellent layer 41 has a very low water absorption rate, and the simulated non-water repellent layer 42 has a high water absorption rate, so the simulated water repellent layer 41 has a small water content like the simulated sample and the simulated non water repellent layer has a high water content. Forty-two two-layer specimen models were constructed.
Fig. 10 shows that 100, 300, 500 g / m 2 of surface impregnated material from T Co. is applied to those cured in water at a cement ratio of 55% with water, but the horizontal distance t to the electrode plate center position and the indicated value Cd Show the relationship between It shows that a linear relationship (linear characteristic) can be obtained in the display value Cd depending on the horizontal distance t to the electrode plate center position and the capacitance C as in the case of the simulated specimen.
After the measurement, each sample was split and the actually formed water repellent layer thickness was measured. The measurement averaged the value in the center part and the part of the position of 25 mm on both sides. When the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b has substantially the same value, and the water content of the water repellent layer portion is considered to be the same.
The coating amount of the surface impregnating material is 100, 300 and 500 g / m 2 , but the inclination a is large when the water repellent layer formed with a small coating amount is thin, and is small when it is thick.
In this way, the slope a is obtained as a linear function of the relationship between the display value Cd measured by the electrode shown in FIG. 10 and the distance t to the center of the electrode. As in the case of 4.8 mm, 10.2 mm and 14.0 mm in FIG. 10, the sample is divided to obtain the actual water repellent layer thickness.

更に、各模擬供試体の回帰直線の傾きの逆数1/aと撥水層厚の実測値との関係を図11に示す。
図11のY軸は実際に供試体を割って測定した撥水層厚さを用い,X軸は傾きaの逆数1/aを用いて、1次関数を求めます。
式としては,
撥水層厚さ=164.5×(1/a)+1.302になります。
撥水層が未知の供試体を電極で測定し、傾きaを求めれば,この式から撥水層が決定できる。
図11において、供試体数はT社製とD社製を塗布した模擬供試体の和が68個である。各模擬供試体の傾きの逆数1/aと、撥水層厚の実測値を切片bとを、表示値Cdと共通させて実測した撥水層厚Xから、傾きの逆数1/aが確認される。
したがって、68個のデータで表現された当該一次関数方程式の直線から傾きの逆数1/aが決定され、傾きの逆数1/aが特定されれば、撥水層厚が特定される。
傾きの逆数と撥水層厚には模擬供試体と同様に直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
Furthermore, FIG. 11 shows the relationship between the reciprocal 1 / a of the slope of the regression line of each simulated specimen and the measured value of the water repellent layer thickness.
The Y axis in Figure 11 uses the water repellent layer thickness actually measured by dividing the sample, and the X axis uses the reciprocal 1 / a of the slope a to obtain a linear function.
As a formula,
The water repellent layer thickness is 164.5 × (1 / a) + 1.302.
If the sample whose water repellent layer is unknown is measured with an electrode and the inclination a is obtained, the water repellent layer can be determined from this equation.
In FIG. 11, the number of test specimens is 68, which is the sum of simulated test specimens coated with T company and D company. The reciprocal 1 / a of the slope is confirmed from the water repellent layer thickness X measured by making the reciprocal 1 / a of the slope of each simulated specimen and the intercept b of the measured value of the water repellent layer common to the indicated value Cd. Be done.
Therefore, the reciprocal 1 / a of the slope is determined from the straight line of the linear function equation expressed by the 68 data, and if the reciprocal 1 / a of the slope is identified, the water repellent layer thickness is identified.
A linear relationship was obtained for the reciprocal of the slope and the water repellent layer thickness as in the case of the simulated specimen. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

次に、実際の構造物を想定した供試体を作成して現実の供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法について説明する。
前述の供試体では、模擬撥水層41は含水率が低く、模擬非撥水層42は表乾状態に近い高含水率とした2層供試体モデルとしてきた。
しかし、現実の構造物では含水率は2層供試体モデルではなく、表面付近が低く中心部に行くほど連続的に高くなる傾斜分布であると推定される。傾斜分布を想定し、水とセメント比55%で水中養生した角柱供試体を2等分し、切断面以外を水分の出入りしないようにゴム系塗料でシールしたものを3日浸水させた後、実験室中に7日及び1日静置した。それをそれぞれ2本ずつ静置した。
この試験を行った7日間の岐阜気象台の記録では、平均気温は6.3℃、平均湿度は62%であった。静置後に切断面にD社製表面含浸材を200g/m2塗布した。塗布前と塗布後4日後に電極で表示値Cdを測定した。
測定後、割裂して擬水層深さを測定した。塗布前と塗布後の電極中心までの水平面距離tと表示値Cdの関係を例示する。
Next, a measurement method using a measurement electrode will be described, in which a test body assuming an actual structure is prepared and a difference in moisture content between the inside of the actual test body and the surface layer portion is measured.
In the sample described above, the simulated water repellent layer 41 has a low moisture content, and the simulated non-water repellent layer 42 has a two-layer sample model with a high moisture content close to the surface dry state.
However, in an actual structure, the water content is not a two-layer sample model, but is estimated to be a slope distribution in which the vicinity of the surface is low and the height gradually increases toward the center. Assuming a slope distribution, the prismatic specimen cured in water at a cement ratio of 55% with water is divided into two equal parts, and those sealed with a rubber-based paint to prevent entry and exit of water except for the cut surface are immersed for 3 days, It stood still in the laboratory for 7 days and 1 day. Two of them were allowed to stand.
The seven-day Gifu Meteorological Observatory records that this test was conducted showed an average temperature of 6.3 ° C and an average humidity of 62%. After standing, 200 g / m 2 of a surface impregnating material manufactured by D was applied to the cut surface. The indicated value Cd was measured with the electrode before application and 4 days after application.
After the measurement, it was split to measure the simulated aqueous layer depth. The relationship between the horizontal distance t to the electrode center before application and after application and the display value Cd is illustrated.

1日乾燥させたものは、図12に示すように塗布前の表示値Cdは水平面距離tが4mmでも、表乾状態(含水率5.2%)の表示値Cd=1900に近い値となっており、殆ど水分は蒸発しておらず、飽和した状態であると推定される。塗布後でも表示値Cdは減少したが、ほぼ一定の値であり明確な傾きが得られず、撥水層厚は推定できなかった。
実際の構造物を想定した傾斜がある含水率分布での撥水層厚の推定は、実験例が少ないこともあり今後を補正することも必要となる可能性がある。今後、含水率を変化させるなど、更に、検討が必要である。
As for what was dried for 1 day, as shown in FIG. 12, the display value Cd before application becomes a value close to the display value Cd = 1900 of the surface dry state (water content 5.2%) even when the horizontal distance t is 4 mm. Most of the water is not evaporated, and it is presumed to be in a saturated state. Although the indicated value Cd decreased even after the application, it was an almost constant value and a clear slope was not obtained, and the water repellent layer thickness could not be estimated.
The estimation of the water repellent layer thickness in a moisture content distribution with a slope assuming an actual structure may have few experimental examples and may need to be corrected in the future. In the future, it is necessary to further study, such as changing the moisture content.

また、7日間静置させたものは、図13に示したように、塗布前の表示値Cdは、水平面距離tが4mmで、表示値Cdが1900弱と低く、8mm以上では略同じ値になっている。8mm以上での表示値Cdは図3に示した表乾状態(含水率6.4%)のコンクリートの表示値に近い値となっており、内部は飽和した状態と考えられる。
塗布後は4、8、12mmで表示値Cdが低下し、16mm以上で塗布前の値に近い値となった。塗布後の表示値Cdの増加がほぼ無くなる16mmまでの値を用いて直線回帰を行い傾きaを求めた。この傾きaを用いた傾きの逆数1/aと撥水層厚との関係から撥水層厚の推定を行った、推定値と実測値を図14に示す。推定値と実測値は比較的近い値を示している。
In addition, as shown in FIG. 13, the display value Cd before application is as low as 1900 at a horizontal distance t of 4 mm, the display value Cd is as low as 1900, and is substantially the same for 8 mm or more. It has become. The indicated value Cd at 8 mm or more is a value close to the indicated value of the concrete in the surface dry state (water content: 6.4%) shown in FIG. 3, and it is considered that the inside is saturated.
After application, the display value Cd decreased at 4, 8 and 12 mm, and became a value close to the value before application at 16 mm or more. Linear regression was performed using the value up to 16 mm at which the increase in the display value Cd after application almost disappeared, and the slope a was determined. An estimated value and an actual measurement value obtained by estimating the water repellent layer thickness from the relationship between the inverse 1 / a of the slope and the water repellent layer thickness using the slope a are shown in FIG. The estimated value and the measured value show relatively close values.

上記実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極は、同一の電極板面積Sの2枚を一対とし、電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が互いに異なるものを除く等比共面電極20と、両側の等比共面電極20に高周波を印加し、電極板相互の中心位置までの水平面距離tと高周波に基づく静電容量Cに依存する表示値Cdとの間で一次関数方程式Y=aX+Cd特性を得て、前記一次関数の特性の傾きaまたは逆数1/aを撥水層厚に関係する傾き情報とし、また、静電容量Cに依存する表示値Cdの切片bは、表層付近の含水率と関係する初期情報として出力を得るものである。
ここで、石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性を測定することにより、表層付近の含水率と関係する初期情報として表示値Cdの切片bが算出される。
また、前記一次関数方程式の特性における傾きの逆数1/aは、撥水層厚に関係する傾き情報とし、既知の前記一次関数方程式の特性の傾きの逆数1/aを標準として設定すれば、かつ、静電容量Cに依存する表示値Cdが一致する点を決定すれば、撥水層厚が算出できる。
The measurement electrodes for measuring the difference in moisture content between the inside of the test piece of the above embodiment and the surface layer portion are a pair of two of the same electrode plate area S, and the horizontal distance t to the center position between the electrode plates Apply high frequency to the equal ratio coplanar electrode 20 and the equal ratio coplanar electrode 20 on both sides except that the ratio equal ratio coplanar electrode constant S / t is constant and the areas of the pair equal ratio coplanar electrodes are different from each other And a linear function equation Y = aX + Cd characteristic is obtained between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C based on the high frequency, and the inclination a of the characteristic of the linear function Or the reciprocal 1 / a is the inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd dependent on the capacitance C is an output that is obtained as initial information related to the moisture content near the surface layer is there.
Here, by measuring gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode characteristics, as initial information related to the moisture content near the surface layer An intercept b of the display value Cd is calculated.
Further, if the reciprocal 1 / a of the slope in the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and if the reciprocal 1 / a of the inclination of the characteristic of the known linear function equation is set as a standard In addition, if the point at which the display value Cd dependent on the capacitance C matches is determined, the water repellent layer thickness can be calculated.

上記実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中位置心までの水平面距離tの比の等比共面電極定数S/tが一定の等比共面電極に、例えは、20MHz高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。
このとき、前記高周波の前記20MHzは、前記20MHzに限定されるものではなく、交流であればよい。しかし、周波数が低いと水の電気分解等の化学反応が生じるし、周波数が高いと誘電体の内部に磁界ができず、外表面の磁界が高くなるので、通常、5〜30MHz程度が良い。)
また、一次関数方程式の特性は、線形が好ましいが、非線形でも使用できないものではない。よって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなれば良い。
The measurement electrode for measuring the difference in moisture content between the inside of the test piece of the above embodiment and the surface layer portion is a pair of two electrode plate areas S, and the electrode plate area S and the center position between the electrode plates For example, a 20 MHz high frequency output is applied to a constant ratio coplanar electrode having a constant ratio of constant ratio co-planar electrode constant S / t, and a horizontal distance t to the central position between the electrode plates and electrostatic The characteristic between the capacitance C and the display value Cd is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of the display value Cd depending on C obtains an output as initial information related to the moisture content near the surface layer.
At this time, the 20 MHz of the high frequency is not limited to the 20 MHz, and may be an alternating current. However, if the frequency is low, a chemical reaction such as electrolysis of water occurs, and if the frequency is high, a magnetic field can not be generated inside the dielectric, and the magnetic field on the outer surface becomes high. )
Also, although the characteristics of the linear functional equation are preferably linear, they can not be used non-linearly. Therefore, when the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a may be large, and when it is thick, the inclination a may be small.

また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波電力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the simulated water repellent layer 41 formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each sample is It can also be expressed as Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, high frequency power is applied to the equal ratio coplanar electrode having a constant equal ratio coplanar electrode constant S / t. The characteristic a of the linear function equation is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

上記実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極の等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたものであるから、等比共面電極定数S/tが一定を充足する水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間距離dとが同一であるから、電界が円弧を描き、その円弧の中心位置に電極板間距離dを回帰直線として算出することができる。
また、上記実施の形態の前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたものであるから、前記一次関数方程式の特性の傾きの逆数1/aを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。
The horizontal distance t of the equal ratio coplanar electrode constant S / t of the measurement electrode for measuring the difference in the moisture content between the inside of the specimen of the above embodiment and the surface layer portion is the facing average distance d between the opposing electrode plates Since it is made identical, the horizontal distance t where the equal ratio coplanar electrode constant S / t satisfies a constant, and the value obtained by multiplying the horizontal distance t by the circular ratio π are the same as the inter-plate distance d Thus, the electric field draws a circular arc, and the inter-electrode plate distance d can be calculated as a regression line at the center position of the circular arc.
Further, since the inclination of the characteristic of the linear function equation of the above embodiment is the inverse 1 / a of the inclination of the characteristic, the inverse 1 / a of the inclination of the characteristic of the linear function equation is a water repellent layer The inclination information is related to the thickness, and the intercept b of the display value Cd depending on the capacitance C is an output as initial information related to the moisture content near the surface layer.

上記実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法は、電極板面積Sの2枚を一対とし、前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極と、両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。
前記等比共面電極から一対の等比共面電極の面積が異なるものを除くとは、等比共面電極定数S/tを満足するものでも、2枚の等比共面電極の電極板面積Sが互いに異なることを意味する。
In the measurement method using a measurement electrode that measures the difference in moisture content between the inside of the test piece of the above embodiment and the surface layer portion, two electrodes of the electrode plate area S are paired, up to the central position between the electrode plates. The equi-coplanar electrode constant S / t of the ratio of the horizontal distance t is constant, except for the case where the areas of the pair of non-coplanar coplanar electrodes are different, and the high-frequency waves on the equi-coplanar electrodes on both sides The characteristic of the linear function equation is obtained between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C by adding the output, and the slope a (reciprocal of the characteristic of the linear function equation Let 1 / a) be inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C obtain an output as initial information related to the moisture content near the surface layer .
With the exception of the cases where the areas of the pair of equal ratio coplanar electrodes are different from those of the equal ratio coplanar electrodes, the electrode plates of the two equal ratio coplanar electrodes even if they satisfy the equal ratio coplanar electrode constant S / t. It means that the areas S are different from each other.

上記実施の形態の供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法の発明は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。
前記静電容量Cに依存する表示値Cdを特定し、その特定した表示値Cdから、撥水層厚が算出される。
The invention of the measurement method using a measurement electrode for measuring the difference in moisture content between the inside of the specimen of the above-described embodiment and the surface layer portion makes the two electrode plate areas S a pair, and the electrode plate area S and the above The ratio of the horizontal distance t to the center position of the electrode plates The ratio of the same ratio coplanar electrode constant S / t is constant The high frequency output is applied to the equal ratio coplanar electrode, and the horizontal distance t to the center position The characteristic a between the capacitance C and the display value Cd is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of the display value Cd depending on the capacity C obtains an output as initial information related to the moisture content near the surface layer.
The display value Cd dependent on the capacitance C is specified, and the water repellent layer thickness is calculated from the specified display value Cd.

したがって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きaの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きaの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。   Therefore, when the simulated water repellent layer 41 formed with a small amount of application is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it is small. Therefore, the reciprocal 1 / a of the slope a of the regression line of each sample is the water repellent layer thickness. It can also be expressed. Regarding the relationship between the reciprocal 1 / a of the slope a of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

よって、等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、本実施の形態では、シラン系表面含浸材の撥水層厚を回帰直線として測定した。
特に、静電容量Cは電極板間の対向平均距離dに反比例するという特性、即ち、
C=ε・S/d
を使用したが、静電容量Cの領域を抵抗体として確認すると、この供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の確認を行うことができる。
なお、前記静電容量Cに依存する表示値Cdは、周波数に依存する静電容量Cとすること、単に、周波数に依存する静電容量Cとすることもできる。
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, a high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant. The characteristic a of the linear function equation is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thus, for example, the penetration depth and the like of the silane-based surface impregnated material were measured, and in the present embodiment, the water-repellent layer thickness of the silane-based surface impregnated material was measured as a regression line.
In particular, the capacitance C is inversely proportional to the facing average distance d between the electrode plates, ie,
C = ε · S / d
When the region of capacitance C is confirmed as a resistor, the measurement electrode for measuring the difference in moisture content between the inside of the sample and the surface layer portion and the measurement method using the measurement electrode are confirmed. be able to.
The display value Cd depending on the capacitance C may be a capacitance C depending on a frequency, or may be simply a capacitance C depending on a frequency.

本実施の形態では、シラン系表面含浸材を塗布する事例で説明したが、本発明を実施する場合には、シラン系表面含浸材は水分の含浸がないことを前提とする測定であるから、シラン系表面含浸材に限定されることなく汎用可能である。
また、コンクリート中に模擬撥水層41を形成させた供試体に吸水させ模擬供試体と同じ2層模擬供試体モデルに近い条件とした場合、模擬供試体42と同様に回帰直線の傾きの逆数と撥水層厚とには直線関係が得られた。
そして、発明者らの実験によれば、模擬供試体として供試体の特性を予め石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性として使用する必要があった。また、表面含浸材の製造メーカによって撥水層厚を推定したところ、近い値を示したもののあったが、異なっている可能性もあり、含水率分布による撥水層厚の推定方法は含水率を変化させるなどをしてさらに検討が必要であると考えられる。
In the present embodiment, the case of applying the silane-based surface impregnating material has been described, but in the case of carrying out the present invention, the measurement is based on the premise that the silane-based surface impregnating material is not impregnated with water, It can be generally used without being limited to the silane surface impregnation material.
In addition, when water is absorbed by a specimen having a simulated water repellent layer 41 formed in concrete and the condition is similar to that of a two-layer simulated specimen which is the same as the simulated specimen, the reciprocal of the slope of the regression line is A linear relationship was obtained between the and the water repellent layer thickness.
And, according to the experiments of the inventors, the characteristics of the test specimen as the simulated test specimen in advance are gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode It had to be used as a property. Moreover, when the water repellent layer thickness was estimated by the manufacturer of the surface impregnating material, it showed close values, but there is a possibility that it may be different. It is thought that further examination is needed by changing the

10 銅箔テープ(電極)
11 プラスチックフィルム
12 ポリスチレンフォーム
14 ラップフィルム
15,16 ビニール被覆銅線
17,18 高周波容量式水分計の電極
20 等比共面電極
21,22,21A,22A 電極板
31,32,33 模擬撥水層
41 模擬撥水層
42 模擬非撥水層
t 水平面距離
d 対向する電極板間の対向平均距離
S 対向する電極板間の電極板面積
C 静電容量
ε 電極板間の誘電体の誘電率
S/t 等比共面電極定数
10 Copper foil tape (electrode)
11 Plastic film 12 Polystyrene foam 14 Wrap film 15, 16 Vinyl-coated copper wire 17, 18 Electrode of high-frequency capacitive moisture meter 20 Equi-planar electrode 21, 22, 21A, 22A Electrode plate 31, 32, 33 Simulated water repellent layer 41 Simulated water-repellent layer 42 Simulated non-water-repellent layer t Horizontal distance d Countering average distance S between opposing electrode plates Electrode plate area C between opposing electrode plates Capacitance ε Dielectric constant S of dielectric between electrodes t equal ratio coplanar electrode constant

本発明は、コンクリート表面にコーティングした撥水層の厚みを供試体の内部と表層部との含水率の差を計測する計測方法に関するもので、例えば、撥水層の厚みを測定できる計測方法に属するものである。 The present invention relates to a measurement method for measuring the difference in moisture content between the inside of a sample and the surface layer portion of the thickness of a water repellent layer coated on a concrete surface, for example, a measurement method capable of measuring the thickness of the water repellent layer It belongs to.

例えば、コンクリートの骨材の配合を行う場合、「表乾状態(表面乾燥飽水状態)」にあることを前提とし、骨材の密度を求め、各種の配合設計に準じて配合している。ここで、「表乾状態」とは、押し固められた骨材の内部の空隙は水分で満たされた状態にあり、骨材の表面は水分を含まない状態にあることが前提となっている。
一般に、骨材の表乾状態を判定するには、JIS A1109に規格化されたフローコーン法が採用されている。これによると、截頭円錐状を呈するフローコーンに骨材を充填し、突き棒で突くことによって所定固さに突き固め、その後、徐々にフローコーンを上方に向かって引上げ、突き固められた骨材が崩れるか、崩れないかの境界付近の状態を表乾状態として判断している。
For example, in the case of blending concrete aggregate, it is assumed that the surface is in a “surface dry state (surface dry saturated state)”, the density of the aggregate is determined, and blending is performed according to various blending designs. Here, the "surface dry state" is based on the premise that the internal space of the compacted aggregate is filled with moisture, and the surface of the aggregate is free of moisture. .
Generally, the flow cone method standardized in JIS A1109 is employed to determine the surface dry state of aggregate. According to this, the aggregate is filled into a frustoconical flow cone, and the end is pressed to a predetermined hardness by pushing with a push rod, and then the flow cone is gradually pulled upward and the pressed bone is compacted. The condition near the boundary whether the material collapses or does not collapse is judged as the surface dry condition.

ところが、これらの表乾状態の判断には、骨材が崩れた正確なデータが必要となる。特に、正確な判断を行うには経験則が必要となる。そのため、不慣れな測定者は、正確な判断ができない場合もある。
特に、上述したフローコーン法は、主に「天然骨材」と呼ばれる砂や砂利等に対して実施されるものであるが、近年、この「天然骨材」の供給量が減少し、多くの代替物が骨材として用いられている。例えば、砕砂、高炉スラグ、ゴミ溶融スラグ、再生骨材等の所謂「低品位」の骨材が多く利用されている。これらの低品位の骨材は、表面がガラス質性状や多孔質性状を呈することがあり、天然骨材とは明らかに異なる表乾特性を有することがある。そのため、フローコーン法では砕砂等の骨材に対して正確な表乾状態を判定することが特に困難となっている。
例えば、JIS規格化されたフローコーンの形状と異なる自立角或いは広径等のサイズによって形成された新しい基準の表乾判定用コーンを用いる方法、赤外線の反射率を利用して水分量を計測するもの(非特許文献1参照)、乾湿状態における電気抵抗の変化を利用するもの(非特許文献2参照)、遠心脱水法を利用するもの(非特許文献3参照)などが知られている。
However, these determinations of surface dryness require accurate data in which the aggregate is broken. In particular, heuristics are needed to make accurate decisions. Therefore, an unaccustomed measurer may not be able to make an accurate judgment.
In particular, the flow cone method described above is mainly applied to sand, gravel, etc. called “natural aggregate”, but in recent years, the supply amount of this “natural aggregate” has decreased, and Alternatives are used as aggregate. For example, so-called "low grade" aggregates such as crushed sand, blast furnace slag, refuse melting slag, recycled aggregate and the like are widely used. These low-grade aggregates may exhibit vitreous or porous properties on their surfaces, and may have surface-drying characteristics which are clearly different from those of natural aggregates. Therefore, in the flow cone method, it is particularly difficult to determine an accurate surface dry state for aggregates such as crushed sand.
For example, a method of using a new standard surface dry judgment cone formed by a size such as a self-supporting angle or a wide diameter different from the shape of a flow cone standardized by JIS, the moisture content is measured using infrared reflectance The thing (refer nonpatent literature 1), the thing using change of electric resistance in a wet and dry state (refer nonpatent literature 2), the thing using centrifugal dehydration method (refer nonpatent literature 3), etc. are known.

竹内一真、外3名 「細骨材の表乾判定試験方法に関する基礎的研究」、コンクリート工学年次論文集、Vol.25、No.1、2003、p77−p82Takeuchi, Kazuma, 3 others "Basic research on surface dry judgment test method of fine aggregate", Annual Proceedings of Concrete Engineering, Vol. 25, No. 1, 2003, p77-p82 山本大介、外4名 「海砂代替骨材としての砕砂の表乾判定方法に関する検討」、土木学会第59回年次学術講演会、平成16年9月、p491−p492Daisuke Yamamoto, 4 others "Consideration on the method for determining the surface dryness of crushed sand as sand and sand substitute aggregate", 59th Annual Conference of the Japan Society of Civil Engineers, September, 2004, p491-p492 鈴木一雄、外1名 「細骨材の簡易表乾決定法に関する一検討」、第48回セメント技術大会講演集、1994、p156−p159Kazuo Suzuki, 1 other person “A study on simple method for determination of fine aggregate by surface dry”, Proceedings of the 48th Cement Technology Conference, 1994, p156-p159 特開2006−329801号公報JP, 2006-329801, A

非特許文献1では、異なる自立角及びサイズによって形成されたフローコーンを利用しており、表乾状態の判断に従来と同様にある程度の経験則が必要となり、精度の良い再現性を求めることが困難であった。また、骨材の種類や性状に応じて、最適なフローコーンを適宜選択する必要があり、複数種類のフローコーンを予め準備しておく必要があった。
特に、非特許文献1の赤外線の反射率を利用するものは、一般に水に吸収されやすい赤外線波長(1.46μm)と、水に吸収され難い赤外線波長(1.6μm)の二種類の波長を利用し、主に骨材として「シラス」を対象として測定したデータによって算出されていたから、その他の低品位骨材に対する作用について開示されていなかった。
また、非特許文献2では、砕砂を測定対象の試料として各種の測定を実施し、種々の結果を総合することにより、フローコーン法が最も妥当性を有する結果が得られ、その他の方法は非特許文献2の測定結果では特に優れた特性を示すものではなかった。
そして、非特許文献3では、高精度に表乾状態を判断することが可能になるが、対象となる骨材を遠心分離装置にセットし、試料に応じて数G〜数千Gの遠心力を与える必要があり、表乾状態の判定のための装置が大がかりとなり、簡易な表乾状態の判定に適さないことがあった。
Non-Patent Document 1 uses flow cones formed by different self-supporting angles and sizes, and a certain degree of empirical rule is required for the determination of the surface dry state as in the prior art, and accurate repeatability is sought. It was difficult. Moreover, it was necessary to select the optimal flow cone suitably according to the kind and property of aggregate, and it was necessary to prepare multiple types of flow cone in advance.
In particular, those utilizing the reflectance of the infrared non-patent document 1 is generally a is absorbed into the water easily infrared wavelengths (1.46 .mu.m), the two kinds of wavelengths less likely to be absorbed in water infrared wavelengths (1.6 [mu] m) Since it was used and was calculated by the data measured mainly for "Shirasu" as aggregate, it was not disclosed about the effect | action with respect to another low grade aggregate.
In Non-Patent Document 2, various measurements are carried out using crushed sand as a sample to be measured, and by combining various results, the result that the flow cone method has the most appropriate result can be obtained, and the other methods are not. The measurement results of Patent Document 2 did not show particularly excellent characteristics.
And in Non-Patent Document 3, although it becomes possible to judge the surface dry state with high accuracy, the target aggregate is set in the centrifugal separator, and the centrifugal force of several G to several G according to the sample In some cases, the apparatus for determining the surface dry state is bulky and is not suitable for simple determination of the surface dry state.

一方、現今のコンクリート構造物の耐久性の向上は、シラン系表面含浸材を表面に塗布し、浸透させ、コンクリート内部に撥水層を形成させる工法が注目されている。
この撥水層を施すことにより水分の侵入を抑制し、塩分や水分等のコンクリートの劣化因子の浸入を抑制することでコンクリートの耐久性を高めることができる。例えば、『北海道開発局道路設計要領』にはシラン系表面含浸材の製品選定の目安として、凍害対策では、浸透深さが6mm以上あるものと規定している。
しかし、その施工された撥水層厚を確かめるには、コンクリートに穿設して観察する方法がある。このコンクリートに穿設する方法は、施工製品に傷をつけることになり、必ずしも好ましい方法ではなかった。そこで、事前に作製した供試体への塗布量と撥水層厚との関係から、塗布量で管理されているが、その施工実態は不明である。
表面含浸材により形成される撥水層厚は、コンクリートの含水率に影響されることが報告されている。含水率が高いと浸透深さが小さくなる。施工現場において降雨や日射等の影響で含水率が場所によって異なることが考えられる。このため、現場における撥水層厚は、供試体に塗布した量による推定値とは誤差が生じることも考えられる。また、既存のコンクリート構造物に塗布する場合は、別途作製した供試体が残っていない場合が多く、供試体への塗布量と撥水層厚との関係を求めることができない。
このようなことから、表面含浸工法を適用する場合、形成された撥水層で管理する方が施工品質を高められる。そこで、本発明者らは含水率の高低による電気的変化を利用し、コンクリートの撥水層厚を推定する方法を究明している。
On the other hand, for the improvement of the durability of the present concrete structure, a method of applying a silane-based surface impregnating material to the surface and permeating the surface, and forming a water repellent layer inside the concrete has attracted attention.
By applying the water repellent layer, the penetration of water can be suppressed, and the penetration of deterioration factors of the concrete such as salt and water can be suppressed, whereby the durability of the concrete can be enhanced. For example, “Hokkaido Development Bureau Road Design Guidelines” stipulates that the penetration depth is 6 mm or more in the measures against frost damage as a standard of product selection of silane-based surface impregnation material.
However, in order to confirm the thickness of the applied water repellent layer, there is a method of drilling in concrete and observing. This method of drilling in concrete would damage the construction product and was not necessarily the preferred method. Then, although it is managed by application amount from the relationship between the application amount to the test object produced beforehand, and the water-repellent layer thickness, the construction actual condition is unknown.
The water repellent layer thickness formed by the surface impregnating material is reported to be affected by the moisture content of concrete. The higher the moisture content, the smaller the penetration depth. At the construction site, the moisture content may be different depending on the location due to the influence of rainfall or solar radiation. For this reason, it is also conceivable that the water repellent layer thickness at the site may cause an error from the estimated value by the amount applied to the sample. Moreover, when apply | coating to the existing concrete structure, the test body produced separately does not remain in many cases, and it can not obtain | require the relationship between the application quantity to a test object, and the water-repellent layer thickness.
From such a thing, when applying a surface impregnation method, the quality of construction can be enhanced by managing with the formed water repellent layer. Therefore, the present inventors have investigated a method of estimating the water repellent layer thickness of concrete using electrical changes due to the water content ratio.

そこで、本発明者らは、特許文献1で比較的簡易な構成の骨材の表乾状態判定法を提供した。即ち、これは絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製する基準試料調製工程と、絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製するとともに、導電性を有するイオン化物質を添加し、更に攪拌するイオン化試料調製工程と、前記基準試料調製工程によって調製された含水率の異なる複数の基準試料及び前記イオン化試料調製工程によって調製された含水率の異なる複数のイオン化試料を、所定形状の測定用容器の中にそれぞれ充填し、試料表面を平滑化する充填平滑工程と、前記測定用容器にそれぞれ充填された前記基準試料及び前記イオン化試料の前記試料表面に高周波容量式水分計の測定部を当接し、高周波容量を測定する高周波容量測定工程と、前記高周波容量式水分計によって示される表示値及び前記基準試料または前記イオン化試料の含水率の関係を示す基準試料及び添加試料を作成し、略比例関係を示す前記基準試料に対し、前記添加試料の傾きが変化する表乾点を特定し、表乾状態を判定する表乾判定工程とを具備するものである。  Therefore, the present inventors have provided a method of determining the surface dry state of aggregate with a relatively simple configuration in Patent Document 1 That is, this is mixing and stirring water in the aggregate in the bone-drying state, and mixing and stirring the water in the aggregate in the bone-drying state and the reference sample preparation step of preparing each to a predetermined moisture content respectively The ionized sample preparation step of preparing an ionized substance having conductivity and adding the ionized material having conductivity and stirring the mixture, and a plurality of reference samples having different water contents prepared by the reference sample preparation step and the ionized sample preparation step And filling the plurality of ionized samples having different moisture contents prepared in the above into the measurement container having a predetermined shape and smoothing the sample surface, and the reference sample filled in the measurement container. And a measurement step of measuring a high frequency capacity by bringing a measurement portion of the high frequency capacity moisture meter into contact with the surface of the sample of the ionized sample, and the high frequency capacity moisture meter A reference sample indicating the relationship between the indicated value and the moisture content of the reference sample or the ionized sample, and the addition sample are prepared, and a surface dry point at which the inclination of the addition sample changes with respect to the reference sample It comprises the table dry judging process which specifies and judges the surface dry state.

