JP7218354B2 - Header plateless heat exchanger - Google Patents

Header plateless heat exchanger Download PDF

Info

Publication number
JP7218354B2
JP7218354B2 JP2020509386A JP2020509386A JP7218354B2 JP 7218354 B2 JP7218354 B2 JP 7218354B2 JP 2020509386 A JP2020509386 A JP 2020509386A JP 2020509386 A JP2020509386 A JP 2020509386A JP 7218354 B2 JP7218354 B2 JP 7218354B2
Authority
JP
Japan
Prior art keywords
edge
heat exchanger
outlet
core
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020509386A
Other languages
Japanese (ja)
Other versions
JPWO2019189924A1 (en
Inventor
朗 小室
聡 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Publication of JPWO2019189924A1 publication Critical patent/JPWO2019189924A1/en
Application granted granted Critical
Publication of JP7218354B2 publication Critical patent/JP7218354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • F28D7/1661Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、開口端が厚み方向に膨出した膨出部を有する偏平チューブを、その膨出部で厚み方向に積層してコアが形成され、そのコアの外周をケーシングで被嵌したヘッダプレートレス型熱交換器に関する。 The present invention is a header plate in which a core is formed by stacking flat tubes having a bulging portion whose open end bulges in the thickness direction at the bulging portion, and the outer circumference of the core is covered with a casing. It relates to a less type heat exchanger.

下記特許文献1には、開口端の両端に膨出部を有する偏平チューブを、厚み方向に積層し、コアを構成して、そのコアの外周にケーシングを被嵌したヘッダプレートレス型熱交換器が提案されている。この熱交換器は、偏平チューブの端部を厚み方向に膨出することにより、従来必要としていたヘッダプレートを不要とした、構造の簡単な熱交換器を提供している。
コアの両端部に配置された一方のタンクから他方のタンクに高温ガスが導かれ、その高温ガスと偏平チューブの外周に供給された冷却水との間に熱交換が行われるものである。
この熱交換器において、高温ガスの流入口近傍では、高温ガスによりコアを形成する各偏平チューブに熱応力が生じ、その耐久性に大きな影響を与えることが分かった。
図13は、上記の従来の熱交換器の要部斜視図及びその問題点を示す縦断面図である。この熱交換器は、開口の両端部に膨出部1を有する複数の偏平チューブ2を膨出部1において積層して、コア3を構成し、その端部をOリングプレート4により被蔽し、さらにOリングプレート4の外周にケーシング5を被嵌したものである。
そして、Oリングプレート4とケーシング5との間に形成された環状溝7に同図(C)のごとく、Oリング6を介してタンク本体8の端部開口を嵌入し、ケーシング5の外周に設けたカシメ22によって、タンク本体8をケーシング5に締結固定するものである。図において上方から高温ガスをコア3の各偏平チューブ2に供給する。
Patent Document 1 below discloses a header-plateless heat exchanger in which flat tubes having bulging portions at both ends of the open ends are stacked in the thickness direction to form a core, and a casing is fitted around the outer periphery of the core. is proposed. This heat exchanger bulges out the ends of the flattened tubes in the thickness direction, thereby providing a heat exchanger with a simple structure that eliminates the need for a header plate, which has conventionally been required.
High-temperature gas is led from one tank arranged at both ends of the core to the other tank, and heat is exchanged between the high-temperature gas and cooling water supplied to the outer circumference of the flat tube.
In this heat exchanger, it was found that near the hot gas inlet, thermal stress is generated in each flat tube forming the core by the hot gas, which greatly affects the durability.
FIG. 13 is a longitudinal sectional view showing a main part perspective view of the conventional heat exchanger and its problem. In this heat exchanger, a plurality of flat tubes 2 having bulged portions 1 at both ends of the opening are laminated at the bulged portions 1 to constitute a core 3, and the ends thereof are covered with O-ring plates 4. Furthermore, the outer circumference of the O-ring plate 4 is covered with a casing 5 .
Then, the end opening of the tank body 8 is fitted through the O-ring 6 into the annular groove 7 formed between the O-ring plate 4 and the casing 5 as shown in FIG. The tank main body 8 is fastened and fixed to the casing 5 by the provided caulking 22 . In the figure, hot gas is supplied to each flat tube 2 of the core 3 from above.

WO2017/073779A1WO2017/073779A1

この様な熱交換器において、永年使用により、コア3の各偏平チューブ2の入口側において、高温ガスの断続によるサーマルサイクルの影響により、偏平チューブ2の開口縁に亀裂19が生じることがあった。
そこで、本発明は、各偏平チューブの高温ガス流入口の近傍において、サーマルサイクルに対する耐久性を向上することを課題とする。
In such a heat exchanger, after long-term use, cracks 19 may occur at the opening edges of the flat tubes 2 on the inlet side of the flat tubes 2 of the core 3 due to the influence of the thermal cycle caused by intermittent flow of high-temperature gas. .
Accordingly, an object of the present invention is to improve the durability against the thermal cycle in the vicinity of the high-temperature gas inlet of each flat tube.

