JP7222577B2 - shock absorber - Google Patents

shock absorber Download PDF

Info

Publication number
JP7222577B2
JP7222577B2 JP2022537976A JP2022537976A JP7222577B2 JP 7222577 B2 JP7222577 B2 JP 7222577B2 JP 2022537976 A JP2022537976 A JP 2022537976A JP 2022537976 A JP2022537976 A JP 2022537976A JP 7222577 B2 JP7222577 B2 JP 7222577B2
Authority
JP
Japan
Prior art keywords
resin
impact
absorbing material
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022537976A
Other languages
Japanese (ja)
Other versions
JPWO2022019229A1 (en
JPWO2022019229A5 (en
Inventor
洋介 小野
正範 名塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taica Corp
Original Assignee
Taica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taica Corp filed Critical Taica Corp
Publication of JPWO2022019229A1 publication Critical patent/JPWO2022019229A1/ja
Publication of JPWO2022019229A5 publication Critical patent/JPWO2022019229A5/ja
Application granted granted Critical
Publication of JP7222577B2 publication Critical patent/JP7222577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、高分子粘弾性樹脂をベースとする衝撃吸収用樹脂組成物を硬化又は成形して得られる衝撃吸収材に関し、特に、0.5mm以下の薄厚でも衝撃吸収性に優れた衝撃吸収材に関する。 TECHNICAL FIELD The present invention relates to a shock absorbing material obtained by curing or molding a resin composition for shock absorption based on a polymer viscoelastic resin, and in particular, a shock absorbing material having excellent shock absorption even with a thickness of 0.5 mm or less. Regarding.

パーソナルコンピューター、携帯電話、及び電子ペーパー等の各種電子機器は、携帯しての利用・持ち運びながらの利用等が日常化しており、小型化、薄型化がさらに進んでいる。このように各種電子機器を持ち運びながらの利用においては、操作中に電子機器を落下させた場合や、何らかの不意な外力が加えられた場合などに電子機器が破損する可能性があり、小型化によって機構部品が狭い筐体内に高密度に実装されることになるため、これらの破損因子の影響をより受けやすい。そのため、破損因子の影響を低減し、製品の耐久性を確保する手段として、各種の衝撃吸収材が適用されている。これらの衝撃吸収材は、電子機器の小型化に伴うスペース上の制約から薄厚にすることが求められているところ、衝撃吸収材の厚さが薄くなると、衝撃吸収に寄与する衝撃吸収材の体積が小さくなることから衝撃吸収性能が低下する。そのため、薄厚化と衝撃吸収性とを両立する衝撃吸収材の開発が進められている。 BACKGROUND ART Various electronic devices such as personal computers, mobile phones, and electronic paper are being used on a daily basis while being carried or carried, and are becoming smaller and thinner. In this way, when using various electronic devices while carrying them, there is a possibility that the electronic device will be damaged if the electronic device is dropped during operation or if some unexpected external force is applied. Since mechanical parts are densely mounted in a narrow housing, they are more susceptible to these damage factors. Therefore, various impact absorbing materials are applied as a means of reducing the influence of damage factors and ensuring the durability of products. These shock absorbing materials are required to be thin due to space constraints accompanying the miniaturization of electronic devices. is reduced, the impact absorption performance is lowered. Therefore, the development of impact absorbing materials that achieve both thinness and impact absorption is underway.

そこで、特許文献1には、シリコーンゲルにフィラーを配合してなる厚みが0.5~2.0mmの薄型衝撃緩衝材であって、フィラーは、シリコーンゲル100重量部に対して、1~3.5重量部の合成樹脂の外殻を有する微小中空体および10~30重量部のシリカであり、且つ薄型衝撃緩衝材は、アスカーC硬度が15~60であり、シリコーンゲルは、アスカーC硬度が5~55である薄型衝撃緩衝材が提案されている。この薄型衝撃緩衝材は、重錘落下試験における衝撃緩衝効率が70%以上であり、フィラーとして合成樹脂の外殻を有する微小中空体を配合することにより衝撃吸収性能を高めるとともに、シリコーンゲルの硬度を高め、さらにシリカ粒子の配合によって機械強度と疲労耐久性を高めることによって、衝撃緩衝材の薄型化と衝撃吸収性の両立を図っている。しかし、近年は0.5mm以下のさらなる薄厚化された衝撃吸収材が求められており、特許文献1の薄型衝撃緩衝材の厚みを単に薄くするだけでは、十分な衝撃吸収性を得ることが困難であった。 Therefore, Patent Document 1 discloses a thin shock-absorbing material having a thickness of 0.5 to 2.0 mm, which is obtained by blending a filler with a silicone gel, and the filler is 1 to 3 parts per 100 parts by weight of the silicone gel. .5 parts by weight of micro hollow bodies having an outer shell of synthetic resin and 10 to 30 parts by weight of silica, and the thin shock-absorbing material has an Asker C hardness of 15 to 60, and the silicone gel has an Asker C hardness of 15 to 60. A thin shock-absorbing material having a value of 5 to 55 has been proposed. This thin shock-absorbing material has a shock-absorbing efficiency of 70% or more in a weight drop test. In addition, by adding silica particles to increase mechanical strength and fatigue durability, we are aiming to achieve both thinness and shock absorption of the impact cushioning material. However, in recent years, there has been a demand for a shock absorbing material with a thickness of 0.5 mm or less, and it is difficult to obtain sufficient shock absorbing properties simply by reducing the thickness of the thin shock absorbing material of Patent Document 1. Met.

そこで、0.5mm以下の薄厚で衝撃吸収性に優れる衝撃吸収材として、特許文献2に示す衝撃吸収シートが提案されている。この衝撃吸収シートは、独立気泡を有する樹脂発泡体からなり、厚みが0.02~1.0mm、ZD方向の平均気泡径に対する、MD方向及びTD方向の平均気泡径の比で表される気泡の扁平率が0.5~1.9、の構成からなり、樹脂発泡体中の独立気泡を特定の構造とすることで、更なる薄厚の領域まで優れた衝撃吸収性が得られるものである。 Therefore, as a shock absorbing material having a thin thickness of 0.5 mm or less and excellent shock absorbing properties, a shock absorbing sheet shown in Patent Document 2 has been proposed. This impact-absorbing sheet is made of a resin foam having closed cells, and has a thickness of 0.02 to 1.0 mm. The oblateness is 0.5 to 1.9, and by making the closed cells in the resin foam have a specific structure, excellent impact absorption can be obtained even in a thinner area. .

特開2012-102878号公報JP 2012-102878 A 特開2014-214205号公報JP 2014-214205 A

しかしながら、特許文献2の衝撃吸収シートは、独立気泡を有する樹脂発泡体であり、独立気泡内に充満した気体は圧縮性物質であるため、衝撃が加わった際に厚み方向に圧縮変形しやすい。そのため、衝撃の大きさがある一定以上になると気泡が厚み方向に潰れ切る底付き状態となりやすく、衝撃吸収できる範囲が限定される場合があった。この傾向は、衝撃吸収性を高くするために樹脂発泡体のベース樹脂の硬度を小さくするほど顕著であった。 However, the impact-absorbing sheet of Patent Document 2 is a resin foam having closed cells, and the gas filled in the closed cells is a compressible substance. Therefore, when the magnitude of the impact exceeds a certain level, the bubbles tend to collapse in the thickness direction, resulting in a bottomed state, which limits the range in which the impact can be absorbed. This tendency was more pronounced as the hardness of the base resin of the resin foam was decreased in order to increase the impact absorption.

従って、本発明は従来技術の上述した問題点を解消するものであり、その目的は、0.5mm以下の薄厚でも、衝撃吸収できる範囲が大きく、衝撃吸収性に優れた衝撃吸収材を提供することである。 Therefore, the present invention solves the above-mentioned problems of the prior art, and its object is to provide a shock absorbing material that has a large range of shock absorption and excellent shock absorption even with a thin thickness of 0.5 mm or less. That is.

本発明者らは、上記課題を解決するため、衝撃吸収材の材料であるベース樹脂成分とフィラー成分について、様々な成分の組み合わせによる組成物を検討し、薄厚での衝撃吸収性能に与える影響を研究したところ、ベースとなる高分子粘弾性樹脂に特定の樹脂粒子を配合することにより、厚みが0.5mm以下の薄厚の衝撃吸収材において、ベース樹脂単体から形成した衝撃吸収材や、高分子粘弾性樹脂に合成樹脂の外殻を有する微小中空体が添加された特許文献1に記載の衝撃吸収材や、独立気泡を有する樹脂発泡体からなる特許文献2に記載の衝撃吸収材よりも、衝撃吸収性に優れる衝撃吸収材が得られることを見出した。これらの知見に基づき、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors studied compositions by combining various components for the base resin component and the filler component, which are the materials of the shock absorbing material, and investigated the impact on the shock absorbing performance at a thin thickness. As a result of research, by blending specific resin particles into the base polymer viscoelastic resin, it is possible to create a thin shock absorber with a thickness of 0.5 mm or less, a shock absorber formed from a single base resin, a polymer Compared to the shock absorbing material described in Patent Document 1 in which a micro hollow body having a synthetic resin outer shell is added to a viscoelastic resin, and the shock absorbing material described in Patent Document 2 made of a resin foam having closed cells, It was found that a shock absorbing material having excellent shock absorbing properties can be obtained. Based on these findings, the present invention has been completed.

上記課題を解決するため、本発明の衝撃吸収材は、高分子粘弾性樹脂(A)に樹脂微粒子(B)を分散してなる衝撃吸収用樹脂組成物の硬化物又は成形物からなる、厚みが0.5mm以下の衝撃吸収材であって、樹脂微粒子(B)は、下記式(1)で求められる圧縮強度Fcが0.06~10MPaの弾力性を有する中実粒子であり、 In order to solve the above problems, the impact absorbing material of the present invention comprises a cured product or molded product of a resin composition for impact absorption, which is obtained by dispersing fine resin particles (B) in a polymer viscoelastic resin (A). is 0.5 mm or less, and the fine resin particles (B) are solid particles having elasticity with a compressive strength Fc of 0.06 to 10 MPa obtained by the following formula (1),

Figure 0007222577000001
Figure 0007222577000001

(式(1)中、Rは樹脂微粒子(B)の粒径(μm)、Fmは樹脂微粒子(B)のJIS K6254 D法に準拠して測定した10%圧縮ひずみ時の圧縮強度(10%変形圧縮応力)の値である。)
高分子粘弾性樹脂(A)の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で100~170であり、衝撃吸収用樹脂組成物の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で70~170である。
(In the formula (1), R is the particle size (μm) of the resin fine particles (B), Fm is the compressive strength at 10% compression strain measured in accordance with JIS K6254 D method of the resin fine particles (B) (10% deformation compressive stress).)
The hardness of the cured or molded product of the polymer viscoelastic resin (A) is 100 to 170 in terms of penetration (according to JIS K2207, 25°C), and the cured or molded product of the impact-absorbing resin composition. The hardness is 70 to 170 in terms of penetration (according to JIS K2207, 25°C).

本発明の衝撃吸収材を構成する衝撃吸収用樹脂組成物は、高分子粘弾性樹脂(A)に樹脂微粒子(B)として、圧縮強度Fc(JIS K6254 D法に準拠して測定した10%圧縮ひずみ時の圧縮強度Fmを、粒径10μmの球状樹脂微粒子の圧縮強度Fcとして換算した値)が0.06~10MPaの弾力性を有する中実粒子が分散されており、衝撃吸収用樹脂組成物の硬化物又は成形物の硬度がJIS K2207に準拠した針入度(25℃)で70~170であり、高分子粘弾性樹脂(A)の硬化物又は成形物の硬度が、JIS K2207に準拠した針入度(25℃)で100~170である。この構成によって、高分子粘弾性樹脂(A)の動的粘弾性変形と、樹脂微粒子(B)の変形や粒子間距離の変化などの作用とが複合された協働作用によって、優れた衝撃吸収性を発揮する衝撃吸収材が得られるとともに、樹脂微粒子(B)が所定の圧縮強度による弾力性を有した中実粒子であるため、高分子粘弾性樹脂(A)の変形を適度に抑制する作用によって、0.5mm以下、特に0.1mm以上0.5mm以下の薄厚な領域において、底付き状態になり難く優れた衝撃吸収性能を有した衝撃吸収材を得ることができる。また、上述した構成とすることによって、厚みが0.5mm以下の薄厚の衝撃吸収材において、ベースとなる高分子粘弾性樹脂(A)単体から形成した衝撃吸収材や、高分子粘弾性樹脂(A)に中空の樹脂粒子が添加された従来の衝撃吸収材や独立気泡を有する樹脂発泡体からなる衝撃吸収材よりも、底付き状態になり難く、衝撃吸収性に優れる衝撃吸収材が得られる。 The impact-absorbing resin composition constituting the impact-absorbing material of the present invention has a compressive strength Fc (10% compression measured according to JIS K6254 D method) as resin fine particles (B) in the polymer viscoelastic resin (A). The value obtained by converting the compressive strength Fm under strain as the compressive strength Fc of spherical resin fine particles having a particle size of 10 μm) is dispersed with solid particles having elasticity of 0.06 to 10 MPa, and a resin composition for impact absorption. The hardness of the cured or molded product is 70 to 170 in terms of penetration (25°C) in accordance with JIS K2207, and the hardness of the cured or molded product of the polymer viscoelastic resin (A) is in accordance with JIS K2207. It is 100 to 170 in terms of penetration (25° C.). With this configuration, the dynamic viscoelastic deformation of the polymer viscoelastic resin (A) and the effects of deformation of the fine resin particles (B) and changes in the distance between particles work together to achieve excellent impact absorption. In addition, since the fine resin particles (B) are solid particles having elasticity due to a predetermined compressive strength, the deformation of the polymer viscoelastic resin (A) is moderately suppressed. As a result, it is possible to obtain a shock absorbing material that is less likely to bottom out and has excellent shock absorbing performance in a thin region of 0.5 mm or less, particularly 0.1 mm or more and 0.5 mm or less. In addition, by adopting the above-described configuration, in the thin shock absorbing material having a thickness of 0.5 mm or less, the shock absorbing material formed from the base polymer viscoelastic resin (A) alone, or the polymer viscoelastic resin ( Compared to conventional shock absorbers to which hollow resin particles are added to A) or shock absorbers made of a resin foam having closed cells, a shock absorber that is less likely to bottom out and has excellent shock absorbency can be obtained. .

