配列表
添付の配列表に列挙されている核酸配列およびアミノ酸配列は、37C.F.R.1.822において定義されている通り、ヌクレオチド塩基については標準の文字略語、およびアミノ酸については3文字コードを使用して示されている。各核酸配列の一方の鎖のみが示されているが、示されている鎖への言及のいずれにも相補鎖が含まれると理解されたい。配列表は、ASCIIテキストファイル[Sequence_Listing、2016年11月20日、4,096バイト]として提出され、参照により本明細書に組み込まれる。添付の配列表において:
配列番号1は、ヒトTNF-αのアミノ酸配列である。
配列番号2は、例示的なDN-TNF-α(XPRO(商標)1595)のアミノ酸配列である。
配列番号3は、例示的なDN-TNF-α(XPRO(商標)1595)をコードする核酸配列である。
可溶性腫瘍壊死因子(sTNF)は、MDSCの増大、免疫抑制の発生、ならびに、例えば、これだけに限定されないが、化学的に誘導された発癌現象において、発癌現象および腫瘍成長の促進において中心的な役割を有することが本明細書に開示されている。DN-TNF-αの投与により、腫瘍免疫抑制および腫瘍発生が効率的に阻害される。
用語
特に断りのない限り、技術用語は、従来の使用に従って使用されている。分子生物学における一般用語の定義は、Benjamin Lewin、Genes V、Oxford University Pressにより出版、1994年(ISBN 0-19-854287-9);Kendrewら(編)、The Encyclopedia of Molecular Biology、Blackwell Science Ltd.により出版、1994(ISBN 0-632-02182-9);およびRobert A. Meyers(編)、Molecular Biology and Biotechnology: a Comprehensive Desk Reference、VCH Publishers, Inc.により出版、1995年(ISBN 1-56081-569-8)において見いだすことができる。
本開示の種々の実施形態についての精査を容易にするために、以下の具体的な用語の説明を提示する:
動物:例えば、哺乳動物および鳥類を含むカテゴリーである、生きている多細胞脊椎動物生物体。哺乳動物という用語は、ヒトおよび非ヒト哺乳動物のどちらも含む。同様に、「被験体」という用語は、ヒト被験体および獣医学的被験体のどちらも含む。したがって、「被験体」という一般用語は、これだけに限定されないが、ヒト、または他の霊長類、齧歯類、イヌ、ネコ、ウマ、およびウシなどの獣医学的被験体を含めた全ての動物を含むものと理解される。
抗体:エピトープ(例えば、腫瘍もしくはウイルス抗原もしくはその断片、または、PD-1もしくはCTLA-4などの別の目的のタンパク質などの抗原)を特異的に認識し、それに結合する、少なくとも軽鎖または重鎖免疫グロブリン可変領域を含むポリペプチドリガンド。抗体とは、インタクトな免疫グロブリン、ならびに、当技術分野で周知のそれらのバリアントおよび部分、例えば、Fab’断片、F(ab)’2断片、単鎖Fvタンパク質(「scFv」)、およびジスルフィド安定化Fvタンパク質(「dsFv」)などを含む。scFvタンパク質は、免疫グロブリンの軽鎖可変領域と免疫グロブリンの重鎖可変領域をリンカーによって結合させた融合タンパク質であり、一方、dsFvは、鎖の会合を安定化するために、ジスルフィド結合が導入されるように鎖を変異させたものである。この用語は、キメラ抗体(例えば、ヒト化マウス抗体)、ヘテロコンジュゲート抗体(例えば、二重特異性抗体)などの、遺伝子操作された形態も含む。Pierce CatalogおよびHandbook、1994~1995年(Pierce Chemical Co.、Rockford、IL);Kuby、J.、Immunology、第3版、W.H. Freeman & Co.、New York、1997年も参照されたい。
一般には、免疫グロブリンは、重鎖および軽鎖を有する。各重鎖および軽鎖は、定常領域および可変領域(領域は、「ドメイン」としても公知である)を含有する。重鎖可変領域と軽鎖可変領域は組み合わさって抗原に特異的に結合する。軽鎖可変領域および重鎖可変領域は、3つの、「相補性決定領域」または「CDR」とも称される超可変領域によって中断された「フレームワーク」領域を含有する。フレームワーク領域およびCDRの範囲は定義されている(これによって参照により組み込まれる、Kabatら、Sequences of Proteins of Immunological Interest、U.S. Department of Health and Human Services、1991年を参照されたい)。Kabatデータベースは現在オンラインで維持されている。異なる軽鎖または重鎖のフレームワーク領域の配列は、種内で比較的保存されている。構成要素である軽鎖および重鎖の組み合わさったフレームワーク領域である抗体のフレームワーク領域は、CDRを3次元空間内に位置付け、アラインメントするように働く。
CDRは、抗原のエピトープへの結合に主に関与する。各鎖のCDRは、一般には、N末端から開始して逐次的に番号を付して、CDR1、CDR2、およびCDR3と称され、また、一般には、特定のCDRが位置する鎖によっても特定される。したがって、VH CDR3は、それが見いだされる抗体の重鎖の可変ドメインに位置し、VL CDR1は、それが見いだされる抗体の軽鎖の可変ドメイン由来のCDR1である。
「VH」または「VH」への言及は、Fv、scFv、dsFvまたはFabのものを含め、免疫グロブリン重鎖の可変領域を指す。「VL」または「VL」への言及は、Fv、scFv、dsFvまたはFabのものを含め、免疫グロブリン軽鎖の可変領域を指す。
「モノクローナル抗体」は、Bリンパ球の単一のクローンによって、または単一の抗体の軽鎖および重鎖遺伝子がトランスフェクトされた細胞によって産生される抗体である。モノクローナル抗体は当業者に公知の方法によって、例えば、骨髄腫細胞と免疫脾臓細胞の融合物からハイブリッド抗体形成細胞を作製することによって産生される。モノクローナル抗体とは、ヒト化モノクローナル抗体を含む。
「ヒト化」免疫グロブリンは、ヒトフレームワーク領域および非ヒト(例えば、マウス、ラット、または合成)免疫グロブリン由来の1つまたは複数のCDRを含む免疫グロブリンである。CDRを供給する非ヒト免疫グロブリンは「ドナー」と称され、フレームワークを供給するヒト免疫グロブリンは「アクセプター」と称される。一実施形態では、CDRの全てが、ヒト化免疫グロブリン内のドナー免疫グロブリンに由来するものである。定常領域は存在しなくてもよいが、存在する場合には、ヒト免疫グロブリン定常領域と実質的に同一、すなわち、少なくとも約85~90%、例えば、約95%またはそれよりも高い割合で同一でなければならない。したがって、ヒト化免疫グロブリンの、おそらくCDR以外の全ての部分が、天然のヒト免疫グロブリン配列の対応する部分と実質的に同一である。「ヒト化抗体」は、ヒト化軽鎖免疫グロブリンおよびヒト化重鎖免疫グロブリンを含む抗体である。ヒト化抗体は、CDRを供給するドナー抗体と同じ抗原に結合する。ヒト化免疫グロブリンまたは抗体のアクセプターフレームワークは、ドナーフレームワークから取得したアミノ酸による限られた数の置換を有する。ヒト化または他のモノクローナル抗体は、抗原への結合または他の免疫グロブリン機能に実質的に影響を及ぼさない追加的な保存的アミノ酸置換を有してよい。ヒト化免疫グロブリンは、遺伝子工学によって構築することができる(例えば、米国特許第5,585,089号を参照されたい)。
「中和抗体」は、PD-1ポリペプチドなどのポリペプチドの任意の生物活性に干渉する抗体である。例えば、中和抗体は、T細胞の細胞傷害性などの免疫応答を低減させるPD-1ポリペプチドの能力に干渉し得る。いくつかの例では、中和抗体により、免疫応答を低減させるPD-1ポリペプチドの能力が約50%、約70%、約90%またはそれよりも高い割合で低下する。本明細書に記載のものを含めた免疫応答を測定するための任意の標準のアッセイを使用して潜在的な中和抗体を評価することができる。
BRAFキナーゼ:MAPKシグナル伝達経路に関与する酵素。正常細胞では、細胞表面受容体チロシンキナーゼは、それらの細胞外領域に増殖因子が結合すると二量体を形成する。これにより、MAPKシグナル伝達カスケードが開始され、それにより、細胞増殖、生存、浸潤、および血管新生が促進される(Cheng、Y.ら、2013年、Cancer Metastasis Rev、32巻:567~584頁)。BRAFにおける体細胞変異により、前悪性メラニン細胞の再プログラミングが導かれる。変異型BRAFシグナルにより、上流のキューとは独立して、MAPKキナーゼ(MEK)および細胞外シグナル調節キナーゼ(ERK)を介した過剰に活性な下流のシグナル伝達が導かれる。そのような調節不全シグナル伝達により、制御されていない細胞増殖および細胞生存の延長が引き起こされる。黒色腫のおよそ50%が、タンパク質鎖のV600位にBRAF変異を有し、その大多数(>90%)がグルタミン酸(E)によるバリン(V;V600E)の置換を伴い、その結果、上流のキューとは独立した、構成的に活性なBRAFがもたらされる(Cantwell-Dorris、E. R.ら、2011年、Molecular Cancer Therapeutics、10巻:385~394頁)。
乳がん:良性または悪性であり得る、乳房組織の新生物の状態。乳がんの最も一般的な型は、腺管癌である。上皮内腺管癌(ductal carcinoma in situ)は、管の非侵襲的な新生物の状態である。小葉癌は、浸潤性疾患ではないが、癌腫が発生する可能性があることの指標である。浸潤性(悪性)乳癌は、ステージ(I、IIA、IIB、IIIA、IIIB、およびIV)に分けることができる。
乳癌では、正常な乳腺(breast gland)の典型的な組織学およびアーキテクチャが失われる。一般に、癌腫細胞は、正常細胞よりも過成長し、腺様構造に分化する能力を失う。分化の喪失の程度は、一般には、腫瘍の攻撃性に関連する。例えば、「上皮内」癌は、定義によれば、基底膜はインタクトに保持されるが、「浸潤性」に進行するにつれ、腫瘍は基底膜の破壊を示す。したがって、乳癌内では、正常な乳房組織において見られるような基底細胞の明確な層の染色は見られないと予想される。正常な乳房および乳癌の生理学および組織学についての考察に関しては、Ronnov-Jessen、L.、Petersen、O. W.およびBissell、M. J.、「Cellular changes involved in conversion of normal to malignant breast:importance of the stromal reaction」を参照されたい(例えば、Physiol、Rev、76巻、69~125頁、1996年を参照されたい)。
乳がんは、それらの遺伝子発現プロファイルに基づく群に分けることができる。基底細胞型癌は、通常、エストロゲン受容体(ER)の発現に関して陰性であり、HER2(erbB2)およびプロゲステロン受容体(PR)の発現に関しても陰性であり、したがって、「トリプルネガティブ乳がん」または「TNBC」と称される。この型の乳がんは、ER-/HER2-/PR-とも称され、全ての乳がんの約15~20%であり、一般に、Her2標的化療法またはエストロゲン標的化療法を使用して処置することができない。このがんの侵攻性は、CD44+CD24-/lo表現型のがん幹細胞(CSC)の富化と相関すると考えられている。一部の実施形態では、基底細胞癌は、プロゲステロン受容体(PR)の発現に関して陰性であり、上皮増殖因子受容体(EGFR)の発現に関して陽性であり、サイトケラチン5(CK5)の発現に関して陽性である。この表現型は、以下:ER-/PR-/HER2-/CK5+/EGFR+の通り称される。
