JP7219391B2 - light emitting element - Google Patents

light emitting element Download PDF

Info

Publication number
JP7219391B2
JP7219391B2 JP2018143616A JP2018143616A JP7219391B2 JP 7219391 B2 JP7219391 B2 JP 7219391B2 JP 2018143616 A JP2018143616 A JP 2018143616A JP 2018143616 A JP2018143616 A JP 2018143616A JP 7219391 B2 JP7219391 B2 JP 7219391B2
Authority
JP
Japan
Prior art keywords
external connection
connection portion
semiconductor layer
holes
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018143616A
Other languages
Japanese (ja)
Other versions
JP2020021803A (en
Inventor
秀俊 田中
政樹 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2018143616A priority Critical patent/JP7219391B2/en
Publication of JP2020021803A publication Critical patent/JP2020021803A/en
Application granted granted Critical
Publication of JP7219391B2 publication Critical patent/JP7219391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、発光素子に関する。 Embodiments of the present invention relate to light emitting devices.

従来から、n型及びp型半導体層の半導体積層体において、p型半導体層の一部を除去してn型半導体層を露出させた上にn電極を形成し、残りのp型半導体層の略全面にp電極が形成され、半導体積層体の電極形成面側を光取出し面とする発光素子が提案されている。このような発光素子において、より一層の光取り出しを向上させるために、p電極に貫通孔を形成することにより、p電極による光の吸収を抑制し、光の取出し効率を図ることが提案されている(特許文献1等)。 Conventionally, in a semiconductor laminate of n-type and p-type semiconductor layers, a portion of the p-type semiconductor layer is removed to expose the n-type semiconductor layer, and an n-electrode is formed thereon. A light-emitting device has been proposed in which a p-electrode is formed substantially over the entire surface and the electrode-formed surface of the semiconductor laminate is used as a light extraction surface. In order to further improve light extraction in such a light-emitting device, it has been proposed to form a through hole in the p-electrode to suppress light absorption by the p-electrode and improve light extraction efficiency. (Patent Document 1, etc.).

特開2012-59791号公報JP 2012-59791 A

しかし、近年の発光素子のさらなる高輝度、高光出力化等に伴い、より一層の光取り出し効率の向上が求められている。
本発明の実施形態は、上記課題に鑑みなされたものであり、光の取り出し効率をさらに向上させることができる発光素子を提供することを目的とする。
However, with the recent trend toward higher luminance and higher light output of light-emitting elements, there is a demand for further improvement in light extraction efficiency.
The embodiments of the present invention have been made in view of the above problems, and an object thereof is to provide a light-emitting element capable of further improving light extraction efficiency.

本発明の一実施形態に係る発明を以下に示す。
n型半導体層と、
前記n型半導体層の上面の一部を除く領域に設けられたp型半導体層と、
前記n型半導体層の上面の一部と電気的に接続されたn側外部接続部と、前記n側外部接続部から延伸するn側延伸部とを有するn側電極と、
前記p型半導体層に電気的に接続された透光性を有する導電膜と、
該導電膜の上面に配置されたp側外部接続部と、前記p側外部接続部から前記n側外部接続部に向かって延伸するp側延伸部とを有するp側電極とを備える発光素子であって、
前記導電膜は、貫通した複数の貫通孔を有し、
前記複数の貫通孔は、平面視において、前記p側延伸部の先端部と前記n側外部接続部を最短で結ぶ線に平行な第1の方向に沿って設けられた長細の形状を有する第1貫通孔と、前記第1の方向とは異なり、かつ前記n側延伸部と前記p側延伸部とが対向する第2の方向に沿って設けられた長細の形状を有する第2貫通孔とを少なくとも有する発光素子。
An invention according to one embodiment of the present invention is shown below.
an n-type semiconductor layer;
a p-type semiconductor layer provided in a region excluding part of the upper surface of the n-type semiconductor layer;
an n-side electrode having an n-side external connection portion electrically connected to a portion of the upper surface of the n-type semiconductor layer and an n-side extension portion extending from the n-side external connection portion;
a translucent conductive film electrically connected to the p-type semiconductor layer;
A light-emitting element comprising a p-side electrode having a p-side external connection portion disposed on the upper surface of the conductive film and a p-side extension portion extending from the p-side external connection portion toward the n-side external connection portion. There is
The conductive film has a plurality of through-holes,
The plurality of through-holes, in plan view, have an elongated shape provided along a first direction parallel to the shortest line connecting the tip of the p-side extension portion and the n-side external connection portion. A first through-hole and a second through-hole having an elongated shape provided along a second direction different from the first direction and in which the n-side extending portion and the p-side extending portion face each other. A light-emitting element having at least a hole.

本発明の実施形態によれば、光の取り出し効率をさらに向上させることができる発光素子を提供することができる According to the embodiments of the present invention, it is possible to provide a light-emitting device capable of further improving light extraction efficiency.

本発明の一実施形態の発光素子における電極の配置を説明するための概略平面図である。FIG. 2 is a schematic plan view for explaining the arrangement of electrodes in the light emitting device of one embodiment of the present invention; 図1AのI-I’線における断面図である。1B is a cross-sectional view taken along the line I-I' of FIG. 1A; FIG. 図1Aにおける発光素子の導電膜の貫通孔を説明するための概略平面図である。1B is a schematic plan view for explaining a through-hole in a conductive film of the light-emitting element in FIG. 1A; FIG. 図1Aにおける発光素子の電流の流れのシミュレーションを示す図である。FIG. 1B is a diagram showing a simulation of the current flow of the light emitting element in FIG. 1A;

本発明の実施形態においては、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。以下の説明において、同一の名称、符号については同一又は同質の部材を示しており、詳細説明を適宜省略する。 In the embodiments of the present invention, the sizes and positional relationships of members shown in each drawing may be exaggerated for clarity of explanation. In the following description, the same names and symbols denote the same or homogeneous members, and detailed description thereof will be omitted as appropriate.

本発明の実施形態の発光素子10は、図1A、図1B及び図1Cに示すように、主として、n型半導体層と11、p型半導体層12と、n側電極21と、p型半導体層12に電気的に接続され、複数の貫通孔を備える導電膜15と、p側電極22とを備える。貫通孔は、所定の方向に沿って設けられた長細の形状を有する第1貫通孔15Aと、これとは異なる方向に沿って設けられた長細の形状を有する第2貫通孔15Bを備える。
このように、異なる向きに沿った長細の形状を有する複数の貫通孔を備える導電膜15を介してp型半導体層12に電流を供給するために、貫通孔を電流の向きに沿った配置とすることによって、導電膜15内の電流が阻害されることなく、効果的に拡散できるため、順方向電圧Vfの上昇を効率的に抑制することができる。また、p型半導体層12の略全面に配置される導電膜15による光の吸収を低減することによって、光取出し効率をも向上させることができる。
As shown in FIGS. 1A, 1B, and 1C, the light-emitting device 10 of the embodiment of the present invention mainly includes an n-type semiconductor layer 11, a p-type semiconductor layer 12, an n-side electrode 21, and a p-type semiconductor layer. 12 and includes a conductive film 15 having a plurality of through holes, and a p-side electrode 22 . The through-holes include a first through-hole 15A having an elongated shape provided along a predetermined direction, and a second through-hole 15B having an elongated shape provided along a different direction. .
Thus, in order to supply a current to the p-type semiconductor layer 12 through the conductive film 15 having a plurality of elongated through-holes extending in different directions, the through-holes are arranged along the current direction. As a result, the current in the conductive film 15 can be effectively diffused without being hindered, so that an increase in the forward voltage Vf can be efficiently suppressed. In addition, by reducing the light absorption by the conductive film 15 arranged on substantially the entire surface of the p-type semiconductor layer 12, the light extraction efficiency can also be improved.

