JP7224561B1 - コンベア制御装置、生産システム、及びコンベア制御プログラム - Google Patents

コンベア制御装置、生産システム、及びコンベア制御プログラム Download PDF

Info

Publication number
JP7224561B1
JP7224561B1 JP2022569015A JP2022569015A JP7224561B1 JP 7224561 B1 JP7224561 B1 JP 7224561B1 JP 2022569015 A JP2022569015 A JP 2022569015A JP 2022569015 A JP2022569015 A JP 2022569015A JP 7224561 B1 JP7224561 B1 JP 7224561B1
Authority
JP
Japan
Prior art keywords
time
conveyor
period
operation period
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022569015A
Other languages
English (en)
Other versions
JPWO2024009467A1 (ja
JPWO2024009467A5 (ja
Inventor
太朗 紫尾
英松 林
順二 西原
慎一 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7224561B1 publication Critical patent/JP7224561B1/ja
Publication of JPWO2024009467A1 publication Critical patent/JPWO2024009467A1/ja
Publication of JPWO2024009467A5 publication Critical patent/JPWO2024009467A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Conveyors (AREA)
  • General Factory Administration (AREA)

Abstract

コンベア制御装置(300)において、観測データ取得部(331a)は、コンベアによって搬送中のワークに対して予め定められた処理を施す作業者の、処理の動作の時系列を表す観測データを取得する。特定部(331b)は、観測データを用いて、処理の開始の際における一連の初期動作を作業者が行った期間である初期動作期間と、処理の終了の際における一連の終期動作を作業者が行った期間である終期動作期間とを特定する。処理所要時間算出部(331c)は、初期動作期間に属する代表開始時刻から、終期動作期間に属する代表終了時刻までの時間幅である処理所要時間を算出する。送り速度制御部(331d)は、処理所要時間算出部(331c)の算出結果に基づいて、コンベアによってワークが搬送される速度である送り速度を制御する。