がん:分化の喪失、成長速度の上昇、周囲の組織への浸潤を伴う特徴的な退形成を受けており、また、転移可能である、悪性腫瘍。例えば、前立腺がんは、前立腺組織においてまたはそこから生じる悪性新生物であり、乳がんは、乳房組織においてまたはそこから生じる悪性新生物である(例えば、腺管癌など)。残存がんは、がんを低減させるまたは根絶するために被験体になされた任意の形態の処置後に被験体に残っているがんである。転移性がんは、転移性がんが由来する元の(原発)がん発生部位以外の、体の1つまたは複数の部位におけるがんである。がんとしては、これだけに限定されないが、固形腫瘍が挙げられる。
化学療法剤:異常な細胞増殖を特徴とする疾患の処置において治療的有用性がある薬剤(例えば、抗腫瘍剤)。一実施形態では、化学療法剤は、固形腫瘍などの新生物の処置において使用される薬剤である。化学療法剤は、タンパク質薬剤または非タンパク質薬剤、例えば、小分子薬物、抗体、ペプチド、タンパク質、およびイムノモジュレーターなどであり得る。一実施形態では、化学療法剤は、放射性分子である。当業者は、化学療法剤を容易に特定することができる(例えば、SlapakおよびKufe、Principles of Cancer Therapy、第86章 in Harrison’s Principles of Internal Medicine、第14版;Perryら、Chemotherapy、第17章、Abeloff、Clinical Oncology 第2番、(C)2000 Churchill Livingstone, Inc;Baltzer L.、Berkery R.(編):Oncology Pocket Guide to Chemotherapy、第2版、St. Louis、Mosby-Year Book、1995年;Fischer DS、Knobf MF、Durivage HJ(編):The Cancer Chemotherapy Handbook、第4版、St. Louis、Mosby-Year Book、1993年を参照されたい)。
結腸がん:結腸直腸がんは、大腸がんとも称され、結腸、直腸および虫垂内の癌性成長を含む。世界的に1年当たり655,000件の死亡が伴う、3番目に多いがんの形態であり、西欧諸国におけるがん関連死亡の第2の主な原因である。多くの結腸直腸がんは、結腸内の腺腫様ポリープから生じると考えられている。これらのキノコ様の成長は通常は良性であるが、一部は、時間をかけてがんに発展する可能性がある。大半の時間、局在する結腸がんの診断は、結腸鏡検査によるものである。治療は、通常、外科手術によるものであり、多くの場合、その後に化学療法が続く。結腸がんの最初の症状は、通常、出血、体重減少、および疲労(倦怠)などの漠然としたものである。局所的な(腸)症状は腫瘍が大きなサイズに成長するまでは稀である。一般に、腫瘍が肛門に近いほど、より多くの腸症状が存在する。
接触させること:固体の形態および液体の形態のどちらも含めた、直接の物理的関連に置くこと。接触させることは、単離された細胞を用いてin vitroで、または被験体に投与することによってin vivoで行うことができる。
サイトカイン:「サイトカイン」という用語は、ナノモル濃度~ピコモル濃度で液性調節因子として働き、正常な状態または病的な状態のいずれにおいても個々の細胞および組織の機能活性をモジュレートする多様な群の可溶性タンパク質およびペプチドの一般的な名称として使用される。これらのタンパク質はまた、細胞間の相互作用を直接媒介し、細胞外の環境において起こるプロセスを調節する。サイトカインの例としては、これだけに限定されないが、腫瘍壊死因子α(TNFα)、インターロイキン(IL)-1、IL-12、およびIL-17が挙げられる。
低下させるまたは阻害する:数、量、サイズ、または強度をより低くまたは小さくすること。一例では、疾患(例えば、腫瘍形成など)のリスクの低下または阻害は、腫瘍が発生する可能性を少なくとも約20%、例えば、少なくとも約30%、40%、50%、60%、70%、80%、または90%低下させることを含む。別の例では、疾患のリスクの低下または阻害は、疾患の発生の遅延、例えば、少なくとも約6カ月、例えば約1年など、例えば約2年、約5年、または約10年などの遅延を含む。
一例では、腫瘍の徴候および症状の低下または阻害は、腫瘍(例えば、結腸腫瘍もしくは乳腺腫瘍など)または転移のサイズ、体積、または数を、治療用組成物の不在下での応答と比較して、所望の量、例えば、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも50%、少なくとも75%、またはさらには少なくとも90%低下させることを含む。
樹状細胞ワクチン:骨髄由来樹状細胞(DC)は、特定のタンパク質および糖脂質に対して反応性であるエフェクターT細胞のクロスプライミングを媒介する専門の抗原提示細胞(APC)である。がんの状況では、DCクロスプライミングにより、防御免疫または治療免疫の増強が促進される。DCは、まず、死滅したがん細胞またはタンパク質を捕捉し、消化する。次いで、DCは、タンパク質をペプチドエピトープにプロセシングし、最終的に、これらのエピトープを、細胞表面に発現したMHC分子の状況で特異的なCD4+およびCD8+T細胞上のT細胞受容体(TCR)に提示する。結果としての抗腫瘍エフェクターT細胞の生成は、DCにより寄与される共刺激分子およびサイトカインシグナルによって活発になり、また、調節される。樹状細胞は、in vitroにおいて、末梢血単球をGM-CSFおよびIL-4で刺激することによって生成することができる。樹状細胞をToll様受容体リガンド(TLR-L)およびサイトカインを用いて成熟させて、それらの抗原提示活性を増大させることもできる。これらのDCにがん細胞溶解物、がん組換えタンパク質、合成ペプチドまたは核酸(DNAまたはRNA)を負荷させ、がん患者に抗がん免疫応答および腫瘍成長の制御を促進するためのワクチンとして注射することができる。
免疫応答:B細胞またはT細胞などの免疫系の細胞の、刺激に対する応答。一実施形態では、応答は、炎症反応である。
インターロイキン-12(IL-12):抗原性刺激に応答して、樹状細胞、マクロファージ、およびヒトBリンパ芽球様細胞によって天然に産生されるインターロイキン。IL-12は、ナイーブなT細胞のTh1細胞への分化に関与する。IL-12は、T細胞およびナチュラルキラー(NK)細胞からのインターフェロン-ガンマ(IFN-γ)および腫瘍壊死因子-アルファ(TNF-α)の産生を刺激し、また、IFN-γのIL-4媒介性抑制を低下させる。IL-12は、4つのアルファヘリックスの束で構成される。IL-12は、2つの別々の遺伝子、IL-12A(p35)およびIL-12B(p40)によりコードされるヘテロ二量体サイトカインである。活性なヘテロ二量体(「p70」と称される)、およびp40のホモ二量体は、タンパク質合成後に形成される。例示的なヒトIL-12Aアミノ酸配列はUNIPROT(登録商標)受託番号P29246、2014年12月23日に示されている。
インターロイキン-17(IL-17):様々な組織のケモカイン産生を増大させて単球および好中球を炎症部位に動員することにより遅延型過敏症反応における強力なメディエーターとして作用するサイトカイン。IL-17は、ヘルパーT細胞によって産生され、IL-23によって誘導され、その結果、遅延型反応において破壊的な組織損傷がもたらされる。IL-17は、IL-17Rと称されるI型細胞表面受容体に結合し、IL-17Rには少なくとも3つのバリアントIL17RA、IL17RB、およびIL17RCが存在する。例示的なヒトIL-17アミノ酸配列は、2014年12月23日に利用可能になったUNIPROT(登録商標)受託番号Q15552に示されている。
単離された:「単離された」生物学的構成成分(例えば、核酸、ペプチドまたはタンパク質など)は、当該構成成分が天然に存在する生物体の細胞内の他の生物学的構成成分、すなわち、他の染色体および染色体外DNAおよびRNAならびにタンパク質から実質的に分離されたもの、それらとは別に産生されたもの、またはそれらから精製されたものである。したがって、「単離された」核酸、ペプチドおよびタンパク質とは、標準の精製方法によって精製された核酸およびタンパク質を含む。この用語はまた、宿主細胞における組換え発現によって調製された核酸、ペプチドおよびタンパク質、ならびに化学的に合成された核酸も包含する。
肺がん:肺がんの主要な型は、肺の癌腫であり、これは、小細胞肺癌および非小細胞肺癌を含む。非小細胞肺癌(NSCLC)は、時には外科手術を用いて処置されるが、小細胞肺癌(SCLC)は、通常、化学療法および放射線に応答する。最も一般的な肺がんの原因は、タバコの煙への長期間の曝露である。
非小細胞肺癌は、予後および管理が類似しているので一緒に群分けされる。3つの主要なサブタイプ:肺扁平上皮癌、腺癌、および大細胞肺癌が存在する。扁平上皮細胞肺癌は、通常、中枢気管支の付近で始まる。がんの中心でのキャビテーションおよび壊死が一般的な所見である。高分化型肺扁平上皮細胞がんは、多くの場合、他のがん型よりもゆっくりと成長する。腺癌は、肺がんの29.4%を占める。腺癌は、通常、末梢肺組織において生じる。腺癌の大半の症例は喫煙に関連するが、喫煙したことがない人の中でも腺癌が肺がんの最も一般的な形態である。腺癌のサブタイプである細気管支肺胞癌は、女性においてより一般的である。
小細胞肺がん(SCLC、「燕麦細胞癌」とも称される)は、あまり一般的でない。小細胞肺がんは、より大きな気道(主気管支および副次気管支(secondary bronchi))において生じ、急速に成長し、かなり大きくなる傾向がある。「燕麦」細胞は、高密度の神経分泌顆粒(神経内分泌ホルモンを含有する小胞)を含有し、それにより、当該細胞に内分泌/腫瘍随伴症候群との関連性が生じる。最初は化学療法に対して感受性が高いが、最終的にはより悪い予後を有し、多くの場合、診察時には転移性である。小細胞肺がんは、限局期の疾患および進展期の疾患に分類される。この型の肺がんも喫煙に強力に関連する。
悪性細胞:退形成、浸潤および転移の性質を有する細胞。
骨髄系由来サプレッサー細胞(MDSC):T細胞の増殖および活性化を阻害する能力などの強力な免疫抑制活性を有する骨髄系列由来の免疫細胞の集団。ヒトでは、MDSCは、高レベルのCD33、CD11bおよび低レベルのHLA-DRを発現する。慢性的な炎症性の状態(例えば、ウイルス感染および細菌感染など)またはがんでは、骨髄系分化は、MDSCの増大に偏っている。MDSCは、骨髄、末梢血ならびに脾臓およびリンパ節などの二次リンパ器官において増加し、炎症部位および腫瘍に浸潤し、そこでT細胞およびNK細胞を阻害する。
ナチュラルキラー(NK)細胞/樹状細胞(DC)クロストーク:NK細胞およびDCは、微生物病原体および異常な細胞を急速に認識し、排除し、自然免疫機能および獲得免疫機能を誘導および調節する。NK細胞およびDCは、炎症を起こしたリンパ組織および末梢リンパ組織に共局在化し、そこで相互作用することができる。このクロストークは、通常、細胞間接触で起こり、膜貫通TNF(tmTNF)、トランス提示インターロイキン(IL)-15、IL-12、IL-2、IL-18およびインターフェロン(IFN)γを含めた膜結合サイトカインおよび分泌型サイトカインによって媒介される。相互作用により、相互作用する細胞の相反的な刺激および調節が導かれ、その結果、NK細胞活性化およびDC成熟化がもたらされる。NK細胞は、DCにおける成熟化マーカーの発現およびIL-12の分泌の増大を誘導する。相反的に、DCは、NK細胞における活性化マーカーCD69の発現、細胞傷害性およびIFN-γ分泌の増殖および強化を誘導する。NK細胞およびDC機能の共同した増大により、自然免疫系にウイルスが感染し形質転換した細胞を直接排除し、堅固なTh1獲得免疫応答を誘導する増強された能力が付与され、それにより、ウイルス感染およびがんを効率的に制御することが可能になる。
正常細胞:非腫瘍、非悪性細胞などの非罹患(野生型)細胞。