これにより、コンクリートの含水率を測定する水分計を改良し、静電容量を計測することにより、一対の電極板の距離を変化させることで電極板から発生する電界がコンクリート中に到達する深さを変化させ、電界が撥水層内にあれば静電容量は一定の割合で減少し、電界が含水率の高い模擬非撥水層に到達すれば静電容量の減少割合が変化することから、この変曲点を撥水層と普通層の境界とし、実測値に比較的近い値が得られている。
しかし、特許文献1のコンクリートが含水する水は、純粋のH2Oは良好な絶縁体であり、その純粋のH2Oを測定していると、その測定中に抵抗値が低下する。また、それに伴って誘電率も金属イオンによって変化し、含水率によって導電率、誘電率の周波数特性として変化する。また、容積の大きい測定対象であると、電極板の位置、電極板の面積、電界を決定する印加電圧の高さによって電界の広がり、電界密度が変化するから、これらの問題点を介在させた計算が必要になってくる。
Thereby, the moisture meter which measures the moisture content of concrete is improved, and the electric field generated from the electrode plate reaches the concrete by changing the distance between the pair of electrode plates by measuring the capacitance. When the electric field is in the water repellent layer, the capacitance decreases at a constant rate, and when the electric field reaches the high water content simulated non-water repellent layer, the rate of decrease in capacitance changes. The inflection point is defined as the boundary between the water repellent layer and the ordinary layer, and a value relatively close to the measured value is obtained.
However, in the water containing concrete of Patent Document 1, pure H 2 O is a good insulator, and when the pure H 2 O is measured, the resistance decreases during the measurement. Also, along with that, the dielectric constant also changes depending on the metal ion, and changes as the frequency characteristic of conductivity and dielectric constant depending on the water content. Also, if the measurement target is a large volume, the electric field spreads and the electric field density changes depending on the position of the electrode plate, the area of the electrode plate, and the height of the applied voltage that determines the electric field. Calculation will be needed.

そこで、本願発明は、含水率によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難く、撥水層の厚みを測定できる計測方法の提供を目的とするものである。 Therefore, the present invention aims to provide a measurement method which can measure the thickness of the water repellent layer without the effect appearing even if the resistance value and the dielectric constant change depending on the water content without changing the result depending on the water content. It is said that.

請求項1の発明の撥水層の厚みを測定できる計測方法は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tと各電極板面積Sとの比の等比共面電極定数S/tが一定であり、電極面積の異なる複数の電極から構成される。一対の等比共面電極の両側に高周波出力を印加し、静電容量Cを測定する。電極板相互の中心位置までの水平面距離tと静電容量Cに依存する各電極で計測された表示値Cdとの間で特定の一次関数の特性を得て、前記一次関数の特性の傾きaを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bを表層付近の含水率と関係する初期情報として出力を得るものである。 The measurement method which can measure the thickness of the water repellent layer of the invention of claim 1 is that the electrode plate area S and the horizontal distance t to the center position between the electrode plates are a pair of two electrode plates having the electrode plate area S The equal ratio coplanar electrode constant S / t of the ratio to each electrode plate area S is constant , and it is composed of a plurality of electrodes having different electrode areas. A high frequency output is applied to both sides of a pair of equal ratio coplanar electrodes, and the capacitance C is measured. A characteristic of a specific linear function is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd measured at each electrode depending on the capacitance C, and a slope a of the characteristic of the linear function Is the inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is output as initial information related to the moisture content near the surface layer.

ここで、上記等比共面電極は、電極板相互の中心位置までの供試体の水平面距離tと電極板面積Sの比が一定であればよい。特に、それを満足するのが等比共面電極定数S/tである。(但し、等比共面電極定数S/tが同一でも、一対の電極板面積が異なるものを除く。)
また、上記等比共面電極定数S/tの水平面距離tは、直線距離上の対向する電極板間の対向平均距離dと同一とすることもできる。しかし、水平面距離tとか、対向平均距離dは、その静電界、電界によって、その形態が決まるので、同一とし、算出式で相殺されるのが望ましい。
そして、上記一次関数の特性の傾きは、その特性の傾きまたはその特性の傾きの逆数1/aとすることができる。いずれにせよ、一定の等比共面電極の両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を描ければよい。
Here, the equal ratio coplanar electrodes, the ratio of horizontal distance t and the electrode plate area S of the specimen to the center position of the electrode plates mutually may be a constant. In particular, it is the isometric coplanar electrode constant S / t that satisfies it. (However, even if the geometrical ratio coplanar electrode constant S / t is the same, except for the case where the pair of electrode plate areas are different.)
Further, the horizontal distance t of the above-mentioned equal ratio coplanar electrode constant S / t can be made equal to the facing average distance d between the facing electrode plates on the linear distance. However, it is preferable that the horizontal distance t and the facing average distance d be the same because they are determined by the electrostatic field and the electric field, and they should be offset by a calculation formula.
The slope of the characteristic of the linear function can be the slope of the characteristic or the reciprocal 1 / a of the inclination of the characteristic. In any case, a high frequency output is applied to the equal ratio coplanar electrodes on both sides of a fixed equal ratio coplanar electrode, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C The characteristics of the linear function may be drawn between the two.

請求項1にかかる撥水層の厚みを測定できる計測方法の発明は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tとの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極に高周波出力を加え、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。 The invention of the measuring method capable of measuring the thickness of the water repellent layer according to claim 1 makes two electrode plates of the electrode plate area S a pair and measures the horizontal distance t between the electrode plate area S and the center position of the electrode plates. High frequency output is applied to equal ratio coplanar electrodes except for the case where the ratio of the ratio to that of the constant ratio coplanar electrode constant S / t is constant and the area of the pair of equal ratio coplanar electrodes is different, and the center position between the electrode plates Obtain a characteristic between the horizontal distance t of the surface and the display value Cd depending on the electrostatic capacitance C, and let the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation be the inclination information related to the water repellent layer thickness Further, the intercept b of the display value Cd depending on the capacitance C obtains an output as initial information related to the moisture content near the surface layer.

したがって、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きの(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Therefore, when the water repellent layer formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each specimen is expressed as the water repellent layer You can also Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, a high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant. The characteristic of the linear function equation is obtained, and (reciprocal number 1 / a) of the inclination of the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and the display value Cd depending on the capacitance C The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

図1は本発明の実施の形態の撥水層の厚みを測定できる計測方法の図示した基本的説明図である。FIG. 1 is a basic explanatory view illustrating a measuring method capable of measuring the thickness of the water repellent layer according to the embodiment of the present invention. 図2は本発明の実施の形態の基本的構成図である。FIG. 2 is a basic block diagram of the embodiment of the present invention. 図3は本発明の実施の形態で使用する含水率が模擬非撥水層一定の場合の表示値との関係を示す説明図である。FIG. 3 is an explanatory view showing the relationship between the water content used in the embodiment of the present invention and the display value in the case where the simulated non-water repellent layer is constant. 図4は本発明の実施の形態で使用する模擬供試体によると水平面距離と表示値との関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the horizontal distance and the display value according to the simulated specimen used in the embodiment of the present invention. 図5は本発明の実施の形態で使用する回帰直線の傾きと切片の関係を示す説明図である。FIG. 5 is an explanatory view showing the relationship between the slope and the intercept of the regression line used in the embodiment of the present invention. 図6は本発明の実施の形態で使用する各含水率における切片の関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship of the intercept at each moisture content used in the embodiment of the present invention. 図7は本発明の実施の形態で使用する各含水率における傾きの逆数の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship of the reciprocal of the slope in each moisture content used in the embodiment of the present invention. 図8は本発明の実施の形態で測定するコンクリート供試体の配合を示す説明図である。FIG. 8 is an explanatory view showing the composition of the concrete sample to be measured in the embodiment of the present invention. 図9は本発明の実施の形態で測定するコンクリート供試体の骨材の物性を示す説明図である。FIG. 9 is an explanatory view showing the physical properties of the aggregate of the concrete sample to be measured in the embodiment of the present invention. 図10は本発明の実施の形態で測定するコンクリート供試体の静電容量の変化を示す特性図である。FIG. 10 is a characteristic diagram showing the change of the capacitance of the concrete sample to be measured in the embodiment of the present invention. 図11は本発明の実施の形態で測定する傾きの逆数と撥水層厚を示す特性図である。FIG. 11 is a characteristic diagram showing the reciprocal of the inclination and the water repellent layer thickness measured in the embodiment of the present invention. 図12は本発明の実施の形態で測定する傾斜含水率分布を持つ静置1日の供試体の表示値の特性図である。FIG. 12 is a characteristic diagram of the display value of the test sample of stationary day 1 having the inclined water content distribution measured in the embodiment of the present invention. 図13は本発明の実施の形態で測定する傾斜含水率分布を持つ静置7日の供試体の表示値の特性図である。FIG. 13 is a characteristic diagram of the display value of the specimen of stationary 7 days having the inclined water content distribution measured in the embodiment of the present invention. 図14は本発明の実施の形態で測定した実測値と推定値を示す測定結果図である。FIG. 14 is a measurement result diagram showing measured values and estimated values measured in the embodiment of the present invention.

以下、本発明の実施の形態の撥水層の厚みを測定できる計測方法について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Hereinafter, the measuring method which can measure the thickness of the water repellent layer of embodiment of this invention is demonstrated based on drawing. Note that, in the embodiment, the same symbols and symbols in the drawings are the same or corresponding functional parts, and therefore the description thereof will not be repeated here.

[実施の形態]
まず、撥水層の厚みを測定できる計測方法の基本原理から説明する。
本発明では、一対の電極が平行板で、その間に誘電率εの誘電体を挟んだコンデンサの構成を利用している。平行する電極板の電極板面積Sは、並行に対立する電極板間の対向平均距離dだけ離して配設された状態としている。このときの電極板面積Sの電極板を平行板コンデンサの静電容量Cは、電極板面積Sと電極板間に挟む誘電体の誘電率εに比例し、電極板間の対向平均距離dに反比例するという特性があり、静電容量Cは次式で表される。
C=ε・S/d
ここで、C(F) 静電容量
S(m2) 対向する電極板間の電極板面積
d(m) 対向する電極板間の対向平均距離
ε(F/m) 電極板間の誘電体の誘電率
である。
Embodiment
First, the basic principle of the measurement method capable of measuring the thickness of the water repellent layer will be described.
In the present invention, a pair of electrodes is a parallel plate, and the configuration of a capacitor in which a dielectric of dielectric constant ε is sandwiched therebetween is used. The electrode plate area S of the parallel electrode plates is in the state of being disposed apart by the facing average distance d between the electrode plates opposite to each other in parallel. The capacitance C of the electrode plate of the electrode plate area S at this time is proportional to the dielectric constant ε of the dielectric between the electrode plate area S and the electrode plate, and the capacitance C of the electrode plate is S The capacitance C is expressed by the following equation.
C = ε · S / d
Where C (F) capacitance
S (m 2 ) Electrode plate area between facing electrode plates
d (m) opposing average distance between opposing electrode plates
ε (F / m) is the dielectric constant of the dielectric between the electrode plates.

高周波源としては、発明者らが取り扱いに慣れていることから、市販の高周波容量式水分計(HI−520:(株)ケツト科学研究所製、高周波容量式(20MHz))の電極17,18からの高周波出力を用いた。
なお、発明者らの実験では、LCRメータに替えて高周波容量式水分計を用いているが、結果的に、静電容量Cの値を測定するものではなく、その出力を中継するものであり、誘電率εによって供試材料(骨材)の静電容量Cを高周波(20MHz)で測定値を算出するものではない。
一般的なLCRメータを使用すると、電極17,18等の浮遊静電容量の影響を考慮する必要があり、結果的に、市販の高周波容量式水分計の方が有用であると思慮する。
As the high frequency source, since the inventors are used to handling, a commercially available high-frequency capacitive moisture meter (HI-520: manufactured by Ketto Scientific Research Institute, Inc., high-frequency capacitive type (20 MHz)) electrodes 17 and 18 The high frequency output from was used.
In the experiments of the inventors, a high-frequency capacitive moisture meter is used instead of the LCR meter, but as a result, the value of the capacitance C is not measured, but the output is relayed. The capacitance C of the test material (aggregate) is not calculated based on the dielectric constant ε at a high frequency (20 MHz).
If a general LCR meter is used, it is necessary to consider the influence of stray capacitances of the electrodes 17, 18, etc. As a result, it is considered that a commercially available high frequency capacitive moisture meter is more useful.

まず、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加する現象が生じる。通常、静電容量Cは誘電正接tanδからすれば、
抵抗成分の電流Ir/コンデンサ容量成分の電流Icで現され、式は
tanδ=Ir/Ic
となる。
しかし、水の誘電率80程度は温度の変化に伴って変化するし、印加する周波数によっても変化する、また、化学反応が生じており、その印加時間等によっても変化する。これはイオンによる溶融等の作用によるものが大である。
また、静電容量CをC=ε・S/dとして算出しているが、電極間に挟まれた領域を抵抗体として捉えることもできる。
そこで、現象として、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加するから、その事象のみ捉えることとした。
静電容量Cが水分の増加に伴って増加する増加分を予めモルタル、コンクリート等各種供試材料で求めておいた換算式で換算し、水分量として表示する。ここで換算式がない供試材料では、市販の高周波容量式水分計のダイレクトモード(Dモード)に切り替え、静電容量Cと相関のある数値を表示値Cdとして表示している。念のため、発明者らが使用したダイレクトモードの表示値は「0〜2999」の間で表示される。
First, when water is included in the aggregate of the test material, a phenomenon occurs in which the capacitance C increases with the increase of water. Usually, when the capacitance C is calculated from the dielectric loss tangent tan δ,
It is expressed by the current Ir of the resistance component / the current Ic of the capacitor capacitance component, and the equation is
tan δ = Ir / Ic
It becomes.
However, the dielectric constant of about 80 of water changes with the change of temperature and also changes with the frequency applied, and a chemical reaction occurs and also changes with the application time and the like. This is largely due to the action of melting by ions and the like.
Moreover, although the electrostatic capacitance C is calculated as C = (epsilon) * S / d, the area | region pinched | interposed between electrodes can also be caught as a resistor.
Therefore, as the phenomenon, when the aggregate of the test material is made to contain water, the capacitance C increases with the increase of water, so it was decided to capture only that event.
The amount of increase in capacitance C as the water content increases is converted in accordance with a conversion formula previously obtained using mortar, concrete, and various other test materials, and is displayed as the water content. Here, in the test material having no conversion formula, the mode is switched to the direct mode (D mode) of a commercially available high-frequency capacitive moisture meter, and a numerical value correlated with the capacitance C is displayed as a display value Cd. As a precaution, the display value of the direct mode used by the inventors is displayed between "0 and 2999".

双方の電極板に高周波出力(交流電圧)を印加し、その間に帯状の電界を発生させて、この電界上にある供試材料の静電容量Cを測定した。電界の形状は、境界条件等により円弧状や楕円形状になると考えられるが、「電極間隔に比例した深さまでの誘電物性量の評価は可能(所哲郎:「表面深さ分解能を有する誘電計測による高分子電気絶縁材料の劣化診断技術の開発」平成16−18年度 科学研究費補助金成果報告書」参照)と言われていることから、電極板間の対向平均距離dと電界到達深さが単純に比例する円弧状と仮定した。電極板を並列に配置し、電界が供試材料中を透過するようにし、電極板間の対向平均距離dを変化させることで、電界が到達する深さが変化するように想定した。 A high frequency output (AC voltage) was applied to both electrode plates, and a band-like electric field was generated therebetween, and the capacitance C of the test material on this electric field was measured. The shape of the electric field is considered to be arc-like or elliptical depending on the boundary conditions etc. However, "It is possible to evaluate the amount of dielectric physical properties to the depth proportional to the electrode spacing ( Since it is said that “Development diagnosis technology for polymer electrical insulation materials” (FY 2004-2006 Grant-in-Aid for Scientific Research Grants Report), the opposing average distance d between the electrode It was assumed that it was a circular arc shape that was simply proportional. The electrode plates were arranged in parallel so that the electric field was transmitted through the test material, and it was assumed that the depth at which the electric field reached would be changed by changing the facing average distance d between the electrode plates .

また、誘電体の誘電率εは含水率に応じて変化する。また、電極板間の対向平均距離dは円弧状の電界の対向平均距離長になる。電極板間の対向平均距離dが小さいと、電界は模擬撥水層41のみにあり、電極板間の対向平均距離dの増加とともに静電容量Cは減少する。電界が含水率の高い模擬非撥水層42に到達すると誘電率εも変化し、表示値Cdの減少する割合が変化する。
したがって、論理的には、この変曲点が模擬撥水層41と模擬非撥水層42の境界となる。このときの撥水層厚の推定値は、実測で確認した確認値に近い値が得られた。しかし、模擬撥水層41が薄いと変曲点がすぐ現れ、変曲点の判定が困難となる。また、薄い撥水層厚測定用に電極板の幅を狭くした場合には精度が落ちるという欠点がある。即ち、最初から電界が模擬非撥水層42側に影響を与えていると推定される。
Further, the dielectric constant ε of the dielectric changes in accordance with the water content. Further, the facing average distance d between the electrode plates is the facing average distance length of the arc-like electric field. When the facing average distance d between the electrode plates is small, the electric field exists only in the simulated water repellent layer 41, and the capacitance C decreases with the increase in the facing average distance d between the electrode plates. When the electric field reaches the simulated non-water repellent layer 42 having a high water content, the dielectric constant ε also changes, and the reduction rate of the display value Cd changes.
Therefore, logically, this inflection point is the boundary between the simulated water repellent layer 41 and the simulated non-water repellent layer 42. The estimated value of the water repellent layer thickness at this time was close to the confirmed value confirmed by the measurement. However, if the simulated water repellent layer 41 is thin, an inflection point appears immediately, which makes it difficult to determine the inflection point. In addition, when the width of the electrode plate is narrowed for thin water-repellent layer thickness measurement, there is a disadvantage that the accuracy is lowered. That is, it is estimated that the electric field affects the side of the non-water repellent layer 42 from the beginning.

次に、本発明の実施の形態で使用する図1に示す電極板21,22,21A,22Aについて検討する。
一方の電極板の中心位置から他方の電極板の中心位置までの水平面距離tと電極板面積Sの比S/tが一定であるような電極を作製した。この水平面距離tと電極板面積Sの比S/tが一定な電極を、ここでは『等比共面電極』と呼ぶこととする。また、電極板21,22,21A,22Aについて、水平面距離tとして定義しているが、垂直面であってもよいし、所定の傾きであってもよい。ここでは、電極板間の対向平均距離dとの違いを明確にするため水平面距離tという。そして、ここでは、S/t=constを『等比共面電極定数』という。
Next, the electrode plates 21, 22, 21A, 22A shown in FIG. 1 used in the embodiment of the present invention will be examined.
An electrode was manufactured such that the ratio S / t of the horizontal plate distance t from the center position of one electrode plate to the center position of the other electrode plate and the electrode plate area S was constant. An electrode in which the ratio S / t of the horizontal plane distance t to the electrode plate area S is constant is referred to as a "equal ratio coplanar electrode". Further, although the horizontal distance t is defined for the electrode plates 21, 22, 21A, 22A, it may be a vertical surface or may have a predetermined inclination. Here, in order to clarify the difference with the facing average distance d between electrode plates, it is called horizontal surface distance t. Here, S / t = const is referred to as "equal ratio coplanar electrode constant".

ここで、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離dと設定する。
π・t=d
t=d/π
となる。
したがって、
S/t=S・π/d
となる。円周率πが一定、等比共面電極定数S/dが常に一定となる。
また、静電容量Cは、C=ε・S/dにより、誘電率ε、即ち、含水率が深さ方向に変化しなければ静電容量Cは一定となる。
そして、水平面距離tを順次大きくしていくと、電界が含水率の高い部分に到達したとき、静電容量Cは初めて変化し、その変化した位置の値が模擬撥水層41の深さとなる。
Here, a value obtained by multiplying the horizontal distance t by the circle ratio π is set as the facing average distance d between the electrode plates .
π · t = d
t = d / π
It becomes.
Therefore,
S / t = S · π / d
It becomes. The circle ratio π is constant, and the uniform coplanar electrode constant S / d is always constant.
In addition, the capacitance C is constant, if the dielectric constant ε, that is, the water content does not change in the depth direction, according to C = ε · S / d.
Then, when the horizontal distance t is sequentially increased, when the electric field reaches a portion with high water content, the capacitance C changes for the first time, and the value of the changed position becomes the depth of the simulated water repellent layer 41 .

発明者らは、更に、等比共面電極21,22,21A,22A(以下、これらを「等比共面電極20」とまとめて呼ぶこととする)について究明する。
水平面距離tが4、8、12、16、20mmの5種類の等比共面電極20を作製した。等比共面電極20の電極板長は100mmで一定とし、電極板幅を変化させて等比共面電極定数S/t=100とした。この場合、電極板幅は水平面距離tと相殺するため、電極板間の対向平均距離dと等比共面電極20の水平面距離tは同一(電極板間の対向平均距離d=水平面距離t)とした。ここで、一対の等比共面電極20の面積が異なる電極板を除外した。
The inventors further investigate iso-coplanar electrodes 21, 22, 21A and 22A (hereinafter, these will be collectively referred to as “e-coplanar electrode 20”).
Five types of equal ratio coplanar electrodes 20 having horizontal surface distances t of 4, 8, 12, 16, and 20 mm were produced. The electrode plate length of the equal ratio coplanar electrode 20 was constant at 100 mm, and the electrode plate width was changed to set the equal ratio coplanar electrode constant S / t = 100. In this case, since the width of the electrode plate offsets the horizontal distance t, the facing average distance d between the electrode plates and the horizontal distance t of the equal ratio coplanar electrode 20 are the same (the facing average distance d between the electrode plates d = horizontal distance t) And Here, electrode plates having different areas of the pair of equal ratio coplanar electrodes 20 were excluded.

電極板の材料としては、図2に示すように、プラスチックフィルム11に銅箔テープ10を貼り付け、更に、プラスチックフィルム11を25mmのポリスチレンフォーム12に貼り付けた。電極板としての銅箔テープ10にはビニール被覆銅線15,16を取り付けて延長し、市販の高周波容量式水分計の電極17及び電極18と接触させた。なお、図2においてはリード線としてのビニール被覆銅線15,16の長さが異なるが、試験回路では均一長さとしている。回路的には対称性を持たせ、反対側に引き出している。
特に、両方のビニール被覆銅線15,16を近づけると、静電浮遊容量の影響を受け、出力の表示値Cdに影響するため、お互いに離し、その影響が最小値になるようにした。電極21A(21)及び電極22A(22)の上面と模擬供試体の上面のみを導通とするため、模擬供試体の他の上面を電気的に絶縁するためラップフィルム14を敷いている。
また、銅箔テープ10と供試体を密着させるため2kgの錘13をポリスチレンフォーム12の上に置いた。
As a material of an electrode plate, as shown in FIG. 2, the copper foil tape 10 was stuck on the plastic film 11, and also the plastic film 11 was stuck on the polystyrene foam 12 of 25 mm. Vinyl coated copper wires 15 and 16 were attached to the copper foil tape 10 as an electrode plate and extended, and brought into contact with the electrodes 17 and 18 of a commercially available high-frequency capacitive moisture meter. Although the lengths of the vinyl-coated copper wires 15 and 16 as lead wires are different in FIG. 2, they are uniform in length in the test circuit. The circuit has symmetry and is drawn out on the opposite side.
In particular, when both vinyl coated copper wires 15 and 16 are brought close to each other, they are influenced by the electrostatic stray capacitance and affect the displayed value Cd of the output, so they are separated from each other so that the influence becomes the minimum value. In order to electrically connect only the upper surface of the electrode 21A (21) and the electrode 22A (22) to the upper surface of the simulated sample, a wrap film 14 is applied to electrically insulate the other upper surface of the simulated sample.
Also, a 2 kg weight 13 was placed on the polystyrene foam 12 in order to bring the copper foil tape 10 into close contact with the test piece.

このようにして製作した等比共面電極20を用いて、一定の含水率とした模擬供試体を作製し、ケイカル板及びコンクリートの表示値Cdの特性を測定した。ケイカル板は厚さ5mmで加工し易く、また、吸水率も高く、吸水速度も速いため模擬供試体として採用した。
厚さ5mm×縦100mm×幅100mmの模擬供試体を105℃の下で24時間炉乾燥させたものを含水率0%の状態とし、この状態における模擬供試体の質量を下に1枚ずつ所定の含水率となるような質量の水とともにポリ袋に入れ吸水させた後に密閉した模擬供試体を作成した。そして、図3に示すような、模擬供試体の全体を100%としたときの含水率0、6、12%のケイカル板を製作した。なお、コンクリートは含水率0、4、6.4%の立方体を製作した。
Using the equal ratio coplanar electrode 20 manufactured in this manner, a simulated specimen with a constant water content was manufactured, and the characteristics of the display value Cd of the carbon plate and the concrete were measured. A caikale plate is easily processed at a thickness of 5 mm, has a high water absorption rate, and has a high water absorption rate, and was adopted as a simulated specimen.
A sample of 5 mm in thickness x 100 mm in length x 100 mm in width is subjected to oven drying at 105 ° C. for 24 hours to obtain a water content of 0%. The sample was placed in a plastic bag with water of such a mass as to cause water absorption, and was then absorbed to make a sealed test sample. Then, as shown in FIG. 3, a caical plate having a moisture content of 0, 6, 12% when the whole of the simulated specimen was 100% was manufactured. In addition, concrete manufactured cubes with a moisture content of 0, 4 and 6.4%.

ここで、ケイカル板の絶乾密度は約0.7g/cm3とコンクリートに比べて1/3程度であるから、含水している水量も同じ含水率ではコンクリートの約1/3になる。同じ含水率のケイカル板を8枚重ねた等比共面電極20を作製し、表示値Cdの値を計測した。
また、コンクリートは水とセメントの比55%で作製した100×100×400mmのコンクリート模擬供試体を100mm角の立方体に切断し、水で飽和させ表乾状態(含水率6.4%)としたものと、同じ寸法で含水率4.0%及び0%となるように調整したものをポリ袋に入れ密閉し、水を均一に吸着させて、所定の含水率の模擬供試体を得た。
ここで、模擬供試体の水平面距離tと表示値Cdの関係を図3に示す。
Here, since the bone dry plate has an absolute dry density of about 0.7 g / cm 3 , which is about 1/3 of that of concrete, the amount of water containing water is about 1⁄3 of that of concrete with the same water content. Eight equal carbon content plates having the same water content were stacked to prepare an equal ratio coplanar electrode 20, and the value of the display value Cd was measured.
The concrete was prepared by cutting a 100 × 100 × 400 mm concrete simulation specimen prepared with a 55% water / cement ratio into cubes of 100 mm square and saturated with water to obtain a surface dry state (water content: 6.4%) What was adjusted so that the moisture content and the moisture content of the same dimensions as that of the one were adjusted to 4.0% and 0% was put in a plastic bag and sealed, and water was uniformly adsorbed to obtain a simulated specimen of a predetermined moisture content.
Here, the relationship between the horizontal distance t of the simulated specimen and the display value Cd is shown in FIG.

図3に示すように、コンクリートとケイカル板の含水率が一定であれば、水平面距離tを変えても表示値Cdが略一定であることが判る。表示値Cd及びコンクリートまたはケイカル板等の供試体が判れば、供試体の含水率が特定されることになる。ここで、表示値Cdの誤差はケイカル板、コンクリートの全体関に対する含水率分布の特性の違い、個体による含水率の違いによるものと推定される。
また、各含水率における電極板中心位置までの水平面距離tが大きくなっても、小さくなっても表示値Cdの値は変化せず、略一定となっていることが確認された。
そして、等比共面電極定数S/tとして一定であれば、電極中心位置までの水平面距離tを大きくして電界が到達する位置を深くしても、誘電率ε(含水率)が変化しなければ表示値Cdは同じ値となる。そして、含水率が高くなると表示値Cdの値は大きくなるという結果が得られた。これにより表示値Cdが含水率に依存することが判る。
As shown in FIG. 3, it can be seen that the display value Cd is substantially constant even if the horizontal surface distance t is changed, if the water content of the concrete and the carbon plate is constant. Once the indicated value Cd and the specimen such as concrete or caulcal plate are known, the moisture content of the specimen is specified. Here, it is presumed that the error of the indicated value Cd is due to the difference in the characteristic of the moisture content distribution to the caulcal board and the general relation of the concrete, and the difference in the moisture content depending on the individual.
In addition, even if the horizontal distance t to the electrode plate center position at each moisture content increases, it is confirmed that the value of the display value Cd does not change and becomes substantially constant even if the horizontal distance t decreases.
Then, if the equi-coplanar electrode constant S / t is constant, the dielectric constant ε (water content) changes even if the horizontal distance t to the electrode center position is increased and the position where the electric field reaches is deepened. If not, the display value Cd is the same value. Then, the result was obtained that the value of the display value Cd becomes larger as the moisture content becomes higher. From this, it can be seen that the indicated value Cd depends on the water content.

次に、この等比共面電極20を用いて模擬撥水層41の模擬供試体の測定を行う。
図2及び図3に示す含水率6.4%及び4.0%のコンクリート立方体の上に0、6、12%のケイカル板を1枚または2枚または3枚載せて、各電極板の積層状態で表示値Cdを測定した。ケイカル板は含水率が低い模擬撥水層41を、コンクリートは含水率が高い模擬非撥水層42を模擬した2層模擬供試体モデルとした。
Next, measurement of the simulated specimen of the simulated water repellent layer 41 is performed using this equal ratio coplanar electrode 20.
1 or 2 or 3 sheets of 0, 6 and 12% silicon plates are placed on the concrete cubes with water content of 6.4% and 4.0% shown in FIG. 2 and FIG. 3, and lamination of each electrode plate The display value Cd was measured in the state. The carbon plate is a two-layer simulated specimen model in which the simulated water repellent layer 41 having a low water content is simulated, and the concrete non-water repellent layer 42 having a high water content is simulated.

図4に示すように、誘電率ε、含水率6.4%のコンクリートの上に含水率0%のケイカル板を1、2、3枚重ねて電極板中心位置までの水平面距離tと各表示値Cdの関係を図示した。
図4に示すように、厚さ5mmのケイカル板が1枚と薄い場合には直線の傾きが大きく、3枚重ねて15mmとした厚い場合には傾きが小さくなっている。
また、ケイカル板の厚さに左右されないx=0のときのy軸と交わるy軸の交点、即ち、表示値Cdの切片bは略同じ値になっている。その値は図3に示した含水率が0%のケイカル板を重ねた場合の表示値Cd=1270に近い値を示した。他の含水率のケイカル板を用いたものでも直線関係、即ち、表示値Cdの一次関数方程式
表示値Cd=ax+b=ax+1270
表示値Cdは縦軸(y)、xは横軸である。
が得られた。表示値Cdの切片bを図5に示す。
コンクリート及びケイカル板の含水率、及び重ねたケイカル板の枚数を変化させて測定して得られた水平面距離tと、表示値Cdの関係を最小自乗法により直線回帰して求めた各直線の傾きaとx=0のy軸(表示値Cd)と交わる交点が表示値Cdとなる。
As shown in FIG. 4, one, two, three, or four pieces of silicon boards with a moisture content of 0% are stacked on concrete having a dielectric constant ε and a moisture content of 6.4%, and the horizontal distance t to the electrode plate center position and each display The relationship of the value Cd is illustrated.
As shown in FIG. 4, the inclination of the straight line is large when the thickness of 5 mm of the silicon plate is as thin as one, and the inclination is small when the thickness of three laminated sheets is 15 mm.
Further, the intersection point of the y-axis intersecting the y-axis at x = 0 which does not depend on the thickness of the caiscal plate, that is, the intercept b of the display value Cd is substantially the same value. The value showed a value close to the indicated value Cd = 1270 in the case of overlapping the silica plates having a water content of 0% shown in FIG. A linear relationship, ie, a linear function equation of the display value Cd, is also used in the case of using a calcium carbonate of other moisture content
Display value Cd = ax + b = ax + 1270
The display value Cd is the vertical axis (y), and x is the horizontal axis.
was gotten. The intercept b of the indicated value Cd is shown in FIG.
The slope of each straight line obtained by linear regression of the relationship between the display value Cd and the horizontal distance t obtained by changing the moisture content of concrete and caycal board and the number of stacked caical boards and changing it. An intersection point of a and x = 0 y axis (display value Cd) is a display value Cd.

