JP2006090636A - Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger - Google Patents

Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger Download PDF

Info

Publication number
JP2006090636A
JP2006090636A JP2004276912A JP2004276912A JP2006090636A JP 2006090636 A JP2006090636 A JP 2006090636A JP 2004276912 A JP2004276912 A JP 2004276912A JP 2004276912 A JP2004276912 A JP 2004276912A JP 2006090636 A JP2006090636 A JP 2006090636A
Authority
JP
Japan
Prior art keywords
diameter
heat transfer
small
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276912A
Other languages
Japanese (ja)
Inventor
Takayuki Takahashi
孝幸 高橋
Keiji Ashida
圭史 芦田
Hirokazu Fujino
宏和 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004276912A priority Critical patent/JP2006090636A/en
Publication of JP2006090636A publication Critical patent/JP2006090636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize the mutually appropriate corresponding relation between fin joint surfaces and recessed groove parts for forming heat exchanger tubes in small-diameter heat exchanger tube units of laminated structure constituting a small-diameter multitubular heat exchanger. <P>SOLUTION: In the small-diameter heat exchanger tube units 4 of laminated structure constituting the small-diameter multitubular heat exchanger 1, engaging parts 46a, 46b engaged in an coaxial direction are formed in a plurality of mutually corresponding positions of fin plates 4A, 4B to be laminated. With this constitution the mutually appropriate corresponding relation between the fin joint surfaces and recessed groove parts for forming heat exchanger tube body parts 41 when laminated can be easily realized by engaging the engaging parts 46a, 46b provided in the plurality of mutually corresponding positions (outer peripheral edge parts or the like) of the fin plates 4A, 4B to be laminated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、細径多管式熱交換器の細径伝熱管ユニットの構造に関するものである。   The present invention relates to a structure of a small-diameter heat transfer tube unit of a small-diameter multi-tube heat exchanger.

最近では、例えば所定の間隔を置いて対向配置された入口タンクと出口タンクとの間に、管径dが0.2mm〜0.8mm程度の細径の断面円環状の複数のチューブを、当該各チューブ間のピッチLが上記チューブの管径d〜2d程度となるよう配置して外部流体が流通するコア部を形成するとともに、さらに上記コア部の複数のチューブをコア部の外部流体の流れ方向に正方形の碁盤目状に配置し、外部流体との接触効率を向上させた細径多管式の伝熱管構造を採用した熱交換器が提案されている(例えば特許文献1参照)。   Recently, for example, a plurality of tubes having an annular cross section with a small diameter of about 0.2 mm to 0.8 mm are provided between an inlet tank and an outlet tank that are arranged to face each other at a predetermined interval. The tube is arranged such that the pitch L between the tubes is about the tube diameter d to 2d of the tube to form a core portion through which an external fluid flows, and the plurality of tubes of the core portion are further flowed through the core portion. There has been proposed a heat exchanger that employs a small-diameter multi-tube heat transfer tube structure that is arranged in a square grid pattern in the direction and has improved contact efficiency with an external fluid (see, for example, Patent Document 1).

このような細径多管式の熱交換器は、空気調和機などの熱交換器として一般的に使用されているフィン・アンド・チューブ型の熱交換器に比較して、より高性能で、より通風抵抗が小さいので、高効率の熱交換器として機能させることが可能である。   Compared to fin-and-tube heat exchangers that are generally used as heat exchangers such as air conditioners, such small-diameter multi-tube heat exchangers have higher performance, Since the ventilation resistance is smaller, it is possible to function as a highly efficient heat exchanger.

しかし、このような細径多管式熱交換器の構成の場合、コア部が細径伝熱管の集合体よりなるために伝熱管熱交部トータルとしての熱伝達率そのものは高いが、他方各伝熱管個々の伝熱面積が小さいために、一定レベル以上の高性能化を図るためには、より多数本の細径伝熱管が必要となる。その結果、構造が複雑で、組み立ても煩雑となる。   However, in the case of the configuration of such a small-diameter multi-tube heat exchanger, since the core portion is composed of an assembly of small-diameter heat transfer tubes, the heat transfer coefficient itself as a heat transfer tube heat exchanger is high, but each other Since the heat transfer area of each heat transfer tube is small, a larger number of small-diameter heat transfer tubes are required to achieve higher performance than a certain level. As a result, the structure is complicated and the assembly is complicated.

また、同細径の伝熱管群は、外部流体(空気)の流れ方向に多数本の流路を碁盤目状に設けて内部流体(水)を流すようになっているが、その流れ方向の位置によって各流路毎の熱交換量が異なるために偏流を生じやすく、特に空気調和機のように気液二相冷媒を流す場合にはその傾向が著しい。   In addition, the heat transfer tube group of the same small diameter is provided with a large number of flow paths in a grid pattern in the flow direction of the external fluid (air) to flow the internal fluid (water). Since the amount of heat exchange for each flow path varies depending on the position, drift tends to occur, and this tendency is particularly noticeable when a gas-liquid two-phase refrigerant is flowed as in an air conditioner.

したがって、特許文献1に示される自動車のラジエータのような相状態が変化しない冷却水を内部流体とする場合には良いが、上記空気調和機などのように相状態が変化する冷媒を内部流体とする場合には、採用することが困難であった。   Therefore, although it is good when the cooling water which does not change a phase state like the radiator of a car shown in patent documents 1 is made into an internal fluid, the refrigerant which changes a phase state like the above-mentioned air conditioner is made into an internal fluid. In that case, it was difficult to adopt.

そこで、このような事情に基き、上述の細径の伝熱管の各管体部に薄板状のフィン部を付加するとともに、それら各管体部およびフィン部の仕様条件を偏流を生じにくいものに形成することによって、熱伝達率に加えて、伝熱面積をも有効に増大させ、空気調和機などにも有効に採用できるようにした細径多管式の熱交換器を提供することが考えられている。   Therefore, based on such circumstances, a thin fin-like fin portion is added to each tubular body portion of the above-described small-diameter heat transfer tube, and the specification conditions of each tubular body portion and the fin portion are made less prone to drift. By forming, it is possible to effectively increase the heat transfer area in addition to the heat transfer coefficient, and to provide a small-diameter multi-tube heat exchanger that can be effectively used in air conditioners and the like. It has been.