核酸:ホスホジエステル結合によって連結した、ヌクレオチド単位(リボヌクレオチド、デオキシリボヌクレオチド、関連する天然に存在する構造バリアント、および合成の天然に存在しないその類似体)で構成されるポリマー、関連する天然に存在する構造バリアント、ならびに合成の天然に存在しないその類似体。したがって、この用語は、ヌクレオチドおよびそれらの間の連結が、例えば、これだけに限定することなく、ホスホロチオエート、ホスホラミデート、メチルホスホネート、キラル-メチルホスホネート、2-O-メチルリボヌクレオチド、ペプチド核酸(PNA)などの、天然に存在しない合成類似体を含むヌクレオチドポリマーを包含する。そのようなポリヌクレオチドは、例えば、自動DNA合成機を使用して合成することができる。「オリゴヌクレオチド」という用語は、典型的には、一般に約50ヌクレオチド以下の短いポリヌクレオチドを指す。ヌクレオチド配列がDNA配列(すなわち、A、T、G、C)で表されている場合、これは、「U」で「T」が置き換えられるRNA配列(すなわち、A、U、G、C)も含むことが理解されよう。
本明細書では、ヌクレオチド配列を記載するために従来の表示法が使用されている:一本鎖のヌクレオチド配列の左側の末端が5’末端であり、二本鎖ヌクレオチド配列の左方向は、5’方向と称される。新生RNA転写物に対するヌクレオチドの5’から3’への付加方向は、転写方向と称される。mRNAと同じ配列を有するDNA鎖は「コード鎖」と称され、そのDNAから転写されたmRNAと同じ配列を有し、RNA転写物の5’末端に対して5’側に位置するDNA鎖上の配列は「上流配列」と称され、RNAと同じ配列を有し、コードRNA転写物の3’末端に対して3’側に位置するDNA鎖上の配列は「下流の配列」と称される。
「cDNA」とは、一本鎖または二本鎖のいずれかの形態の、mRNAと相補的または同一であるDNAを指す。
「コードする」とは、遺伝子、cDNA、またはmRNAなどのポリヌクレオチド内のヌクレオチドの特定の配列の、生物学的プロセスにおけるヌクレオチド(すなわち、rRNA、tRNAおよびmRNA)の定義された配列またはアミノ酸の定義された配列のいずれかおよびそれから生じる生物学的性質を有する他のポリマーおよび高分子の合成のための鋳型として機能する固有の性質を指す。したがって、遺伝子により産生されるmRNAの転写および翻訳によって細胞または他の生物系においてタンパク質が産生される場合、その遺伝子はそのタンパク質をコードする。mRNA配列と同一であり、通常、配列表に提示されるヌクレオチド配列であるコード鎖、および遺伝子またはcDNAの転写の鋳型として使用される非コード鎖は、その遺伝子またはcDNAのタンパク質または他の産物をコードすると称することができる。別段の指定がない限り、「アミノ酸配列をコードするヌクレオチド配列」とは、互いの縮重バージョンであり、同じアミノ酸配列をコードする全てのヌクレオチド配列を含む。タンパク質およびRNAをコードするヌクレオチド配列は、イントロンを含み得る。
「組換え核酸」とは、天然では一緒に接合していないヌクレオチド配列を有する核酸を指す。組換え核酸とは、適切な宿主細胞を形質転換するために使用することができる、増幅したまたは組み立てた核酸を含む核酸ベクターを包含する。組換え核酸を含む宿主細胞は、「組換え宿主細胞」と称される。次いで、遺伝子を組換え宿主細胞において発現させて、「組換えポリペプチド」などを産生させる。組換え核酸は、非コード機能(例えば、プロモーター、複製起点、リボソーム結合性部位など)としての役割も果たし得る。
ポリヌクレオチドの配列が、配列が第2の配列であるポリヌクレオチドに特異的にハイブリダイズする第1の配列である場合、第1の配列は、第2の配列に対して「アンチセンス」である。
2つまたはそれよりも多くのヌクレオチド配列またはアミノ酸配列の間の配列関係を説明するために使用される用語として、「参照配列」、「から選択される」、「比較ウインドウ」、「同一」、「配列同一性の百分率」、「実質的に同一」、「相補的」および「実質的に相補的」が挙げられる。
核酸配列の配列比較に関して、一般には、1つの配列が、試験配列が比較される参照配列として作用する。配列比較アルゴリズムを使用する場合、試験配列および参照配列をコンピュータに入力し、必要であれば部分配列座標を指定し、配列アルゴリズムプログラムパラメータを指定する。デフォルトのプログラムパラメータを使用する。比較のために配列をアラインメントする方法は当技術分野で周知である。比較のための配列の最適なアラインメントは、例えば、SmithおよびWaterman、Adv. Appl. Math.、2巻:482頁、1981年の局所相同性アルゴリズムによって、NeedlemanおよびWunsch、J. Mol. Biol.、48巻:443頁、1970年の相同性アラインメントアルゴリズムによって、PearsonおよびLipman、Proc. Nat’l. Acad. Sci. USA、85巻:2444頁、1988年の類似性検索方法によって、これらのアルゴリズムのコンピュータによる実行(Wisconsin Genetics Software Package、Genetics Computer Group、575 Science Dr.、Madison、WIのGAP、BESTFIT、FASTA、およびTFASTA)によって、または、手動のアラインメントおよび目視検査(例えば、Current Protocols in Molecular Biology(Ausubelら、編1995年、補遺)を参照されたい)によって、行うことができる。
有用なアルゴリズムの1つの例は、PILEUPである。PILEUPでは、FengおよびDoolittle、J. Mol. Evol.、35巻:351~360頁、1987年の漸進的アラインメント法の単純化を使用する。使用される方法は、HigginsおよびSharp、CABIOS、5巻:151~153頁、1989年と同様である。PILEUPを使用して、参照配列を他の試験配列と比較して、パーセント配列同一性関係を以下のパラメータ:デフォルトのギャップ重み(gap weight)(3.00)、デフォルトのギャップ長の重み(gap length weight)(0.10)、および重み付けした末端ギャップを使用して決定する。PILEUPは、バージョン7.0(Devereauxら、Nuc. Acids Res.、12巻:387~395頁、1984年)などのGCG配列解析ソフトウェアパッケージから入手することができる。
パーセント配列同一性および配列類似性を決定するために適したアルゴリズムの別の例は、Altschulら、J. Mol. Biol.、215巻:403~410頁、1990年およびAltschulら、Nucleic Acids Res、25巻:3389~3402頁、1977年に記載されているBLASTおよびBLAST2.0アルゴリズムである。BLAST分析を実施するためのソフトウェアは、National Center for Biotechnology Information(ncbi.nlm.nih.gov/)を通じて公的に入手可能である。BLASTNプログラム(ヌクレオチド配列の関して)では、デフォルトとしてワード長(word length)(W)11、アラインメント(B)50、期待値(expectation)(E)10、M=5、N=-4、および両方の鎖の比較を使用する。BLASTPプログラム(アミノ酸配列に関して)では、デフォルトとしてワード長(word length)(W)3、および期待値(expectation)(E)10、およびBLOSUM62スコアリングマトリクス(HenikoffおよびHenikoff、Proc. Natl. Acad. Sci. USA、89巻:10915頁、1989年)を使用する。
作動可能に連結した:第1の核酸配列が第2の核酸配列と機能的関係に置かれている場合、第1の核酸配列は第2の核酸配列に作動可能に連結している。例えば、CMVプロモーターなどのプロモーターがコード配列の転写または発現に影響を及ぼす場合、当該プロモーターは、当該コード配列に作動可能に連結している。一般に、作動可能に連結したDNA配列は連続しており、必要であれば、2つのタンパク質コード領域が同じ読み枠内で接合している。
OX40:OX-40受容体(「OX-40」)(Patersonら(1987年)、Mol. Immunol.、24巻:1281~1290頁;Calderheadら(1993年)、J. Immunol.、151巻:5261~5271頁)は、T細胞の多くのサブクラスの表面上に存在するCD28受容体とは異なり(活性化されているか否かに関係なく)、in vivoにおいて、抗原により活性化されたCD4+T細胞上にのみ存在することが示されている(Weinbergら(1994年)、J. Immunol.、152巻:4712~4721頁;Wienbergら(1996年)、Nature Medicine、2巻:183~189頁)。例えば、OX-40は、自己免疫疾患における炎症部位では自己抗原を認識する活性化CD4+T細胞上に存在するが、末梢には存在しない。OX-40は、頭頸部の扁平上皮細胞腫瘍および黒色腫を有する患者から取り出された腫瘍浸潤性リンパ球ならびに流入領域リンパ節細胞から単離された一定の百分率のCD4+T細胞の表面上に存在することも示されている(Vettoら(1997年)、Am. J. Surg.、174巻:258~265頁)。OX-40リガンドは、腫瘍壊死因子(TNF)スーパーファミリーのメンバーであり、抗CD3抗体で活性化されたT細胞を共刺激する(すなわち、非抗原特異的に)ことが示されている(Godfreyら(1994年)、J. Exp. Med.、180巻:757~762頁)。OX-40リガンドの共刺激特性の認識にもかかわらず、その利点は以前には抗原特異的免疫応答を増強するために十分に活用されていない。
非経口的:腸の外側の投与、例えば、消化管を介さない投与。一般に、非経口用製剤は、経口摂取以外の任意の可能性のある様式で投与されるものである。この用語は、特に、例えば、静脈内、髄腔内、筋肉内、腹腔内、関節内、または皮下のいずれに投与するかにかかわらず注射、ならびに鼻腔内、皮内、および局部適用を含めた種々の表面適用を指す。
医薬品または薬物:被験体に適正に投与された場合に所望の治療効果または予防効果を誘導することができる化学化合物または組成物。医薬品としては、これだけに限定されないが、抗感染薬、抗炎症剤、気管支拡張薬、酵素、去痰薬、ロイコトリエンアンタゴニスト、ロイコトリエン形成阻害剤、および肥満細胞安定剤が挙げられる。
薬学的に許容される担体:本開示において有用な薬学的に許容される担体は、従来のものである。Remington’s Pharmaceutical Sciences、E. W. Martin、Mack Publishing Co.、Easton、PA、第15版(1975年)には、本明細書に開示されているDN-TNF-αタンパク質および核酸の薬学的送達に適した組成物および製剤が記載されている。
一般に、担体の性質は、使用される特定の投与形式に左右される。例えば、非経口用製剤は、通常、例えば、水、生理的食塩水、平衡化塩類溶液、水性デキストロース、グリセロールなどの、薬学的におよび生理的に許容される流体をビヒクルとして含む注射用流体を含む。固体組成物(例えば、散剤、丸剤、錠剤、またはカプセル剤の形態)に関しては、従来の無毒性固体担体として、例えば、薬学的グレードのマンニトール、ラクトース、デンプン、またはステアリン酸マグネシウムを挙げることができる。生物学的に中性の担体に加えて、投与される医薬組成物は、微量の無毒性補助物質、例えば、湿潤剤または乳化剤、防腐剤、およびpH緩衝剤など、例えば、酢酸ナトリウムまたはソルビタンモノラウレートを含有し得る。
疾患を予防すること、処置すること、または好転させること(ameliorating):疾患を「予防すること(preventing)」とは、良性腫瘍の悪性がんへの変換を予防することを含めた、腫瘍などの疾患の発生を阻害することを指す。一部の実施形態では、予防により、例えば、がんなどの疾患の素因を有することが分かっている人において腫瘍の完全な発生を阻害する。素因が分かっている人の例は、家族に乳がんの病歴がある人、または被験体に結腸がん、乳がん、肺がんまたは皮膚がんなどの状態の素因を与える因子に曝露されている人である。予防は、例えば、体液性応答、またはサイトカイン、NK細胞、活性化CTL、例えばCD9+T細胞などを増大させること、または骨髄系由来サプレッサー細胞(MDSC)の数および/または機能を低下させることなどにより、腫瘍に対する免疫応答を増大させることを含み得る。予防は、調節性T細胞(Treg)などの免疫抑制性免疫応答を低下させること、または(PD)-1分子を遮断することを含み得る。「処置すること」は、疾患または病的な状態の徴候または症状を、それが発生し始めた後に好転させる治療介入を指す。例えば、腫瘍を「処置すること」とは、腫瘍体積を縮小させること、腫瘍の数を減少させることまたは腫瘍の転移を阻害することを含み得る。「好転させること」とは、がんなどの疾患の徴候または症状の数または重症度の低減を指す。