模擬撥水層41に見立てたケイカル板の含水率と模擬非撥水層42に見立てたコンクリートの含水率の差が大きいほど、回帰直線の傾きが大きくなった。これは、ケイカル板の静電容量Caのインピーダンスとコンクリートの静電容量Cbのインピーダンスが直列接続されていると見做されると、インピーダンスの比較によってCa≫Cbであるとき、直列接続するとコンデンサの容量のインピーダンスが大きいCaに仕事量が依存されることになる。
特に、コンクリートの含水率が4%で上に載せたケイカル板の含水率が12%と、あまり両者の含水量の差が大きくない場合には、ケイカル板の枚数を増やすと傾きがマイナスになり、回帰直線の相関係数も小さくなる。
また、模擬撥水層41の厚さが大となると、即ち、ケイカル板の枚数が増えると傾きが小さくなった。ケイカル板の含水率が同じ場合、図6に示す含水率と切片の関係で示すように、重ねる枚数を変化させても切片bの値は略同じになった。特に、含水率が一定であり、含水量に変化がないので、何枚用いても同じになると推定される。
また、これにより、模擬撥水層41は含水率が非常に小さいことから、望ましい測定方法であると思慮される。
The larger the difference between the moisture content of the cical plate regarded as the simulated water repellent layer 41 and the moisture content of concrete regarded as the simulated non-water repellent layer 42, the larger the inclination of the regression line. It is considered that if the impedance of the capacitance Ca of the caical plate and the impedance of the capacitance Cb of concrete are considered to be connected in series, when Ca 接 続 Cb by the comparison of impedances, the capacitors are connected in series The amount of work is dependent on Ca, which has a large capacitance impedance.
In particular, when the moisture content of concrete is 4% and the moisture content of the cical plate placed above is 12%, the difference between the moisture content of the two is not so large, the inclination becomes negative when the number of cical plates is increased. , The correlation coefficient of the regression line also decreases.
In addition, when the thickness of the simulated water repellent layer 41 was large, that is, as the number of the silica plates was increased, the inclination was reduced. In the case where the moisture content of the caycal plate is the same, as shown by the relationship between the moisture content and the segment shown in FIG. 6, the values of the segment b become substantially the same even if the number of overlapping sheets is changed. In particular, since the water content is constant and there is no change in the water content, it is estimated that the same can be obtained regardless of how many sheets are used.
Also, it is considered that the simulated water repellent layer 41 is a desirable measurement method because the moisture content is very small.

また、ケイカル板が3枚(15mm厚さ)の場合、水平面距離tが4mm、8mmの電極では表示値Cdは変化しないことから、電界が含水率の高い模擬非撥水層42には大きな影響がないと推定される。
模擬非撥水層42に届きはじめる12mm、16mm以上で急激に大きくなると推定していたが、表示値Cdは連続的に増大し、水平面距離tと表示値Cdには直線関係が得られ、不連続点は発生しなかった。電界形状について電極板が対向状態で円弧状になるとも推定されるが、等比共面電極20相互間に直列接続されたインピーダンスとしての静電容量の和と同じで、供試体中での電界の形状や含水率の差の影響調査等の詳しい解析が今後検討課題となる。
In addition, in the case of three caical plates (15 mm thick), the display value Cd does not change with electrodes having a horizontal distance t of 4 mm and 8 mm, so the electric field has a large effect on the simulated non-water repellent layer 42 with high moisture content It is presumed that there is no
Although it was estimated that the display value Cd would increase rapidly at 12 mm and 16 mm or more starting to reach the simulated non-water repellent layer 42, the display value Cd would increase continuously and a linear relationship was obtained between the horizontal distance t and the display value Cd. No continuous points occurred. The electric field shape is also presumed to be an arc when the electrode plates face each other in the opposite state, but the electric field in the sample is the same as the sum of the capacitances as impedances connected in series between equal ratio coplanar electrodes 20. Detailed analysis, such as investigation of the influence of the difference in the shape of the water content and the moisture content, will be the subject for future study.

コンクリートの含水率が6%及び4%で重ねるケイカル板の含水率が、0%及び12%としたケイカル板の厚さを変化させて得られたそれぞれの回帰直線の傾きの逆数1/aとケイカル板の厚さとの関係を図7に示す。それぞれ傾きの逆数1/aとケイカル板の厚さには一次関数方程式で示すことができる直線関係が得られた。
このことより傾きの逆数1/aと撥水層厚の関係を供試体毎に予め求めておけば、等比共面電極20で測定し得られた水平面距離tと表示値Cdの回帰直線の傾きaまたは傾きの逆数1/aから撥水層厚が推定できることになる。
The moisture content of the caking plate piled up at 6% and 4% of the concrete content, the reciprocal of the slope 1 / a of the regression line obtained by changing the thickness of the caking plate with 0% and 12%, respectively The relationship with the thickness of the caycal plate is shown in FIG. The linear relationship which can be shown by a linear function equation was obtained for the reciprocal 1 / a of the slope and the thickness of the caycal plate, respectively.
From this, if the relationship between the reciprocal 1 / a of the slope and the thickness of the water repellent layer is determined in advance for each sample, the regression line of the horizontal distance t and the display value Cd obtained by measuring with the equal ratio coplanar electrode 20 The water repellent layer thickness can be estimated from the slope a or the reciprocal 1 / a of the slope.

次に、これら得られた模擬供試体のデーを用いて検討する。
まず、模擬撥水層41を形成したコンクリート模擬供試体を等比共面電極20で測定し、模擬供試体で得られたような回帰直線の傾きの逆数1/aと撥水層厚との関係を検討する。
コンクリートは3種類の配合のものを用いた。当該コンクリートの配合及び28日圧縮強度を図8に示す。
水とセメント比(図8ではW/Cと記す)は40、55、70%とした。一般的な構造物に使用されている水とセメント比55%で空気量も5%程度の普通コンクリート、及び比較的高強度を想定した水とセメント比40%のものと、比較的低品質のコンクリートを想定した水セメント比70%の低強度でAE剤(界面活性剤の一種で、コンクリート打設作業能率の向上及び耐凍性を向上させる混和剤)を使用せずに空気量が小さくなるようにしたものとした。使用したセメントは、早強セメントを用いた。
なお、使用した骨材の物性を念のため図9に示した。粗骨材は長良川産の玉砕石を用い、細骨材には長良川産の粗砂と細砂を7:3の割合で混合したものを用いた。
ここで、s/aは細骨材率(全骨材の体積に占める細骨材の体積の割合)で、ここではs/a=40%とした。また、S1は細骨材のうち粗いもの、S2は細骨材のうち細かいもの、Gは粗い骨材である。
Next, it examines using the day of these obtained mock specimens.
First, a concrete simulation sample on which a simulation water repellent layer 41 was formed was measured with a uniform ratio coplanar electrode 20, and the reciprocal 1 / a of the slope of the regression line as obtained for the simulation sample and the water repelling layer thickness Examine the relationship.
The concrete used three types of compounding. The composition of the concrete and the 28-day compressive strength are shown in FIG.
The water to cement ratio (referred to as W / C in FIG. 8) was 40, 55, 70%. Relatively low quality such as ordinary concrete with 55% water / cement ratio and 5% air content, which are used in general structures, and 40% water / cement ratio assuming relatively high strength The amount of air can be reduced without using an AE agent (a type of surfactant, an additive that improves the efficiency of concrete placement and the freeze resistance) at a low water-cement ratio of 70% assuming concrete. It was decided to be. The cement used was early-strength cement.
The physical properties of the used aggregate are shown in FIG. The coarse aggregate used grated stone from Nagara River, and the fine aggregate was a mixture of coarse sand and fine sand from Nagara River at a ratio of 7: 3.
Here, s / a is a fine aggregate rate (the ratio of the volume of the fine aggregate to the volume of the total aggregate), and in this case, s / a = 40%. Moreover, S1 is a coarse thing among fine aggregates, S2 is a fine thing among fine aggregates, G is a coarse aggregate.

養生は、図8に示すように、脱型後28日間水中養生及び気中養生の2種類とした。
100mm×100mm×400mmの角柱の供試体を作製し、養生後、コンクリートカッターを用いて切断し、50mm×100mm×130mmとした。100mm×130mmの切断面に表面含浸材が供試体側面に垂れないように土手を作った後、炉で乾燥させ、絶乾状態にし、更に、表面含浸材を塗布した。
表面含浸材はトーケン樹脂化学株式会社製(製品名 S−7;以下、単に「T社製」という)と、大同塗料株式会社製(製品名 アクアシール1400;以下、単に「D社製」という)を用いた。T社製は液体状であり、D社製はジェル状である。
どちらも成分はシラン系で標準使用量が200g/m2とされていた。塗布量は100g/m2〜500g/m2とし、一部の供試体数は50及び800g/m2を塗布した。供試体数は全部で68個であった。
As shown in FIG. 8, two types of curing were used: curing in water and curing in air for 28 days after demolding.
A specimen of a square column of 100 mm × 100 mm × 400 mm was prepared, and after curing, it was cut using a concrete cutter to make 50 mm × 100 mm × 130 mm. After making a bank on a 100 mm × 130 mm cut surface so that the surface impregnating material does not drip on the side surface of the sample, it was dried in an oven to be completely dried, and further, the surface impregnating material was applied.
The surface impregnating material is manufactured by TOOKEN CHEMICAL CO., LTD. (Product name S-7; hereinafter simply referred to as "made by T company") and Daido Paint Co., Ltd. (product name aqua seal 1400; hereinafter referred to simply as "made by company D") Was used. The product of company T is liquid, and the product of company D is gel.
Both of the components were silanes, and the standard amount used was 200 g / m 2 . The coating amount was set to 100g / m 2 ~500g / m 2 , a portion of the specimen number was applied 50 and 800 g / m 2. The number of specimens was 68 in all.

模擬撥水層41が形成されるよう塗布後4日以上静置した後、供試体を容器内に入れて水浸させた。水の深さは供試体の高さとし、供試体の底面と側面から4日間吸水させた。模擬撥水層41は吸水速度が非常に低く、模擬非撥水層42は吸水速度が高いことから模擬供試体と同じく含水率が小さい模擬撥水層41と含水率が高い模擬非撥水層42の2層供試体モデルを構成した。
図10は水とセメント比55%で水中養生したものに、T社製の表面含浸材を100、300、500g/m2塗布したものの、電極板中心位置までの水平面距離tと表示値Cdとの関係を示す。模擬供試体と同様に電極板中心位置までの水平距離tと静電容量Cに依存する表示値Cdには直線関係(線形特性)が得られることを示す。
計測後、各供試体を割裂させ、実際に形成された撥水層厚を測定した。測定は中心部とその両側25mmの位置の部分での値を平均化した。塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、切片bは略同じ値になり、撥水層部分の含水率は同一と考えられる。
表面含浸材の塗布量は100、300、500g/m2であるが、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなっている。
このように、図10に示す電極で計測した表示値Cdと電極中心までの距離tとの関係を1次関数として求めた傾きaを求めます。図10の4.8mm、10.2mmや14.0mm)のように、この供試体を割って実際の撥水層厚さを求めておく。
After leaving for 4 days or more after application so as to form the simulated water repellent layer 41, the sample was placed in a container and immersed in water. The depth of water was set to the height of the specimen, and water was allowed to absorb from the bottom and the side of the specimen for 4 days. The simulated water repellent layer 41 has a very low water absorption rate, and the simulated non-water repellent layer 42 has a high water absorption rate, so the simulated water repellent layer 41 has a small water content like the simulated sample and the simulated non water repellent layer has a high water content. Forty-two two-layer specimen models were constructed.
Fig. 10 shows that 100, 300, 500 g / m 2 of surface impregnated material from T Co. is applied to those cured in water at a cement ratio of 55% with water, but the horizontal distance t to the electrode plate center position and the indicated value Cd Show the relationship between It shows that a linear relationship (linear characteristic) can be obtained in the display value Cd depending on the horizontal distance t to the electrode plate center position and the capacitance C as in the case of the simulated specimen.
After the measurement, each sample was split and the actually formed water repellent layer thickness was measured. The measurement averaged the value in the center part and the part of the position of 25 mm on both sides. When the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b has substantially the same value, and the water content of the water repellent layer portion is considered to be the same.
The coating amount of the surface impregnating material is 100, 300 and 500 g / m 2 , but the inclination a is large when the water repellent layer formed with a small coating amount is thin, and is small when it is thick.
In this way, the slope a is obtained as a linear function of the relationship between the display value Cd measured by the electrode shown in FIG. 10 and the distance t to the center of the electrode. As in the case of 4.8 mm, 10.2 mm and 14.0 mm in FIG. 10, the sample is divided to obtain the actual water repellent layer thickness.

更に、各模擬供試体の回帰直線の傾きの逆数1/aと撥水層厚の実測値との関係を図11に示す。
図11のY軸は実際に供試体を割って測定した撥水層厚さを用い,X軸は傾きaの逆数1/aを用いて、1次関数を求めます。
式としては,
撥水層厚さ=164.5×(1/a)+1.302になります。
撥水層が未知の供試体を電極で測定し、傾きaを求めれば,この式から撥水層が決定できる。
図11において、供試体数はT社製とD社製を塗布した模擬供試体の和が68個である。各模擬供試体の傾きの逆数1/aと、撥水層厚の実測値を切片bとを、表示値Cdと共通させて実測した撥水層厚Xから、傾きの逆数1/aが確認される。
したがって、68個のデータで表現された当該一次関数方程式の直線から傾きの逆数1/aが決定され、傾きの逆数1/aが特定されれば、撥水層厚が特定される。
傾きの逆数と撥水層厚には模擬供試体と同様に直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
Furthermore, FIG. 11 shows the relationship between the reciprocal 1 / a of the slope of the regression line of each simulated specimen and the measured value of the water repellent layer thickness.
The Y axis in Figure 11 uses the water repellent layer thickness actually measured by dividing the sample, and the X axis uses the reciprocal 1 / a of the slope a to obtain a linear function.
As a formula,
The water repellent layer thickness is 164.5 × (1 / a) + 1.302.
If the sample whose water repellent layer is unknown is measured with an electrode and the inclination a is obtained, the water repellent layer can be determined from this equation.
In FIG. 11, the number of test specimens is 68, which is the sum of simulated test specimens coated with T company and D company. The reciprocal 1 / a of the slope is confirmed from the water repellent layer thickness X measured by making the reciprocal 1 / a of the slope of each simulated specimen and the intercept b of the measured value of the water repellent layer common to the indicated value Cd. Be done.
Therefore, the reciprocal 1 / a of the slope is determined from the straight line of the linear function equation expressed by the 68 data, and if the reciprocal 1 / a of the slope is identified, the water repellent layer thickness is identified.
A linear relationship was obtained for the reciprocal of the slope and the water repellent layer thickness as in the case of the simulated specimen. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

次に、実際の構造物を想定した撥水層の厚みを測定できる計測方法について説明する。
前述の供試体では、模擬撥水層41は含水率が低く、模擬非撥水層42は表乾状態に近い高含水率とした2層供試体モデルとしてきた。
しかし、現実の構造物では含水率は2層供試体モデルではなく、表面付近が低く中心部に行くほど連続的に高くなる傾斜分布であると推定される。傾斜分布を想定し、水とセメント比55%で水中養生した角柱供試体を2等分し、切断面以外を水分の出入りしないようにゴム系塗料でシールしたものを3日浸水させた後、実験室中に7日及び1日静置した。それをそれぞれ2本ずつ静置した。
この試験を行った7日間の岐阜気象台の記録では、平均気温は6.3℃、平均湿度は62%であった。静置後に切断面にD社製表面含浸材を200g/m2塗布した。塗布前と塗布後4日後に電極で表示値Cdを測定した。
測定後、割裂して擬水層深さを測定した。塗布前と塗布後の電極中心までの水平面距離tと表示値Cdの関係を例示する。
Next, a measurement method capable of measuring the thickness of the water repellent layer assuming an actual structure will be described.
In the sample described above, the simulated water repellent layer 41 has a low moisture content, and the simulated non-water repellent layer 42 has a two-layer sample model with a high moisture content close to the surface dry state.
However, in an actual structure, the water content is not a two-layer sample model, but is estimated to be a slope distribution in which the vicinity of the surface is low and the height gradually increases toward the center. Assuming a slope distribution, the prismatic specimen cured in water at a cement ratio of 55% with water is divided into two equal parts, and those sealed with a rubber-based paint to prevent entry and exit of water except for the cut surface are immersed for 3 days, It stood still in the laboratory for 7 days and 1 day. Two of them were allowed to stand.
The seven-day Gifu Meteorological Observatory records that this test was conducted showed an average temperature of 6.3 ° C and an average humidity of 62%. After standing, 200 g / m 2 of a surface impregnating material manufactured by D was applied to the cut surface. The indicated value Cd was measured with the electrode before application and 4 days after application.
After the measurement, it was split to measure the simulated aqueous layer depth. The relationship between the horizontal distance t to the electrode center before application and after application and the display value Cd is illustrated.

1日乾燥させたものは、図12に示すように塗布前の表示値Cdは水平面距離tが4mmでも、表乾状態(含水率5.2%)の表示値Cd=1900に近い値となっており、殆ど水分は蒸発しておらず、飽和した状態であると推定される。塗布後でも表示値Cdは減少したが、ほぼ一定の値であり明確な傾きが得られず、撥水層厚は推定できなかった。
実際の構造物を想定した傾斜がある含水率分布での撥水層厚の推定は、実験例が少ないこともあり今後を補正することも必要となる可能性がある。今後、含水率を変化させるなど、更に、検討が必要である。
As for what was dried for 1 day, as shown in FIG. 12, the display value Cd before application becomes a value close to the display value Cd = 1900 of the surface dry state (water content 5.2%) even when the horizontal distance t is 4 mm. Most of the water is not evaporated, and it is presumed to be in a saturated state. Although the indicated value Cd decreased even after the application, it was an almost constant value and a clear slope was not obtained, and the water repellent layer thickness could not be estimated.
The estimation of the water repellent layer thickness in a moisture content distribution with a slope assuming an actual structure may have few experimental examples and may need to be corrected in the future. In the future, it is necessary to further study, such as changing the moisture content.

また、7日間静置させたものは、図13に示したように、塗布前の表示値Cdは、水平面距離tが4mmで、表示値Cdが1900弱と低く、8mm以上では略同じ値になっている。8mm以上での表示値Cdは図3に示した表乾状態(含水率6.4%)のコンクリートの表示値に近い値となっており、内部は飽和した状態と考えられる。
塗布後は4、8、12mmで表示値Cdが低下し、16mm以上で塗布前の値に近い値となった。塗布後の表示値Cdの増加がほぼ無くなる16mmまでの値を用いて直線回帰を行い傾きaを求めた。この傾きaを用いた傾きの逆数1/aと撥水層厚との関係から撥水層厚の推定を行った、推定値と実測値を図14に示す。推定値と実測値は比較的近い値を示している。
In addition, as shown in FIG. 13, the display value Cd before application is as low as 1900 at a horizontal distance t of 4 mm, the display value Cd is as low as 1900, and is substantially the same for 8 mm or more. It has become. The indicated value Cd at 8 mm or more is a value close to the indicated value of the concrete in the surface dry state (water content: 6.4%) shown in FIG. 3, and it is considered that the inside is saturated.
After application, the display value Cd decreased at 4, 8 and 12 mm, and became a value close to the value before application at 16 mm or more. Linear regression was performed using the value up to 16 mm at which the increase in the display value Cd after application almost disappeared, and the slope a was determined. An estimated value and an actual measurement value obtained by estimating the water repellent layer thickness from the relationship between the inverse 1 / a of the slope and the water repellent layer thickness using the slope a are shown in FIG. The estimated value and the measured value show relatively close values.

上記実施の形態の撥水層の厚みを測定できる計測方法は、同一の電極板面積Sの2枚を一対とし、電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が互いに異なるものを除く等比共面電極20と、両側の等比共面電極20に高周波を印加し、電極板相互の中心位置までの水平面距離tと高周波に基づく静電容量Cに依存する表示値Cdとの間で一次関数方程式Y=aX+Cd特性を得て、前記一次関数の特性の傾きaまたは逆数1/aを撥水層厚に関係する傾き情報として出力を得るものである。
ここで、石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性を測定することにより、表層付近の含水率と関係する初期情報として表示値Cdの切片bが算出される。
また、前記一次関数方程式の特性における傾きの逆数1/aは、撥水層厚に関係する傾き情報とし、既知の前記一次関数方程式の特性の傾きの逆数1/aを標準として設定すれば、かつ、静電容量Cに依存する表示値Cdが一致する点を決定すれば、撥水層厚が算出できる。
The measurement method which can measure the thickness of the water repellent layer of the above embodiment is the same ratio coplanar electrode constant of the ratio of the horizontal distance t to the center position of the electrode plates with two sheets of the same electrode plate area S as a pair. A high frequency is applied to the equal ratio coplanar electrodes 20 and the equal ratio coplanar electrodes 20 on both sides except that the S / t is constant and the areas of the pair equal ratio coplanar electrodes are different from each other, and the central positions of the electrode plates A linear function equation Y = aX + Cd characteristic is obtained between a horizontal surface distance t up to and a display value Cd depending on a capacitance C based on high frequency, and a slope a of the characteristic of the linear function or a reciprocal 1 / a An output is obtained as inclination information related to the layer thickness.
Here, by measuring gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode characteristics, as initial information related to the moisture content near the surface layer An intercept b of the display value Cd is calculated.
Further, if the reciprocal 1 / a of the slope in the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and if the reciprocal 1 / a of the inclination of the characteristic of the known linear function equation is set as a standard In addition, if the point at which the display value Cd dependent on the capacitance C matches is determined, the water repellent layer thickness can be calculated.

上記実施の形態の撥水層の厚みを測定できる計測方法は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中位置心までの水平面距離tの比の等比共面電極定数S/tが一定の等比共面電極に、例えは、20MHz高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として、また、静電容量Cに依存する表示値Cdの切片bは、表層付近の含水率と関係する初期情報として出力を得る出力を得る。
このとき、前記高周波の前記20MHzは、前記20MHzに限定されるものではなく、交流であればよい。しかし、周波数が低いと水の電気分解等の化学反応が生じるし、周波数が高いと誘電体の内部に磁界ができず、外表面の磁界が高くなるので、通常、5〜30MHz程度が良い。
また、一次関数方程式の特性は、線形が好ましいが、非線形でも使用できないものではない。よって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなれば良い。
In the measurement method which can measure the thickness of the water repellent layer of the above embodiment, the two electrode plate areas S are a pair, and the ratio of the electrode plate area S to the horizontal distance t to the center position between the electrode plates is For example, a high frequency output of 20 MHz is added to the equal ratio coplanar electrode having a fixed equal ratio coplanar electrode constant S / t, and the display value Cd depending on the horizontal distance t to the center position between the electrode plates and the capacitance C And the slope a (reciprocal number 1 / a) of the characteristic of the linear function equation as the slope information related to the water repellent layer thickness, and the intercept of the display value Cd depending on the capacitance C b obtains an output for obtaining an output as initial information related to the moisture content near the surface layer.
At this time, the 20 MHz of the high frequency is not limited to the 20 MHz, and may be an alternating current. However, if the frequency is low, a chemical reaction such as electrolysis of water occurs, and if the frequency is high, a magnetic field can not be generated inside the dielectric, and the magnetic field on the outer surface becomes high .
Also, although the characteristics of the linear functional equation are preferably linear, they can not be used non-linearly. Therefore, when the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a may be large, and when it is thick, the inclination a may be small.

また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波電力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the simulated water repellent layer 41 formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each sample is It can also be expressed as Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, high frequency power is applied to the equal ratio coplanar electrode having a constant equal ratio coplanar electrode constant S / t. The characteristic a of the linear function equation is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

上記実施の形態の撥水層の厚みを測定できる計測方法の等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたものであるから、等比共面電極定数S/tが一定を充足する水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離離dとが同一であるから、電界が円弧を描き、その円弧の中心位置に電極板間の対向平均距離dを回帰直線として算出することができる。
また、上記実施の形態の前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたものであるから、前記一次関数方程式の特性の傾きの逆数1/aを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。
The horizontal distance t of the equal ratio coplanar electrode constant S / t of the measurement method capable of measuring the thickness of the water repellent layer of the above embodiment is the same as the facing average distance d between the facing electrode plates, Since the horizontal distance t at which the equal ratio coplanar electrode constant S / t satisfies the constant, and the value obtained by multiplying the horizontal distance t by the circling factor π are the same as the facing average distance d between the electrode plates , the electric field is An arc can be drawn, and the facing average distance d between the electrode plates can be calculated as a regression line at the center position of the arc.
Further, since the inclination of the characteristic of the linear function equation of the above embodiment is the inverse 1 / a of the inclination of the characteristic, the inverse 1 / a of the inclination of the characteristic of the linear function equation is a water repellent layer The inclination information is related to the thickness, and the intercept b of the display value Cd depending on the capacitance C is an output as initial information related to the moisture content near the surface layer.

上記実施の形態の撥水層の厚みを測定できる計測方法は、電極板面積Sの2枚を一対とし、前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極と、両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得るものである。
前記等比共面電極から一対の等比共面電極の面積が異なるものを除くとは、等比共面電極定数S/tを満足するものでも、2枚の等比共面電極の電極板面積Sが互いに異なることを意味する。
In the measurement method which can measure the thickness of the water repellent layer of the above embodiment, two sheets of the electrode plate area S are paired, and the equal ratio coplanar electrode constant S of the ratio of the horizontal distance t to the center position between the electrode plates High-frequency output is applied to the equal ratio coplanar electrodes on both sides except for the cases where the area ratio of the pair of equal ratio coplanar electrodes is constant and / t is constant, and the horizontal plane to the center position between the electrode plates The characteristic of a linear function equation is obtained between the distance t and the display value Cd depending on the capacitance C, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation relates to the water repelling layer thickness An output is obtained as information .
With the exception of the cases where the areas of the pair of equal ratio coplanar electrodes are different from those of the equal ratio coplanar electrodes, the electrode plates of the two equal ratio coplanar electrodes even if they satisfy the equal ratio coplanar electrode constant S / t. It means that the areas S are different from each other.

上記実施の形態の撥水層の厚みを測定できる計測方法の発明は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。
前記静電容量Cに依存する表示値Cdを特定し、その特定した表示値Cdから、撥水層厚が算出される。
The invention of the measurement method capable of measuring the thickness of the water repellent layer according to the above embodiment is a ratio of the electrode plate area S to the horizontal distance t to the center position of the electrode plates, using two electrode plate areas S as a pair. The high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C Characteristics are obtained, and the gradient a (reciprocal number 1 / a) of the characteristics of the linear function equation is used as the gradient information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is a surface layer The output is obtained as initial information related to the moisture content in the vicinity.
The display value Cd dependent on the capacitance C is specified, and the water repellent layer thickness is calculated from the specified display value Cd.

したがって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きaの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きaの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。  Therefore, when the simulated water repellent layer 41 formed with a small amount of application is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it is small. Therefore, the reciprocal 1 / a of the slope a of the regression line of each sample is the water repellent layer thickness. It can also be expressed. Regarding the relationship between the reciprocal 1 / a of the slope a of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

よって、等比共面電極定数S/tが一定の等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、本実施の形態では、シラン系表面含浸材の撥水層厚を回帰直線として測定した。
特に、静電容量Cは電極板間の対向平均距離dに反比例するという特性、即ち、
C=ε・S/d
を使用したが、静電容量Cの領域を抵抗体として確認すると、この供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の確認を行うことができる。
なお、前記静電容量Cに依存する表示値Cdは、周波数に依存する静電容量Cとすること、単に、周波数に依存する静電容量Cとすることもできる。
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, a high frequency output is applied to the equal ratio coplanar electrode of which the equal ratio coplanar electrode constant S / t is constant. The characteristic of the linear function equation is obtained by the above, and the output is obtained as the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation as inclination information related to the water repellent layer thickness. Thus, for example, the penetration depth and the like of the silane-based surface impregnated material were measured, and in the present embodiment, the water-repellent layer thickness of the silane-based surface impregnated material was measured as a regression line.
In particular, the capacitance C is inversely proportional to the facing average distance d between the electrode plates, ie,
C = ε · S / d
When the region of capacitance C is confirmed as a resistor, the measurement electrode for measuring the difference in moisture content between the inside of the sample and the surface layer portion and the measurement method using the measurement electrode are confirmed. be able to.
The display value Cd depending on the capacitance C may be a capacitance C depending on a frequency, or may be simply a capacitance C depending on a frequency.

本実施の形態では、シラン系表面含浸材を塗布する事例で説明したが、本発明を実施する場合には、シラン系表面含浸材は水分の含浸がないことを前提とする測定であるから、シラン系表面含浸材に限定されることなく汎用可能である。
また、コンクリート中に模擬撥水層41を形成させた供試体に吸水させ模擬供試体と同じ2層模擬供試体モデルに近い条件とした場合、模擬非撥水層42と同様に回帰直線の傾きの逆数と撥水層厚とには直線関係が得られた。
そして、発明者らの実験によれば、模擬供試体として供試体の特性を予め石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性として使用する必要があった。また、表面含浸材の製造メーカによって撥水層厚を推定したところ、近い値を示したもののあったが、異なっている可能性もあり、含水率分布による撥水層厚の推定方法は含水率を変化させるなどをしてさらに検討が必要であると考えられる。
In the present embodiment, the case of applying the silane-based surface impregnating material has been described, but in the case of carrying out the present invention, the measurement is based on the premise that the silane-based surface impregnating material is not impregnated with water, It can be generally used without being limited to the silane surface impregnation material.
In addition, when the sample is made to absorb the simulated water repellent layer 41 in concrete and the condition is similar to the two-layer simulated sample model same as the simulated sample, the slope of the regression line is the same as the simulated non-water repellent layer 42 A linear relationship was obtained between the reciprocal of and the water repellent layer thickness.
And, according to the experiments of the inventors, the characteristics of the test specimen as the simulated test specimen in advance are gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode It had to be used as a property. Moreover, when the water repellent layer thickness was estimated by the manufacturer of the surface impregnating material, it showed close values, but there is a possibility that it may be different. It is thought that further examination is needed by changing the

10 銅箔テープ(電極)
11 プラスチックフィルム
12 ポリスチレンフォーム
14 ラップフィルム
15,16 ビニール被覆銅線
17,18 高周波容量式水分計の電極
20 等比共面電極
21,22,21A,22A 電極板
31,32,33 模擬撥水層
41 模擬撥水層
42 模擬非撥水層
t 水平面距離
d 対向する電極板間の対向平均距離
S 対向する電極板間の電極板面積
C 静電容量
ε 電極板間の誘電体の誘電率
S/t 等比共面電極定数
10 Copper foil tape (electrode)
11 Plastic film 12 Polystyrene foam 14 Wrap film 15, 16 Vinyl-coated copper wire 17, 18 Electrode of high-frequency capacitive moisture meter 20 Equi-planar electrode 21, 22, 21A, 22A Electrode plate 31, 32, 33 Simulated water repellent layer 41 Simulated water-repellent layer 42 Simulated non-water-repellent layer t Horizontal distance d Countering average distance S between opposing electrode plates Electrode plate area C between opposing electrode plates Capacitance ε Dielectric constant S of dielectric between electrodes t equal ratio coplanar electrode constant

本発明は、コンクリート表面にコーティングした撥水層の厚みを供試体の内部と表層部との含水率の差を計測する計測方法に関するもので、例えば、撥水層の厚み計測方法に属するものである。 The present invention relates to a measurement method for measuring the difference in moisture content between the inside of a sample and the surface layer portion of the thickness of a water repellent layer coated on a concrete surface, and belongs to, for example, the thickness measurement method of water repellent layer is there.