この伝熱フィンを備えた細径多管式熱交換器および同熱交換器を構成する細径伝熱管ユニットの構成の一例を図9〜図11に示す。   9 to 11 show an example of the configuration of the thin multi-tube heat exchanger provided with the heat transfer fins and the small-diameter heat transfer tube unit constituting the heat exchanger.

すなわち、先ず図9に示す細径多管式熱交換器1は、相互に所定の間隔を保って並設された冷媒分配機能を有する入口ヘッダ2Aおよび出口ヘッダ2Bと、該入口ヘッダ2Aと出口ヘッダ2Bの各々に接続され、その下部側に位置して長手方向に沿って多数本並設された細径伝熱管ユニット4,4・・・よりなる熱交部3とから構成されている。   That is, first, a small-diameter multi-tube heat exchanger 1 shown in FIG. 9 includes an inlet header 2A and an outlet header 2B having a refrigerant distribution function arranged in parallel with each other at a predetermined interval, and the inlet header 2A and the outlet Each of the headers 2B is connected to each of the headers 2B and is composed of a heat exchange section 3 including a plurality of small-diameter heat transfer tube units 4, 4...

上記細径伝熱管ユニット4,4・・・は、その管体部(細径管部)41が全体としてU状に曲成され、その上端側凸部44a,44bの各開口端部41c,41dが上記入口ヘッダ2A、出口ヘッダ2Bの底部側各開口部に各々接続されるようになっている一方、同U状の管体部41のストレート部41a,41bには、それぞれ左右両側空気流の上流側と下流側に位置して各々所定の幅のフィン部42a,42bが設けられている。これらフィン部42a,42bは相互に連続して、上記U状の管体部41に対して1枚の伝熱フィン42を形成している。   The thin-diameter heat transfer tube units 4, 4... Have a tubular body portion (thin-diameter tube portion) 41 that is bent in a U shape as a whole, and has open end portions 41 c of upper end side convex portions 44 a and 44 b. 41d is connected to the openings on the bottom side of the inlet header 2A and the outlet header 2B, respectively, while the straight portions 41a and 41b of the U-shaped tubular body 41 are respectively connected to the left and right side airflows. Fin portions 42a and 42b each having a predetermined width are provided on the upstream side and the downstream side. These fin portions 42 a and 42 b are continuous with each other to form one heat transfer fin 42 with respect to the U-shaped tube portion 41.

そして、該伝熱フィン42を備えた細径伝熱管ユニット4,4・・・は、例えば図10の(a),(b)に示すように、それぞれ管体部41(41a,41b)形成用の断面半円形状の凹溝部を有する左右対称構造の薄くて扁平なフィンプレート(貼り合わせ部材)4A(図10のa),4B(図10のb)を、例えば図11のように相互に対向させた状態で、貼り合わせて一体化することにより、上記U状の管体部41と該管体部41のストレート部41a,41bの左右両側にフィン部42a,42bが1枚状態に一体成形された細径伝熱管ユニット4,4・・・を構成している。   And the small-diameter heat transfer tube units 4, 4... Having the heat transfer fins 42 are formed with tube portions 41 (41 a, 41 b), respectively, for example, as shown in FIGS. For example, a thin and flat fin plate (bonding member) 4A (a in FIG. 10) and 4B (b in FIG. 10) having a semi-circular groove having a semicircular cross-section are mutually connected as shown in FIG. In the state of being opposed to each other, by bonding and integrating, the fin portions 42a and 42b are in a single sheet state on both the left and right sides of the U-shaped tube portion 41 and the straight portions 41a and 41b of the tube portion 41. The integrally formed thin-diameter heat transfer tube units 4, 4,...

このように構成された細径伝熱管ユニット4,4・・・が、例えば図9に示すように、、外部流体Fの流れ方向と平行に配列され、同配列状態において、各細径伝熱管ユニット4,4・・・上部のヘッダ2A,2Bへの接続用凸部44a,44bの開口端部41c,41dに入口ヘッダ2A、出口ヘッダ2Bが接続されて、細径多管式熱交換器1が形成される。   The small-diameter heat transfer tube units 4, 4... Configured as described above are arranged in parallel with the flow direction of the external fluid F, for example, as shown in FIG. Units 4, 4... An inlet header 2A and an outlet header 2B are connected to the open end portions 41c and 41d of the projections 44a and 44b for connection to the upper headers 2A and 2B, and a small diameter multitubular heat exchanger. 1 is formed.

以上のような構成によれば、本来伝熱率の高い多数本の細径の伝熱管の管体部管体部41(41a,41b)の両側に、さらに伝熱面積拡大用の伝熱フィン42(42a,42b)が付加されることから、多数本の細径伝熱管の管体部41,41・・・(41a,41b、41a,41b・・・)による熱伝達率の良さに加えて、伝熱面積も大きく増大して、全体としての熱交換性能が大きく向上し、空気調和機用の熱交換器としての使用条件にも適したものとなる。   According to the configuration as described above, heat transfer fins for further expanding the heat transfer area are provided on both sides of the tube body portion 41 (41a, 41b) of a large number of small-diameter heat transfer tubes with originally high heat transfer rates. 42 (42a, 42b) is added, in addition to the good heat transfer coefficient by the tube portions 41, 41... (41a, 41b, 41a, 41b...) Of a plurality of small diameter heat transfer tubes. As a result, the heat transfer area is also greatly increased, the overall heat exchange performance is greatly improved, and it is suitable for use conditions as a heat exchanger for an air conditioner.

特開2001−116481号公報(明細書第1−3頁、図1−4)Japanese Patent Laid-Open No. 2001-116481 (Specification, page 1-3, FIG. 1-4)

ところで、以上のような構成の場合、上記図10の(a),(b)に示す2枚のフィンプレート(貼り合わせ部材)4A,4Bの貼り合わせは、ろう材を使用することなく、例えば各フィンプレート4A(図10のa),4B(図10のb)の対向する接合面部分にフラックスを塗布し、相互に重ね合わせて、周辺をプレス加工によりカシメ付けるか、またはレーザー溶接により仮止めした後、雰囲気炉中で炉中ろう付けすることによってなされる。   By the way, in the case of the above configuration, the two fin plates (bonding members) 4A and 4B shown in FIGS. 10A and 10B can be bonded without using a brazing material, for example, Flux is applied to the opposing joint surface portions of the fin plates 4A (FIG. 10a) and 4B (FIG. 10b), superimposed on each other, and the periphery is crimped by press working or temporarily welded by laser welding. After stopping, it is done by brazing in a furnace in an atmospheric furnace.