本開示の一実施形態では、転移などの腫瘍の形成を遅延させる、予防する、または低下させる。別の態様では、腫瘍の数を減少させる。したがって、疾患の徴候および症状を低下させることができる。
プログラム死(PD)-1:PD-1分子は、免疫グロブリン遺伝子スーパーファミリーのメンバーである。ヒトPD-1は、免疫グロブリンスーパーファミリードメインを含有する細胞外領域、膜貫通ドメイン、および免疫受容阻害性チロシンモチーフ(ITIM)を含む細胞内領域を有する((Ishidaら、EMBO J.、11巻:3887頁、1992年;Shinoharaら、Genomics、23巻:704頁、1994年;米国特許第5,698,520号)。これらの特徴により、gp49B、PIR-B、およびキラー阻害性受容体(KIR)も含む、免疫阻害性受容体と称される、分子のより大きなファミリーも定義される(VivierおよびDaeron(1997年)、Immunol. Today、18巻:286頁)。理論に束縛されることなく、これらの受容体のチロシルリン酸化ITIMモチーフは、S112ドメインを含有するホスファターゼと相互作用し、それにより、阻害性シグナルがもたらされると考えられる。これらの免疫阻害性受容体のサブセットはKIRなどの主要組織適合性遺伝子複合体(MHC)分子に結合し、細胞傷害性Tリンパ球関連タンパク質4(CTLA4)はB7-1およびB7-2に結合する。ヒトでは、PD-1は、活性化誘導性アポトーシスを受けているT細胞系において最初に特定された、50~55kDaのI型膜貫通型受容体である。PD-1は、T細胞、B細胞、およびマクロファージ上に発現する。PD-1のリガンドは、B7ファミリーメンバーのPDリガンド1(PD-L1、B7-H1としても公知)およびPD-L2(B7-DCとしても公知)である。
in vivoでは、PD-1は、活性化されたT細胞、B細胞、および単球上に発現する。実験データから、PD-1とそのリガンドの相互作用が中心および末梢の免疫応答の下方制御と関連付けられる。具体的には、PD-L1の存在下で、野生型T細胞の増殖は阻害されるが、PD-1欠損T細胞の増殖は阻害されない。さらに、PD-1欠損マウスは、自己免疫性表現型を示す。ヒトPD-1の例示的なアミノ酸配列は、Ishidaら、EMBO J.、11巻:3887頁、1992年;Shinoharaら Genomics、23巻:704頁、1994年;米国特許第5,698,520号)に記載されている。
PD-1の会合(例えば、架橋結合または凝集によるもの)により、免疫細胞における阻害性シグナルの伝達が導かれ、その結果、免疫細胞アネルギーが増大するのと同時に免疫応答が低減する。PD-1は、2種のリガンド、PD-L1およびPD-L2に結合し、これらのリガンドは、どちらもポリペプチドのB7ファミリーのメンバーであるヒトPD-1リガンドポリペプチドである。
PD-1アンタゴニストは、PDリガンド1(PD-L1)もしくはPDリガンド2(PD-L2)の発現もしくは活性を低減させるまたはPD-1とPD-L1もしくはPD-L2の相互作用を低減させる薬剤を含む。例示的な化合物としては、抗体(例えば、抗PD-1抗体、抗PD-L1抗体、および抗PD-L2抗体など)、RNAi分子(例えば、抗PD-1 RNAi分子、抗PD-L1 RNAi、および抗PD-L2 RNAiなど)、アンチセンス分子(例えば、抗PD-1アンチセンスRNA、抗PD-L1アンチセンスRNA、および抗PD-L2アンチセンスRNAなど)、ドミナントネガティブタンパク質(例えば、ドミナントネガティブPD-1タンパク質、ドミナントネガティブPD-L1タンパク質、およびドミナントネガティブPD-L2タンパク質など)が挙げられる。例えば、参照により本明細書に組み込まれるPCT公開第2008/083174号を参照されたい。
プロモーター:プロモーターは、核酸の転写を導く一連の核酸制御配列である。プロモーターは、例えば、ポリメラーゼII型プロモーターの場合(TATAエレメント)など、転写の開始部位の近くの必要な核酸配列を含む。プロモーターはまた、場合により、転写の開始部位から数千塩基対ものところに位置し得る遠位のエンハンサーまたはリプレッサーエレメントを含む。構成的プロモーターおよび誘導性プロモーターのどちらも含まれる(例えば、Bitterら、Methods in Enzymology、153巻:516~544頁、1987年を参照されたい)。
プロモーターの特定の非限定例としては、哺乳動物細胞のゲノムに由来するプロモーター(例えば、メタロチオネインプロモーター)または哺乳動物ウイルスに由来するプロモーター(例えば、レトロウイルスの長い末端反復;アデノウイルス後期プロモーター;ワクシニアウイルス7.5Kプロモーター)が挙げられる。組換えDNAまたは合成技法によって作製されるプロモーターも使用することができる。宿主の挿入された遺伝子配列の効率的な転写を容易にするプロモーター配列を含有する発現ベクターにポリヌクレオチドを挿入することができる。発現ベクターは、一般には、複製起点、プロモーター、ならびに形質転換された細胞の表現型による選択を可能にする特定の核酸配列を含有する。
肝細胞癌(HCC):世界的に3番目に多いがん関連死亡の原因であり、また、米国男性のがん関連死亡の最も増えている原因である、肝臓の悪性腫瘍。肝炎ウイルス、アルコール性肝硬変、原発性胆汁性肝硬変、非アルコール性脂肪肝疾患および自己免疫性肝炎は全てHCC発がんに関連付けられている。HCCの発生に関する主要な危険因子は、硬変症(その病因とは独立して、硬変患者における年間のHCC発生数は2~6%である)およびB型肝炎ウイルスまたはC型肝炎ウイルスへの慢性感染である。
HCCは、一般に、疾患の後期に診断されるので、治癒の可能性がある外科手術(切除および肝移植)に適格な患者は20%未満である。局所的な限局的療法は、主に待機的なものであり、それらとして、冷凍アブレーション(cryoablation)、高周波アブレーション(radiofrequency ablation)、および経動脈塞栓術が挙げられる。進行したHCCの患者に対する標準治療は、生存を2.3~2.8カ月改善するソラフェニブ(多標的化キナーゼ阻害剤)である。
前立腺がん:前立腺の、一般に腺起源の悪性腫瘍。前立腺がんは、腺癌および小細胞細胞癌を含む。多くの前立腺がん、特異的に腺癌は、前立腺特異的抗原(PSA)を発現する。前立腺がんのリスクを上昇させる因子としては、高齢、疾患の家族歴、および人種が挙げられる。症例の約99%が50歳を超える人で生じる。第一度近親者が当該疾患を有する場合には、リスクが2~3倍上昇する。症状としては、頻尿、夜間頻尿、尿の一定の流れを開始させ、維持することの困難、血尿、および排尿障害が挙げられる。
皮膚がん:皮膚がんは、多くの原因がある皮膚上の悪性増殖である。皮膚がんは、一般に、表皮(皮膚の最外側層)上に発生し、したがって、腫瘍は通常明白に目に見える。これにより、大多数の非黒色腫皮膚がんは初期に検出可能になる。皮膚がんは、最も一般的に診断される悪性疾患であり、肺がん、乳がん、結腸直腸がんおよび前立腺がんをしのぐ。
皮膚がんの最も一般的な型は、非黒色腫皮膚がんである。非黒色腫皮膚がんは、悪性黒色腫(皮膚の色素産生細胞であるメラニン細胞から発生するがん)以外の全ての皮膚がんを包含する。非黒色腫皮膚がんには多くの型が存在する。非黒色腫皮膚がんの2つの一般的な型は、基底細胞癌および扁平上皮癌である。これらの2つの型の皮膚がんは、ケラチノサイト癌としても公知である。
基底細胞癌は、基底細胞層と称される表皮の最下層において始まる。男性では全皮膚がんの約70%~80%、女性では80%~90%が基底細胞癌である。基底細胞癌は、通常、日光露光部、特に頭頸部において発生する。基底細胞癌は成長が遅い。基底細胞がんに関しては、リンパ節または体の遠位部位への拡散は極めてまれである。しかし、基底細胞がんを未処置のまま放置すると、近くの領域まで成長し、骨または皮膚の下の他の組織に浸潤する可能性がある。基底細胞癌は、処置後に皮膚の同じ場所に再発する可能性がある。また、新しい基底細胞がんが皮膚の他の箇所で始まる可能性がある。基底細胞がんと診断されてから5年以内に、35%~50%の人で新しい皮膚がんが発生する。
扁平上皮癌は、全皮膚がんの約10%~30%を占める。扁平上皮癌は、一般に、顔、耳、頸部、唇、および手の甲などの、体の日光露光部に出現する。扁平上皮癌はまた、瘢痕または皮膚潰瘍の箇所にも発生する可能性がある。これらの癌腫は、一般に、基底細胞がんよりも侵攻性である。扁平上皮癌は、時には、日光角化症から始まる。上皮内扁平上皮癌(ボーエン病とも称される)は、皮膚の扁平上皮細胞がんの最初期の形態であり、表皮内の細胞が関与し、真皮には浸潤しない。
非黒色腫皮膚がんのあまり一般的ではない型としては、カポジ肉腫、皮膚リンパ腫、皮膚付属器腫瘍および種々の型の肉腫およびメルケル細胞癌が挙げられる。まとめると、これらの型の非黒色腫皮膚がんは、非黒色腫皮膚がんの1%未満を占める。
皮膚がんの最も致死的な型は黒色腫である。黒色腫(悪性黒色腫または皮膚黒色腫としても公知)は、メラニン細胞において始まるがんである。大多数のメラノーマ細胞がなおメラニンを産生するので、黒色腫腫瘍は通常、褐色または黒色である。この形態の皮膚がんは、初期に処置しなければ致死的であり得る。
リスクがある被験体:腫瘍などのある特定の状態が発生しやすいヒトまたは獣医学的被験体などの個体。これは、年齢、遺伝子型に起因する場合もあり、環境曝露に起因する場合もある。例は、職業性曝露(すなわち、アスベスト、シリカ、電離放射線、芳香族アミン、重金属、殺虫剤、石油化学製品および燃焼副生成物)に起因して発がん物質に曝露しているヒト被験体、または、個人的喫煙によるものか副流煙への曝露に起因するものかいずれかのタバコの煙に曝露しているヒト被験体、または、例えば日焼けに起因して紫外線に曝露している被験体、または腫瘍が発生する遺伝的素因がある被験体である。
Th1免疫応答:抗原特異的エフェクターCD4+Tヘルパー(Th)細胞は、それらの一連のサイトカインに基づいて、Th1細胞、Th2細胞、Treg細胞、およびTh17細胞にカテゴリー化することができる。Th1細胞は、Th1型サイトカインIFNγ、IL-2およびLTαを分泌し、細胞内病原体、ウイルスおよびがんに対する免疫防御に寄与する獲得Tヘルパー-1(Th1)免疫応答を媒介する。エフェクターCD4+Th1細胞は、主要組織適合クラスII複合体(MHC II)との関連で提示されるウイルス抗原またはがん抗原およびDCなどの抗原提示細胞から分泌されるIL-12、およびNK細胞から分泌されるIFNγによるTh前駆(Th0)細胞の刺激によって生成される。Th1エフェクター細胞は、Th2免疫応答を抑制し、ウイルスに感染した細胞およびがん細胞の死滅および排除において決定的な役割を有するCD8+細胞傷害性Tリンパ球(CTL)および遅延型過敏症(DTH)およびIgG2aの生成を補助する。
Th2細胞:抗原特異的エフェクターTh2細胞は、B細胞の増殖および分化を促進し、体液性免疫応答の特性である抗体の分泌を導くTh2型サイトカインであるIL-4、IL-5およびIL-6を分泌する。Th2免疫応答はアレルギー反応に寄与する。
Th17免疫応答:Tヘルパー17(Th17)免疫応答には、上皮/粘膜バリアにおける抗微生物免疫の発生に役立つ生理的役割がある。Th17免疫応答はまた、多発性硬化症、若年性糖尿病、関節リウマチおよびクローン病などの自己免疫疾患における炎症および組織傷害にも関与する。さらに、Th17免疫応答は、アレルゲンに誘導される気道応答において役割を果たし得る。TGFb、IL-6、IL-21およびIL-23は、Th0細胞からのTh17エフェクター細胞の生成を刺激する。Th17エフェクター細胞は、Th17免疫応答を媒介するIL-17、IL-21およびIL-22を分泌する。
