JP7224114B2 - Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient - Google Patents

Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient Download PDF

Info

Publication number
JP7224114B2
JP7224114B2 JP2018106867A JP2018106867A JP7224114B2 JP 7224114 B2 JP7224114 B2 JP 7224114B2 JP 2018106867 A JP2018106867 A JP 2018106867A JP 2018106867 A JP2018106867 A JP 2018106867A JP 7224114 B2 JP7224114 B2 JP 7224114B2
Authority
JP
Japan
Prior art keywords
cells
srcap
added
lactic acid
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018106867A
Other languages
Japanese (ja)
Other versions
JP2019210242A (en
Inventor
直樹 藤谷
慧 江口
忠昭 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Megmilk Snow Brand Co Ltd
Original Assignee
Megmilk Snow Brand Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megmilk Snow Brand Co Ltd filed Critical Megmilk Snow Brand Co Ltd
Priority to JP2018106867A priority Critical patent/JP7224114B2/en
Publication of JP2019210242A publication Critical patent/JP2019210242A/en
Application granted granted Critical
Publication of JP7224114B2 publication Critical patent/JP7224114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

IPOD IPOD FERM BP-10953FERM BP-10953 IPOD IPOD FERM BP-5445FERM BP-5445

本発明は、ラクトバチルス(Lactobacillus)属の乳酸菌および/またはラクトバチルス属の乳酸菌の水抽出物を有効成分とするSRCAP発現抑制用組成物に関する。 TECHNICAL FIELD The present invention relates to a composition for suppressing SRCAP expression containing, as an active ingredient, a lactic acid bacterium belonging to the genus Lactobacillus and/or an aqueous extract of a lactic acid bacterium belonging to the genus Lactobacillus.

SRCAPはSNF2/SWI2 protein familyに属する、Snf2-Related CBP(cAMP response-element binding protein (CREB)-binding protein) Activator Proteinとして同定されたタンパク質であり、多くの転写因子のactivatorとして機能する(非特許文献1)。SRCAPはDNA helicase活性を有し、DNAの二重らせん構造の解消およびクロマチン構造の再構築に関わり、転写の調整に関与する(非特許文献2)。また、SRCAPのエクソン34における変異はFloating-Harbor症候群の責任遺伝子として知られている(非特許文献3)。 一方、SRCAPはP300/CBP(Creb-binding protein)と相互作用していることが知られ、細胞間認識に関与するNotch-1の転写因子としての機能も有する(非特許文献4,5)。C型肝炎ウイルスのnonstructural protein 3(NS3)はSRCAPと相互作用することによりP300/CBPとSRCAPの相互作用を減弱させる(非特許文献5)。
このようにSRCAPはウイルス由来のNSと相互作用することから、SRCAPの発現を抑制することは、NSを有するウイルスが感染後に細胞内での増殖を阻害することが期待される。また、SRCAPはhelicaseであり細胞分裂や転写の調整に影響することが考えられることから、その発現抑制は、ガン細胞、C型肝炎等のウイルスが感染した細胞、及び炎症性細胞など増殖の抑制が望まれる細胞に対して増殖抑制効果が期待される。
一方、siRNAやshRNAに代表されるgeneticalな手法を除き、阻害剤などによってSRCAPの発現を抑制する技術は無く、本願の提供する解決手段はいずれの文献にも開示も示唆もされていない。
SRCAP is a protein identified as Snf2-Related CBP (cAMP response-element binding protein (CREB)-binding protein) Activator Protein, which belongs to the SNF2/SWI2 protein family, and functions as an activator of many transcription factors (non-patent Reference 1). SRCAP has DNA helicase activity, is involved in dissolution of DNA double helix structure, reconstruction of chromatin structure, and regulation of transcription (Non-Patent Document 2). Also, a mutation in exon 34 of SRCAP is known to be a gene responsible for Floating-Harbor syndrome (Non-Patent Document 3). On the other hand, SRCAP is known to interact with P300/CBP (Creb-binding protein), and also functions as a transcription factor for Notch-1 involved in intercellular recognition (Non-Patent Documents 4 and 5). Hepatitis C virus nonstructural protein 3 (NS3) interacts with SRCAP to attenuate the interaction between P300/CBP and SRCAP (Non-Patent Document 5).
Since SRCAP interacts with virus-derived NS in this way, suppression of SRCAP expression is expected to inhibit the intracellular growth of NS-bearing viruses after infection. In addition, since SRCAP is a helicase and is thought to affect the regulation of cell division and transcription, suppression of its expression is effective in suppressing the proliferation of cancer cells, cells infected with viruses such as hepatitis C, and inflammatory cells. is expected to have an inhibitory effect on the growth of cells for which
On the other hand, except for genetic techniques represented by siRNA and shRNA, there is no technique for suppressing the expression of SRCAP using an inhibitor or the like, and none of the documents disclose or suggest the solution provided by the present application.

Johnston H, Kneer J, Chackalaparampil I, Yaciuk P, Chrivia J. J. Biol. Chem 1999; 274: 16370-16376Johnston H, Kneer J, Chackalaparampil I, Yaciuk P, Chrivia J. J. Biol. Chem 1999; 274: 16370-16376 Wong, M.M., Cox, L.K., and Chrivia, J.C. 2007;J. Biol. Chem. 282:26132-26139.Wong, M.M., Cox, L.K., and Chrivia, J.C. 2007; J. Biol. Chem. 282: 26132-26139. Nikkel SM, Dauber A, de Munnik S, Connolly M, Hood RL, Caluseriu O, Hurst J, Kini U, Nowaczyk MJ, Afenjar A, Albrecht B, Allanson JE, Balestri P, Ben-Omran T, Brancati F, Cordeiro I, da Cunha BS, Delaney LA, Destree A, Fitzpatrick D, Forzano F, Ghali N, Gillies G, Harwood K, Hendriks YM, Heron D, Hoischen A, Honey EM, Hoefsloot LH, Ibrahim J, Jacob CM, Kant SG, Kim CA, Kirk EP, Knoers NV, Lacombe D, Lee C, Lo IF, Lucas LS, Mari F, Mericq V, Moilanen JS, Moller ST, Moortgat S, Pilz DT, Pope K, Price S, Renieri A, Sa J, Schoots J, Silveira EL, Simon ME, Slavotinek A, Temple IK, van der Burgt I, de Vries BB, Weisfeld-Adams JD, Whiteford ML, Wierczorek D, Wit JM, Yee CF, Beaulieu CL; FORGE Canada Consortium, White SM, Bulman DE, Bongers E, Brunner H, Feingold M, Boycott KM. Orphanet J. Rare Dis. 2013;8:63-71.Nikkel SM, Dauber A, de Munnik S, Connolly M, Hood RL, Caluseriu O, Hurst J, Kini U, Nowaczyk MJ, Afenjar A, Albrecht B, Allanson JE, Balestri P, Ben-Omran T, Brancati F, Cordeiro I , da Cunha BS, Delaney LA, Destree A, Fitzpatrick D, Forzano F, Ghali N, Gillies G, Harwood K, Hendriks YM, Heron D, Hoischen A, Honey EM, Hoefsloot LH, Ibrahim J, Jacob CM, Kant SG, Kim CA, Kirk EP, Knoers NV, Lacombe D, Lee C, Lo IF, Lucas LS, Mari F, Mericq V, Moilanen JS, Moller ST, Moortgat S, Pilz DT, Pope K, Price S, Renieri A, Sa J , Schoots J, Silveira EL, Simon ME, Slavotinek A, Temple IK, van der Burgt I, de Vries BB, Weisfeld-Adams JD, Whiteford ML, Wierczorek D, Wit JM, Yee CF, Beaulieu CL; FORGE Canada Consortium, White SM, Bulman DE, Bongers E, Brunner H, Feingold M, Boycott KM. Orphanet J. Rare Dis. 2013;8:63-71. Eissenberg JC, Wong M, Chrivia JC. Mol Cell Biol. 2005 25:6559-69.Eissenberg JC, Wong M, Chrivia JC. Mol Cell Biol. 2005 25:6559-69. Iwai, A., Takegami, T., Shiozaki, T., Miyazaki, T. PLoS One 6, e20718Iwai, A., Takegami, T., Shiozaki, T., Miyazaki, T. PLoS One 6, e20718

本願発明は、新規なSRCAP発現を抑制する組成物を提供することを課題とする。 An object of the present invention is to provide a novel composition that suppresses SRCAP expression.