請求項1に記載の発明は、両端部開口が厚み方向に膨出した膨出部1を有し、対向する一対の短辺部2a及び、それに直交する一対の長辺部2bとで横断面方形に形成された偏平チューブ2と、
前記膨出部1で複数の偏平チューブ2が積層されてなるコア3と、
前記コア3の外周を被嵌する筒状のケーシング5と、
前記ケーシング5と接続されるタンク本体8と、を具備し、
各偏平チューブ2の入口20側の開口から出口21側の開口に第1流体17が流通し、偏平チューブ2の外面側に第2流体18が流通するヘッダプレートレス型熱交換器において、
前記各偏平チューブ2の一対の前記長辺部2bは、前記短辺部2aの端から続く第1高縁部2cと、
その第1高縁部2cより前記出口21側に位置して、前記第1高縁部2cの長さより長く形成された第1低縁部2dと、
第1高縁部2cと第1低縁部2dと結ぶ第1中間部2eと、を具備し、
前記第1中間部2eは、前記第1高縁部2cの端から、前記出口21側に滑らかに凹陥する第1湾曲部2gを通り、その第1湾曲部2gの端で、前記出口21側に一旦凹陥して入口20側に立ち上がり、前記第1低縁部2dの端に滑らかに連続される第2湾曲部2hを通ることを特徴とするヘッダプレートレス型熱交換器である。
請求項2に記載の発明は、両端部開口が厚み方向に膨出した膨出部1を有し、対向する一対の短辺部2aとそれに直交する一対の長辺部2bとで横断面方形に形成された偏平チューブ2と、
前記膨出部1で複数の偏平チューブ2が積層されてなるコア3と、
前記コア3の外周を被嵌する筒状のケーシング5と、
前記ケーシング5と接続されるタンク本体8と、を具備し、
各偏平チューブ2の入口20側の開口から出口21側の開口に第1流体17が流入し、偏平チューブ2の外面側に第2流体18が流通するヘッダプレートレス型熱交換器において、
前記各偏平チューブ2の一対の前記長辺部2bは、前記短辺部2aの端から続く第2高縁部2jと、
その第2高縁部2jより前記出口21側に位置して、前記第2高縁部2jの長さより長く形成された第2低縁部2kと、第2高縁部2jと第2低縁部2kと結ぶ第2中間部2mと、を具備し、
前記第2中間部2mは、前記第2高縁部2jの端から、前記第2低縁部2kより前記出口21側に一旦滑らかに凹陥して入口20側に立ち上がり、その先端が前記第2低縁部2kに接続される第3湾曲部2nを有することを特徴とするヘッダプレートレス型熱交換器である。
請求項3に記載の発明は、前記コア3の端部外周を被嵌する短筒部4aおよびその短筒部4aから横断面L字状に立ち上げ形成されるL字状部4bを有し、そのL字状部4bの端部開口縁4cが環状に形成されたOリングプレート4と、
前記Oリングプレート4を介して、コア3外周を被嵌する矩形筒状のケーシング5と、Oリング6を介して前記ケーシング5とOリングプレート4の間の環状溝7に、フランジ部8aの先端が圧入されるタンク本体8と、を具備することを特徴とする請求項1または請求項2のいずれかに記載のヘッダプレートレス型熱交換器である。
According to the first aspect of the invention, openings at both ends have bulging portions 1 that bulge in the thickness direction, and a pair of opposing short side portions 2a and a pair of long side portions 2b perpendicular thereto are cross-sectionally formed. a flattened tube 2 formed in a rectangular shape;
a core 3 formed by stacking a plurality of flat tubes 2 at the bulging portion 1;
a cylindrical casing 5 for fitting the outer periphery of the core 3;
and a tank body 8 connected to the casing 5,
In a header plateless heat exchanger in which the first fluid 17 flows from the opening on the inlet 20 side of each flat tube 2 to the opening on the outlet 21 side, and the second fluid 18 flows on the outer surface side of the flat tube 2,
The pair of long side portions 2b of each flat tube 2 includes a first high edge portion 2c continuing from the end of the short side portion 2a,
a first low edge portion 2d located closer to the outlet 21 than the first high edge portion 2c and longer than the length of the first high edge portion 2c;
A first intermediate portion 2e connected to the first high edge portion 2c and the first low edge portion 2d,
The first intermediate portion 2e extends from the end of the first high edge portion 2c through a first curved portion 2g that smoothly recesses toward the outlet 21, and reaches the outlet 21 side at the end of the first curved portion 2g. This is a header plateless heat exchanger characterized in that it is recessed once, rises toward the inlet 20, and passes through a second curved portion 2h that smoothly continues to the end of the first lower edge portion 2d.
According to the second aspect of the present invention, openings at both ends have bulging portions 1 bulging in the thickness direction, and a pair of opposing short side portions 2a and a pair of long side portions 2b orthogonal to the opposite short side portions 2a form a rectangular cross section. a flattened tube 2 formed in
a core 3 formed by stacking a plurality of flat tubes 2 at the bulging portion 1;
a cylindrical casing 5 for fitting the outer periphery of the core 3;
and a tank body 8 connected to the casing 5,
In a header plateless heat exchanger in which the first fluid 17 flows from the opening on the inlet 20 side of each flat tube 2 to the opening on the outlet 21 side, and the second fluid 18 flows on the outer surface side of the flat tube 2,
The pair of long side portions 2b of each flat tube 2 includes a second high edge portion 2j continuing from the end of the short side portion 2a,
A second low edge portion 2k positioned closer to the outlet 21 than the second high edge portion 2j and formed longer than the length of the second high edge portion 2j, the second high edge portion 2j and the second low edge. and a second intermediate portion 2m connected to the portion 2k,
The second intermediate portion 2m smoothly recesses from the end of the second high edge portion 2j to the outlet 21 side from the second low edge portion 2k and then rises toward the inlet 20, and the tip of the second intermediate portion 2m is the second edge portion. The header plateless heat exchanger is characterized by having a third curved portion 2n connected to the lower edge portion 2k.
The invention according to claim 3 has a short cylindrical portion 4a for fitting the outer circumference of the end portion of the core 3, and an L-shaped portion 4b formed upright from the short cylindrical portion 4a so as to have an L-shaped cross section. , an O-ring plate 4 in which the end opening edge 4c of the L-shaped portion 4b is formed annularly;
A rectangular cylindrical casing 5 for fitting the outer periphery of the core 3 via the O-ring plate 4, and an annular groove 7 between the casing 5 and the O-ring plate 4 via the O-ring 6. 3. The header plateless heat exchanger according to claim 1, further comprising a tank body 8 into which the tip is press-fitted.