例えば、コンクリートの骨材の配合を行う場合、「表乾状態(表面乾燥飽水状態)」にあることを前提とし、骨材の密度を求め、各種の配合設計に準じて配合している。ここで、「表乾状態」とは、押し固められた骨材の内部の空隙は水分で満たされた状態にあり、骨材の表面は水分を含まない状態にあることが前提となっている。
一般に、骨材の表乾状態を判定するには、JIS A1109に規格化されたフローコーン法が採用されている。これによると、截頭円錐状を呈するフローコーンに骨材を充填し、突き棒で突くことによって所定固さに突き固め、その後、徐々にフローコーンを上方に向かって引上げ、突き固められた骨材が崩れるか、崩れないかの境界付近の状態を表乾状態として判断している。
For example, in the case of blending concrete aggregate, it is assumed that the surface is in a “surface dry state (surface dry saturated state)”, the density of the aggregate is determined, and blending is performed according to various blending designs. Here, the "surface dry state" is based on the premise that the internal space of the compacted aggregate is filled with moisture, and the surface of the aggregate is free of moisture. .
Generally, the flow cone method standardized in JIS A1109 is employed to determine the surface dry state of aggregate. According to this, the aggregate is filled into a frustoconical flow cone, and the end is pressed to a predetermined hardness by pushing with a push rod, and then the flow cone is gradually pulled upward and the pressed bone is compacted. The condition near the boundary whether the material collapses or does not collapse is judged as the surface dry condition.

ところが、これらの表乾状態の判断には、骨材が崩れた正確なデータが必要となる。特に、正確な判断を行うには経験則が必要となる。そのため、不慣れな測定者は、正確な判断ができない場合もある。
特に、上述したフローコーン法は、主に「天然骨材」と呼ばれる砂や砂利等に対して実施されるものであるが、近年、この「天然骨材」の供給量が減少し、多くの代替物が骨材として用いられている。例えば、砕砂、高炉スラグ、ゴミ溶融スラグ、再生骨材等の所謂「低品位」の骨材が多く利用されている。これらの低品位の骨材は、表面がガラス質性状や多孔質性状を呈することがあり、天然骨材とは明らかに異なる表乾特性を有することがある。そのため、フローコーン法では砕砂等の骨材に対して正確な表乾状態を判定することが特に困難となっている。
例えば、JIS規格化されたフローコーンの形状と異なる自立角或いは広径等のサイズによって形成された新しい基準の表乾判定用コーンを用いる方法、赤外線の反射率を利用して水分量を計測するもの(非特許文献1参照)、乾湿状態における電気抵抗の変化を利用するもの(非特許文献2参照)、遠心脱水法を利用するもの(非特許文献3参照)などが知られている。
However, these determinations of surface dryness require accurate data in which the aggregate is broken. In particular, heuristics are needed to make accurate decisions. Therefore, an unaccustomed measurer may not be able to make an accurate judgment.
In particular, the flow cone method described above is mainly applied to sand, gravel, etc. called “natural aggregate”, but in recent years, the supply amount of this “natural aggregate” has decreased, and Alternatives are used as aggregate. For example, so-called "low grade" aggregates such as crushed sand, blast furnace slag, refuse melting slag, recycled aggregate and the like are widely used. These low-grade aggregates may exhibit vitreous or porous properties on their surfaces, and may have surface-drying characteristics which are clearly different from those of natural aggregates. Therefore, in the flow cone method, it is particularly difficult to determine an accurate surface dry state for aggregates such as crushed sand.
For example, a method of using a new standard surface dry judgment cone formed by a size such as a self-supporting angle or a wide diameter different from the shape of a flow cone standardized by JIS, the moisture content is measured using infrared reflectance The thing (refer nonpatent literature 1), the thing using change of electric resistance in a wet and dry state (refer nonpatent literature 2), the thing using centrifugal dehydration method (refer nonpatent literature 3), etc. are known.

竹内一真、外3名 「細骨材の表乾判定試験方法に関する基礎的研究」、コンクリート工学年次論文集、Vol.25、No.1、2003、p77−p82Takeuchi, Kazuma, 3 others "Basic research on surface dry judgment test method of fine aggregate", Annual Proceedings of Concrete Engineering, Vol. 25, No. 1, 2003, p77-p82 山本大介、外4名 「海砂代替骨材としての砕砂の表乾判定方法に関する検討」、土木学会第59回年次学術講演会、平成16年9月、p491−p492Daisuke Yamamoto, 4 others "Consideration on the method for determining the surface dryness of crushed sand as sand and sand substitute aggregate", 59th Annual Conference of the Japan Society of Civil Engineers, September, 2004, p491-p492 鈴木一雄、外1名 「細骨材の簡易表乾決定法に関する一検討」、第48回セメント技術大会講演集、1994、p156−p159Kazuo Suzuki, 1 other person “A study on simple method for determination of fine aggregate by surface dry”, Proceedings of the 48th Cement Technology Conference, 1994, p156-p159 特開2006−329801号公報JP, 2006-329801, A

非特許文献1では、異なる自立角及びサイズによって形成されたフローコーンを利用しており、表乾状態の判断に従来と同様にある程度の経験則が必要となり、精度の良い再現性を求めることが困難であった。また、骨材の種類や性状に応じて、最適なフローコーンを適宜選択する必要があり、複数種類のフローコーンを予め準備しておく必要があった。
特に、非特許文献1の赤外線の反射率を利用するものは、一般に水に吸収されやすい赤外線波長(1.46μm)と、水に吸収され難い赤外線波長(1.6μm)の二種類の波長を利用し、主に骨材として「シラス」を対象として測定したデータによって算出されていたから、その他の低品位骨材に対する作用について開示されていなかった。
また、非特許文献2では、砕砂を測定対象の試料として各種の測定を実施し、種々の結果を総合することにより、フローコーン法が最も妥当性を有する結果が得られ、その他の方法は非特許文献2の測定結果では特に優れた特性を示すものではなかった。
そして、非特許文献3では、高精度に表乾状態を判断することが可能になるが、対象となる骨材を遠心分離装置にセットし、試料に応じて数G〜数千Gの遠心力を与える必要があり、表乾状態の判定のための装置が大がかりとなり、簡易な表乾状態の判定に適さないことがあった。
Non-Patent Document 1 uses flow cones formed by different self-supporting angles and sizes, and a certain degree of empirical rule is required for the determination of the surface dry state as in the prior art, and accurate repeatability is sought. It was difficult. Moreover, it was necessary to select the optimal flow cone suitably according to the kind and property of aggregate, and it was necessary to prepare multiple types of flow cone in advance.
In particular, those utilizing infrared reflectance in Non-Patent Document 1 generally have two types of wavelengths: an infrared wavelength (1.46 μm) that is easily absorbed by water and an infrared wavelength (1.6 μm) that is not easily absorbed by water. Since it was used and was calculated by the data measured mainly for "Shirasu" as aggregate, it was not disclosed about the effect | action with respect to another low grade aggregate.
In Non-Patent Document 2, various measurements are carried out using crushed sand as a sample to be measured, and by combining various results, the result that the flow cone method has the most appropriate result can be obtained, and the other methods are not. The measurement results of Patent Document 2 did not show particularly excellent characteristics.
And in Non-Patent Document 3, although it becomes possible to judge the surface dry state with high accuracy, the target aggregate is set in the centrifugal separator, and the centrifugal force of several G to several G according to the sample In some cases, the apparatus for determining the surface dry state is bulky and is not suitable for simple determination of the surface dry state.

一方、現今のコンクリート構造物の耐久性の向上は、シラン系表面含浸材を表面に塗布し、浸透させ、コンクリート内部に撥水層を形成させる工法が注目されている。
この撥水層を施すことにより水分の侵入を抑制し、塩分や水分等のコンクリートの劣化因子の浸入を抑制することでコンクリートの耐久性を高めることができる。例えば、『北海道開発局道路設計要領』にはシラン系表面含浸材の製品選定の目安として、凍害対策では、浸透深さが6mm以上あるものと規定している。
しかし、その施工された撥水層厚を確かめるには、コンクリートに穿設して観察する方法がある。このコンクリートに穿設する方法は、施工製品に傷をつけることになり、必ずしも好ましい方法ではなかった。そこで、事前に作製した供試体への塗布量と撥水層厚との関係から、塗布量で管理されているが、その施工実態は不明である。
表面含浸材により形成される撥水層厚は、コンクリートの含水率に影響されることが報告されている。含水率が高いと浸透深さが小さくなる。施工現場において降雨や日射等の影響で含水率が場所によって異なることが考えられる。このため、現場における撥水層厚は、供試体に塗布した量による推定値とは誤差が生じることも考えられる。また、既存のコンクリート構造物に塗布する場合は、別途作製した供試体が残っていない場合が多く、供試体への塗布量と撥水層厚との関係を求めることができない。
このようなことから、表面含浸工法を適用する場合、形成された撥水層で管理する方が施工品質を高められる。そこで、本発明者らは含水率の高低による電気的変化を利用し、コンクリートの撥水層厚を推定する方法を究明している。
On the other hand, for the improvement of the durability of the present concrete structure, a method of applying a silane-based surface impregnating material to the surface and permeating the surface, and forming a water repellent layer inside the concrete has attracted attention.
By applying the water repellent layer, the penetration of water can be suppressed, and the penetration of deterioration factors of the concrete such as salt and water can be suppressed, whereby the durability of the concrete can be enhanced. For example, “Hokkaido Development Bureau Road Design Guidelines” stipulates that the penetration depth is 6 mm or more in the measures against frost damage as a standard of product selection of silane-based surface impregnation material.
However, in order to confirm the thickness of the applied water repellent layer, there is a method of drilling in concrete and observing. This method of drilling in concrete would damage the construction product and was not necessarily the preferred method. Then, although it is managed by application amount from the relationship between the application amount to the test object produced beforehand, and the water-repellent layer thickness, the construction actual condition is unknown.
The water repellent layer thickness formed by the surface impregnating material is reported to be affected by the moisture content of concrete. The higher the moisture content, the smaller the penetration depth. At the construction site, the moisture content may be different depending on the location due to the influence of rainfall or solar radiation. For this reason, it is also conceivable that the water repellent layer thickness at the site may cause an error from the estimated value by the amount applied to the sample. Moreover, when apply | coating to the existing concrete structure, the test body produced separately does not remain in many cases, and it can not obtain | require the relationship between the application quantity to a test object, and the water-repellent layer thickness.
From such a thing, when applying a surface impregnation method, the quality of construction can be enhanced by managing with the formed water repellent layer. Therefore, the present inventors have investigated a method of estimating the water repellent layer thickness of concrete using electrical changes due to the water content ratio.

そこで、本発明者らは、特許文献1で比較的簡易な構成の骨材の表乾状態判定法を提供した。即ち、これは絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製する基準試料調製工程と、絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製するとともに、導電性を有するイオン化物質を添加し、更に攪拌するイオン化試料調製工程と、前記基準試料調製工程によって調製された含水率の異なる複数の基準試料及び前記イオン化試料調製工程によって調製された含水率の異なる複数のイオン化試料を、所定形状の測定用容器の中にそれぞれ充填し、試料表面を平滑化する充填平滑工程と、前記測定用容器にそれぞれ充填された前記基準試料及び前記イオン化試料の前記試料表面に高周波容量式水分計の測定部を当接し、高周波容量を測定する高周波容量測定工程と、前記高周波容量式水分計によって示される表示値及び前記基準試料または前記イオン化試料の含水率の関係を示す基準試料及び添加試料を作成し、略比例関係を示す前記基準試料に対し、前記添加試料の傾きが変化する表乾点を特定し、表乾状態を判定する表乾判定工程とを具備するものである。  Therefore, the present inventors have provided a method of determining the surface dry state of aggregate with a relatively simple configuration in Patent Document 1 That is, this is mixing and stirring water in the aggregate in the bone-drying state, and mixing and stirring the water in the aggregate in the bone-drying state and the reference sample preparation step of preparing each to a predetermined moisture content respectively The ionized sample preparation step of preparing an ionized substance having conductivity and adding the ionized material having conductivity and stirring the mixture, and a plurality of reference samples having different water contents prepared by the reference sample preparation step and the ionized sample preparation step And filling the plurality of ionized samples having different moisture contents prepared in the above into the measurement container having a predetermined shape and smoothing the sample surface, and the reference sample filled in the measurement container. And a measurement step of measuring a high frequency capacity by bringing a measurement portion of the high frequency capacity moisture meter into contact with the surface of the sample of the ionized sample, and the high frequency capacity moisture meter A reference sample indicating the relationship between the indicated value and the moisture content of the reference sample or the ionized sample, and the addition sample are prepared, and a surface dry point at which the inclination of the addition sample changes with respect to the reference sample It comprises the table dry judging process which specifies and judges the surface dry state.

これにより、コンクリートの含水率を測定する水分計を改良し、静電容量を計測することにより、一対の電極板の距離を変化させることで電極板から発生する電界がコンクリート中に到達する深さを変化させ、電界が撥水層内にあれば静電容量は一定の割合で減少し、電界が含水率の高い模擬非撥水層に到達すれば静電容量の減少割合が変化することから、この変曲点を撥水層と普通層の境界とし、実測値に比較的近い値が得られている。
しかし、特許文献1のコンクリートが含水する水は、純粋のH2Oは良好な絶縁体であり、その純粋のH2Oを測定していると、その測定中に抵抗値が低下する。また、それに伴って誘電率も金属イオンによって変化し、含水率によって導電率、誘電率の周波数特性として変化する。また、容積の大きい測定対象であると、電極板の位置、電極板の面積、電界を決定する印加電圧の高さによって電界の広がり、電界密度が変化するから、これらの問題点を介在させた計算が必要になってくる。
Thereby, the moisture meter which measures the moisture content of concrete is improved, and the electric field generated from the electrode plate reaches the concrete by changing the distance between the pair of electrode plates by measuring the capacitance. When the electric field is in the water repellent layer, the capacitance decreases at a constant rate, and when the electric field reaches the high water content simulated non-water repellent layer, the rate of decrease in capacitance changes. The inflection point is defined as the boundary between the water repellent layer and the ordinary layer, and a value relatively close to the measured value is obtained.
However, in the water containing concrete of Patent Document 1, pure H 2 O is a good insulator, and when the pure H 2 O is measured, the resistance decreases during the measurement. Also, along with that, the dielectric constant also changes depending on the metal ion, and changes as the frequency characteristic of conductivity and dielectric constant depending on the water content. Also, if the measurement target is a large volume, the electric field spreads and the electric field density changes depending on the position of the electrode plate, the area of the electrode plate, and the height of the applied voltage that determines the electric field. Calculation will be needed.

そこで、本願発明は、含水率によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難く、撥水層の厚み計測方法の提供を目的とするものである。 Therefore, the present invention is intended to provide a method for measuring the thickness of a water repellent layer , even if the resistance value and the dielectric constant change depending on the water content without changing the result depending on the water content. It is.

請求項1の発明の撥水層の厚み計測方法は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tと各電極板面積Sとの比の等比共面電極定数S/tを具備する電極から構成される。一対の等比共面電極の両側に高周波出力を印加し、静電容量Cを測定する。電極板相互の中心位置までの水平面距離tと静電容量Cに依存する各電極で計測された表示値Cdとの間で特定の一次関数の特性を得て、前記一次関数の特性の傾きaを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bを表層付近の含水率と関係する初期情報として出力を得るものである。 In the method of measuring the thickness of the water repellent layer according to the invention of claim 1, the two electrode plates having the electrode plate area S are paired, and the electrode plate area S and the horizontal distance t to the center position between the electrode plates and each electrode plate It is comprised of an electrode having a isometric coplanar electrode constant S / t in ratio to the area S. A high frequency output is applied to both sides of a pair of equal ratio coplanar electrodes, and the capacitance C is measured. A characteristic of a specific linear function is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd measured at each electrode depending on the capacitance C, and a slope a of the characteristic of the linear function Is the inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is output as initial information related to the moisture content near the surface layer.

ここで、上記等比共面電極は、電極板相互の中心位置までの供試体の水平面距離tと電極板面積Sの比が一定であればよい。特に、それを満足するのが等比共面電極定数S/tである。(但し、等比共面電極定数S/tが同一でも、一対の電極板面積が異なるものを除く。)
また、上記等比共面電極定数S/tの水平面距離tは、直線距離上の対向する電極板間の対向平均距離dと同一とすることもできる。しかし、水平面距離tとか、対向平均距離dは、その静電界、電界によって、その形態が決まるので、同一とし、算出式で相殺されるのが望ましい。
そして、上記一次関数の特性の傾きは、その特性の傾きまたはその特性の傾きの逆数1/aとすることができる。いずれにせよ、等比共面電極の両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を描ければよい。
Here, the ratio of the horizontal plane distance t of the test piece to the central position between the electrode plates and the electrode plate area S may be constant. In particular, it is the isometric coplanar electrode constant S / t that satisfies it. (However, even if the geometrical ratio coplanar electrode constant S / t is the same, except for the case where the pair of electrode plate areas are different.)
Further, the horizontal distance t of the above-mentioned equal ratio coplanar electrode constant S / t can be made equal to the facing average distance d between the facing electrode plates on the linear distance. However, it is preferable that the horizontal distance t and the facing average distance d be the same because they are determined by the electrostatic field and the electric field, and they should be offset by a calculation formula.
The slope of the characteristic of the linear function can be the slope of the characteristic or the reciprocal 1 / a of the inclination of the characteristic. In any case, high frequency output is applied to the equal ratio coplanar electrodes on both sides of the equal ratio coplanar electrode, and between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C It is sufficient to draw the characteristics of the linear function.

請求項1にかかる撥水層の厚み計測方法の発明は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tとの比の等比共面電極定数S/tの等比共面電極に高周波出力を加え、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。 The invention of the method for measuring the thickness of a water repellent layer according to claim 1 is that the ratio of the electrode plate area S to the horizontal distance t to the center position of the electrode plates is as a pair of two electrode plates having an electrode plate area S. A high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t , and the characteristic between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is near the surface layer Output as initial information related to the moisture content of

したがって、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きの(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Therefore, when the water repellent layer formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each specimen is expressed as the water repellent layer You can also Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, a high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t, and a primary value is generated between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C. Taking the characteristic of the functional equation, (reciprocal number 1 / a) of the inclination of the characteristic of the linear functional equation is the inclination information related to the water repellent layer thickness, and the intercept of the display value Cd depending on the capacitance C b obtains an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

図1は本発明の実施の形態の撥水層の厚み計測方法の図示した基本的説明図である。FIG. 1 is a basic explanatory view illustrating the method of measuring the thickness of the water repellent layer according to the embodiment of the present invention. 図2は本発明の実施の形態の基本的構成図である。FIG. 2 is a basic block diagram of the embodiment of the present invention. 図3は本発明の実施の形態で使用する含水率が模擬非撥水層一定の場合の表示値との関係を示す説明図である。FIG. 3 is an explanatory view showing the relationship between the water content used in the embodiment of the present invention and the display value in the case where the simulated non-water repellent layer is constant. 図4は本発明の実施の形態で使用する模擬供試体によると水平面距離と表示値との関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the horizontal distance and the display value according to the simulated specimen used in the embodiment of the present invention. 図5は本発明の実施の形態で使用する回帰直線の傾きと切片の関係を示す説明図である。FIG. 5 is an explanatory view showing the relationship between the slope and the intercept of the regression line used in the embodiment of the present invention. 図6は本発明の実施の形態で使用する各含水率における切片の関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship of the intercept at each moisture content used in the embodiment of the present invention. 図7は本発明の実施の形態で使用する各含水率における傾きの逆数の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship of the reciprocal of the slope in each moisture content used in the embodiment of the present invention. 図8は本発明の実施の形態で測定するコンクリート供試体の配合を示す説明図である。FIG. 8 is an explanatory view showing the composition of the concrete sample to be measured in the embodiment of the present invention. 図9は本発明の実施の形態で測定するコンクリート供試体の骨材の物性を示す説明図である。FIG. 9 is an explanatory view showing the physical properties of the aggregate of the concrete sample to be measured in the embodiment of the present invention. 図10は本発明の実施の形態で測定するコンクリート供試体の静電容量の変化を示す特性図である。FIG. 10 is a characteristic diagram showing the change of the capacitance of the concrete sample to be measured in the embodiment of the present invention. 図11は本発明の実施の形態で測定する傾きの逆数と撥水層厚を示す特性図である。FIG. 11 is a characteristic diagram showing the reciprocal of the inclination and the water repellent layer thickness measured in the embodiment of the present invention. 図12は本発明の実施の形態で測定する傾斜含水率分布を持つ静置1日の供試体の表示値の特性図である。FIG. 12 is a characteristic diagram of the display value of the test sample of stationary day 1 having the inclined water content distribution measured in the embodiment of the present invention. 図13は本発明の実施の形態で測定する傾斜含水率分布を持つ静置7日の供試体の表示値の特性図である。FIG. 13 is a characteristic diagram of the display value of the specimen of stationary 7 days having the inclined water content distribution measured in the embodiment of the present invention. 図14は本発明の実施の形態で測定した実測値と推定値を示す測定結果図である。FIG. 14 is a measurement result diagram showing measured values and estimated values measured in the embodiment of the present invention.

以下、本発明の実施の形態の撥水層の厚み計測方法について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Hereinafter, the method of measuring the thickness of the water repellent layer according to the embodiment of the present invention will be described based on the drawings. Note that, in the embodiment, the same symbols and symbols in the drawings are the same or corresponding functional parts, and therefore the description thereof will not be repeated here.

[実施の形態]
まず、撥水層の厚み計測方法の基本原理から説明する。
本発明では、一対の電極が平行板で、その間に誘電率εの誘電体を挟んだコンデンサの構成を利用している。平行する電極板の電極板面積Sは、並行に対立する電極板間の対向平均距離dだけ離して配設された状態としている。このときの電極板面積Sの電極板を平行板コンデンサの静電容量Cは、電極板面積Sと電極板間に挟む誘電体の誘電率εに比例し、電極板間の対向平均距離dに反比例するという特性があり、静電容量Cは次式で表される。
C=ε・S/d
ここで、C(F) 静電容量
S(m2) 対向する電極板間の電極板面積
d(m) 対向する電極板間の対向平均距離
ε(F/m) 電極板間の誘電体の誘電率
である。
Embodiment
First, the basic principle of the method of measuring the thickness of the water repellent layer will be described.
In the present invention, a pair of electrodes is a parallel plate, and the configuration of a capacitor in which a dielectric of dielectric constant ε is sandwiched therebetween is used. The electrode plate area S of the parallel electrode plates is in the state of being disposed apart by the facing average distance d between the electrode plates opposite to each other in parallel. The capacitance C of the electrode plate of the electrode plate area S at this time is proportional to the dielectric constant ε of the dielectric between the electrode plate area S and the electrode plate, and the capacitance C of the electrode plate is S The capacitance C is expressed by the following equation.
C = ε · S / d
Where C (F) capacitance
S (m 2 ) Electrode plate area between facing electrode plates
d (m) opposing average distance between opposing electrode plates
ε (F / m) is the dielectric constant of the dielectric between the electrode plates.

高周波源としては、発明者らが取り扱いに慣れていることから、市販の高周波容量式水分計(HI−520:(株)ケツト科学研究所製、高周波容量式(20MHz))の電極17,18からの高周波出力を用いた。
なお、発明者らの実験では、LCRメータに替えて高周波容量式水分計を用いているが、結果的に、静電容量Cの値を測定するものではなく、その出力を中継するものであり、誘電率εによって供試材料(骨材)の静電容量Cを高周波(20MHz)で測定値を算出するものではない。
一般的なLCRメータを使用すると、電極17,18等の浮遊静電容量の影響を考慮する必要があり、結果的に、市販の高周波容量式水分計の方が有用であると思慮する。
As the high frequency source, since the inventors are used to handling, a commercially available high-frequency capacitive moisture meter (HI-520: manufactured by Ketto Scientific Research Institute, Inc., high-frequency capacitive type (20 MHz)) electrodes 17 and 18 The high frequency output from was used.
In the experiments of the inventors, a high-frequency capacitive moisture meter is used instead of the LCR meter, but as a result, the value of the capacitance C is not measured, but the output is relayed. The capacitance C of the test material (aggregate) is not calculated based on the dielectric constant ε at a high frequency (20 MHz).
If a general LCR meter is used, it is necessary to consider the influence of stray capacitances of the electrodes 17, 18, etc. As a result, it is considered that a commercially available high frequency capacitive moisture meter is more useful.

まず、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加する現象が生じる。通常、静電容量Cは誘電正接tanδからすれば、
抵抗成分の電流Ir/コンデンサ容量成分の電流Icで現され、式は
tanδ=Ir/Ic
となる。
しかし、水の誘電率80程度は温度の変化に伴って変化するし、印加する周波数によっても変化する、また、化学反応が生じており、その印加時間等によっても変化する。これはイオンによる溶融等の作用によるものが大である。
また、静電容量CをC=ε・S/dとして算出しているが、電極間に挟まれた領域を抵抗体として捉えることもできる。
そこで、現象として、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加するから、その事象のみ捉えることとした。
静電容量Cが水分の増加に伴って増加する増加分を予めモルタル、コンクリート等各種供試材料で求めておいた換算式で換算し、水分量として表示する。ここで換算式がない供試材料では、市販の高周波容量式水分計のダイレクトモード(Dモード)に切り替え、静電容量Cと相関のある数値を表示値Cdとして表示している。念のため、発明者らが使用したダイレクトモードの表示値は「0〜2999」の間で表示される。
First, when water is included in the aggregate of the test material, a phenomenon occurs in which the capacitance C increases with the increase of water. Usually, when the capacitance C is calculated from the dielectric loss tangent tan δ,
It is expressed by the current Ir of the resistance component / the current Ic of the capacitor capacitance component, and the equation is
tan δ = Ir / Ic
It becomes.
However, the dielectric constant of about 80 of water changes with the change of temperature and also changes with the frequency applied, and a chemical reaction occurs and also changes with the application time and the like. This is largely due to the action of melting by ions and the like.
Moreover, although the electrostatic capacitance C is calculated as C = (epsilon) * S / d, the area | region pinched | interposed between electrodes can also be caught as a resistor.
Therefore, as the phenomenon, when the aggregate of the test material is made to contain water, the capacitance C increases with the increase of water, so it was decided to capture only that event.
The amount of increase in capacitance C as the water content increases is converted in accordance with a conversion formula previously obtained using mortar, concrete, and various other test materials, and is displayed as the water content. Here, in the test material having no conversion formula, the mode is switched to the direct mode (D mode) of a commercially available high-frequency capacitive moisture meter, and a numerical value correlated with the capacitance C is displayed as a display value Cd. As a precaution, the display value of the direct mode used by the inventors is displayed between "0 and 2999".

双方の電極板に高周波出力(交流電圧)を印加し、その間に帯状の電界を発生させて、この電界上にある供試材料の静電容量Cを測定した。電界の形状は、境界条件等により円弧状や楕円形状になると考えられるが、「電極間隔に比例した深さまでの誘電物性量の評価は可能(所哲郎:「表面深さ分解能を有する誘電計測による高分子電気絶縁材料の劣化診断技術の開発」平成16−18年度 科学研究費補助金成果報告書」参照)と言われていることから、電極板間の対向平均距離dと電界到達深さが単純に比例する円弧状と仮定した。電極板を並列に配置し、電界が供試材料中を透過するようにし、電極板間の対向平均距離dを変化させることで、電界が到達する深さが変化するように想定した。  A high frequency output (AC voltage) was applied to both electrode plates, and a band-like electric field was generated therebetween, and the capacitance C of the test material on this electric field was measured. The shape of the electric field is considered to be arc-like or elliptical depending on the boundary conditions etc. However, "It is possible to evaluate the amount of dielectric physical properties to a depth proportional to the electrode spacing (S. Tetsuro:" by dielectric measurement with surface depth resolution Since it is said that “Development diagnosis technology for polymer electrical insulation materials” (FY 2004-2006 Grant-in-Aid for Scientific Research Grants), the opposing distance d between the electrode plates and the depth of the electric field It was assumed that it was a circular arc shape that was simply proportional. The electrode plates were arranged in parallel so that the electric field was transmitted through the test material, and it was assumed that the depth at which the electric field reached would be changed by changing the facing average distance d between the electrode plates.

また、誘電体の誘電率εは含水率に応じて変化する。また、電極板間の対向平均距離dは円弧状の電界の対向平均距離長になる。電極板間の対向平均距離dが小さいと、電界は模擬撥水層41のみにあり、電極板間の対向平均距離dの増加とともに静電容量Cは減少する。電界が含水率の高い模擬非撥水層42に到達すると誘電率εも変化し、表示値Cdの減少する割合が変化する。  Further, the dielectric constant ε of the dielectric changes in accordance with the water content. Further, the facing average distance d between the electrode plates is the facing average distance length of the arc-like electric field. When the facing average distance d between the electrode plates is small, the electric field exists only in the simulated water repellent layer 41, and the capacitance C decreases with the increase in the facing average distance d between the electrode plates. When the electric field reaches the simulated non-water repellent layer 42 having a high water content, the dielectric constant ε also changes, and the reduction rate of the display value Cd changes.

したがって、論理的には、この変曲点が模擬撥水層41と模擬非撥水層42の境界となる。このときの撥水層厚の推定値は、実測で確認した確認値に近い値が得られた。しかし、模擬撥水層41が薄いと変曲点がすぐ現れ、変曲点の判定が困難となる。また、薄い撥水層厚測定用に電極板の幅を狭くした場合には精度が落ちるという欠点がある。即ち、最初から電界が模擬非撥水層42側に影響を与えていると推定される。  Therefore, logically, this inflection point is the boundary between the simulated water repellent layer 41 and the simulated non-water repellent layer 42. The estimated value of the water repellent layer thickness at this time was close to the confirmed value confirmed by the measurement. However, if the simulated water repellent layer 41 is thin, an inflection point appears immediately, which makes it difficult to determine the inflection point. In addition, when the width of the electrode plate is narrowed for thin water-repellent layer thickness measurement, there is a disadvantage that the accuracy is lowered. That is, it is estimated that the electric field affects the side of the non-water repellent layer 42 from the beginning.

次に、本発明の実施の形態で使用する図1に示す電極板21,22,21A,22Aについて検討する。
一方の電極板の中心位置から他方の電極板の中心位置までの水平面距離tと電極板面積Sの比S/tが一定であるような電極を作製した。この水平面距離tと電極板面積Sの比S/tが一定な電極を、ここでは『等比共面電極』と呼ぶこととする。また、電極板21,22,21A,22Aについて、水平面距離tとして定義しているが、垂直面であってもよいし、所定の傾きであってもよい。ここでは、電極板間の対向平均距離dとの違いを明確にするため水平面距離tという。そして、ここでは、S/t=constを『等比共面電極定数』という。
Next, the electrode plates 21, 22, 21A, 22A shown in FIG. 1 used in the embodiment of the present invention will be examined.
An electrode was manufactured such that the ratio S / t of the horizontal plate distance t from the center position of one electrode plate to the center position of the other electrode plate and the electrode plate area S was constant. An electrode in which the ratio S / t of the horizontal plane distance t to the electrode plate area S is constant is referred to as a "equal ratio coplanar electrode". Further, although the horizontal distance t is defined for the electrode plates 21, 22, 21A, 22A, it may be a vertical surface or may have a predetermined inclination. Here, in order to clarify the difference with the facing average distance d between electrode plates, it is called horizontal surface distance t. Here, S / t = const is referred to as "equal ratio coplanar electrode constant".

ここで、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離dと設定する。
π・t=d
t=d/π
となる。
したがって、
S/t=S・π/d
となる。円周率πが一定、等比共面電極定数S/dが常に一定となる。
また、静電容量Cは、C=ε・S/dにより、誘電率ε、即ち、含水率が深さ方向に変化しなければ静電容量Cは一定となる。
そして、水平面距離tを順次大きくしていくと、電界が含水率の高い部分に到達したとき、静電容量Cは初めて変化し、その変化した位置の値が模擬撥水層41の深さとなる。
Here, a value obtained by multiplying the horizontal distance t by the circle ratio π is set as the facing average distance d between the electrode plates.
π · t = d
t = d / π
It becomes.
Therefore,
S / t = S · π / d
It becomes. The circle ratio π is constant, and the uniform coplanar electrode constant S / d is always constant.
In addition, the capacitance C is constant, if the dielectric constant ε, that is, the water content does not change in the depth direction, according to C = ε · S / d.
Then, when the horizontal distance t is sequentially increased, when the electric field reaches a portion with high water content, the capacitance C changes for the first time, and the value of the changed position becomes the depth of the simulated water repellent layer 41 .