Description

本開示は、コンベア制御装置、生産システム、及びコンベア制御プログラムに関する。
製品を製造するための設備として、ワーク(workpiece)を搬送するコンベア(conveyor)を備えた生産システムが知られている。本明細書において“ワーク”とは、製造途中の製品である半製品、及び製品を構成する部品を含む概念とする。
コンベアの脇には、作業者が配置される。作業者は、コンベアによって搬送されるワークに対し、予め定められた処理を施す。本明細書において“処理”とは、ワークを完成品である製品に近づけるために、ワークに対して施す操作を意味する。典型的には“処理”とは、基礎となる1つの部品又は半製品であるワークに対し、製品を構成する残りの部品を組付ける操作を指す。
特許文献1に開示されているように、コンベアによってワークが搬送される速度(以下、コンベアの送り速度という。)を、作業者の処理の能率に応じて制御するコンベア制御装置が知られている。具体的には、特許文献1に係るコンベア制御装置は、作業者がワークに対して処理を施すのに要する時間である処理所要時間を計測し、その計測結果に応じてコンベアの送り速度を制御する。
特開2011-248482号公報
特許文献1に係るコンベア制御装置は、コンベアの脇に固定された第1受信部及び第2受信部を備える。作業者の腕に装着された送信部が第1受信部に近接した瞬間に、処理所要時間の始点となる開始時刻が検知される。また、その送信部が第2受信部に近接した瞬間に、処理所要時間の終点となる終了時刻が検知される。処理所要時間は、開始時刻から終了時刻までの時間幅として計測される。
しかし、このように開始時刻及び終了時刻という、時間軸上の2点の時刻だけを検知する手法では、作業者の動作によっては開始時刻又は終了時刻を検出し損ねたり、第1受信部又は第2受信部へのノイズの入力を開始時刻又は終了時刻の到来と誤検出したりする可能性がある。即ち、特許文献1に係る手法では、処理所要時間の計測の正確性が充分であるとは言い難い。
本開示の目的は、処理所要時間の計測の正確性が従来よりも高められるコンベア制御装置、生産システム、及びコンベア制御プログラムを提供することである。
本開示に係るコンベア制御装置は、
コンベアによって搬送中のワークに対して予め定められた処理を施す作業者の、前記処理の動作の時系列を表す観測データを取得する観測データ取得部と、
前記観測データを用いて、前記処理の開始の際における一連の初期動作を前記作業者が行った期間である初期動作期間と、前記処理の終了の際における一連の終期動作を前記作業者が行った期間である終期動作期間とを特定する特定部と、
前記初期動作期間に属する代表開始時刻から、前記終期動作期間に属する代表終了時刻までの時間幅である処理所要時間を算出する処理所要時間算出部と、
前記処理所要時間算出部の算出結果に基づいて、前記コンベアによって前記ワークが搬送される速度である送り速度を制御する送り速度制御部と、
を備える。
上記構成によれば、各々時間幅をもつ初期動作期間及び終期動作期間が特定され、その特定の結果を用いて処理所要時間が算出される。このため、時間軸上の2点の時刻だけを直接的に検知する従来の手法に比べて、処理所要時間の計測の正確性が高められる。
実施の形態1に係る生産システムの要部の構成を示す概念図 実施の形態1に係るコンベア制御装置の構成を示す概念図 実施の形態1に係るコンベア制御装置の機能を示す概念図 実施の形態1に係る処理所要時間を説明するための概念図 実施の形態1に係るコンベア制御のフローチャート 実施の形態2に係るコンベア制御装置の機能を示す概念図 実施の形態3に係るコンベア制御装置の機能を示す概念図 実施の形態4に係る中間動作期間を説明するための概念図
以下、図面を参照し、実施の形態1-4に係る生産システムについて説明する。図中、同一又は対応する部分に同一の符号を付す。
[実施の形態1]
図1に示すように、本実施の形態に係る生産システム400は、製品を流れ作業により製造する製造ラインの一部を構成するコンベア100を備える。コンベア100は、作業者600が歩行によって追随できる程度の低速で、ワーク500を搬送する。
ワーク500は、半製品又は部品である。作業者600は、コンベア100によって搬送中のワーク500に対し、他の部品の組み付け、機械加工、マーキング、検査、梱包といった、予め定められた処理を施す。作業者600は、コンベア100に沿ってワーク500に追随して歩行しながら、あるいは、場合によっては立ち止まったままで、上記処理をワーク500に施す。
ワーク500は、コンベア100によって、次々に作業者600に向かって搬送される。作業者600は、ワーク500が搬送されてくる度に、そのワーク500に対して上記処理を施す。このようにして、作業者600によって上記処理が繰り返し行われる。
コンベア100によるワーク500の搬送の速度、即ち、コンベア100の送り速度に対して、作業者600が行う上記処理の能率が高いと、作業者600に次のワーク500の到来を待機する待ち時間が発生してしまう。一方、作業者600が行う上記処理の能率に対して、コンベア100の送り速度が速すぎると、作業者600の負担が増大したり、上記処理が未完了になったりする。
そこで、本実施の形態に係る生産システム400は、作業者600の処理の能率に応じてコンベア100の送り速度を制御するために、撮像装置200及びコンベア制御装置300をさらに備える。
撮像装置200は、コンベア100の脇の作業者600を撮像する。撮像装置200によって撮像される撮像領域IAは、作業者600が1回の上記処理のために移動し得る可動領域を内包する。撮像装置200は、作業者600を撮像することにより、作業者600が行う上記処理の動作の時系列を表す観測データDTを生成する。即ち、撮像装置200は、本開示に係る観測データ生成装置の一例である。
観測データDTは、観測結果ごとに、その観測結果が得られた時刻が対応付けられた時系列データである。具体的には、観測データDTは、観測結果としての、上記撮像領域IAを撮像した静止画像(以下、フレームともいう。)ごとに、その静止画像が撮られた時刻が対応付けられている動画データである。
コンベア制御装置300は、まず、撮像装置200によって生成された観測データDTを用いて、作業者600の上記処理の能率を表す指標である処理所要時間を求める。そして、コンベア制御装置300は、求めた処理所要時間に応じて、コンベア100の送り速度を制御する。以下、コンベア制御装置300の構成を具体的に説明する。
図2に示すように、コンベア制御装置300は、通信に必要なハードウエアである通信装置310を備える。通信装置310は、撮像装置200から観測データDTを取り込む役割と、コンベア100の送り速度を制御するための制御指令をコンベア100に出力する役割とを担う。
また、コンベア制御装置300は、コンベア100の送り速度を制御する手順を規定したコンベア制御プログラム321を記憶している記憶装置320を備える。記憶装置320には、コンベア100の送り速度の制御に用いる学習済モデル322、及び学習済モデル322を生成するのに必要な学習用データ323も記憶されている。