請求項1に記載の発明においては、第1高縁部2cと前記第1低縁部2dとの間に形成された第1湾曲部2gと第2湾曲部2hとの、二つの滑らかな湾曲部の存在により、偏平チューブ2の入口側の端部に生じる熱応力が各部に分散され、また当該湾曲部が弾性変形し熱膨張差を吸収することにより、熱応力が緩和される。その結果、ヒートサイクルに対する耐久性が向上する。
請求項2に記載の発明においては、前記第2高縁部2jと、第3湾曲部2nと、第2低縁部2kとが滑らかな曲線で連続していることにより、偏平チューブ2の入口側の端部に生じる熱応力が各部に分散され、また第3湾曲部2nが弾性変形し熱膨張差を吸収することにより、熱応力が緩和される。その結果、ヒートサイクルに対する耐久性が向上する。
In the invention according to claim 1, two smooth curved portions, a first curved portion 2g and a second curved portion 2h, are formed between the first high edge portion 2c and the first low edge portion 2d. Due to the presence of the portion, the thermal stress generated at the entrance-side end of the flat tube 2 is dispersed to each portion, and the curved portion elastically deforms to absorb the difference in thermal expansion, thereby relieving the thermal stress. As a result, durability against heat cycles is improved.
In the invention according to claim 2, the second high edge portion 2j, the third curved portion 2n, and the second low edge portion 2k are continuous with a smooth curve, so that the inlet of the flat tube 2 The thermal stress generated at the side end is dispersed to each part, and the third curved part 2n elastically deforms to absorb the difference in thermal expansion, thereby relieving the thermal stress. As a result, durability against heat cycles is improved.

図1は本発明の熱交換器に用いられるコア3の第1実施形態の要部正面図。
図2は同コア3の要部斜視図。
図3は第1実施形態の偏平チューブ2の分解斜視図。
図4は本発明の第2実施形態のコア3の要部正面図。
図5は同コア3の要部斜視図。
図6は第2実施形態の偏平チューブ2の分解斜視図。
図7は同第2実施形態におけるコア3の要部分解斜視図及びその組み立て図。
図8は同熱交換器の分解斜視図。
図9は同熱交換器の分解斜視図。
図10は第3実施形態のヘッダプレートレス型熱交換器を示す要部正面図。
図11は同熱交換器の要部斜視図。
図12は同熱交換器の内部を示す正面図。
図13は従来型熱交換器における問題点を示す要部斜視図及び要部説明図。
FIG. 1 is a front view of essential parts of a first embodiment of a core 3 used in a heat exchanger of the present invention.
FIG. 2 is a perspective view of the core 3. FIG.
FIG. 3 is an exploded perspective view of the flat tube 2 of the first embodiment.
FIG. 4 is a front view of the core 3 of the second embodiment of the present invention.
FIG. 5 is a perspective view of the core 3. FIG.
FIG. 6 is an exploded perspective view of the flattened tube 2 of the second embodiment.
FIG. 7 is an exploded perspective view of a core 3 and its assembly diagram in the second embodiment.
FIG. 8 is an exploded perspective view of the same heat exchanger.
FIG. 9 is an exploded perspective view of the same heat exchanger.
FIG. 10 is a front view of a main part showing a header plateless heat exchanger according to a third embodiment;
FIG. 11 is a perspective view of the main part of the same heat exchanger.
FIG. 12 is a front view showing the inside of the heat exchanger.
13A and 13B are a perspective view and an explanatory view of a main part showing a problem in a conventional heat exchanger.