本願発明者らは、siRNAやshRNAに代表されるgeneticalな手法以外で、SRCAPの発現を抑制する技術が無いか鋭意検討したところ、ラクトバチルス属の乳酸菌または乳酸菌由来の成分にSRCAP発現抑制作用があることをつきとめ、本願発明を完成するに至った。
すなわち、本願発明は以下の構成を有する。
〔1〕ラクトバチルス属の乳酸菌及び/又はラクトバチルス属の乳酸菌の水溶性画分を有効成分とするSRCAP発現抑制用組成物。
〔2〕前記ラクトバチルス属の乳酸菌が、ラクトバチルス・ヘルベティカス及びラクトバチルス・ガセリからなる群から選択される1つ以上であることを特徴とする〔1〕に記載のSRCAP発現抑制用組成物。
The inventors of the present application have extensively investigated whether there is a technique for suppressing the expression of SRCAP other than genetic techniques represented by siRNA and shRNA, and found that lactic acid bacteria of the genus Lactobacillus or components derived from lactic acid bacteria have an SRCAP expression-suppressing effect. The present inventors have found a certain thing and have completed the present invention.
That is, the present invention has the following configurations.
[1] A composition for suppressing the expression of SRCAP containing, as an active ingredient, a lactic acid bacterium belonging to the genus Lactobacillus and/or a water-soluble fraction of a lactic acid bacterium belonging to the genus Lactobacillus.
[2] The composition for suppressing SRCAP expression according to [1], wherein the lactic acid bacterium belonging to the genus Lactobacillus is one or more selected from the group consisting of Lactobacillus helveticus and Lactobacillus gasseri.

本発明は、従来にないSRCAPの発現を抑制する組成物を提供するものである。 The present invention provides an unprecedented composition that suppresses the expression of SRCAP.

ラクトバチルス・ガセリSBT2055水溶出画分(実施例品4)をHEp-2細胞に添加した場合と無添加の場合の当該細胞における蛋白質発現の相関図を示す。Fig. 2 shows a correlation diagram of protein expression in HEp-2 cells with and without addition of Lactobacillus gasseri SBT2055 water-eluted fraction (Example product 4). ラクトバチルス・ガセリSBT2055水溶出画分(実施例品4)をHEp-2細胞へ100、200、400μg/mLの濃度で添加した際のSRCAP遺伝子の発現量を示す。遺伝子発現量は、コントロール群(乳酸菌非添加細胞)の遺伝子発現量を1とした相対値で表した(以下、図3、5、6、7において同じ)。また、棒グラフの上部に、コントロール群の遺伝子発現率を100%としたときの各試験群の遺伝子発現抑制率(%)を示した。The expression level of the SRCAP gene is shown when the water-eluted fraction of Lactobacillus gasseri SBT2055 (Example product 4) was added to HEp-2 cells at concentrations of 100, 200 and 400 µg/mL. The gene expression level was expressed as a relative value with the gene expression level of the control group (cells to which lactic acid bacteria was not added) being 1 (hereinafter the same in FIGS. 3, 5, 6 and 7). In addition, the gene expression suppression rate (%) of each test group is shown above the bar graph when the gene expression rate of the control group is assumed to be 100%. ラクトバチルス・ガセリSBT2055水溶出画分(実施例品4)をRSウイルス感染HEp-2細胞へ100、200、400μg/mLの濃度で添加した際の、RSウイルス由来F-protein遺伝子の発現量を示す。また、棒グラフの上部に、コントロール群の遺伝子発現率を100%としたときの各試験群の遺伝子発現抑制率(増殖抑制率)(%)を示した。The expression level of the RS virus-derived F-protein gene when the water-eluted fraction of Lactobacillus gasseri SBT2055 (Example product 4) was added to RS virus-infected HEp-2 cells at concentrations of 100, 200, and 400 µg/mL was measured. show. In addition, the gene expression inhibition rate (proliferation inhibition rate) (%) of each test group is shown above the bar graph when the gene expression rate of the control group is assumed to be 100%. ラクトバチルス・ガセリSBT2055水溶出画分(実施例品4)についての、SRCAP遺伝子の発現抑制率(%)とRSウイルス増殖抑制率(%)との相関を示す。Fig. 2 shows the correlation between the SRCAP gene expression inhibition rate (%) and the RS virus proliferation inhibition rate (%) for the water-eluted fraction of Lactobacillus gasseri SBT2055 (Example product 4). ラクトバチルス・ガセリSBT2055のdiaion HP-20によるメタノール溶出画分をHEp-2細胞へ100、200、400μg/mLの濃度で添加した際の当該細胞のSRCAP遺伝子の発現量を示す。The expression level of the SRCAP gene in HEp-2 cells added to HEp-2 cells at concentrations of 100, 200, and 400 µg/mL is shown. ラクトバチルス・ガセリSBT2055のdiaion HP-20によるメタノール溶出画分をHEp-2細胞へ100、200、400μg/mLの濃度で添加した際の当該細胞のRSウイルス由来F-protein遺伝子の発現量を示す。Fig. 3 shows the expression level of RS virus-derived F-protein gene in HEp-2 cells when methanol-eluted fractions of Lactobacillus gasseri SBT2055 by diaion HP-20 were added to HEp-2 cells at concentrations of 100, 200, and 400 µg/mL. . ラクトバチルス・ヘルベティカスSBT2171をSW480細胞に100μg/mLで添加した際の当該細胞のSRCAP発現量を示す。SRCAP expression level of SW480 cells when Lactobacillus helveticus SBT2171 was added to SW480 cells at 100 μg/mL. ラクトバチルス・ヘルベティカスSBT2171をSW480細胞に50、100、200μg/mLで添加した際の当該細胞の細胞増殖活性(細胞数)を示す。The cell proliferation activity (cell number) of SW480 cells when Lactobacillus helveticus SBT2171 was added to SW480 cells at 50, 100, and 200 μg/mL is shown.

本発明のヒト細胞の増殖抑制に関与するタンパク質の発現を調整する組成物の有効成分は、ラクトバチルス(Lactobacillus)属の乳酸菌および/またはラクトバチルス(Lactobacillus)属の乳酸菌の水溶性画分である。 The active ingredient of the composition for regulating the expression of a protein involved in inhibiting the growth of human cells of the present invention is a lactic acid bacterium belonging to the genus Lactobacillus and/or a water-soluble fraction of a lactic acid bacterium belonging to the genus Lactobacillus. .

(ラクトバチルス属に属する乳酸菌)
本発明のラクトバチルス(Lactobacillus)属に属する乳酸菌は、ラクトバチルス属に分類される乳酸菌であり、本発明のSRCAP遺伝子抑制作用を有するものであればいずれの種や株であってもよく、種としては、具体的にはラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ラクトバチルス・アシドフィルス等を例示できるが、これらに限定されるものではない。
また、本発明のラクトバチルス属に属する乳酸菌の菌株としては、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)SBT2171株(FERM BP-5445として寄託)、SBT2161株(NITE BP-01707として寄託)、SBT2195株(FERM P-11538として寄託)、SBT2196株(FERM P-11676として寄託)、SBT0064株(FERM P-21079として寄託)、SBT0402株(FERM P-21559として寄託)、ラクトバチルス・ガセリ(Lactobacillus gasseri)SBT2055(FERM BP-10953)が好ましい。
(Lactic acid bacteria belonging to the genus Lactobacillus)
The lactic acid bacterium belonging to the genus Lactobacillus of the present invention is a lactic acid bacterium classified into the genus Lactobacillus, and may be any species or strain as long as it has the SRCAP gene-suppressing effect of the present invention. Specific examples thereof include, but are not limited to, Lactobacillus helveticus, Lactobacillus gasseri, Lactobacillus acidophilus, and the like.
In addition, as strains of lactic acid bacteria belonging to the genus Lactobacillus of the present invention, Lactobacillus helveticus SBT2171 strain (deposited as FERM BP-5445), SBT2161 strain (deposited as NITE BP-01707), SBT2195 strain (FERM P-11538), SBT2196 strain (deposited as FERM P-11676), SBT0064 strain (deposited as FERM P-21079), SBT0402 strain (deposited as FERM P-21559), Lactobacillus gasseri SBT2055 ( FERM BP-10953) is preferred.