そのため、接合時の正確な位置決め、すなわち伝熱管管体部41形成用の凹溝部およびフィン接合面相互の適正な対応関係を如何にして正確に実現するかが重要となる。   For this reason, it is important how to accurately achieve positioning at the time of joining, that is, an appropriate correspondence between the recessed groove portion for forming the heat transfer tube body portion 41 and the fin joining surface.

本願発明は、このような事情に基いてなされたもので、貼り合わせるべき伝熱フィンプレート相互の対応する複数位置に、各々同軸方向に係合する係合部を形成することによって、簡単かつ低コストに伝熱管管体部形成用の凹溝部およびフィン接合面相互の適正な対応関係を実現できるようにした細径多管式熱交換器の細径伝熱管ユニットを提供することを目的とするものである。   The present invention has been made on the basis of such circumstances, and by forming engagement portions that engage in the coaxial direction at a plurality of positions corresponding to each other between heat transfer fin plates to be bonded together, the present invention is simple and low. An object of the present invention is to provide a small-diameter multi-tube heat exchanger thin-diameter heat transfer tube unit capable of realizing an appropriate correspondence between the concave groove portion for forming the heat-transfer tube tube portion and the fin joint surface at a low cost. Is.

本願発明は、該目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the object, the present invention includes the following problem solving means.

(1) 第1の課題解決手段
本願発明の第1の課題解決手段は、管体部41,41・・・形成用の凹溝部を有する伝熱フィンプレート4A,4Bを貼り合わせることにより、管体部41,41・・・と該管体部41,41・・・の両側に伝熱フィン42,42・・・が一体に設けられるように構成された細径多管式熱交換器の細径伝熱管ユニット4,4・・・であって、上記伝熱フィンプレート4A,4B相互の複数位置に、それぞれ貼り合わせ時において同軸方向に係合する係合部を形成したことを特徴としている。
(1) First problem-solving means The first problem-solving means of the invention of the present application is that the pipe portions 41, 41... Are formed by bonding the heat transfer fin plates 4A, 4B having the concave grooves for forming the tubes. Of the small-diameter multitubular heat exchanger configured so that heat transfer fins 42, 42... Are integrally provided on both sides of the body portions 41, 41. The small-diameter heat transfer tube units 4, 4... Are characterized in that engaging portions are formed at a plurality of positions of the heat transfer fin plates 4A and 4B in the coaxial direction at the time of bonding. Yes.

このような構成によると、伝熱フィンプレート4A,4B相互の複数位置に、それぞれ貼り合わせ時において同軸方向に係合するように形成された係合部を、相互に係合させることによって、貼り合わせ時の伝熱管管体部41,41・・・形成用の凹溝部およびフィン接合面相互の適正な対応関係を、簡単かつ低コストに実現することができる。   According to such a configuration, the engaging portions formed so as to engage in the coaxial direction at the time of bonding are respectively attached to the heat transfer fin plates 4A and 4B at a plurality of positions, thereby being attached to each other. It is possible to realize an appropriate correspondence between the heat transfer tube sections 41, 41... Forming concave grooves and the fin joint surfaces at the time of alignment easily and at low cost.

(2) 第2の課題解決手段
本願発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、係合部は、同軸方向にピン部材が連通する孔部46a,46b、46a,46b・・・よりなることを特徴としている。
(2) Second Problem Solving Means According to the second problem solving means of the present invention, in the configuration of the first problem solving means, the engaging portion includes holes 46a and 46b in which pin members communicate in the coaxial direction. 46a, 46b...

このような構成によると、貼り合わすべき伝熱フィンプレート4A,4B相互の対応する複数位置に各々同軸方向に係合するように設けられた同軸方向にピン部材が連通する孔部46a,46b、46a,46b・・・によって、貼り合わせ時の伝熱管管体部41,41・・・形成用の凹溝部およびフィン接合面相互の適正な対応関係を、簡単かつ低コストに実現することができる。   According to such a configuration, the holes 46a, 46b in which the pin members communicate in the coaxial direction are provided so as to engage with each other in a plurality of corresponding positions of the heat transfer fin plates 4A, 4B to be bonded together, 46a, 46b, etc., it is possible to easily and inexpensively realize an appropriate correspondence between the groove portions 41 and 41 for forming the heat transfer tube portions 41 and 41 at the time of bonding and the fin joint surfaces. .

(3) 第3の課題解決手段
本願発明の第3の課題解決手段は、上記第1の課題解決手段の構成において、上記係合部は、相互に同軸方向に嵌合する孔部48と凸部47よりなることを特徴としている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first problem solving means, the engaging portion includes a hole 48 and a convex portion that are fitted in a coaxial direction. It is characterized by comprising part 47.

このような構成によると、貼り合わすべき伝熱フィンプレート4A,4B相互の対応する複数位置に各々同軸方向に係合するように設けられた同軸方向に相互に嵌合する孔部48と凸部47によって、貼り合わせ時の伝熱管管体部41,41・・・形成用の凹溝部およびフィン接合面相互の適正な対応関係を、簡単かつ低コストに実現することができる。   According to such a configuration, the hole 48 and the convex portion which are fitted to each other in the coaxial direction so as to be engaged with each other in a plurality of positions corresponding to each other between the heat transfer fin plates 4A and 4B to be bonded together. 47 makes it possible to realize the appropriate correspondence between the heat transfer tube sections 41, 41... Forming concave grooves and the fin joint surfaces at the time of bonding easily and at low cost.

(4) 第4の課題解決手段
本願発明の第4の課題解決手段は、上記第1の課題解決手段の構成において、上記係合部は、相互に同軸方向に嵌合する凹部49と凸部47よりなることを特徴としている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first problem solving means, the engaging portion includes a concave portion 49 and a convex portion which are fitted in a coaxial direction. 47.

このような構成によると、貼り合わすべき伝熱フィンプレート4A,4B相互の対応する複数位置に各々同軸方向に係合するように設けられた同軸方向に相互に嵌合する凹部49と凸部47によって、貼り合わせ時の伝熱管管体部形成用の凹溝部およびフィン接合面相互の適正な対応関係を、簡単かつ低コストに実現することができる。   According to such a configuration, the concave portion 49 and the convex portion 47 that are provided so as to engage with each other in the coaxial direction at a plurality of positions corresponding to each other between the heat transfer fin plates 4A and 4B to be bonded to each other. Thus, an appropriate correspondence between the groove portion for forming the heat transfer tube body portion at the time of bonding and the fin joint surface can be realized simply and at low cost.