また、コンベア制御装置300は、コンベア制御プログラム321を実行するプロセッサ330を備える。以下、プロセッサ330がコンベア制御プログラム321を実行することにより実現される機能について説明する。
図3に示すように、コンベア制御装置300は、コンベア100の送り速度の制御を行う制御部331の機能と、その制御に必要な学習済モデル322を生成する学習部332の機能とを有する。
まず、制御部331について説明する。制御部331は、撮像装置200から観測データDTを取得する観測データ取得部331aと、その観測データDTを用いて、作業者600の上記処理の能率を表す指標の算出に必要な時刻を特定する特定部331bとを有する。
図4を参照し、特定部331bの機能を具体的に説明する。図4には、観測データDTが表す時系列に沿った時間軸を示している。観測データDTは、1つの静止画像を表すフレーム(frame)が時間軸に沿って配列されたデータ構造を有する。
特定部331bは、観測データDTを用いて、作業者600が実際に上記処理のために動作した期間である動作期間を特定する。動作期間は、作業者600が周期的に繰り返す上記処理の1周期の期間を表す。動作の有無は、時系列に並ぶ各フレームを解析することで判定できる。このため、観測データDTによって動作期間を特定できる。
また、特定部331bは、観測データDTを用いて、動作期間の冒頭部分を構成する初期動作期間TAを特定する。初期動作期間TAは、上記処理の開始の際における一連の初期動作を作業者600が行った期間である。一連の初期動作は、予め定められた手順に従った動作である。このため、観測データDTが表すフレームの時系列で初期動作期間TAを特定できる。
さらに、特定部331bは、観測データDTを用いて、初期動作期間TAに属する代表開始時刻t1を特定する。本実施形態では、代表開始時刻t1は、作業者600が上記初期動作のうちの特定の動作(以下、代表開始動作という。)を行った瞬間の時刻とする。代表開始動作は予め定められた特定の動作であるため、観測データDTが表すフレームの時系列で代表開始時刻t1を特定できる。
1つの具体例として、作業者600が工具を用いてワーク500に上記処理を施す場合を考える。この場合、作業者600が工具を準備してから、その工具を操作し始めるまでの期間を初期動作期間TAと定めることができる。また、作業者600がその工具をワーク500にあてがう動作を代表開始動作と定め、その代表開始動作が行われた瞬間を代表開始時刻t1と定めることができる。
また、特定部331bは、観測データDTを用いて、動作期間の末尾部分を構成する終期動作期間TBを特定する。終期動作期間TBは、上記処理の終了の際における一連の終期動作を作業者600が行った期間である。一連の終期動作は、予め定められた手順に従った動作であり、かつ上述した一連の初期動作とは明確に異なる。このため、観測データDTが表すフレームの時系列で終期動作期間TBを特定できる。
さらに、特定部331bは、観測データDTを用いて、終期動作期間TBに属する代表終了時刻t2を特定する。本実施形態では、代表終了時刻t2は、作業者600が上記終期動作のうちの特定の動作(以下、代表終了動作という。)を行った瞬間の時刻とする。代表終了動作は予め定められた特定の動作であるため、観測データDTが表すフレームの時系列で代表終了時刻t2を特定できる。
上述した具体例について言えば、作業者600が工具の操作を終えてから、その工具を予め定められた位置に戻すまでの期間を終期動作期間TBと定めることができる。また、作業者600がその工具をワーク500から離す動作を代表終了動作と定め、その代表終了動作が行われた瞬間を代表終了時刻t2と定めることができる。
以上のようにして特定される代表開始時刻t1と代表終了時刻t2との時間差を、処理所要時間と呼ぶことにする。処理所要時間は、1回の上記処理に作業者600が実質的に要した時間を表す。つまり、処理所要時間は、作業者600の上記処理の能率を表す指標である。
ここで処理所要時間は、代表例として、代表開始時刻t1と代表終了時刻t2との時間差となるが、これに限らない。すなわち、本実施形態において、処理所要時間は、初期動作期間TAと終期動作期間TBとの間の期間を意味しており、例えば、初期動作期間TAの中間時刻と終期動作期間TBの中間時刻との差であってもよい。また、処理所要時間は、初期動作期間TAの開始時刻から所定期間経過後の時刻(例えば、初期動作期間TAの開始時刻から、初期動作期間TAの期間長の10%経過後の時刻)と、終期動作期間TBの開始時刻から所定期間経過後の時刻(例えば、終期動作期間TBの開始時刻から、終期動作期間TBの期間長の90%経過後の時刻)との差であってもよい。換言すると、処理所要時間は、初期動作期間TAに基づいて得られた時刻と、終期動作期間TBに基づいて得られた時刻との差を言う。
以下、上記処理の能率を表す処理所要時間を求めるために、代表開始時刻t1及び代表終了時刻t2のみならず、初期動作期間TA及び終期動作期間TBも特定する理由を述べる。
仮に、初期動作期間TAを特定することなく、時間軸上の1点である代表開始時刻t1を直接的に特定しようとすると、特に作業者600が予期せぬ動作を行った場合に、代表開始動作とは異なる動作が行われた時刻を代表開始時刻t1と誤って特定したり、代表開始時刻t1を特定し損ねたりする可能性が高い。
つまり、代表開始時刻t1の特定の精度が作業者600の動作の特性に大きく左右されるため、代表開始時刻t1の、正確性の高い特定が困難である。終期動作期間TBを特定することなく、時間軸上の1点である代表終了時刻t2を直接的に特定する場合も同様である。
これに対し、本実施の形態では、まず初期動作期間TAを特定する。初期動作期間TAは時間幅を有するので、直接的に時間軸上の1点を特定する場合とは異なり、作業者600が予期せぬ動作を行ったとしても、正確性の高い特定が可能である。
また、代表開始時刻t1は初期動作期間TAの中に存在するので、ひとたび初期動作期間TAが特定されれば、代表開始時刻t1を探索する範囲を、初期動作期間TAに限ることができる。このため、代表開始時刻t1を特定し損ねたり、異なる代表開始時刻t1を誤って特定したりする可能性を低減することができる。代表終了時刻t2の特定についても同様である。
即ち、本実施の形態では、代表開始時刻t1及び代表終了時刻t2、ひいては処理所要時間の特定の正確性を高めるために、代表開始時刻t1及び代表終了時刻t2のみならず、初期動作期間TA及び終期動作期間TBも特定する。
図3に戻り、説明を続ける。特定部331bは、学習済モデル322を用いて、上述した初期動作期間TA、代表開始時刻t1、終期動作期間TB、及び代表終了時刻t2を特定する。
学習済モデル322は、観測データDTの中から、初期動作期間TAにおける一連の上記初期動作を表す第1部分データと、終期動作期間TBにおける一連の上記終期動作を表す第2部分データとを検出するとともに、検出された第1部分データを用いて代表開始時刻t1を検出し、かつ検出された第2部分データを用いて代表終了時刻t2を検出するための機械学習を行ったものである。