(n型半導体層11及びp型半導体層12)
n型半導体層11及びp型半導体層12は、半導体層から構成され、通常、これらの間に発光層13が設けられ、n型半導体層11、発光層13及びp型半導体層12がこの順に積層されて構成される。半導体層の種類、材料は特に限定されるものではなく、例えばInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)等の窒化物半導体材料が好ましい。
n型半導体層11、発光層13及びp型半導体層12は、通常、基板16上に積層されている。基板16の材料としては、サファイア(Al23)のような絶縁性基板、炭化ケイ素(SiC)、Si、GaAs及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板等が挙げられる。半導体層として窒化物半導体を用いる場合には、サファイア(Al23)からなる基板16を用いることが好ましい。基板16は、最終的に発光素子10から除去されていてもよい。基板16を除去する方法は、公知のレーザリフトオフ法を利用することができる。基板16の平面形状が正方形状である場合、基板16の一辺の長さは、300μm以上3000μm以下程度とすることができ、好ましくは500μm以上1500μm以下程度である。
p型半導体層12は、n型半導体層11の上面の一部を除く領域に設けられている。言い換えると、n型半導体層11、発光層13及びp型半導体層12が積層された一部の領域において、少なくとも発光層13とp型半導体層12とが除去されて、n型半導体層11が発光層13及びp型半導体層12から露出する露出領域を備える。露出領域は、平面視において、発光素子10の外周領域であってもよいし、外周領域から内側に連続して設けられていてもよい。また、露出領域の全周がp型半導体層12に囲まれていてもよい。
(n-type semiconductor layer 11 and p-type semiconductor layer 12)
The n-type semiconductor layer 11 and the p-type semiconductor layer 12 are composed of semiconductor layers, and usually a light-emitting layer 13 is provided between them. It is constructed by stacking. The type and material of the semiconductor layer are not particularly limited, and nitride semiconductor materials such as InxAlyGa1 -XYN ( 0≤X, 0≤Y, X+Y≤1) are preferable.
The n-type semiconductor layer 11 , the light-emitting layer 13 and the p-type semiconductor layer 12 are usually laminated on the substrate 16 . Materials for the substrate 16 include insulating substrates such as sapphire (Al 2 O 3 ), silicon carbide (SiC), Si, GaAs, and oxide substrates such as lithium niobate and neodymium gallate which are lattice-bonded with nitride semiconductors. etc. When using a nitride semiconductor as the semiconductor layer, it is preferable to use a substrate 16 made of sapphire (Al 2 O 3 ). Substrate 16 may be finally removed from light emitting device 10 . As a method for removing the substrate 16, a known laser lift-off method can be used. When the planar shape of the substrate 16 is square, the length of one side of the substrate 16 can be approximately 300 μm to 3000 μm, preferably approximately 500 μm to 1500 μm.
The p-type semiconductor layer 12 is provided in a region excluding a portion of the upper surface of the n-type semiconductor layer 11 . In other words, in a partial region where the n-type semiconductor layer 11, the light-emitting layer 13, and the p-type semiconductor layer 12 are stacked, at least the light-emitting layer 13 and the p-type semiconductor layer 12 are removed, leaving the n-type semiconductor layer 11 An exposed region exposed from the light emitting layer 13 and the p-type semiconductor layer 12 is provided. The exposed region may be the outer peripheral region of the light emitting element 10 in a plan view, or may be continuously provided inwardly from the outer peripheral region. Also, the entire periphery of the exposed region may be surrounded by the p-type semiconductor layer 12 .

(n側電極21及びp側電極22)
n側電極21はn型半導体層11の上面の一部と直接又は間接的に電気的に接続され、p側電極22はp型半導体層12の上面に直接又は間接的に電気的に接続されている。特に、p側電極22は、図1Bに示すように、p型半導体層12との間に、p側電極22の幅と同等又はp側電極22の幅よりも若干広い幅を有する絶縁膜14を介して配置されていることが好ましい。n側電極21は、n側外部接続部21aと、このn側外部接続部21aから延伸するn側延伸部21bとを有する。p側電極22は、導電膜15と、p側外部接続部22aと、p側外部接続部22aから延伸するp側延伸部22b、22cとを有する。
n側電極21及びp側電極22は、例えば、Ni、Rh、Cr、Au、W、Pt、Ti、Al等の金属又はそれらの合金による単層膜又は多層膜を用いることができる。そのなかでも、n側電極21及びp側電極22にはTi/Pt/AuやTi/Rh/Au等の積層した多層膜を用いることが好ましい。
なお、n側電極21及びp側電極22は、いずれも、後述するn側外部接続部21a及びp側外部接続部22aにおいて、外部接続部材と接続する領域を除いて、絶縁性を確保し、保護するために、その表面を、図1Bに示すように、保護膜17で被覆することが好ましい。
(n-side electrode 21 and p-side electrode 22)
The n-side electrode 21 is directly or indirectly electrically connected to part of the upper surface of the n-type semiconductor layer 11, and the p-side electrode 22 is directly or indirectly electrically connected to the upper surface of the p-type semiconductor layer 12. ing. In particular, as shown in FIG. 1B, between the p-side electrode 22 and the p-type semiconductor layer 12 is an insulating film 14 having a width equal to or slightly wider than the width of the p-side electrode 22 . It is preferably arranged through The n-side electrode 21 has an n-side external connection portion 21a and an n-side extension portion 21b extending from the n-side external connection portion 21a. The p-side electrode 22 has a conductive film 15, a p-side external connection portion 22a, and p-side extension portions 22b and 22c extending from the p-side external connection portion 22a.
For the n-side electrode 21 and the p-side electrode 22, for example, a single layer film or a multilayer film made of metals such as Ni, Rh, Cr, Au, W, Pt, Ti, and Al, or alloys thereof can be used. Among them, it is preferable to use a laminated multilayer film such as Ti/Pt/Au or Ti/Rh/Au for the n-side electrode 21 and the p-side electrode 22 .
Note that the n-side electrode 21 and the p-side electrode 22 both ensure insulation in the n-side external connection portion 21a and the p-side external connection portion 22a, which will be described later, except for a region connected to an external connection member. For protection, its surface is preferably coated with a protective film 17, as shown in FIG. 1B.