次に、図面に基づいて本発明の実施の形態につき説明する。
図1及び図2は、本発明の第1実施形態の要部であって、第1流体17である高温ガスの入口20(図9参照)側におけるものである。熱交換器の構造は、図7、図8、図9の構造を適用することができる。また、図3は、その偏平チューブ2の分解斜視図である。
この熱交換器のコア3は、複数の偏平チューブ2をその開口部の両端において、厚み方向に積層したものであり、各偏平チューブ2は、その開口部の両端に膨出部1を有する。この例では、各偏平チューブ2は、対向する一対の短辺部2aとそれに直行する一対の長辺部2bとにより、横断面が方形に形成されている。
そのコア3の両端には、図2、図7に示す如く、Oリングプレート4が被嵌される。そのOリングプレート4は、筒状の短筒部4aとその先端から横断面L字状に形成されたL字状部4bとからなる。そのL字状部4bの先端縁には、環状の端部開口縁4cが形成されている。
Oリングプレート4を介して、コア3の外周には、図2、図8に示す、ケーシング5が被嵌されている。ケーシング5は、筒状に形成されている。そのケーシング5には、第2流体18である冷却水の出入口用のパイプ16が接続される。偏平チューブ2の外面側には第2流体流路24(図7)が形成されており、図8に示す、ケーシング5のパイプ16から、第2流体(冷却水)18が第2流体流路24に供給される。各部品の接触部間は互いにろう付固定されている。
次に、Oリングプレート4の外周に被嵌されたケーシング5とOリングプレート4のL字状部4bとの間に環状溝7(図2)が形成されており、その環状溝7に、図9に示す如く、Oリング6を介して、タンク本体8のフランジ部8aが圧入され、タンク本体8のフランジ部8aの外周がカシメによりケーシング5に締結固定されている。
この例では、ケーシング5の開口縁部にスリット11が形成され、そのスリット11の端縁側が湾曲されてカシメ爪22が形成される(図13参照)。図13のカシメ爪に限らず、ケーシングの開口縁に間欠的に図示しない爪部を突設し、その爪部をタンク本体8側にL字状に折り曲げるカシメ爪を用いてもよい。
偏平チューブ2の内部には、インナーフィンが挿入されることが好ましい。そして、各偏平チューブ2の内面側に第1流体流路25(図7)が形成され、第1流体(高温ガス)17が第1流体流路25に流入し、外面側に第2流体(冷却水)18が流通する。そして、偏平チューブ2の内面側の第1流体(高温ガス)17と、外面側の第2流体(冷却水)18との間に熱交換が行われる。
すなわち、図9において、第2流体18である冷却水が入口側のパイプ16から各偏平チューブ2の外面側に供給され、出口側のパイプ16に導かれる。そして、タンク本体8の入口側の入口20から第1流体17である高温ガスが流入し、出口側のタンク本体8の出口21から、それが流出する。
ここにおいて本発明の特徴は、熱交換器のコアを構成する各偏平チューブ2であって、その第1流体17(図9参照)の入口20側の開口の形状にある。即ち、本発明の偏平チューブ2が従来型の偏平チューブと異なる点は、横断面方形に形成された偏平チューブ2の一対の長辺部2bの両短辺部2a側に、熱応力の分散部が形成されている点である。
偏平チューブ2の開口の具体的構造について説明する。一対の長辺部2bの短辺部2a側の端から続く山形の第1高縁部2cが、角状に突設されている。長辺部2bの第1高縁部2cより出口21(図9)側に位置して、第1高縁部2cより長さが長く形成された第1低縁部2dが形成されている。そして、第1低縁部2dと第1高縁部2cとの間が第1中間部2eにより接続されている。
その第1中間部2eには、第1高縁部2cの端から出口21側に滑らかに凹陥する第1湾曲部2gが形成されている。
そして、第1湾曲部2gと第1低縁部2dとの間に、第2湾曲部2hが形成されている。この第2湾曲部2hは、第1湾曲部2gの端から出口21側に一旦凹陥して入口20側に立ち上がり、第1低縁部2dの端に滑らかに連続している。
図3において、高温ガスの入口20側の長辺部2bの短辺部2a側に第1高縁部2c、第1湾曲部2g、第2湾曲部2hが形成され、それらが第1低縁部2dの両端に連続する。山形に突出する第1高縁部2cの長さは、Oリングプレート4のL字状部4bの幅よりも狭くしておくことが好ましい。
このように、偏平チューブ2の一対の長辺部2bの入口側の端部を形成することにより、従来、長辺部2bの端部に生じる亀裂(図13の亀裂19参照)を防止できることが分かった。
各偏平チューブ2の出口21側では、図3に示すように、膨出部1の開口を直線状に形成することができる。これは第1流体17である高温ガスがこの出口21側では、第2流体18である冷却水により、冷却されて比較的低温となるため、熱応力が入口20側ほど生じないからである。
次に、図4及び図5は、本発明の熱交換器の第2実施形態の要部正面図及び斜視図であり、図6は偏平チューブ2の分解斜視図である。この例が前記図1及び図2の実施形態と異なる点は、偏平チューブ2の入口20側における長辺部2bの長手方向の両端部の形状である。
この例では、一対の長辺部2bの短辺部2a側の縁から続く第2高縁部2jが形成されている。その第2高縁部2jより高温ガスの出口21側に位置するように、第2低縁部2kが第2高縁部2jの長さより長く形成されている。そして、第2高縁部2jと第2低縁部2kは、第2中間部2mにより滑らかに連続している。
その第2中間部2mは、第2高縁部2jの端から、第2低縁部2kより出口21側に一旦滑らかに凹陥して入口20側に立ち上がり、その先端が第2低縁部2kに接続される第3湾曲部2nを有している。
このように形成することにより、前記第1実施形態と同様、各部における熱応力の分散を均等に行い、熱応力により生じる偏平チューブ2の長辺部2bの端部の亀裂を効果的に防止することができる。
第1実施形態及び第2実施形態は、タンク本体8とケーシング5を、Oリング6を介してカシメ固定している構造である。
図10~図12は、本発明の熱交換器の第3実施形態を示すものである。
この第3実施形態のように、タンク本体8にケーシング5をろう付固定、又は溶接固定することができる。この例では、第2実施形態の偏平チューブ2を用いているが、第1実施形態の偏平チューブ2を用いることもできる。
この場合、好ましくは、図10~図11に示す如く、偏平チューブ2の第2高縁部2jに当接するビード5aをケーシング5の短辺部2a側の側壁に設けておくと良い。図12に示す如く、タンク本体8の端部もこのビード5aに当接する。この状態で、ろう付又は溶接を行う。
Next, an embodiment of the present invention will be described based on the drawings.
1 and 2 show the main part of the first embodiment of the present invention on the inlet 20 (see FIG. 9) side of the high-temperature gas, which is the first fluid 17. FIG. The structures of FIGS. 7, 8 and 9 can be applied to the structure of the heat exchanger. 3 is an exploded perspective view of the flat tube 2. FIG.
The core 3 of this heat exchanger is formed by stacking a plurality of flat tubes 2 in the thickness direction at both ends of its opening, and each flat tube 2 has bulges 1 at both ends of its opening. In this example, each flattened tube 2 has a rectangular cross section formed by a pair of opposing short sides 2a and a pair of long sides 2b perpendicular thereto.
Both ends of the core 3 are fitted with O-ring plates 4 as shown in FIGS. The O-ring plate 4 is composed of a cylindrical short cylindrical portion 4a and an L-shaped portion 4b having an L-shaped cross section extending from the tip of the short cylindrical portion 4a. An annular end opening edge 4c is formed at the leading edge of the L-shaped portion 4b.
A casing 5 shown in FIGS. 2 and 8 is fitted around the outer periphery of the core 3 with an O-ring plate 4 interposed therebetween. The casing 5 is formed in a cylindrical shape. The casing 5 is connected to a pipe 16 for inlet and outlet of cooling water, which is the second fluid 18 . A second fluid channel 24 (FIG. 7) is formed on the outer surface side of the flat tube 2, and a second fluid (cooling water) 18 flows from the pipe 16 of the casing 5 shown in FIG. 24. The contact portions of each component are brazed and fixed to each other.
Next, an annular groove 7 (FIG. 2) is formed between the casing 5 fitted on the outer periphery of the O-ring plate 4 and the L-shaped portion 4b of the O-ring plate 4. As shown in FIG. 9, the flange portion 8a of the tank body 8 is press-fitted through the O-ring 6, and the outer periphery of the flange portion 8a of the tank body 8 is fastened and fixed to the casing 5 by caulking.
In this example, a slit 11 is formed in the opening edge of the casing 5, and the edge side of the slit 11 is curved to form a crimping claw 22 (see FIG. 13). The crimping claw is not limited to the crimping claw shown in FIG. 13, and a crimping claw may be used in which a claw portion (not shown) is intermittently projected from the opening edge of the casing, and the claw portion is bent in an L shape toward the tank main body 8 side.