つまり、特定部331bは、観測データ取得部331aによって取得された観測データDTを学習済モデル322に入力する。そして、特定部331bは、学習済モデル322から、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の検出結果の出力を得る。
なお、観測データDTは時系列データであるため、観測データDTから第1部分データが検出されることは、初期動作期間TAが特定されたことと等価である。また、観測データDTから第2部分データが検出されることは、終期動作期間TBが特定されたことと等価である。
以上のようにして、特定部331bは、観測データDTが入力された学習済モデル322の出力によって、初期動作期間TA、代表開始時刻t1、終期動作期間TB、及び代表終了時刻t2を特定する。
また、制御部331は、特定部331bによって特定された代表開始時刻t1から代表終了時刻t2までの時間幅である処理所要時間を算出する処理所要時間算出部331cを備える。処理所要時間は、代表終了時刻t2と代表開始時刻t1との時間差である。
作業者600の上記処理の能率が低いほど、処理所要時間は長くなる。また、作業者600の上記処理の能率が高いほど、処理所要時間は短くなる。このため、処理所要時間は、作業者600の上記処理の能率を表す指標である。
そこで、制御部331は、処理所要時間算出部331cの算出結果である処理所要時間に基づいてコンベア100の送り速度を制御する送り速度制御部331dを備える。
なお、図示しないが、コンベア100は、ワーク500が載置される搬送用ベルトと、その搬送用ベルトが掛けられるローラと、そのローラを回転させるモータとを備える。そのモータは、回転速度を制御することができる構成を有する。コンベア100の送り速度の制御は、コンベア100のモータの回転速度の制御、具体的には、インバータ制御によって実現される。
具体的には、送り速度制御部331dは、作業者600の処理所要時間が長いほどコンベア100の送り速度が小さくなり、かつ作業者600の処理所要時間が短いほどコンベア100の送り速度が大きくなる条件で、コンベア100の送り速度を制御する。これにより、次の上記処理においては、作業者600に待ち時間が発生しにくく、しかも、作業者600に過負荷がかかりにくい。
次に、学習部332について説明する。学習部332は、学習用データ323を取得する学習用データ取得部332aを有する。学習用データ323には、上述した第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の実測値と、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2が実測された観測データDTとを用いる。
ここで“実測”とは、学習済モデル322以外の手段によって正しく特定することを意味する。即ち“第1部分データの実測値”とは、学習済モデル322以外の手段によって正しく特定された第1部分データを意味する。“第2部分データの実測値”についても同様である。また、“代表開始時刻t1の実測値”とは、学習済モデル322以外の手段によって正しく特定された代表開始時刻t1を意味する。“代表開始時刻t2の実測値”についても同様である。
なお、“実測”は、学習用データ323を作成する者(以下、作成者という。)が行うことができる。一具体例として、観測データDTが表す動画を再生し、作成者がその動画において初期動作期間TA、代表開始時刻t1、終期動作期間TB、及び代表開始時刻t2を、視認により特定する。このようにして、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の実測値を得ることができる。視認による特定に際して、動画をコマ送りで再生したり、スローで再生したりしてもよい。
また、他の具体例として、作成者が、現場における作業者600の作業を直接的に目視で確認しつつ、初期動作期間TAの両端点に相当する時刻、代表開始時刻t1、終期動作期間TBの両端点に相当する時刻、及び代表開始時刻t2をそれぞれ記録してもよい。その記録された各時刻と、観測データDTが表す時刻の情報とを対比させることで、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の実測値を得ることができる。
また、学習部332は、学習用データ取得部332aによって取得された学習用データ323を用いて学習済モデル322を生成する生成部332bを有する。生成部332bは、学習用データ323を用いて、観測データDTからの、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の検出の方針を学習する。このような機械学習により、学習済モデル322が生成される。
但し、代表開始時刻t1を、初期動作期間TAの期間長から一意に定まる時刻(例えば、初期動作期間TAの開始時刻から、初期動作期間TAの期間長の10%経過後の時刻)として定義する場合は、必ずしも学習用データ323に代表開始時刻t1の実測値を含める必要はない。この場合は、代表開始時刻t1の特定に学習済モデル322を用いなくても、特定部331b又は処理所要時間算出部331cにおいて、初期動作期間TAの期間長から代表開始時刻t1を特定することができる。
同様に、代表終了時刻t2を、終期動作期間TBの期間長から一意に定まる時刻(例えば、終期動作期間TBの開始時刻から、終期動作期間TBの期間長の90%経過後の時刻)として定義する場合は、必ずしも学習用データ323に代表終了時刻t2の実測値を含める必要はない。この場合は、代表開始時刻t1の特定に学習済モデル322を用いなくても、特定部331b又は処理所要時間算出部331cにおいて、終期動作期間TBの期間長から代表終了時刻t2を特定することができる。
以下、図5を参照し、本実施の形態に係る生産システム400で行われるコンベア制御について説明する。
図5に示すように、未処理のワーク500がコンベア100によって作業者600のもとに到来すると(ステップS1)、撮像装置200が観測データDTの生成を開始する(ステップS2)。撮像装置200による観測データDTの生成は、作業者600によるワーク500の処理(ステップS3)と並行して継続される。作業者600によるワーク500の処理の完了の後に、撮像装置200による観測データDTの生成が完了する(ステップS4)。
次に、コンベア制御装置300の特定部331bが、その観測データDTを用いて、初期動作期間TAに属する代表開始時刻t1と、終期動作期間TBに属する代表終了時刻t2とを特定する。また、コンベア制御装置300の処理所要時間算出部331cが、代表開始時刻t1と代表終了時刻t2との時間差である処理所要時間を算出する(ステップS5)。
既述のとおり、処理所要時間は、作業者600の処理の能率を表す指標である。コンベア制御装置300の送り速度制御部331dは、処理所要時間が長いほどコンベア100の送り速度が小さくなり、かつ作業者600の処理所要時間が短いほどコンベア100の送り速度が大きくなる条件で、処理所要時間に基づいてコンベア100の送り速度を制御する(ステップS6)。