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)の配合割合が高分子粘弾性樹脂(A)100重量部に対して5~40重量部であることも好ましい。これにより、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用がより効果的に発揮されるので、0.5mm以下の薄厚な領域において、より底付き状態になり難く、優れた衝撃吸収性能を実現することができる衝撃吸収材が得られる。 Further, the blending ratio of the fine resin particles (B), which is blended in the impact-absorbing resin composition of the impact-absorbing material of the present invention, is 5 to 40 parts by weight with respect to 100 parts by weight of the high-molecular-weight viscoelastic resin (A). is also preferred. As a result, the synergistic action of the polymer viscoelastic resin (A) and the fine resin particles (B) is exhibited more effectively, so that the thin region of 0.5 mm or less is less likely to bottom out, A shock absorbing material that can achieve excellent shock absorbing performance is obtained.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)の平均粒径が0.5~50μmであることも好ましい。これにより、樹脂微粒子(B)が関与する作用がより効果的に発揮されるため、0.5mm以下の薄厚な領域において、より底付き状態になり難く、優れた衝撃吸収性能を実現することができる衝撃吸収材が得られる。 It is also preferable that the average particle size of the fine resin particles (B), which is incorporated in the impact-absorbing resin composition of the impact-absorbing material of the present invention, is 0.5 to 50 μm. As a result, the action involving the fine resin particles (B) is exhibited more effectively, so that in a thin area of 0.5 mm or less, it is less likely to bottom out, and excellent impact absorption performance can be achieved. A shock absorbing material is obtained.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)が球状であることも好ましい。これにより、高分子粘弾性樹脂(A)の動的粘弾性変形と、樹脂微粒子(B)の変形や粒子間距離の変化などの作用とが複合された協働作用が均一且つスムーズに機能するため、0.5mm以下の薄厚な領域において、より底付き状態になり難く、優れた衝撃吸収性能を実現することができる衝撃吸収材が得られる。 It is also preferable that the resin fine particles (B), which are blended in the impact-absorbing resin composition of the impact-absorbing material of the present invention, are spherical. As a result, the synergistic action in which the dynamic viscoelastic deformation of the polymer viscoelastic resin (A) and the actions such as the deformation of the fine resin particles (B) and the change in the inter-particle distance function uniformly and smoothly. Therefore, it is possible to obtain a shock absorbing material that is less likely to bottom out in a thin region of 0.5 mm or less and that can achieve excellent shock absorbing performance.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)が表面全体を被覆する被覆層を備えることも好ましい。これにより、樹脂微粒子(B)に被覆層の特性が複合されるため、樹脂微粒子(B)が関与する作用を多様化できるので、0.5mm以下の薄厚な領域において、より底付き状態になり難く、優れた衝撃吸収性能を実現するとともに、その作用を多様化させることができる衝撃吸収材が得られる。 It is also preferable to provide a coating layer in which the resin fine particles (B), which are blended in the impact-absorbing resin composition of the impact-absorbing material of the present invention, coat the entire surface. As a result, the properties of the coating layer are combined with the fine resin particles (B), so that the effects of the fine resin particles (B) can be diversified, so that in a thin region of 0.5 mm or less, a more bottomed state can be achieved. It is difficult to obtain a shock absorbing material that achieves excellent shock absorbing performance and diversifies its action.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)がシリコーン系樹脂微粒子またはアクリル系樹脂微粒子であることも好ましい。これにより、シリコーン系樹脂微粒子が有する優れた熱安定性や残留歪みの低さが反映され、衝撃吸収材の底付きがより低減されつつ、耐久性が向上するので、底付き状態になり難く、優れた衝撃吸収性能が長期にわたり安定して発揮される衝撃吸収材が得られる。また、アクリル系樹脂微粒子を適用した場合には、有機系分子設計の自由度を活かした硬度バリエーションや機能付加が可能であり、高分子粘弾性樹脂(A)との組み合わせにより衝撃吸収性能の最適化や多様化をすることができる衝撃吸収材が得られる。 Further, it is also preferable that the resin fine particles (B) blended in the impact absorbing resin composition of the impact absorbing material of the present invention are silicone resin fine particles or acrylic resin fine particles. As a result, the excellent thermal stability and low residual strain of the silicone-based resin fine particles are reflected, and the bottoming of the shock absorbing material is further reduced, and the durability is improved. A shock absorbing material that stably exhibits excellent shock absorbing performance over a long period of time can be obtained. In addition, when acrylic resin fine particles are applied, it is possible to make variations in hardness and add functions that take advantage of the degree of freedom in organic molecular design. It is possible to obtain a shock absorbing material that can be used in a wide variety of applications.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物に配合される、樹脂微粒子(B)は、成分又は形状が異なる2種類以上の樹脂微粒子の混合物であることも好ましい。これにより、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用を様々に設計できるため、0.5mm以下の薄厚な領域において、衝撃吸収材の底付き状態のなり難さと衝撃吸収性能を多様に調整できる衝撃吸収材が得られる。 It is also preferable that the resin fine particles (B) blended in the impact absorbing resin composition of the impact absorbing material of the present invention be a mixture of two or more kinds of resin fine particles having different components or shapes. As a result, the synergistic action of the polymer viscoelastic resin (A) and the fine resin particles (B) can be designed in various ways, so that it is difficult for the shock absorbing material to bottom out in a thin region of 0.5 mm or less. It is possible to obtain a shock absorbing material whose shock absorbing performance can be variously adjusted.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物は、さらに中空の樹脂粒子を含むことも好ましい。これにより、樹脂微粒子(B)と中空の樹脂粒子との複合的な作用によって高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用を様々に設計できるため、0.5mm以下の薄厚な領域において、衝撃吸収材の底付き状態のなり難さと衝撃吸収性能を多様に調整できる衝撃吸収材が得られる。 It is also preferable that the impact-absorbing resin composition of the impact-absorbing material of the present invention further contains hollow resin particles. As a result, the synergistic action between the polymer viscoelastic resin (A) and the resin fine particles (B) can be designed in various ways by the combined action of the resin fine particles (B) and the hollow resin particles, so that the thickness of the resin fine particles is 0.5 mm or less. It is possible to obtain a shock absorbing material capable of variously adjusting the difficulty of bottoming out of the shock absorbing material and the shock absorbing performance in the thin region.

また、本発明の衝撃吸収材の衝撃吸収用樹脂組成物は、高分子粘弾性樹脂(A)がシリコーン系粘弾性樹脂であることも好ましい。これにより、優れた熱安定性や残留歪みの低さが反映され、耐久性が向上するので、0.5mm以下の薄厚な領域において、衝撃吸収材における底付き状態のなり難さや、優れた衝撃吸収性能が長期にわたり安定して発揮される衝撃吸収材が得られる。 Further, in the impact-absorbing resin composition of the impact-absorbing material of the present invention, the polymeric viscoelastic resin (A) is preferably a silicone-based viscoelastic resin. As a result, excellent thermal stability and low residual strain are reflected, and durability is improved. It is possible to obtain a shock absorbing material that stably exhibits absorption performance over a long period of time.

本発明の衝撃吸収材によれば、衝撃吸収用樹脂組成物に配合されている高分子粘弾性樹脂(A)に樹脂微粒子(B)として圧縮強度Fc(JIS K6254 D法に準拠して測定した10%圧縮ひずみ時の圧縮強度Fmを、粒径10μmの球状樹脂微粒子の圧縮強度Fcとして換算した値)が0.06~10MPaの弾力性を有する中実粒子が分散されており、衝撃吸収用樹脂組成物の硬化物又は成形物の硬度がJIS K2207に準拠した針入度(25℃)で70~170であり、高分子粘弾性樹脂(A)の硬化物又は成形物の硬度が、JIS K2207に準拠した針入度(25℃)で100~170である構成としているので、高分子粘弾性樹脂(A)の動的粘弾性変形と、樹脂微粒子(B)の変形や粒子間距離の変化などの作用とが複合された協働作用によって、優れた衝撃吸収性を発揮するとともに、樹脂微粒子(B)が所定の圧縮強度からなる弾力性を有した中実粒子であるため、高分子粘弾性樹脂(A)の変形を適度に抑制する作用によって、0.5mm以下、特に0.1mm以上0.5mm以下の薄厚な領域において、底付き状態になり難く、優れた衝撃吸収性能を有した衝撃吸収材が得られる。また、上述した構成とすることによって、厚みが0.5mm以下の薄厚の衝撃吸収材において、ベースとなる高分子粘弾性樹脂(A)単体から形成した衝撃吸収材や、高分子粘弾性樹脂(A)に中空の樹脂粒子が添加された従来の衝撃吸収材や独立気泡を有する樹脂発泡体からなる衝撃吸収材よりも、底付き状態になり難く、衝撃吸収性に優れる衝撃吸収材が得られる。 According to the impact absorbing material of the present invention, the compressive strength Fc (measured in accordance with JIS K6254 D method) as resin fine particles (B) in the polymer viscoelastic resin (A) blended in the impact absorbing resin composition The value obtained by converting the compressive strength Fm at 10% compressive strain as the compressive strength Fc of spherical resin fine particles having a particle size of 10 μm) is dispersed with solid particles having elasticity of 0.06 to 10 MPa, and is used for shock absorption. The cured product or molded product of the resin composition has a hardness of 70 to 170 in terms of penetration (25°C) according to JIS K2207, and the cured product or molded product of the polymer viscoelastic resin (A) has a hardness of JIS Since the needle penetration (25 ° C.) in accordance with K2207 is 100 to 170, dynamic viscoelastic deformation of the polymer viscoelastic resin (A), deformation of the resin fine particles (B), and interparticle distance Due to the synergistic action combined with the action such as change, excellent impact absorption is exhibited, and since the resin fine particles (B) are solid particles with elasticity having a predetermined compressive strength, the polymer Due to the action of moderately suppressing the deformation of the viscoelastic resin (A), it is difficult to bottom out in a thin area of 0.5 mm or less, especially 0.1 mm or more and 0.5 mm or less, and has excellent impact absorption performance. A shock absorbing material is obtained. In addition, by adopting the above-described configuration, in the thin shock absorbing material having a thickness of 0.5 mm or less, the shock absorbing material formed from the base polymer viscoelastic resin (A) alone, or the polymer viscoelastic resin ( Compared to conventional shock absorbers to which hollow resin particles are added to A) or shock absorbers made of a resin foam having closed cells, a shock absorber that is less likely to bottom out and has excellent shock absorbency can be obtained. .

本発明の衝撃吸収材の構成を説明する模式図である。It is a schematic diagram explaining the structure of the impact-absorbing material of this invention.

本発明の衝撃吸収材は、高分子粘弾性樹脂(A)に樹脂微粒子(B)を分散してなる衝撃吸収用樹脂組成物の硬化物又は成形物からなる、厚みが0.5mm以下の衝撃吸収材であって、樹脂微粒子(B)が圧縮強度Fc(JIS K6254 D法に準拠して測定した、10%圧縮ひずみ時の圧縮強度Fmを、粒径10μmの球状樹脂微粒子の圧縮強度Fcとして換算した値)が0.06~10MPaの弾力性を有する中実粒子であり、高分子粘弾性樹脂(A)の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で100~170であり、衝撃吸収用樹脂組成物の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で70~170である。以下、詳細に説明する。 The impact absorbing material of the present invention is a hardened or molded product of a resin composition for impact absorption, which is obtained by dispersing resin fine particles (B) in a polymer viscoelastic resin (A), and has a thickness of 0.5 mm or less. Compressive strength Fc of resin fine particles (B), which is an absorbent material (compressive strength Fm at 10% compressive strain measured in accordance with JIS K6254 D method, is defined as compressive strength Fc of spherical resin fine particles having a particle size of 10 μm. converted value) is a solid particle having an elasticity of 0.06 to 10 MPa, and the hardness of the cured product or molded product of the polymer viscoelastic resin (A) is the penetration (according to JIS K2207, 25 ° C. ) is 100 to 170, and the hardness of the cured or molded product of the impact absorbing resin composition is 70 to 170 in terms of penetration (according to JIS K2207, 25°C). A detailed description will be given below.