発明者らは、更に、等比共面電極21,22,21A,22A(以下、これらを「等比共面電極20」とまとめて呼ぶこととする)について究明する。
水平面距離tが4、8、12、16、20mmの5種類の等比共面電極20を作製した。等比共面電極20の電極板長は100mmで一定とし、電極板幅を変化させて等比共面電極定数S/t=100とした。この場合、電極板幅は水平面距離tと相殺するため、電極板間の対向平均距離dと等比共面電極20の水平面距離tは同一(電極板間の対向平均距離d=水平面距離t)とした。ここで、一対の等比共面電極20の面積が異なる電極板を除外した。
The inventors further investigate iso-coplanar electrodes 21, 22, 21A and 22A (hereinafter, these will be collectively referred to as “e-coplanar electrode 20”).
Five types of equal ratio coplanar electrodes 20 having horizontal surface distances t of 4, 8, 12, 16, and 20 mm were produced. The electrode plate length of the equal ratio coplanar electrode 20 was constant at 100 mm, and the electrode plate width was changed to set the equal ratio coplanar electrode constant S / t = 100. In this case, since the width of the electrode plate offsets the horizontal distance t, the facing average distance d between the electrode plates and the horizontal distance t of the equal ratio coplanar electrode 20 are the same (the facing average distance d between the electrode plates d = horizontal distance t) And Here, electrode plates having different areas of the pair of equal ratio coplanar electrodes 20 were excluded.

電極板の材料としては、図2に示すように、プラスチックフィルム11に銅箔テープ10を貼り付け、更に、プラスチックフィルム11を25mmのポリスチレンフォーム12に貼り付けた。電極板としての銅箔テープ10にはビニール被覆銅線15,16を取り付けて延長し、市販の高周波容量式水分計の電極17及び電極18と接触させた。なお、図2においてはリード線としてのビニール被覆銅線15,16の長さが異なるが、試験回路では均一長さとしている。回路的には対称性を持たせ、反対側に引き出している。
特に、両方のビニール被覆銅線15,16を近づけると、静電浮遊容量の影響を受け、出力の表示値Cdに影響するため、お互いに離し、その影響が最小値になるようにした。電極21A(21)及び電極22A(22)の上面と模擬供試体の上面のみを導通とするため、模擬供試体の他の上面を電気的に絶縁するためラップフィルム14を敷いている。
また、銅箔テープ10と供試体を密着させるため2kgの錘13をポリスチレンフォーム12の上に置いた。
As a material of an electrode plate, as shown in FIG. 2, the copper foil tape 10 was stuck on the plastic film 11, and also the plastic film 11 was stuck on the polystyrene foam 12 of 25 mm. Vinyl coated copper wires 15 and 16 were attached to the copper foil tape 10 as an electrode plate and extended, and brought into contact with the electrodes 17 and 18 of a commercially available high-frequency capacitive moisture meter. Although the lengths of the vinyl-coated copper wires 15 and 16 as lead wires are different in FIG. 2, they are uniform in length in the test circuit. The circuit has symmetry and is drawn out on the opposite side.
In particular, when both vinyl coated copper wires 15 and 16 are brought close to each other, they are influenced by the electrostatic stray capacitance and affect the displayed value Cd of the output, so they are separated from each other so that the influence becomes the minimum value. In order to electrically connect only the upper surface of the electrode 21A (21) and the electrode 22A (22) to the upper surface of the simulated sample, a wrap film 14 is applied to electrically insulate the other upper surface of the simulated sample.
Also, a 2 kg weight 13 was placed on the polystyrene foam 12 in order to bring the copper foil tape 10 into close contact with the test piece.

このようにして製作した等比共面電極20を用いて、一定の含水率とした模擬供試体を作製し、ケイカル板及びコンクリートの表示値Cdの特性を測定した。ケイカル板は厚さ5mmで加工し易く、また、吸水率も高く、吸水速度も速いため模擬供試体として採用した。
厚さ5mm×縦100mm×幅100mmの模擬供試体を105℃の下で24時間炉乾燥させたものを含水率0%の状態とし、この状態における模擬供試体の質量を下に1枚ずつ所定の含水率となるような質量の水とともにポリ袋に入れ吸水させた後に密閉した模擬供試体を作成した。そして、図3に示すような、模擬供試体の全体を100%としたときの含水率0、6、12%のケイカル板を製作した。なお、コンクリートは含水率0、4、6.4%の立方体を製作した。
Using the equal ratio coplanar electrode 20 manufactured in this manner, a simulated specimen with a constant water content was manufactured, and the characteristics of the display value Cd of the carbon plate and the concrete were measured. A caikale plate is easily processed at a thickness of 5 mm, has a high water absorption rate, and has a high water absorption rate, and was adopted as a simulated specimen.
A sample of 5 mm in thickness x 100 mm in length x 100 mm in width is subjected to oven drying at 105 ° C. for 24 hours to obtain a water content of 0%. The sample was placed in a plastic bag with water of such a mass as to cause water absorption, and was then absorbed to make a sealed test sample. Then, as shown in FIG. 3, a caical plate having a moisture content of 0, 6, 12% when the whole of the simulated specimen was 100% was manufactured. In addition, concrete manufactured cubes with a moisture content of 0, 4 and 6.4%.

ここで、ケイカル板の絶乾密度は約0.7g/cm3とコンクリートに比べて1/3程度であるから、含水している水量も同じ含水率ではコンクリートの約1/3になる。同じ含水率のケイカル板を8枚重ねた等比共面電極20を作製し、表示値Cdの値を計測した。
また、コンクリートは水とセメントの比55%で作製した100×100×400mmのコンクリート模擬供試体を100mm角の立方体に切断し、水で飽和させ表乾状態(含水率6.4%)としたものと、同じ寸法で含水率4.0%及び0%となるように調整したものをポリ袋に入れ密閉し、水を均一に吸着させて、所定の含水率の模擬供試体を得た。
ここで、模擬供試体の水平面距離tと表示値Cdの関係を図3に示す。
Here, since the bone dry plate has an absolute dry density of about 0.7 g / cm 3 , which is about 1/3 of that of concrete, the amount of water containing water is about 1⁄3 of that of concrete with the same water content. Eight equal carbon content plates having the same water content were stacked to prepare an equal ratio coplanar electrode 20, and the value of the display value Cd was measured.
The concrete was prepared by cutting a 100 × 100 × 400 mm concrete simulation specimen prepared with a 55% water / cement ratio into cubes of 100 mm square and saturated with water to obtain a surface dry state (water content: 6.4%) What was adjusted so that the moisture content and the moisture content of the same dimensions as that of the one were adjusted to 4.0% and 0% was put in a plastic bag and sealed, and water was uniformly adsorbed to obtain a simulated specimen of a predetermined moisture content.
Here, the relationship between the horizontal distance t of the simulated specimen and the display value Cd is shown in FIG.

図3に示すように、コンクリートとケイカル板の含水率が一定であれば、水平面距離tを変えても表示値Cdが略一定であることが判る。表示値Cd及びコンクリートまたはケイカル板等の供試体が判れば、供試体の含水率が特定されることになる。ここで、表示値Cdの誤差はケイカル板、コンクリートの全体関に対する含水率分布の特性の違い、個体による含水率の違いによるものと推定される。
また、各含水率における電極板中心位置までの水平面距離tが大きくなっても、小さくなっても表示値Cdの値は変化せず、略一定となっていることが確認された。
そして、等比共面電極定数S/tとして一定であれば、電極中心位置までの水平面距離tを大きくして電界が到達する位置を深くしても、誘電率ε(含水率)が変化しなければ表示値Cdは同じ値となる。そして、含水率が高くなると表示値Cdの値は大きくなるという結果が得られた。これにより表示値Cdが含水率に依存することが判る。
As shown in FIG. 3, it can be seen that the display value Cd is substantially constant even if the horizontal surface distance t is changed, if the water content of the concrete and the carbon plate is constant. Once the indicated value Cd and the specimen such as concrete or caulcal plate are known, the moisture content of the specimen is specified. Here, it is presumed that the error of the indicated value Cd is due to the difference in the characteristic of the moisture content distribution to the caulcal board and the general relation of the concrete, and the difference in the moisture content depending on the individual.
In addition, even if the horizontal distance t to the electrode plate center position at each moisture content increases, it is confirmed that the value of the display value Cd does not change and becomes substantially constant even if the horizontal distance t decreases.
Then, if the equi-coplanar electrode constant S / t is constant, the dielectric constant ε (water content) changes even if the horizontal distance t to the electrode center position is increased and the position where the electric field reaches is deepened. If not, the display value Cd is the same value. Then, the result was obtained that the value of the display value Cd becomes larger as the moisture content becomes higher. From this, it can be seen that the indicated value Cd depends on the water content.

次に、この等比共面電極20を用いて模擬撥水層41の模擬供試体の測定を行う。
図2及び図3に示す含水率6.4%及び4.0%のコンクリート立方体の上に0、6、12%のケイカル板を1枚または2枚または3枚載せて、各電極板の積層状態で表示値Cdを測定した。ケイカル板は含水率が低い模擬撥水層41を、コンクリートは含水率が高い模擬非撥水層42を模擬した2層模擬供試体モデルとした。
Next, measurement of the simulated specimen of the simulated water repellent layer 41 is performed using this equal ratio coplanar electrode 20.
1 or 2 or 3 sheets of 0, 6 and 12% silicon plates are placed on the concrete cubes with water content of 6.4% and 4.0% shown in FIG. 2 and FIG. 3, and lamination of each electrode plate The display value Cd was measured in the state. The carbon plate is a two-layer simulated specimen model in which the simulated water repellent layer 41 having a low water content is simulated, and the concrete non-water repellent layer 42 having a high water content is simulated.

図4に示すように、誘電率ε、含水率6.4%のコンクリートの上に含水率0%のケイカル板を1、2、3枚重ねて電極板中心位置までの水平面距離tと各表示値Cdの関係を図示した。
図4に示すように、厚さ5mmのケイカル板が1枚と薄い場合には直線の傾きが大きく、3枚重ねて15mmとした厚い場合には傾きが小さくなっている。
また、ケイカル板の厚さに左右されないx=0のときのy軸と交わるy軸の交点、即ち、表示値Cdの切片bは略同じ値になっている。その値は図3に示した含水率が0%のケイカル板を重ねた場合の表示値Cd=1270に近い値を示した。他の含水率のケイカル板を用いたものでも直線関係、即ち、表示値Cdの一次関数方程式
表示値Cd=ax+b=ax+1270
表示値Cdは縦軸(y)、xは横軸である。
が得られた。表示値Cdの切片bを図5に示す。
コンクリート及びケイカル板の含水率、及び重ねたケイカル板の枚数を変化させて測定して得られた水平面距離tと、表示値Cdの関係を最小自乗法により直線回帰して求めた各直線の傾きaとx=0のy軸(表示値Cd)と交わる交点が表示値Cdとなる。
As shown in FIG. 4, one, two, three, or four pieces of silicon boards with a moisture content of 0% are stacked on concrete having a dielectric constant ε and a moisture content of 6.4%, and the horizontal distance t to the electrode plate center position and each display The relationship of the value Cd is illustrated.
As shown in FIG. 4, the inclination of the straight line is large when the thickness of 5 mm of the silicon plate is as thin as one, and the inclination is small when the thickness of three laminated sheets is 15 mm.
Further, the intersection point of the y-axis intersecting the y-axis at x = 0 which does not depend on the thickness of the caiscal plate, that is, the intercept b of the display value Cd is substantially the same value. The value showed a value close to the indicated value Cd = 1270 in the case of overlapping the silica plates having a water content of 0% shown in FIG. A linear relationship, ie, a linear function equation of the display value Cd, is also used in the case of using a calcium carbonate of other moisture content
Display value Cd = ax + b = ax + 1270
The display value Cd is the vertical axis (y), and x is the horizontal axis.
was gotten. The intercept b of the indicated value Cd is shown in FIG.
The slope of each straight line obtained by linear regression of the relationship between the display value Cd and the horizontal distance t obtained by changing the moisture content of concrete and caycal board and the number of stacked caical boards and changing it. An intersection point of a and x = 0 y axis (display value Cd) is a display value Cd.

模擬撥水層41に見立てたケイカル板の含水率と模擬非撥水層42に見立てたコンクリートの含水率の差が大きいほど、回帰直線の傾きが大きくなった。これは、ケイカル板の静電容量Caのインピーダンスとコンクリートの静電容量Cbのインピーダンスが直列接続されていると見做されると、インピーダンスの比較によってCa≫Cbであるとき、直列接続するとコンデンサの容量のインピーダンスが大きいCaに仕事量が依存されることになる。
特に、コンクリートの含水率が4%で上に載せたケイカル板の含水率が12%と、あまり両者の含水量の差が大きくない場合には、ケイカル板の枚数を増やすと傾きがマイナスになり、回帰直線の相関係数も小さくなる。
また、模擬撥水層41の厚さが大となると、即ち、ケイカル板の枚数が増えると傾きが小さくなった。ケイカル板の含水率が同じ場合、図6に示す含水率と切片の関係で示すように、重ねる枚数を変化させても切片bの値は略同じになった。特に、含水率が一定であり、含水量に変化がないので、何枚用いても同じになると推定される。
また、これにより、模擬撥水層41は含水率が非常に小さいことから、望ましい測定方法であると思慮される。
The larger the difference between the moisture content of the cical plate regarded as the simulated water repellent layer 41 and the moisture content of concrete regarded as the simulated non-water repellent layer 42, the larger the inclination of the regression line. It is considered that if the impedance of the capacitance Ca of the caical plate and the impedance of the capacitance Cb of concrete are considered to be connected in series, when Ca 接 続 Cb by the comparison of impedances, the capacitors are connected in series The amount of work is dependent on Ca, which has a large capacitance impedance.
In particular, when the moisture content of concrete is 4% and the moisture content of the cical plate placed above is 12%, the difference between the moisture content of the two is not so large, the inclination becomes negative when the number of cical plates is increased. , The correlation coefficient of the regression line also decreases.
In addition, when the thickness of the simulated water repellent layer 41 was large, that is, as the number of the silica plates was increased, the inclination was reduced. In the case where the moisture content of the caycal plate is the same, as shown by the relationship between the moisture content and the segment shown in FIG. 6, the values of the segment b become substantially the same even if the number of overlapping sheets is changed. In particular, since the water content is constant and there is no change in the water content, it is estimated that the same can be obtained regardless of how many sheets are used.
Also, it is considered that the simulated water repellent layer 41 is a desirable measurement method because the moisture content is very small.

また、ケイカル板が3枚(15mm厚さ)の場合、水平面距離tが4mm、8mmの電極では表示値Cdは変化しないことから、電界が含水率の高い模擬非撥水層42には大きな影響がないと推定される。
模擬非撥水層42に届きはじめる12mm、16mm以上で急激に大きくなると推定していたが、表示値Cdは連続的に増大し、水平面距離tと表示値Cdには直線関係が得られ、不連続点は発生しなかった。電界形状について電極板が対向状態で円弧状になるとも推定されるが、等比共面電極20相互間に直列接続されたインピーダンスとしての静電容量の和と同じで、供試体中での電界の形状や含水率の差の影響調査等の詳しい解析が今後検討課題となる。
In addition, in the case of three caical plates (15 mm thick), the display value Cd does not change with electrodes having a horizontal distance t of 4 mm and 8 mm, so the electric field has a large effect on the simulated non-water repellent layer 42 with high moisture content It is presumed that there is no
Although it was estimated that the display value Cd would increase rapidly at 12 mm and 16 mm or more starting to reach the simulated non-water repellent layer 42, the display value Cd would increase continuously and a linear relationship was obtained between the horizontal distance t and the display value Cd. No continuous points occurred. The electric field shape is also presumed to be an arc when the electrode plates face each other in the opposite state, but the electric field in the sample is the same as the sum of the capacitances as impedances connected in series between equal ratio coplanar electrodes 20. Detailed analysis, such as investigation of the influence of the difference in the shape of the water content and the moisture content, will be the subject for future study.

コンクリートの含水率が6%及び4%で重ねるケイカル板の含水率が、0%及び12%としたケイカル板の厚さを変化させて得られたそれぞれの回帰直線の傾きの逆数1/aとケイカル板の厚さとの関係を図7に示す。それぞれ傾きの逆数1/aとケイカル板の厚さには一次関数方程式で示すことができる直線関係が得られた。
このことより傾きの逆数1/aと撥水層厚の関係を供試体毎に予め求めておけば、等比共面電極20で測定し得られた水平面距離tと表示値Cdの回帰直線の傾きaまたは傾きの逆数1/aから撥水層厚が推定できることになる。
The moisture content of the caking plate piled up at 6% and 4% of the concrete content, the reciprocal of the slope 1 / a of the regression line obtained by changing the thickness of the caking plate with 0% and 12%, respectively The relationship with the thickness of the caycal plate is shown in FIG. The linear relationship which can be shown by a linear function equation was obtained for the reciprocal 1 / a of the slope and the thickness of the caycal plate, respectively.
From this, if the relationship between the reciprocal 1 / a of the slope and the thickness of the water repellent layer is determined in advance for each sample, the regression line of the horizontal distance t and the display value Cd obtained by measuring with the equal ratio coplanar electrode 20 The water repellent layer thickness can be estimated from the slope a or the reciprocal 1 / a of the slope.

次に、これら得られた模擬供試体の例を用いて検討する。
まず、模擬撥水層41を形成したコンクリート模擬供試体を等比共面電極20で測定し、模擬供試体で得られたような回帰直線の傾きの逆数1/aと撥水層厚との関係を検討する。
コンクリートは3種類の配合のものを用いた。当該コンクリートの配合及び28日圧縮強度を図8に示す。
水とセメント比(図8ではW/Cと記す)は40、55、70%とした。一般的な構造物に使用されている水とセメント比55%で空気量も5%程度の普通コンクリート、及び比較的高強度を想定した水とセメント比40%のものと、比較的低品質のコンクリートを想定した水セメント比70%の低強度でAE剤(界面活性剤の一種で、コンクリート打設作業能率の向上及び耐凍性を向上させる混和剤)を使用せずに空気量が小さくなるようにしたものとした。使用したセメントは、早強セメントを用いた。
なお、使用した骨材の物性を念のため図9に示した。粗骨材は長良川産の玉砕石を用い、細骨材には長良川産の粗砂と細砂を7:3の割合で混合したものを用いた。
ここで、s/aは細骨材率(全骨材の体積に占める細骨材の体積の割合)で、ここではs/a=40%とした。また、S1は細骨材のうち粗いもの、S2は細骨材のうち細かいもの、Gは粗い骨材である。
Next, it examines using the example of these obtained simulated specimens.
First, a concrete simulation sample on which a simulation water repellent layer 41 was formed was measured with a uniform ratio coplanar electrode 20, and the reciprocal 1 / a of the slope of the regression line as obtained for the simulation sample and the water repelling layer thickness Examine the relationship.
The concrete used three types of compounding. The composition of the concrete and the 28-day compressive strength are shown in FIG.
The water to cement ratio (referred to as W / C in FIG. 8) was 40, 55, 70%. Relatively low quality such as ordinary concrete with 55% water / cement ratio and 5% air content, which are used in general structures, and 40% water / cement ratio assuming relatively high strength The amount of air can be reduced without using an AE agent (a type of surfactant, an additive that improves the efficiency of concrete placement and the freeze resistance) at a low water-cement ratio of 70% assuming concrete. It was decided to be. The cement used was early-strength cement.
The physical properties of the used aggregate are shown in FIG. The coarse aggregate used grated stone from Nagara River, and the fine aggregate was a mixture of coarse sand and fine sand from Nagara River at a ratio of 7: 3.
Here, s / a is a fine aggregate rate (the ratio of the volume of the fine aggregate to the volume of the total aggregate), and in this case, s / a = 40%. Moreover, S1 is a coarse thing among fine aggregates, S2 is a fine thing among fine aggregates, G is a coarse aggregate.

養生は、図8に示すように、脱型後28日間水中養生及び気中養生の2種類とした。
100mm×100mm×400mmの角柱の供試体を作製し、養生後、コンクリートカッターを用いて切断し、50mm×100mm×130mmとした。100mm×130mmの切断面に表面含浸材が供試体側面に垂れないように土手を作った後、炉で乾燥させ、絶乾状態にし、更に、表面含浸材を塗布した。
表面含浸材はトーケン樹脂化学株式会社製(製品名 S−7;以下、単に「T社製」という)と、大同塗料株式会社製(製品名 アクアシール1400;以下、単に「D社製」という)を用いた。T社製は液体状であり、D社製はジェル状である。
どちらも成分はシラン系で標準使用量が200g/m2とされていた。塗布量は100g/m2〜500g/m2とし、一部の供試体数は50及び800g/m2を塗布した。供試体数は全部で68個であった。
As shown in FIG. 8, two types of curing were used: curing in water and curing in air for 28 days after demolding.
A specimen of a square column of 100 mm × 100 mm × 400 mm was prepared, and after curing, it was cut using a concrete cutter to make 50 mm × 100 mm × 130 mm. After making a bank on a 100 mm × 130 mm cut surface so that the surface impregnating material does not drip on the side surface of the sample, it was dried in an oven to be completely dried, and further, the surface impregnating material was applied.
The surface impregnating material is manufactured by TOOKEN CHEMICAL CO., LTD. (Product name S-7; hereinafter simply referred to as "made by T company") and Daido Paint Co., Ltd. (product name aqua seal 1400; hereinafter referred to simply as "made by company D") Was used. The product of company T is liquid, and the product of company D is gel.
Both of the components were silanes, and the standard amount used was 200 g / m 2 . The coating amount was set to 100g / m 2 ~500g / m 2 , a portion of the specimen number was applied 50 and 800 g / m 2. The number of specimens was 68 in all.

模擬撥水層41が形成されるよう塗布後4日以上静置した後、供試体を容器内に入れて水浸させた。水の深さは供試体の高さとし、供試体の底面と側面から4日間吸水させた。模擬撥水層41は吸水速度が非常に低く、模擬非撥水層42は吸水速度が高いことから模擬供試体と同じく含水率が小さい模擬撥水層41と含水率が高い模擬非撥水層42の2層供試体モデルを構成した。
図10は水とセメント比55%で水中養生したものに、T社製の表面含浸材を100、300、500g/m2塗布したものの、電極板中心位置までの水平面距離tと表示値Cdとの関係を示す。模擬供試体と同様に電極板中心位置までの水平距離tと静電容量Cに依存する表示値Cdには直線関係(線形特性)が得られることを示す。
計測後、各供試体を割裂させ、実際に形成された撥水層厚を測定した。測定は中心部とその両側25mmの位置の部分での値を平均化した。塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、切片bは略同じ値になり、撥水層部分の含水率は同一と考えられる。
表面含浸材の塗布量は100、300、500g/m2であるが、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなっている。
このように、図10に示す電極で計測した表示値Cdと電極中心までの距離tとの関係を1次関数として求めた傾きaを求めます。図10の4.8mm、10.2mmや14.0mm)のように、この供試体を割って実際の撥水層厚さを求めておく。
After leaving for 4 days or more after application so as to form the simulated water repellent layer 41, the sample was placed in a container and immersed in water. The depth of water was set to the height of the specimen, and water was allowed to absorb from the bottom and the side of the specimen for 4 days. The simulated water repellent layer 41 has a very low water absorption rate, and the simulated non-water repellent layer 42 has a high water absorption rate, so the simulated water repellent layer 41 has a small water content like the simulated sample and the simulated non water repellent layer has a high water content. Forty-two two-layer specimen models were constructed.
Fig. 10 shows that 100, 300, 500 g / m 2 of surface impregnated material from T Co. is applied to those cured in water at a cement ratio of 55% with water, but the horizontal distance t to the electrode plate center position and the indicated value Cd Show the relationship between It shows that a linear relationship (linear characteristic) can be obtained in the display value Cd depending on the horizontal distance t to the electrode plate center position and the capacitance C as in the case of the simulated specimen.
After the measurement, each sample was split and the actually formed water repellent layer thickness was measured. The measurement averaged the value in the center part and the part of the position of 25 mm on both sides. When the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b has substantially the same value, and the water content of the water repellent layer portion is considered to be the same.
The coating amount of the surface impregnating material is 100, 300 and 500 g / m 2 , but the inclination a is large when the water repellent layer formed with a small coating amount is thin, and is small when it is thick.
In this way, the slope a is obtained as a linear function of the relationship between the display value Cd measured by the electrode shown in FIG. 10 and the distance t to the center of the electrode. As in the case of 4.8 mm, 10.2 mm and 14.0 mm in FIG. 10, the sample is divided to obtain the actual water repellent layer thickness.

更に、各模擬供試体の回帰直線の傾きの逆数1/aと撥水層厚の実測値との関係を図11に示す。
図11のY軸は実際に供試体を割って測定した撥水層厚さを用い,X軸は傾きaの逆数1/aを用いて、1次関数を求めます。
式としては,
撥水層厚さ=164.5×(1/a)+1.302になります。
撥水層が未知の供試体を電極で測定し、傾きaを求めれば,この式から撥水層が決定できる。
図11において、供試体数はT社製とD社製を塗布した模擬供試体の和が68個である。各模擬供試体の傾きの逆数1/aと、撥水層厚の実測値を切片bとを、表示値Cdと共通させて実測した撥水層厚Xから、傾きの逆数1/aが確認される。
したがって、68個のデータで表現された当該一次関数方程式の直線から傾きの逆数1/aが決定され、傾きの逆数1/aが特定されれば、撥水層厚が特定される。
傾きの逆数と撥水層厚には模擬供試体と同様に直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
Furthermore, FIG. 11 shows the relationship between the reciprocal 1 / a of the slope of the regression line of each simulated specimen and the measured value of the water repellent layer thickness.
The Y axis in Figure 11 uses the water repellent layer thickness actually measured by dividing the sample, and the X axis uses the reciprocal 1 / a of the slope a to obtain a linear function.
As a formula,
The water repellent layer thickness is 164.5 × (1 / a) + 1.302.
If the sample whose water repellent layer is unknown is measured with an electrode and the inclination a is obtained, the water repellent layer can be determined from this equation.
In FIG. 11, the number of test specimens is 68, which is the sum of simulated test specimens coated with T company and D company. The reciprocal 1 / a of the slope is confirmed from the water repellent layer thickness X measured by making the reciprocal 1 / a of the slope of each simulated specimen and the intercept b of the measured value of the water repellent layer common to the indicated value Cd. Be done.
Therefore, the reciprocal 1 / a of the slope is determined from the straight line of the linear function equation expressed by the 68 data, and if the reciprocal 1 / a of the slope is identified, the water repellent layer thickness is identified.
A linear relationship was obtained for the reciprocal of the slope and the water repellent layer thickness as in the case of the simulated specimen. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

次に、実際の構造物を想定した撥水層の厚み計測方法について説明する。
前述の供試体では、模擬撥水層41は含水率が低く、模擬非撥水層42は表乾状態に近い高含水率とした2層供試体モデルとしてきた。
しかし、現実の構造物では含水率は2層供試体モデルではなく、表面付近が低く中心部に行くほど連続的に高くなる傾斜分布であると推定される。傾斜分布を想定し、水とセメント比55%で水中養生した角柱供試体を2等分し、切断面以外を水分の出入りしないようにゴム系塗料でシールしたものを3日浸水させた後、実験室中に7日及び1日静置した。それをそれぞれ2本ずつ静置した。
この試験を行った7日間の岐阜気象台の記録では、平均気温は6.3℃、平均湿度は62%であった。静置後に切断面にD社製表面含浸材を200g/m2塗布した。塗布前と塗布後4日後に電極で表示値Cdを測定した。
測定後、割裂して擬水層深さを測定した。塗布前と塗布後の電極中心までの水平面距離tと表示値Cdの関係を例示する。
Next, a method of measuring the thickness of the water repellent layer assuming an actual structure will be described.
In the sample described above, the simulated water repellent layer 41 has a low moisture content, and the simulated non-water repellent layer 42 has a two-layer sample model with a high moisture content close to the surface dry state.
However, in an actual structure, the water content is not a two-layer sample model, but is estimated to be a slope distribution in which the vicinity of the surface is low and the height gradually increases toward the center. Assuming a slope distribution, the prismatic specimen cured in water at a cement ratio of 55% with water is divided into two equal parts, and those sealed with a rubber-based paint to prevent entry and exit of water except for the cut surface are immersed for 3 days, It stood still in the laboratory for 7 days and 1 day. Two of them were allowed to stand.
The seven-day Gifu Meteorological Observatory records that this test was conducted showed an average temperature of 6.3 ° C and an average humidity of 62%. After standing, 200 g / m 2 of a surface impregnating material manufactured by D was applied to the cut surface. The indicated value Cd was measured with the electrode before application and 4 days after application.
After the measurement, it was split to measure the simulated aqueous layer depth. The relationship between the horizontal distance t to the electrode center before application and after application and the display value Cd is illustrated.

1日乾燥させたものは、図12に示すように塗布前の表示値Cdは水平面距離tが4mmでも、表乾状態(含水率5.2%)の表示値Cd=1900に近い値となっており、殆ど水分は蒸発しておらず、飽和した状態であると推定される。塗布後でも表示値Cdは減少したが、ほぼ一定の値であり明確な傾きが得られず、撥水層厚は推定できなかった。
実際の構造物を想定した傾斜がある含水率分布での撥水層厚の推定は、実験例が少ないこともあり今後を補正することも必要となる可能性がある。今後、含水率を変化させるなど、更に、検討が必要である。
As for what was dried for 1 day, as shown in FIG. 12, the display value Cd before application becomes a value close to the display value Cd = 1900 of the surface dry state (water content 5.2%) even when the horizontal distance t is 4 mm. Most of the water is not evaporated, and it is presumed to be in a saturated state. Although the indicated value Cd decreased even after the application, it was an almost constant value and a clear slope was not obtained, and the water repellent layer thickness could not be estimated.
The estimation of the water repellent layer thickness in a moisture content distribution with a slope assuming an actual structure may have few experimental examples and may need to be corrected in the future. In the future, it is necessary to further study, such as changing the moisture content.

また、7日間静置させたものは、図13に示したように、塗布前の表示値Cdは、水平面距離tが4mmで、表示値Cdが1900弱と低く、8mm以上では略同じ値になっている。8mm以上での表示値Cdは図3に示した表乾状態(含水率6.4%)のコンクリートの表示値に近い値となっており、内部は飽和した状態と考えられる。
塗布後は4、8、12mmで表示値Cdが低下し、16mm以上で塗布前の値に近い値となった。塗布後の表示値Cdの増加がほぼ無くなる16mmまでの値を用いて直線回帰を行い傾きaを求めた。この傾きaを用いた傾きの逆数1/aと撥水層厚との関係から撥水層厚の推定を行った、推定値と実測値を図14に示す。推定値と実測値は比較的近い値を示している。
In addition, as shown in FIG. 13, the display value Cd before application is as low as 1900 at a horizontal distance t of 4 mm, the display value Cd is as low as 1900, and is substantially the same for 8 mm or more. It has become. The indicated value Cd at 8 mm or more is a value close to the indicated value of the concrete in the surface dry state (water content: 6.4%) shown in FIG. 3, and it is considered that the inside is saturated.
After application, the display value Cd decreased at 4, 8 and 12 mm, and became a value close to the value before application at 16 mm or more. Linear regression was performed using the value up to 16 mm at which the increase in the display value Cd after application almost disappeared, and the slope a was determined. An estimated value and an actual measurement value obtained by estimating the water repellent layer thickness from the relationship between the inverse 1 / a of the slope and the water repellent layer thickness using the slope a are shown in FIG. The estimated value and the measured value show relatively close values.