(n側外部接続部21a及びp側外部接続部22a)
n側外部接続部21a及びp側外部接続部22aは、発光素子10に電流を供給するために、例えば、導電性ワイヤなどの外部接続部材と接続するための電極である。
n側外部接続部21a及びp側外部接続部22aは、発光素子10の光取り出し面側に設けられている。n側外部接続部21a及びp側外部接続部22aは、発光素子10の同一面側に設けられている。平面視において正方形状を有する発光素子10において、n側外部接続部21aを1つの辺の近傍に1つ、p側外部接続部22aを1つの辺に対向する他の辺の近傍に1つ配置されていることが好ましい。これにより、発光素子10の広い範囲に電流を拡散させることができる。n側外部接続部21a及びp側外部接続部22aはそれぞれ複数配置されていてもよい。
例えば、n側外部接続部21a及びp側外部接続部22aは、平面形状が正方形、長方形等の四角形、六角形等の多角形の発光素子において、発光素子の中線上又は対角線上の領域にそれぞれ設けられていることが好ましい。これにより、発光素子の駆動電圧を低減しながら、発光面全体に亘って均一な発光を確保することが容易となる。
n側外部接続部21a及びp側外部接続部22aの形状は、発光素子の大きさ、電極の配置等によって適宜調整することができ、例えば、円形、正多角形などの形状とすることができる。なかでも、ワイヤボンディングのしやすさ等を考慮すると、円形状又はこれに近似する形状が好ましい。n側外部接続部21a及びp側外部接続部22aの大きさは、発光素子の大きさ、電極の配置等によって適宜調整することができ、そのn側外部接続部21a及びp側外部接続部22aの最長の長さが、発光素子の一辺の長さの5%~30%程度の長さ又は5%~20%程度の長さとすることが好ましい。n側外部接続部21a及びp側外部接続部22aの形状及び大きさは互いに異なっていてもよいが、同じであることが好ましい。n側外部接続部21a及びp側外部接続部22aの形状及び大きさを同じにすることで、それぞれの外部接続部に供給される電流を均等にさせやすくなる。
(n-side external connection portion 21a and p-side external connection portion 22a)
The n-side external connection portion 21a and the p-side external connection portion 22a are electrodes for connecting to an external connection member such as a conductive wire, for example, in order to supply current to the light emitting element 10 .
The n-side external connection portion 21 a and the p-side external connection portion 22 a are provided on the light extraction surface side of the light emitting element 10 . The n-side external connection portion 21 a and the p-side external connection portion 22 a are provided on the same surface side of the light emitting element 10 . In the light-emitting element 10 having a square shape in plan view, one n-side external connection portion 21a is arranged near one side, and one p-side external connection portion 22a is arranged near the other side opposite to the one side. It is preferable that Thereby, the current can be diffused over a wide area of the light emitting element 10 . A plurality of n-side external connection portions 21a and p-side external connection portions 22a may be arranged.
For example, the n-side external connection portion 21a and the p-side external connection portion 22a are formed in regions on the midline or on the diagonal line of the light-emitting element whose planar shape is a quadrangle such as a square, a rectangle, or a polygon such as a hexagon, respectively. is preferably provided. This facilitates ensuring uniform light emission over the entire light emitting surface while reducing the driving voltage of the light emitting element.
The shape of the n-side external connection portion 21a and the p-side external connection portion 22a can be appropriately adjusted depending on the size of the light emitting element, the arrangement of the electrodes, etc., and can be circular, regular polygonal, or the like. . Of these, a circular shape or a shape similar thereto is preferable in consideration of ease of wire bonding. The sizes of the n-side external connection portion 21a and the p-side external connection portion 22a can be appropriately adjusted depending on the size of the light emitting element, the arrangement of the electrodes, etc., and the n-side external connection portion 21a and the p-side external connection portion 22a is preferably about 5% to 30% or about 5% to 20% of the length of one side of the light emitting element. The shape and size of the n-side external connection portion 21a and the p-side external connection portion 22a may be different from each other, but are preferably the same. By making the shape and size of the n-side external connection portion 21a and the p-side external connection portion 22a the same, it becomes easier to equalize the currents supplied to the respective external connection portions.

(n側延伸部21b及びp側延伸部22b、22c)
n側外部接続部21aは、n側外部接続部21aから延伸するn側延伸部21bを有している。
p側外部接続部22aは、p側外部接続部22aから延伸するp側延伸部22b、22cを有している。n側延伸部21b及びp側延伸部22b、22cは、例えば、1つのみであってもよいし、2以上であってもよい。延伸部の形状、大きさ等は発光素子の平面形状及び大きさによって適宜設定することができる。例えば、延伸部の形状は、直線状、曲線状、屈曲形状、分岐状又はこれらの組み合わせであってもよい。例えば、延伸部の形状としては、p側延伸部22b又はn側外部接続部21aに向かって延伸する形状、p側又はn側外部接続部21aの両側に向かって延伸する形状が挙げられる。また、p側外部接続部22a又はn側外部接続部21aを取り囲むようにその外側に向かって延伸する形状、p側外部接続部22a及びn側延伸部21aの双方が存在する場合には、その内側又は外側に延長する形状等が挙げられる。
n側延伸部21b及びp側延伸部22b、22cの太さは、n側外部接続部21a及びp側外部接続部22aの最大幅よりも小さければよく、例えば、最大幅の5%~90%、5%~70%、5%~30%、5%~20%、5%~15%程度の太さが挙げられる。延伸部は全長において同じ幅であってもよいし、部分的に変動していてもよい。一本の延伸部の長さは、その形成位置及び形状等によって適宜設定することができ、例えば、発光素子の一辺又は対角線の20%~150%、30%~120%が挙げられる。n側延伸部21b及びp側延伸部22b、22cは、それぞれ、異なる数、異なる形状、異なる太さであってもよいし、同じ数、同じ形状、同じ太さであってもよい。
(n-side extending portion 21b and p-side extending portions 22b and 22c)
The n-side external connection portion 21a has an n-side extension portion 21b extending from the n-side external connection portion 21a.
The p-side external connection portion 22a has p-side extension portions 22b and 22c extending from the p-side external connection portion 22a. For example, there may be only one n-side extending portion 21b and p-side extending portions 22b and 22c, or there may be two or more. The shape, size, etc. of the extending portion can be appropriately set according to the planar shape and size of the light emitting element. For example, the shape of the extension may be straight, curved, curved, branched, or a combination thereof. For example, the shape of the extending portion includes a shape extending toward the p-side extending portion 22b or the n-side external connection portion 21a, and a shape extending toward both sides of the p-side or n-side external connection portion 21a. In addition, when both the p-side external connection portion 22a and the n-side extension portion 21a are present in a shape extending outward so as to surround the p-side external connection portion 22a or the n-side external connection portion 21a, A shape that extends inwardly or outwardly, and the like are included.
The thickness of the n-side extending portion 21b and the p-side extending portions 22b, 22c may be smaller than the maximum width of the n-side external connection portion 21a and the p-side external connection portion 22a, for example, 5% to 90% of the maximum width. , 5% to 70%, 5% to 30%, 5% to 20%, and 5% to 15%. The extension may be of the same width over its entire length, or it may vary in part. The length of one extending portion can be appropriately set depending on the formation position, shape, etc., and examples thereof include 20% to 150% and 30% to 120% of one side or diagonal of the light emitting element. The n-side extending portions 21b and the p-side extending portions 22b and 22c may have different numbers, different shapes, and different thicknesses, or may have the same number, the same shape, and the same thickness.