治療剤:一般的な意味で使用され、処置剤、予防剤、および補充剤を含む。治療剤は、外科手術、放射線および化学療法であり得る。抗体、化学化合物、細胞およびサイトカインが治療剤であり得る。
治療有効量:処置される被験体において所望の効果を達成するために十分な指定の化合物またはDN-TNF-αタンパク質(または当該タンパク質をコードする核酸)の数量。例えば、治療有効量は、免疫抑制を低減させ、腫瘍に対する免疫応答を増大させる、腫瘍を予防する、腫瘍の発生を遅らせるおよび/または腫瘍が発生するリスクを低減させるために必要なDN-TNF-αタンパク質(または当該タンパク質をコードする核酸)の量であり得る。一実施形態では、DN-TNF-αタンパク質(または当該タンパク質をコードする核酸)の治療有効量は、単独で、または1つもしくは複数の追加的な治療剤(抗新生物剤もしくは免疫抑制剤など)と共に、予防、発生の遅延、または腫瘍数の減少などの所望の応答を誘導する量である。本明細書に開示されている調製物は、治療有効量で投与される。
一例では、所望の応答は、腫瘍の発生を予防することである。別の例では、所望の応答は、腫瘍の発生、進行、または転移を、例えば、少なくとも約3カ月、少なくとも約6カ月、少なくとも約1年、少なくとも約2年、少なくとも約5年、または少なくとも約10年、遅延させることである。別の例では、所望の応答は、前立腺、結腸がん、乳がんまたは肺がんなどのがんの出現を減少させることである。例えば、一部の例では、DN-TNF-αタンパク質(または当該タンパク質をコードする核酸)を含む組成物により、腫瘍(例えば、結腸直腸腫瘍など)のサイズ、体積、または数を、治療用組成物の不在下での応答と比較して、所望の量、例えば、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも50%、少なくとも75%、またはさらには少なくとも90%、低下させることができる。
ヒトまたは獣医学的被験体に投与されるDN-TNF-αタンパク質(または当該タンパク質をコードする核酸)の有効量は、その被験体に関連するいくつもの因子、例えば、被験体の全体的な健康に応じて変動する。薬剤の有効量は、製品の投与量を変動させ、腫瘍の数などの得られる治療応答を測定することによって決定することができる。有効量は、種々のin vitro、in vivoまたはin situにおけるイムノアッセイによって決定することもできる。開示される薬剤は、所望の応答を得るために必要に応じて単回用量または数回の用量で投与することができる。しかし、有効量は、適用される供給源、処置される被験体、処置される状態の重症度および型、ならびに投与の様式に依存する。
治療有効量のDN-TNF-αタンパク質(または当該タンパク質をコードする核酸)は、全身的にまたは局所的に投与することができる。さらに、有効量のDN-TNF-αタンパク質(または当該タンパク質をコードする核酸)は、単回用量で、または数回の用量で、例えば、処置の経過中、毎日、週に2回および週に1回、投与することができる。しかし、DN-TNF-αタンパク質(または当該タンパク質をコードする核酸)の有効量は、適用される調製物、処置される被験体、苦痛の重症度および型、ならびに化合物の投与の様式に依存する。
Toll様受容体リガンド:Toll様受容体リガンド(TLR-L)は、微生物に由来する(病原体関連分子パターン(PAMP))または損傷を受けた細胞に由来する(損傷関連分子パターン(PAMP))、構造的に保存された分子であり、樹状細胞をそれらのTLRを介して強力に活性化する能力を有する。したがって、活性化されたDCは、成熟化し、免疫調節性サイトカインの分泌を増強し、抗原の提示を増大させ、また、自然免疫応答および獲得免疫応答を促進する。この性質に起因して、TLR-Lは、ワクチンにより誘導される免疫応答の質をモジュレートし、大きさおよび全体的な効果を増強するために、ワクチンと共に免疫アジュバントとして使用される。TLR3-Lポリ(I:C)(ポリイノシン・ポリシチジル酸、二本鎖RNAの合成類似体)およびTLR9-L非メチル化CpG(合成オリゴヌクレオチド)を含めたTLR-Lのいくつかが、抗がんワクチンと共に免疫アジュバントとして使用される。
処置(treatment):被験体にすでに存在する疾患または疾患(例えば、腫瘍など)に関連する病的な状態の徴候もしくは症状を好転させる治療介入を指す。処置はまた、そのような状態の寛解または治癒を誘導することができる。特定の例では、処置は、例えば、転移の発生もしくは原発腫瘍の発生を予防することなど、腫瘍の完全な発生を阻害することによって、腫瘍体積を縮小させることによって、または腫瘍の総数を低減させることによって腫瘍を阻害することを含む。阻害は、腫瘍が完全に存在しないことを必要としなくてよい。他の例では、処置は、皮膚がんを阻害すること、そのリスクを低減させること、またはその発生を遅延させることを含む。疾患(例えば、腫瘍、例えば、皮膚がん、肺がん、結腸がん、または乳がんなど)に関連する徴候または症状の低減または抑制は、例えば、影響を受けやすい被験体(例えば、まだ転移していない腫瘍を有する被験体など)における疾患の臨床症状の発症の遅延によって、疾患の臨床症状の一部もしくは全部の重症度の低下によって、より遅い疾患の進行によって(例えば、疾患を有する被験体の寿命の延長によって)、疾患の再発の数の減少によって、被験体の全体的な健康もしくは幸福(well being)の改善によって、または特定の疾患に特異的な当技術分野で周知の他のパラメータによって証明することができる。
Treg:調節性T細胞(Treg)またはサプレッサーT細胞は、免疫系をモジュレートし、自己抗原に対する寛容性を維持し、過剰な免疫反応および自己免疫疾患を予防するT細胞の部分集団である。Tregは、一般に、エフェクターTh1細胞およびTh2細胞の誘導および増殖を抑制または下方制御する。Tregは、CD4、CD25、およびFoxp3を発現する特徴的な表現型(CD4+CD25higFoxp3+)を有し、免疫抑制性サイトカインTGFβおよびIL-10を分泌する。Tregは、がんを有する被験体において増大し、がんが抗がん免疫機構を免れるのを補助する免疫抑制に寄与する。
腫瘍:良性または悪性であり得る、細胞の異常な成長。がんは、悪性腫瘍であり、異常なまたは制御されていない細胞増殖を特徴とする。多くの場合に悪性疾患に関連する他の特徴としては、転移、近隣細胞の正常な機能への干渉、サイトカインまたは他の分泌産物の異常なレベルでの放出、および、炎症応答または免疫学的応答の抑制または増悪、リンパ節などの周囲または遠位組織もしくは器官への浸潤などが挙げられる。「転移性疾患」とは、元の腫瘍部位を離れ、例えば血流またはリンパ液系を介して体の他の部分に移動するがん細胞を指す。
個体における腫瘍の量は、腫瘍の数、体積、または重量として測定することができる「腫瘍量」である。転移しない腫瘍は「良性」と称される。周囲の組織に浸潤し、かつ/または転移する可能性がある腫瘍は「悪性」と称される。血液腫瘍の例としては、急性白血病(例えば、11q23陽性急性白血病、急性リンパ球性白血病、急性骨髄球性白血病(acute myelocytic leukemia)、急性骨髄性白血病ならびに骨髄芽球性白血病、前骨芽球性白血病、骨髄単球性白血病、単球性白血病および赤白血病など)、慢性白血病(例えば、慢性骨髄球性(顆粒球性)白血病、慢性骨髄性白血病、および慢性リンパ球性白血病など)、真性赤血球増加症、リンパ腫、ホジキン病、非ホジキンリンパ腫(無痛性で高悪性度の形態)、多発性骨髄腫、ワルデンシュトレームマクログロブリン血症、重鎖病、骨髄異形成症候群、ヘアリー細胞白血病および脊髄形成異常症が挙げられる。
肉腫および癌腫などの固形腫瘍の例としては、線維肉腫、粘液肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、および他の肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、結腸癌、リンパ系悪性疾患、膵がん、乳がん(基底乳癌、腺管癌および小葉乳癌を含む)、肺がん、卵巣がん、前立腺がん、肝細胞癌、扁平上皮癌、基底細胞癌、腺癌、唾液腺癌、甲状腺髄様癌、甲状腺乳頭状癌、褐色細胞腫、脂腺癌、乳頭状癌、乳頭状腺癌、髄様癌、気管支原性肺癌、腎細胞癌、ヘパトーマ、胆管癌、絨毛癌、ウィルムス腫瘍、子宮頸がん、精巣腫瘍、セミノーマ、膀胱癌、およびCNS腫瘍(例えば、神経膠腫、星状細胞腫、髄芽腫、頭蓋咽頭腫(craniopharyrgioma)、上衣腫、松果体腫、血管芽細胞腫、聴神経腫、乏突起神経膠腫、髄膜腫、黒色腫、神経芽細胞腫および網膜芽細胞腫など)が挙げられる。
「確立された」または「既存の」腫瘍とは、診断検査によって見分けることができる既存の腫瘍である。一部の実施形態では、確立された腫瘍は、触診することができる。一部の実施形態では、「確立された腫瘍」は、少なくとも500mm3、例えば、少なくとも600mm3、少なくとも700mm3、または少なくとも800mm3などのサイズである。他の実施形態では、腫瘍は、少なくとも1cmの長さである。固形腫瘍に関しては、確立された腫瘍は、一般に、堅固な血液供給を有し、誘導されたTregおよび骨髄系由来サプレッサー細胞(MDSC)を有する。
いくつかの例では、腫瘍は、乳がん、前立腺がん、結腸がん、肝がんまたは肺がんである。別の例では、腫瘍は、皮膚腫瘍である。
腫瘍壊死因子(TNF)-α:別個の膜TNF-α受容体を通じて効果を発揮するサイトカイン。野生型TNFは、主に、安定なホモ三量体に配列された212アミノ酸のII型膜貫通タンパク質として産生される。可溶性ホモ三量体サイトカイン(sTNF)は、膜貫通形態からメタロプロテアーゼTNFアルファ変換酵素(TACE、ADAM17とも称される)によるタンパク質分解的切断によって放出される。分泌型および膜結合型の形態どちらも生物学的に活性であるが、異なる活性を有すると考えられている。TNF、および構造的に関連するサイトカインであるリンホトキシン(LT)の結晶学的試験により、どちらのサイトカインもホモ三量体として存在し、サブユニットが3回対称で端から端にパッキングされていることが示されている。
TNFは、2つの受容体、腫瘍壊死因子受容体1型(TNFR1、CD120aおよびp55/60とも称される)ならびに腫瘍壊死因子受容体2型(TNFR2、CD120b;p75/80とも称される)に結合し得る。TNFR1は55-kDaのタンパク質であり、TNFR2は、75-kDaのタンパク質である。TNFR1は、大多数の組織において発現し、膜結合型のTNFおよび可溶性三量体型のTNFどちらによっても十分に活性化され、一方、TNFR2は、大部分が免疫系の細胞において見いだされ、膜結合型のTNFホモ三量体に応答する。TNFは、活性化されたマクロファージによって主に産生される。TNF-αのその受容体への結合により、二次リンパ器官の構造的および機能的組織化、アポトーシスおよび抗腫瘍活性、ウイルス複製の阻害、免疫調節ならびに炎症を含めた、いくつもの多様な重要機能が媒介される。TNFはまた、自己免疫疾患の病理発生、急性期反応、敗血症性ショック、発熱および悪液質においても重要な役割を果たす。これらの多様な機能は、2つのTNFの形態と2つの膜貫通型受容体の間の同族相互作用を介して誘導される。
ベクター:宿主細胞に導入されると、それにより、形質転換された宿主細胞を生じさせる核酸分子。ベクターは、複製起点などの、宿主細胞における複製を可能にする核酸配列を含み得る。ベクターは、1つまたは複数の選択マーカー遺伝子および当技術分野で公知の他の遺伝子エレメントも含み得る。ベクターは、グラム陰性菌細胞およびグラム陽性菌細胞における発現のためのプラスミドを含めた、プラスミドベクターを含む。例示的なベクターとしては、E.coliおよびSalmonellaにおける発現のためのベクターが挙げられる。ベクターとしては、これだけに限定されないが、レトロウイルス、オルソポックス、トリポックス(avipox)、鶏痘、カプリポックス、スイポックス(suipox)などのポックスウイルスベクター、アデノウイルスベクター、ヘルペスウイルスベクター、アルファウイルスベクター、バキュロウイルスベクター、シンドビスウイルスベクター、ワクシニアウイルスベクターおよびポリオウイルスベクターも挙げられる。ベクターとしては、酵母細胞における発現のためのベクターも挙げられる。