An inner fin is preferably inserted inside the flat tube 2 . A first fluid channel 25 (FIG. 7) is formed on the inner surface side of each flat tube 2, a first fluid (high-temperature gas) 17 flows into the first fluid channel 25, and a second fluid ( cooling water) 18 flows. Then, heat exchange takes place between the first fluid (high-temperature gas) 17 on the inner surface side of the flat tube 2 and the second fluid (cooling water) 18 on the outer surface side.
That is, in FIG. 9, the cooling water, which is the second fluid 18, is supplied from the pipe 16 on the inlet side to the outer surface side of each flat tube 2 and guided to the pipe 16 on the outlet side. A high-temperature gas, which is the first fluid 17, flows in from an inlet 20 on the inlet side of the tank main body 8, and flows out from an outlet 21 of the tank main body 8 on the outlet side.
Here, the feature of the present invention lies in the shape of the opening of each flat tube 2 constituting the core of the heat exchanger on the inlet 20 side of the first fluid 17 (see FIG. 9). That is, the flat tube 2 of the present invention differs from the conventional flat tube in that the flat tube 2, which is formed to have a square cross section, has a pair of long side portions 2b on both short side portions 2a side of which thermal stress dispersion portions are formed. is formed.
A specific structure of the opening of the flat tube 2 will be described. A mountain-shaped first high edge portion 2c continuing from the end of the pair of long side portions 2b on the side of the short side portion 2a projects in an angular shape. A first low edge portion 2d having a length longer than that of the first high edge portion 2c is formed on the long side portion 2b positioned closer to the outlet 21 (FIG. 9) than the first high edge portion 2c. The first intermediate portion 2e connects the first low edge portion 2d and the first high edge portion 2c.
The first intermediate portion 2e is formed with a first curved portion 2g that is smoothly recessed from the end of the first high edge portion 2c toward the outlet 21 side.
A second curved portion 2h is formed between the first curved portion 2g and the first low edge portion 2d. The second curved portion 2h is recessed from the end of the first curved portion 2g toward the outlet 21, rises toward the inlet 20, and smoothly continues to the end of the first lower edge portion 2d.
In FIG. 3, a first high edge portion 2c, a first curved portion 2g, and a second curved portion 2h are formed on the short side portion 2a side of the long side portion 2b on the high temperature gas inlet 20 side. It continues to both ends of the portion 2d. It is preferable that the length of the first high edge portion 2c protruding in a mountain shape is narrower than the width of the L-shaped portion 4b of the O-ring plate 4. As shown in FIG.
By forming the inlet-side ends of the pair of long sides 2b of the flat tube 2 in this way, it is possible to prevent cracks (see crack 19 in FIG. 13) that conventionally occur at the ends of the long sides 2b. Do you get it.
On the outlet 21 side of each flat tube 2, as shown in FIG. 3, the opening of the bulging portion 1 can be formed linearly. This is because the high-temperature gas, which is the first fluid 17 , is cooled by the cooling water, which is the second fluid 18 , to a relatively low temperature on the outlet 21 side, so thermal stress does not occur as much as on the inlet 20 side.
Next, FIGS. 4 and 5 are a front view and a perspective view of essential parts of a heat exchanger according to a second embodiment of the present invention, and FIG. 6 is an exploded perspective view of a flat tube 2. FIG. 1 and 2 is the shape of the longitudinal ends of the long side 2b of the flat tube 2 on the side of the entrance 20. As shown in FIG.
In this example, a second high edge portion 2j continuing from the edges of the pair of long side portions 2b on the short side portion 2a side is formed. The second low edge portion 2k is formed to be longer than the second high edge portion 2j so as to be located closer to the hot gas outlet 21 than the second high edge portion 2j. The second high edge portion 2j and the second low edge portion 2k are smoothly continued by the second intermediate portion 2m.
The second intermediate portion 2m smoothly recesses from the end of the second high edge portion 2j to the outlet 21 side from the second low edge portion 2k and rises toward the entrance 20 side, and its tip is the second low edge portion 2k. It has a third curved portion 2n connected to the .
By forming in this way, like the first embodiment, thermal stress is evenly dispersed in each part, and cracks at the ends of the long side parts 2b of the flat tube 2 caused by thermal stress are effectively prevented. be able to.
1st Embodiment and 2nd Embodiment are the structures which crimp-fix the tank main body 8 and the casing 5 via the O-ring 6. As shown in FIG.
10-12 show a third embodiment of the heat exchanger of the present invention.
As in the third embodiment, the casing 5 can be brazed or welded to the tank body 8 . Although the flattened tube 2 of the second embodiment is used in this example, the flattened tube 2 of the first embodiment can also be used.
In this case, preferably, as shown in FIGS. 10 and 11, a bead 5a that contacts the second high edge portion 2j of the flat tube 2 is provided on the side wall of the casing 5 on the side of the short side portion 2a. As shown in FIG. 12, the end of the tank body 8 also contacts this bead 5a. Brazing or welding is performed in this state.