(ラクトバチルス属の乳酸菌の調製)
ラクトバチルス属に属する乳酸菌は、乳酸菌培養の常法に従って培養し、所望の量を調製すればよい。調製の一態様を以下に示す。還元脱脂乳培地を用いてラクトバチルス属に属する乳酸菌を培養し、得られた培養物を遠心分離により集菌することにより菌体を得る。得られた菌体をそのまま用いてもよいし、濃縮、乾燥、凍結乾燥処理に供した菌体を用いることもできる。菌体は加熱乾燥などにより死菌体にしたもの用いることもできる。
(Preparation of lactic acid bacteria belonging to the genus Lactobacillus)
Lactic acid bacteria belonging to the genus Lactobacillus may be cultured according to a conventional method for culturing lactic acid bacteria to prepare a desired amount. One mode of preparation is shown below. Lactic acid bacteria belonging to the genus Lactobacillus are cultured in a reduced skim milk medium, and the resulting culture is collected by centrifugation to obtain bacterial cells. The obtained microbial cells may be used as they are, or microbial cells subjected to concentration, drying, and freeze-drying treatment may be used. Cells killed by heat drying or the like can also be used.

(ラクトバチルス属の乳酸菌の水溶性画分)
本発明のラクトバチルス属に属する乳酸菌の水溶性画分の調製法の一態様を以下に示す。ラクトバチルス属の菌体の凍結乾燥末を緩衝液に懸濁し、80℃、30分間程度加熱して加熱菌体を得る。これを遠心分離により上清を除いた後、純水を加え、氷上で超音波により菌体を破砕する。破砕液を遠心分離とフィルター処理により沈殿を除き、ラクトバチルス属に属する乳酸菌の水溶性画分を得る。これを乾固し秤量した抽出物を可能な限り少量の純水で再懸濁し、疎水性吸着カラムに吸着させた後、純水で親水性分子を溶出し水溶出画分を得る。この水溶出画分は、溶媒を乾固させ粉末化したものとすることもできる。本発明のラクトバチルス属の乳酸菌の水溶性画分は、このようにして得られる水溶性画分が好ましく、さらに好ましくは、水溶性画分を疎水性カラムに吸着させて水で溶出した、より親水性の画分である。
(Water-soluble fraction of lactic acid bacteria of the genus Lactobacillus)
One embodiment of the method for preparing a water-soluble fraction of lactic acid bacteria belonging to the genus Lactobacillus of the present invention is shown below. A freeze-dried powder of Lactobacillus cells is suspended in a buffer solution and heated at 80° C. for about 30 minutes to obtain heated cells. After removing the supernatant by centrifugation, pure water is added, and the cells are disrupted by ultrasonic waves on ice. The lysate is subjected to centrifugation and filtering to remove precipitates to obtain a water-soluble fraction of lactic acid bacteria belonging to the genus Lactobacillus. This is dried and weighed, and the extract is resuspended in as little pure water as possible, adsorbed on a hydrophobic adsorption column, and then hydrophilic molecules are eluted with pure water to obtain a water-eluted fraction. This water-eluted fraction can also be powdered by drying the solvent. The water-soluble fraction of the lactic acid bacteria of the genus Lactobacillus of the present invention is preferably the water-soluble fraction obtained in this way, and more preferably, the water-soluble fraction is adsorbed on a hydrophobic column and eluted with water. Hydrophilic fraction.

(利用方法)
上記したとおり、本発明の組成物は濃縮、乾燥、凍結乾燥処理に供した菌体、加熱乾燥などにより得られる死菌体も有効性分とすることができることから、製剤、飲食品、飼料の原料として広く用いることができる。製剤化に際しては製剤上許可されている賦型剤、安定剤、矯味剤などを適宜混合して用いることができ、これらの乾燥物、濃縮物、ペースト状物も含有される。また、ラクトバチルス属に属する乳酸菌のSRCAP遺伝子発現抑制作用を妨げない範囲で、賦型剤、結合剤、崩壊剤、滑沢剤、矯味矯臭剤、懸濁剤、コーティング剤、その他の任意の薬剤を混合して製剤化することもできる。剤形としては、錠剤、カプセル剤、顆粒剤、散剤、粉剤、シロップ剤などが可能であり、これらを経口的に投与することが望ましい。
本発明のSRCAP遺伝子発現抑制剤はどのような飲食品に配合しても良く、飲食品の製造工程中に原料に添加しても良い。飲食品の例としては、チーズ、発酵乳、乳製品乳酸菌飲料、乳酸菌飲料、バター、マーガリンなどの乳製品、乳飲料、果汁飲料、清涼飲料などの飲料、ゼリー、キャンディー、プリン、マヨネーズなどの卵加工品、バターケーキなどの菓子・パン類、さらには、各種粉乳の他、乳幼児食品、栄養組成物などを挙げることができるが特に限定されるものではない。
本発明の組成物の摂取量は、投与対象者のガン、C型肝炎、アレルギー等の症状、年齢などを考慮してそれぞれ個別に決定されるが、通常成人の場合、0.01~5,000mg程度摂取すればよい。
本発明のSRCAP発現抑制用組成物を含む飲食品は、SRCAP発現抑制用飲食品としての利用価値があり、本飲食品を摂取することにより、各種のウイルス感染からの予防ができ、また感染した場合でも軽症に抑えられ、また早い回復が期待できる。
動物用飼料に含まれる場合は、これを摂取した動物も同様の効果が期待できる。
また、SRCAPはhelicaseであり細胞分裂や転写の調整に影響すると考えられることから、本発明のSRCAP発現抑制用組成物を含む医薬は、各種のウイルス感染の治療又は予防用医薬、各種のガンの治療又は予防用医薬として利用することができる。
(How to Use)
As described above, the composition of the present invention can also contain fungal cells subjected to concentration, drying, freeze-drying, and dead cells obtained by heat drying, etc., as an effective component. It can be widely used as a raw material. At the time of formulation, excipients, stabilizers, corrigents, etc. permitted in pharmaceutical formulations can be appropriately mixed and used, and dried products, concentrates and pastes thereof are also included. In addition, excipients, binders, disintegrants, lubricants, flavoring agents, suspending agents, coating agents, and other arbitrary agents as long as they do not interfere with the SRCAP gene expression-suppressing action of lactic acid bacteria belonging to the genus Lactobacillus. can also be formulated by mixing. As dosage forms, tablets, capsules, granules, powders, powders, syrups, etc. are possible, and it is desirable to administer these orally.
The SRCAP gene expression-suppressing agent of the present invention may be incorporated into any food or drink, and may be added to raw materials during the manufacturing process of the food or drink. Examples of food and drink include cheese, fermented milk, dairy lactic acid drink, lactic acid drink, butter, margarine and other dairy products, milk drinks, fruit juice drinks, soft drinks and other beverages, jellies, candies, puddings, mayonnaise and other eggs. Processed products, sweets and breads such as butter cakes, various milk powders, infant foods, nutritional compositions, etc. may be mentioned, but are not particularly limited.
The intake of the composition of the present invention is individually determined in consideration of the symptoms such as cancer, hepatitis C, allergy, etc., age, etc. of the subject to be administered. About 000 mg should be ingested.
The food and drink containing the composition for suppressing SRCAP expression of the present invention is useful as a food and drink for suppressing SRCAP expression. Even if it is, it can be suppressed to a mild condition, and a quick recovery can be expected.
When it is included in animal feed, the same effect can be expected for animals ingesting it.
In addition, since SRCAP is a helicase and is thought to affect the regulation of cell division and transcription, pharmaceuticals containing the composition for suppressing SRCAP expression of the present invention can be used for the treatment or prevention of various viral infections, and for the treatment of various cancers. It can be used as a therapeutic or prophylactic drug.