上記実施の形態の撥水層の厚み計測方法は、同一の電極板面積Sの2枚を一対とし、電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tの等比共面電極20と、両側の等比共面電極20に高周波を印加し、電極板相互の中心位置までの水平面距離tと高周波に基づく静電容量Cに依存する表示値Cdとの間で一次関数方程式Y=aX+Cd特性を得て、前記一次関数の特性の傾きaまたは逆数1/aを撥水層厚に関係する傾き情報として出力を得るものである。
ここで、石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性を測定することにより、表層付近の含水率と関係する初期情報として表示値Cdの切片bが算出される。
また、前記一次関数方程式の特性における傾きの逆数1/aは、撥水層厚に関係する傾き情報とし、既知の前記一次関数方程式の特性の傾きの逆数1/aを標準として設定すれば、かつ、静電容量Cに依存する表示値Cdが一致する点を決定すれば、撥水層厚が算出できる。
In the method of measuring the thickness of the water repellent layer according to the above-mentioned embodiment, two sheets of the same electrode plate area S are paired, and the ratio of the horizontal distance t to the center position between the electrode plates is equal ratio coplanar electrode constant S / t A high frequency is applied to the equal ratio coplanar electrode 20 and the equal ratio coplanar electrode 20 on both sides, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C based on the high frequency The linear function equation Y = aX + Cd characteristic is obtained between them, and the output is obtained as the inclination a or the inverse 1 / a of the characteristic of the linear function as inclination information related to the water repellent layer thickness.
Here, by measuring gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode characteristics, as initial information related to the moisture content near the surface layer An intercept b of the display value Cd is calculated.
Further, if the reciprocal 1 / a of the slope in the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and if the reciprocal 1 / a of the inclination of the characteristic of the known linear function equation is set as a standard In addition, if the point at which the display value Cd dependent on the capacitance C matches is determined, the water repellent layer thickness can be calculated.

上記実施の形態の撥水層の厚み計測方法は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中位置心までの水平面距離tの比の等比共面電極定数S/tの等比共面電極に、例えは、20MHz高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として、また、静電容量Cに依存する表示値Cdの切片bは、表層付近の含水率と関係する初期情報として出力を得る出力を得る。
このとき、前記高周波の前記20MHzは、前記20MHzに限定されるものではなく、交流であればよい。しかし、周波数が低いと水の電気分解等の化学反応が生じるし、周波数が高いと誘電体の内部に磁界ができず、外表面の磁界が高くなるので、通常、5〜30MHz程度が良い。
また、一次関数方程式の特性は、線形が好ましいが、非線形でも使用できないものではない。よって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなれば良い。
In the method of measuring the thickness of the water repellent layer according to the above embodiment, two sheets of the electrode plate area S are a pair, and the ratio of the ratio of the horizontal plate distance S to the electrode plate area S to the center position between the electrode plates is equal ratio A characteristic between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, for example, adding a high frequency output of 20 MHz to the equal ratio coplanar electrode of the plane electrode constant S / t. The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is near the surface layer The output is obtained as the initial information related to the moisture content of
At this time, the 20 MHz of the high frequency is not limited to the 20 MHz, and may be an alternating current. However, if the frequency is low, a chemical reaction such as electrolysis of water occurs, and if the frequency is high, a magnetic field can not be generated inside the dielectric, and the magnetic field on the outer surface becomes high.
Also, although the characteristics of the linear functional equation are preferably linear, they can not be used non-linearly. Therefore, when the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a may be large, and when it is thick, the inclination a may be small.

また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波電力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the simulated water repellent layer 41 formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each sample is It can also be expressed as Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, high frequency power is applied to the equal ratio coplanar electrode having a constant equal ratio coplanar electrode constant S / t. The characteristic a of the linear function equation is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

上記実施の形態の撥水層の厚み計測方法の等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたものであるから、等比共面電極定数S/tを充足する水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離離dとが同一であるから、電界が円弧を描き、その円弧の中心位置に電極板間の対向平均距離dを回帰直線として算出することができる。
また、上記実施の形態の前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたものであるから、前記一次関数方程式の特性の傾きの逆数1/aを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。
Horizontal distance t geometric coplanar electrodes constant S / t of the thickness measuring method of the water-repellent layer of the above-described embodiment, since those were the same as opposed average distance d of the opposing electrode plates, geometric co Since the horizontal distance t satisfying the surface electrode constant S / t and the value obtained by multiplying the horizontal distance t by the circular ratio π are the same as the opposing average distance d between the electrode plates, the electric field draws an arc. The opposing average distance d between the electrode plates can be calculated as a regression line at the center position of the arc.
Further, since the inclination of the characteristic of the linear function equation of the above embodiment is the inverse 1 / a of the inclination of the characteristic, the inverse 1 / a of the inclination of the characteristic of the linear function equation is a water repellent layer The inclination information is related to the thickness, and the intercept b of the display value Cd depending on the capacitance C is an output as initial information related to the moisture content near the surface layer.

上記実施の形態の撥水層の厚み計測方法は、電極板面積Sの2枚を一対とし、前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極と、両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得るものである。
前記等比共面電極から一対の等比共面電極の面積が異なるものを除くとは、等比共面電極定数S/tを満足するものでも、2枚の等比共面電極の電極板面積Sが互いに異なることを意味する。
In the method of measuring the thickness of the water repellent layer according to the above embodiment, two sheets of the electrode plate area S are paired, and the ratio of the horizontal distance t to the center position between the electrode plates is equal ratio coplanar electrode constant S / t. A high frequency output is applied to the equal ratio coplanar electrodes and the equal ratio coplanar electrodes on both sides except that the area of a pair of equal ratio coplanar electrodes is different, and the horizontal distance t to the center position between the electrode plates Obtain a characteristic of a linear function equation with a display value Cd depending on the capacitance C, and output the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation as the inclination information related to the water repellent layer thickness To get
With the exception of the cases where the areas of the pair of equal ratio coplanar electrodes are different from those of the equal ratio coplanar electrodes, the electrode plates of the two equal ratio coplanar electrodes even if they satisfy the equal ratio coplanar electrode constant S / t. It means that the areas S are different from each other.

上記実施の形態の撥水層の厚み計測方法の発明は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。
前記静電容量Cに依存する表示値Cdを特定し、その特定した表示値Cdから、撥水層厚が算出される。
The invention of the method of measuring the thickness of the water repellent layer according to the above embodiment is characterized in that the two electrode plate areas S are paired and the ratio of the ratio of the electrode plate area S to the horizontal distance t to the center position of the electrode plates is equal. By applying a high frequency output to the equal ratio coplanar electrode of the coplanar electrode constant S / t, and obtaining the characteristic between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is the moisture content near the surface layer Get the output as the relevant initial information.
The display value Cd dependent on the capacitance C is specified, and the water repellent layer thickness is calculated from the specified display value Cd.

したがって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きaの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きaの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。  Therefore, when the simulated water repellent layer 41 formed with a small amount of application is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it is small. Therefore, the reciprocal 1 / a of the slope a of the regression line of each sample is the water repellent layer thickness. It can also be expressed. Regarding the relationship between the reciprocal 1 / a of the slope a of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

よって、等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、本実施の形態では、シラン系表面含浸材の撥水層厚を回帰直線として測定した。
特に、静電容量Cは電極板間の対向平均距離dに反比例するという特性、即ち、
C=ε・S/d
を使用したが、静電容量Cの領域を抵抗体として確認すると、この供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の確認を行うことができる。
なお、前記静電容量Cに依存する表示値Cdは、周波数に依存する静電容量Cとすること、単に、周波数に依存する静電容量Cとすることもできる。
Therefore, a high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t, and a primary value is generated between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C. The characteristic of the functional equation is obtained, and an output is obtained as the inclination a (reciprocal number 1 / a) of the characteristic of the linear functional equation as inclination information related to the water repellent layer thickness. Thus, for example, the penetration depth and the like of the silane-based surface impregnated material were measured, and in the present embodiment, the water-repellent layer thickness of the silane-based surface impregnated material was measured as a regression line.
In particular, the capacitance C is inversely proportional to the facing average distance d between the electrode plates, ie,
C = ε · S / d
When the region of capacitance C is confirmed as a resistor, the measurement electrode for measuring the difference in moisture content between the inside of the sample and the surface layer portion and the measurement method using the measurement electrode are confirmed. be able to.
The display value Cd depending on the capacitance C may be a capacitance C depending on a frequency, or may be simply a capacitance C depending on a frequency.

本実施の形態では、シラン系表面含浸材を塗布する事例で説明したが、本発明を実施する場合には、シラン系表面含浸材は水分の含浸がないことを前提とする測定であるから、シラン系表面含浸材に限定されることなく汎用可能である。
また、コンクリート中に模擬撥水層41を形成させた供試体に吸水させ模擬供試体と同じ2層模擬供試体モデルに近い条件とした場合、模擬非撥水層42と同様に回帰直線の傾きの逆数と撥水層厚とには直線関係が得られた。
そして、発明者らの実験によれば、模擬供試体として供試体の特性を予め石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性として使用する必要があった。また、表面含浸材の製造メーカによって撥水層厚を推定したところ、近い値を示したもののあったが、異なっている可能性もあり、含水率分布による撥水層厚の推定方法は含水率を変化させるなどをしてさらに検討が必要であると考えられる。
In the present embodiment, the case of applying the silane-based surface impregnating material has been described, but in the case of carrying out the present invention, the measurement is based on the premise that the silane-based surface impregnating material is not impregnated with water, It can be generally used without being limited to the silane surface impregnation material.
In addition, when the sample is made to absorb the simulated water repellent layer 41 in concrete and the condition is similar to the two-layer simulated sample model same as the simulated sample, the slope of the regression line is the same as the simulated non-water repellent layer 42 A linear relationship was obtained between the reciprocal of and the water repellent layer thickness.
And, according to the experiments of the inventors, the characteristics of the test specimen as the simulated test specimen in advance are gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode It had to be used as a property. Moreover, when the water repellent layer thickness was estimated by the manufacturer of the surface impregnating material, it showed close values, but there is a possibility that it may be different. It is thought that further examination is needed by changing the

10 銅箔テープ(電極)
11 プラスチックフィルム
12 ポリスチレンフォーム
14 ラップフィルム
15,16 ビニール被覆銅線
17,18 高周波容量式水分計の電極
20 等比共面電極
21,22,21A,22A 電極板
31,32,33 模擬撥水層
41 模擬撥水層
42 模擬非撥水層
t 水平面距離
d 対向する電極板間の対向平均距離
S 対向する電極板間の電極板面積
C 静電容量
ε 電極板間の誘電体の誘電率
S/t 等比共面電極定数
10 Copper foil tape (electrode)
11 Plastic film 12 Polystyrene foam 14 Wrap film 15, 16 Vinyl-coated copper wire 17, 18 Electrode of high-frequency capacitive moisture meter 20 Equi-planar electrode 21, 22, 21A, 22A Electrode plate 31, 32, 33 Simulated water repellent layer 41 Simulated water-repellent layer 42 Simulated non-water-repellent layer t Horizontal distance d Countering average distance S between opposing electrode plates Electrode plate area C between opposing electrode plates Capacitance ε Dielectric constant S of dielectric between electrodes t equal ratio coplanar electrode constant

本発明は、コンクリート表面にコーティングした撥水層の厚みを供試体の内部と表層部との含水率の差を計測する計測方法に関するもので、例えば、撥水層の厚み計測方法に属するものである。 The present invention relates to a measurement method for measuring the difference in moisture content between the inside of a sample and the surface layer portion of the thickness of a water repellent layer coated on a concrete surface, and belongs to, for example, the thickness measurement method of water repellent layer is there.

例えば、コンクリートの骨材の配合を行う場合、「表乾状態(表面乾燥飽水状態)」にあることを前提とし、骨材の密度を求め、各種の配合設計に準じて配合している。ここで、「表乾状態」とは、押し固められた骨材の内部の空隙は水分で満たされた状態にあり、骨材の表面は水分を含まない状態にあることが前提となっている。
一般に、骨材の表乾状態を判定するには、JIS A1109に規格化されたフローコーン法が採用されている。これによると、截頭円錐状を呈するフローコーンに骨材を充填し、突き棒で突くことによって所定固さに突き固め、その後、徐々にフローコーンを上方に向かって引上げ、突き固められた骨材が崩れるか、崩れないかの境界付近の状態を表乾状態として判断している。
For example, in the case of blending concrete aggregate, it is assumed that the surface is in a “surface dry state (surface dry saturated state)”, the density of the aggregate is determined, and blending is performed according to various blending designs. Here, the "surface dry state" is based on the premise that the internal space of the compacted aggregate is filled with moisture, and the surface of the aggregate is free of moisture. .
Generally, the flow cone method standardized in JIS A1109 is employed to determine the surface dry state of aggregate. According to this, the aggregate is filled into a frustoconical flow cone, and the end is pressed to a predetermined hardness by pushing with a push rod, and then the flow cone is gradually pulled upward and the pressed bone is compacted. The condition near the boundary whether the material collapses or does not collapse is judged as the surface dry condition.

ところが、これらの表乾状態の判断には、骨材が崩れた正確なデータが必要となる。特に、正確な判断を行うには経験則が必要となる。そのため、不慣れな測定者は、正確な判断ができない場合もある。
特に、上述したフローコーン法は、主に「天然骨材」と呼ばれる砂や砂利等に対して実施されるものであるが、近年、この「天然骨材」の供給量が減少し、多くの代替物が骨材として用いられている。例えば、砕砂、高炉スラグ、ゴミ溶融スラグ、再生骨材等の所謂「低品位」の骨材が多く利用されている。これらの低品位の骨材は、表面がガラス質性状や多孔質性状を呈することがあり、天然骨材とは明らかに異なる表乾特性を有することがある。そのため、フローコーン法では砕砂等の骨材に対して正確な表乾状態を判定することが特に困難となっている。
例えば、JIS規格化されたフローコーンの形状と異なる自立角或いは広径等のサイズによって形成された新しい基準の表乾判定用コーンを用いる方法、赤外線の反射率を利用して水分量を計測するもの(非特許文献1参照)、乾湿状態における電気抵抗の変化を利用するもの(非特許文献2参照)、遠心脱水法を利用するもの(非特許文献3参照)などが知られている。
However, these determinations of surface dryness require accurate data in which the aggregate is broken. In particular, heuristics are needed to make accurate decisions. Therefore, an unaccustomed measurer may not be able to make an accurate judgment.
In particular, the flow cone method described above is mainly applied to sand, gravel, etc. called “natural aggregate”, but in recent years, the supply amount of this “natural aggregate” has decreased, and Alternatives are used as aggregate. For example, so-called "low grade" aggregates such as crushed sand, blast furnace slag, refuse melting slag, recycled aggregate and the like are widely used. These low-grade aggregates may exhibit vitreous or porous properties on their surfaces, and may have surface-drying characteristics which are clearly different from those of natural aggregates. Therefore, in the flow cone method, it is particularly difficult to determine an accurate surface dry state for aggregates such as crushed sand.
For example, a method of using a new standard surface dry judgment cone formed by a size such as a self-supporting angle or a wide diameter different from the shape of a flow cone standardized by JIS, the moisture content is measured using infrared reflectance The thing (refer nonpatent literature 1), the thing using change of electric resistance in a wet and dry state (refer nonpatent literature 2), the thing using centrifugal dehydration method (refer nonpatent literature 3), etc. are known.

竹内一真、外3名 「細骨材の表乾判定試験方法に関する基礎的研究」、コンクリート工学年次論文集、Vol.25、No.1、2003、p77−p82Takeuchi, Kazuma, 3 others "Basic research on surface dry judgment test method of fine aggregate", Annual Proceedings of Concrete Engineering, Vol. 25, No. 1, 2003, p77-p82 山本大介、外4名 「海砂代替骨材としての砕砂の表乾判定方法に関する検討」、土木学会第59回年次学術講演会、平成16年9月、p491−p492Daisuke Yamamoto, 4 others "Consideration on the method for determining the surface dryness of crushed sand as sand and sand substitute aggregate", 59th Annual Conference of the Japan Society of Civil Engineers, September, 2004, p491-p492 鈴木一雄、外1名 「細骨材の簡易表乾決定法に関する一検討」、第48回セメント技術大会講演集、1994、p156−p159Kazuo Suzuki, 1 other person “A study on simple method for determination of fine aggregate by surface dry”, Proceedings of the 48th Cement Technology Conference, 1994, p156-p159 特開2006−329801号公報JP, 2006-329801, A

非特許文献1では、異なる自立角及びサイズによって形成されたフローコーンを利用しており、表乾状態の判断に従来と同様にある程度の経験則が必要となり、精度の良い再現性を求めることが困難であった。また、骨材の種類や性状に応じて、最適なフローコーンを適宜選択する必要があり、複数種類のフローコーンを予め準備しておく必要があった。
特に、非特許文献1の赤外線の反射率を利用するものは、一般に水に吸収されやすい赤外線波長(1.46μm)と、水に吸収され難い赤外線波長(1.6μm)の二種類の波長を利用し、主に骨材として「シラス」を対象として測定したデータによって算出されていたから、その他の低品位骨材に対する作用について開示されていなかった。
また、非特許文献2では、砕砂を測定対象の試料として各種の測定を実施し、種々の結果を総合することにより、フローコーン法が最も妥当性を有する結果が得られ、その他の方法は非特許文献2の測定結果では特に優れた特性を示すものではなかった。
そして、非特許文献3では、高精度に表乾状態を判断することが可能になるが、対象となる骨材を遠心分離装置にセットし、試料に応じて数G〜数千Gの遠心力を与える必要があり、表乾状態の判定のための装置が大がかりとなり、簡易な表乾状態の判定に適さないことがあった。
Non-Patent Document 1 uses flow cones formed by different self-supporting angles and sizes, and a certain degree of empirical rule is required for the determination of the surface dry state as in the prior art, and accurate repeatability is sought. It was difficult. Moreover, it was necessary to select the optimal flow cone suitably according to the kind and property of aggregate, and it was necessary to prepare multiple types of flow cone in advance.
In particular, those utilizing infrared reflectance in Non-Patent Document 1 generally have two types of wavelengths: an infrared wavelength (1.46 μm) that is easily absorbed by water and an infrared wavelength (1.6 μm) that is not easily absorbed by water. Since it was used and was calculated by the data measured mainly for "Shirasu" as aggregate, it was not disclosed about the effect | action with respect to another low grade aggregate.
In Non-Patent Document 2, various measurements are carried out using crushed sand as a sample to be measured, and by combining various results, the result that the flow cone method has the most appropriate result can be obtained, and the other methods are not. The measurement results of Patent Document 2 did not show particularly excellent characteristics.
And in Non-Patent Document 3, although it becomes possible to judge the surface dry state with high accuracy, the target aggregate is set in the centrifugal separator, and the centrifugal force of several G to several G according to the sample In some cases, the apparatus for determining the surface dry state is bulky and is not suitable for simple determination of the surface dry state.

一方、現今のコンクリート構造物の耐久性の向上は、シラン系表面含浸材を表面に塗布し、浸透させ、コンクリート内部に撥水層を形成させる工法が注目されている。
この撥水層を施すことにより水分の侵入を抑制し、塩分や水分等のコンクリートの劣化因子の浸入を抑制することでコンクリートの耐久性を高めることができる。例えば、『北海道開発局道路設計要領』にはシラン系表面含浸材の製品選定の目安として、凍害対策では、浸透深さが6mm以上あるものと規定している。
しかし、その施工された撥水層厚を確かめるには、コンクリートに穿設して観察する方法がある。このコンクリートに穿設する方法は、施工製品に傷をつけることになり、必ずしも好ましい方法ではなかった。そこで、事前に作製した供試体への塗布量と撥水層厚との関係から、塗布量で管理されているが、その施工実態は不明である。
表面含浸材により形成される撥水層厚は、コンクリートの含水率に影響されることが報告されている。含水率が高いと浸透深さが小さくなる。施工現場において降雨や日射等の影響で含水率が場所によって異なることが考えられる。このため、現場における撥水層厚は、供試体に塗布した量による推定値とは誤差が生じることも考えられる。また、既存のコンクリート構造物に塗布する場合は、別途作製した供試体が残っていない場合が多く、供試体への塗布量と撥水層厚との関係を求めることができない。
このようなことから、表面含浸工法を適用する場合、形成された撥水層で管理する方が施工品質を高められる。そこで、本発明者らは含水率の高低による電気的変化を利用し、コンクリートの撥水層厚を推定する方法を究明している。
On the other hand, for the improvement of the durability of the present concrete structure, a method of applying a silane-based surface impregnating material to the surface and permeating the surface, and forming a water repellent layer inside the concrete has attracted attention.
By applying the water repellent layer, the penetration of water can be suppressed, and the penetration of deterioration factors of the concrete such as salt and water can be suppressed, whereby the durability of the concrete can be enhanced. For example, “Hokkaido Development Bureau Road Design Guidelines” stipulates that the penetration depth is 6 mm or more in the measures against frost damage as a standard of product selection of silane-based surface impregnation material.
However, in order to confirm the thickness of the applied water repellent layer, there is a method of drilling in concrete and observing. This method of drilling in concrete would damage the construction product and was not necessarily the preferred method. Then, although it is managed by application amount from the relationship between the application amount to the test object produced beforehand, and the water-repellent layer thickness, the construction actual condition is unknown.
The water repellent layer thickness formed by the surface impregnating material is reported to be affected by the moisture content of concrete. The higher the moisture content, the smaller the penetration depth. At the construction site, the moisture content may be different depending on the location due to the influence of rainfall or solar radiation. For this reason, it is also conceivable that the water repellent layer thickness at the site may cause an error from the estimated value by the amount applied to the sample. Moreover, when apply | coating to the existing concrete structure, the test body produced separately does not remain in many cases, and it can not obtain | require the relationship between the application quantity to a test object, and the water-repellent layer thickness.
From such a thing, when applying a surface impregnation method, the quality of construction can be enhanced by managing with the formed water repellent layer. Therefore, the present inventors have investigated a method of estimating the water repellent layer thickness of concrete using electrical changes due to the water content ratio.

そこで、本発明者らは、特許文献1で比較的簡易な構成の骨材の表乾状態判定法を提供した。即ち、これは絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製する基準試料調製工程と、絶乾状態の骨材に水を混合して攪拌し、それぞれ所定の含水率に調製するとともに、導電性を有するイオン化物質を添加し、更に攪拌するイオン化試料調製工程と、前記基準試料調製工程によって調製された含水率の異なる複数の基準試料及び前記イオン化試料調製工程によって調製された含水率の異なる複数のイオン化試料を、所定形状の測定用容器の中にそれぞれ充填し、試料表面を平滑化する充填平滑工程と、前記測定用容器にそれぞれ充填された前記基準試料及び前記イオン化試料の前記試料表面に高周波容量式水分計の測定部を当接し、高周波容量を測定する高周波容量測定工程と、前記高周波容量式水分計によって示される表示値及び前記基準試料または前記イオン化試料の含水率の関係を示す基準試料及び添加試料を作成し、略比例関係を示す前記基準試料に対し、前記添加試料の傾きが変化する表乾点を特定し、表乾状態を判定する表乾判定工程とを具備するものである。   Therefore, the present inventors have provided a method of determining the surface dry state of aggregate with a relatively simple configuration in Patent Document 1 That is, this is mixing and stirring water in the aggregate in the bone-drying state, and mixing and stirring the water in the aggregate in the bone-drying state and the reference sample preparation step of preparing each to a predetermined moisture content respectively The ionized sample preparation step of preparing an ionized substance having conductivity and adding the ionized material having conductivity and stirring the mixture, and a plurality of reference samples having different water contents prepared by the reference sample preparation step and the ionized sample preparation step And filling the plurality of ionized samples having different moisture contents prepared in the above into the measurement container having a predetermined shape and smoothing the sample surface, and the reference sample filled in the measurement container. And a measurement step of measuring a high frequency capacity by bringing a measurement portion of the high frequency capacity moisture meter into contact with the surface of the sample of the ionized sample, and the high frequency capacity moisture meter A reference sample indicating the relationship between the indicated value and the moisture content of the reference sample or the ionized sample, and the addition sample are prepared, and a surface dry point at which the inclination of the addition sample changes with respect to the reference sample It comprises the table dry judging process which specifies and judges the surface dry state.

これにより、コンクリートの含水率を測定する水分計を改良し、静電容量を計測することにより、一対の電極板の距離を変化させることで電極板から発生する電界がコンクリート中に到達する深さを変化させ、電界が撥水層内にあれば静電容量は一定の割合で減少し、電界が含水率の高い模擬非撥水層に到達すれば静電容量の減少割合が変化することから、この変曲点を撥水層と普通層の境界とし、実測値に比較的近い値が得られている。
しかし、特許文献1のコンクリートが含水する水は、純粋のHOは良好な絶縁体であり、その純粋のHOを測定していると、その測定中に抵抗値が低下する。また、それに伴って誘電率も金属イオンによって変化し、含水率によって導電率、誘電率の周波数特性として変化する。また、容積の大きい測定対象であると、電極板の位置、電極板の面積、電界を決定する印加電圧の高さによって電界の広がり、電界密度が変化するから、これらの問題点を介在させた計算が必要になってくる。
Thereby, the moisture meter which measures the moisture content of concrete is improved, and the electric field generated from the electrode plate reaches the concrete by changing the distance between the pair of electrode plates by measuring the capacitance. When the electric field is in the water repellent layer, the capacitance decreases at a constant rate, and when the electric field reaches the high water content simulated non-water repellent layer, the rate of decrease in capacitance changes. The inflection point is defined as the boundary between the water repellent layer and the ordinary layer, and a value relatively close to the measured value is obtained.
However, in the water containing concrete of Patent Document 1, pure H 2 O is a good insulator, and when the pure H 2 O is measured, the resistance decreases during the measurement. Also, along with that, the dielectric constant also changes depending on the metal ion, and changes as the frequency characteristic of conductivity and dielectric constant depending on the water content. Also, if the measurement target is a large volume, the electric field spreads and the electric field density changes depending on the position of the electrode plate, the area of the electrode plate, and the height of the applied voltage that determines the electric field. Calculation will be needed.

そこで、本願発明は、含水率によって結果が異なることなく、抵抗値及び誘電率が含水率によって変化しても、その影響が出現し難く、撥水層の厚み計測方法の提供を目的とするものである。 Therefore, the present invention is intended to provide a method for measuring the thickness of a water repellent layer , even if the resistance value and the dielectric constant change depending on the water content without changing the result depending on the water content. It is.

請求項1の発明の撥水層の厚み計測方法は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tと各電極板面積Sとの比の等比共面電極定数S/tを有する電極から構成される。一対の等比共面電極の両側に高周波出力を印加し、静電容量Cを測定する。電極板相互の中心位置までの水平面距離tと静電容量Cに依存する各電極で計測された表示値Cdとの間で特定の一次関数の特性を得て、前記一次関数の特性の傾きaを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bを表層付近の含水率と関係する初期情報として出力を得るものである。 In the method of measuring the thickness of the water repellent layer according to the invention of claim 1, the two electrode plates having the electrode plate area S are paired, and the electrode plate area S and the horizontal distance t to the center position between the electrode plates and each electrode plate It is composed of an electrode having a ratio of the ratio to the area S and a isometric coplanar electrode constant S / t. A high frequency output is applied to both sides of a pair of equal ratio coplanar electrodes, and the capacitance C is measured. A characteristic of a specific linear function is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd measured at each electrode depending on the capacitance C, and a slope a of the characteristic of the linear function Is the inclination information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is output as initial information related to the moisture content near the surface layer.

ここで、上記等比共面電極は、電極板相互の中心位置までの供試体の水平面距離tと電極板面積Sの比が一定であればよい。特に、それを満足するのが等比共面電極定数S/tである。(但し、等比共面電極定数S/tが同一でも、一対の電極板面積が異なるものを除く。)
また、上記等比共面電極定数S/tの水平面距離tは、直線距離上の対向する電極板間の対向平均距離dと同一とすることもできる。しかし、水平面距離tとか、対向平均距離dは、その静電界、電界によって、その形態が決まるので、同一とし、算出式で相殺されるのが望ましい。
そして、上記一次関数の特性の傾きは、その特性の傾きまたはその特性の傾きの逆数1/aとすることができる。いずれにせよ、等比共面電極の両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数の特性を描ければよい。
Here, the ratio of the horizontal plane distance t of the test piece to the central position between the electrode plates and the electrode plate area S may be constant. In particular, it is the isometric coplanar electrode constant S / t that satisfies it. (However, even if the geometrical ratio coplanar electrode constant S / t is the same, except for the case where the pair of electrode plate areas are different.)
Further, the horizontal distance t of the above-mentioned equal ratio coplanar electrode constant S / t can be made equal to the facing average distance d between the facing electrode plates on the linear distance. However, it is preferable that the horizontal distance t and the facing average distance d be the same because they are determined by the electrostatic field and the electric field, and they should be offset by a calculation formula.
The slope of the characteristic of the linear function can be the slope of the characteristic or the reciprocal 1 / a of the inclination of the characteristic. In any case, high frequency output is applied to the equal ratio coplanar electrodes on both sides of the equal ratio coplanar electrode, and between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C It is sufficient to draw the characteristics of the linear function.

請求項1にかかる撥水層の厚み計測方法の発明は、電極板面積Sの電極板2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tとの比の等比共面電極定数S/tの等比共面電極に高周波出力を加え、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。 The invention of the method for measuring the thickness of a water repellent layer according to claim 1 is that the ratio of the electrode plate area S to the horizontal distance t to the center position of the electrode plates is as a pair of two electrode plates having an electrode plate area S. A high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t , and the characteristic between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is near the surface layer Output as initial information related to the moisture content of

したがって、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きの(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Therefore, when the water repellent layer formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each specimen is expressed as the water repellent layer You can also Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, a high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t, and a primary value is generated between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C. Taking the characteristic of the functional equation, (reciprocal number 1 / a) of the inclination of the characteristic of the linear functional equation is the inclination information related to the water repellent layer thickness, and the intercept of the display value Cd depending on the capacitance C b obtains an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

図1は本発明の実施の形態の撥水層の厚み計測方法の図示した基本的説明図である。FIG. 1 is a basic explanatory view illustrating the method of measuring the thickness of the water repellent layer according to the embodiment of the present invention. 図2は本発明の実施の形態の基本的構成図である。FIG. 2 is a basic block diagram of the embodiment of the present invention. 図3は本発明の実施の形態で使用する含水率が模擬非撥水層一定の場合の表示値との関係を示す説明図である。FIG. 3 is an explanatory view showing the relationship between the water content used in the embodiment of the present invention and the display value in the case where the simulated non-water repellent layer is constant. 図4は本発明の実施の形態で使用する模擬供試体によると水平面距離と表示値との関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the horizontal distance and the display value according to the simulated specimen used in the embodiment of the present invention. 図5は本発明の実施の形態で使用する回帰直線の傾きと切片の関係を示す説明図である。FIG. 5 is an explanatory view showing the relationship between the slope and the intercept of the regression line used in the embodiment of the present invention. 図6は本発明の実施の形態で使用する各含水率における切片の関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship of the intercept at each moisture content used in the embodiment of the present invention. 図7は本発明の実施の形態で使用する各含水率における傾きの逆数の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship of the reciprocal of the slope in each moisture content used in the embodiment of the present invention. 図8は本発明の実施の形態で測定するコンクリート供試体の配合を示す説明図である。FIG. 8 is an explanatory view showing the composition of the concrete sample to be measured in the embodiment of the present invention. 図9は本発明の実施の形態で測定するコンクリート供試体の骨材の物性を示す説明図である。FIG. 9 is an explanatory view showing the physical properties of the aggregate of the concrete sample to be measured in the embodiment of the present invention. 図10は本発明の実施の形態で測定するコンクリート供試体の静電容量の変化を示す特性図である。FIG. 10 is a characteristic diagram showing the change of the capacitance of the concrete sample to be measured in the embodiment of the present invention. 図11は本発明の実施の形態で測定する傾きの逆数と撥水層厚を示す特性図である。FIG. 11 is a characteristic diagram showing the reciprocal of the inclination and the water repellent layer thickness measured in the embodiment of the present invention. 図12は本発明の実施の形態で測定する傾斜含水率分布を持つ静置1日の供試体の表示値の特性図である。FIG. 12 is a characteristic diagram of the display value of the test sample of stationary day 1 having the inclined water content distribution measured in the embodiment of the present invention. 図13は本発明の実施の形態で測定する傾斜含水率分布を持つ静置7日の供試体の表示値の特性図である。FIG. 13 is a characteristic diagram of the display value of the specimen of stationary 7 days having the inclined water content distribution measured in the embodiment of the present invention. 図14は本発明の実施の形態で測定した実測値と推定値を示す測定結果図である。FIG. 14 is a measurement result diagram showing measured values and estimated values measured in the embodiment of the present invention.