特に説明がなければ、本明細書において使用される全ての科学技術用語は、本開示が属する技術分野の当業者に一般に理解されるものと同じ意味を有する。単数形の用語「1つの(a)」、「1つの(an)」、および「その(the)」は、文脈によりそうでないことが明らかでない限り、複数の指示対象を包含する。同様に、「または(or)」という単語は、文脈によりそうでないことが明白に示されない限り、「および(and)」を含むものとする。さらに、核酸またはポリペプチドに関して示されている全ての塩基サイズまたはアミノ酸サイズおよび全ての分子量または分子質量値はおおよそのものであり、説明のために提示されていることも理解される。本明細書に記載のものと同様または同等である方法および材料を本開示の実施または試験において使用することができるが、適切な方法および材料が下に記載されている。「含む(comprises)」という用語は、「含む(includes)」を意味する。本明細書において言及されている全ての刊行物、特許出願、特許、および他の参考文献は、その全体が参照により組み込まれる。矛盾する場合は、用語の説明を含め、本明細書が支配する。さらに、材料、方法および実施例は単に例示的なものであり、それに限定されるものではない。
ドミナントネガティブ腫瘍壊死因子タンパク質および核酸
DN-TNF-αタンパク質は、野生型TNF-αと比較してモジュレートされた活性を有する。一部の実施形態では、DN-TNF-αタンパク質は、これだけに限定されないが、野生型TNF-αと比較した、受容体(p55、p75または両方)への結合の減少、活性化の低下および/または最終的に細胞傷害活性の喪失を含め、野生型TNF-αと比較して生物活性(例えば、拮抗作用)がない程に低下している。「細胞傷害活性」とは、DN-TNF-αポリペプチドの、細胞を選択的に死滅させるまたは阻害する能力を指す。DN-TNFは、野生型TNF-αの生物活性の50%未満、野生型TNF-αの生物活性の25%未満、15%未満、または10%未満を示す。TNF-α活性についての適切なアッセイとしては、これだけに限定されないが、カスパーゼアッセイ、TNF-α細胞傷害性アッセイ、DNA結合アッセイ;転写アッセイ;サイズ排除クロマトグラフィーアッセイおよび放射性標識/免疫沈降;ならびに安定性アッセイ(当技術分野で公知の円偏光二色性(CD)アッセイおよび平衡試験の使用を含む)が挙げられる。追加的な実施形態では、DN-TNF-αタンパク質の結合親和性に関する重大な少なくとも1つの性質が、野生型TNF-αの同じ性質と比較して変化しており、具体的には、DN-TNF-αタンパク質は受容体親和性が変化している。したがって、本明細書に開示されている方法において使用されるDN-TNF-αタンパク質は、結合親和性が変化しており、その結果、DN-TNF-αタンパク質が可溶性野生型TNF-αとは優先的にオリゴマー形成するが、野生型膜貫通TNF-αとは実質的にオリゴマー形成しないまたは野生型TNF-α受容体、すなわち、p55、p75とは相互作用しない。「野生型膜貫通TNFとは実質的にオリゴマー形成しない」とは、DN-TNFが膜貫通TNFを阻害することができないことを意味する。「TNF受容体とは実質的に相互作用しない」とは、DN-TNF-αタンパク質が、p55受容体またはp75受容体のいずれに対しても、会合して、当該受容体を有意に活性化し、TNFシグナル伝達経路(複数可)開始させることができないことを意味する。一部の実施形態では、野生型TNF-αの三量体と比較して、少なくとも50%、50%超、76%超、80%超、90%超、91%超、92%超、93%超、94%超、または95%超の、受容体活性化の低下が見られる。ドミナントネガティブ腫瘍壊死因子α(DN-TNF-α)タンパク質は、例えば、全て参照により本明細書に組み込まれる、PCT公開第WO2014/040076号;米国特許第7,446,174号;および米国特許第7,662,367号において開示されている。
追加的な実施形態では、DN TNF-αタンパク質は、野生型TNF-αとのオリゴマー形成に関する親和性が変化している。したがって、一部の実施形態では、等量のドミナントネガティブバリアントTNF-α単量体および野生型TNF-α単量体を考えると、得られる三量体の少なくとも25%はバリアントTNF-αと野生型TNF-αの混合型三量体であり、例えば、少なくとも約50%、少なくとも約60%、少なくとも約80%、少なくとも約90%または少なくとも約95%がバリアントTNF-αと野生型TNF-αの混合物である。一部の実施形態では、DN-TNF-αタンパク質は、野生型TNF-αタンパク質に対する親和性が、野生型TNF-αタンパク質の親和性と比較して変化している。ヒトTNF-αの例示的なアミノ酸配列を以下に記載する:
VRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL(配列番号1、参照により本明細書に組み込まれる米国特許第7,662,367号、および図11も参照されたい)
DN-TNF-αタンパク質は、野生型TNF-α配列と少なくとも1アミノ酸、例えば、1アミノ酸、2アミノ酸、3アミノ酸、4アミノ酸、5アミノ酸、6アミノ酸、7アミノ酸、8アミノ酸、9アミノ酸および10アミノ酸またはそれより多く異なるアミノ酸配列を有する。百分率として表すと、DN-TNF-αタンパク質は、野生型と90%超同一、例えば、野生型TNF-αと95%超、96%超、97%超、98%超および99%超同一である。アミノ酸配列同一性値の百分率は、マッチする同一の残基の数を、アラインメントされた領域内の「より長い」配列の残基の総数で割ることによって決定することができる。「より長い」配列とは、アラインメントされた領域内で最多数の実際の残基を有するものである(アラインメントスコアを最大にするためにWU-Blast-2により導入されたギャップは無視する)。同様に、「パーセント核酸配列同一性」とは、タンパク質をコードする核酸に関しては、TNF-αのコード配列内のヌクレオチド残基と同一である、候補配列内のヌクレオチド残基の百分率であり得る。ある方法では、デフォルトパラメータに設定したWU-BLAST-2のBLASTNモジュールを、それぞれ1および0.125に設定したオーバーラップスパン(overlap span)およびオーバーラップフラクション(overlap fraction)と共に利用する。百分率として表すと、DN-TNF-αタンパク質をコードする核酸は、野生型と90%超同一、例えば、野生型TNF-αをコードする野生型核酸配列と95%超、96%超、97%超、98%超および99%超同一であり得る。
一部の実施形態では、配列番号1のヒトTNF-α配列に基づいて、DN-TNF-αタンパク質は、ヒト野生型TNF-α配列とは異なるアミノ酸を少なくとも約1つ有する、例えば、異なるアミノ酸を少なくとも約2つ、3つ、4つ、5つ、6つ、7つまたは8つ有する。一部の実施形態では、DN-TNF-αタンパク質は、配列番号1または配列番号2とは異なるアミノ酸を3~8つ有する。1つのDN-TNF-αと野生型TNF-αの例示的なアラインメントが図11に示されている。
DN-TNF-αタンパク質は、治療または薬物動態上の目的で、例えば、他の治療用タンパク質またはFcもしくは血清アルブミンなどの他のタンパク質と融合することができる。この実施形態では、DN-TNF-αタンパク質は、別の部分に作動可能に連結している。一部の実施形態では、部分は、意図された治療または薬物動態的効果をもたらすものである。部分の例としては、これだけに限定されないが、ヒト血清アルブミン、治療剤、細胞傷害性または細胞傷害性分子、放射性ヌクレオチド、およびFcなどが挙げられる。本明細書で使用される場合、Fc融合物は、先行技術で使用される「イムノアドヘシン」、「Ig融合物」、「Igキメラ」、および「受容体グロブリン」という用語と同義である(Chamowら、1996年、Trends Biotechnol、14巻:52~60頁;Ashkenaziら、1997年、Curr. Opin. Immunol.、9巻:195~200頁、どちらも参照により組み込まれる)。Fc融合物は、例えば、免疫グロブリンのFc領域とTNF-αタンパク質の標的結合性領域が組み合わさったものである。例えば、どちらも参照により組み込まれる米国特許第5,766,883号および米国特許第5,876,969号を参照されたい。DN-TNF-αタンパク質は、ペグ化することができる。
一実施形態では、DN-TNF-αは、以下の位置:アミノ酸21、23、30、31、32、33、34、35、57、65、66、67、69、75、84、86、87、91、97、101、111、112、115、140、143、144、145、146、および147のうちの1つまたは複数にアミノ酸置換を含む。参照により本明細書に組み込まれるPCT公開第WO2014/040076号からの、ヒトTNF-α残基を含めた各位置についての例示的なアミノ酸置換を下記の表に示す。
PCT公開第WO2014/040076号に開示されている通り、例えば、143位において、アミノ酸は、Glu、Asn、Gin、Ser、Arg、およびLysを利用することができる。このPCT公開には、アミノ酸置換が、V1M、Q21C、Q21R、E23C、R31C、N34E、V91E、Q21R、N30D、R31C、R31I、R31D、R31E、R32D、R32E、R32S、A33E、N34E、N34V、A35S、D45C、L57F、L57W、L57Y、K65D、K65E、K65I、K65M、K65N、K65Q、K65T、K65S、K65V、K65W、G66K、G66Q、Q67D、Q67K、Q67R、Q67S、Q67W、Q67Y、C69V、L75E、L75K、L75Q、A84V、S86Q、S86R、Y87H、Y87R、V91E、I97R、I97T、C101A、A111R、A111E、K112D、K112E、Y115D、Y115E、Y115F、Y115H、Y115I、Y115K、Y115L、Y115M、Y115N、Y115Q、Y115R、Y115S、Y115T、Y115W、D140K、D140R、D143E、D143K、D143L、D143R、D143N、D143Q、D143R、D143S、F144N、A145D、A145E、A145F、A145H、A145K、A145M、A145N、A145Q、A145R、A145S、A145T、A145Y、E146K、E146L、E146M、E146N、E146R、E146SおよびS147Rを含むことが開示されている。これらのアミノ酸置換は、個々に含まれていてもよく、任意の組合せで含まれてもいてもよい。一部の実施形態では、DN-TNF-αタンパク質には少なくとも1~8カ所のアミノ酸置換が含まれる。DN-TNF-αは、1カ所、2カ所、3カ所、4カ所、5カ所、6カ所、7カ所、8カ所、9カ所、10カ所、11カ所、12カ所、13カ所、14カ所、15カ所、16カ所、17カ所、18カ所、19カ所または20カ所のアミノ酸置換を含み得る。
一部の実施形態では、DN-TNF-αは、参照により本明細書に組み込まれる米国特許第7,662,367号の実施例3に概説されている通り、XENP268 XENP344、XENP345、XENP346、XENP550、XENP551、XENP557、XENP1593、XENP1594、およびXENP1595であり得る。一実施形態では、DN-TNF-αは、XPRO(商標)l595であり、これは、野生型ヒト配列と比較してV1M、R31C、C69V、Y87H、C101A、およびA145R(例えば、「<001<-V001M-R031C-μ031Peg10-C069V-Y087H-C101A-A0145R->157>」)変異を含むペグ化されたタンパク質である。XPRO(商標)1595のアミノ酸配列は配列番号2に示されている。XPRO(商標)1595(配列番号2)をコードする核酸配列(配列番号3)を以下に示す:
この配列は、ネイティブな可溶性TNFとは異なる、以下の特徴を有する:(1)E.coliにおける均一な翻訳産物を容易にするための、N末端バリンのメチオニンでの置き換え;(2)TNF受容体結合を予防するための、チロシン-87のヒスチジンでの置き換えおよびアラニン-145のアルギニンでの置き換え;(3)特異的なペグ化部位として機能させるための、アルギニン-31のシステインでの置き換え;および(4)混合ジスルフィド形成を回避し、不均一なペグ化部位を排除するための、システイン-69のバリンでの置き換えおよびシステイン-101のアラニンでの置き換え。XENP550の3つの単量体サブユニットはそれぞれ17,340Daの理論分子量、および、およそ6.9のpIを有する。XPRO(商標)1595は、XENP550と、単量体サブユニット当たりおよそ10kDaのmPEG-マレイミドの単一の直鎖との共有結合性コンジュゲーションによって作製される。安定なチオエーテル結合したコンジュゲートサブユニットは、およその分子量が27kDaである(活性なXPRO(商標)1595の3つのサブユニットで81kDa)。この分子は、ペグ化することができる。
一部の実施形態では、DN-TNF-αタンパク質は、野生型TNF-αと相互作用して、受容体シグナル伝達を活性化することができない混合型三量体を形成する。一部の例では、DN-TNF-αタンパク質は、野生型TNF-αタンパク質と比較して、1カ所、2カ所、3カ所、4カ所、5カ所、6カ所、7カ所または8カ所のアミノ酸置換を有する。一部の実施形態では、これらのアミノ酸置換は、1位、21位、23位、30位、31位、32位、33位、34位、35位、57位、65位、66位、67位、69位、75位、84位、86位、87位、91位、97位、101位、111位、112位、115位、140位、143位、144位、145位、146位および147位から選択される。追加的な実施形態では、DN-TNF-αタンパク質は、以下のアミノ酸置換:V1M、Q21C、Q21R、E23C、N34E、V91E、Q21R、N30D、R31C、R31I、R31D、R31E、R32D、R32E、R32S、A33E、N34E、N34V、A35S、D45C、L57F、L57W、L57Y、K65D、K65E、K65I、K65M、K65N、K65Q、K65T、K65S、K65V、K65W、G66K、G66Q、Q67D、Q67K、Q67R、Q67S、Q67W、Q67Y、C69V、L75E、L75K、L75Q、A84V、S86Q、S86R、Y87H、Y87R、V91E、I97R、I97T、C101A、A111R、A111E、K112D、K112E、Y115D、Y115E、Y115F、Y115H、Y115I、Y115K、Y115L、Y115M、Y115N、Y115Q、Y115R、Y115S、Y115T、Y115W、D140K、D140R、D143E、D143K、D143L、D143R、D143N、D143Q、D143R、D143S、F144N、A145D、A145E、A145F、A145H、A145K、A145M、A145N、A145Q、A145R、A145S、A145T、A145Y、E146K、E146L、E146M、E146N、E146R、E146SおよびS147Rのうちの1つまたは複数を有する。したがって、DN-TNF-αタンパク質は、これらのアミノ酸置換のうちの1つ、2つ、3つ、4つ、5つ、6つ、7つまたは8つを有し得る。
これらの置換は、個別に行うこともでき、組み合わせて行うこともでき、任意の組合せが可能である。一部の実施形態では、31位、57位、69位、75位、86位、87位、97位、101位、115位、143位、145位、および146位における1つまたは複数の置換を利用して2重バリアントを形成することができる。さらに、3重、4重、5重などの点変異を生成することができる。したがって、一部の実施形態では、アミノ酸置換A145R I97Tを含むDN-TNF-αタンパク質を本明細書に開示されている方法において利用する。他の実施形態では、アミノ酸置換V1M、R31C、C69V、Y87H、C101A、およびA145Rを含むDN-TNF-αタンパク質を利用する。開示されているDN-TNF-αタンパク質は、ペグ化することができる。
一部の実施形態では、野生型TNF-αタンパク質を改変し、改変領域は、大ドメイン(IIとしても公知)、小ドメイン(Iとしても公知)、DEループ、および三量体界面からなる群より選択される。大ドメイン、小ドメインおよびDEループは、受容体相互作用ドメインである。DN-TNF-αは、これらの領域のうちの1つのみ、またはこれらの領域の任意の組合せにおいてアミノ酸置換を含み得る。大ドメインは、21位、30位、31位、32位、33位、35位、65位、66位、67位、111位、112位、115位、140位、143位、144位、145位、146位および/または147位にアミノ酸置換を含み得る。小ドメインに関しては、DN-TNF-αは、75位および/または97位にアミノ酸置換を含み得る。DEループに関しては、DN-TNF-αタンパク質は、84位、86位、87位および/または91位にアミノ酸置換を含み得る。三量体界面は、例えば34位および91位ならびに57位に2重バリアントを含み得る。一部の実施形態では、DN-TNF-αにおいて複数の受容体相互作用および/または三量体形成ドメインにおける置換を組み合わせることができる。
例としては、これだけに限定されないが、大ドメインおよび小ドメインのアミノ酸の同時置換(例えば、A145RおよびI97T)、大ドメインおよびDEループのアミノ酸の同時置換(例えば、A145RおよびY87H)ならびに大ドメインおよび三量体形成ドメインのアミノ酸の同時置換(例えば、A145RおよびL57F)が挙げられる。さらなる例としては、任意のかつ全ての組合せ、例えば、I97TおよびY87H(小ドメインおよびDEループ)が挙げられる。具体的な実施形態では、これらのアミノ酸の変化は、単一の点バリアントの形態、例えば、K112D、Y115K、Y115I、Y115T、A145EまたはA145Rであってよい。これらの単一の点バリアントは、例えば、Y115IおよびA145E、またはY115IおよびA145R、またはY115TおよびA145RまたはY1151およびA145E;または任意の他の組合せなど、組み合わせることができる。
DN-TNF-αは、57位、75位、86位、87位、97位、115位、143位、145位、および146位の任意の組合せにおいて2重点置換を含んでよい。さらに、DN-TNF-αタンパク質は、L57FおよびY1151、Y115Q、Y115T、D143K、D143R、D143E、A145E、A145R、E146KまたはE146Rのうちの1つなどの2重点変異を含んでよい。他の2重バリアントは、Y115QおよびD143N、D143Q、A145K、A145R、またはE146Kの少なくとも1つ;Y115MおよびD143N、D143Q、A145K、A145RまたはE146Kの少なくとも1つ;ならびにL57FおよびA145Eまたは146Rの少なくとも1つ;K65DおよびD143KまたはD143Rのいずれか、K65EおよびD143KまたはD143Rのいずれか、Y115QおよびL75Q、L57W、L57Y、L57F、I97R、I97T、S86Q、D143N、E146K、A145RおよびI97Tのいずれか、A145RおよびY87RまたはY87Hのいずれか;N34EおよびV91E;L75EおよびY115Q;L75QおよびY115Q;L75EおよびA145R;およびL75QおよびA145Rである。
さらに、DN-TNF-αタンパク質は、3重点置換を含んでよい。一部の実施形態では、置換は、例えば、34位、75位、87位、91位、115位、143位、145位および146位が含まれるように行う。3重点バリアントの例としては、V91E、N34EならびにY115I、Y115T、D143K、D143R、A145R、A145E、E146K、およびE146Rのうちの1つが挙げられる。他の3重点DN_TNF-αタンパク質としては、L75EおよびY87H、およびY115Q、A145Rの少なくとも1つが挙げられる。例示的なDN-TNF-αタンパク質としては、1)L75K、Y87HおよびY115Q;または2)V91E、N34EおよびA145RまたはA145Eのいずれかが挙げられる。
DN-TNF-αタンパク質は、バリアントTNF-α核酸によりコードされるものとして特定することもできる。当業者には理解される通り、遺伝暗号の縮重に起因して、全て目的のDN-TNF-αタンパク質をコードする非常に多数の核酸を作製することができる。したがって、特定のアミノ酸配列を特定すれば、当業者は、単に1つまたは複数のコドンの配列をDN-TNF-αタンパク質のアミノ酸配列が変化しないように改変することによって、任意の数の異なる核酸を作製することができる。
DN-TNF-αタンパク質をコードする核酸も本明細書に開示されている方法において使用される。核酸分子はcDNAであってよい。開示されている抗体および抗原結合性断片をコードする組換え核酸分子は、当業者が、本明細書に提示されているアミノ酸配列、および遺伝暗号を使用して容易に作製することができる。さらに、当業者は、配列は異なるが同じタンパク質配列をコードする核酸などの、機能的に等価の核酸を含有する種々のクローンを容易に構築することができる。したがって、開示されているDN-TNF-αタンパク質をコードする核酸分子が本明細書に提示される。
DN-TNF-αタンパク質をコードする核酸配列は、例えば、適切な配列のクローニング、または、Narangら、Meth. Enzymol.、68巻:90~99頁、1979年のホスホトリエステル法;Brownら、Meth. Enzymol.、68巻:109~151頁、1979年のホスホジエステル法; Beaucageら、Tetra. Lett.、22巻:1859~1862頁、1981年のジエチルホスホラミダイト法;BeaucageおよびCaruthers、Tetra. Letts.、22巻(20号):1859~1862頁、1981年に記載されている固相ホスホラミダイトトリエステル法などの方法による直接化学合成によって、例えば、例えばNeedham-VanDevanterら、Nucl. Acids Res.、12巻:6159~6168頁、1984年に記載されている自動合成機を使用して;ならびに、米国特許第4,458,066号の固体支持体法を含めた任意の適切な方法によって調製することができる。化学合成により、一本鎖オリゴヌクレオチドを作製する。これを、相補配列とのハイブリダイゼーションによって、または鋳型としてこの一本鎖を使用するDNAポリメラーゼによる重合によって、二本鎖DNAに変換することができる。DNAの化学合成は一般に約100塩基の配列に限定されるが、短い配列をライゲートすることによってより長い配列を得ることができることが当業者には理解されよう。
例示的なDN-TNF-αタンパク質をコードする核酸は、クローニング技法によって調製することができる。適切なクローニングおよび配列決定技法の例、および当業者を多くのクローニング演習によって導くために十分な指示は、Sambrookら、上記、BergerおよびKimmel(編)、上記、およびAusubel、上記において見いだされる。生物学的試薬および実験設備の製造者からの製品情報からも有用な情報がもたらされる。そのような製造者としては、SIGMA Chemical Company(Saint Louis、MO)、R&D Systems(Minneapolis、MN)、Pharmacia Amersham(Piscataway、NJ)、CLONTECH Laboratories,Inc.(Palo Alto、CA)、Chem Genes Corp.、Aldrich Chemical Company(Milwaukee、WI)、Glen Research,Inc.、GIBCO BRL Life Technologies,Inc.(Gaithersburg、MD)、Fluka Chemica-Biochemika Analytika(Fluka Chemie AG、Buchs、Switzerland)、Invitrogen(San Diego、CA)、およびApplied Biosystems(Foster City、CA)、ならびに当業者に公知の多くの他の商業的な供給源が挙げられる。