(SRCAP遺伝子発現抑制作用の評価方法)
一般的に、遺伝子の「発現」という用語は、その遺伝子の翻訳産物すなわちタンパク質の産生のことを指すが、そのほかにも、その遺伝子の転写産物すなわちmRNAの産生のことを指すこともある。本発明では、遺伝子の「発現」と言えば特にことわりがない限りタンパク質のレベルにおける発現、mRNAのレベルにおける発現(遺伝子の転写)のいずれをも指すものとする。
したがって、本発明におけるSCRAP遺伝子の発現の抑制作用は、特にことわりがない限り、タンパク質量の減少、mRNA量の減少、遺伝子の転写量の減少と同義で用いられる。
本実施例では、本発明の有効成分であるラクトバチルス属の乳酸菌菌体またはその水溶性画分を試験対象細胞に添加した場合と無添加の場合とでSRCAP遺伝子の発現量に違いがあるかどうかを検出する方法により評価した。
(Method for evaluating SRCAP gene expression inhibitory action)
Generally, the term "expression" of a gene refers to the production of the translation product or protein of the gene, but may also refer to the production of the transcription product or mRNA of the gene. In the present invention, "expression" of a gene means both expression at the protein level and expression at the mRNA level (transcription of the gene), unless otherwise specified.
Therefore, the SCRAP gene expression suppressing action in the present invention is used synonymously with a decrease in the amount of protein, a decrease in the amount of mRNA, and a decrease in the amount of transcription of the gene, unless otherwise specified.
In this example, it was determined whether there was a difference in the expression level of the SRCAP gene between the case where the active ingredient of the present invention, lactic acid bacteria of the genus Lactobacillus or the water-soluble fraction thereof, was added to the cells to be tested and when it was not added. It was evaluated by a method to detect whether

(ウイルス増殖能・細胞増殖抑制能の評価方法)
実施例に記載の方法で評価が可能である。すなわち、細胞増殖抑制能の場合は、本発明の有効成分であるラクトバチルス属の乳酸菌菌体またはその水溶性画分を試験対象細胞に添加した場合と無添加の場合とで細胞増殖作用に違いがあるかどうかを検出する方法により評価できる。
また、ウイルス増殖抑制能は、ウイルス感染細胞におけるウイルス由来遺伝子の発現量について、本発明の有効成分の添加有無により違いがあるかどうかを検出することにより評価できる。
(Method for evaluating virus growth ability/cell growth inhibition ability)
It can be evaluated by the method described in Examples. That is, in the case of the cell growth inhibitory ability, the cell growth action differs between when the active ingredient of the present invention, the lactobacillus lactic acid bacteria of the genus Lactobacillus or the water-soluble fraction thereof, is added to the test subject cells and when it is not added. can be evaluated by a method that detects whether there is
In addition, the ability to suppress virus growth can be evaluated by detecting whether there is a difference in the expression level of virus-derived genes in virus-infected cells depending on whether or not the active ingredient of the present invention is added.

以下に、本発明の効果を確認する試験に用いる乳酸菌、および乳酸菌水溶性画分、及び比較試験に用いる乳酸菌メタノール画分の調製方法を示す。 Methods for preparing lactic acid bacteria and lactic acid bacteria water-soluble fractions used in tests to confirm the effects of the present invention and lactic acid bacteria methanol fractions used in comparative tests are described below.

(実施例品1)ラクトバチルス・ガセリ菌体
ラクトバチルス・ガセリ(Lactobacillus gasseri)SBT2055をMRS brothで16時間培養した後、遠心分離により菌体を分離した。菌体はPBS(10mMリン酸緩衝生理食塩水)で2回、超純水で1回洗浄した後、凍結乾燥しSBT2055菌体とした。
(Example product 1) Lactobacillus gasseri cells After culturing Lactobacillus gasseri SBT2055 in MRS broth for 16 hours, the cells were separated by centrifugation. The cells were washed twice with PBS (10 mM phosphate-buffered saline) and once with ultrapure water, and then freeze-dried to obtain SBT2055 cells.

(実施例品2)ラクトバチルス・ガセリ加熱菌体
実施例品1の凍結乾燥菌末をPBS(-)に懸濁し、80℃、30分間加熱したものを加熱菌体とした。
(Example Product 2) Heated Cells of Lactobacillus gasseri The freeze-dried bacterial powder of Example Product 1 was suspended in PBS(−) and heated at 80° C. for 30 minutes to obtain heated cells.

(実施例品3)ラクトバチルス・ガセリ由来水溶性画分
実施例品2に純水を加え、氷上で超音波により菌体を破砕した。破砕液を5000rpm、10分間の遠心分離と0.22μmのフィルターを用いて沈殿を除き、得られた液体をラクトバチルス・ガセリSBT2055由来水溶性画分とした。
(Example product 3) Water-soluble fraction derived from Lactobacillus gasseri Pure water was added to Example product 2, and the cells were crushed by ultrasonic waves on ice. The homogenate was centrifuged at 5000 rpm for 10 minutes and the precipitate was removed using a 0.22 μm filter, and the resulting liquid was used as a water-soluble fraction derived from Lactobacillus gasseri SBT2055.

(実施例品4)ラクトバチルス・ガセリ水溶出画分
秤量した抽出物(実施例品3)を可能な限り少量の純水で再懸濁し、10mLの体積の疎水性吸着カラムdiaion HP-20(三菱ケミカル社製)に吸着させた後、3カラム体積(30mL)の純水で親水性分子を溶出し水溶出画分とし、遠心濃縮器を用いて溶媒を乾固させ、抽出物を秤量し、これを実施例品4とした。
(Example product 4) Lactobacillus gasseri water elution fraction The weighed extract (Example product 3) was resuspended in the smallest possible amount of pure water and applied to a hydrophobic adsorption column diaion HP-20 (10 mL volume). Mitsubishi Chemical Corporation), the hydrophilic molecules are eluted with 3 column volumes (30 mL) of pure water to form a water-eluted fraction, the solvent is dried using a centrifugal concentrator, and the extract is weighed. , which is referred to as Example product 4.

(比較例品1)ラクトバチルス・ガセリのメタノール溶出画分
実施例品4の水溶出画分を得た後のHP-20カラムに30mLのメタノールをアプライし、実施例品4より疎水性が高い物質群を回収し、遠心濃縮後、メタノール抽出画分を得て、これを比較例品1とした。
(Comparative example product 1) Methanol-eluted fraction of Lactobacillus gasseri After obtaining the water-eluted fraction of example product 4, 30 mL of methanol was applied to the HP-20 column, and the hydrophobicity was higher than that of example product 4. A group of substances was collected, concentrated by centrifugation, and a methanol-extracted fraction was obtained.

(実施例品5)ラクトバチルス・ヘルベティカス菌体
ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)SBT2171をMRS brothで16時間培養した後、遠心分離により菌体を分離した。菌体はPBS(10mMリン酸緩衝生理食塩水)で2回、超純水で1回洗浄した後、凍結乾燥し、これを実施例品5とした。
(Example Product 5) Cells of Lactobacillus helveticus After culturing Lactobacillus helveticus SBT2171 in MRS broth for 16 hours, the cells were separated by centrifugation. The cells were washed twice with PBS (10 mM phosphate-buffered saline) and once with ultrapure water, and then freeze-dried.