その後、再びステップS1に戻り、制御後の送り速度で、未処理のワーク500が作業者600のもとに到来する。このようにしてステップS1からS6が繰り返される。
本実施の形態によれば、特に次の効果が得られる。
上述したステップS5では、代表開始時刻t1の特定のために、時間幅をもつ初期動作期間TAがいったん特定され、代表終了時刻t2の特定のために、時間幅をもつ終期動作期間TBがいったん特定される。これにより、代表開始時刻t1を探索する範囲を初期動作期間TAに限ることができ、代表終了時刻t2を探索する範囲を終期動作期間TBに限ることができる。
このため、初期動作期間TA及び終期動作期間TBを特定することなく、直接的に代表開始時刻t1又は代表終了時刻t2を特定する場合に比べると、代表開始時刻t1又は代表終了時刻t2を特定し損ねたり、代表開始時刻t1又は代表終了時刻t2を誤って特定したりする可能性を低減することができる。この結果、処理所要時間の計測の正確性が、作業者600の動作の特性に左右されにくい。つまり、処理所要時間の計測の正確性が従来よりも高められる。
上述したステップS6では、処理所要時間に基づいてコンベア100の送り速度が制御されるので、次回の未処理のワーク500の処理においては、作業者600に待ち時間が発生しにくく、しかも、作業者600に過負荷がかかりにくい。
[実施の形態2]
上記実施の形態1では、学習済モデル322を生成するための学習アルゴリズムとして、学習用データ323を教師データとする教師あり学習を例示した。学習部332は、強化学習によって学習済モデル322を更新する機能を備えてもよい。以下、その具体例を述べる。
図6に示すように、本実施の形態に係る学習部332は、観測データ取得部331aによって取得された観測データDTを用いて、強化学習に用いるパラメータである報酬(reward)を算出する報酬算出部332cを備える。
報酬は、前回のワーク500に対する処理の後になされた送り速度の制御の妥当性を表す。以下では、作業者600によるワーク500の処理の完了後、次のワーク500が到来するまでに時間が余った場合、その余った時間長を待ち時間と呼ぶ。また、作業者600によるワーク500の処理が未完了に終わった場合、処理の遂行に不足した時間長を不足時間と呼ぶ。
報酬算出部332cは、観測データDTを用いて、待ち時間又は不足時間を求める。待ち時間又は不足時間が発生している場合、前回行われた送り速度の制御が必ずしも妥当とは言えない。そこで、報酬算出部332cは、待ち時間又は不足時間が大きいほど報酬が減額され、かつ待ち時間又は不足時間がゼロに近いほど報酬が増額される条件で、報酬を算出する。
また、本実施の形態に係る学習部332は、報酬算出部332cによって算出された報酬に応じて、学習済モデル322を更新する更新部332dを備える。具体的には、更新部332dは、学習済モデル322による、観測データDTからの第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の検出の方針(policy)を、上記報酬が最も多く得られる条件で更新する。
本実施の形態によれば、作業者600によってワーク500に対する処理が繰り返されるごとに、コンベア100の送り速度の制御の妥当性が高められ得る。他の構成及び効果は、実施の形態1と同様である。
[実施の形態3]
上記実施の形態1では、作業者600の上記処理の能率に応じてコンベア100の送り速度を制御した。作業者600の上記処理の能率の変化の傾向もさらに加味して、コンベア100の送り速度を制御してもよい。以下、その具体例を述べる。
図7に示すように、本実施の形態に係る制御部331は、処理所要時間算出部331cによって算出される処理所要時間の差分を算出する変化量算出部331eをさらに備える。
具体的には、変化量算出部331eは、今回のターンでのワーク500の処理について処理所要時間算出部331cによって算出された処理所要時間と、前回のターンでのワーク500の処理について処理所要時間算出部331cによって算出された処理所要時間と、の差(以下、処理所要時間変化量という。)を算出する。
処理所要時間変化量は、正負の符号も含む物理量である。処理所要時間変化量が正の値であることは、処理所要時間が延びている傾向を示す。この要因の1として、作業者600の疲労による能率の低下が挙げられる。一方、処理所要時間変化量が負の値であることは、処理所要時間が短縮されている傾向を示す。この要因の1として、作業者600の作業の慣れによる能率の改善が挙げられる。
送り速度制御部331dは、処理所要時間算出部331cの算出結果、即ち、今回のターンでのワーク500の処理について算出された処理所要時間のみならず、変化量算出部331eの算出結果である処理所要時間変化量にも基づいて、コンベア100の送り速度を制御する。
具体的には、送り速度制御部331dは、図5のステップS6では、処理所要時間変化量が正の場合は、その処理所要時間変化量の絶対値が大きいほどコンベア100の送り速度が小さくなり、処理所要時間変化量が負の場合は、その処理所要時間変化量の絶対値が大きいほどコンベア100の送り速度が大きくなる条件で、処理所要時間変化量に基づいてコンベア100の送り速度を制御する。
本実施の形態によれば、処理所要時間のみならず、処理所要時間変化量も加味してコンベア100の送り速度を制御するので、コンベア100の送り速度をより妥当な値に制御することができる。他の構成及び効果は、実施の形態1と同様である。
[実施の形態4]
上記実施の形態1では、処理所要時間に応じてコンベア100の送り速度を制御した。さらに、初期動作期間TAと終期動作期間TBとの間の中間動作期間の期間長も考慮して、コンベア100の送り速度を制御してもよい。以下、その具体例を述べる。
図8に、中間動作期間TCの時間軸上における位置を示す。本実施の形態に係る特定部331bは、観測データDTを用いて、初期動作期間TA及び終期動作期間TBのみならず、初期動作期間TAと終期動作期間TBとの間の中間動作期間TCも特定する。
中間動作期間TCは、初期動作期間TAの終了時点から、終期動作期間TBの開始時点にわたる作業者600の動作の一部を構成する、特定の一連の中間動作を作業者600が行った期間である。
一連の中間動作は、予め定められた手順に従った動作であり、かつ上述した一連の初期動作及び一連の終期動作とは異なる。このため、観測データDTが表すフレームの時系列で中間動作期間TCを特定できる。
一連の中間動作は、一連の初期動作及び一連の終期動作よりも、作業者600の疲労の度合い及び作業の慣れの度合いに依存して変動が生じやすい動作であることが好ましい。具体例として、上記処理が、複数の部品をワーク500に組み付ける操作である場合を考える。この場合、それら複数の部品のうち、ワーク500への組付けに比較的手間を要する部品の組付けを中間動作として決めるとよい。
中間動作期間TCの期間長は、作業者600の疲労の度合い及び作業の慣れの度合いに応じて変動する。一方、中間動作期間TCの期間長の変動は、処理所要時間の変動としては現れにくい場合がある。これは、中間動作期間TCの期間長が変動する場合でも、作業者600が残余の動作の能率を無意識的に調整することがあるためである。