(5) 第5の課題解決手段
本願発明の第5の課題解決手段は、上記第1,第2,第3又は第4の課題解決手段の構成において、熱交換器が空気調和機等冷凍装置用のもので、内部流体が、R32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒であることを特徴としている。
(5) Fifth Problem Solving Means The fifth problem solving means of the present invention is the configuration of the first, second, third or fourth problem solving means, wherein the heat exchanger is a refrigeration apparatus such as an air conditioner. The internal fluid is a mixed refrigerant containing 50 wt% or more of R32, a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant.

上記第1,第2,第3又は第4の課題解決手段の構成によれば、細径の伝熱管の管体部41の両側に所定の幅の伝熱フィン42を備えてなる伝熱フィンプレート4A,4B貼り合わせ構造の細径伝熱管ユニット4において、伝熱フィンプレート4A,4B相互の正確かつ確実な貼り合わせが可能となる。したがって、伝熱フィン42部分の高いシール性能を維持することができるようになり、高圧対応性能を向上させることができる。   According to the configuration of the first, second, third or fourth problem solving means, the heat transfer fins are provided with the heat transfer fins 42 having a predetermined width on both sides of the tube portion 41 of the small-diameter heat transfer tube. In the small-diameter heat transfer tube unit 4 having the laminated structure of the plates 4A and 4B, the heat transfer fin plates 4A and 4B can be bonded accurately and reliably. Therefore, high sealing performance of the heat transfer fin 42 can be maintained, and high pressure performance can be improved.

そのため、熱交換器が空気調和機等冷凍装置用のもので、内部流体が、R32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒である細径多管式熱交換器の細径伝熱管ユニットにも適したものとなる。 Therefore, the heat exchanger is for a refrigerating apparatus such as an air conditioner, and the internal fluid is a mixed refrigerant containing 50 wt% or more of R32, or a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant. It is also suitable for a small-diameter heat transfer tube unit of a tube heat exchanger.

以上の結果、本願発明によると、きわめて簡単かつ低コストな構成で、伝熱フィンプレート貼り合わせ時の正確かつ確実な位置決めが可能となる。   As a result, according to the present invention, accurate and reliable positioning at the time of bonding the heat transfer fin plates can be achieved with a very simple and low-cost configuration.

そのため、フィンプレート接合面間のシール性能も高くなり、空気調和機等冷凍装置のR32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒などにも有効に対応することができるようになり、その可及的な熱交換性能の向上を図ることができる。 Therefore, the sealing performance between the fin plate joint surfaces is also improved, and it is effective for a mixed refrigerant containing 50 wt% or more of R32 of a refrigerating apparatus such as an air conditioner, a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant. Thus, the heat exchange performance can be improved as much as possible.

(最良の実施の形態1)
先ず図1〜図4は、本願発明を実施するに際しての最良の実施の形態1に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Embodiment 1)
1 to 4 show the structure of a small-diameter heat transfer tube unit of a small-diameter multi-tube heat exchanger according to the best embodiment 1 for carrying out the present invention.

また図5および図6は、同構造の細径伝熱管ユニットを採用して構成した細径多管式熱交換器の構成を示している。   FIG. 5 and FIG. 6 show the configuration of a small-diameter multi-tube heat exchanger configured by adopting the small-diameter heat transfer tube unit having the same structure.

すなわち、先ず図5に示す細径多管式熱交換器1は、相互に所定の間隔を保って並設された冷媒分配機能を有する入口ヘッダ2Aおよび出口ヘッダ2Bと、該入口ヘッダ2Aと出口ヘッダ2Bの各々に接続され、その下部側に位置して長手方向に沿って多数本並設された細径伝熱管ユニット(フィン付細径伝熱管)4,4・・・よりなる熱交部3とから構成されている。   That is, first, a small-diameter multitubular heat exchanger 1 shown in FIG. 5 includes an inlet header 2A and an outlet header 2B having a refrigerant distribution function arranged in parallel with each other at a predetermined interval, and the inlet header 2A and the outlet A heat exchange section composed of thin heat transfer tube units (fined heat transfer tubes with fins) 4, 4... Connected to each of the headers 2 </ b> B and arranged on the lower side along the longitudinal direction. 3.

上記細径伝熱管ユニット4,4・・・は、例えば図1及び図2に示すように、その伝熱管の管体部(細径管部)41が全体としてU状に曲成され、その上端側凸部44a,44bの各開口端部41c,41dが上記入口ヘッダ2A、出口ヘッダ2Bの底部側各開口部に各々接続されるようになっている一方、同U状の管体部41の左右のストレート部41a,41bには、それぞれその左右両側に位置して各々所定の幅のフィン部42a,42bが設けられている。これらストレート部41a,41b両側のフィン部42a,42bは相互に連続して、上記U状の管体部41に対する1枚の伝熱フィン42を形成している。   As shown in FIGS. 1 and 2, for example, the small-diameter heat transfer tube units 4, 4,... Have a tubular portion (thin-diameter tube portion) 41 of the heat transfer tube bent in a U shape as a whole. The open end portions 41c and 41d of the upper end convex portions 44a and 44b are respectively connected to the respective opening portions on the bottom side of the inlet header 2A and the outlet header 2B, while the U-shaped tube portion 41 is provided. The left and right straight portions 41a and 41b are respectively provided with fin portions 42a and 42b having predetermined widths located on the left and right sides thereof. The fin portions 42a and 42b on both sides of the straight portions 41a and 41b are continuous with each other to form one heat transfer fin 42 for the U-shaped tube portion 41.

そして、該管体部41(41a,41b)および伝熱フィン42(42a,42b)を備えた細径伝熱管ユニット4,4・・・は、例えば図4の(a),(b)に示すように、それぞれ管体部41(41a,41b)形成用の断面半円形状の凹溝部を有する左右対称構造の薄くて扁平な縦長長方形状のフィンプレート4A,4Bを、例えば図1〜図3に示すように、相互に対向させた状態で貼り合わせて一体化することにより形成され、それによって上記管体部41と該管体部41のストレート部41a,41bの左右両側にフィン部42a,42bが1枚状態に一体形成された同細径伝熱管ユニット4,4・・・を構成している。   And the small diameter heat-transfer tube unit 4,4 ... provided with this tube part 41 (41a, 41b) and the heat-transfer fin 42 (42a, 42b) is shown to (a), (b) of FIG. As shown, thin and flat vertically elongated rectangular fin plates 4A and 4B each having a semi-circular groove having a semicircular cross section for forming a tubular body portion 41 (41a and 41b) are shown in FIGS. As shown in FIG. 3, they are formed by being bonded and integrated in a state of being opposed to each other, whereby fin portions 42 a are formed on both the left and right sides of the tubular portion 41 and the straight portions 41 a and 41 b of the tubular portion 41. , 42b constitute the same thin-diameter heat transfer tube unit 4, 4.