〔試験例1〕ラクトバチルス・ガセリによるSRCAP発現抑制作用の検証1
(1)試験方法
10cm dishに播種したHEp-2細胞に対し、50%confluencyの時点でラクトバチルス・ガセリSBT2055由来の水溶性画分(実施例品4)を、終濃度2.4mg/mLとなるよう加え、3日間培養した。ネガティブコントロール(NC)として同量の滅菌水を加えたものを用いた。
細胞をPBSで5回洗浄した後、文献(Masuda T,Tomita M,Ishihama Y.J.Proteome Res.2008;7:731-740)により、1mLの溶解バッファー(12mM デオキシコール酸ナトリウム、12mMサルコシン酸ナトリウム、100mM Tris-HCl(pH9.0)を用いて氷上で細胞を溶解した。
細胞溶解物を95℃、5分加熱変性後、超音波発生装置により破砕した。これを15,000rpm30分遠心することにより不溶成分を除去し、上清を可溶化タンパク質群として回収後、BCA assayによりタンパク定量を行った。
可溶化タンパク質100μgを含む溶液に終濃度100mMになるようDTT溶液を加え室温で30分静置後、終濃度が50mMになるようIAA溶液を添加し暗所で30分静置することで、タンパク質の還元アルキル化を行った。その溶液に5倍量の50mM炭酸水素ナトリウム溶液を添加し、溶液を弱塩基性にした後、修飾により自己消化を抑制された質量分析グレードのトリプシンを総タンパク質量の1/100(1μg)を添加し37℃16時間インキュベートすることでタンパク質を消化した。
消化されたタンパク質溶液と等量の酢酸エチルを加え、さらに終濃度0.5%となるようにトリフルオロ酢酸を添加した。激しく攪拌後、デオキシコール酸を含む上層を15,000rpm 2分の遠心ぶりにより除去し、ペプチド群が含まれる水層(下層)を回収後、遠心濃縮器により溶媒を乾固させた。
乾固したものを0.1%トリフルオロ酢酸を含む水で再溶解し、あらかじめ平衡化されたスチレンジビニルベンゼンポリマー(SDB)、またはオクタデシルシリル(ODS)基を有するシリカゲルが充填された脱塩・濃縮チップで精製した。得られた溶出液を遠心濃縮器で乾固させ、0.1%ギ酸、5%アセトニトリルからなる水溶液20μLへ再懸濁させて、これをLC-MSサンプルとした。
リニアイオントラップ電場型FT質量分析装置であるLTQ Orbitrap Discovery(ThermoFisher社)を用いてプロテオミクス解析を行った。流速は300nL/min、分離カラムはカラム長15cmのODSを用いた。
データ解析はMaxQuantおよびPerseusソフトウェアにより、定量は非ラベル化定量方法(LFQ)を採用した(Cox J, Mann M. Nat. Biotechnol. 2008 Dec;26(12):1367-72.及びCox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Mol Cell Proteomics. 2014 Sep;13(9):2513-26.)。
[Test Example 1] Verification 1 of SRCAP expression inhibitory action by Lactobacillus gasseri
(1) Test method For HEp-2 cells seeded in a 10 cm dish, at 50% confluency, a water-soluble fraction derived from Lactobacillus gasseri SBT2055 (Example product 4) was added to a final concentration of 2.4 mg / mL. and cultured for 3 days. As a negative control (NC), the same amount of sterilized water was added.
After washing the cells five times with PBS, 1 mL of lysis buffer (12 mM sodium deoxycholate, 12 mM sarcosinate) was added according to the literature (Masuda T, Tomita M, Ishihama YJ Proteome Res. 2008; 7:731-740). Cells were lysed on ice with sodium, 100 mM Tris-HCl (pH 9.0).
The cell lysate was denatured by heating at 95°C for 5 minutes, and then disrupted with an ultrasonic generator. This was centrifuged at 15,000 rpm for 30 minutes to remove insoluble components, and the supernatant was collected as a solubilized protein group, and then subjected to protein quantification by BCA assay.
A DTT solution was added to a solution containing 100 μg of solubilized protein to a final concentration of 100 mM, and after standing at room temperature for 30 minutes, an IAA solution was added to a final concentration of 50 mM and left to stand for 30 minutes in the dark. was subjected to reductive alkylation. After adding 5 volumes of 50 mM sodium bicarbonate solution to the solution to make the solution weakly basic, 1/100 (1 μg) of the total protein amount was added with mass spectrometry grade trypsin whose autolysis was suppressed by modification. The protein was digested by adding and incubating at 37° C. for 16 hours.
Ethyl acetate was added in an amount equal to the digested protein solution, and trifluoroacetic acid was added to a final concentration of 0.5%. After vigorously stirring, the upper layer containing deoxycholic acid was removed by centrifugation at 15,000 rpm for 2 minutes, the aqueous layer (lower layer) containing the peptide group was collected, and the solvent was dried using a centrifugal concentrator.
The dried product was redissolved in water containing 0.1% trifluoroacetic acid, and desalted and desalted using pre-equilibrated styrenedivinylbenzene polymer (SDB) or silica gel packed with octadecylsilyl (ODS) groups. Purified with condensed chips. The resulting eluate was dried with a centrifugal concentrator and resuspended in 20 μL of an aqueous solution consisting of 0.1% formic acid and 5% acetonitrile, which was used as an LC-MS sample.
Proteomics analysis was performed using LTQ Orbitrap Discovery (ThermoFisher), which is a linear ion trap electric field type FT mass spectrometer. The flow rate was 300 nL/min, and ODS with a column length of 15 cm was used as the separation column.
Data analysis was by MaxQuant and Perseus software and quantification was by the unlabeled quantification method (LFQ) (Cox J, Mann M. Nat. Biotechnol. 2008 Dec;26(12):1367-72. and Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Mol Cell Proteomics. 2014 Sep;13(9):2513-26.).

(2)試験結果
合計1250種類のタンパク質を同定した。図1に実施例品4をHEp-2細胞への添加有無による当該細胞のタンパク質発現変化を示した(縦軸:SBT2055乳酸菌水溶出画分を添加、横軸:2.4mg/mLの濃度でSBT2055乳酸菌水溶出画分を無添加)。
(*)LFQvalueは、図1より横軸(添加):25.0723、縦軸(無添加):20.5851であり、これらは「log2-transformed」でlog2に変換された値である。
(2) Test results A total of 1250 proteins were identified. FIG. 1 shows the change in protein expression in the cells depending on whether Example product 4 was added to HEp-2 cells (vertical axis: SBT2055 lactic acid bacteria water elution fraction added, horizontal axis: at a concentration of 2.4 mg / mL SBT2055 lactic acid bacteria aqueous elution fraction was not added).
(*) The LFQvalue is 25.0723 on the horizontal axis (added) and 20.5851 on the vertical axis (no addition) from FIG.

〔試験例2〕ラクトバチルス・ガセリによるSRCAP発現抑制作用の検証2
(1)試験方法
HEp-2細胞を3×10cells/mlの濃度で、500μlずつ24well細胞培養プレートに播種して、一晩培養したものを試験に供した(1.5×10cells/well)。SBT2055水溶出画分(実施例品4)を終濃度が100、200、400μg/mLの条件で添加した。ネガティブコントロールには乳酸菌成分を含まないPBS(-)を添加した。添加後、24時間培養し、培養上清を除去して再びSBT2055水溶出画分(実施例品4)を同濃度で添加し、48時間培養した。
培養上清を除去して、Trizol reagent(Life technologies)を各wellに0.4ml添加して細胞を溶解した。溶液の20%量のクロロホルムを添加し、30秒間チューブを激しく振とうした。室温で3分間保持した後、13,000g、4℃、15分間遠心し、上層を別チューブに回収した。回収した上層に対して等量のイソプロパノールを添加し、穏やかにチューブを転倒攪拌した。室温で5分間以上静置し、20,000g、4℃、10分遠心した。上清を除去し、0.5mlの75%エタノール水溶液をチューブに添加して、穏やかに転倒攪拌した。20,000g、4℃、5分間遠心し、上清を除去した上で、30分間以上自然乾燥させた。その後、DEPC処理水を20μl添加し、55℃で10分間加熱した。260nm吸光度測定によってRNA濃度を算出した。また、上記RNA抽出はTrizol reagentによる方法に限定されず、RNAEasy(Quiagen社)などの抽出キットを用いることもできる。
ReverTra Ace qPCR RT Master Mix with gDNA Remover(Toyobo)など逆転写酵素によるポリメラーゼ反応により、取得したRNAを鋳型にcDNAを合成した。KAPA SYBR Fast qPCRキット(日本ジェネティクス)などのDNAポリメラーゼを用いて、リアルタイムPCR法によりSRCAPの遺伝子について発現を評価した。内在性コントロールとしてはヒトGAPDH遺伝子を用いた。試験に使用したプライマーの塩基配列は以下に示す。
SRCAP-forward: CTCCACTGCTACCTCGTTTGGT(配列表配列番号1)
SRCAP-reverse: GGAAAATCCGTTCCAGGCGTTC(配列表配列番号2)
GAPDH-forward: GTCTCCTCTGACTTCAACAGCG(配列表配列番号3)
GAPDH-reverse: ACCACCCTGTTGCTGTAGCCAA(配列表配列番号4)
[Test Example 2] Verification 2 of SRCAP expression inhibitory action by Lactobacillus gasseri
(1) Test method HEp-2 cells were seeded at a concentration of 3×10 5 cells/ml in 500 μl portions on a 24-well cell culture plate and cultured overnight to test (1.5×10 5 cells /well). A water-eluted fraction of SBT2055 (Example product 4) was added at final concentrations of 100, 200, and 400 μg/mL. PBS (-) containing no lactic acid bacteria component was added to the negative control. After the addition, the cells were cultured for 24 hours, the culture supernatant was removed, and the water-eluted fraction of SBT2055 (Example product 4) was added again at the same concentration and cultured for 48 hours.
The culture supernatant was removed, and 0.4 ml of Trizol reagent (Life technologies) was added to each well to lyse the cells. Chloroform was added to a volume of 20% of the solution and the tube was vigorously shaken for 30 seconds. After being kept at room temperature for 3 minutes, it was centrifuged at 13,000 g at 4° C. for 15 minutes, and the upper layer was collected in another tube. An equal amount of isopropanol was added to the recovered upper layer, and the tube was gently agitated by inversion. It was allowed to stand at room temperature for 5 minutes or more, and centrifuged at 20,000 g at 4° C. for 10 minutes. The supernatant was removed, 0.5 ml of 75% ethanol aqueous solution was added to the tube, and the tube was gently inverted and stirred. After centrifugation at 20,000 g and 4° C. for 5 minutes, the supernatant was removed and air-dried for 30 minutes or more. After that, 20 μl of DEPC-treated water was added and heated at 55° C. for 10 minutes. RNA concentrations were calculated by 260 nm absorbance measurements. Moreover, the above RNA extraction is not limited to the method using Trizol reagent, and an extraction kit such as RNAEasy (Qiagen) can also be used.
Using the obtained RNA as a template, cDNA was synthesized by a polymerase reaction using a reverse transcriptase such as ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo). Expression of the SRCAP gene was evaluated by real-time PCR using a DNA polymerase such as KAPA SYBR Fast qPCR kit (Nippon Genetics). The human GAPDH gene was used as an endogenous control. The nucleotide sequences of the primers used in the test are shown below.
SRCAP-forward: CTCCACTGCTACCTCGTTTGGT (Sequence Listing SEQ ID NO: 1)
SRCAP-reverse: GGAAAATCCGTTCCAGGCGTTC (sequence listing SEQ ID NO: 2)
GAPDH-forward: GTCTCCTCTGACTTCAACAGCG (Sequence Listing SEQ ID NO: 3)
GAPDH-reverse: ACCACCCTGTTGCTGTAGCCAA (sequence listing SEQ ID NO: 4)