n側電極21が発光素子10の内側、p側電極22がその外側に配置される場合、図1Aに示すように、n側延伸部21bは、n側外部接続部21aの両側からそれぞれ曲線部及び直線部を有し、p側外部接続部22aの両側に向かって延伸する形状が挙げられる。p側延伸部22bは、曲線部及び直線部を組み合わせて、n側延伸部21b及びn側外部接続部21aを取り囲む形状が挙げられる。p側延伸部22cは、直線状でn側外部接続部21aに向かって最短で延伸する形状が挙げられる。
n側延伸部21bと、p側延伸部22b、22cとは、電流を均一に拡散することができるように、互いに対向する部位を有していること、又は互いに平行に配置した部位を有していることが好ましく、互いに対向する部分において互いに平行に配置した部位を有していることがより好ましい。
When the n-side electrode 21 is arranged inside the light emitting element 10 and the p-side electrode 22 is arranged outside thereof, as shown in FIG. and a straight portion extending toward both sides of the p-side external connection portion 22a. The p-side extending portion 22b may have a shape in which a curved portion and a straight portion are combined to surround the n-side extending portion 21b and the n-side external connection portion 21a. The p-side extending portion 22c may have a straight shape extending in the shortest direction toward the n-side external connection portion 21a.
The n-side extending portion 21b and the p-side extending portions 22b and 22c have portions facing each other or have portions arranged parallel to each other so that the current can be diffused uniformly. It is preferable that the portions facing each other have portions arranged parallel to each other.

n側外部接続部21a及びp側外部接続部22a、n側延伸部21b及びp側延伸部22b、22cをこのように配置することにより、発光面の大きさにかかわらず、また、大きな電流の印加によっても、発光面から放出される光が電極によって遮蔽されるのを最小限に止めながら、順方向電圧Vfを小さく維持することができる。その結果、光出力が大きく、順方向電圧Vfが小さく、電力効率が良好な発光素子を実現することができる。 By arranging the n-side external connection portion 21a, the p-side external connection portion 22a, the n-side extension portion 21b, and the p-side extension portions 22b and 22c in this manner, a large current flow can be achieved regardless of the size of the light emitting surface. The voltage application can also keep the forward voltage Vf small while minimizing the shielding of the light emitted from the light emitting surface by the electrodes. As a result, it is possible to realize a light-emitting element with high light output, low forward voltage Vf, and good power efficiency.

(導電膜15)
導電膜15は、外部接続部から供給される電流を、半導体層の面内全体に均一に流すための部材である。導電膜15は、n型半導体層11及び/又はp型半導体層12の全面により効率的に電流を供給するために、n側電極21及び/又はp側電極22と半導体層との間に、半導体層の略全面を被覆するように配置されている。特に、p型半導体層12とその上に設けられるp側電極22との間に透光性の導電膜15が配置されていることが好ましい。ここで、略全面とは、各半導体層の全面積の90%程度以上の面積を意味する。
導電膜15は、発光素子の光取り出し面側に配置されるため、透光性の導電性酸化物によって形成することができる。導電性酸化物としては、Zn、In、Sn、Mgから選択される少なくとも1種を含む酸化物、具体的にはZnO、In23、SnO2、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)等が挙げられる。特にITOなどの導電性酸化物は可視光(可視領域)において高い光透過性を有し、導電率の比較的高い材料であることから好適に用いることができる。このような導電膜の厚みは、例えば、10nm~150nmであることが好ましく、30nm~100nmであることがさらに好ましい。
(Conductive film 15)
The conductive film 15 is a member for causing the current supplied from the external connection portion to flow uniformly over the entire plane of the semiconductor layer. In order to more efficiently supply current to the entire surface of the n-type semiconductor layer 11 and/or the p-type semiconductor layer 12, the conductive film 15 is provided between the n-side electrode 21 and/or the p-side electrode 22 and the semiconductor layers. It is arranged so as to cover substantially the entire surface of the semiconductor layer. In particular, it is preferable that the translucent conductive film 15 is arranged between the p-type semiconductor layer 12 and the p-side electrode 22 provided thereon. Here, "substantially the entire surface" means an area of about 90% or more of the total area of each semiconductor layer.
Since the conductive film 15 is arranged on the light extraction surface side of the light emitting element, it can be formed of a translucent conductive oxide. Examples of conductive oxides include oxides containing at least one selected from Zn, In, Sn, and Mg, specifically ZnO, In2O3 , SnO2 , ITO (Indium Tin Oxide), IZO (Indium Tin Oxide), and IZO (Indium Tin Oxide). Zinc Oxide), GZO (Gallium-doped Zinc Oxide), and the like. In particular, a conductive oxide such as ITO can be preferably used because it has high light transmittance in visible light (visible region) and is a material with relatively high electrical conductivity. The thickness of such a conductive film is, for example, preferably 10 nm to 150 nm, more preferably 30 nm to 100 nm.

導電膜15は、導電膜15の上面側から下面側に貫通した複数の貫通孔を有する。貫通孔は、平面視において、長方形、多角形、楕円等の長細の形状を有する。貫通孔の深さは、導電膜15の厚みと一致する。
長細の形状とは、短軸とそれに直交するように直線状に延びる長軸を有する形状及びこのような形状において長軸が屈曲又は湾曲した形状等が挙げられる。例えば、長軸の長さが短軸に対して、2倍~10倍、好ましくは2倍~5倍である長細形状とすることができる。貫通孔の大きさは、全部又は一部が同一であってもよいし、異なっていてもよい。その大きさは、例えば、最長10μm以下の大きさを有するものが挙げられ、つまり、長軸が10μm以下の大きさを有するものが挙げられる。また、貫通孔の大きさは、長軸及び短軸がそれぞれ3μm~10μm及び1μm~3μmのものが挙げられ、言い換えると、3μm2~30μm2のものが挙げられる。
導電膜15における貫通孔の開口率は、30%以下とすることが好ましく、15%以下とすることがより好ましく、10%以下とすることがさらに好ましい。導電膜15にこのような30%以下の開口率を有する貫通孔を設けることにより、光取り出し効率を向上させることができると同時に、順方向電圧Vfの上昇を抑えることが可能となり、発光素子の駆動電圧を低減しながら、発光面全体に亘って均一な発光を確保することができる。導電膜15にこのような10%以下の開口率を有する貫通孔を設けることにより、光取り出し効率を維持しつつ、さらに順方向電圧Vfの上昇を抑えることができる。
The conductive film 15 has a plurality of through holes penetrating from the upper surface side to the lower surface side of the conductive film 15 . The through-hole has an elongated shape such as a rectangle, polygon, or ellipse in plan view. The depth of the through hole matches the thickness of the conductive film 15 .
The elongated shape includes a shape having a short axis and a long axis extending linearly perpendicularly to the short axis, and a shape in which the long axis is bent or curved in such a shape. For example, an elongated shape in which the length of the long axis is 2 to 10 times, preferably 2 to 5 times the length of the short axis can be employed. All or part of the through-holes may have the same size, or may have different sizes. As for the size, for example, the longest dimension is 10 μm or less, that is, the long axis is 10 μm or less. The size of the through-holes may be 3 μm to 10 μm and 1 μm to 3 μm in the long axis and the short axis, respectively, in other words, 3 μm 2 to 30 μm 2 .
The aperture ratio of the through holes in the conductive film 15 is preferably 30% or less, more preferably 15% or less, and even more preferably 10% or less. By providing the through holes having an aperture ratio of 30% or less in the conductive film 15, the light extraction efficiency can be improved, and at the same time, an increase in the forward voltage Vf can be suppressed. Uniform light emission can be ensured over the entire light emitting surface while reducing the driving voltage. By providing the conductive film 15 with such through-holes having an aperture ratio of 10% or less, it is possible to suppress an increase in the forward voltage Vf while maintaining the light extraction efficiency.