この場合において、上記貼り合わすべき2枚のフィンプレート4A,4Bの相互の対応する外周側複数位置には、位置決め用の係合部として、同軸方向にピン部材が連通する孔部46a,46b、46a,46b・・・が設けられている。そして、これら各孔部46a,46b、46a,46b・・・にピン部材を連通することによって、貼り合わせ時の伝熱管管体部41,41・・・形成用の凹溝部およびフィン接合面相互の適正な対応関係を簡単かつ低コストに実現することができるようにしている。   In this case, holes 46a and 46b in which pin members communicate with each other in the coaxial direction are provided as engaging portions for positioning at a plurality of positions on the outer peripheral side corresponding to the two fin plates 4A and 4B to be bonded together. 46a, 46b... Are provided. And by connecting a pin member to each of these holes 46a, 46b, 46a, 46b..., Heat transfer tube portions 41, 41. This makes it possible to realize an appropriate correspondence relationship easily and at low cost.

このように構成された細径伝熱管ユニット4,4・・・は、例えば図6に示すように、、外部流体Fの流れ方向と平行に所定のピッチで多数枚並設して配列され、同配列状態において、各細径伝熱管ユニット4,4・・・上部のヘッダへの接続用凸部44a,44bの開口端部41c,41d、41d,41c・・・に入口ヘッダ2A、出口ヘッダ2Bが接続されて、最終的に図5のような細径多管式熱交換器1が形成される。   The small-diameter heat transfer tube units 4, 4... Configured as described above are arranged in parallel at a predetermined pitch in parallel with the flow direction of the external fluid F, for example, as shown in FIG. In the same arrangement state, each of the small-diameter heat transfer tube units 4, 4... Has an inlet header 2 A and an outlet header at the opening end portions 41 c, 41 d, 41 d, 41 c. 2B is connected, and finally the thin multi-tube heat exchanger 1 as shown in FIG. 5 is formed.

このような構成によれば、本来伝熱率の高い細径の伝熱管の管体部41(41a,41b、41a,41b)両側に、さらに伝熱面積拡大用の伝熱フィン42(42a,42b)が付加されることから、細径伝熱管の管体部41(41a,41b)による熱伝達率の良さに加えて、伝熱面積も大きく増大して、全体としての熱交換性能が大きく向上し、空気調和機用の熱交換器としての使用条件にも適したものとなる。   According to such a configuration, the heat transfer fins 42 (42a, 42a, 41a, 41a, 41b, 42a, 41a, 41b) are further provided on both sides of the tube portion 41 (41a, 41b, 41a, 41b) of the small-diameter heat transfer tube having a high heat transfer rate. 42b) is added, in addition to the good heat transfer coefficient by the tube portion 41 (41a, 41b) of the small diameter heat transfer tube, the heat transfer area is also greatly increased, and the overall heat exchange performance is increased. It improves and becomes suitable for the use conditions as a heat exchanger for an air conditioner.

ところで、このような構成の場合、上記図5のように多数枚の細径伝熱管ユニット4,4・・・を並設して熱交部3を構成するに際し、そのまま各ユニットを同じ状態で各々並設したのでは、隣合う管体部41(41a,41b)、41(41a,41b)同士が相互に近接して、通風抵抗が増大するので、フィンピッチにも限界が生じる。他方、この問題を解決するために、例えば外部流体Fの流れる前後方向に交互に位置を変え、全体として千鳥構造に配列したのでは、その分熱交部3の寸法が大きくなり、コンパクト性に欠けるとともに、ヘッダ2A,2Bとの接続用開口端部41c,41dの位置が合わなくなる。   By the way, in the case of such a configuration, when the heat exchange unit 3 is configured by arranging a plurality of small-diameter heat transfer tube units 4, 4... As shown in FIG. If they are arranged side by side, the adjacent pipe body parts 41 (41a, 41b) and 41 (41a, 41b) are close to each other and the ventilation resistance is increased, so that the fin pitch is also limited. On the other hand, in order to solve this problem, for example, if the positions are alternately changed in the front-rear direction in which the external fluid F flows and arranged in a zigzag structure as a whole, the size of the heat exchanger 3 is increased accordingly, and the compactness is improved In addition to being chipped, the positions of the opening end portions 41c and 41d for connection with the headers 2A and 2B are not aligned.

そこで、この実施の形態では、例えば図1〜図4に示すように、上記U状の管体部41の2本のストレート部41a,41bの内の一方側ストレート部41bを、その上端側開口端部41dから真っ直ぐ下方に直線的に延設するのではなく、伝熱フィン42の中央部側に一旦所定幅aだけクランク状に曲成した上で下方に延設することにより(クランク部R参照)、U状の管体部41(41a,41b)が全体として伝熱フィン42の左右何れか一方側に偏位した形で設けられるように構成している。   Therefore, in this embodiment, as shown in FIGS. 1 to 4, for example, one of the two straight portions 41a and 41b of the U-shaped tube portion 41 is opened at its upper end side. Rather than linearly extending downward from the end 41d, it is once bent into a crank shape by a predetermined width a on the center side of the heat transfer fins 42 (crank portion R). The U-shaped tube part 41 (41a, 41b) is configured so as to be displaced to the left or right side of the heat transfer fin 42 as a whole.

そして、この状態で、さらに上記伝熱フィン42における管体部41の2本のストレート部41aと41bの間およびクランク状に曲成されたストレート部41bの外周側中央には、伝熱フィン42の両面側に貫通する開口として、上記管体部41(41a,41b)の外径と同程度の幅の2本のスリット43a,43bが設けられている。   In this state, the heat transfer fin 42 is further provided between the two straight portions 41a and 41b of the tube portion 41 in the heat transfer fin 42 and at the center of the outer periphery side of the straight portion 41b bent in a crank shape. Two slits 43a and 43b having the same width as the outer diameter of the tube part 41 (41a and 41b) are provided as openings penetrating both sides of the tube.