1.衝撃吸収用樹脂組成物
(1)高分子粘弾性樹脂(A)
本発明における衝撃吸収用樹脂組成物を構成する高分子粘弾性樹脂(A)は、動的粘弾性変形によって衝撃を熱に変換して吸収するための構成要素である。高分子粘弾性樹脂(A)は、柔軟で衝撃吸収作用を有する公知の粘弾性樹脂材料を適用でき、例えば、シリコーンゲルなどの熱硬化性の粘弾性体を形成する熱硬化性の高分子粘弾性樹脂や、スチレン系エラストマーやオレフィン系エラストマー、ウレタン系エラストマーなどの熱可塑性の粘弾性体を形成する熱可塑性の高分子粘弾性樹脂が挙げられ、接着性、耐久性、透明性、加工性などの衝撃吸収材に求められる諸特性に応じて選択できる。その中でも硬度や粘弾性特性の温度依存性に優れ、圧縮変形歪が小さく、耐熱性や耐化学薬品性などの耐久性に優れる観点からシリコーン系粘弾性樹脂が好適であり、シリコーンゴム、シリコーン系エラストマー、シリコーン系ゲルといったシリコーン系粘弾性体を形成するシリコーン系粘弾性樹脂が適用できる。シリコーン系粘弾性樹脂としては、従来から知られ、市販されている種々のシリコーン材料として一般的に使用されているものを適宜選択して用いることができる。例えば、加熱硬化型あるいは常温硬化型、さらにはエネルギー線硬化型のもの、又は硬化機構が縮合型あるいは付加型のものなど、いずれも用いることができる。また、珪素原子に結合する基も特に限定されるものではなく、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基のほか、これらの基の水素原子が部分的に他の原子又は結合基で置換されたものを挙げることができる。なお、シリコーン系粘弾性樹脂は、コストや硬化収縮が小さく成形寸法の精度が高く、コストを含めた生産性に優れる観点から、付加反応型のシリコーン系粘弾性樹脂であることがより好ましい。
1. Resin composition for impact absorption (1) Polymer viscoelastic resin (A)
The polymer viscoelastic resin (A) that constitutes the resin composition for impact absorption in the present invention is a component for converting impact into heat by dynamic viscoelastic deformation and absorbing it. The polymer viscoelastic resin (A) can be a known viscoelastic resin material that is flexible and has a shock absorbing action. Examples include elastic resins, thermoplastic polymer viscoelastic resins that form thermoplastic viscoelastic bodies such as styrene elastomers, olefin elastomers, and urethane elastomers. Adhesion, durability, transparency, workability, etc. can be selected according to the properties required for the impact absorbing material. Among them, silicone-based viscoelastic resins are suitable from the viewpoint of excellent temperature dependence of hardness and viscoelastic properties, small compression deformation strain, and excellent durability such as heat resistance and chemical resistance. Silicone-based viscoelastic resins that form silicone-based viscoelastic bodies such as elastomers and silicone-based gels can be applied. As the silicone-based viscoelastic resin, it is possible to appropriately select and use a variety of conventionally known and commercially available silicone materials that are generally used. For example, heat curing type, room temperature curing type, energy beam curing type, condensation type or addition type curing mechanism can be used. In addition, the group bonded to the silicon atom is not particularly limited, and examples thereof include alkyl groups such as methyl group, ethyl group and propyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; In addition to aryl groups such as alkenyl groups, phenyl groups and tolyl groups, those groups in which the hydrogen atoms of these groups are partially substituted with other atoms or bonding groups can be mentioned. The silicone-based viscoelastic resin is more preferably an addition reaction type silicone-based viscoelastic resin from the viewpoints of low cost, low cure shrinkage, high molding dimensional accuracy, and excellent productivity including cost.

高分子粘弾性樹脂(A)の硬化物又は成形物の硬度は、衝撃吸収性と、保形性などの取り扱い性の観点から、JIS K2207に準拠した針入度(25℃)で100~170であることが好ましい。針入度が100未満であると、衝撃吸収材が硬くなりすぎて衝撃吸収性や柔軟性が低下する場合があり、170を超えると衝撃吸収材が柔らかくなりすぎて、衝撃吸収材に衝撃が加わった際に破損する場合や、ハンドリング性が低下する場合があるので、上記範囲が好ましいのである。 The hardness of the cured product or molded product of the polymer viscoelastic resin (A) is 100 to 170 at the penetration (25°C) in accordance with JIS K2207, from the viewpoint of shock absorption and handleability such as shape retention. is preferably If the penetration is less than 100, the impact absorbing material may become too hard, resulting in a decrease in impact absorption and flexibility. The above range is preferable because it may be damaged when it is applied or the handling property may be deteriorated.

(2)樹脂微粒子(B)
本発明における衝撃吸収用樹脂組成物を構成する樹脂微粒子(B)は、高分子粘弾性樹脂(A)と協働して優れた衝撃吸収性を発揮させるとともに、高分子粘弾性樹脂(A)に基づく変形を適度に抑制する作用によって、衝撃吸収材の底付きを発生し難くするための構成要素である。樹脂微粒子(B)は、所定の圧縮強度を備えた弾性力を有する中実粒子であるため、圧縮性を有する気体を内包する発泡体の独立気泡セルや高分子中空粒子よりも衝撃に対して変形し難い性質を有している。そのため、薄厚の衝撃吸収材であっても底付きを抑制することができ、また、衝撃吸収材中に分散されている樹脂微粒子(B)が適度に変形することによって、高分子粘弾性樹脂(A)と協働した優れた衝撃吸収性を発揮できるのである。このような作用効果の観点から、樹脂微粒子(B)の弾力性の指標として、下記式(1)で求められる圧縮強度Fcが0.06~10MPaが挙げられる。圧縮強度Fcが0.06MPa未満であると、衝撃で樹脂微粒子(B)が変形しすぎて十分に衝撃吸収材の底付きを抑制できなくなる場合があり、12MPaを超えると樹脂微粒子(B)の弾力性が小さすぎて、高分子粘弾性樹脂(A)と協働した衝撃吸収性が不十分となる場合がある。また、衝撃による衝撃吸収材の底付きを抑制する観点から、樹脂微粒子(B)の圧縮強度Fcは、高分子粘弾性樹脂(A)の圧縮強度よりも大きいことが好ましい。
(2) Resin fine particles (B)
The resin fine particles (B) constituting the impact-absorbing resin composition of the present invention cooperate with the polymer viscoelastic resin (A) to exhibit excellent impact absorption, and the polymer viscoelastic resin (A) It is a constituent element for making it difficult for the shock absorbing material to bottom out due to the effect of moderately suppressing deformation based on the force. Since the fine resin particles (B) are elastic solid particles with a predetermined compressive strength, they are more resistant to impact than closed-cell cells of a foam containing a compressible gas or hollow polymer particles. It has the property of being difficult to deform. Therefore, even a thin shock absorbing material can be prevented from bottoming out, and the moderate deformation of the fine resin particles (B) dispersed in the shock absorbing material allows the polymer viscoelastic resin ( It is possible to exhibit excellent impact absorption in cooperation with A). From the viewpoint of such effects, a compressive strength Fc of 0.06 to 10 MPa obtained by the following formula (1) can be used as an index of the elasticity of the fine resin particles (B). If the compressive strength Fc is less than 0.06 MPa, the resin fine particles (B) may be excessively deformed by the impact, and it may not be possible to sufficiently suppress bottoming of the shock absorbing material. In some cases, the elasticity is too small and the impact absorption in cooperation with the polymeric viscoelastic resin (A) is insufficient. Further, from the viewpoint of suppressing bottoming out of the impact absorbing material due to impact, it is preferable that the compressive strength Fc of the fine resin particles (B) is higher than the compressive strength of the polymer viscoelastic resin (A).

ここで、樹脂微粒子(B)の圧縮強度Fcとは、球径(粒径)Rμmの樹脂微粒子の単体(1個)を試験体として、JIS K6254 D法に準拠して弾性変形する荷重速度で圧縮し、初期粒径に対して10%の圧縮ひずみ(圧縮変位)に到達した時点の圧縮応力値を圧縮強度(測定値)Fmとし、樹脂微粒子(B)を球体とみなして、下記の数式(1)を用いて、粒径10μmの球状樹脂微粒子の圧縮強度Fcとして換算した値である。球径10μmの樹脂微粒子に換算した値としたのは、樹脂微粒子(B)による上述の作用効果は、樹脂微粒子の弾力性が大きく関与するが、その弾力性は同じ素材であっても粒径や形状によって異なるため、粒径10μmの球状樹脂微粒子を標準形態として、弾力性の定量的な尺度とするためである。また、数式(1)は、ヘルツの接触応力理論において、弾性領域の静的荷重は、球状粒子の粒径の1/2乗と比例関係にあるため、粒径Rμmの粒子の圧縮強度(測定値)Fmと粒径10μmの球状樹脂微粒子の圧縮強度Fcとの比が、粒径Rμmの1/2乗と粒径10μmの1/2乗との比に等しいという関係から、粒径10μmの球状樹脂微粒子の圧縮強度Fcを算出する式である。 Here, the compressive strength Fc of the fine resin particles (B) is the load speed at which a single fine resin particle (one piece) having a spherical diameter (particle size) of R μm is used as a test specimen and is elastically deformed according to JIS K6254 D method. The compressive stress value at the time when the compressive strain (compressive displacement) reaches 10% of the initial particle size is defined as the compressive strength (measured value) Fm, and the resin fine particles (B) are regarded as spheres, and the following formula is obtained. (1) is used to convert the compressive strength Fc of spherical fine resin particles having a particle size of 10 μm. The reason why the value is calculated in terms of resin fine particles having a spherical diameter of 10 μm is that the above-mentioned effects of the resin fine particles (B) are largely related to the elasticity of the resin fine particles, but the elasticity of the resin fine particles varies depending on the particle size even if the material is the same. This is because spherical resin fine particles with a particle size of 10 μm are used as a standard form and used as a quantitative measure of elasticity. In addition, in Hertz's contact stress theory, the static load in the elastic region is proportional to the particle size of spherical particles to the power of 1/2, so the compressive strength (measured Value) Fm and the compressive strength Fc of spherical resin fine particles with a particle size of 10 μm are equal to the ratio of the particle size of R μm to the power of 1/2 and the particle size of 10 μm to the power of 1/2. This is a formula for calculating the compressive strength Fc of spherical fine resin particles.

Figure 0007222577000002
Figure 0007222577000002

また、樹脂微粒子(B)は、樹脂微粒子(B)が寄与する上記作用をより効果的に発現させる観点から、平均粒径が0.5~50μmであることが好ましく、0.5~20μmがより好ましく、1~10μmが特に好ましい。平均粒径が0.5μm未満であると、樹脂微粒子(B)が寄与する上記作用が発現し難くなり、50μmを超えると、樹脂微粒子(B)の弾性力が支配的になるので、何れの場合も本発明の衝撃吸収材の厚さが0.5mm以下、特に0.1mm以上0.5mm以下の範囲において、十分な衝撃吸収性が得られない場合がある。また、平均粒径が50μmを超えた場合には、衝撃吸収材として使用するときに脆くなるなどの機械強度の低下が発生する場合がある。なお、樹脂微粒子(B)の平均粒径は、レーザー回折・散乱式の粒度分布測定法を用いて求めたものである。数千から数万個の任意の個数の一次粒子を測定し、得られた体積基準の粒度分布データを元に、個数基準の算術平均値を算出した結果を、平均粒径とする。 In addition, the resin fine particles (B) preferably have an average particle size of 0.5 to 50 μm, more preferably 0.5 to 20 μm, from the viewpoint of more effectively exhibiting the above-mentioned action contributed by the resin fine particles (B). More preferably, 1 to 10 μm is particularly preferable. If the average particle diameter is less than 0.5 μm, the above-mentioned action contributed by the fine resin particles (B) is difficult to manifest, and if it exceeds 50 μm, the elastic force of the fine resin particles (B) becomes dominant. In some cases, when the thickness of the impact absorbing material of the present invention is 0.5 mm or less, particularly in the range of 0.1 mm or more and 0.5 mm or less, sufficient impact absorption may not be obtained. Moreover, when the average particle size exceeds 50 μm, the mechanical strength may be lowered, such as brittleness when used as a shock absorbing material. The average particle diameter of the fine resin particles (B) is obtained by using a laser diffraction/scattering particle size distribution measuring method. An arbitrary number of thousands to tens of thousands of primary particles are measured, and based on the obtained volume-based particle size distribution data, a number-based arithmetic mean value is calculated, and the result is defined as an average particle size.

また、樹脂微粒子(B)の形状は、樹脂微粒子(B)が寄与する上記作用効果が得られれば特に限定しないが、均一分散性等の観点から球状であることが好ましい。また、樹脂微粒子(B)の材質は、高分子粘弾性樹脂(A)への分散性や、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用の設計に応じて、公知の素材を選択して適用できるが、硬度や粘弾性特性の温度依存性に優れ、圧縮変形歪が小さく、耐熱性や耐化学薬品性などの耐久性に優れる観点から、シリコーン系樹脂微粒子であることが好ましい。また、有機系分子設計の自由度を活かした豊富なバリエーションの中から、高分子粘弾性樹脂(A)との組み合わせにより衝撃吸収性能の最適化や多様化が容易となる観点から、アクリル系樹脂微粒子であることも好ましい。 Further, the shape of the resin fine particles (B) is not particularly limited as long as the above-described effect contributed by the resin fine particles (B) is obtained, but from the viewpoint of uniform dispersibility, etc., a spherical shape is preferable. Further, the material of the resin fine particles (B) is selected according to the dispersibility in the polymer viscoelastic resin (A) and the design of the cooperative action between the polymer viscoelastic resin (A) and the resin fine particles (B). Although known materials can be selected and applied, from the viewpoint of excellent temperature dependence of hardness and viscoelastic properties, small compression deformation strain, and excellent durability such as heat resistance and chemical resistance, silicone resin fine particles are used. Preferably. In addition, from the wide variety of variations that make use of the freedom of organic molecular design, acrylic resin is selected from the perspective of facilitating optimization and diversification of impact absorption performance by combining with polymer viscoelastic resin (A). Fine particles are also preferred.

また、樹脂微粒子(B)は、粒子の表面全体を被覆する被覆層を備えていてもよい。粒子表面に被覆層を備えることによって、樹脂微粒子(B)の圧縮変形挙動を変化させて樹脂微粒子(B)が寄与する上記作用効果を多様化することができる。また、被覆層は、高分子粘弾性樹脂(A)への樹脂微粒子(B)の分散性や、光学特性の付与などの機能性を有するものとしてもよい。また、被覆層は、樹脂微粒子(B)の弾力性を損なわない範囲で、目的に応じて材質や厚み、物性を適宜設定できる。また、被覆層は、材質や物性を樹脂微粒子(B)と同じとしてもよいし、異なる構成としてもよい。 Further, the fine resin particles (B) may have a coating layer covering the entire surface of the particles. By providing the coating layer on the particle surface, the compressive deformation behavior of the fine resin particles (B) can be changed to diversify the above effects contributed by the fine resin particles (B). Further, the coating layer may have functionality such as dispersibility of the fine resin particles (B) in the polymeric viscoelastic resin (A) and imparting optical properties. In addition, the material, thickness, and physical properties of the coating layer can be appropriately set according to the purpose within a range that does not impair the elasticity of the fine resin particles (B). The coating layer may have the same material and physical properties as those of the fine resin particles (B), or may have a different structure.