複数の貫通孔は、それらの一部又は全部が同じ方向に向かって配列されておらず、異なる方向に沿って配列された第1貫通孔15A及び第2貫通孔15Bを含む。
異なる方向を定義するために、例えば、p側延伸部22cの先端部とn側外部接続部21aを最短で結ぶ線を第1の方向と称し、n側延伸部21bとp側延伸部22cとが対向する方向を第2の方向と称する。
ここで、第1の方向は、p側延伸部22cの先端部とn側外部接続部21aの中心又は重心を最短で結ぶ線に平行な方向を意味する。第2の方向は、第1の方向とは異なる方向を意味し、n側延伸部21bとp側延伸部22cとが互いに平行に対向する部位において、両者を最短で結ぶ線に平行な方向を意味する。なお、n側延伸部21bとp側延伸部22cとが互いに平行に対向する部位がない場合、第2の方向は、互いに対向する部位を最短で結ぶ線に平行な方向を意味する。
第1の方向第2の方向とは、90±5°程度で交差する方向であることが好ましく、直交する方向であることがより好ましい。
Some or all of the through-holes are not arranged in the same direction, and include first through-holes 15A and second through-holes 15B arranged in different directions.
In order to define the different directions, for example, the shortest line connecting the tip of the p-side extension portion 22c and the n-side external connection portion 21a is called the first direction, and the n-side extension portion 21b and the p-side extension portion 22c are referred to as the first direction. is called a second direction.
Here, the first direction means a direction parallel to the shortest line connecting the tip of the p-side extending portion 22c and the center or center of gravity of the n-side external connection portion 21a. The second direction means a direction different from the first direction, and is a direction parallel to the shortest line connecting the n-side extending portion 21b and the p-side extending portion 22c in parallel and facing each other. means. If the n-side extending portion 21b and the p-side extending portion 22c do not have parallel facing portions, the second direction means a direction parallel to the shortest line connecting the facing portions.
The first direction and the second direction preferably intersect at about 90±5°, and more preferably orthogonal directions.

長細形状の貫通孔が第1の方向に沿って配列されるとは、第1貫通孔の長細形状の長軸又は両端を最短距離で結ぶ線が、第1の方向と一致して配列されることを意味する。また長細形状の貫通孔が第2の方向に沿って配列されるとは、第2貫通孔の長細形状の長軸又は両端を最短距離で結ぶ線が、第2の方向と一致して配列されることを意味する。
さらに、貫通孔は、上述した第1貫通孔15A及び第2貫通孔15B以外に、さらなる1種以上の貫通孔を有するものが好ましい。ここでの貫通孔は、第1の方向及び第2の方向とは異なる方向に沿って配列される長細の形状の貫通孔を意味する。例えば、さらなる1種以上の貫通孔は、平面視において、第1の方向に対して±10°~80°で傾斜する方向の1種以上に沿って長細の形状を有するものが好ましい。
本願発明では、導電膜15に配置される貫通孔は、p側電極22からn側電極21への電流の流れに沿った方向、言い換えると、電流の流れの一部に略平行に細長の形状で配置されていること、さらには、その電流の流れを遮断する方向に細長の形状が配置されないことを理想とする。従って、発光素子10の全面においては、貫通孔の細長に延びる方向が小刻みに(例えば、1°~10°毎に)変動して、第1の方向又は第2の方向から異なる方向に細長に延びる1種以上の貫通孔、第1の方向又は第2の方向から異なる方向に細長に延びる2種以上の貫通孔、あるいは第1の方向又は第2の方向から異なる方向に延び、第1の方向及び第2の方向を含んで1回転するような複数種の貫通孔が配置されることが好ましい。

The elongated through-holes are arranged along the first direction means that the long axis of the elongated shape of the first through-holes or the shortest line connecting both ends of the through-holes is aligned with the first direction. means to be Further, when the elongated through-holes are arranged along the second direction , it means that the long axis of the elongated shape of the second through-holes or the shortest line connecting both ends of the elongated through-holes is aligned with the second direction. It means to be arranged.
Furthermore, the through-holes preferably have one or more types of through-holes in addition to the first through-holes 15A and the second through-holes 15B described above. The through-hole here means an elongated through-hole arranged along a direction different from the first direction and the second direction . For example, the one or more additional through-holes preferably have an elongated shape along one or more of the directions inclined at ±10° to 80° with respect to the first direction in plan view.
In the present invention, the through-holes arranged in the conductive film 15 are elongated in the direction along the current flow from the p-side electrode 22 to the n-side electrode 21, in other words, substantially parallel to a part of the current flow. Ideally, the slender shape should not be placed in a direction that blocks the current flow. Therefore, over the entire surface of the light-emitting element 10, the elongated direction of the through-holes varies in small increments (for example, every 1° to 10°), and elongated in directions different from the first direction or the second direction. One or more through holes extending in the first or second direction, two or more through holes elongated in different directions from the first direction or the second direction , or extending in different directions from the first or second direction and extending in the first direction. It is preferable that a plurality of types of through-holes are arranged so as to make one rotation including the direction and the second direction .