(2)試験結果
図2にSBT2055水溶出画分(実施例品4)をHEp-2細胞へ100、200、400μg/mLの濃度で添加した際のSRCAP遺伝子の発現量変化を示す。
その結果、100、200、400μg/mLの濃度で添加した際、それぞれ32、39、52%のSRCAP遺伝子の発現の阻害が見られた。
このことからラクトバチルス・ガセリの水溶性画分は、濃度依存的にSRCAP遺伝子発現を阻害をすることがわかった。
(2) Test Results FIG. 2 shows changes in the expression level of the SRCAP gene when the water-eluted fraction of SBT2055 (Example product 4) was added to HEp-2 cells at concentrations of 100, 200, and 400 μg/mL.
As a result, when added at concentrations of 100, 200 and 400 μg/mL, inhibition of SRCAP gene expression was observed by 32, 39 and 52%, respectively.
From this, it was found that the water-soluble fraction of Lactobacillus gasseri inhibits the SRCAP gene expression in a concentration-dependent manner.

〔試験例3〕ラクトバチルス・ガセリによるウイルス増殖抑制効果に関する試験
HEp-2細胞にRSウイルスを感染させ、感染細胞におけるRSV由来F-protein遺伝子を検出することによりラクトバチルス・ガセリのウイルス増殖抑制効果を検証した。
(1)HEp-2細胞へのRSウイルス感染実験
D-MEM(High Glucose) with L-Glutamine and Phenol Red(シグマアルドリッチ社)に対して、Fetal Bovine Serum(FBS、GIBCO社)を5-10%量、Penicillin-Streptomycin Solution(Wako、final 100 units/ml-100μg/ml)を1%量添加したものを培養用培地とした。培地はあらかじめ37℃に加温して使用した。また、その他の試薬類に関しても、あらかじめ37℃に加温して使用し、全ての細胞培養は37℃、5%COのインキュベーターで実施した。
HEp-2細胞を3×10cells/mlの濃度で、500μlずつ24well細胞培養プレートに播種して、一晩培養したものを試験に供した(1.5×10cells/well)。
培養用培地からFBSを除いたものを感染用培地とした。24wellプレートに播種したHEp-2細胞に対してSBT2055水溶出画分(実施例品4)を終濃度が100、200、400μg/mLの条件で添加した。ネガティブコントロールには乳酸菌成分を含まないPBS(-)を添加した。添加後、24時間培養し、培養上清を除去して、0.6mlのPBS(-)でwellを2回洗浄した上で、RSV strain A(以下RSV)を懸濁した感染用培地を0.5mlずつ添加した(RSVの最終力価は0.00067 TCID50/cell)。感染直後にも、抽出成分を同濃度で添加した。感染後、48時間培養した。
[Test Example 3] Test on virus growth inhibitory effect by Lactobacillus gasseri HEp-2 cells were infected with RS virus, and the virus growth inhibitory effect of Lactobacillus gasseri was detected by detecting the RSV-derived F-protein gene in the infected cells. verified.
(1) RS virus infection experiment to HEp-2 cells Fetal Bovine Serum (FBS, GIBCO) was added at 5-10% to D-MEM (High Glucose) with L-Glutamine and Phenol Red (Sigma-Aldrich). A culture medium to which 1% Penicillin-Streptomycin Solution (Wako, final 100 units/ml-100 μg/ml) was added was used. The medium was preheated to 37°C before use. Other reagents were also preheated to 37°C before use, and all cell cultures were performed in an incubator at 37°C and 5% CO2 .
HEp-2 cells were seeded at a concentration of 3×10 5 cells/ml in 500 μl portions on a 24-well cell culture plate, cultured overnight, and subjected to the test (1.5×10 5 cells/well).
A culture medium from which FBS was removed was used as an infection medium. SBT2055 water-eluted fraction (Example product 4) was added to HEp-2 cells seeded in a 24-well plate at final concentrations of 100, 200, and 400 μg/mL. PBS (-) containing no lactic acid bacteria component was added to the negative control. After addition, culture was performed for 24 hours, the culture supernatant was removed, the wells were washed twice with 0.6 ml of PBS (-), and the infection medium in which RSV strain A (hereinafter RSV) was suspended was added to zero. .5 ml was added (final titer of RSV was 0.00067 TCID50/cell). Immediately after infection, the extract components were added at the same concentration. After infection, the cells were cultured for 48 hours.

(2)RSV由来F-protein遺伝子の検出試験方法
培養上清を除去して、Trizol reagent(Life technologies)を各wellに0.4ml添加して細胞を溶解した。溶液の20%量のクロロホルムを添加し、30秒間チューブを激しく振とうした。室温で3分間保持した後、13,000g、4℃、15分間遠心し、上層を別チューブに回収した。回収した上層に対して等量のイソプロパノールを添加し、穏やかにチューブを転倒攪拌した。室温で5分間以上静置し、20,000g、4℃、10分遠心した。上清を除去し、0.5mlの75%エタノール水溶液をチューブに添加して、穏やかに転倒攪拌した。20,000g、4℃、5分間遠心し、上清を除去した上で、30分間以上自然乾燥させた。その後、DEPC処理水を20μl添加し、55℃で10分間加熱した。260nm吸光度測定によってRNA濃度を算出した。また、上記RNA抽出はTrizol reagentによる方法に限定されず、RNAEasy(Quiagen社)などの抽出キットを用いることもできる。
ReverTra Ace qPCR RT Master Mix with gDNA Remover(Toyobo)など逆転写酵素によるポリメラーゼ反応により、取得したRNAを鋳型にcDNAを合成した。KAPA SYBR Fast qPCRキット(日本ジェネティクス)などのDNAポリメラーゼを用いて、リアルタイムPCR法によりRSVのFタンパク質の遺伝子(RSVF)について発現を評価した。内在性コントロールとしてはヒトGAPDH遺伝子を用いた。試験に使用したRSVFプライマーの塩基配列は以下に示す。
使用したDNAプライマー
RSVF-forward: GGAACAAGTTGTTGAGGTTTATGAATATGC(配列表配列番号5)
RSVF-reverse: TTCTGCTGTCAAGTCTAGTACACTGTAGT(配列表配列番号6)
(2) Detection test method for RSV-derived F-protein gene The culture supernatant was removed, and 0.4 ml of Trizol reagent (Life technologies) was added to each well to lyse the cells. Chloroform was added to a volume of 20% of the solution and the tube was vigorously shaken for 30 seconds. After being kept at room temperature for 3 minutes, it was centrifuged at 13,000 g at 4° C. for 15 minutes, and the upper layer was collected in another tube. An equal amount of isopropanol was added to the recovered upper layer, and the tube was gently agitated by inversion. It was allowed to stand at room temperature for 5 minutes or more, and centrifuged at 20,000 g at 4° C. for 10 minutes. The supernatant was removed, 0.5 ml of 75% ethanol aqueous solution was added to the tube, and the tube was gently inverted and stirred. After centrifugation at 20,000 g and 4° C. for 5 minutes, the supernatant was removed and air-dried for 30 minutes or longer. After that, 20 μl of DEPC-treated water was added and heated at 55° C. for 10 minutes. RNA concentrations were calculated by 260 nm absorbance measurements. Moreover, the above RNA extraction is not limited to the method using Trizol reagent, and an extraction kit such as RNAEasy (Qiagen) can also be used.
Using the obtained RNA as a template, cDNA was synthesized by a polymerase reaction using a reverse transcriptase such as ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo). Expression of the RSV F protein gene (RSVF) was evaluated by real-time PCR using a DNA polymerase such as KAPA SYBR Fast qPCR kit (Nippon Genetics). The human GAPDH gene was used as an endogenous control. The nucleotide sequences of the RSVF primers used in the test are shown below.
DNA primers used
RSVF-forward: GGAACAAGTTGTTGAGGTTTATGAATATGC (sequence listing SEQ ID NO: 5)
RSVF-reverse: TTCTGCTGTCAAGTCTAGTACACTGTAGT (sequence listing SEQ ID NO: 6)