しかも、そのように構成された各細径伝熱管ユニット4,4・・・は、例えば図5,図6に示すように、その左右方向を交互に逆にして並設することにより、上記細径伝熱管ユニット4,4・・・の管体部41,41・・・のストレート部41a,41b、41a,41b・・・が全体として千鳥状の配置となるように、外部流体Fの流れ方向に対して平行に配列されている。   Moreover, the small-diameter heat transfer tube units 4, 4... Configured as described above are arranged in parallel with the left and right directions alternately reversed, as shown in FIGS. The flow of the external fluid F so that the straight portions 41a, 41b, 41a, 41b ... of the tube portions 41, 41 ... of the radial heat transfer tube units 4, 4 ... are arranged in a staggered manner as a whole. Arranged parallel to the direction.

この結果、細径伝熱管ユニット4,4・・・の各々を空気流前後方向に位置をずらすまでもなく、外部流体Fの流れの方向と平行に隣合う細径伝熱管ユニット4,4の管体部41(41a,41b)、41(41a,41b)・・・自体が外部流体Fの流れ方向の上流と下流に所定寸法偏位し、それら相互の間隔も広くなるので、外部流体Fの流路抵抗が小さくなり、また各管体部41(41a,41b)、41(41a,41b)・・・および伝熱フィン42(42a,42b)、42(42a,42b)・・・の表面を均一かつスムーズに流れるようになる。したがって、熱交部3の拡大を招くことなく、熱交換性能が向上する。   As a result, it is not necessary to shift the position of each of the small-diameter heat transfer tube units 4, 4. Since the pipe portions 41 (41a, 41b), 41 (41a, 41b)... Themselves are displaced by a predetermined dimension upstream and downstream in the flow direction of the external fluid F, and the distance between them increases, the external fluid F The flow path resistance of the tube portions 41 (41a, 41b), 41 (41a, 41b)... And the heat transfer fins 42 (42a, 42b), 42 (42a, 42b). Flows evenly and smoothly on the surface. Therefore, the heat exchange performance is improved without causing the heat exchange part 3 to expand.

さらに、以上の構成の場合、上記図4の(a),(b)に示す2枚のフィンプレート(貼り合わせ部材)4A,4Bの接合は、ろう材を使用することなく、例えば各フィンプレート4A,4Bの対向する接合面部分にフラックスを塗布し、相互に重ね合わせて周辺をプレス加工によってカシメ付けるか、またはレーザー溶接により仮止めをした後、雰囲気炉中で炉中ろう付けすることによってなされる。   Further, in the case of the above configuration, the two fin plates (bonding members) 4A and 4B shown in FIGS. 4A and 4B are joined without using brazing material, for example, each fin plate. By applying flux to the opposing joint surface parts of 4A and 4B and overlaying each other and caulking the periphery by press working, or temporarily fixing by laser welding and then brazing in an oven in an atmosphere furnace Made.

そのため、接合部のシール性を向上させ、冷媒漏れ等を防止するためには、同接合時に接合面部間で生じるフラックスガスを効果的かつ均一に外部に漏出させる必要がある。   For this reason, in order to improve the sealing performance of the joint and prevent leakage of the refrigerant or the like, it is necessary to effectively and uniformly leak the flux gas generated between the joint surfaces during the joint.

ところが、上記図1〜図4のような構成の場合、細径の管体部41(41a,41b)の管径φに比較して、伝熱フィン42(フィン部42aと42bを組み合わせた部分)部分の幅が相当に大きいために、接合面の面積が大きく、上述のフラックスガスのガス抜きが難しい。したがって、接合面のシール性、耐圧性の向上が課題となる。   However, in the case of the configuration as shown in FIGS. 1 to 4, the heat transfer fins 42 (parts where the fin portions 42 a and 42 b are combined) as compared with the tube diameter φ of the thin tube portion 41 (41 a, 41 b). ) Since the width of the part is considerably large, the area of the joint surface is large, and it is difficult to vent the above-described flux gas. Therefore, improvement of the sealing performance and pressure resistance of the joint surface is a problem.

これを改善するために、例えばブレージングシートを多用して真空炉中で炉中ろう付けすることも考えられるが、そのようにすると、コストがアップし、炉中ろう付けの工程も複雑となる。   In order to improve this, for example, brazing sheets may be frequently used and brazed in a furnace in a vacuum furnace. However, doing so increases costs and complicates the process of brazing in the furnace.

そこで、この実施の形態では、上記伝熱フィン42(42a,42b)、42(42a,42b)・・・に、その両面側に貫通した開口として、上下方向に延びる2本のスリット43a,43b・・・よりなる開口部が形成されている。   Therefore, in this embodiment, two slits 43a and 43b extending in the vertical direction as openings penetrating the heat transfer fins 42 (42a, 42b), 42 (42a, 42b). ... the opening part which consists of is formed.

したがって、このような構成によると、同伝熱フィン42(42a,42b)、42(42a,42b)・・・の両面側に貫通したスリット43a,43b・・・により、実際にはフィン幅を狭くしたのと同様の有効なガス抜きを可能として、有効にフィン接合面のシール性、耐圧性を向上させることができる。   Therefore, according to such a configuration, the fin width is actually reduced by the slits 43a, 43b... Penetrating through both sides of the heat transfer fins 42 (42a, 42b), 42 (42a, 42b). Effective degassing similar to the narrowing is possible, and the sealing performance and pressure resistance of the fin joint surface can be improved effectively.

そのため、例えばR32を50wt%以上含む混合冷媒(R410A)、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒にも有効に対応することができるようになり、熱交換性能の向上を図ることができる。 Therefore, for example, it is possible to effectively cope with a mixed refrigerant (R410A) containing 50 wt% or more of R32, a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant, and the heat exchange performance is improved. be able to.

さらに、以上の構成の場合、図6から明らかなように、上記スリット43a,43bが、隣合う細径伝熱管ユニット4,4・・・の各管体部41(41a,41b)、41(41a,41b)・・・と対向する位置に来るように配設されている。   Further, in the case of the above configuration, as is apparent from FIG. 6, the slits 43a, 43b are formed so that the tube portions 41 (41a, 41b), 41 () of the adjacent small-diameter heat transfer tube units 4, 4,. 41a, 41b)...