また、樹脂微粒子(B)は、高分子粘弾性樹脂(A)への分散性や、高分子粘弾性樹脂(A)と樹脂微粒子(B)との密着性を高めるために、粒子の表面に表面改質処理を施したものを適用してもよい。表面改質処理は、コロナ処理やエキシマ処理などの物理的な表面改質処理や、シランカップリング剤などを用いた化学的な表面改質処理などの公知の方法を目的に応じて選択して適用することができる。 In addition, the fine resin particles (B) are dispersed on the surface of the particles in order to improve the dispersibility in the polymer viscoelastic resin (A) and the adhesion between the polymer viscoelastic resin (A) and the resin fine particles (B). A material subjected to surface modification treatment may be applied. As the surface modification treatment, a known method such as a physical surface modification treatment such as corona treatment or excimer treatment, or a chemical surface modification treatment using a silane coupling agent or the like is selected according to the purpose. can be applied.

また、樹脂微粒子(B)は、成分(材質)又は形状が異なる2種類以上の樹脂微粒子を組み合わせて混合した構成としてもよい。これによって、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用を様々に設計できるため、衝撃吸収材の底付き状態のなりにくさと衝撃吸収性能を多様に調整できる。種類の異なる樹脂微粒子を複数組み合わせる場合の配合割合は、本発明の作用効果が得られる範囲であれば特に限定されず、目的に応じて適宜設定できる。 Further, the resin fine particles (B) may have a configuration in which two or more kinds of resin fine particles having different components (materials) or shapes are combined and mixed. As a result, the synergistic action of the polymer viscoelastic resin (A) and the fine resin particles (B) can be designed in various ways, so that the resistance to bottoming out of the shock absorbing material and the shock absorbing performance can be variously adjusted. When a plurality of resin fine particles of different types are combined, the mixing ratio is not particularly limited as long as the effects of the present invention can be obtained, and can be appropriately set according to the purpose.

また、本発明の衝撃吸収材に光透過性が要求される場合には、樹脂微粒子(B)は、高分子粘弾性樹脂(A)の光透過性や屈折率と近しいものを選択して適用すればよい。同様に、樹脂微粒子(B)の光学特性の選択によって、衝撃吸収用樹脂組成物の光学特性(光透過性)を適宜調整することもできる。 In addition, when the impact absorbing material of the present invention is required to have light transmittance, the resin fine particles (B) are selected to have light transmittance and a refractive index close to those of the polymer viscoelastic resin (A). do it. Similarly, the optical properties (light transmittance) of the impact-absorbing resin composition can be appropriately adjusted by selecting the optical properties of the resin fine particles (B).

樹脂微粒子(B)の配合割合は、高分子粘弾性樹脂(A)100重量部に対して5~40重量部であることが好ましく、15~35重量部がより好ましく、20~30重量部が特に好ましい。樹脂微粒子(B)の配合割合が5重量部未満であると、樹脂微粒子(B)が寄与する作用が得られ難くなり、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用が低下して、衝撃吸収材に対し、衝撃による底付きの発生と衝撃吸収性が不十分となる場合があり、40重量部を超えると衝撃吸収性に寄与する高分子粘弾性樹脂(A)の配合割合が小さくなることに加え、高分子粘弾性樹脂(A)と樹脂微粒子(B)との協働作用のバランスが悪くなるため、衝撃吸収材の衝撃吸収性が著しく低下する場合がある。 The mixing ratio of the fine resin particles (B) is preferably 5 to 40 parts by weight, more preferably 15 to 35 parts by weight, and more preferably 20 to 30 parts by weight with respect to 100 parts by weight of the polymer viscoelastic resin (A). Especially preferred. If the blending ratio of the fine resin particles (B) is less than 5 parts by weight, it becomes difficult to obtain the action contributed by the fine resin particles (B), and the cooperation of the polymer viscoelastic resin (A) and the fine resin particles (B). If the amount of the impact absorbing material exceeds 40 parts by weight, the polymer viscoelastic resin (A ) and the synergistic balance between the high molecular weight viscoelastic resin (A) and the fine resin particles (B) deteriorates. be.

(3)その他の配合成分
また、本発明の衝撃吸収用樹脂組成物は、本発明の効果を阻害しない範囲で、さらに中空の樹脂粒子を含んでいてもよい。中空の樹脂粒子を樹脂微粒子(B)と併用することで、衝撃吸収材の衝撃吸収性の多様化や、軽量化を図ることができる。また、樹脂微粒子(B)の一部を中空の樹脂粒子に置き換えることで、衝撃吸収材の衝撃吸収性を維持しながら柔軟性を向上させることができる。中空の樹脂粒子としては、公知のものを適用できる。例えば、熱可塑性樹脂を殻とし、内部に、空気その他の気体を含有するもので、すでに発泡状態、或いは熱により膨張済みとなっている微小中空粒子が挙げられる。特に限定されないが、具体的な合成樹脂系微小中空球体として、塩化ビニリデンとアクリロニトリルの共重合体からなる微小中空体である日本フィライト社製の「エクスパンセル(登録商標)551DE」、例えば、「エクスパンセル(登録商標)551DE40d42」や、日本フィライト社製の「エクスパンセル(登録商標)092DE120d30」、松本油脂製薬(株)製の「マツモトマイクロスフェア(登録商標)」などが挙げられる。また、ポリ塩化ビニリデン系樹脂バルーンとして、DOW CHEMICAL社より提供される「SARAN MICROSPHERES」を使用することもできる。
(3) Other Compounding Ingredients The impact-absorbing resin composition of the present invention may further contain hollow resin particles as long as the effects of the present invention are not impaired. By using the hollow resin particles together with the fine resin particles (B), it is possible to diversify the impact absorbing properties of the impact absorbing material and reduce the weight thereof. Further, by replacing a part of the fine resin particles (B) with hollow resin particles, flexibility can be improved while maintaining the impact absorbing properties of the impact absorbing material. As the hollow resin particles, known ones can be applied. For example, fine hollow particles which have a shell made of a thermoplastic resin and which contain air or other gas inside and are already in a foamed state or expanded by heat can be mentioned. Although not particularly limited, specific synthetic resin-based micro hollow spheres include "Expancel (registered trademark) 551DE" manufactured by Nippon Philite Co., Ltd., which is a micro hollow sphere made of a copolymer of vinylidene chloride and acrylonitrile. Expancel (registered trademark) 551DE40d42", "Expancel (registered trademark) 092DE120d30" manufactured by Nippon Philite Co., Ltd., and "Matsumoto Microsphere (registered trademark)" manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., and the like. Moreover, "SARAN MICROSPHERES" provided by DOW CHEMICAL can also be used as a polyvinylidene chloride-based resin balloon.

また本発明の衝撃吸収用樹脂組成物は、本発明の作用効果を阻害しない範囲で、難燃剤や着色剤、機械強度改善剤などの各種の添加剤を添加してもよい。例えば、難燃剤としては、膨張黒鉛、金属水酸化物及びマグネタイトなどが適用でき、また、強度補強材として微粒子シリカなどの微粒子充填材を適用でき、また、着色剤として各種顔料や染料などを適用することができる。 Various additives such as flame retardants, colorants, and mechanical strength improvers may be added to the resin composition for impact absorption of the present invention as long as the effects of the present invention are not impaired. For example, as a flame retardant, expanded graphite, metal hydroxide, magnetite, etc. can be applied, and as a strength reinforcing material, a fine particle filler such as fine particle silica can be applied, and as a coloring agent, various pigments, dyes, etc. can be applied. can do.

(4)衝撃吸収用樹脂組成物の物性
本発明の衝撃吸収用樹脂組成物は、その硬化物又は成形物の硬度がJIS K2207に準拠した針入度(25℃)で70~170である。硬度が針入度70未満であると、衝撃吸収用樹脂組成物で形成される衝撃吸収材が硬すぎて衝撃吸収性が不十分となり、170を超えると衝撃吸収材が柔らかすぎて衝撃による底付きが発生しやすくなり、またハンドリング性が悪くなる。
(4) Physical Properties of Impact-Absorbing Resin Composition The impact-absorbing resin composition of the present invention has a hardness of 70 to 170 in terms of penetration (25° C.) according to JIS K2207. If the hardness is less than 70, the impact absorbing material formed from the resin composition for impact absorption will be too hard and the impact absorption will be insufficient. Sticking is likely to occur, and the handling property is deteriorated.

2.衝撃吸収材
図1に模式的に示すように、本発明の衝撃吸収材10は、高分子粘弾性樹脂2に樹脂微粒子3が分散された上記の衝撃吸収用樹脂組成物1の硬化物又は成形物から構成され、その厚みは0.5mm以下の薄厚で形成されている。衝撃吸収用樹脂組成物1の作用効果が有効に発揮されるようにするため、衝撃吸収材10の厚みは0.1mm以上であることが好ましい。衝撃吸収材10の厚みが0.1mm未満であると十分な衝撃吸収性が得られなくなる場合がある。また、衝撃吸収材10の厚みが0.1mm以上であれば、本発明の作用に基づく優れた衝撃吸収性が得られるが、0.1mm以上0.5mm以下の範囲であることが好ましく、0.15~0.45mmの厚みとすることがより好ましく、0.15~0.40mmの厚みとすることがさらに好ましい。この範囲とすることで従来の薄厚の衝撃吸収材に比較して著しく優れている衝撃吸収材10が得られる。また、本発明の衝撃緩衝材10は、シート状やブロック状、その他所望の形状とすることができる。なお、衝撃吸収材10の厚みが一定でなく、部分によって厚みが異なる形状からなる場合、本発明の衝撃吸収材として機能する0.5mm以下の厚み部分を有していれば、厚みが0.5mmを超えた他の部分を備えた衝撃吸収材であっても、本発明の衝撃吸収材の技術的範囲に含むものとする。
2. Impact Absorbing Material As shown schematically in FIG. It is composed of a material and is formed with a thin thickness of 0.5 mm or less. The thickness of the impact absorbing material 10 is preferably 0.1 mm or more so that the effects of the impact absorbing resin composition 1 can be effectively exhibited. If the thickness of the impact absorbing material 10 is less than 0.1 mm, sufficient impact absorption may not be obtained. Also, if the thickness of the shock absorbing material 10 is 0.1 mm or more, excellent shock absorption based on the action of the present invention can be obtained, but it is preferably in the range of 0.1 mm or more and 0.5 mm or less. A thickness of 0.15 to 0.45 mm is more preferable, and a thickness of 0.15 to 0.40 mm is even more preferable. By setting the thickness in this range, it is possible to obtain the shock absorbing material 10 that is significantly superior to the conventional thin shock absorbing material. Also, the shock absorbing material 10 of the present invention can be in the shape of a sheet, a block, or any other desired shape. When the thickness of the shock absorbing material 10 is not uniform and has a shape with different thickness depending on the part, the thickness is 0.5 mm as long as it has a part with a thickness of 0.5 mm or less that functions as the shock absorbing material of the present invention. Even shock absorbers with other portions exceeding 5 mm are included in the technical scope of the shock absorbers of the present invention.

また、本発明の衝撃吸収材は、上述した構成を備えることにより、厚みが0.5mm以下の薄厚に形成されていても、ベースとなる高分子粘弾性樹脂(A)単体から形成した衝撃吸収材や、高分子粘弾性樹脂(A)に中空の樹脂粒子が添加された従来の衝撃吸収材や独立気泡を有する樹脂発泡体からなる衝撃吸収材と比べて、底付き状態になり難く、衝撃吸収性に優れている。具体的には、ベースとなる高分子粘弾性樹脂(A)単体から形成した衝撃吸収材と比べて、本発明の衝撃吸収材は、少なくとも5%以上衝撃吸収性能が向上している。 In addition, the impact absorbing material of the present invention has the above-described configuration, so that even if the thickness is formed as thin as 0.5 mm or less, the impact absorbing material formed from the base polymer viscoelastic resin (A) alone material, a conventional shock absorbing material in which hollow resin particles are added to the polymer viscoelastic resin (A), or a shock absorbing material made of a resin foam having closed cells, it is difficult to bottom out, and impact Excellent absorbency. Specifically, the impact absorbing material of the present invention has improved impact absorbing performance by at least 5% or more as compared with the impact absorbing material formed from the base polymer viscoelastic resin (A) alone.

また、本発明の衝撃吸収材10は、表面に自己粘着性を有することも好ましい。表面に自己粘着性を有することによって、粘着層を別構成として設ける必要が無いため、薄厚を保ちながら表面に粘着性を有した衝撃緩衝材とすることができ、被衝撃保護部への粘着による取付けが容易になる。表面の自己粘着性の強さは、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが3~32であることが好ましい。また、自己粘着性は、高分子粘弾性樹脂(A)が本来有している粘着性を利用してもよいし、高分子粘弾性樹脂(A)に粘着付与剤を添加して発現させてもよい。 Moreover, the impact absorbing material 10 of the present invention preferably has self-adhesiveness on the surface. By having self-adhesiveness on the surface, there is no need to provide an adhesive layer as a separate structure, so it is possible to create an impact cushioning material with adhesiveness on the surface while maintaining a thin thickness. Easier to install. The strength of the self-adhesiveness of the surface is preferably such that the ball number is 3 to 32 in an inclined ball tack test (inclination angle of 30 degrees) in accordance with JIS Z0237. In addition, the self-adhesiveness may be obtained by utilizing the inherent adhesiveness of the polymer viscoelastic resin (A), or by adding a tackifier to the polymer viscoelastic resin (A). good too.