本発明の一実施形態では、図1A~1Cに示す発光素子10は、以下に示す導電膜15を有することができる。
発光素子10は、平面視において外縁が略正方形である。n側電極21は、発光素子の内側に配置され、n側電極21を取り囲むようにp側電極22が配置されている。導電膜15は、ITO(厚み65nm程度)からなり、n側電極21が配置された領域及び発光素子10の外周領域を除くほぼ全面に配置されている。
n側外部接続部21a及びp側外部接続部22aは、発光素子10の中線上に、直径60μmの円形形状で配置されている。
n側延伸部21bは、n側外部接続部21aの両側からそれぞれ延伸しており、p側外部接続部22aの両側に向かって、曲線部と直線部とを有している。
p側延伸部は、p側外部接続部22aから、発光素子10の中線上において直線状に延伸する第1p側延伸部22bと、p側外部接続部22aの両側から延伸する2本の第2p側延伸部22cと、を備える。2本の第2p側延伸部22cは、n側延伸部21bの先端からn側外部接続部21aを取り囲むように、それらの外側にそれぞれ延伸しており、曲線部と直線部とを有している。
n側延伸部21bの直線部と、第2p側延伸部22cの直線部とは、互いに平行に対向している。n側延伸部21b及びp側延伸部22b、22cの太さはいずれも4μmである。
In one embodiment of the present invention, the light emitting device 10 shown in FIGS. 1A-1C can have a conductive film 15 as described below.
The light emitting element 10 has a substantially square outer edge in plan view. The n-side electrode 21 is arranged inside the light emitting element, and the p-side electrode 22 is arranged so as to surround the n-side electrode 21 . The conductive film 15 is made of ITO (thickness of about 65 nm) and is arranged almost entirely on the entire surface except for the region where the n-side electrode 21 is arranged and the peripheral region of the light emitting element 10 .
The n-side external connection portion 21a and the p-side external connection portion 22a are arranged on the center line of the light emitting element 10 in a circular shape with a diameter of 60 μm.
The n-side extension portion 21b extends from both sides of the n-side external connection portion 21a, and has a curved portion and a straight portion toward both sides of the p-side external connection portion 22a.
The p-side extending portions include a first p-side extending portion 22b extending linearly from the p-side external connecting portion 22a on the midline of the light emitting element 10, and two second p-side extending portions extending from both sides of the p-side external connecting portion 22a. and a side extending portion 22c. The two second p-side extending portions 22c extend outward from the tip of the n-side extending portion 21b so as to surround the n-side external connection portion 21a, and have a curved portion and a straight portion. there is
The linear portion of the n-side extending portion 21b and the linear portion of the second p-side extending portion 22c face each other in parallel. Each of the n-side extending portion 21b and the p-side extending portions 22b and 22c has a thickness of 4 μm.

n側外部接続部21a及びp側外部接続部22aにより電流を供給する場合、電流の流れは、シミュレーション結果から図1Dの破線に示すような流れとなる。従って、このような電流の流れに従って、導電膜15の第1貫通孔15A及び第2貫通孔15Bを含む貫通孔を、図1Cに示すように配列する。つまり、導電膜15には、第1の方向に沿った(言い換えると、第1の方向に平行な方向に)細長の第1貫通孔15Aと、第1の方向に対して略垂直な第2の方向に沿った細長の第2の貫通孔15Bとが配列されている。
また、第1の方向から第2の方向に右回り及び左回りにそれぞれ回転した方向に沿った細長の複数種の貫通孔をさらに有することが好ましい。例えば、第1の方向に対して、10°±2°傾斜した貫通孔15G、20°±2°傾斜した貫通孔15H、第2の方向に対して、5°±2°傾斜した貫通孔15C、10°±2°傾斜した貫通孔15D、15°±2°傾斜した貫通孔15E、20°±2°傾斜した貫通孔15F等の1以上を有することが好ましい。また、導電膜15のうちp側延伸部22b、22cよりも外側に位置する導電膜15には、p側外部接続部22aからn側外部接続部21aに向かうような電流の流れであり、その電流の流れに沿った複数の貫通孔が配置されている。
ここでの長細の貫通孔は、例えば、9μm×2μmの長方形の角が丸みを帯びた形状である。また、導電膜15の貫通孔による開口率は10%である。
When current is supplied from the n-side external connection portion 21a and the p-side external connection portion 22a, the current flow is as indicated by the dashed line in FIG. 1D from the simulation results. Accordingly, the through holes including the first through holes 15A and the second through holes 15B of the conductive film 15 are arranged as shown in FIG. 1C according to such current flow. That is, in the conductive film 15, the elongated first through-hole 15A along the first direction (in other words, parallel to the first direction) and the second elongated through-hole 15A substantially perpendicular to the first direction. , elongated second through holes 15B are arranged along the direction of .
Moreover, it is preferable to further have a plurality of types of elongated through-holes along the directions rotated clockwise and counterclockwise respectively from the first direction to the second direction. For example, the through hole 15G inclined by 10°±2° with respect to the first direction, the through hole 15H inclined by 20°±2°, and the through hole 15C inclined by 5°±2° with respect to the second direction. , 10°±2° inclined through hole 15D, 15°±2° inclined through hole 15E, 20°±2° inclined through hole 15F, and the like. In the conductive film 15 located outside the p-side extending portions 22b and 22c of the conductive film 15, the current flows from the p-side external connection portion 22a to the n-side external connection portion 21a. A plurality of through holes are arranged along the current flow.
The elongated through-hole here is, for example, a rectangular shape of 9 μm×2 μm with rounded corners. The opening ratio of the through holes of the conductive film 15 is 10%.

このように、長細の形状が異なる向きに沿った、複数の貫通孔を備える導電膜15を介してp型半導体層12に電流を供給するために、貫通孔をp側電極22からn側電極21への電流に沿った配置とすることができる。つまり、導電膜15において、各部位の電流の流れに沿った方向に貫通孔を設けることによって、その電流の流れを阻害することなく、より小さな面積で、p型半導体層12に均一かつ十分の電流を拡散させることができるため、順方向電圧Vfの上昇を効率的に抑制することができる。また、貫通孔を複数配置することにより、p型半導体層12の略全面に配置される導電膜15による光の吸収を低減することによって、光取出し効率をも向上させることができる。
なお、本願の発光素子は、パッケージングすることにより発光装置を構成することができる。パッケージングの構成及びパッケージングに要する各部材は、当該分野で公知のもののいずれをも利用することができる。
Thus, in order to supply a current to the p-type semiconductor layer 12 through the conductive film 15 having a plurality of through-holes having elongated shapes along different directions, the through-holes are arranged from the p-side electrode 22 to the n-side. It can be arranged along the current to the electrode 21 . That is, by providing the through holes in the conductive film 15 in the direction along the current flow of each part, the p-type semiconductor layer 12 can be uniformly and sufficiently covered with a smaller area without hindering the current flow. Since the current can be diffused, an increase in the forward voltage Vf can be efficiently suppressed. Moreover, by arranging a plurality of through-holes, light absorption by the conductive film 15 arranged on substantially the entire surface of the p-type semiconductor layer 12 can be reduced, thereby improving the light extraction efficiency.
Note that the light-emitting element of the present application can constitute a light-emitting device by packaging. Any of those known in the art can be used for the configuration of packaging and each member required for packaging.