本発明は、チャージエアクーラ、排気ガス再循環装置(EGRクーラ)等、各種高温ガスが内部を流通する熱交換器に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for heat exchangers in which various high-temperature gases flow, such as charge air coolers and exhaust gas recirculation devices (EGR coolers).

1 膨出部
2 偏平チューブ
2a 短辺部
2b 長辺部
2c 第1高縁部
2d 第1低縁部
2e 第1中間部
2g 第1湾曲部
2h 第2湾曲部
2j 第2高縁部
2k 第2低縁部
2m 第2中間部
2n 第3湾曲部
3 コア
4 Oリングプレート
4a 短筒部
4b L字状部
4c 端部開口縁
5 ケーシング
5a ビード
6 Oリング
7 環状溝
8 タンク本体
8a フランジ部
11 スリット
16 パイプ
17 第1流体(高温ガス)
18 第2流体(冷却水)
19 亀裂
20 入口
21 出口
22 カシメ爪
24 第2流体流路
25 第1流体流路
1 Bulging Part 2 Flat Tube 2a Short Side 2b Long Side 2c First High Edge 2d First Low Edge 2e First Middle Part 2g First Curved Part 2h Second Curved Part 2j Second High Edge 2k 2 lower edge 2m second intermediate portion 2n third curved portion 3 core 4 O-ring plate 4a short cylindrical portion 4b L-shaped portion 4c end opening edge 5 casing 5a bead 6 O-ring 7 annular groove 8 tank main body 8a flange portion 11 slit 16 pipe 17 first fluid (hot gas)
18 second fluid (cooling water)
19 Crack 20 Inlet 21 Outlet 22 Crimping Claw 24 Second Fluid Channel 25 First Fluid Channel

Claims (3)