3.衝撃吸収用樹脂組成物及び衝撃吸収材の製造方法
本発明の衝撃吸収用樹脂組成物は、高分子粘弾性樹脂(A)に樹脂微粒子(B)を公知の方法で混合し、分散して製造することができる。また、本発明の衝撃吸収材は、その衝撃吸収用樹脂組成物を公知の方法で硬化又は成形して得ることができる。具体的には、高分子粘弾性樹脂(A)が熱硬化性樹脂の場合には、未硬化で液状の高分子粘弾性樹脂に樹脂微粒子(B)を所定の割合で配合して、ケミカルミキサーや三本ロール式混合装置などの公知の混合手段で混合、分散して、未硬化の衝撃吸収用樹脂組成物が得られる。その未硬化の衝撃吸収用樹脂組成物を所望の形状に成形して、熱や光など硬化反応系に応じたエネルギーを加えて硬化させることにより衝撃吸収材が得られる。シート状の衝撃吸収材の場合には、未硬化の衝撃吸収用樹脂組成物をシート成形するか、もしくは基材フィルム上に塗布したのち、硬化させて得ることができる。また、未硬化の流動性を有した状態の衝撃吸収用樹脂組成物をディスペンサー等によって、衝撃から保護したい所望の箇所に充填塗布したのちに、熱や光など硬化反応系に応じたエネルギーを加えて硬化して、保護対象物に直接的に衝撃吸収材を形成してもよい。
3. Method for producing impact-absorbing resin composition and impact-absorbing material The impact-absorbing resin composition of the present invention is produced by mixing the polymer viscoelastic resin (A) with the fine resin particles (B) by a known method and dispersing them. can do. Also, the impact absorbing material of the present invention can be obtained by curing or molding the impact absorbing resin composition by a known method. Specifically, when the polymer viscoelastic resin (A) is a thermosetting resin, the uncured liquid polymer viscoelastic resin is blended with the fine resin particles (B) in a predetermined proportion, and mixed with a chemical mixer. or a three-roll type mixer, and the like to obtain an uncured impact-absorbing resin composition. The uncured impact absorbing resin composition is molded into a desired shape and cured by applying energy according to the curing reaction system, such as heat or light, to obtain the impact absorbing material. In the case of a sheet-like impact absorbing material, it can be obtained by forming an uncured impact absorbing resin composition into a sheet, or by coating it on a substrate film and then curing it. In addition, after filling and applying an uncured fluid impact-absorbing resin composition to a desired location to be protected from impact using a dispenser or the like, energy such as heat or light is applied according to the curing reaction system. It may be cured with a heat-resistant material to form a shock absorber directly on the object to be protected.

また、高分子粘弾性樹脂(A)が熱可塑性樹脂の場合には、二軸押し出し機やニーダーなどの加熱混錬機に高分子粘弾性樹脂(A)と樹脂微粒子(B)を所定の割合に配合して投入して加熱混錬し、高分子粘弾性樹脂(A)に樹脂微粒子(B)が分散された衝撃吸収用樹脂組成物が得られる。この衝撃吸収用樹脂組成物を例えば押出成形や加熱カレンダー成形、射出成形など公知の手段で所望の形状に熱成形することにより衝撃吸収材が得られる。ただし、樹脂微粒子(B)も熱可塑性の場合には、樹脂微粒子が溶融して形状が変化する場合があるので、融点が高い材質の樹脂微粒子(B)を選択するか、または熱硬化性材料からなる樹脂微粒子(B)を選択すればよい。 Further, when the polymer viscoelastic resin (A) is a thermoplastic resin, the polymer viscoelastic resin (A) and the fine resin particles (B) are mixed at a predetermined ratio in a heating kneader such as a twin-screw extruder or a kneader. and heat-kneaded to obtain an impact-absorbing resin composition in which the resin fine particles (B) are dispersed in the polymer viscoelastic resin (A). A shock absorbing material can be obtained by thermoforming this resin composition for shock absorption into a desired shape by known means such as extrusion molding, hot calendar molding, and injection molding. However, if the resin fine particles (B) are also thermoplastic, the resin fine particles may melt and change their shape. The resin fine particles (B) consisting of

以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に特に限定されるものではない。なお、実施例及び比較例における衝撃吸収材の厚みの単位は[μm]で表記した。 EXAMPLES The present invention will be specifically described below by way of examples, but the present invention is not particularly limited to these examples. The unit of the thickness of the impact absorbing material in Examples and Comparative Examples is expressed in [μm].

以下の実施例及び比較例における物性の測定方法及び効果の評価方法は、下記の通りである。
(1)硬度(高分子粘弾性樹脂(A)及び衝撃吸収用樹脂組成物の硬化物の針入度)
JIS K2207「石油アスファルト」に準拠した針入度測定法(25℃)で測定した。
Methods for measuring physical properties and evaluating effects in the following examples and comparative examples are as follows.
(1) Hardness (Penetration of cured product of polymer viscoelastic resin (A) and impact-absorbing resin composition)
It was measured by a penetration measurement method (25° C.) based on JIS K2207 “petroleum asphalt”.

(2)衝撃吸収率(衝撃吸収材)
神栄テストマシナリー製の振子式衝撃試験装置PST-300(振子の重量2kg、回転半径300mmおよび衝撃面の曲率半径100mm)を用いてJIS C60068-2-27に準拠して、シート状の衝撃吸収材の衝撃加速度と、衝撃吸収材無しで試料台に直接衝撃を与えた時のブランクの衝撃加速度を測定したうえで、次の式により衝撃吸収率を算出した。
衝撃吸収率(%)=(1-(衝撃吸収材の衝撃加速度)/(ブランクの衝撃加速度))×100
(2) Impact absorption rate (impact absorption material)
JIS C60068-2-27 using a pendulum type impact tester PST-300 made by Shinei Test Machinery (weight of pendulum 2 kg, radius of rotation 300 mm and radius of curvature of impact surface 100 mm) Sheet-shaped impact absorbing material and the impact acceleration of the blank when a direct impact was applied to the sample stage without the impact absorbing material, and the impact absorption rate was calculated by the following formula.
Impact absorption rate (%) = (1 - (impact acceleration of impact absorbing material) / (impact acceleration of blank)) x 100

(3)衝撃吸収性能の向上率
高分子粘弾性樹脂(A)単体から形成された衝撃吸収材と、衝撃吸収用樹脂組成物から形成された略同じ厚みの衝撃吸収材の衝撃吸収率をそれぞれ測定し、次の式により、衝撃吸収性能の向上率を算出した。
向上率(%)=(衝撃吸収用樹脂組成物から形成された衝撃吸収材の衝撃吸収率/高分子粘弾性樹脂(A)単体から形成された衝撃吸収材の衝撃吸収率)×100
(3) Impact absorption performance improvement rate The impact absorption rate of the impact absorption material formed from the polymer viscoelastic resin (A) alone and the impact absorption material having approximately the same thickness formed from the impact absorption resin composition is The improvement rate of impact absorption performance was calculated by the following formula.
Improvement rate (%) = (Impact absorption rate of impact absorption material formed from resin composition for impact absorption/Impact absorption rate of impact absorption material formed from polymeric viscoelastic resin (A) alone) x 100

(4)評価
衝撃吸収性能の向上率について、5%以上のものを合格「〇」、5%未満のものを不合格「×」と評価した。
(4) Evaluation With respect to the rate of improvement in impact absorption performance, 5% or more was evaluated as acceptable, and less than 5% was evaluated as unacceptable.

実施例及び比較例で使用した高分子粘弾性樹脂(A)は表1に示した通りである。 Polymer viscoelastic resins (A) used in Examples and Comparative Examples are as shown in Table 1.

Figure 0007222577000003
Figure 0007222577000003

また、実施例及び比較例で使用した樹脂微粒子(B)は表2に示した通りである。表2中の樹脂微粒子(B)の弾性力の指標である圧縮強度Fcは、JIS K6254 D法に準拠し、微小圧縮試験機(島津製作所製MCT-510)を用いて、荷重印加速度0.0223mN/secで圧縮前の初期粒径に対して10%の圧縮ひずみ(圧縮変位)に到達した時点の圧縮応力値を圧縮強度(実測値)Fmとして、上述の数式(1)によって球径(粒径)10μmの樹脂微粒子の圧縮強度として算出した。なお、表2中の「エクスパンセル」は登録商標である。 The resin fine particles (B) used in Examples and Comparative Examples are as shown in Table 2. The compressive strength Fc, which is an index of the elastic force of the fine resin particles (B) in Table 2, was determined in accordance with JIS K6254 D method using a microcompression tester (MCT-510 manufactured by Shimadzu Corporation) at a load application rate of 0.5. The compressive stress value at the time of reaching 10% compressive strain (compressive displacement) with respect to the initial particle size before compression at 0223 mN / sec is the compressive strength (actual value) Fm, and the spherical diameter ( It was calculated as the compressive strength of resin fine particles with a particle diameter of 10 μm. "Expancel" in Table 2 is a registered trademark.

Figure 0007222577000004
Figure 0007222577000004

[実施例1]
高分子粘弾性樹脂(A)である表1中のNo.(a)の二液付加反応型シリコーンゲル樹脂(旭化成ワッカーシリコーン社製、型番SLJ-9038のA液(主液)にB液(硬化剤含有液)を重量比で54:46に配合したもの)100重量部に、樹脂微粒子(B)として表2中のNo.Aのシリコーンゴム微粒子(信越化学工業社製 KMP-597)5重量部を配合し、プラネタリーミキサー(愛工舎製作所社製 ACM-5LVT)で大気圧下にて150rpmで10分間混合し、さらに-0.1MPaの減圧環境下にて150rpmで10分混合した後、その混合物を減圧下で脱泡し、未硬化の衝撃吸収用樹脂組成物を得た。次にこの衝撃吸収用樹脂組成物をPETフィルム上に平坦に塗布し、厚さ約200μmに成形したのち、オーブン(東京理科器械株式会社製 WFO-520W)で70℃下で1時間の予備加熱した後、100℃下3時間加熱して衝撃吸収用樹脂組成物を硬化させて120mm×120mmで厚さ202μmであるシート状の実施例1の衝撃吸収材を得た。この実施例1の衝撃吸収材の衝撃吸収率を測定した。また、実施例1の衝撃吸収用樹脂組成物を未硬化の状態で内径φ30mmの円筒容器内に厚み30mm充填したのち、オーブン(東京理科器械株式会社製 WFO-520W)で70℃下1時間、100℃下3時間加熱して衝撃吸収用樹脂組成物を硬化させて、硬度評価用の試験体を作製し、針入度を測定した。
[Example 1]
No. in Table 1, which is the polymer viscoelastic resin (A). (a) Two-component addition reaction type silicone gel resin (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., model number SLJ-9038, liquid A (main liquid) and liquid B (curing agent-containing liquid) mixed at a weight ratio of 54:46. ) was added to 100 parts by weight of No. in Table 2 as fine resin particles (B). 5 parts by weight of silicone rubber fine particles of A (KMP-597 manufactured by Shin-Etsu Chemical Co., Ltd.) are blended and mixed with a planetary mixer (ACM-5LVT manufactured by Aikosha Seisakusho Co., Ltd.) at 150 rpm for 10 minutes under atmospheric pressure. After mixing at 150 rpm for 10 minutes under a reduced pressure environment of 0.1 MPa, the mixture was defoamed under reduced pressure to obtain an uncured impact absorbing resin composition. Next, the resin composition for impact absorption is applied evenly on a PET film, molded to a thickness of about 200 μm, and then preheated in an oven (WFO-520W manufactured by Tokyo Rika Kikai Co., Ltd.) at 70 ° C. for 1 hour. After that, the resin composition for impact absorption was cured by heating at 100° C. for 3 hours to obtain a sheet-like impact absorption material of Example 1 having a size of 120 mm×120 mm and a thickness of 202 μm. The impact absorption rate of the impact absorbing material of Example 1 was measured. In addition, after filling a cylindrical container having an inner diameter of φ30 mm with a thickness of 30 mm with the impact-absorbing resin composition of Example 1 in an uncured state, it was placed in an oven (WFO-520W manufactured by Tokyo Rika Kikai Co., Ltd.) at 70° C. for 1 hour. The impact-absorbing resin composition was cured by heating at 100° C. for 3 hours to prepare a test piece for hardness evaluation, and the penetration was measured.

[実施例2]
実施例1において、樹脂微粒子(B)の配合量を20重量部としたこと以外は実施例1と同様にして、実施例2の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の実施例2の衝撃吸収材を得た。実施例1と同様にして、この実施例2の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 2]
In Example 1, the resin composition for impact absorption of Example 2 was obtained in the same manner as in Example 1, except that the amount of the resin fine particles (B) was changed to 20 parts by weight. A 200 μm sheet-like impact absorbing material of Example 2 was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 2 and the impact absorption rate of the impact absorbing material were measured.

[実施例3]
実施例1において、樹脂微粒子(B)の配合量を30重量部としたこと以外は実施例1と同様にして、実施例3の衝撃吸収用樹脂組成物を得た後、それを用いて厚み203μmのシート状の実施例3の衝撃吸収材を得た。実施例1と同様にして、この実施例3の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 3]
In Example 1, the resin composition for impact absorption of Example 3 was obtained in the same manner as in Example 1 except that the amount of the resin fine particles (B) was changed to 30 parts by weight, and then the thickness was measured using it. A 203 μm sheet-like impact absorbing material of Example 3 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 3 and the impact absorption rate of the impact absorbing material were measured.

[実施例4]
実施例1において、樹脂微粒子(B)の配合量を40重量部としたこと以外は実施例1と同様にして、実施例4の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の実施例4の衝撃吸収材を得た。実施例1と同様にして、この実施例4の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 4]
In Example 1, the resin composition for impact absorption of Example 4 was obtained in the same manner as in Example 1, except that the amount of the resin fine particles (B) was changed to 40 parts by weight, and then the thickness was measured using it. A 200 μm sheet-like impact absorbing material of Example 4 was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 4 and the impact absorption rate of the impact absorbing material were measured.

[実施例5]
実施例1において、樹脂微粒子(B)として、表2中のNo.Bのシリコーンレジンからなる被覆層を表面に有した球状のシリコーンゴム(信越化学工業社製 KMP-600)とし、樹脂微粒子(B)の配合量を20重量部としたこと以外は実施例1と同様にして、実施例5の衝撃吸収用樹脂組成物を得た後、それを用いて厚み201μmのシート状の実施例5の衝撃吸収材を得た。実施例1と同様にして、この実施例5の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 5]
In Example 1, No. in Table 2 was used as the fine resin particles (B). Example 1 except that a spherical silicone rubber (KMP-600 manufactured by Shin-Etsu Chemical Co., Ltd.) having a coating layer made of a silicone resin on the surface of B was used, and the amount of resin fine particles (B) was 20 parts by weight. After obtaining the impact absorbing resin composition of Example 5 in the same manner, a sheet-like impact absorbing material of Example 5 having a thickness of 201 μm was obtained by using it. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 5 and the impact absorption rate of the impact absorbing material were measured.