したがって、各管体部41(41a,41b)、41(41a,41b)・・・部分で側方に曲がって流れる空気流の一部が、同スリット43a,43bを介して隣側の通路にもバイパスして流れるようになり、より流通抵抗が小さくなるとともに、より前縁効果が向上する。   Therefore, a part of the air flow that bends and flows laterally at each tubular body portion 41 (41a, 41b), 41 (41a, 41b)... Portion passes through the slits 43a and 43b to the adjacent passage. Also flows by bypass, the flow resistance is further reduced, and the leading edge effect is further improved.

(最良の実施の形態2)
次に図7は、本願発明を実施するに際しての最良の実施の形態2に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Mode 2)
Next, FIG. 7 shows the structure of the small-diameter heat transfer tube unit of the small-diameter multi-tube heat exchanger according to the second preferred embodiment when the present invention is implemented.

この構成では、上記図4の(a),(b)に示すフィンプレート4A,4B接合時の位置決め用の係合部を、上記最良の実施の形態1の構成における孔部46a,46b、46a,46b・・・に変えて、例えば図7に示すように、一方のフィンプレート4B側孔部48と他方のフィンプレート4A側球面状の凸部47を採用し、これらを同図7の断面図に示すように相互に同軸方向に係合することにより、正確に位置決めし、伝熱管管体部41,41・・・(41a,41b、41a,41b・・・)形成用の凹溝部およびフィン接合面相互の適正な対応関係を簡単な構成で実現することができるようにしたことを特徴とするものである。   In this configuration, the positioning engaging portions at the time of joining the fin plates 4A and 4B shown in FIGS. 4A and 4B are the holes 46a, 46b, and 46a in the configuration of the best embodiment 1 described above. .., 46b..., For example, as shown in FIG. 7, one fin plate 4B side hole 48 and the other fin plate 4A side spherical convex portion 47 are adopted, and these are shown in FIG. As shown in the figure, by engaging each other in the coaxial direction, it is positioned accurately, and the groove portions for forming the heat transfer tube portions 41, 41... (41a, 41b, 41a, 41b. The present invention is characterized in that an appropriate correspondence between the fin joint surfaces can be realized with a simple configuration.

このような構成によっても、簡単かつ低コストに、上記最良の実施の形態1と同様の作用効果を実現することができる。   Even with such a configuration, the same effects as those of the first embodiment can be realized easily and at low cost.

(最良の実施の形態3)
次に図8は、本願発明を実施するに際しての最良の実施の形態3に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Mode 3)
Next, FIG. 8 shows the structure of a small-diameter heat transfer tube unit of a small-diameter multitubular heat exchanger according to the third preferred embodiment for carrying out the present invention.

この構成では、上記図4の(a),(b)に示すフィンプレート4A,4B接合時の位置決め用の係合部を上記最良の実施の形態1の構成における孔部46a,46b、46a,46b・・・に変えて、例えば図8に示すように、一方のフィンプレート4B側球面状の凹部49と他方のフィンプレート4A側球面状の凸部47を採用し、これらを同図8の断面図に示すように相互に同軸方向に係合することにより、正確に位置決めし、伝熱管管体部41,41・・・(41a,41b、41a,41b・・・)形成用の凹溝部およびフィン接合面相互の対応関係を簡単な構成で実現することができるようにしたことを特徴とするものである。   In this configuration, the engaging portions for positioning at the time of joining the fin plates 4A and 4B shown in FIGS. 4A and 4B are the holes 46a, 46b, 46a in the configuration of the first embodiment. For example, as shown in FIG. 8, a spherical concave portion 49 on one fin plate 4B side and a convex portion 47 on the other fin plate 4A side are adopted as shown in FIG. As shown in the cross-sectional view, the grooves are accurately positioned by engaging each other in the coaxial direction, and the groove portions for forming the heat transfer tube portions 41, 41... (41a, 41b, 41a, 41b...) In addition, the correspondence relationship between the fin joint surfaces can be realized with a simple configuration.

このような構成によっても、簡単かつ低コストに、上記最良の実施の形態1と同様の作用効果を実現することができる。   Even with such a configuration, the same effects as those of the first embodiment can be realized easily and at low cost.

本願発明の最良の実施の形態1に係る細径多管式熱交換器の細径伝熱管ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 1 of this invention. 同細径伝熱管ユニットの要部の拡大斜視図である。It is an expansion perspective view of the principal part of the same small diameter heat exchanger tube unit. 同細径伝熱管ユニットの水平断面図(図1のA−A)である。It is a horizontal sectional view (AA of FIG. 1) of the same small-diameter heat transfer tube unit. 同細径伝熱管ユニットの左右フィンプレート(貼り合わせ部材)の貼り合わせ前の対向面(接合面)の構造を左右に対比して示す図である。It is a figure which shows the structure of the opposing surface (joining surface) before bonding of the right-and-left fin plate (bonding member) of the same small diameter heat-transfer tube unit as compared with right and left. 同細径伝熱管ユニットを並設して形成した細径多管式熱交換器の構成を示す斜視図である。It is a perspective view which shows the structure of the small diameter multitubular heat exchanger formed by arranging the same small diameter heat exchanger tube unit in parallel. 同細径多管式熱交換器の熱交部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the heat exchange part of the same small diameter multi-tube heat exchanger. 本願発明の最良の実施の形態2に係る細径多管式熱交換器の細径伝熱管ユニットの接合時の位置決め用係合部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the engaging part for positioning at the time of joining of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 2 of this invention. 本願発明の最良の実施の形態3に係る細径多管式熱交換器の細径伝熱管ユニットの接合時の位置決め用係合部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the engaging part for positioning at the time of joining of the thin diameter heat exchanger tube unit of the thin diameter multi-tube heat exchanger which concerns on the best Embodiment 3 of this invention. 従来の細径伝熱管ユニットを用いて構成した細径多管式熱交換器の構成を示す斜視図である。It is a perspective view which shows the structure of the small diameter multitubular heat exchanger comprised using the conventional small diameter heat exchanger tube unit. 同細径多管式熱交換器を構成する細径伝熱管ユニットの左右フィンプレート(貼り合わせ部材)の貼り合わせ前の構造を対比して示す内側正面図である。It is an inner side front view which contrasts and shows the structure before bonding of the right-and-left fin plates (bonding member) of the small diameter heat exchanger tube unit which comprises the same small diameter multi-tube heat exchanger. 同細径多管式熱交換器の細径伝熱管ユニット部の接合構成を示す水平断面図である。It is a horizontal sectional view which shows the joining structure of the thin diameter heat exchanger tube unit part of the same thin diameter multi-tube heat exchanger.