以下、本発明の実施の形態の撥水層の厚み計測方法について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Hereinafter, the method of measuring the thickness of the water repellent layer according to the embodiment of the present invention will be described based on the drawings. Note that, in the embodiment, the same symbols and symbols in the drawings are the same or corresponding functional parts, and therefore the description thereof will not be repeated here.

[実施の形態]
まず、撥水層の厚み計測方法の基本原理から説明する。
本発明では、一対の電極が平行板で、その間に誘電率εの誘電体を挟んだコンデンサの構成を利用している。平行する電極板の電極板面積Sは、並行に対立する電極板間の対向平均距離dだけ離して配設された状態としている。このときの電極板面積Sの電極板を平行板コンデンサの静電容量Cは、電極板面積Sと電極板間に挟む誘電体の誘電率εに比例し、電極板間の対向平均距離dに反比例するという特性があり、静電容量Cは次式で表される。
C=ε・S/d
ここで、C(F) 静電容量
S(m) 対向する電極板間の電極板面積
d(m) 対向する電極板間の対向平均距離
ε(F/m) 電極板間の誘電体の誘電率
である。
Embodiment
First, the basic principle of the method of measuring the thickness of the water repellent layer will be described.
In the present invention, a pair of electrodes is a parallel plate, and the configuration of a capacitor in which a dielectric of dielectric constant ε is sandwiched therebetween is used. The electrode plate area S of the parallel electrode plates is in the state of being disposed apart by the facing average distance d between the electrode plates opposite to each other in parallel. The capacitance C of the electrode plate of the electrode plate area S at this time is proportional to the dielectric constant ε of the dielectric between the electrode plate area S and the electrode plate, and the capacitance C of the electrode plate is S The capacitance C is expressed by the following equation.
C = ε · S / d
Where C (F) capacitance
S (m 2 ) Electrode plate area between facing electrode plates
d (m) opposing average distance between opposing electrode plates
ε (F / m) is the dielectric constant of the dielectric between the electrode plates.

高周波源としては、発明者らが取り扱いに慣れていることから、市販の高周波容量式水分計(HI−520:(株)ケツト科学研究所製、高周波容量式(20MHz))の電極17,18からの高周波出力を用いた。
なお、発明者らの実験では、LCRメータに替えて高周波容量式水分計を用いているが、結果的に、静電容量Cの値を測定するものではなく、その出力を中継するものであり、誘電率εによって供試材料(骨材)の静電容量Cを高周波(20MHz)で測定値を算出するものではない。
一般的なLCRメータを使用すると、電極17,18等の浮遊静電容量の影響を考慮する必要があり、結果的に、市販の高周波容量式水分計の方が有用であると思慮する。
As the high frequency source, since the inventors are used to handling, a commercially available high-frequency capacitive moisture meter (HI-520: manufactured by Ketto Scientific Research Institute, Inc., high-frequency capacitive type (20 MHz)) electrodes 17 and 18 The high frequency output from was used.
In the experiments of the inventors, a high-frequency capacitive moisture meter is used instead of the LCR meter, but as a result, the value of the capacitance C is not measured, but the output is relayed. The capacitance C of the test material (aggregate) is not calculated based on the dielectric constant ε at a high frequency (20 MHz).
If a general LCR meter is used, it is necessary to consider the influence of stray capacitances of the electrodes 17, 18, etc. As a result, it is considered that a commercially available high frequency capacitive moisture meter is more useful.

まず、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加する現象が生じる。通常、静電容量Cは誘電正接tanδからすれば、
抵抗成分の電流Ir/コンデンサ容量成分の電流Icで現され、式は
tanδ=Ir/Ic
となる。
しかし、水の誘電率80程度は温度の変化に伴って変化するし、印加する周波数によっても変化する、また、化学反応が生じており、その印加時間等によっても変化する。これはイオンによる溶融等の作用によるものが大である。
また、静電容量CをC=ε・S/dとして算出しているが、電極間に挟まれた領域を抵抗体として捉えることもできる。
そこで、現象として、供試材料の骨材に水分を含ませると静電容量Cが水分の増加に伴って増加するから、その事象のみ捉えることとした。
静電容量Cが水分の増加に伴って増加する増加分を予めモルタル、コンクリート等各種供試材料で求めておいた換算式で換算し、水分量として表示する。ここで換算式がない供試材料では、市販の高周波容量式水分計のダイレクトモード(Dモード)に切り替え、静電容量Cと相関のある数値を表示値Cdとして表示している。念のため、発明者らが使用したダイレクトモードの表示値は「0〜2999」の間で表示される。
First, when water is included in the aggregate of the test material, a phenomenon occurs in which the capacitance C increases with the increase of water. Usually, when the capacitance C is calculated from the dielectric loss tangent tan δ,
It is expressed by the current Ir of the resistance component / the current Ic of the capacitor capacitance component, and the equation is tan δ = Ir / Ic
It becomes.
However, the dielectric constant of about 80 of water changes with the change of temperature and also changes with the frequency applied, and a chemical reaction occurs and also changes with the application time and the like. This is largely due to the action of melting by ions and the like.
Moreover, although the electrostatic capacitance C is calculated as C = (epsilon) * S / d, the area | region pinched | interposed between electrodes can also be caught as a resistor.
Therefore, as the phenomenon, when the aggregate of the test material is made to contain water, the capacitance C increases with the increase of water, so it was decided to capture only that event.
The amount of increase in capacitance C as the water content increases is converted in accordance with a conversion formula previously obtained using mortar, concrete, and various other test materials, and is displayed as the water content. Here, in the test material having no conversion formula, the mode is switched to the direct mode (D mode) of a commercially available high-frequency capacitive moisture meter, and a numerical value correlated with the capacitance C is displayed as a display value Cd. As a precaution, the display value of the direct mode used by the inventors is displayed between "0 and 2999".

双方の電極板に高周波出力(交流電圧)を印加し、その間に帯状の電界を発生させて、この電界上にある供試材料の静電容量Cを測定した。電界の形状は、境界条件等により円弧状や楕円形状になると考えられるが、「電極間隔に比例した深さまでの誘電物性量の評価は可能(所哲郎:「表面深さ分解能を有する誘電計測による高分子電気絶縁材料の劣化診断技術の開発」平成16−18年度 科学研究費補助金成果報告書」参照)と言われていることから、電極板間の対向平均距離dと電界到達深さが単純に比例する円弧状と仮定した。電極板を並列に配置し、電界が供試材料中を透過するようにし、電極板間の対向平均距離dを変化させることで、電界が到達する深さが変化するように想定した。   A high frequency output (AC voltage) was applied to both electrode plates, and a band-like electric field was generated therebetween, and the capacitance C of the test material on this electric field was measured. The shape of the electric field is considered to be arc-like or elliptical depending on the boundary conditions etc. However, "It is possible to evaluate the amount of dielectric physical properties to a depth proportional to the electrode spacing (S. Tetsuro:" Since it is said that “Development diagnosis technology for polymer electrical insulation materials” (FY 2004-2006 Grant-in-Aid for Scientific Research Grants), the opposing distance d between the electrode plates and the depth of the electric field It was assumed that it was a circular arc shape that was simply proportional. The electrode plates were arranged in parallel so that the electric field was transmitted through the test material, and it was assumed that the depth at which the electric field reached would be changed by changing the facing average distance d between the electrode plates.

また、誘電体の誘電率εは含水率に応じて変化する。また、電極板間の対向平均距離dは円弧状の電界の対向平均距離長になる。電極板間の対向平均距離dが小さいと、電界は模擬撥水層41のみにあり、電極板間の対向平均距離dの増加とともに静電容量Cは減少する。電界が含水率の高い模擬非撥水層42に到達すると誘電率εも変化し、表示値Cdの減少する割合が変化する。   Further, the dielectric constant ε of the dielectric changes in accordance with the water content. Further, the facing average distance d between the electrode plates is the facing average distance length of the arc-like electric field. When the facing average distance d between the electrode plates is small, the electric field exists only in the simulated water repellent layer 41, and the capacitance C decreases with the increase in the facing average distance d between the electrode plates. When the electric field reaches the simulated non-water repellent layer 42 having a high water content, the dielectric constant ε also changes, and the reduction rate of the display value Cd changes.

したがって、論理的には、この変曲点が模擬撥水層41と模擬非撥水層42の境界となる。このときの撥水層厚の推定値は、実測で確認した確認値に近い値が得られた。しかし、模擬撥水層41が薄いと変曲点がすぐ現れ、変曲点の判定が困難となる。また、薄い撥水層厚測定用に電極板の幅を狭くした場合には精度が落ちるという欠点がある。即ち、最初から電界が模擬非撥水層42側に影響を与えていると推定される。   Therefore, logically, this inflection point is the boundary between the simulated water repellent layer 41 and the simulated non-water repellent layer 42. The estimated value of the water repellent layer thickness at this time was close to the confirmed value confirmed by the measurement. However, if the simulated water repellent layer 41 is thin, an inflection point appears immediately, which makes it difficult to determine the inflection point. In addition, when the width of the electrode plate is narrowed for thin water-repellent layer thickness measurement, there is a disadvantage that the accuracy is lowered. That is, it is estimated that the electric field affects the side of the non-water repellent layer 42 from the beginning.

次に、本発明の実施の形態で使用する図1に示す電極板21,22,21A,22Aについて検討する。
一方の電極板の中心位置から他方の電極板の中心位置までの水平面距離tと電極板面積Sの比S/tが一定であるような電極を作製した。この水平面距離tと電極板面積Sの比S/tが一定な電極を、ここでは『等比共面電極』と呼ぶこととする。また、電極板21,22,21A,22Aについて、水平面距離tとして定義しているが、垂直面であってもよいし、所定の傾きであってもよい。ここでは、電極板間の対向平均距離dとの違いを明確にするため水平面距離tという。そして、ここでは、S/t=constを『等比共面電極定数』という。
Next, the electrode plates 21, 22, 21A, 22A shown in FIG. 1 used in the embodiment of the present invention will be examined.
An electrode was manufactured such that the ratio S / t of the horizontal plate distance t from the center position of one electrode plate to the center position of the other electrode plate and the electrode plate area S was constant. An electrode in which the ratio S / t of the horizontal plane distance t to the electrode plate area S is constant is referred to as a "equal ratio coplanar electrode". Further, although the horizontal distance t is defined for the electrode plates 21, 22, 21A, 22A, it may be a vertical surface or may have a predetermined inclination. Here, in order to clarify the difference with the facing average distance d between electrode plates, it is called horizontal surface distance t. Here, S / t = const is referred to as "equal ratio coplanar electrode constant".

ここで、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離dと設定する。
π・t=d
t=d/π
となる。
したがって、
S/t=S・π/d
となる。円周率πが一定、等比共面電極定数S/dが常に一定となる。
また、静電容量Cは、C=ε・S/dにより、誘電率ε、即ち、含水率が深さ方向に変化しなければ静電容量Cは一定となる。
そして、水平面距離tを順次大きくしていくと、電界が含水率の高い部分に到達したとき、静電容量Cは初めて変化し、その変化した位置の値が模擬撥水層41の深さとなる。
Here, a value obtained by multiplying the horizontal distance t by the circle ratio π is set as the facing average distance d between the electrode plates.
π · t = d
t = d / π
It becomes.
Therefore,
S / t = S · π / d
It becomes. The circle ratio π is constant, and the uniform coplanar electrode constant S / d is always constant.
In addition, the capacitance C is constant, if the dielectric constant ε, that is, the water content does not change in the depth direction, according to C = ε · S / d.
Then, when the horizontal distance t is sequentially increased, when the electric field reaches a portion with high water content, the capacitance C changes for the first time, and the value of the changed position becomes the depth of the simulated water repellent layer 41 .

発明者らは、更に、等比共面電極21,22,21A,22A(以下、これらを「等比共面電極20」とまとめて呼ぶこととする)について究明する。
水平面距離tが4、8、12、16、20mmの5種類の等比共面電極20を作製した。等比共面電極20の電極板長は100mmで一定とし、電極板幅を変化させて等比共面電極定数S/t=100とした。この場合、電極板幅は水平面距離tと相殺するため、電極板間の対向平均距離dと等比共面電極20の水平面距離tは同一(電極板間の対向平均距離d=水平面距離t)とした。ここで、一対の等比共面電極20の面積が異なる電極板を除外した。
The inventors further investigate iso-coplanar electrodes 21, 22, 21A and 22A (hereinafter, these will be collectively referred to as “e-coplanar electrode 20”).
Five types of equal ratio coplanar electrodes 20 having horizontal surface distances t of 4, 8, 12, 16, and 20 mm were produced. The electrode plate length of the equal ratio coplanar electrode 20 was constant at 100 mm, and the electrode plate width was changed to set the equal ratio coplanar electrode constant S / t = 100. In this case, since the width of the electrode plate offsets the horizontal distance t, the facing average distance d between the electrode plates and the horizontal distance t of the equal ratio coplanar electrode 20 are the same (the facing average distance d between the electrode plates d = horizontal distance t) And Here, electrode plates having different areas of the pair of equal ratio coplanar electrodes 20 were excluded.

電極板の材料としては、図2に示すように、プラスチックフィルム11に銅箔テープ10を貼り付け、更に、プラスチックフィルム11を25mmのポリスチレンフォーム12に貼り付けた。電極板としての銅箔テープ10にはビニール被覆銅線15,16を取り付けて延長し、市販の高周波容量式水分計の電極17及び電極18と接触させた。なお、図2においてはリード線としてのビニール被覆銅線15,16の長さが異なるが、試験回路では均一長さとしている。回路的には対称性を持たせ、反対側に引き出している。
特に、両方のビニール被覆銅線15,16を近づけると、静電浮遊容量の影響を受け、出力の表示値Cdに影響するため、お互いに離し、その影響が最小値になるようにした。電極21A(21)及び電極22A(22)の上面と模擬供試体の上面のみを導通とするため、模擬供試体の他の上面を電気的に絶縁するためラップフィルム14を敷いている。
また、銅箔テープ10と供試体を密着させるため2kgの錘13をポリスチレンフォーム12の上に置いた。
As a material of an electrode plate, as shown in FIG. 2, the copper foil tape 10 was stuck on the plastic film 11, and also the plastic film 11 was stuck on the polystyrene foam 12 of 25 mm. Vinyl coated copper wires 15 and 16 were attached to the copper foil tape 10 as an electrode plate and extended, and brought into contact with the electrodes 17 and 18 of a commercially available high-frequency capacitive moisture meter. Although the lengths of the vinyl-coated copper wires 15 and 16 as lead wires are different in FIG. 2, they are uniform in length in the test circuit. The circuit has symmetry and is drawn out on the opposite side.
In particular, when both vinyl coated copper wires 15 and 16 are brought close to each other, they are influenced by the electrostatic stray capacitance and affect the displayed value Cd of the output, so they are separated from each other so that the influence becomes the minimum value. In order to electrically connect only the upper surface of the electrode 21A (21) and the electrode 22A (22) to the upper surface of the simulated sample, a wrap film 14 is applied to electrically insulate the other upper surface of the simulated sample.
Also, a 2 kg weight 13 was placed on the polystyrene foam 12 in order to bring the copper foil tape 10 into close contact with the test piece.

このようにして製作した等比共面電極20を用いて、一定の含水率とした模擬供試体を作製し、ケイカル板及びコンクリートの表示値Cdの特性を測定した。ケイカル板は厚さ5mmで加工し易く、また、吸水率も高く、吸水速度も速いため模擬供試体として採用した。
厚さ5mm×縦100mm×幅100mmの模擬供試体を105℃の下で24時間炉乾燥させたものを含水率0%の状態とし、この状態における模擬供試体の質量を下に1枚ずつ所定の含水率となるような質量の水とともにポリ袋に入れ吸水させた後に密閉した模擬供試体を作成した。そして、図3に示すような、模擬供試体の全体を100%としたときの含水率0、6、12%のケイカル板を製作した。なお、コンクリートは含水率0、4、6.4%の立方体を製作した。
Using the equal ratio coplanar electrode 20 manufactured in this manner, a simulated specimen with a constant water content was manufactured, and the characteristics of the display value Cd of the carbon plate and the concrete were measured. A caikale plate is easily processed at a thickness of 5 mm, has a high water absorption rate, and has a high water absorption rate, and was adopted as a simulated specimen.
A sample of 5 mm in thickness x 100 mm in length x 100 mm in width is subjected to oven drying at 105 ° C. for 24 hours to obtain a water content of 0%. The sample was placed in a plastic bag with water of such a mass as to cause water absorption, and was then absorbed to make a sealed test sample. Then, as shown in FIG. 3, a caical plate having a moisture content of 0, 6, 12% when the whole of the simulated specimen was 100% was manufactured. In addition, concrete manufactured cubes with a moisture content of 0, 4 and 6.4%.

ここで、ケイカル板の絶乾密度は約0.7g/cmとコンクリートに比べて1/3程度であるから、含水している水量も同じ含水率ではコンクリートの約1/3になる。同じ含水率のケイカル板を8枚重ねた等比共面電極20を作製し、表示値Cdの値を計測した。
また、コンクリートは水とセメントの比55%で作製した100×100×400mmのコンクリート模擬供試体を100mm角の立方体に切断し、水で飽和させ表乾状態(含水率6.4%)としたものと、同じ寸法で含水率4.0%及び0%となるように調整したものをポリ袋に入れ密閉し、水を均一に吸着させて、所定の含水率の模擬供試体を得た。
ここで、模擬供試体の水平面距離tと表示値Cdの関係を図3に示す。
Here, since the bone dry plate has an absolute dry density of about 0.7 g / cm 3 , which is about 1/3 of that of concrete, the amount of water containing water is about 1⁄3 of that of concrete with the same water content. Eight equal carbon content plates having the same water content were stacked to prepare an equal ratio coplanar electrode 20, and the value of the display value Cd was measured.
The concrete was prepared by cutting a 100 × 100 × 400 mm concrete simulation specimen prepared with a 55% water / cement ratio into cubes of 100 mm square and saturated with water to obtain a surface dry state (water content: 6.4%) What was adjusted so that the moisture content and the moisture content of the same dimensions as that of the one were adjusted to 4.0% and 0% was put in a plastic bag and sealed, and water was uniformly adsorbed to obtain a simulated specimen of a predetermined moisture content.
Here, the relationship between the horizontal distance t of the simulated specimen and the display value Cd is shown in FIG.

図3に示すように、コンクリートとケイカル板の含水率が一定であれば、水平面距離tを変えても表示値Cdが略一定であることが判る。表示値Cd及びコンクリートまたはケイカル板等の供試体が判れば、供試体の含水率が特定されることになる。ここで、表示値Cdの誤差はケイカル板、コンクリートの全体関に対する含水率分布の特性の違い、個体による含水率の違いによるものと推定される。
また、各含水率における電極板中心位置までの水平面距離tが大きくなっても、小さくなっても表示値Cdの値は変化せず、略一定となっていることが確認された。
そして、等比共面電極定数S/tとして一定であれば、電極中心位置までの水平面距離tを大きくして電界が到達する位置を深くしても、誘電率ε(含水率)が変化しなければ表示値Cdは同じ値となる。そして、含水率が高くなると表示値Cdの値は大きくなるという結果が得られた。これにより表示値Cdが含水率に依存することが判る。
As shown in FIG. 3, it can be seen that the display value Cd is substantially constant even if the horizontal surface distance t is changed, if the water content of the concrete and the carbon plate is constant. Once the indicated value Cd and the specimen such as concrete or caulcal plate are known, the moisture content of the specimen is specified. Here, it is presumed that the error of the indicated value Cd is due to the difference in the characteristic of the moisture content distribution to the caulcal board and the general relation of the concrete, and the difference in the moisture content depending on the individual.
In addition, even if the horizontal distance t to the electrode plate center position at each moisture content increases, it is confirmed that the value of the display value Cd does not change and becomes substantially constant even if the horizontal distance t decreases.
Then, if the equi-coplanar electrode constant S / t is constant, the dielectric constant ε (water content) changes even if the horizontal distance t to the electrode center position is increased and the position where the electric field reaches is deepened. If not, the display value Cd is the same value. Then, the result was obtained that the value of the display value Cd becomes larger as the moisture content becomes higher. From this, it can be seen that the indicated value Cd depends on the water content.

次に、この等比共面電極20を用いて模擬撥水層41の模擬供試体の測定を行う。
図2及び図3に示す含水率6.4%及び4.0%のコンクリート立方体の上に0、6、12%のケイカル板を1枚または2枚または3枚載せて、各電極板の積層状態で表示値Cdを測定した。ケイカル板は含水率が低い模擬撥水層41を、コンクリートは含水率が高い模擬非撥水層42を模擬した2層模擬供試体モデルとした。
Next, measurement of the simulated specimen of the simulated water repellent layer 41 is performed using this equal ratio coplanar electrode 20.
1 or 2 or 3 sheets of 0, 6 and 12% silicon plates are placed on the concrete cubes with water content of 6.4% and 4.0% shown in FIG. 2 and FIG. 3, and lamination of each electrode plate The display value Cd was measured in the state. The carbon plate is a two-layer simulated specimen model in which the simulated water repellent layer 41 having a low water content is simulated, and the concrete non-water repellent layer 42 having a high water content is simulated.

図4に示すように、誘電率ε、含水率6.4%のコンクリートの上に含水率0%のケイカル板を1、2、3枚重ねて電極板中心位置までの水平面距離tと各表示値Cdの関係を図示した。
図4に示すように、厚さ5mmのケイカル板が1枚と薄い場合には直線の傾きが大きく、3枚重ねて15mmとした厚い場合には傾きが小さくなっている。
また、ケイカル板の厚さに左右されないx=0のときのy軸と交わるy軸の交点、即ち、表示値Cdの切片bは略同じ値になっている。その値は図3に示した含水率が0%のケイカル板を重ねた場合の表示値Cd=1270に近い値を示した。他の含水率のケイカル板を用いたものでも直線関係、即ち、表示値Cdの一次関数方程式
表示値Cd=ax+b=ax+1270
表示値Cdは縦軸(y)、xは横軸である。
が得られた。表示値Cdの切片bを図5に示す。
コンクリート及びケイカル板の含水率、及び重ねたケイカル板の枚数を変化させて測定して得られた水平面距離tと、表示値Cdの関係を最小自乗法により直線回帰して求めた各直線の傾きaとx=0のy軸(表示値Cd)と交わる交点が表示値Cdとなる。
As shown in FIG. 4, one, two, three, or four pieces of silicon boards with a moisture content of 0% are stacked on concrete having a dielectric constant ε and a moisture content of 6.4%, and the horizontal distance t to the electrode plate center position and each display The relationship of the value Cd is illustrated.
As shown in FIG. 4, the inclination of the straight line is large when the thickness of 5 mm of the silicon plate is as thin as one, and the inclination is small when the thickness of three laminated sheets is 15 mm.
Further, the intersection point of the y-axis intersecting the y-axis at x = 0 which does not depend on the thickness of the caiscal plate, that is, the intercept b of the display value Cd is substantially the same value. The value showed a value close to the indicated value Cd = 1270 in the case of overlapping the silica plates having a water content of 0% shown in FIG. A linear relationship with other water content scale plates, that is, a linear function equation of display value Cd Display value Cd = ax + b = ax + 1270
The display value Cd is the vertical axis (y), and x is the horizontal axis.
was gotten. The intercept b of the indicated value Cd is shown in FIG.
The slope of each straight line obtained by linear regression of the relationship between the display value Cd and the horizontal distance t obtained by changing the moisture content of concrete and caycal board and the number of stacked caical boards and changing it. An intersection point of a and x = 0 y axis (display value Cd) is a display value Cd.

模擬撥水層41に見立てたケイカル板の含水率と模擬非撥水層42に見立てたコンクリートの含水率の差が大きいほど、回帰直線の傾きが大きくなった。これは、ケイカル板の静電容量Caのインピーダンスとコンクリートの静電容量Cbのインピーダンスが直列接続されていると見做されると、インピーダンスの比較によってCa≫Cbであるとき、直列接続するとコンデンサの容量のインピーダンスが大きいCaに仕事量が依存されることになる。
特に、コンクリートの含水率が4%で上に載せたケイカル板の含水率が12%と、あまり両者の含水量の差が大きくない場合には、ケイカル板の枚数を増やすと傾きがマイナスになり、回帰直線の相関係数も小さくなる。
また、模擬撥水層41の厚さが大となると、即ち、ケイカル板の枚数が増えると傾きが小さくなった。ケイカル板の含水率が同じ場合、図6に示す含水率と切片の関係で示すように、重ねる枚数を変化させても切片bの値は略同じになった。特に、含水率が一定であり、含水量に変化がないので、何枚用いても同じになると推定される。
また、これにより、模擬撥水層41は含水率が非常に小さいことから、望ましい測定方法であると思慮される。
The larger the difference between the moisture content of the cical plate regarded as the simulated water repellent layer 41 and the moisture content of concrete regarded as the simulated non-water repellent layer 42, the larger the inclination of the regression line. It is considered that if the impedance of the capacitance Ca of the caical plate and the impedance of the capacitance Cb of concrete are considered to be connected in series, when Ca 接 続 Cb by the comparison of impedances, the capacitors are connected in series The amount of work is dependent on Ca, which has a large capacitance impedance.
In particular, when the moisture content of concrete is 4% and the moisture content of the cical plate placed above is 12%, the difference between the moisture content of the two is not so large, the inclination becomes negative when the number of cical plates is increased. , The correlation coefficient of the regression line also decreases.
In addition, when the thickness of the simulated water repellent layer 41 was large, that is, as the number of the silica plates was increased, the inclination was reduced. In the case where the moisture content of the caycal plate is the same, as shown by the relationship between the moisture content and the segment shown in FIG. 6, the values of the segment b become substantially the same even if the number of overlapping sheets is changed. In particular, since the water content is constant and there is no change in the water content, it is estimated that the same can be obtained regardless of how many sheets are used.
Also, it is considered that the simulated water repellent layer 41 is a desirable measurement method because the moisture content is very small.

また、ケイカル板が3枚(15mm厚さ)の場合、水平面距離tが4mm、8mmの電極では表示値Cdは変化しないことから、電界が含水率の高い模擬非撥水層42には大きな影響がないと推定される。
模擬非撥水層42に届きはじめる12mm、16mm以上で急激に大きくなると推定していたが、表示値Cdは連続的に増大し、水平面距離tと表示値Cdには直線関係が得られ、不連続点は発生しなかった。電界形状について電極板が対向状態で円弧状になるとも推定されるが、等比共面電極20相互間に直列接続されたインピーダンスとしての静電容量の和と同じで、供試体中での電界の形状や含水率の差の影響調査等の詳しい解析が今後検討課題となる。
In addition, in the case of three caical plates (15 mm thick), the display value Cd does not change with electrodes having a horizontal distance t of 4 mm and 8 mm, so the electric field has a large effect on the simulated non-water repellent layer 42 with high moisture content It is presumed that there is no
Although it was estimated that the display value Cd would increase rapidly at 12 mm and 16 mm or more starting to reach the simulated non-water repellent layer 42, the display value Cd would increase continuously and a linear relationship was obtained between the horizontal distance t and the display value Cd. No continuous points occurred. The electric field shape is also presumed to be an arc when the electrode plates face each other in the opposite state, but the electric field in the sample is the same as the sum of the capacitances as impedances connected in series between equal ratio coplanar electrodes 20. Detailed analysis, such as investigation of the influence of the difference in the shape of the water content and the moisture content, will be the subject for future study.

コンクリートの含水率が6%及び4%で重ねるケイカル板の含水率が、0%及び12%としたケイカル板の厚さを変化させて得られたそれぞれの回帰直線の傾きの逆数1/aとケイカル板の厚さとの関係を図7に示す。それぞれ傾きの逆数1/aとケイカル板の厚さには一次関数方程式で示すことができる直線関係が得られた。
このことより傾きの逆数1/aと撥水層厚の関係を供試体毎に予め求めておけば、等比共面電極20で測定し得られた水平面距離tと表示値Cdの回帰直線の傾きaまたは傾きの逆数1/aから撥水層厚が推定できることになる。
The moisture content of the caking plate piled up at 6% and 4% of the concrete content, the reciprocal of the slope 1 / a of the regression line obtained by changing the thickness of the caking plate with 0% and 12%, respectively The relationship with the thickness of the caycal plate is shown in FIG. The linear relationship which can be shown by a linear function equation was obtained for the reciprocal 1 / a of the slope and the thickness of the caycal plate, respectively.
From this, if the relationship between the reciprocal 1 / a of the slope and the thickness of the water repellent layer is determined in advance for each sample, the regression line of the horizontal distance t and the display value Cd obtained by measuring with the equal ratio coplanar electrode 20 The water repellent layer thickness can be estimated from the slope a or the reciprocal 1 / a of the slope.

次に、これら得られた模擬供試体の例を用いて検討する。
まず、模擬撥水層41を形成したコンクリート模擬供試体を等比共面電極20で測定し、模擬供試体で得られたような回帰直線の傾きの逆数1/aと撥水層厚との関係を検討する。
コンクリートは3種類の配合のものを用いた。当該コンクリートの配合及び28日圧縮強度を図8に示す。
水とセメント比(図8ではW/Cと記す)は40、55、70%とした。一般的な構造物に使用されている水とセメント比55%で空気量も5%程度の普通コンクリート、及び比較的高強度を想定した水とセメント比40%のものと、比較的低品質のコンクリートを想定した水セメント比70%の低強度でAE剤(界面活性剤の一種で、コンクリート打設作業能率の向上及び耐凍性を向上させる混和剤)を使用せずに空気量が小さくなるようにしたものとした。使用したセメントは、早強セメントを用いた。
なお、使用した骨材の物性を念のため図9に示した。粗骨材は長良川産の玉砕石を用い、細骨材には長良川産の粗砂と細砂を7:3の割合で混合したものを用いた。
ここで、s/aは細骨材率(全骨材の体積に占める細骨材の体積の割合)で、ここではs/a=40%とした。また、S1は細骨材のうち粗いもの、S2は細骨材のうち細かいもの、Gは粗い骨材である。
Next, it examines using the example of these obtained simulated specimens.
First, a concrete simulation sample on which a simulation water repellent layer 41 was formed was measured with a uniform ratio coplanar electrode 20, and the reciprocal 1 / a of the slope of the regression line as obtained for the simulation sample and the water repelling layer thickness Examine the relationship.
The concrete used three types of compounding. The composition of the concrete and the 28-day compressive strength are shown in FIG.
The water to cement ratio (referred to as W / C in FIG. 8) was 40, 55, 70%. Relatively low quality such as ordinary concrete with 55% water / cement ratio and 5% air content, which are used in general structures, and 40% water / cement ratio assuming relatively high strength The amount of air can be reduced without using an AE agent (a type of surfactant, an additive that improves the efficiency of concrete placement and the freeze resistance) at a low water-cement ratio of 70% assuming concrete. It was decided to be. The cement used was early-strength cement.
The physical properties of the used aggregate are shown in FIG. The coarse aggregate used grated stone from Nagara River, and the fine aggregate was a mixture of coarse sand and fine sand from Nagara River at a ratio of 7: 3.
Here, s / a is a fine aggregate rate (the ratio of the volume of the fine aggregate to the volume of the total aggregate), and in this case, s / a = 40%. Moreover, S1 is a coarse thing among fine aggregates, S2 is a fine thing among fine aggregates, G is a coarse aggregate.