[実施例6]
実施例5において、樹脂微粒子(B)の配合量を30重量部としたこと以外は実施例5と同様にして、実施例6の衝撃吸収用樹脂組成物を得た後、それを用いて厚み202μmのシート状の実施例6の衝撃吸収材を得た。実施例1と同様にして、この実施例6の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 6]
In Example 5, the resin composition for impact absorption of Example 6 was obtained in the same manner as in Example 5, except that the amount of the resin fine particles (B) was changed to 30 parts by weight, and then the thickness was measured using it. A 202 μm sheet-like impact absorbing material of Example 6 was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 6 and the impact absorption rate of the impact absorbing material were measured.

[実施例7]
実施例5において、樹脂微粒子(B)の配合量を40重量部としたこと以外は実施例5と同様にして、実施例7の衝撃吸収用樹脂組成物を得た後、それを用いて厚み209μmのシート状の実施例7の衝撃吸収材を得た。実施例1と同様にして、この実施例7の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 7]
In Example 5, the resin composition for impact absorption of Example 7 was obtained in the same manner as in Example 5, except that the amount of the resin fine particles (B) was changed to 40 parts by weight, and then the thickness was measured using it. A 209 μm sheet-like impact absorbing material of Example 7 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 7 and the impact absorption rate of the impact absorbing material were measured.

[実施例8]
実施例1において、樹脂微粒子(B)として、表2中のNo.Cのシリコーンレジンからなる被覆層を表面に有した球状のシリコーンゴム(信越化学工業社製 KMP-605)とし、配合量を20重量部としたこと以外は実施例1と同様にして、実施例8の衝撃吸収用樹脂組成物を得た後、それを用いて厚み199μmのシート状の実施例8の衝撃吸収材を得た。実施例1と同様にして、この実施例8の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 8]
In Example 1, No. in Table 2 was used as the fine resin particles (B). In the same manner as in Example 1, except that a spherical silicone rubber (KMP-605 manufactured by Shin-Etsu Chemical Co., Ltd.) having a coating layer made of C silicone resin on the surface was used, and the amount was 20 parts by weight. After obtaining the impact-absorbing resin composition of No. 8, a sheet-like impact-absorbing material of Example 8 having a thickness of 199 μm was obtained using it. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 8 and the impact absorption rate of the impact absorbing material were measured.

[実施例9]
実施例8において、樹脂微粒子(B)の配合量を30重量部としたこと以外は実施例8と同様にして、実施例9の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の実施例9の衝撃吸収材を得た。実施例1と同様にして、この実施例9の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 9]
In Example 8, the resin composition for impact absorption of Example 9 was obtained in the same manner as in Example 8, except that the amount of the resin fine particles (B) was changed to 30 parts by weight, and then the thickness was measured using it. A 200 μm sheet-like impact absorbing material of Example 9 was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 9 and the impact absorption rate of the impact absorbing material were measured.

[実施例10]
実施例1において、高分子粘弾性樹脂(A)を表1中のNo.(c)の二液付加反応型シリコーンゲル(A液とB液の配合比が50:50)に変更した以外は、実施例1と同様にして、実施例10の衝撃吸収用樹脂組成物を得た後、それを用いて厚み207μmのシート状の実施例10の衝撃吸収材を得た。実施例1と同様にして、この実施例10の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 10]
In Example 1, the polymeric viscoelastic resin (A) was No. The impact-absorbing resin composition of Example 10 was prepared in the same manner as in Example 1, except that (c) was changed to a two-component addition-reactive silicone gel (the blending ratio of liquid A and liquid B was 50:50). After that, a sheet-like impact absorbing material of Example 10 having a thickness of 207 μm was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 10 and the impact absorption rate of the impact absorbing material were measured.

[実施例11]
実施例10において、樹脂微粒子(B)の配合量を20重量部としたこと以外は実施例10と同様にして、実施例11の衝撃吸収用樹脂組成物を得た後、それを用いて厚み204μmのシート状の実施例11の衝撃吸収材を得た。実施例1と同様にして、この実施例11の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 11]
In Example 10, the resin composition for impact absorption of Example 11 was obtained in the same manner as in Example 10, except that the amount of the resin fine particles (B) was changed to 20 parts by weight, and then the thickness was measured using it. A 204 μm sheet-like impact absorbing material of Example 11 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 11 and the impact absorption rate of the impact absorbing material were measured.

[実施例12]
実施例10において、樹脂微粒子(B)として、表2中のNo.Bのシリコーンレジンからなる被覆層を表面に有した球状シリコーンゴムとしたこと以外は実施例10と同様にして、実施例12の衝撃吸収用樹脂組成物を得た後、それを用いて厚み204μmのシート状の実施例12の衝撃吸収材を得た。実施例1と同様にして、この実施例12の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 12]
In Example 10, No. in Table 2 was used as the fine resin particles (B). The impact-absorbing resin composition of Example 12 was obtained in the same manner as in Example 10 except that a spherical silicone rubber having a coating layer made of the silicone resin of B was used on the surface, and then the composition was used to have a thickness of 204 μm. A sheet-like impact absorbing material of Example 12 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 12 and the impact absorption rate of the impact absorbing material were measured.

[実施例13]
実施例12において、樹脂微粒子(B)の配合量を20重量部としたこと以外は実施例12と同様にして、実施例13の衝撃吸収用樹脂組成物を得た後、それを用いて厚み204μmのシート状の実施例13の衝撃吸収材を得た。実施例1と同様にして、この実施例13の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 13]
In Example 12, the impact-absorbing resin composition of Example 13 was obtained in the same manner as in Example 12, except that the amount of the fine resin particles (B) was changed to 20 parts by weight. A 204 μm sheet-like impact absorbing material of Example 13 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 13 and the impact absorption rate of the impact absorbing material were measured.

[実施例14]
実施例10において、樹脂微粒子(B)として、表2中のNo.Cのシリコーンレジンからなる被覆層を表面に有した球状シリコーンゴムとしたこと以外は実施例10と同様にして、実施例14の衝撃吸収用樹脂組成物を得た後、それを用いて厚み207μmのシート状の実施例14の衝撃吸収材を得た。実施例1と同様にして、この実施例14の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 14]
In Example 10, No. in Table 2 was used as the fine resin particles (B). The impact-absorbing resin composition of Example 14 was obtained in the same manner as in Example 10 except that a spherical silicone rubber having a coating layer made of the silicone resin of C was used on the surface, and then the composition was used to have a thickness of 207 μm. A sheet-like impact absorbing material of Example 14 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 14 and the impact absorption rate of the impact absorbing material were measured.

[実施例15]
実施例14において、樹脂微粒子(B)の配合量を20重量部としたこと以外は実施例14と同様にして、実施例15の衝撃吸収用樹脂組成物を得た後、それを用いて厚み208μmのシート状の実施例15の衝撃吸収材を得た。実施例1と同様にして、この実施例15の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 15]
In Example 14, the impact-absorbing resin composition of Example 15 was obtained in the same manner as in Example 14, except that the amount of the resin fine particles (B) was changed to 20 parts by weight. A 208 μm sheet-like impact absorbing material of Example 15 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 15 and the impact absorption rate of the impact absorbing material were measured.

[実施例16]
実施例1において、高分子粘弾性樹脂(A)を表1中のNo.(b)の二液付加反応型シリコーンゲル(A液とB液の配合比が52:48)とし、樹脂微粒子(B)の配合割合を20重量部とした以外は、実施例1と同様にして、実施例16の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の実施例16の衝撃吸収材を得た。実施例1と同様にして、この実施例16の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 16]
In Example 1, the polymeric viscoelastic resin (A) was No. The procedure of Example 1 was repeated except that (b) the two-part addition reaction type silicone gel (the mixing ratio of liquid A and liquid B was 52:48) and the mixing ratio of fine resin particles (B) was changed to 20 parts by weight. After obtaining the impact-absorbing resin composition of Example 16, a sheet-like impact-absorbing material of Example 16 having a thickness of 200 μm was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 16 and the impact absorption rate of the impact absorbing material were measured.

[実施例17]
実施例16において、樹脂微粒子(B)として、表2中のNo.Cのシリコーンレジンからなる被覆層を表面に有した球状シリコーンゴムとしたこと以外は実施例16と同様にして、実施例17の衝撃吸収用樹脂組成物を得た後、それを用いて厚み210μmのシート状の実施例17の衝撃吸収材を得た。実施例1と同様にして、この実施例17の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 17]
In Example 16, No. in Table 2 was used as the fine resin particles (B). A resin composition for impact absorption of Example 17 was obtained in the same manner as in Example 16 except that a spherical silicone rubber having a coating layer made of the silicone resin of C was used on the surface, and then the composition was used to have a thickness of 210 μm. A sheet-like impact absorbing material of Example 17 was obtained. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 17 and the impact absorption rate of the impact absorbing material were measured.

[実施例18]
実施例1において、高分子粘弾性樹脂(A)を表1中のNo.(d)の二液付加反応型シリコーンゲル(A液とB液の配合比を47:53)とし、樹脂微粒子(B)の配合割合を20重量部とした以外は、実施例1と同様にして、実施例18の衝撃吸収用樹脂組成物を得た後、それを用いて厚み206μmのシート状の実施例18の衝撃吸収材を得た。実施例1と同様にして、この実施例18の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 18]
In Example 1, the polymeric viscoelastic resin (A) was No. The procedure of Example 1 was repeated except that (d) the two-component addition reaction silicone gel (mixing ratio of liquid A and liquid B was 47:53) and the mixing ratio of fine resin particles (B) was changed to 20 parts by weight. After obtaining the impact-absorbing resin composition of Example 18, a sheet-like impact-absorbing material of Example 18 having a thickness of 206 μm was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 18 and the impact absorption rate of the impact absorbing material were measured.

[実施例19]
実施例3で得た衝撃吸収用樹脂組成物を用いて、厚み100μmのシート状の実施例19の衝撃吸収材を得た。この実施例19の衝撃吸収材の衝撃吸収率を測定した。
[Example 19]
Using the impact-absorbing resin composition obtained in Example 3, a sheet-like impact-absorbing material of Example 19 having a thickness of 100 μm was obtained. The impact absorption rate of the impact absorbing material of Example 19 was measured.

[実施例20]
実施例3で得られた衝撃吸収用樹脂組成物を用いて、厚み500μmのシート状の実施例20の衝撃吸収材を得た。この実施例20の衝撃吸収材の衝撃吸収率を測定した。
[Example 20]
Using the impact-absorbing resin composition obtained in Example 3, a sheet-like impact-absorbing material of Example 20 having a thickness of 500 μm was obtained. The impact absorption rate of the impact absorbing material of Example 20 was measured.

[実施例21]
実施例1において、樹脂微粒子(B)として、表2中のNo.Dの球状の架橋ポリメタクリル酸ブチル粒子(積水化学工業社製 ABX-8)とし、配合量を20重量部としたこと以外は実施例1と同様にして、実施例21の衝撃吸収用樹脂組成物を得た後、それを用いて厚み197μmのシート状の実施例21の衝撃吸収材を得た。実施例1と同様にして、この実施例21の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 21]
In Example 1, No. in Table 2 was used as the fine resin particles (B). The impact-absorbing resin composition of Example 21 was prepared in the same manner as in Example 1 except that the spherical crosslinked polybutyl methacrylate particles of D (ABX-8 manufactured by Sekisui Chemical Co., Ltd.) were used and the blending amount was 20 parts by weight. After the product was obtained, it was used to obtain a sheet-like impact absorbing material of Example 21 having a thickness of 197 μm. In the same manner as in Example 1, the penetration of the hardened resin composition for impact absorption of Example 21 and the impact absorption rate of the impact absorbing material were measured.

[実施例22]
実施例21において、樹脂微粒子(B)の配合量を30重量部としたこと以外は実施例21と同様にして、実施例22の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の実施例22の衝撃吸収材を得た。実施例1と同様にして、この実施例22の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 22]
In Example 21, the resin composition for impact absorption of Example 22 was obtained in the same manner as in Example 21, except that the amount of the resin fine particles (B) was changed to 30 parts by weight. A 200 μm sheet-like impact absorbing material of Example 22 was obtained. In the same manner as in Example 1, the penetration of the cured product of the impact absorbing resin composition of Example 22 and the impact absorption rate of the impact absorbing material were measured.

[実施例23]
実施例21において、樹脂微粒子(B)の配合量を40重量部としたこと以外は実施例21と同様にして、実施例23の衝撃吸収用樹脂組成物を得た後、それを用いて厚み196μmのシート状の実施例23の衝撃吸収材を得た。実施例1と同様にして、この実施例23の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Example 23]
In Example 21, the impact-absorbing resin composition of Example 23 was obtained in the same manner as in Example 21, except that the amount of the resin fine particles (B) was changed to 40 parts by weight, and then the thickness was measured using it. A 196 μm sheet-like impact absorbing material of Example 23 was obtained. In the same manner as in Example 1, the penetration of the hardened product of the impact absorbing resin composition of Example 23 and the impact absorption rate of the impact absorbing material were measured.

実施例1~4の測定及び評価結果を表3に、実施例5~9の測定及び評価結果を表4に、実施例10~15の測定及び評価結果を表5に、実施例16~18の測定及び評価結果を表6に、実施例19、20の測定及び評価結果を表7に、実施例21~23の測定及び評価結果を表8にそれぞれ示した。また、各実施例との比較を容易とするため、後述する比較例のうち、ベースとなる高分子粘弾性樹脂(A)単体から形成した略同じ厚みの衝撃吸収材についての比較例を表中に示した。なお、表1~8の左項目欄において、樹脂微粒子(B)の圧縮強度は、表2中の粒径10μmの球状樹脂微粒子に換算した10%圧縮ひずみにおける圧縮強度Fcである。 Table 3 shows the measurement and evaluation results of Examples 1-4, Table 4 shows the measurement and evaluation results of Examples 5-9, Table 5 shows the measurement and evaluation results of Examples 10-15, and Examples 16-18. Table 6 shows the measurement and evaluation results of , Table 7 shows the measurement and evaluation results of Examples 19 and 20, and Table 8 shows the measurement and evaluation results of Examples 21 to 23. In addition, in order to facilitate comparison with each example, among the comparative examples described later, a comparative example of a shock absorbing material having substantially the same thickness formed from a single polymer viscoelastic resin (A) as a base is shown in the table. It was shown to. In the left column of Tables 1 to 8, the compressive strength of the fine resin particles (B) is the compressive strength Fc at 10% compressive strain converted to spherical fine resin particles having a particle size of 10 μm in Table 2.