符号の説明Explanation of symbols

1は細径多管式熱交換器、2Aは入口ヘッダ、2Bは出口ヘッダ、3は熱交部、4は細径伝熱管ユニット、41は細径伝熱管ユニット4のU状の管体部、41a,41bは管体部41のストレート部、42は伝熱フィン、42a,42bはフィン部、46a,46bは孔部、47は凸部、48は孔部、49は凹部である。   1 is a thin multi-tubular heat exchanger, 2A is an inlet header, 2B is an outlet header, 3 is a heat exchanger, 4 is a small diameter heat transfer tube unit, and 41 is a U-shaped tube portion of the small diameter heat transfer tube unit 4 , 41a and 41b are straight portions of the tube body portion 41, 42 are heat transfer fins, 42a and 42b are fin portions, 46a and 46b are hole portions, 47 is a convex portion, 48 is a hole portion, and 49 is a concave portion.

Claims (5)

管体部(41),(41)・・・形成用の凹溝部を有する伝熱フィンプレート(4A),(4B)を貼り合わせることにより、管体部(41),(41)・・・と該管体部(41),(41)・・・の両側に伝熱フィン(42),(42)・・・が一体に設けられるように構成された細径多管式熱交換器の細径伝熱管ユニット(4),(4)・・・であって、上記伝熱フィンプレート(4A),(4B)相互の複数位置に、それぞれ貼り合わせ時において同軸方向に係合する係合部を形成したことを特徴とする細径多管式熱交換器の細径伝熱管ユニット。   Tube parts (41), (41) ... Tube parts (41), (41) ... by bonding heat transfer fin plates (4A), (4B) having concave grooves for formation And heat transfer fins (42), (42) ... are integrally provided on both sides of the tube portions (41), (41) ... The small-diameter heat transfer tube units (4), (4)... Are engaged with each other at a plurality of positions of the heat transfer fin plates (4A) and (4B) in the coaxial direction at the time of bonding. A thin heat transfer tube unit of a thin multi-tube heat exchanger, characterized in that a section is formed. 係合部は、同軸方向にピン部材が連通する孔部(46a),(46b)、(46a),(46b)・・・よりなることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   2. The small-diameter multi-tubular type according to claim 1, wherein the engaging portion includes holes (46a), (46b), (46a), (46b),. Small heat transfer tube unit for heat exchanger. 係合部は、相互に同軸方向に嵌合する孔部(48)と凸部(47)よりなることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   2. A small-diameter heat transfer tube unit of a thin multi-tubular heat exchanger according to claim 1, wherein the engaging portion includes a hole portion (48) and a convex portion (47) which are fitted in the same direction as each other. . 係合部は、相互に同軸方向に嵌合する凹部(49)と凸部(47)よりなることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   The small-diameter heat transfer tube unit of the small-diameter multitubular heat exchanger according to claim 1, wherein the engaging portion is composed of a concave portion (49) and a convex portion (47) which are fitted in the coaxial direction. 熱交換器が空気調和機等冷凍装置用のもので、内部流体が、R32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒であることを特徴とする請求項1,2,3又は4記載の細径多管式熱交換器の細径伝熱管ユニット。 The heat exchanger is for a refrigerating apparatus such as an air conditioner, and the internal fluid is a mixed refrigerant containing 50 wt% or more of R32, or a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant. The thin-diameter heat transfer tube unit of the thin-diameter multitubular heat exchanger according to claim 1, 2, 3, or 4.
JP2004276912A 2004-09-24 2004-09-24 Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger Pending JP2006090636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276912A JP2006090636A (en) 2004-09-24 2004-09-24 Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276912A JP2006090636A (en) 2004-09-24 2004-09-24 Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger

Publications (1)

Publication Number Publication Date
JP2006090636A true JP2006090636A (en) 2006-04-06

Family

ID=36231792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276912A Pending JP2006090636A (en) 2004-09-24 2004-09-24 Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger

Country Status (1)

Country Link
JP (1) JP2006090636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118638A (en) * 2009-12-03 2011-06-16 Nec Corp Battery rental system server, method, program, and portable electronic equipment
JP2013092265A (en) * 2011-10-24 2013-05-16 Mitsubishi Electric Corp Heat exchanger, fin for the same, and method for manufacturing of heat exchanger
CN110015121A (en) * 2017-11-21 2019-07-16 丰田自动车株式会社 Renewal cost setting device, method and system
WO2019167839A1 (en) 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger
WO2019167840A1 (en) 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118638A (en) * 2009-12-03 2011-06-16 Nec Corp Battery rental system server, method, program, and portable electronic equipment
JP2014209359A (en) * 2009-12-03 2014-11-06 日本電気株式会社 Battery rental system server, method, program, and portable electronic apparatus
JP2013092265A (en) * 2011-10-24 2013-05-16 Mitsubishi Electric Corp Heat exchanger, fin for the same, and method for manufacturing of heat exchanger
CN110015121A (en) * 2017-11-21 2019-07-16 丰田自动车株式会社 Renewal cost setting device, method and system
WO2019167839A1 (en) 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger
WO2019167840A1 (en) 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger
US11874034B2 (en) 2018-03-01 2024-01-16 Daikin Industries, Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
EP1714100B1 (en) Method of forming a brazed plate fin heat exchanger
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP2004144460A (en) Heat exchanger
JPH0571884A (en) Heat exchanger with small core depth
WO2011049015A1 (en) Evaporator
JP4122670B2 (en) Heat exchanger
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
JP2011163666A (en) Heat exchanger
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
JP2010121925A (en) Heat exchanger
JP2006138503A (en) Heat exchanger
JP2006090636A (en) Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger
JP4147731B2 (en) Heat exchanger for cooling
WO2020095621A1 (en) Heat exchanger and air conditioner
JP2009150587A (en) Heat exchanger
JP2006112732A (en) Small-diameter heat transfer tube unit of small-diameter multitubular heat exchanger
JP2006112731A (en) Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger
US10801781B2 (en) Compliant b-tube for radiator applications
JP2005024109A (en) Heat exchanger
JP2009228949A (en) Tube for heat exchanger
JP2006090642A (en) Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger
JP2009168356A (en) Tube for heat exchanger
JP2003240387A (en) Inner fin for heat-exchanger
JP4284727B2 (en) Heat exchanger
JP2009008347A (en) Heat exchanger