<光出力Po及び順方向電圧Vfの評価>
実施例1
サファイアからなる基板16上に、n型半導体層11、発光層13、及びp型半導体層12を順に形成した。n型半導体層11、発光層13、及びp型半導体層は窒化物半導体からなる。基板16は、1辺の長さが650μmの正方形状を有する。p型半導体層12の略全面に、ITOからなり厚みが80nm程度である導電膜15を形成した。図1Aに示す形態と同様にn側電極21及びp側電極22を配置した。n側電極21は、n型半導体層11の上面と接続され、n側外部接続部21aとn側外部接続部21aから延伸するn側延伸部21bとを有する。p側電極22は、導電膜15の上面に形成され、p側外部接続部22aとp側外部接続部22aから延伸するp側延伸部22b、22cを有する。導電膜15には、図1Cに示す形態と同様に、電流の流れに従った複数の貫通孔を形成した。具体的には、導電膜15に、p側延伸部22cの先端部とn側外部接続部21aを最短で結ぶ線を第1の方向に沿った貫通孔と、n側延伸部21bとp側延伸部22cとが対向する方向を第2の方向に沿った貫通孔と、第1の方向及び第2の方向とは異なる方向に沿った貫通孔とを含む複数の貫通孔を形成した。長細の貫通孔は、9μm×2μmの長方形の角が丸みを帯びた形状とした。また、導電膜15の貫通孔による開口率は約10%とした。導電膜15に上記した貫通孔を形成した発光素子における光出力と順方向電圧Vfの値を測定した。
実施例1に係る発光素子を65mAの電流で駆動させたとき、光出力Poは148.3mW、順方向電圧Vfは2.90Vであった。
<Evaluation of Optical Output Po and Forward Voltage Vf>
Example 1
An n-type semiconductor layer 11, a light-emitting layer 13, and a p-type semiconductor layer 12 were sequentially formed on a substrate 16 made of sapphire. The n-type semiconductor layer 11, the light emitting layer 13, and the p-type semiconductor layer are made of nitride semiconductors. The substrate 16 has a square shape with a side length of 650 μm. A conductive film 15 made of ITO and having a thickness of about 80 nm was formed on substantially the entire surface of the p-type semiconductor layer 12 . An n-side electrode 21 and a p-side electrode 22 were arranged in the same manner as in the form shown in FIG. 1A. The n-side electrode 21 is connected to the upper surface of the n-type semiconductor layer 11 and has an n-side external connection portion 21a and an n-side extension portion 21b extending from the n-side external connection portion 21a. The p-side electrode 22 is formed on the upper surface of the conductive film 15 and has a p-side external connection portion 22a and p-side extension portions 22b and 22c extending from the p-side external connection portion 22a. A plurality of through-holes were formed in the conductive film 15 in accordance with the flow of current in the same manner as in the form shown in FIG. 1C. Specifically, in the conductive film 15, the shortest line connecting the tip of the p-side extension portion 22c and the n-side external connection portion 21a is formed in a through hole along the first direction, and the n-side extension portion 21b and the p-side A plurality of through-holes were formed, including a through-hole along the second direction facing the extending portion 22c and a through-hole along a direction different from the first direction and the second direction. The elongated through-holes were in the form of 9 μm×2 μm rectangles with rounded corners. Also, the aperture ratio of the through-holes in the conductive film 15 was set to about 10%. The light output and the forward voltage Vf of the light emitting device having the through holes formed in the conductive film 15 were measured.
When the light emitting device according to Example 1 was driven with a current of 65 mA, the optical output Po was 148.3 mW and the forward voltage Vf was 2.90V.

比較例1
導電膜15に貫通孔を設けないこと以外は、実施例と略同様の構成を有する発光素子を比較例1として形成した。
比較例1に係る発光素子を65mAの電流で駆動させたとき、光出力Poは147.7mW、順方向電圧Vfは2.89Vであった。
Comparative example 1
A light-emitting device having substantially the same configuration as that of the example was formed as Comparative Example 1, except that the conductive film 15 was not provided with a through hole.
When the light emitting device according to Comparative Example 1 was driven with a current of 65 mA, the optical output Po was 147.7 mW and the forward voltage Vf was 2.89V.

比較例2
導電膜15に設ける貫通孔を実施例とは異ならせたこと以外は、実施例と略同様の構成を有する発光素子を比較例2として形成した。具体的には、導電膜15に電流の流れを阻害する複数の貫通孔を形成した。つまり、比較例2に係る発光素子の導電膜15には、実施例で形成した複数の貫通孔それぞれに対応し、貫通孔の向きが実施例で形成した貫通孔の向きと略直交する向きの貫通孔を複数形成した。
比較例2に係る発光素子を65mAの電流で駆動させたとき、光出力Poは148.3mW、順方向電圧Vfは2.91Vであった。
Comparative example 2
A light-emitting element having substantially the same configuration as that of the example was formed as Comparative Example 2, except that the through holes provided in the conductive film 15 were different from those of the example. Specifically, a plurality of through-holes were formed in the conductive film 15 to block the flow of current. That is, in the conductive film 15 of the light emitting element according to Comparative Example 2, the through holes correspond to the plurality of through holes formed in the example, and the direction of the through holes is substantially perpendicular to the direction of the through holes formed in the example. A plurality of through holes were formed.
When the light emitting device according to Comparative Example 2 was driven with a current of 65 mA, the optical output Po was 148.3 mW and the forward voltage Vf was 2.91V.

これらの評価結果から、本発明の実施例1に係る発光素子によれば、導電膜15に貫通孔が設けられていない比較例1よりも光出力Poを向上させることができることが確認できる。また、導電膜15に電流の流れを阻害する複数の貫通孔が設けられている比較例2よりも順方向電圧Vfを低下させることができることが確認できる。従って、本発明の実施例に係る発光素子は、順方向電圧Vfの上昇を抑制しつつ光取り出し効率を向上できることが確認された。 From these evaluation results, it can be confirmed that the light output Po of the light emitting device according to Example 1 of the present invention can be improved as compared with Comparative Example 1 in which the conductive film 15 is not provided with through holes. In addition, it can be confirmed that the forward voltage Vf can be reduced more than in Comparative Example 2 in which the conductive film 15 is provided with a plurality of through-holes that impede the flow of current. Therefore, it was confirmed that the light emitting device according to the example of the present invention can improve the light extraction efficiency while suppressing the increase of the forward voltage Vf.