両端部開口が厚み方向に膨出した膨出部(1)を有し、対向する一対の短辺部(2a)と、それに直交する一対の長辺部(2b)とで横断面方形に形成された偏平チューブ(2)と、
前記膨出部(1)で複数の偏平チューブ(2)が積層されてなるコア(3)と、
前記コア(3)の外周を被嵌する筒状のケーシング(5)と、
前記ケーシング(5)と接続されるタンク本体(8)と、を具備し、
各偏平チューブ(2)の入口(20)側の開口から出口(21)側の開口に第1流体(17)が流通し、偏平チューブ(2)の外面側に第2流体(18)が流通するヘッダプレートレス型熱交換器において、
前記各偏平チューブ(2)の一対の前記長辺部(2b)は、前記短辺部(2a)の端から続く第1高縁部(2c)と、
その第1高縁部(2c)より前記出口(21)側に位置して、前記第1高縁部(2c)の長さより長く形成された第1低縁部(2d)と、
第1高縁部(2c)と第1低縁部(2d)と結ぶ第1中間部(2e)と、を具備し、
前記第1中間部(2e)は、前記第1高縁部(2c)の端から、前記出口(21)側に滑らかに凹陥する第1湾曲部(2g)を通り、その第1湾曲部(2g)の端で、前記出口(21)側に一旦凹陥して入口(20)側に立ち上がり、前記第1低縁部(2d)の端に滑らかに連続される第2湾曲部(2h)を通ることを特徴とするヘッダプレートレス型熱交換器。
Both end openings have bulging portions (1) that bulge in the thickness direction, and are formed into a rectangular cross section by a pair of opposing short side portions (2a) and a pair of long side portions (2b) perpendicular thereto. a flattened tube (2);
a core (3) formed by stacking a plurality of flat tubes (2) at the bulging portion (1);
a tubular casing (5) for fitting the outer periphery of the core (3);
A tank body (8) connected to the casing (5),
A first fluid (17) flows from an opening on the inlet (20) side of each flat tube (2) to an opening on the outlet (21) side, and a second fluid (18) flows on the outer surface side of the flat tube (2). In a header plateless heat exchanger that
The pair of long sides (2b) of each flat tube (2) includes a first high edge (2c) continuing from the end of the short side (2a);
a first low edge (2d) positioned closer to the outlet (21) than the first high edge (2c) and formed longer than the length of the first high edge (2c);
a first middle portion (2e) connecting the first high edge (2c) and the first low edge (2d);
The first intermediate portion (2e) passes through a first curved portion (2g) smoothly recessed toward the outlet (21) from the end of the first high edge portion (2c), At the end of 2g), a second curved portion (2h) is once recessed toward the outlet (21) side, rises toward the inlet (20) side, and smoothly continues to the end of the first lower edge portion (2d). A header plateless heat exchanger characterized by passing through.
両端部開口が厚み方向に膨出した膨出部(1)を有し、対向する一対の短辺部(2a)とそれに直交する一対の長辺部(2b)とで横断面方形に形成された偏平チューブ(2)と、
前記膨出部(1)で複数の偏平チューブ(2)が積層されてなるコア(3)と、
前記コア(3)の外周を被嵌する筒状のケーシング(5)と、
前記ケーシング(5)と接続されるタンク本体(8)と、を具備し、
各偏平チューブ(2)の入口(20)側の開口から出口(21)側の開口に第1流体(17)が流入し、偏平チューブ(2)の外面側に第2流体(18)が流通するヘッダプレートレス型熱交換器において、
前記各偏平チューブ(2)の一対の前記長辺部(2b)は、前記短辺部(2a)の端から続く第2高縁部(2j)と、
その第2高縁部(2j)より前記出口(21)側に位置して、前記第2高縁部(2j)の長さより長く形成された第2低縁部(2k)と、第2高縁部(2j)と第2低縁部(2k)と結ぶ第2中間部(2m)と、を具備し、
前記第2中間部(2m)は、前記第2高縁部(2j)の端から、前記第2低縁部(2k)より前記出口(21)側に一旦滑らかに凹陥して入口(20)側に立ち上がり、その先端が前記第2低縁部(2k)に接続される第3湾曲部(2n)を有することを特徴とするヘッダプレートレス型熱交換器。
Both end openings have bulging portions (1) that bulge in the thickness direction, and are formed in a rectangular cross section by a pair of opposing short side portions (2a) and a pair of long side portions (2b) perpendicular thereto. a flattened tube (2);
a core (3) formed by stacking a plurality of flat tubes (2) at the bulging portion (1);
a tubular casing (5) for fitting the outer periphery of the core (3);
A tank body (8) connected to the casing (5),
A first fluid (17) flows from an opening on the inlet (20) side of each flat tube (2) to an opening on the outlet (21) side, and a second fluid (18) flows on the outer surface side of the flat tube (2). In a header plateless heat exchanger that
The pair of long sides (2b) of each flattened tube (2) has a second high edge (2j) continuing from the end of the short side (2a);
a second low edge (2k) positioned closer to the outlet (21) than the second high edge (2j) and formed longer than the length of the second high edge (2j); a second intermediate portion (2m) connecting the edge (2j) and the second lower edge (2k);
The second intermediate portion (2m) is once smoothly recessed from the end of the second high edge (2j) to the outlet (21) side of the second low edge (2k) to open the entrance (20). A header-plateless heat exchanger, characterized in that it has a third curved portion (2n) which rises to the side and whose tip is connected to the second lower edge (2k).
前記コア(3)の端部外周を被嵌する短筒部(4a)およびその短筒部(4a)から横断面L字状に立ち上げ形成されるL字状部(4b)を有し、そのL字状部(4b)の端部開口縁(4c)が環状に形成されたOリングプレート(4)と、
前記Oリングプレート(4)を介して、コア(3)外周を被嵌する矩形筒状のケーシング(5)と、Oリング(6)を介して前記ケーシング(5)とOリングプレート(4)の間の環状溝(7)に、フランジ部(8a)の先端が圧入されるタンク本体(8)と、を具備することを特徴とする請求項1または請求項2のいずれかに記載のヘッダプレートレス型熱交換器。
It has a short cylindrical portion (4a) for fitting the outer circumference of the end portion of the core (3) and an L-shaped portion (4b) formed upright from the short cylindrical portion (4a) to form an L-shaped cross section, an O-ring plate (4) having an annular end opening edge (4c) of the L-shaped portion (4b);
A rectangular cylindrical casing (5) for fitting the outer periphery of the core (3) through the O-ring plate (4), and the casing (5) and the O-ring plate (4) through the O-ring (6). 3. The header according to claim 1 or 2, further comprising a tank body (8) into which the tip of the flange portion (8a) is press-fitted into the annular groove (7) between Plateless heat exchanger.
JP2020509386A 2018-03-30 2019-03-22 Header plateless heat exchanger Active JP7218354B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018069397 2018-03-30
JP2018069397 2018-03-30
PCT/JP2019/014403 WO2019189924A1 (en) 2018-03-30 2019-03-22 Header-plateless heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2019189924A1 JPWO2019189924A1 (en) 2021-03-25
JP7218354B2 true JP7218354B2 (en) 2023-02-06