そこで、中間動作期間TCの期間長を計測することで、処理所要時間の計測だけでは把握し難い、作業者600の疲労の度合い及び作業の慣れの度合いを把握し得る。特にこの点に、中間動作期間TCの期間長を計測する意義がある。
本実施の形態に係る送り速度制御部331dは、処理所要時間のみならず、中間動作期間TCの期間長にも基づいて、コンベア100の送り速度を制御する。即ち、送り速度制御部331dは、中間動作期間TCの期間長が長いほどコンベア100の送り速度が小さくなり、かつ中間動作期間TCの期間長が短いほどコンベア100の送り速度が大きくなる条件で、コンベア100の送り速度を制御する。
本実施の形態によれば、処理所要時間のみならず、中間動作期間TCの期間長も考慮してコンベア100の送り速度を制御するので、コンベア100の送り速度をより妥当な値に制御することができる。
なお、中間動作期間TCの期間長を計測することは、中間動作期間TCを特定することと等価である。中間動作期間TCの特定も、初期動作期間TAの特定及び終期動作期間TBの特定と同様に、学習済モデル322を用いて行えることは当業者に理解できるであろう。学習済モデル322の生成に用いる学習用データ323には、上述した一連の中間動作を表す第3部分データが予め正しく特定された観測データDTを用いるとよい。他の構成及び効果は、実施の形態1と同様である。
[実施の形態5]
上記実施の形態1では、初期動作期間TA及び終期動作期間TBのみならず、代表開始時刻t1及び代表終了時刻t2の特定にも、学習済モデル322が用いられた。代表開始時刻t1及び代表終了時刻t2の特定には、必ずしも学習済モデル322を用いなくてもよい。代表開始時刻t1の特定のために初期動作期間TAを特定し、代表終了時刻t2の特定のために終期動作期間TBを特定しさえすれば、処理所要時間の計測の正確性を従来よりも高めることができる。代表開始時刻t1は、初期動作期間TAから一意に定まる時刻であってもよく、代表終了時刻t2は、終期動作期間TBから一意に定まる時刻であってもよい。
本実施の形態では、特定部331b又は処理所要時間算出部331cは、初期動作期間TAの時間幅を予め定められた比率で内分する点にあたる時刻、具体的には、その時間幅の中点にあたる時刻を、代表開始時刻t1として算出する。同様に、特定部331b又は処理所要時間算出部331cは、終期動作期間TBの時間幅を予め定められた比率で内分する点にあたる時刻、具体的には、その時間幅の中点にあたる時刻を、代表終了時刻t2として算出する。
本実施の形態では、学習済モデル322は、代表開始時刻t1及び代表終了時刻t2の推定までは行わない。従って、教師データとしての学習用データ323には、代表開始時刻t1及び代表終了時刻t2の実測値は含まれない。即ち、学習用データ323には、上述した第1部分データ及び第2部分データの実測値と、第1部分データ及び第2部分データが実測された観測データDTとが用いられる。
なお、本実施の形態では、初期動作期間TAの時間幅を内分する点として中点を例示したが、内分する点は、必ずしも中点でなくてもよい。終期動作期間TBの時間幅を内分する点についても同様である。また、本明細書においては“時間幅を内分する点”の概念には、その時間幅の両端点にあたる開始端点及び終了端点も含まれるものとする。
以上、実施の形態1-5について説明した。以下に述べる変形も可能である。
(1)上記実施の形態1では、作業者600の動作の時系列を表す観測データDTとして、観測結果としてのフレームが時系列に並んだ動画データを用いた。作業者600の動作は、基準となる場所と作業者600との距離の時間変化、又は作業者600の動作に伴って生じる音響の強さの時間変化によっても表現することができる。即ち、観測データDTには、距離、音響の強さといった観測結果が時系列に並んだ時系列データを用いてもよい。
(2)学習済モデル322を生成する学習アルゴリズムとして、上記実施の形態1では教師あり学習を例示し、上記実施の形態2では強化学習を例示した。学習アルゴリズムとしては、教師あり学習及び強化学習以外の公知の手法を用いてもよい。具体的には、学習済モデル322は、教師なし学習によって生成してもよい。この場合、学習用データ323には、第1部分データ、代表開始時刻t1、第2部分データ、及び代表終了時刻t2の正しい特定がなされていない、過去の観測データDTを用いてよい。
(3)初期動作期間TA及び終期動作期間TBの特定には、必ずしも学習済モデル322を用いなくてもよい。特定部331bは、観測データDTに含まれる観測結果の時系列を探索し、観測データDTの中から、作業者600の特定の動作を表す観測結果をパターン認識(pattern recognition)によって抽出することにより、初期動作期間TA及び終期動作期間TBを特定してもよい。
(4)上記実施の形態1で述べたように、送り速度制御部331dは、処理所要時間算出部331cの算出結果に基づいて、コンベア100の送り速度を制御する。本明細書において、“処理所要時間算出部331cの算出結果に基づいて”とは、処理所要時間算出部331cの算出結果である処理所要時間によってコンベア100の送り速度を制御することのみならず、処理所要時間に依存する物理量によってコンベア100の送り速度を制御することも含む意味とする。具体的には、送り速度制御部331dは、処理所要時間に依存する物理量として、既知の長さを処理所要時間で割り算することによりコンベア100の送り速度の目標値を算出し、コンベア100の送り速度をその目標値に近づける制御を行ってもよい。
(5)上記実施の形態1-4に係るコンベア制御装置300は、既存のコンピュータで実現できる。即ち、図2に示すコンベア制御プログラム321をコンピュータにインストールすることで、そのコンピュータをコンベア制御装置300として機能させることができる。コンベア制御プログラム321は通信ネットワークを介して配布してもよいし、コンピュータ読み取り可能な、非一時的な記録媒体に格納したうえで配布してもよい。
本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされる。上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。
100 コンベア、200 撮像装置(観測データ生成装置)、300 コンベア制御装置、310 通信装置、320 記憶装置、321 コンベア制御プログラム、322 学習済モデル、323 学習用データ、330 プロセッサ、331 制御部、331a 観測データ取得部、331b 特定部、331c 処理所要時間算出部、331d 送り速度制御部、331e 変化量算出部、332 学習部、332a 学習用データ取得部、332b 生成部、332c 報酬算出部、332d 更新部、400 生産システム、500 ワーク、600 作業者、DT 観測データ、TA 初期動作期間、TB 終期動作期間、TC 中間動作期間、t1 代表開始時刻、t2 代表終了時刻、IA 撮像領域。