(3)試験結果
図3にSBT2055水溶出画分(実施例品4)を100、200、400μg/mLの濃度(菌体相当量)で添加した際の、RSウイルス由来F-protein遺伝子の相対的な発現量を示す。乳酸菌成分を添加しないネガティブコントロール(NC)に対し、SBT2055水溶出画分(実施例品4)を100、200、400μg/mLの濃度で添加した際、濃度依存的にそれぞれ82、94、99.96%のRSウイルス増殖阻害が認められた。
(4)考察
前述のとおり、図2の結果より、SBT2055水溶出画分(実施例品4)はSRCAPの発現を添加濃度依存的に抑制することがわかった。
図4に、ラクトバチルス・ガセリ水溶出画分についての、SRCAP遺伝子の発現抑制率とRSウイルス増殖抑制率との相関を示す。SRCAP遺伝子の発現抑制率と、RSウイルス増殖抑制率の間には明瞭な正の相関が認められた。近似直線の傾きから(RSウイルス増殖抑制率)/(SRCAP遺伝子発現抑制率)=1.192となり、ウイルス増殖抑制率とSRCAP発現抑制率はほぼ1:1の関係にあることが示された。このことは、ウイルスタンパク質と結合し得るSRCAP遺伝子の発現抑制が、RSウイルスを抑制している一因となっていることを示唆する。
(3) Test results Fig. 3 shows the ratio of the RS virus-derived F-protein gene when the SBT2055 water-eluted fraction (Example product 4) was added at concentrations of 100, 200, and 400 µg/mL (cell equivalent). expression level. When SBT2055 water-eluted fraction (Example product 4) was added at concentrations of 100, 200, and 400 μg/mL to the negative control (NC) to which no lactic acid bacteria component was added, the concentrations were 82, 94, 99.0 μg/mL, respectively, depending on the concentration. A 96% RS virus growth inhibition was observed.
(4) Discussion As described above, the results in FIG. 2 show that the water-eluted fraction of SBT2055 (Example product 4) suppresses the expression of SRCAP in a concentration-dependent manner.
FIG. 4 shows the correlation between the SRCAP gene expression suppression rate and the RS virus growth suppression rate for the Lactobacillus gasseri water-eluted fraction. A clear positive correlation was observed between the SRCAP gene expression suppression rate and the RS virus proliferation suppression rate. From the slope of the approximate straight line, (RS virus growth inhibition rate)/(SRCAP gene expression inhibition rate) = 1.192, indicating that the virus growth inhibition rate and the SRCAP expression inhibition rate have a relationship of approximately 1:1. This suggests that suppression of the expression of the SRCAP gene, which can bind to viral proteins, is a factor in suppressing respiratory syncytial virus.

〔比較試験例1〕ラクトバチルス・ガセリSBT2055由来のメタノール溶出画分によるRSウイルス増殖抑制作用とSRCAP発現抑制作用
比較試験例として、ラクトバチルス・ガセリ由来のメタノール溶出画分について、試験例3と同様の試験を行い、当該成分には、ウイルス増殖抑制効果が無いことを確認した。
(1)試験方法
ラクトバチルス・ガセリのメタノール溶出画分(比較例品1)をHEp-2細胞へ100、200、400ug/mLの濃度で添加した以外は、実施例品4による試験例3と同様の手法で試験を行った。
[Comparative Test Example 1] RS virus growth inhibitory action and SRCAP expression inhibitory action by the methanol-eluted fraction derived from Lactobacillus gasseri SBT2055 As a comparative test example, the methanol-eluted fraction derived from Lactobacillus gasseri was tested in the same manner as in Test Example 3. It was confirmed that the component had no virus growth inhibitory effect.
(1) Test method Test Example 3 using Example Product 4, except that the methanol-eluted fraction of Lactobacillus gasseri (Comparative Example Product 1) was added to HEp-2 cells at concentrations of 100, 200, and 400 ug/mL. A test was conducted in a similar manner.

(2)試験結果
図5に比較例品1をHEp-2細胞へ100、200、400μg/mLの濃度で添加した際のSRCAPの遺伝子発現量を、図6にウイルス増殖抑制率を示す。メタノール溶出画分を200、400μg/mL(菌体相当量)で添加した際、29%、41%のウイルス増殖阻害が認められたが、SRCAP抑制効果は認められなかった。
本結果より、ラクトバチルス・ガセリのHP-20カラムのメタノール溶出画分にはSRCAP遺伝子発現抑制効果は認められず、RSVの抑制も濃度依存的とは言えないことからSRCAPの抗RSVへの関与は認められない。
(2) Test Results FIG. 5 shows the gene expression levels of SRCAP when Comparative Example Product 1 was added to HEp-2 cells at concentrations of 100, 200, and 400 μg/mL, and FIG. 6 shows the virus growth inhibition rate. When the methanol-eluted fraction was added at 200 and 400 μg/mL (cell equivalent), virus growth inhibition of 29% and 41% was observed, but no SRCAP inhibitory effect was observed.
From these results, the methanol-eluted fraction of Lactobacillus gasseri HP-20 column did not show any inhibitory effect on SRCAP gene expression, and the inhibition of RSV could not be said to be concentration-dependent. It is not allowed.

〔試験例4〕ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)によるSRCAP遺伝子の発現抑制と細胞増殖抑制効果
ラクトバチルス・ヘルベティカスによるヒト大腸ガン細胞の増殖抑制効果とSRCAP発現抑制作用を検証するための試験を行った。
(1)試験方法
(i)ラクトバチルス・ヘルベティカスSBT2171菌体の調整
ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)SBT2171をMRS brothで16時間培養した後、遠心分離により菌体を分離した。菌体はPBS(10mMリン酸緩衝生理食塩水)で2回、超純水で1回洗浄した後、凍結乾燥し、SBT2171菌体とした。
ヒト大腸ガン細胞SW480を6cm dishに播種し50%confluencyの時点で、SBT2171菌体を最終濃度50、100、200μg/mLとなるように添加し(SBT2171群)、コントロールとして、SBT2171菌体を含まないPBSのみを添加した(コントロール群)。両群ともに3dishずつ設置し、培養1日ごとに細胞数を計測してgrowth assayを行った。また、RNAeasy kit(Quiagen社)によりtotal RNAを抽出し、real-time PCRを用いてW480細胞のSRCAP遺伝子の発現量を測定した。内在性コントロール遺伝子としてヒトGAPDH遺伝子を用いた。
[Test Example 4] Suppression of SRCAP Gene Expression and Cell Growth Inhibitory Effect by Lactobacillus helveticus A test was conducted to verify the inhibitory effect of Lactobacillus helveticus on the growth of human colon cancer cells and the SRCAP expression inhibitory effect. rice field.
(1) Test method (i) Preparation of Lactobacillus helveticus SBT2171 cells After culturing Lactobacillus helveticus SBT2171 in MRS broth for 16 hours, the cells were separated by centrifugation. The cells were washed twice with PBS (10 mM phosphate-buffered saline) and once with ultrapure water, and then freeze-dried to obtain SBT2171 cells.
Human colon cancer cell SW480 was seeded in a 6 cm dish, and at 50% confluency, SBT2171 cells were added to final concentrations of 50, 100, and 200 μg/mL (SBT2171 group), and SBT2171 cells were added as controls. PBS alone was added (control group). Three dishes were placed in both groups, and the number of cells was counted and growth assay was performed every culture day. Also, total RNA was extracted using RNAeasy kit (Qiagen), and the expression level of the SRCAP gene in W480 cells was measured using real-time PCR. The human GAPDH gene was used as an endogenous control gene.