10 発光素子
11 n型半導体層
12 p型半導体層
13 発光層
14 絶縁膜
15 導電膜
15A~15H 貫通孔
16 基板
17 保護層
21 n側電極
21a n側外部接続部
21b n側延伸部
22 p側電極
22a p側外部接続部
22b、22c p側延伸部
REFERENCE SIGNS LIST 10 light emitting element 11 n-type semiconductor layer 12 p-type semiconductor layer 13 light emitting layer 14 insulating film 15 conductive film 15A to 15H through-hole 16 substrate 17 protective layer 21 n-side electrode 21a n-side external connection portion 21b n-side extension portion 22 p-side Electrode 22a p-side external connection portion 22b, 22c p-side extension portion

Claims (5)

n型半導体層、
前記n型半導体層の上面の一部を除く領域に設けられたp型半導体層、
前記n型半導体層の上面の一部と接し、前記p型半導体層に囲まれた、n側外部接続部と、前記n側外部接続部から延伸するn側延伸部とを有するn側電極及び
前記p型半導体層に電気的に接続された透光性を有する導電膜と、該導電膜の上面に配置されたp側外部接続部と、該p側外部接続部から前記n側外部接続部に向かって延伸する第1p側延伸部と、前記n側外部接続部の両側に向かって延伸する第2p側延伸部とを有するp側電極を備える発光素子であって、
前記導電膜は、貫通した複数の貫通孔を有し、
前記複数の貫通孔は、平面視において、前記第1p側延伸部の先端部と前記n側外部接続部を最短で結ぶ線に平行な第1の方向に沿って設けられた長細の形状を有する第1貫通孔と、前記第1の方向とは異なり、かつ前記n側延伸部と前記第1p側延伸部とが対向する第2の方向に沿って設けられた長細の形状を有する第2貫通孔と、前記第2p側延伸部の外側に配置された長細の形状を有する第3貫通孔とを少なくとも有する発光素子。
n-type semiconductor layer,
a p-type semiconductor layer provided in a region excluding a portion of the upper surface of the n-type semiconductor layer;
an n-side electrode having an n-side external connection portion, which is in contact with a portion of the upper surface of the n-type semiconductor layer and surrounded by the p-type semiconductor layer; and an n-side extension portion extending from the n-side external connection portion; A light-transmitting conductive film electrically connected to the p-type semiconductor layer, a p-side external connection portion disposed on the upper surface of the conductive film, and a p-side external connection portion to the n-side external connection portion. A light-emitting element comprising a p-side electrode having a first p-side extension portion extending toward the n-side external connection portion and a second p-side extension portion extending toward both sides of the n-side external connection portion,
The conductive film has a plurality of through-holes,
The plurality of through-holes, in a plan view, each have an elongated shape provided along a first direction parallel to a shortest line connecting the tip of the first p-side extending portion and the n-side external connection portion. and a first through hole having an elongated shape provided along a second direction different from the first direction and in which the n-side extending portion and the first p-side extending portion face each other. 2 through-holes and a third through-hole having an elongated shape arranged outside the second p-side extending portion.
前記導電膜は、30%以下の前記貫通孔による開口率を有する請求項1に記載の発光素子。 2. The light emitting device according to claim 1, wherein the conductive film has an aperture ratio of the through holes of 30% or less. 前記第2の方向は、平面視において、前記第1の方向に対して90°±5°交差する方向である請求項1又は2に記載の発光素子。 3. The light emitting device according to claim 1, wherein the second direction is a direction crossing the first direction at 90[deg.]±5[deg.] in plan view. 前記導電膜は、平面視において、湾曲した形状の貫通孔をさらに有する請求項1~3のいずれか1つに記載の発光素子。 The light emitting device according to any one of claims 1 to 3, wherein the conductive film further has a curved through-hole in plan view. 前記第1貫通孔及び第2貫通孔は、最長10μm以下の大きさを有する請求項1~4のいずれか1つに記載の発光素子。 The light-emitting device according to any one of claims 1 to 4, wherein the first through-hole and the second through-hole have a maximum size of 10 µm or less.
JP2018143616A 2018-07-31 2018-07-31 light emitting element Active JP7219391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143616A JP7219391B2 (en) 2018-07-31 2018-07-31 light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143616A JP7219391B2 (en) 2018-07-31 2018-07-31 light emitting element

Publications (2)

Publication Number Publication Date
JP2020021803A JP2020021803A (en) 2020-02-06
JP7219391B2 true JP7219391B2 (en) 2023-02-08

Family

ID=69588757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143616A Active JP7219391B2 (en) 2018-07-31 2018-07-31 light emitting element

Country Status (1)

Country Link
JP (1) JP7219391B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024222A (en) 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element and its manufacture
WO2004032252A1 (en) 2002-10-03 2004-04-15 Nichia Corporation Light emitting diode
KR100765903B1 (en) 2007-03-13 2007-10-10 (주)에피플러스 Light-emitting diode having current spreading hole
US20120049223A1 (en) 2010-08-27 2012-03-01 Seoul Opto Device Co., Ltd. Light emitting diode with improved luminous efficiency
JP2013168598A (en) 2012-02-17 2013-08-29 Toshiba Corp Semiconductor light-emitting element
JP2014045108A (en) 2012-08-28 2014-03-13 Toyoda Gosei Co Ltd Semiconductor light-emitting element
KR101462464B1 (en) 2013-07-26 2014-11-20 인하대학교 산학협력단 Light emitting diode with donut-shaped hole array

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081333A (en) * 2011-01-11 2012-07-19 삼성엘이디 주식회사 A semiconductor light emitting device and a method for fabricating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024222A (en) 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element and its manufacture
WO2004032252A1 (en) 2002-10-03 2004-04-15 Nichia Corporation Light emitting diode
KR100765903B1 (en) 2007-03-13 2007-10-10 (주)에피플러스 Light-emitting diode having current spreading hole
US20120049223A1 (en) 2010-08-27 2012-03-01 Seoul Opto Device Co., Ltd. Light emitting diode with improved luminous efficiency
JP2013168598A (en) 2012-02-17 2013-08-29 Toshiba Corp Semiconductor light-emitting element
JP2014045108A (en) 2012-08-28 2014-03-13 Toyoda Gosei Co Ltd Semiconductor light-emitting element
KR101462464B1 (en) 2013-07-26 2014-11-20 인하대학교 산학협력단 Light emitting diode with donut-shaped hole array

Also Published As

Publication number Publication date
JP2020021803A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US10978617B2 (en) Light emitting element
JP6665466B2 (en) Semiconductor light emitting device and method of manufacturing the same
EP2597688B1 (en) Light emitting element
CN111223973B (en) Light emitting diode array
US9293658B2 (en) Semiconductor light emitting element
JP4922404B2 (en) Light emitting diode with electrode extension for current spreading
US8785962B2 (en) Semiconductor light emitting device having current blocking layer
JP2010171376A (en) Group iii nitride-based compound semiconductor light-emitting device
JP2007043046A (en) Light-emitting device having protective element
JP6260640B2 (en) Light emitting element
JP5141086B2 (en) Semiconductor light emitting device
JP4577250B2 (en) Varistor and light emitting device
JP2009182324A (en) Semiconductor light emitting device
JP7219391B2 (en) light emitting element
WO2016152397A1 (en) Nitride semiconductor light emitting element
JP7329742B2 (en) light emitting element
JP6189525B2 (en) Nitride semiconductor light emitting device
WO2015063951A1 (en) Semiconductor light-emitting element and light-emitting device
JP2016046411A (en) Semiconductor light emitting element
JP2012178610A (en) Semiconductor light-emitting device and light-emitting apparatus
JP2023006060A (en) light emitting element
KR20160087050A (en) Light emitting device
JP2016178228A (en) Light emission element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R151 Written notification of patent or utility model registration

Ref document number: 7219391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151