Claims (10)

  1. コンベアによって搬送中のワークに対して予め定められた処理を施す作業者の、前記処理の動作の時系列を表す観測データを取得する観測データ取得部と、
    前記観測データを用いて、前記処理の開始の際における一連の初期動作を前記作業者が行った期間である初期動作期間と、前記処理の終了の際における一連の終期動作を前記作業者が行った期間である終期動作期間とを特定する特定部と、
    前記初期動作期間に属する代表開始時刻から、前記終期動作期間に属する代表終了時刻までの時間幅である処理所要時間を算出する処理所要時間算出部と、
    前記処理所要時間算出部の算出結果に基づいて、前記コンベアによって前記ワークが搬送される速度である送り速度を制御する送り速度制御部と、
    を備える、コンベア制御装置。
  2. 前記特定部は、前記観測データの中から、前記初期動作期間における一連の前記初期動作を表す第1部分データと、前記終期動作期間における一連の前記終期動作を表す第2部分データとを検出するための機械学習を行った学習済モデルを用いて、前記初期動作期間及び前記終期動作期間を特定する、
    請求項1に記載のコンベア制御装置。
  3. 前記第1部分データ及び前記第2部分データの各々の実測値と、前記第1部分データ及び前記第2部分データが実測された前記観測データとを学習用データとして取得する学習用データ取得部と、
    前記学習用データを用いて前記機械学習により前記学習済モデルを生成する生成部と、
    をさらに備える、請求項2に記載のコンベア制御装置。
  4. 前記機械学習は、さらに、前記観測データの中から検出された前記第1部分データを用いて前記代表開始時刻を検出し、かつ前記観測データの中から検出された前記第2部分データを用いて前記代表終了時刻を検出するためのものであり、
    前記特定部は、前記学習済モデルを用いて、前記初期動作期間及び前記終期動作期間のみならず、前記代表開始時刻及び前記代表終了時刻も特定する、
    請求項2に記載のコンベア制御装置。
  5. 前記第1部分データ、前記代表開始時刻、前記第2部分データ、及び前記代表終了時刻の各々の実測値と、前記第1部分データ、前記代表開始時刻、前記第2部分データ、及び前記代表終了時刻が実測された前記観測データとを学習用データとして取得する学習用データ取得部と、
    前記学習用データを用いて前記機械学習により前記学習済モデルを生成する生成部と、
    をさらに備える、請求項4に記載のコンベア制御装置。
  6. 前記作業者によって前記処理が繰り返し行われ、
    前記送り速度制御部によってなされた前記送り速度の制御の妥当性を表す報酬を算出する報酬算出部と、
    前記報酬算出部によって算出された前記報酬に応じて、前記学習済モデルを更新する更新部と、
    をさらに備える、請求項2又は4に記載のコンベア制御装置。
  7. 前記作業者によって前記処理が繰り返し行われ、
    今回の前記処理について前記処理所要時間算出部によって算出された前記処理所要時間と、前回の前記処理について前記処理所要時間算出部によって算出された前記処理所要時間と、の差を算出する変化量算出部、
    をさらに備え、
    前記送り速度制御部は、前記処理所要時間算出部の算出結果のみならず、前記変化量算出部の算出結果にも基づいて、前記送り速度を制御する、
    請求項1に記載のコンベア制御装置。
  8. 前記特定部は、前記観測データを用いて、前記初期動作期間及び前記終期動作期間のみならず、前記初期動作期間と前記終期動作期間との間の期間であって、前記初期動作期間の終了時点から前記終期動作期間の開始時点にわたる前記作業者の動作の一部を構成する一連の中間動作を前記作業者が行った期間である中間動作期間も特定し、
    前記送り速度制御部は、前記所要時間算出部の算出結果のみならず、前記中間動作期間の期間長にも基づいて、前記送り速度を制御する、
    請求項1に記載のコンベア制御装置。
  9. 請求項1に記載のコンベア制御装置と、
    前記送り速度制御部によって前記送り速度が制御される前記コンベアと、
    前記観測データを生成する観測データ生成装置と、
    を備える、生産システム。
  10. コンピュータに、
    コンベアによって搬送中のワークに対して予め定められた処理を施す作業者の、前記処理の動作の時系列を表す観測データを取得する観測データ取得部、
    前記観測データを用いて、前記処理の開始の際における一連の初期動作を前記作業者が行った期間である初期動作期間と、前記処理の終了の際における一連の終期動作を前記作業者が行った期間である終期動作期間とを特定する特定部、
    前記初期動作期間に属する代表開始時刻から、前記終期動作期間に属する代表終了時刻までの時間幅である処理所要時間を算出する処理所要時間算出部、
    前記処理所要時間算出部の算出結果に基づいて、前記コンベアによって前記ワークが搬送される速度である送り速度を制御する送り速度制御部、
    としての機能を実現させる、コンベア制御プログラム。
JP2022569015A 2022-07-07 2022-07-07 コンベア制御装置、生産システム、及びコンベア制御プログラム Active JP7224561B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027006 WO2024009467A1 (ja) 2022-07-07 2022-07-07 コンベア制御装置、生産システム、及びコンベア制御プログラム