Figure 0007222577000005
Figure 0007222577000005

Figure 0007222577000006
Figure 0007222577000006

Figure 0007222577000007
Figure 0007222577000007

Figure 0007222577000008
Figure 0007222577000008

Figure 0007222577000009
Figure 0007222577000009

Figure 0007222577000010
Figure 0007222577000010

[比較例1]
高分子粘弾性樹脂(A)である表1中のNo.(a)の二液付加反応型シリコーンゲル樹脂(旭化成ワッカーシリコーン社製 型番SLJ-9038のA液(主液)にB液(硬化剤含有液)を重量比で54:46に配合したもの)を、比較例1の衝撃吸収用樹脂組成物とし、この衝撃吸収用樹脂組成物をPETフィルム上に厚さ約0.2mmに平坦に塗布し、成形したのち、オーブン(東京理科器械株式会社製 WFO-520W)で70℃下で1時間の予備加熱した後、100℃下3時間加熱して硬化させて120mm×120mmで厚さ197μmのシート状の比較例1の衝撃吸収材を得た。この比較例1の衝撃吸収材の衝撃吸収率を測定した。また、比較例1の衝撃吸収用樹脂組成物を未硬化の状態で内径φ30mmの円筒容器内に厚み30mm充填したのち、オーブン(東京理科器械株式会社製 WFO-520W)で70℃下で1時間の予備加熱した後、100℃下3時間加熱して硬化させて、硬度評価用の試験体を作製し、針入度を測定した。
[Comparative Example 1]
No. in Table 1, which is the polymer viscoelastic resin (A). (a) Two-liquid addition reaction silicone gel resin (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., model number SLJ-9038, liquid A (main liquid) and liquid B (curing agent-containing liquid) blended at a weight ratio of 54:46) was used as the impact-absorbing resin composition of Comparative Example 1, and this impact-absorbing resin composition was applied evenly on a PET film to a thickness of about 0.2 mm, molded, and then placed in an oven (manufactured by Tokyo Rikaki Co., Ltd. WFO-520 W) at 70° C. for 1 hour and then cured by heating at 100° C. for 3 hours to obtain a sheet-like impact absorbing material of Comparative Example 1 having a size of 120 mm×120 mm and a thickness of 197 μm. The impact absorption rate of the impact absorbing material of Comparative Example 1 was measured. In addition, the impact-absorbing resin composition of Comparative Example 1 was filled in an uncured state into a cylindrical container having an inner diameter of φ30 mm and a thickness of 30 mm, and then placed in an oven (WFO-520W manufactured by Tokyo Rika Kikai Co., Ltd.) at 70° C. for 1 hour. After preheating, the composition was cured by heating at 100° C. for 3 hours to prepare a specimen for hardness evaluation, and the penetration was measured.

[比較例2]
比較例1において、高分子粘弾性樹脂(A)を表1中のNo.(b)の二液付加反応型シリコーンゲル(A液とB液の配合比が52:48)に変更した以外は、比較例1と同様にして、比較例2の衝撃吸収用樹脂組成物を得た後、それを用いて厚さ200μmのシート状の比較例2の衝撃吸収材を得た。実施例1等と同様にして、この比較例2の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 2]
In Comparative Example 1, the polymer viscoelastic resin (A) was No. The impact-absorbing resin composition of Comparative Example 2 was prepared in the same manner as in Comparative Example 1, except that (b) was changed to a two-component addition-reactive silicone gel (the blending ratio of liquid A and liquid B was 52:48). After that, a sheet-like shock absorbing material of Comparative Example 2 having a thickness of 200 μm was obtained by using it. In the same manner as in Example 1 and the like, the penetration of the cured impact-absorbing resin composition of Comparative Example 2 and the impact absorption rate of the impact-absorbing material were measured.

[比較例3]
比較例1において、高分子粘弾性樹脂(A)を表1中のNo.(c)の二液付加反応型シリコーンゲル(A液とB液の配合比が50:50)に変更した以外は、比較例1と同様にして、比較例3の衝撃吸収用樹脂組成物を得た後、それを用いて厚さ206μmのシート状の比較例3の衝撃吸収材を得た。実施例1等と同様にして、この比較例3の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 3]
In Comparative Example 1, the polymer viscoelastic resin (A) was No. The impact-absorbing resin composition of Comparative Example 3 was prepared in the same manner as in Comparative Example 1, except that (c) was changed to a two-component addition-reactive silicone gel (the blending ratio of liquid A and liquid B was 50:50). After that, a sheet-like impact absorbing material of Comparative Example 3 having a thickness of 206 μm was obtained. In the same manner as in Example 1 and the like, the penetration of the cured impact absorbing resin composition of Comparative Example 3 and the impact absorption rate of the impact absorbing material were measured.

[比較例4]
比較例1において、高分子粘弾性樹脂(A)を表1中のNo.(d)の二液付加反応型シリコーンゲル(A液とB液の配合比を47:53)に変更した以外は、比較例1と同様にして、比較例4の衝撃吸収用樹脂組成物を得た後、それを用いて厚さ197μmのシート状の比較例4の衝撃吸収材を得た。実施例1等と同様にして、この比較例4の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 4]
In Comparative Example 1, the polymer viscoelastic resin (A) was No. The impact-absorbing resin composition of Comparative Example 4 was prepared in the same manner as in Comparative Example 1, except that (d) was changed to a two-component addition-reactive silicone gel (the blending ratio of liquid A and liquid B was 47:53). After that, a sheet-like impact absorbing material of Comparative Example 4 having a thickness of 197 μm was obtained by using it. In the same manner as in Example 1 and the like, the penetration of the cured impact absorbing resin composition of Comparative Example 4 and the impact absorption rate of the impact absorbing material were measured.

[比較例5]
実施例1において、樹脂微粒子(B)を表2中のNo.Fの塩化ビニリデンとアクリロニトリルの共重合体からなる微小中空樹脂粒子(日本フィライト社製 エクスパンセル(登録商標)551DE40d42)とし、配合割合を3重量部とした以外は、実施例1と同様にして、比較例5の衝撃吸収用樹脂組成物を得た後、それを用いて厚み205μmのシート状の比較例5の衝撃吸収材を得た。実施例1等と同様にして、この比較例5の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 5]
In Example 1, the fine resin particles (B) were selected from Nos. In the same manner as in Example 1, except that the fine hollow resin particles (Expancel (registered trademark) 551DE40d42 manufactured by Nippon Philite Co., Ltd.) made of a copolymer of vinylidene chloride and acrylonitrile in F were used, and the blending ratio was 3 parts by weight. After obtaining the impact-absorbing resin composition of Comparative Example 5, a sheet-like impact-absorbing material of Comparative Example 5 having a thickness of 205 μm was obtained. In the same manner as in Example 1 and the like, the penetration of the cured impact-absorbing resin composition of Comparative Example 5 and the impact absorption rate of the impact-absorbing material were measured.

[比較例6]
実施例1において、樹脂微粒子(B)を表2中のNo.Eの弾力性を有さない球状の架橋ポリメタクリル酸ブチル粒子(積水化学工業社製 BM30X-8)とし、配合量を30重量部としたこと以外は実施例1と同様にして、比較例6の衝撃吸収用樹脂組成物を得た後、それを用いて厚み204μmのシート状の比較例6の衝撃吸収材を得た。実施例1等と同様にして、この比較例6の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 6]
In Example 1, the fine resin particles (B) were selected from Nos. Comparative Example 6 was carried out in the same manner as in Example 1 except that the non-elastic spherical crosslinked polybutyl methacrylate particles of E (BM30X-8 manufactured by Sekisui Chemical Co., Ltd.) were used, and the blending amount was 30 parts by weight. After obtaining the impact-absorbing resin composition of No., a sheet-like impact-absorbing material of Comparative Example 6 having a thickness of 204 μm was obtained. In the same manner as in Example 1 and the like, the penetration of the cured impact-absorbing resin composition of Comparative Example 6 and the impact absorption rate of the impact-absorbing material were measured.

[比較例7]
比較例1の衝撃吸収用樹脂組成物を用いて厚み100μmのシート状の比較例7の衝撃吸収材を得た。実施例1等と同様にして、この比較例7の衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 7]
Using the impact absorbing resin composition of Comparative Example 1, a sheet-like impact absorbing material of Comparative Example 7 having a thickness of 100 μm was obtained. The impact absorption rate of the impact absorbing material of Comparative Example 7 was measured in the same manner as in Example 1 and the like.

[比較例8]
実施例18において、樹脂微粒子(B)の配合量を40重量部としたこと以外は実施例18と同様にして、比較例8の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の比較例8の衝撃吸収材を得た。実施例1等と同様にして、この比較例8の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 8]
In Example 18, the resin composition for impact absorption of Comparative Example 8 was obtained in the same manner as in Example 18, except that the amount of the resin fine particles (B) was changed to 40 parts by weight, and then the thickness was measured using it. A 200 μm sheet-like impact absorbing material of Comparative Example 8 was obtained. In the same manner as in Example 1 and the like, the penetration of the cured product of the impact absorbing resin composition of Comparative Example 8 and the impact absorption rate of the impact absorbing material were measured.

[比較例9]
実施例21において、高分子粘弾性樹脂(A)を表1中のNo.(e)の二液付加反応型シリコーンゲル(A液とB液の配合比が55.5:44.5)とし、樹脂微粒子(B)の配合量を5重量部としたこと以外は実施例21同様にして、比較例9の衝撃吸収用樹脂組成物を得た後、それを用いて厚み200μmのシート状の比較例9の衝撃吸収材を得た。実施例1等と同様にして、この比較例9の衝撃吸収用樹脂組成物の硬化物の針入度と、衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 9]
In Example 21, the polymeric viscoelastic resin (A) was No. Example except that the two-liquid addition reaction type silicone gel (e) (the blending ratio of liquid A and liquid B is 55.5:44.5) and the blending amount of resin fine particles (B) is 5 parts by weight 21 After obtaining the resin composition for impact absorption of Comparative Example 9 in the same manner, a sheet-like impact absorber of Comparative Example 9 having a thickness of 200 μm was obtained by using it. In the same manner as in Example 1 and the like, the penetration of the cured impact absorbing resin composition of Comparative Example 9 and the impact absorption rate of the impact absorbing material were measured.

[比較例10]
比較例5の衝撃吸収用樹脂組成物を用いて厚み100μmのシート状の比較例10の衝撃吸収材を得た。実施例1等と同様にして、この比較例10の衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 10]
Using the impact absorbing resin composition of Comparative Example 5, a sheet-like impact absorbing material of Comparative Example 10 having a thickness of 100 μm was obtained. The impact absorption rate of the impact absorbing material of Comparative Example 10 was measured in the same manner as in Example 1 and the like.

[比較例11]
比較例5の衝撃吸収用樹脂組成物を用いて厚み500μmのシート状の比較例11の衝撃吸収材を得た。実施例1等と同様にして、この比較例11の衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 11]
Using the impact absorbing resin composition of Comparative Example 5, a sheet-like impact absorbing material of Comparative Example 11 having a thickness of 500 μm was obtained. The impact absorption rate of the impact absorbing material of Comparative Example 11 was measured in the same manner as in Example 1 and the like.

[比較例12]
比較例1の衝撃吸収用樹脂組成物を用いて厚み500μmのシート状の比較例12の衝撃吸収材を得た。実施例1等と同様にして、この比較例12の衝撃吸収材の衝撃吸収率を測定した。
[Comparative Example 12]
Using the impact absorbing resin composition of Comparative Example 1, a sheet-like impact absorbing material of Comparative Example 12 having a thickness of 500 μm was obtained. The impact absorption rate of the impact absorbing material of Comparative Example 12 was measured in the same manner as in Example 1 and the like.

比較例1~4、7及び12の評価結果を表9に、比較例5、6、8及び9の評価結果を表10に、比較例10及び11の評価結果を表11に示した。また、表10では、比較のため、ベースとなる高分子粘弾性樹脂(A)単体から形成した衝撃吸収材についての比較例1及び4を再掲し、表11では比較例7及び12を再掲した。 The evaluation results of Comparative Examples 1 to 4, 7 and 12 are shown in Table 9, the evaluation results of Comparative Examples 5, 6, 8 and 9 are shown in Table 10, and the evaluation results of Comparative Examples 10 and 11 are shown in Table 11. For comparison, Table 10 shows Comparative Examples 1 and 4 of the impact absorbing material formed from the base polymer viscoelastic resin (A) alone, and Table 11 shows Comparative Examples 7 and 12. .

Figure 0007222577000011
Figure 0007222577000011

Figure 0007222577000012
Figure 0007222577000012

Figure 0007222577000013
Figure 0007222577000013

実施例1~23の結果から、本発明の構成の衝撃吸収材は、樹脂微粒子が配合されていない比較例1~4及び7、12の衝撃吸収材に比べて、衝撃吸収用樹脂組成物を構成する高分子粘弾性樹脂(A)の硬度や衝撃吸収材の厚みが同じ条件での比較において衝撃吸収率が向上しており、0.1mm以上、特に0.1mm~0.5mmの薄厚の領域において優れた衝撃吸収性を有する衝撃吸収材が得られることが分かった。 From the results of Examples 1 to 23, the impact absorbing materials having the structure of the present invention contained the impact absorbing resin composition more than the impact absorbing materials of Comparative Examples 1 to 4, 7, and 12, which did not contain fine resin particles. The impact absorption rate is improved in comparison under the same conditions of the hardness of the polymer viscoelastic resin (A) and the thickness of the impact absorbing material. It has been found that a shock absorber with excellent shock absorption in the region is obtained.