Family

ID=68060244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509386A Active JP7218354B2 (en) 2018-03-30 2019-03-22 Header plateless heat exchanger

Country Status (4)

Country Link
JP (1) JP7218354B2 (en)
CN (1) CN111868468A (en)
DE (1) DE112019000761T5 (en)
WO (1) WO2019189924A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349821B2 (en) * 2019-06-10 2023-09-25 株式会社ティラド Heat exchanger
JP7419087B2 (en) * 2020-01-30 2024-01-22 株式会社ティラド Plate laminated core heat exchanger
DE102020120330A1 (en) * 2020-07-31 2020-11-26 Bayerische Motoren Werke Aktiengesellschaft Heat exchanger for an internal combustion engine with a deformation at a joint area between two partition walls, method for producing a heat exchanger and internal combustion engine with a heat exchanger
WO2024031143A1 (en) * 2022-08-12 2024-02-15 Conflux Technology Pty Ltd Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069277A (en) 1990-03-13 1991-12-03 Diesel Kiki Co., Ltd. Vehicle-loaded heat exchanger of parallel flow type
US5246066A (en) 1992-06-01 1993-09-21 General Motors Corporation One piece extruded tank
JP2001289590A (en) 1995-11-25 2001-10-19 Behr Gmbh & Co Heat exchanger
WO2017073779A1 (en) 2015-10-29 2017-05-04 株式会社ティラド Structure of heat exchanger core without header plate
US20170276411A1 (en) 2014-08-19 2017-09-28 Carrier Corporation Low refrigerant charge microchannel heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250894A (en) * 1996-03-14 1997-09-22 Calsonic Corp Heat exchanger
DE10103570A1 (en) * 2001-01-26 2002-08-01 Modine Mfg Co Heat exchangers and manufacturing processes
CN201917246U (en) * 2010-12-24 2011-08-03 贵州永红航空机械有限责任公司 High-temperature plate-fin radiator core
US9140217B2 (en) * 2012-09-06 2015-09-22 Senior Ip Gmbh Exhaust gas recirculation apparatus and method for forming same
CN104896990A (en) * 2014-03-05 2015-09-09 株式会社T.Rad Tank connecting structure of no-header plate heat exchanger
JP6296837B2 (en) * 2014-03-07 2018-03-20 株式会社ティラド Tank seal structure
KR101857044B1 (en) * 2016-04-06 2018-05-15 주식회사 코렌스 Gas tube for EGR cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069277A (en) 1990-03-13 1991-12-03 Diesel Kiki Co., Ltd. Vehicle-loaded heat exchanger of parallel flow type
US5246066A (en) 1992-06-01 1993-09-21 General Motors Corporation One piece extruded tank
JP2001289590A (en) 1995-11-25 2001-10-19 Behr Gmbh & Co Heat exchanger
US20170276411A1 (en) 2014-08-19 2017-09-28 Carrier Corporation Low refrigerant charge microchannel heat exchanger
WO2017073779A1 (en) 2015-10-29 2017-05-04 株式会社ティラド Structure of heat exchanger core without header plate

Also Published As

Publication number Publication date
JPWO2019189924A1 (en) 2021-03-25
CN111868468A (en) 2020-10-30
DE112019000761T5 (en) 2020-11-12
WO2019189924A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7218354B2 (en) Header plateless heat exchanger
JP6276054B2 (en) Heat exchanger
JP2008275246A (en) Heat exchanger free from header plate
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
WO2015106726A1 (en) Collecting pipe assembly and heat exchanger provided with collecting pipe assembly
US7322403B2 (en) Heat exchanger with modified tube surface feature
JP2020094791A5 (en)
WO2017013918A1 (en) Heat exchanger
JP2020094792A5 (en)
JP5519311B2 (en) Flat tube of header plateless heat exchanger
JP7244440B2 (en) Header plateless heat exchanger
JPS58164995A (en) Heat exchanger and manufacture thereof
JP6463993B2 (en) Tube for heat exchanger
JPH043893A (en) Heat exchanger
JP6632868B2 (en) Aluminum heat exchanger
JP2006090636A (en) Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger
JPWO2019163973A1 (en) Heat exchanger tank structure
JP7359767B2 (en) Heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
JP2006200862A (en) Flat tube for heat exchanger
JPWO2019131569A1 (en) Header plateless heat exchanger
WO2021054173A1 (en) Heat transfer fin and manufacturing method therefor
WO2020250041A1 (en) Heat exchanger
JP2006300407A (en) Shell and tube type heat exchanger
JP2016130594A (en) Piping structure for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7218354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150