Publications (3)

Publication Number Publication Date
JP7224561B1 true JP7224561B1 (ja) 2023-02-17
JPWO2024009467A1 JPWO2024009467A1 (ja) 2024-01-11
JPWO2024009467A5 JPWO2024009467A5 (ja) 2024-06-11

Family

ID=85226232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022569015A Active JP7224561B1 (ja) 2022-07-07 2022-07-07 コンベア制御装置、生産システム、及びコンベア制御プログラム

Country Status (2)

Country Link
JP (1) JP7224561B1 (ja)
WO (1) WO2024009467A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274501A (ja) * 1993-01-20 1994-09-30 Hitachi Ltd ライン速度計画システムおよびワーク投入システム
JPH0756997A (ja) * 1993-06-30 1995-03-03 Hitachi Ltd 作業割付システム
JP2011248482A (ja) * 2010-05-24 2011-12-08 Panasonic Electric Works Co Ltd セル生産システム
JP2017151520A (ja) * 2016-02-22 2017-08-31 株式会社ブロードリーフ コンピュータプログラム、作業分析支援方法及び作業分析支援装置
JP6274501B2 (ja) 2013-11-26 2018-02-07 キヤノンメディカルシステムズ株式会社 X線診断装置
JP2019200560A (ja) * 2018-05-16 2019-11-21 パナソニックIpマネジメント株式会社 作業分析装置および作業分析方法
JP2021086219A (ja) * 2019-11-25 2021-06-03 オムロン株式会社 協調作業システム、解析収集装置および解析プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274501A (ja) * 1993-01-20 1994-09-30 Hitachi Ltd ライン速度計画システムおよびワーク投入システム
JPH0756997A (ja) * 1993-06-30 1995-03-03 Hitachi Ltd 作業割付システム
JP2011248482A (ja) * 2010-05-24 2011-12-08 Panasonic Electric Works Co Ltd セル生産システム
JP6274501B2 (ja) 2013-11-26 2018-02-07 キヤノンメディカルシステムズ株式会社 X線診断装置
JP2017151520A (ja) * 2016-02-22 2017-08-31 株式会社ブロードリーフ コンピュータプログラム、作業分析支援方法及び作業分析支援装置
JP2019200560A (ja) * 2018-05-16 2019-11-21 パナソニックIpマネジメント株式会社 作業分析装置および作業分析方法
JP2021086219A (ja) * 2019-11-25 2021-06-03 オムロン株式会社 協調作業システム、解析収集装置および解析プログラム

Also Published As

Publication number Publication date
JPWO2024009467A1 (ja) 2024-01-11
WO2024009467A1 (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
CN108858184B (zh) 机器人控制装置以及计算机可读介质
US20190041808A1 (en) Controller and machine learning device
JP2017030067A (ja) 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置
JPWO2009130759A1 (ja) 数値制御方法及びその装置
CN111687652A (zh) 握持力调整装置以及握持力调整系统
CN109308051B (zh) 数值控制装置
US11520306B2 (en) Machine learning apparatus, controller, generation method, and control method
JP2020155114A (ja) 時変システム動作における異常検出のためのシステム、方法およびコンピュータ読取可能記憶媒体
CN113269085A (zh) 一种直线传送带跟踪控制方法、系统、装置及存储介质
US11422542B2 (en) Workpiece surface quality issues detection
CN115690405A (zh) 一种基于机器视觉的加工轨迹优化方法及相关设备
JP7224561B1 (ja) コンベア制御装置、生産システム、及びコンベア制御プログラム
CN110340884B (zh) 测定动作参数调整装置、机器学习装置以及系统
US20220134567A1 (en) Robot system, robot control device, and robot control program
JPH1053316A (ja) コンベアの滑り量計測方法並びにロボットのトラッキング動作補正方法
CN114748101B (zh) 超声扫查控制方法、系统及计算机可读存储介质
US12111643B2 (en) Inspection system, terminal device, inspection method, and non-transitory computer readable storage medium
US20240193919A1 (en) Machine learning device, classification device, and control device
CN114131149A (zh) 一种基于CenterNet的激光视觉焊缝跟踪系统、设备及存储介质
JP6739502B2 (ja) データ解析装置、データ解析方法、制御プログラム、および記録媒体
US20200202178A1 (en) Automatic visual data generation for object training and evaluation
JP7172151B2 (ja) 制御システム、制御装置およびプログラム
KR20210100399A (ko) 인공 지능을 이용한 가공품질 예측 시스템 및 방법
CN116197918B (zh) 基于动作记录分析的机械手控制系统
WO2022145106A1 (ja) 動作スケジュール生成装置、方法、プログラム及びシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7224561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150