(2)試験結果
図7にSW480細胞にSBT2171を100μg/mLで添加した際の当該細胞のSRCAP遺伝子発現量を示す。遺伝子発現量は、コントロール群(SBT2171非添加細胞群)の遺伝子発現量を1とした相対値で表した。SBT2171添加群はコントロール群に対して、有意にSRCAP遺伝子の発現量を抑制することが認められた。
また、図8にSW480細胞にSBT2171を50、100、200μg/mLで添加した際の細胞のgrowth assay結果を示す。これによりSBT2171はヒト大腸ガンSW480の増殖を抑制することが明らかとなった。
(3)考察
以上より、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)は、SRCAP遺伝子の発現を抑制し、ガン細胞の増殖を抑制することが示唆された。
(2) Test Results FIG. 7 shows the SRCAP gene expression level of SW480 cells to which SBT2171 was added at 100 μg/mL. The gene expression level was expressed as a relative value with the gene expression level of the control group (SBT2171-unadded cell group) set to 1. It was found that the SBT2171-added group significantly suppressed the expression level of the SRCAP gene compared to the control group.
Further, FIG. 8 shows the results of cell growth assay when SBT2171 was added to SW480 cells at 50, 100 and 200 μg/mL. This revealed that SBT2171 inhibited the proliferation of human colon cancer SW480.
(3) Discussion From the above, it was suggested that Lactobacillus helveticus suppresses the expression of the SRCAP gene and suppresses the growth of cancer cells.

本発明のラクトバチルス属の乳酸菌または乳酸菌水溶性画分を有効成分とするSRCAP発現抑制用組成物は、SRCAPの発現を抑制し、ガン細胞の増殖に起因する各種のガン疾患、RSウイルスやC型等の各種肝炎ウイルス肝炎ウイルスが感染した細胞の増殖に起因するウイルス性疾患、及び炎症性細胞の増殖に起因する花粉症等の各種アレルギー症状の予防や治療に広く利用できる。 The composition for suppressing the expression of SRCAP, which contains the lactic acid bacterium of the genus Lactobacillus or the water-soluble fraction of the lactic acid bacterium of the present invention as an active ingredient, suppresses the expression of SRCAP and causes various cancer diseases caused by proliferation of cancer cells, respiratory syncytial virus and C virus. It can be widely used for the prevention and treatment of viral diseases caused by proliferation of cells infected with various hepatitis viruses such as hepatitis viruses, and various allergic symptoms such as hay fever caused by proliferation of inflammatory cells.

Claims (2)

ラクトバチルス・ガセリSBT2055(FERM BP-10953)株の菌体の水溶性画分を有効成分とするSRCAP発現抑制用組成物。 A composition for suppressing SRCAP expression containing, as an active ingredient, a water-soluble fraction of the cells of Lactobacillus gasseri SBT2055 (FERM BP-10953) strain . ラクトバチルス・ヘルベティカスSBT2171(FERM BP-5445)株の菌体を有効成分とするSRCAP発現抑制用組成物。 A composition for suppressing SRCAP expression containing cells of Lactobacillus helveticus SBT2171 (FERM BP-5445) strain as an active ingredient.
JP2018106867A 2018-06-04 2018-06-04 Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient Active JP7224114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106867A JP7224114B2 (en) 2018-06-04 2018-06-04 Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106867A JP7224114B2 (en) 2018-06-04 2018-06-04 Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient

Publications (2)

Publication Number Publication Date
JP2019210242A JP2019210242A (en) 2019-12-12
JP7224114B2 true JP7224114B2 (en) 2023-02-17

Family

ID=68846281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106867A Active JP7224114B2 (en) 2018-06-04 2018-06-04 Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient

Country Status (1)

Country Link
JP (1) JP7224114B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121923A (en) 2009-12-14 2011-06-23 Snow Brand Milk Prod Co Ltd Regulatory t cell proliferation agent
WO2011108425A1 (en) 2010-03-04 2011-09-09 カルピス株式会社 Immunomodulator preparation method and immunomodulator
JP2011201801A (en) 2010-03-25 2011-10-13 Snow Brand Milk Products Co Ltd Fatty liver preventive and/or inhibitor
JP2012012321A (en) 2010-06-30 2012-01-19 Snow Brand Milk Products Co Ltd Concentration rise inhibitor for intercellular adhesion factor soluble in blood
WO2012105312A1 (en) 2011-02-02 2012-08-09 カルピス株式会社 Arthritis prevention/amelioration substance
WO2017022560A1 (en) 2015-08-04 2017-02-09 雪印メグミルク株式会社 Plasmacytoid dendritic cell proliferation promoter
WO2017057307A1 (en) 2015-09-28 2017-04-06 雪印メグミルク株式会社 Antibody production controller
JP2017171616A (en) 2016-03-24 2017-09-28 雪印メグミルク株式会社 MKP-1 inducer
JP2017197486A (en) 2016-04-28 2017-11-02 雪印メグミルク株式会社 INTERFERON λ INDUCER

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121923A (en) 2009-12-14 2011-06-23 Snow Brand Milk Prod Co Ltd Regulatory t cell proliferation agent
WO2011108425A1 (en) 2010-03-04 2011-09-09 カルピス株式会社 Immunomodulator preparation method and immunomodulator
JP2011201801A (en) 2010-03-25 2011-10-13 Snow Brand Milk Products Co Ltd Fatty liver preventive and/or inhibitor
JP2012012321A (en) 2010-06-30 2012-01-19 Snow Brand Milk Products Co Ltd Concentration rise inhibitor for intercellular adhesion factor soluble in blood
WO2012105312A1 (en) 2011-02-02 2012-08-09 カルピス株式会社 Arthritis prevention/amelioration substance
WO2017022560A1 (en) 2015-08-04 2017-02-09 雪印メグミルク株式会社 Plasmacytoid dendritic cell proliferation promoter
WO2017057307A1 (en) 2015-09-28 2017-04-06 雪印メグミルク株式会社 Antibody production controller
JP2017066047A (en) 2015-09-28 2017-04-06 雪印メグミルク株式会社 Antibody production controller
JP2017171616A (en) 2016-03-24 2017-09-28 雪印メグミルク株式会社 MKP-1 inducer
JP2017197486A (en) 2016-04-28 2017-11-02 雪印メグミルク株式会社 INTERFERON λ INDUCER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
モダンメディア,2011年,57巻10号,277-287

Also Published As

Publication number Publication date
JP2019210242A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
Hamida et al. Kefir: A protective dietary supplementation against viral infection
Ren et al. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests
TWI778083B (en) Agent for preventing or treating adipose-related disorders and/or inflammation
EP2169057B1 (en) Double-stranded rna originating in lactic acid bacterium
CN109310719A (en) The new medical application of probiotics
CN112930392A (en) Probiotic bacteria for upper respiratory infections, stress, anxiety, memory and cognitive dysfunction and aging
JP2018536427A (en) Bifidobacterium longum for treating obesity and related metabolic disorders
CN113286872B (en) DYSO SMOBACTER as new bacterial genus of gastrointestinal microbiota and its use
US11666607B2 (en) Nanovesicles derived from Faecalibacterium prausnitzii and uses thereof
EP4410953A1 (en) Novel probiotics and use thereof
JP6679202B2 (en) Type IV allergy composition
JP2020162595A (en) Lactic acid bacteria with novel anti-metabolic syndrome action as well as pickles obtained using the same and manufacturing method thereof
TW201840328A (en) Composition for promoting production of peptidoglycan recognition protein
JP7224114B2 (en) Composition for suppressing SRCAP expression containing lactic acid bacteria of the genus Lactobacillus as an active ingredient
WO2017022560A1 (en) Plasmacytoid dendritic cell proliferation promoter
JP2006241023A (en) Agent for inducing expression or accelerating production of antibacterial peptide in digestive tract tissue
KR101898138B1 (en) Aquaculture functional feed additive comprising Lactococcus lactis BFE920 inducing regulatory T Cell
TW201609120A (en) Intestinal barrier function enhancer containing lactic acid bacteria
JP2003000262A (en) Composition for inducing expression and/or enhancing manmalian antimicrobial peptide, food and drink, medicine and quasi-drug comprising the same composition
JP7565055B2 (en) Defensin and interleukin production inducer composition, medicines, quasi-drugs, cosmetics, foods, beverages
WO2008069102A1 (en) Prophylactic/therapeutic agent for inflammatory bowel disease
WO2017175774A1 (en) COMPOSITION FOR PROMOTING INTERFERON λ PRODUCTION AND METHOD FOR PRODUCING SAME
WO2024203934A1 (en) Composition for improving intestinal bacterial flora
JP7557519B2 (en) Composition for promoting sugar absorption
KR102361965B1 (en) Antiviral Composition Comprising Lactobacillus Plantarum or the Culture Medium thereof as an Active Ingredient

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7224114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150