衝撃吸収用樹脂組成物を構成する高分子粘弾性樹脂(A)の硬度ごとに、衝撃吸収効果を見てみると、(1)実施例1~9並びに実施例21~23と、比較例1との比較、(2)実施例10~15と比較例3との比較、(3)実施例16及び17と比較例2との比較、(4)実施例18と比較例4との比較、から、いずれの高分子粘弾性樹脂(A)の硬度においても、衝撃吸収率が向上し、5%以上の向上率が示された。 Looking at the impact absorption effect for each hardness of the polymer viscoelastic resin (A) constituting the impact absorption resin composition, (1) Examples 1 to 9 and Examples 21 to 23, and Comparative Example 1 (2) Comparison between Examples 10 to 15 and Comparative Example 3, (3) Comparison between Examples 16 and 17 and Comparative Example 2, (4) Comparison between Example 18 and Comparative Example 4, Therefore, the impact absorption rate was improved, and an improvement rate of 5% or more was shown for any hardness of the polymer viscoelastic resin (A).

また、実施例1~4、19及び20の結果から、衝撃吸収材の厚みが小さくなるほど衝撃吸収率が小さくなるが、実施例19と比較例7との結果から、少なくとも厚みが100μmの衝撃吸収材とした場合であっても、本発明に係る衝撃吸収材は27%超もの衝撃吸収性能の向上率が示されており、同じ厚みにおける衝撃吸収性に優れることがわかった。 Further, from the results of Examples 1 to 4, 19 and 20, the smaller the thickness of the shock absorbing material, the smaller the impact absorption rate. Even when it is used as a material, the impact absorbing material according to the present invention shows an improvement rate of more than 27% in impact absorbing performance, and it was found that the impact absorbing property is excellent at the same thickness.

また、実施例22と比較例6との比較から、樹脂微粒子(B)の圧縮強度Fcが12MPaを超えると衝撃吸収率が約12%低下し、実施例5~7、12、13と比較例5との比較から樹脂微粒子(B)が中空粒子で、その圧縮強度Fcが0.06MPa未満であると衝撃吸収率が約23%低下することから、樹脂微粒子(B)の圧縮強度Fcは0.06~12MPaが好ましく、0.08~10MPaの範囲がより好ましいことが分かった。 Further, from a comparison between Example 22 and Comparative Example 6, when the compressive strength Fc of the resin fine particles (B) exceeded 12 MPa, the impact absorption rate decreased by about 12%, and Examples 5 to 7, 12, and 13 and Comparative Example 5, if the fine resin particles (B) are hollow particles and have a compressive strength Fc of less than 0.06 MPa, the impact absorption rate is reduced by about 23%. It has been found that a range of 0.06 to 12 MPa is preferred, and a range of 0.08 to 10 MPa is more preferred.

また、衝撃吸収材の厚みが100μmのものについての実施例19と比較例7、10との比較、厚みが500μmのものについての実施例20と比較例11、12との比較、厚みが200μmのものについての実施例3と比較例1、5との比較の各結果から、高分子粘弾性樹脂体(A)の硬度と衝撃緩衝材の厚みが同じ条件において、中空の樹脂微粒子(B)を用いると衝撃吸収率が著しく低下し、高分子粘弾性樹脂(A)単体から形成した衝撃吸収材の衝撃吸収率に対する向上率も低下することから、中実の樹脂微粒子(B)を適用することが本発明において重要な要件の一つであることが分かった。また、衝撃吸収材の厚みが500μm以下になると中空の樹脂粒子(B)の添加によって、高分子粘弾性樹脂(A)単体から形成した衝撃吸収材よりも衝撃吸収率が低下することからも、厚みが0.5mm以下の領域での本発明の有効性が確認できた。 In addition, comparison between Example 19 and Comparative Examples 7 and 10 for a shock absorbing material with a thickness of 100 µm, comparison between Example 20 and Comparative Examples 11 and 12 for a shock absorbing material with a thickness of 500 µm, and comparison between a shock absorbing material with a thickness of 200 µm From the results of the comparison between Example 3 and Comparative Examples 1 and 5, the hollow resin fine particles (B) were added under the same conditions for the hardness of the polymer viscoelastic resin body (A) and the thickness of the shock absorbing material. When used, the impact absorption rate is significantly lowered, and the rate of improvement of the impact absorption rate of the impact absorption material formed from the polymer viscoelastic resin (A) alone is also lowered. is one of the important requirements in the present invention. In addition, when the thickness of the impact absorbing material is 500 μm or less, the addition of the hollow resin particles (B) reduces the impact absorption rate compared to the impact absorbing material formed from the polymer viscoelastic resin (A) alone. The effectiveness of the present invention was confirmed in a region where the thickness is 0.5 mm or less.

また、実施例1~23と比較例8及び比較例9との比較から、本発明の衝撃吸収用樹脂組成物の硬化物の硬度がJIS K2207に準拠した針入度(25℃)で70未満であると、衝撃吸収材が硬くなりすぎて衝撃吸収率が十分に得られず、170を超えると、衝撃吸収材が柔らかくなりすぎて衝撃による底付きが発生し衝撃吸収率が低下するとともに、ハンドリング性が悪くなることがわかった。 Further, from a comparison between Examples 1 to 23 and Comparative Examples 8 and 9, the hardness of the cured product of the impact absorbing resin composition of the present invention is less than 70 in terms of penetration (25°C) according to JIS K2207. If it is more than 170, the shock absorbing material becomes too hard and the impact absorption rate is not sufficiently obtained, and if it exceeds 170, the shock absorbing material becomes too soft and bottoms out due to the impact, resulting in a decrease in the shock absorption rate. It was found that the handling performance deteriorated.

本発明の衝撃吸収材は、0.5mm以下の薄厚でも優れた衝撃吸収性を有しており、特に厚さが0.1mm以上0.5mm以下の衝撃吸収材でその効果が顕著なので、特に狭スペースに実装して衝撃吸収する用途に適しており、電子機器などの衝撃耐久性の向上に有用である。 The impact-absorbing material of the present invention has excellent impact-absorbing properties even when the thickness is as thin as 0.5 mm or less. It is suitable for mounting in a narrow space and absorbing impact, and is useful for improving the impact durability of electronic equipment.

1 衝撃吸収用樹脂組成物
10 衝撃吸収材
2 高分子粘弾性樹脂
3 樹脂微粒子
REFERENCE SIGNS LIST 1 impact absorbing resin composition 10 impact absorbing material 2 polymer viscoelastic resin 3 fine resin particles

Claims (8)

高分子粘弾性樹脂(A)に樹脂微粒子(B)を分散してなる衝撃吸収用樹脂組成物の硬化物又は成形物からなる、厚みが0.15~0.45mmの衝撃吸収材であって、
前記高分子粘弾性樹脂(A)は、シリコーン系粘弾性樹脂であり、
前記樹脂微粒子(B)は、下記式(1)で求められる圧縮強度Fcが0.06~10MPaの弾力性を有する中実粒子であり、
Figure 0007222577000014
(式(1)中、Rは前記樹脂微粒子(B)の粒径(μm)、Fmは前記樹脂微粒子(B)のJIS K6254 D法に準拠して測定した10%圧縮ひずみ時の圧縮強度(10%変形圧縮応力)の値である。)
前記高分子粘弾性樹脂(A)の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で100~170であり、
前記衝撃吸収用樹脂組成物の硬化物又は成形物の硬度が、針入度(JIS K2207に準拠、25℃)で70~170であることを特徴とする衝撃吸収材。
A shock absorbing material having a thickness of 0.15 to 0.45 mm, comprising a cured product or molded product of a resin composition for shock absorption in which fine resin particles (B) are dispersed in a polymer viscoelastic resin (A). ,
The polymer viscoelastic resin (A) is a silicone-based viscoelastic resin,
The resin fine particles (B) are solid particles having elasticity with a compressive strength Fc of 0.06 to 10 MPa obtained by the following formula (1),
Figure 0007222577000014
(In formula (1), R is the particle size (μm) of the resin fine particles (B), and Fm is the compressive strength of the resin fine particles (B) at 10% compression strain measured according to JIS K6254 D method ( 10% deformation compressive stress) value.)
The cured product or molded product of the polymer viscoelastic resin (A) has a hardness of 100 to 170 in terms of penetration (according to JIS K2207, 25° C.),
A shock absorbing material characterized in that the cured product or molded product of the impact absorbing resin composition has a hardness of 70 to 170 in terms of penetration (according to JIS K2207, 25°C).
前記衝撃吸収用樹脂組成物における、前記樹脂微粒子(B)の配合割合が前記高分子粘弾性樹脂(A)100重量部に対して5~40重量部であることを特徴とする請求項1に記載の衝撃吸収材。 2. The method according to claim 1, wherein the blending ratio of the fine resin particles (B) in the resin composition for impact absorption is 5 to 40 parts by weight with respect to 100 parts by weight of the polymer viscoelastic resin (A). Shock absorber as described. 前記樹脂微粒子(B)は、平均粒径が0.5~50μmであることを特徴とする請求項1又は2に記載の衝撃吸収材。 3. The impact absorbing material according to claim 1, wherein the fine resin particles (B) have an average particle size of 0.5 to 50 μm. 前記樹脂微粒子(B)が球状であることを特徴とする請求項1~3のいずれか一項に記載の衝撃吸収材。 4. The impact absorbing material according to any one of claims 1 to 3, wherein the resin fine particles (B) are spherical. 前記樹脂微粒子(B)は、表面全体を被覆する被覆層を備えることを特徴とする請求項1~4のいずれか一項に記載の衝撃吸収材。 The impact absorbing material according to any one of claims 1 to 4, wherein the resin fine particles (B) are provided with a coating layer covering the entire surface. 前記樹脂微粒子(B)は、シリコーン系樹脂微粒子またはアクリル系樹脂微粒子であることを特徴とする請求項1~5のいずれか一項に記載の衝撃吸収材。 6. The impact absorbing material according to claim 1, wherein the resin fine particles (B) are silicone resin fine particles or acrylic resin fine particles. 前記樹脂微粒子(B)は、成分又は形状が異なる2種類以上の樹脂微粒子の混合物であることを特徴とする請求項1~6のいずれか一項に記載の衝撃吸収材。 The impact absorbing material according to any one of claims 1 to 6, wherein the resin fine particles (B) are a mixture of two or more kinds of resin fine particles having different components or shapes. 前記衝撃吸収用樹脂組成物は、さらに中空の樹脂粒子を含むことを特徴とする請求項1~7のいずれか一項に記載の衝撃吸収材。 The impact absorbing material according to any one of claims 1 to 7, wherein the impact absorbing resin composition further contains hollow resin particles.
JP2022537976A 2020-07-21 2021-07-16 shock absorber Active JP7222577B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020124119 2020-07-21
JP2020124119 2020-07-21
PCT/JP2021/026779 WO2022019229A1 (en) 2020-07-21 2021-07-16 Shock-absorbing material

Publications (3)

Publication Number Publication Date
JPWO2022019229A1 JPWO2022019229A1 (en) 2022-01-27
JPWO2022019229A5 JPWO2022019229A5 (en) 2022-12-28
JP7222577B2 true JP7222577B2 (en) 2023-02-15

Family

ID=79729469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022537976A Active JP7222577B2 (en) 2020-07-21 2021-07-16 shock absorber

Country Status (2)

Country Link
JP (1) JP7222577B2 (en)
WO (1) WO2022019229A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181975A (en) 2001-03-15 2004-07-02 Mitsui Chemicals Inc Laminate and display device using it
JP2007277521A (en) 2006-03-15 2007-10-25 Nitto Denko Corp Double-sided adhesive tape or sheet, and liquid crystal display device
JP2012102878A (en) 2011-11-22 2012-05-31 Taika:Kk Thin shock absorbing material and thin shock absorbing laminated body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181975A (en) 2001-03-15 2004-07-02 Mitsui Chemicals Inc Laminate and display device using it
JP2007277521A (en) 2006-03-15 2007-10-25 Nitto Denko Corp Double-sided adhesive tape or sheet, and liquid crystal display device
JP2012102878A (en) 2011-11-22 2012-05-31 Taika:Kk Thin shock absorbing material and thin shock absorbing laminated body

Also Published As

Publication number Publication date
JPWO2022019229A1 (en) 2022-01-27
WO2022019229A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2545103B1 (en) Viscoelastic silicone rubber compositions
JP3274487B2 (en) Foamable silicone rubber composition and method for producing silicone rubber foam
US4861804A (en) Compound type silicone gel material
JP5933114B2 (en) Polyurethane foam and method for producing the same
TW200301281A (en) Energy absorbing material
JP7469408B2 (en) Porous cell body and method for producing same
Xiaoke et al. Shear thickening gel reinforced flexible polyurethane foam and its enhanced properties
CN104755542A (en) Silcone compositions and related methods
CN101831182A (en) Liquid silicon rubber compound for precisely moulding
JP7222577B2 (en) shock absorber
JP4114050B2 (en) Silicone heat insulating sheet for electronic equipment and heat insulating method using the same
JP2017179033A (en) Silicone rubber composition and silicone rubber crosslinked body
JP2008169935A (en) Thin shock absorbing material and thin shock absorbing layered product
CN109749697A (en) Three components foaming silicone adhesive compositions and application thereof
JPS60217262A (en) Liquid curable polyorganosiloxane composition
CN115044084A (en) Use of polyborosiloxane elastomers for display protection
Kaewpradit et al. Impact responses of an open‐cell natural rubber foam impregnated with shear thickening fluid
JP2023111973A (en) Polyurethane foam and article
US7528195B2 (en) Mixing and curing carboxy-terminated butadiene-nitrile rubber, epoxy resin and curing agent
JP5352661B2 (en) Thin impact cushioning material and thin impact cushion laminate
JP4766741B2 (en) Non-rebound resilience / damping polymer composition
JP2824922B2 (en) Vibration absorbing member
JP7293047B2 (en) Method for manufacturing polyurethane foam
JP2001315135A (en) Method for manufacturing low specific gravity silicone rubber elastomer
Li et al. Preparation and properties of polyurethane‐modified epoxy cured in different simulated gravity environments

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20221024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R150 Certificate of patent or registration of utility model

Ref document number: 7222577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150