養生は、図8に示すように、脱型後28日間水中養生及び気中養生の2種類とした。
100mm×100mm×400mmの角柱の供試体を作製し、養生後、コンクリートカッターを用いて切断し、50mm×100mm×130mmとした。100mm×130mmの切断面に表面含浸材が供試体側面に垂れないように土手を作った後、炉で乾燥させ、絶乾状態にし、更に、表面含浸材を塗布した。
表面含浸材はトーケン樹脂化学株式会社製(製品名 S−7;以下、単に「T社製」という)と、大同塗料株式会社製(製品名 アクアシール1400;以下、単に「D社製」という)を用いた。T社製は液体状であり、D社製はジェル状である。
どちらも成分はシラン系で標準使用量が200g/mとされていた。塗布量は100g/m〜500g/mとし、一部の供試体数は50及び800g/mを塗布した。供試体数は全部で68個であった。
As shown in FIG. 8, two types of curing were used: curing in water and curing in air for 28 days after demolding.
A specimen of a square column of 100 mm × 100 mm × 400 mm was prepared, and after curing, it was cut using a concrete cutter to make 50 mm × 100 mm × 130 mm. After making a bank on a 100 mm × 130 mm cut surface so that the surface impregnating material does not drip on the side surface of the sample, it was dried in an oven to be completely dried, and further, the surface impregnating material was applied.
The surface impregnating material is manufactured by TOOKEN CHEMICAL CO., LTD. (Product name S-7; hereinafter simply referred to as "made by T company") and Daido Paint Co., Ltd. (product name aqua seal 1400; hereinafter referred to simply as "made by company D") Was used. The product of company T is liquid, and the product of company D is gel.
Both of the components were silanes, and the standard amount used was 200 g / m 2 . The coating amount was set to 100g / m 2 ~500g / m 2 , a portion of the specimen number was applied 50 and 800 g / m 2. The number of specimens was 68 in all.

模擬撥水層41が形成されるよう塗布後4日以上静置した後、供試体を容器内に入れて水浸させた。水の深さは供試体の高さとし、供試体の底面と側面から4日間吸水させた。模擬撥水層41は吸水速度が非常に低く、模擬非撥水層42は吸水速度が高いことから模擬供試体と同じく含水率が小さい模擬撥水層41と含水率が高い模擬非撥水層42の2層供試体モデルを構成した。
図10は水とセメント比55%で水中養生したものに、T社製の表面含浸材を100、300、500g/m塗布したものの、電極板中心位置までの水平面距離tと表示値Cdとの関係を示す。模擬供試体と同様に電極板中心位置までの水平距離tと静電容量Cに依存する表示値Cdには直線関係(線形特性)が得られることを示す。
計測後、各供試体を割裂させ、実際に形成された撥水層厚を測定した。測定は中心部とその両側25mmの位置の部分での値を平均化した。塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、切片bは略同じ値になり、撥水層部分の含水率は同一と考えられる。
表面含浸材の塗布量は100、300、500g/mであるが、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなっている。
このように、図10に示す電極で計測した表示値Cdと電極中心までの距離tとの関係を1次関数として求めた傾きaを求めます。図10の4.8mm、10.2mmや14.0mm)のように、この供試体を割って実際の撥水層厚さを求めておく。
After leaving for 4 days or more after application so as to form the simulated water repellent layer 41, the sample was placed in a container and immersed in water. The depth of water was set to the height of the specimen, and water was allowed to absorb from the bottom and the side of the specimen for 4 days. The simulated water repellent layer 41 has a very low water absorption rate, and the simulated non-water repellent layer 42 has a high water absorption rate, so the simulated water repellent layer 41 has a small water content like the simulated sample and the simulated non water repellent layer has a high water content. Forty-two two-layer specimen models were constructed.
Fig. 10 shows that 100, 300, 500 g / m 2 of surface impregnated material from T Co. is applied to those cured in water at a cement ratio of 55% with water, but the horizontal distance t to the electrode plate center position and the indicated value Cd Show the relationship between It shows that a linear relationship (linear characteristic) can be obtained in the display value Cd depending on the horizontal distance t to the electrode plate center position and the capacitance C as in the case of the simulated specimen.
After the measurement, each sample was split and the actually formed water repellent layer thickness was measured. The measurement averaged the value in the center part and the part of the position of 25 mm on both sides. When the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b has substantially the same value, and the water content of the water repellent layer portion is considered to be the same.
The coating amount of the surface impregnating material is 100, 300 and 500 g / m 2 , but the inclination a is large when the water repellent layer formed with a small coating amount is thin, and is small when it is thick.
In this way, the slope a is obtained as a linear function of the relationship between the display value Cd measured by the electrode shown in FIG. 10 and the distance t to the center of the electrode. As in the case of 4.8 mm, 10.2 mm and 14.0 mm in FIG. 10, the sample is divided to obtain the actual water repellent layer thickness.

更に、各模擬供試体の回帰直線の傾きの逆数1/aと撥水層厚の実測値との関係を図11に示す。
図11のY軸は実際に供試体を割って測定した撥水層厚さを用い,X軸は傾きaの逆数1/aを用いて、1次関数を求めます。
式としては、
撥水層厚さ=164.5×(1/a)+1.302になります。
撥水層が未知の供試体を電極で測定し、傾きaを求めれば,この式から撥水層が決定できる。
図11において、供試体数はT社製とD社製を塗布した模擬供試体の和が68個である。各模擬供試体の傾きの逆数1/aと、撥水層厚の実測値を切片bとを、表示値Cdと共通させて実測した撥水層厚Xから、傾きの逆数1/aが確認される。
したがって、68個のデータで表現された当該一次関数方程式の直線から傾きの逆数1/aが決定され、傾きの逆数1/aが特定されれば、撥水層厚が特定される。
傾きの逆数と撥水層厚には模擬供試体と同様に直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
Furthermore, FIG. 11 shows the relationship between the reciprocal 1 / a of the slope of the regression line of each simulated specimen and the measured value of the water repellent layer thickness.
The Y axis in Figure 11 uses the water repellent layer thickness actually measured by dividing the sample, and the X axis uses the reciprocal 1 / a of the slope a to obtain a linear function.
As a formula,
The water repellent layer thickness is 164.5 × (1 / a) + 1.302.
If the sample whose water repellent layer is unknown is measured with an electrode and the inclination a is obtained, the water repellent layer can be determined from this equation.
In FIG. 11, the number of test specimens is 68, which is the sum of simulated test specimens coated with T company and D company. The reciprocal 1 / a of the slope is confirmed from the water repellent layer thickness X measured by making the reciprocal 1 / a of the slope of each simulated specimen and the intercept b of the measured value of the water repellent layer common to the indicated value Cd. Be done.
Therefore, the reciprocal 1 / a of the slope is determined from the straight line of the linear function equation expressed by the 68 data, and if the reciprocal 1 / a of the slope is identified, the water repellent layer thickness is identified.
A linear relationship was obtained for the reciprocal of the slope and the water repellent layer thickness as in the case of the simulated specimen. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

次に、実際の構造物を想定した撥水層の厚み計測方法について説明する。
前述の供試体では、模擬撥水層41は含水率が低く、模擬非撥水層42は表乾状態に近い高含水率とした2層供試体モデルとしてきた。
しかし、現実の構造物では含水率は2層供試体モデルではなく、表面付近が低く中心部に行くほど連続的に高くなる傾斜分布であると推定される。傾斜分布を想定し、水とセメント比55%で水中養生した角柱供試体を2等分し、切断面以外を水分の出入りしないようにゴム系塗料でシールしたものを3日浸水させた後、実験室中に7日及び1日静置した。それをそれぞれ2本ずつ静置した。
この試験を行った7日間の岐阜気象台の記録では、平均気温は6.3℃、平均湿度は62%であった。静置後に切断面にD社製表面含浸材を200g/m塗布した。塗布前と塗布後4日後に電極で表示値Cdを測定した。
測定後、割裂して擬水層深さを測定した。塗布前と塗布後の電極中心までの水平面距離tと表示値Cdの関係を例示する。
Next, a method of measuring the thickness of the water repellent layer assuming an actual structure will be described.
In the sample described above, the simulated water repellent layer 41 has a low moisture content, and the simulated non-water repellent layer 42 has a two-layer sample model with a high moisture content close to the surface dry state.
However, in an actual structure, the water content is not a two-layer sample model, but is estimated to be a slope distribution in which the vicinity of the surface is low and the height gradually increases toward the center. Assuming a slope distribution, the prismatic specimen cured in water at a cement ratio of 55% with water is divided into two equal parts, and those sealed with a rubber-based paint to prevent entry and exit of water except for the cut surface are immersed for 3 days, It stood still in the laboratory for 7 days and 1 day. Two of them were allowed to stand.
The seven-day Gifu Meteorological Observatory records that this test was conducted showed an average temperature of 6.3 ° C and an average humidity of 62%. After standing, 200 g / m 2 of a surface impregnating material manufactured by D was applied to the cut surface. The indicated value Cd was measured with the electrode before application and 4 days after application.
After the measurement, it was split to measure the simulated aqueous layer depth. The relationship between the horizontal distance t to the electrode center before application and after application and the display value Cd is illustrated.

1日乾燥させたものは、図12に示すように塗布前の表示値Cdは水平面距離tが4mmでも、表乾状態(含水率5.2%)の表示値Cd=1900に近い値となっており、殆ど水分は蒸発しておらず、飽和した状態であると推定される。塗布後でも表示値Cdは減少したが、ほぼ一定の値であり明確な傾きが得られず、撥水層厚は推定できなかった。
実際の構造物を想定した傾斜がある含水率分布での撥水層厚の推定は、実験例が少ないこともあり今後を補正することも必要となる可能性がある。今後、含水率を変化させるなど、更に、検討が必要である。
As for what was dried for 1 day, as shown in FIG. 12, the display value Cd before application becomes a value close to the display value Cd = 1900 of the surface dry state (water content 5.2%) even when the horizontal distance t is 4 mm. Most of the water is not evaporated, and it is presumed to be in a saturated state. Although the indicated value Cd decreased even after the application, it was an almost constant value and a clear slope was not obtained, and the water repellent layer thickness could not be estimated.
The estimation of the water repellent layer thickness in a moisture content distribution with a slope assuming an actual structure may have few experimental examples and may need to be corrected in the future. In the future, it is necessary to further study, such as changing the moisture content.

また、7日間静置させたものは、図13に示したように、塗布前の表示値Cdは、水平面距離tが4mmで、表示値Cdが1900弱と低く、8mm以上では略同じ値になっている。8mm以上での表示値Cdは図3に示した表乾状態(含水率6.4%)のコンクリートの表示値に近い値となっており、内部は飽和した状態と考えられる。
塗布後は4、8、12mmで表示値Cdが低下し、16mm以上で塗布前の値に近い値となった。塗布後の表示値Cdの増加がほぼ無くなる16mmまでの値を用いて直線回帰を行い傾きaを求めた。この傾きaを用いた傾きの逆数1/aと撥水層厚との関係から撥水層厚の推定を行った、推定値と実測値を図14に示す。推定値と実測値は比較的近い値を示している。
In addition, as shown in FIG. 13, the display value Cd before application is as low as 1900 at a horizontal distance t of 4 mm, the display value Cd is as low as 1900, and is substantially the same for 8 mm or more. It has become. The indicated value Cd at 8 mm or more is a value close to the indicated value of the concrete in the surface dry state (water content: 6.4%) shown in FIG. 3, and it is considered that the inside is saturated.
After application, the display value Cd decreased at 4, 8 and 12 mm, and became a value close to the value before application at 16 mm or more. Linear regression was performed using the value up to 16 mm at which the increase in the display value Cd after application almost disappeared, and the slope a was determined. An estimated value and an actual measurement value obtained by estimating the water repellent layer thickness from the relationship between the inverse 1 / a of the slope and the water repellent layer thickness using the slope a are shown in FIG. The estimated value and the measured value show relatively close values.

上記実施の形態の撥水層の厚み計測方法は、同一の電極板面積Sの2枚を一対とし、電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tの等比共面電極20と、両側の等比共面電極20に高周波を印加し、電極板相互の中心位置までの水平面距離tと高周波に基づく静電容量Cに依存する表示値Cdとの間で一次関数方程式Y=aX+Cd特性を得て、前記一次関数の特性の傾きaまたは逆数1/aを撥水層厚に関係する傾き情報として出力を得るものである。
ここで、石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性を測定することにより、表層付近の含水率と関係する初期情報として表示値Cdの切片bが算出される。
また、前記一次関数方程式の特性における傾きの逆数1/aは、撥水層厚に関係する傾き情報とし、既知の前記一次関数方程式の特性の傾きの逆数1/aを標準として設定すれば、かつ、静電容量Cに依存する表示値Cdが一致する点を決定すれば、撥水層厚が算出できる。
In the method of measuring the thickness of the water repellent layer according to the above-mentioned embodiment, two sheets of the same electrode plate area S are paired, and the ratio of the horizontal distance t to the center position between the electrode plates is equal ratio coplanar electrode constant S / t A high frequency is applied to the equal ratio coplanar electrode 20 and the equal ratio coplanar electrode 20 on both sides, and the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C based on the high frequency The linear function equation Y = aX + Cd characteristic is obtained between them, and the output is obtained as the inclination a or the inverse 1 / a of the characteristic of the linear function as inclination information related to the water repellent layer thickness.
Here, by measuring gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode characteristics, as initial information related to the moisture content near the surface layer An intercept b of the display value Cd is calculated.
Further, if the reciprocal 1 / a of the slope in the characteristic of the linear function equation is the inclination information related to the water repellent layer thickness, and if the reciprocal 1 / a of the inclination of the characteristic of the known linear function equation is set as a standard In addition, if the point at which the display value Cd dependent on the capacitance C matches is determined, the water repellent layer thickness can be calculated.

上記実施の形態の撥水層の厚み計測方法は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中位置心までの水平面距離tの比の等比共面電極定数S/tの等比共面電極に、例えは、20MHz高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として、また、静電容量Cに依存する表示値Cdの切片bは、表層付近の含水率と関係する初期情報として出力を得る出力を得る。
このとき、前記高周波の前記20MHzは、前記20MHzに限定されるものではなく、交流であればよい。しかし、周波数が低いと水の電気分解等の化学反応が生じるし、周波数が高いと誘電体の内部に磁界ができず、外表面の磁界が高くなるので、通常、5〜30MHz程度が良い。
また、一次関数方程式の特性は、線形が好ましいが、非線形でも使用できないものではない。よって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなれば良い。
In the method of measuring the thickness of the water repellent layer according to the above embodiment, two sheets of the electrode plate area S are a pair, and the ratio of the ratio of the horizontal plate distance S to the electrode plate area S to the center position between the electrode plates is equal ratio A characteristic between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, for example, adding a high frequency output of 20 MHz to the equal ratio coplanar electrode of the plane electrode constant S / t. The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is near the surface layer The output is obtained as the initial information related to the moisture content of
At this time, the 20 MHz of the high frequency is not limited to the 20 MHz, and may be an alternating current. However, if the frequency is low, a chemical reaction such as electrolysis of water occurs, and if the frequency is high, a magnetic field can not be generated inside the dielectric, and the magnetic field on the outer surface becomes high.
Also, although the characteristics of the linear functional equation are preferably linear, they can not be used non-linearly. Therefore, when the simulated water repellent layer 41 formed with a small coating amount is thin, the inclination a may be large, and when it is thick, the inclination a may be small.

また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。
よって、等比共面電極定数S/tが一定の等比共面電極に高周波電力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、シラン系表面含浸材の撥水層厚を回帰直線として測定する。
Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the simulated water repellent layer 41 formed with a small amount of application is thin, the slope a is large, and when it is thick, it decreases. Therefore, the reciprocal 1 / a of the slope of the regression line of each sample is It can also be expressed as Regarding the relationship between the reciprocal 1 / a of the slope of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.
Therefore, between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, high frequency power is applied to the equal ratio coplanar electrode having a constant equal ratio coplanar electrode constant S / t. The characteristic a of the linear function equation is obtained, and the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation is used as the inclination information related to the water repellent layer thickness. The intercept b of b provides an output as initial information related to the moisture content near the surface layer. Thereby, for example, the penetration depth and the like of the silane-based surface impregnated material are measured, and the water-repellent layer thickness of the silane-based surface impregnated material is measured as a regression line.

上記実施の形態の撥水層の厚み計測方法の等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたものであるから、等比共面電極定数S/tを充足する水平面距離tと、水平面距離tに円周率πを乗算した値を電極板間の対向平均距離離dとが同一であるから、電界が円弧を描き、その円弧の中心位置に電極板間の対向平均距離dを回帰直線として算出することができる。
また、上記実施の形態の前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたものであるから、前記一次関数方程式の特性の傾きの逆数1/aを撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得るものである。
Horizontal distance t geometric coplanar electrodes constant S / t of the thickness measuring method of the water-repellent layer of the above-described embodiment, since those were the same as opposed average distance d of the opposing electrode plates, geometric co Since the horizontal distance t satisfying the surface electrode constant S / t and the value obtained by multiplying the horizontal distance t by the circular ratio π are the same as the opposing average distance d between the electrode plates, the electric field draws an arc. The opposing average distance d between the electrode plates can be calculated as a regression line at the center position of the arc.
Further, since the inclination of the characteristic of the linear function equation of the above embodiment is the inverse 1 / a of the inclination of the characteristic, the inverse 1 / a of the inclination of the characteristic of the linear function equation is a water repellent layer The inclination information is related to the thickness, and the intercept b of the display value Cd depending on the capacitance C is an output as initial information related to the moisture content near the surface layer.

上記実施の形態の撥水層の厚み計測方法は、電極板面積Sの2枚を一対とし、前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tが一定で、一対の等比共面電極の面積が異なるものを除く等比共面電極と、両側の前記等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得るものである。
前記等比共面電極から一対の等比共面電極の面積が異なるものを除くとは、等比共面電極定数S/tを満足するものでも、2枚の等比共面電極の電極板面積Sが互いに異なることを意味する。
In the method of measuring the thickness of the water repellent layer according to the above embodiment, two sheets of the electrode plate area S are paired, and the ratio of the horizontal distance t to the center position between the electrode plates is equal ratio coplanar electrode constant S / t. A high frequency output is applied to the equal ratio coplanar electrodes and the equal ratio coplanar electrodes on both sides except that the area of a pair of equal ratio coplanar electrodes is different, and the horizontal distance t to the center position between the electrode plates Obtain a characteristic of a linear function equation with a display value Cd depending on the capacitance C, and output the inclination a (reciprocal number 1 / a) of the characteristic of the linear function equation as the inclination information related to the water repellent layer thickness To get
With the exception of the cases where the areas of the pair of equal ratio coplanar electrodes are different from those of the equal ratio coplanar electrodes, the electrode plates of the two equal ratio coplanar electrodes even if they satisfy the equal ratio coplanar electrode constant S / t. It means that the areas S are different from each other.

上記実施の形態の撥水層の厚み計測方法の発明は、電極板面積Sの2枚を一対とし、前記電極板面積Sと前記電極板相互の中心位置までの水平面距離tの比の等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得る。
前記静電容量Cに依存する表示値Cdを特定し、その特定した表示値Cdから、撥水層厚が算出される。
The invention of the method of measuring the thickness of the water repellent layer according to the above embodiment is characterized in that the two electrode plate areas S are paired and the ratio of the ratio of the electrode plate area S to the horizontal distance t to the center position of the electrode plates is equal. By applying a high frequency output to the equal ratio coplanar electrode of the coplanar electrode constant S / t, and obtaining the characteristic between the horizontal distance t to the center position between the electrode plates and the display value Cd depending on the capacitance C, The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is the moisture content near the surface layer Get the output as the relevant initial information.
The display value Cd dependent on the capacitance C is specified, and the water repellent layer thickness is calculated from the specified display value Cd.

したがって、塗布量が少なく形成された模擬撥水層41が薄い場合には傾きaが大きく、厚い場合には小さくなった。また、前記静電容量Cに依存する表示値Cdの切片bは略同じであり、撥水層部分の含水率は同一と考えられる。そして、塗布量が少なく形成された撥水層が薄い場合には傾きaが大きく、厚い場合には小さくなるから、各供試体の回帰直線の傾きaの逆数1/aを撥水層厚と表現することもできる。各供試体の回帰直線の傾きaの逆数1/aと撥水層厚との関係は、傾きの逆数と撥水層厚には直線関係が得られた。表面含浸材の種類、コンクリートの配合、養生条件の差による影響は現れていなかった。   Therefore, when the simulated water repellent layer 41 formed with a small amount of application is thin, the inclination a is large, and when it is thick, the inclination a is small. Further, the intercept b of the display value Cd depending on the capacitance C is substantially the same, and the water content of the water repellent layer portion is considered to be the same. When the water repellent layer formed with a small amount of application is thin, the slope a is large, and when it is thick, it is small. Therefore, the reciprocal 1 / a of the slope a of the regression line of each sample is the water repellent layer thickness. It can also be expressed. Regarding the relationship between the reciprocal 1 / a of the slope a of the regression line of each sample and the water repellent layer thickness, a linear relationship was obtained between the reciprocal of the slope and the water repellent layer thickness. The effect of the type of surface impregnating material, the composition of concrete, and the difference in curing conditions did not appear.

よって、等比共面電極定数S/tの等比共面電極に高周波出力を加え、電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報として出力を得る。これによって、例えば、シラン系表面含浸材の浸透深さ等を計測し、本実施の形態では、シラン系表面含浸材の撥水層厚を回帰直線として測定した。
特に、静電容量Cは電極板間の対向平均距離dに反比例するという特性、即ち、
C=ε・S/d
を使用したが、静電容量Cの領域を抵抗体として確認すると、この供試体の内部と表層部との含水率の差を計測する計測電極及びその計測電極を用いた計測方法の確認を行うことができる。
なお、前記静電容量Cに依存する表示値Cdは、周波数に依存する静電容量Cとすること、単に、周波数に依存する静電容量Cとすることもできる。
Therefore, a high frequency output is applied to the equal ratio coplanar electrode of the equal ratio coplanar electrode constant S / t, and a primary value is generated between the horizontal distance t to the center position of the electrode plates and the display value Cd depending on the capacitance C. The characteristic of the functional equation is obtained, and an output is obtained as the inclination a (reciprocal number 1 / a) of the characteristic of the linear functional equation as inclination information related to the water repellent layer thickness. Thus, for example, the penetration depth and the like of the silane-based surface impregnated material were measured, and in the present embodiment, the water-repellent layer thickness of the silane-based surface impregnated material was measured as a regression line.
In particular, the capacitance C is inversely proportional to the facing average distance d between the electrode plates, ie,
C = ε · S / d
When the region of capacitance C is confirmed as a resistor, the measurement electrode for measuring the difference in moisture content between the inside of the sample and the surface layer portion and the measurement method using the measurement electrode are confirmed. be able to.
The display value Cd depending on the capacitance C may be a capacitance C depending on a frequency, or may be simply a capacitance C depending on a frequency.

本実施の形態では、シラン系表面含浸材を塗布する事例で説明したが、本発明を実施する場合には、シラン系表面含浸材は水分の含浸がないことを前提とする測定であるから、シラン系表面含浸材に限定されることなく汎用可能である。
また、コンクリート中に模擬撥水層41を形成させた供試体に吸水させ模擬供試体と同じ2層模擬供試体モデルに近い条件とした場合、模擬非撥水層42と同様に回帰直線の傾きの逆数と撥水層厚とには直線関係が得られた。
そして、発明者らの実験によれば、模擬供試体として供試体の特性を予め石膏ボード、コンクリート、ALAコンクリート(人工軽量骨材コンクリート)、ALC、モルタル、ケイ酸カルシウム板、Dモード、Sモード特性として使用する必要があった。また、表面含浸材の製造メーカによって撥水層厚を推定したところ、近い値を示したもののあったが、異なっている可能性もあり、含水率分布による撥水層厚の推定方法は含水率を変化させるなどをしてさらに検討が必要であると考えられる。
In the present embodiment, the case of applying the silane-based surface impregnating material has been described, but in the case of carrying out the present invention, the measurement is based on the premise that the silane-based surface impregnating material is not impregnated with water, It can be generally used without being limited to the silane surface impregnation material.
In addition, when the sample is made to absorb the simulated water repellent layer 41 in concrete and the condition is similar to the two-layer simulated sample model same as the simulated sample, the slope of the regression line is the same as the simulated non-water repellent layer 42 A linear relationship was obtained between the reciprocal of and the water repellent layer thickness.
And, according to the experiments of the inventors, the characteristics of the test specimen as the simulated test specimen in advance are gypsum board, concrete, ALA concrete (artificial lightweight aggregate concrete), ALC, mortar, calcium silicate board, D mode, S mode It had to be used as a property. Moreover, when the water repellent layer thickness was estimated by the manufacturer of the surface impregnating material, it showed close values, but there is a possibility that it may be different. It is thought that further examination is needed by changing the

10 銅箔テープ(電極)
11 プラスチックフィルム
12 ポリスチレンフォーム
14 ラップフィルム
15,16 ビニール被覆銅線
17,18 高周波容量式水分計の電極
20 等比共面電極
21,22,21A,22A 電極板
31,32,33 模擬撥水層
41 模擬撥水層
42 模擬非撥水層
t 水平面距離
d 対向する電極板間の対向平均距離
S 対向する電極板間の電極板面積
C 静電容量
ε 電極板間の誘電体の誘電率
S/t 等比共面電極定数
10 Copper foil tape (electrode)
11 Plastic film 12 Polystyrene foam 14 Wrap film 15, 16 Vinyl-coated copper wire 17, 18 Electrode of high-frequency capacitive moisture meter 20 Equi-planar electrode 21, 22, 21A, 22A Electrode plate 31, 32, 33 Simulated water repellent layer 41 Simulated water-repellent layer 42 Simulated non-water-repellent layer t Horizontal distance d Countering average distance S between opposing electrode plates Electrode plate area C between opposing electrode plates Capacitance ε Dielectric constant S of dielectric between electrodes t equal ratio coplanar electrode constant

Claims (4)

電極板面積Sの電極板2枚を一対とし、前記一対の電極板面積Sの各々の電極板相互の中心位置までの水平面距離tと前記一対の電極板面積Sの各々の比で等比共面電極定数S/tを一定としてなる等比共面電極と、
前記一対の前記等比共面電極に高周波を印加し、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、
前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力を得たことを特徴とする供試体の内部と表層部との含水率の差を計測する計測電極。
The two electrode plates of the electrode plate area S are paired, and the ratio of the horizontal plane distance t to the center position of each electrode plate of the pair of electrode plate areas S and the pair of electrode plate areas S is equal A uniform ratio coplanar electrode having a constant surface electrode constant S / t;
A high frequency is applied to the pair of equal ratio coplanar electrodes, and a characteristic of a linear function equation is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd depending on the capacitance C. ,
The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is the moisture content near the surface layer A measurement electrode for measuring a difference in moisture content between the inside of a specimen and a surface layer portion characterized in that an output is obtained as related initial information.
前記等比共面電極定数S/tの水平面距離tは、対向する電極板間の対向平均距離dと同一としたことを特徴とする請求項1に記載の供試体の内部と表層部との含水率の差を計測する計測電極。   The horizontal distance t between the equal ratio coplanar electrode constant S / t is the same as the facing average distance d between the facing electrode plates, and the surface and the surface of the specimen according to claim 1. Measurement electrode to measure the difference in moisture content. 前記一次関数方程式の特性の傾きは、その特性の傾きの逆数1/aとしたことを特徴とする請求項1または請求項2に記載の供試体の内部と表層部との含水率の差を計測する計測電極。   The inclination of the characteristic of the linear function equation is the inverse 1 / a of the inclination of the characteristic, and the difference between the moisture content of the inside of the sample and the surface portion according to claim 1 or 2 Measurement electrode to measure. 電極板面積Sの電極板2枚を一対とし、前記一対の電極板面積Sの各々の電極板相互の中心位置までの水平面距離tと前記一対の電極板面積Sの各々の比で等比共面電極定数S/tを一定としてなる等比共面電極と、
前記一対の前記等比共面電極に高周波を印加し、前記電極板相互の中心位置までの水平面距離tと静電容量Cに依存する表示値Cdとの間で一次関数方程式の特性を得て、
前記一次関数方程式の特性の傾きa(逆数1/a)を撥水層厚に関係する傾き情報とし、また、前記静電容量Cに依存する表示値Cdの切片bは表層付近の含水率と関係する初期情報として出力することを特徴とする供試体の内部と表層部との含水率の差を計測する計測電極を用いた計測方法。
The two electrode plates of the electrode plate area S are paired, and the ratio of the horizontal plane distance t to the center position of each electrode plate of the pair of electrode plate areas S and the pair of electrode plate areas S is equal A uniform ratio coplanar electrode having a constant surface electrode constant S / t;
A high frequency is applied to the pair of equal ratio coplanar electrodes, and a characteristic of a linear function equation is obtained between a horizontal distance t to the center position of the electrode plates and a display value Cd depending on the capacitance C. ,
The slope a (reciprocal number 1 / a) of the characteristic of the linear function equation is the slope information related to the water repellent layer thickness, and the intercept b of the display value Cd depending on the capacitance C is the moisture content near the surface layer What is claimed is: 1. A measurement method using a measurement electrode for measuring a difference in moisture content between the inside of a specimen and a surface layer portion, which is output as related initial information.
JP2017174124A 2017-09-11 2017-09-11 Water repellent layer thickness measurement method Active JP6343708B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174124A JP6343708B1 (en) 2017-09-11 2017-09-11 Water repellent layer thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174124A JP6343708B1 (en) 2017-09-11 2017-09-11 Water repellent layer thickness measurement method

Publications (2)

Publication Number Publication Date
JP6343708B1 JP6343708B1 (en) 2018-06-13
JP2019049483A true JP2019049483A (en) 2019-03-28

Family

ID=62556055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174124A Active JP6343708B1 (en) 2017-09-11 2017-09-11 Water repellent layer thickness measurement method

Country Status (1)

Country Link
JP (1) JP6343708B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004842A (en) * 2019-06-27 2021-01-14 岩瀬 裕之 Measurement method for measuring inside of test piece

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093626A (en) * 1990-05-11 1992-03-03 E. I. Dupont De Nemours And Company Contact measuring device for determining the dry film thickness of a paint on a conductive primer adhered to a plastic substrate
JPH04212861A (en) * 1990-12-06 1992-08-04 Mitsubishi Heavy Ind Ltd Ink film thickness/moisture content measuring device
JPH04223202A (en) * 1990-12-26 1992-08-13 Kawasaki Steel Corp Method for measuring film thickness of insulation film on semiconductor wafer
US6995574B2 (en) * 2003-12-18 2006-02-07 The Boeing Company Measurement of a coating on a composite using capacitance
JP2006329801A (en) * 2005-05-26 2006-12-07 Institute Of National Colleges Of Technology Japan Surface dried state determination method of aggregate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004842A (en) * 2019-06-27 2021-01-14 岩瀬 裕之 Measurement method for measuring inside of test piece
JP7227088B2 (en) 2019-06-27 2023-02-21 裕之 岩瀬 Measurement method for measuring the inside of a specimen

Also Published As

Publication number Publication date
JP6343708B1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
Cabeza et al. Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste
Chen et al. The effects of specimen parameters on the resistivity of concrete
Ortega et al. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars
Madhavi et al. Electrical conductivity of concrete
Sánchez et al. Moisture distribution in partially saturated concrete studied by impedance spectroscopy
Ravikumar et al. An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes
WO2022105321A1 (en) Asphalt mixture quality evaluation method based on temperature-frequency equivalent model
Kusak et al. Tracing of concrete hydration by means of impedance spectroscopy (new tool for building elements testing)
Berg et al. Dielectric properties of cement mortar as a function of water content
Villagran Zaccardi et al. Electrical resistivity measurement of unsaturated concrete samples
Tsui et al. Analytical modelling of the dielectric properties of concrete for subsurface radar applications
Rubene et al. Frequency analysis and measurements of moisture content of AAC masonry constructions by EIS
Loche et al. Influence of the migration of chloride ions on the electrochemical impedance spectroscopy of mortar paste
Hu et al. Effect of wetting-drying cycles on mechanical behaviour and electrical resistivity of unsaturated subgrade soil
Wang et al. Capacitance-based defect detection and defect location determination for cement-based material
Díaz et al. Conductivity assessment of multifunctional cement pastes by impedance spectroscopy
JP6343708B1 (en) Water repellent layer thickness measurement method
Kusák et al. Comparison of impedance spectra of concrete recorded with utilizing carbon transition paste
Hroudová et al. Laboratory testing of developed thermal insulation plasters on pillars built from masonry bricks
US10816535B2 (en) Method of assessing drying depth of cementitious material
Suchorab Laboratory measurements of moisture in a model red-brick wall using the surface TDR probe
Chung et al. Measurements of microwave reflection properties of early-age concrete and mortar specimens
JP7227088B2 (en) Measurement method for measuring the inside of a specimen
Daout et al. Measurement of complex permittivity of large concrete samples with an open-ended coaxial line
Fita et al. Drying-rewetting cycles in ordinary Portland cement mortars investigated by electrical impedance spectroscopy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250