核酸は、増幅方法によって調製することもできる。増幅方法としては、ポリメラーゼ連鎖反応(PCR)、リガーゼ連鎖反応(LCR)、転写に基づく増幅系(TAS)、自家持続配列複製系(3SR)が挙げられる。多種多様なクローニング方法、宿主細胞、およびin vitro増幅方法体系は当業者に周知である。
DN-TNF-αタンパク質をコードするポリヌクレオチド配列は、発現制御配列と作動可能に連結していてよい。例えば、これだけに限定されないが、抗原ポリペプチドなどの追加的なポリペプチドがコードされていてよい。コード配列と作動可能に連結した発現制御配列を、発現制御配列と適合する条件下でコード配列の発現が達成されるようにライゲートする。発現制御配列としては、これだけに限定されないが、適切なプロモーター、エンハンサー、転写ターミネーター、タンパク質をコードする遺伝子の前の開始コドン(すなわちATG)、イントロンに対するスプライシングシグナル、mRNAの適切な翻訳を可能にするための、当該遺伝子の適正な読み枠の維持、および終止コドンが挙げられる。
DN-TNF-αタンパク質をコードするポリヌクレオチド配列を、これだけに限定されないが、配列の挿入または組み入れを可能にし、原核生物または真核生物のいずれかで発現させることができるように操作することができるプラスミド、ウイルスまたは他のビヒクルを含めた発現ベクターに挿入することができる。宿主としては、微生物、酵母、昆虫および哺乳動物生物体を挙げることができる。真核生物の配列またはウイルスの配列を有するDNA配列を原核生物において発現させる方法は当技術分野で周知である。宿主において発現および複製することができる、生物学的に機能的なウイルスおよびプラスミドDNAベクターは当技術分野で公知である。
一実施形態では、S.cerevisiaeまたはKluyveromyces lactisなどの酵母における発現のためにベクターを使用する。構成的プロモーター原形質膜H+-ATPアーゼ(PMA1)、グリセルアルデヒド-3-リン酸脱水素酵素(GPD)、ホスホグリセリン酸キナーゼ-1(PGK1)、アルコールデヒドロゲナーゼ-1(ADH1)、および多面的薬剤耐性ポンプ(pleiotropic drug-resistant pump)(PDR5)などのいくつかのプロモーターが酵母発現系において使用されることが公知である。さらに、GAL1-10(ガラクトースによって誘導される)、PHO5(低細胞外無機ホスフェートによって誘導される)、およびタンデムな熱ショックHSEエレメント(37℃への温度上昇によって誘導される)などの、多くの誘導性プロモーターが使用される。滴定可能な誘導因子に応答して可変な発現を導くプロモーターとしては、メチオニン応答性MET3およびMET25プロモーターならびに銅依存性CUP1プロモーターが挙げられる。これらのプロモーターのいずれかを、多コピー(2μ)または単一コピー(CEN)プラスミドにクローニングして、追加的なレベルの発現レベルの制御をもたらすことができる。プラスミドは、酵母における選択のための栄養マーカー(例えば、URA3、ADE3、HIS1、およびその他など)、ならびに細菌における繁殖のための抗生物質耐性(例えば、AMPなど)を含んでよい。K.lactisにおける発現のためのプラスミドは、例えばpKLAC1など、公知である。したがって、一例では、細菌における増幅後、プラスミドを、対応する酵母栄養要求株に細菌形質転換と同様の方法によって導入することができる。
DN-TNF-αタンパク質は、種々の酵母株において発現させることができる。例えば、7種の多面的薬剤耐性輸送体、YOR1、SNQ2、PDR5、YCF1、PDR10、PDR11、およびPDR15を、それらの活性化転写因子、PDR1およびPDR3と共に、酵母宿主細胞において同時欠失させ、それにより、得られる株を薬物に対して感受性にする。エルゴステロール生合成に欠陥のあるerg6変異体などの、原形質膜の脂質組成が変化している酵母株も利用することができる。他の液胞ヒドロラーゼの活性化を制御する主要液胞エンドペプチダーゼPep4を欠く酵母株において、タンパク質分解に対する感受性が高いタンパク質を発現させることができる。対応するヌル変異体が生存不能である場合には、遺伝子の温度感受性(ts)対立遺伝子を有する株における異種発現を使用することができる。
本明細書に開示されているDN-TNF-αタンパク質をコードするウイルスベクターも調製することができる。ポリオーマ、SV40(Madzakら、1992年、J. Gen. Virol.、73巻:1533~1536頁)、アデノウイルス(Berkner、1992年、Curr. Top. Microbiol. Immunol.、158巻:39~6頁;Berlinerら、1988年、BioTechniques、6巻:616~629頁;Gorzigliaら、1992年、J. Virol.、66巻:4407~4412頁;Quantinら、1992年、Proc. Natl. Acad. Sci. USA、89巻:2581~2584頁;Rosenfeldら、1992年、Cell、68巻:143~155頁;Wilkinsonら、1992年、Nucl. Acids Res.、20巻:2233~2239頁;Stratford-Perricaudetら、1990年、Hum. Gene Ther.、1巻:241~256頁)、ワクシニアウイルス(Mackettら、1992年、Biotechnology、24巻:495~499頁)、アデノ随伴ウイルス(Muzyczka、1992年、Curr. Top. Microbiol. Immunol.、158巻:91~123頁;Onら、1990年、Gene、89巻:279~282頁)、HSVおよびEBVを含めたヘルペスウイルス(Margolskee、1992年、Curr. Top. Microbiol. Immunol.、158巻:67~90頁;Johnsonら、1992年、J. Virol.、66巻:2952~2965頁;Finkら、1992年、Hum. Gene Ther.、3巻:11~19頁;Breakfieldら、1987年、Mol. Neurobiol.、1巻:337~371頁;Fresseら、1990年、Biochem. Pharmacol.、40巻:2189~2199頁)、シンドビスウイルス(Herweijerら、1995年、Hum. Gene Ther.、6巻:1161~1167頁;米国特許第5,091,309号および同第5,2217,879号)、アルファウイルス(Schlesinger、1993年、Trends Biotechnol.、11巻:18~22頁;Frolovら、1996年、Proc. Natl. Acad. Sci. USA、93巻:11371~11377頁)、ならびにトリ起源のレトロウイルス(Brandyopadhyayら、1984年、Mol. Cell Biol.、4巻:749~754頁;Petropouplosら、1992年、J. Virol.、66巻:3391~3397頁)、マウス起源のレトロウイルス(Miller、1992年、Curr. Top. Microbiol. Immunol.、158巻:1~24頁;Millerら、1985年、Mol. Cell Biol.、5巻:431~437頁;Sorgeら、1984年、Mol. Cell Biol.、4巻:1730~1737頁;Mannら、1985年、J. Virol.、54巻:401~407頁)、およびヒト起源のレトロウイルス(Pageら、1990年、J. Virol.、64巻:5370~5276頁;Buchschalcherら、1992年、J. Virol.、66巻:2731~2739頁)を含めた、いくつものウイルスベクターが構築されている。バキュロウイルス(Autographa californica多核体病ウイルス;AcMNPV)ベクターも当技術分野で公知であり、商業的な供給源(例えば、PharMingen、San Diego、Calif.;Protein Sciences Corp.、Meriden、Conn.;Stratagene、La Jolla、Calif.)から得ることができる。
したがって、一実施形態では、DN-TNF-αタンパク質をコードするポリヌクレオチドをウイルスベクター中に含める。適切なベクターとしては、レトロウイルスベクター、オルソポックスベクター、トリポックスベクター、鶏痘ベクター、カプリポックスベクター、スイポックスベクター、アデノウイルスベクター、ヘルペスウイルスベクター、アルファウイルスベクター、バキュロウイルスベクター、シンドビスウイルスベクター、ワクシニアウイルスベクターおよびポリオウイルスベクターが挙げられる。特定の例示的なベクターは、ワクシニアウイルス、鶏痘ウイルスおよび高度に弱毒化されたワクシニアウイルス(MVA)などのポックスウイルスベクター、アデノウイルス、バキュロウイルスなどである。
DN-TNF-αタンパク質をコードするポックスウイルスベクターなどのウイルスベクターは、DN-TNF-αタンパク質をコードする核酸配列に作動可能に連結した少なくとも1つの発現制御エレメントを含む。発現制御エレメントは、核酸配列の発現を制御および調節するためにウイルスベクターに挿入される。これらのベクターに使用される発現制御エレメントの例としては、これだけに限定されないが、lac系、ファージラムダのオペレーター領域およびプロモーター領域、酵母プロモーターならびにポリオーマ、アデノウイルス、レトロウイルスまたはSV40に由来するプロモーターが挙げられる。追加的な作動エレメントとしては、これだけに限定されないが、リーダー配列、終結コドン、ポリアデニル化シグナル、ならびに、宿主系におけるDN-TNF-αタンパク質をコードする核酸配列の適切な転写およびその後の翻訳に必要な任意の他の配列が挙げられる。発現ベクターは、宿主系における、核酸配列を含有する発現ベクターの移入およびその後の複製に必要な追加的なエレメントを含有してよい。そのようなエレメントの例としては、これだけに限定されないが、複製起点および選択マーカーが挙げられる。さらに、そのようなベクターは従来の方法を使用して容易に構築でき、(Ausubelら、(1987年)、「Current Protocols in Molecular Biology」、John Wiley and Sons、New York、N.Y.)また、市販されていることも当業者には理解されよう。
1つまたは複数のタンパク質をコードする異種DNA配列を含有する組換えDNAウイルスを調製するための基本的技法は当技術分野で公知である。そのような技法は、例えば、ドナープラスミド中のDNA配列に隣接するウイルスDNA配列と親ウイルスに存在する相同な配列との間の相同組換えを伴う(Mackettら、1982年、Proc. Natl. Acad. Sci. USA、79巻:7415~7419頁)。特に、ポックスウイルスベクターなどの組換えウイルスベクターを遺伝子の送達に使用することができる。ベクターは、例えば、参照により本明細書に組み込まれる米国特許第5,093,258号に記載されている、鶏痘ウイルスの合成組換え体を創出するための方法と類似したステップなどの当技術分野で公知のステップによって構築することができる。他の技法は、親ウイルスベクターに天然に存在するまたは人工的に挿入された独特の制限エンドヌクレアーゼ部位を使用して異種DNAを挿入することを含む。
組換えDNAを用いた宿主細胞の形質転換は、当業者に周知の従来の技法によって行うことができる。宿主がE.coliなどの原核生物である場合、DNAを取り込むことができるコンピテント細胞を、指数成長期後に回収し、その後、当技術分野で周知の手順を使用してCaCl2法によって処理した細胞から調製することができる。あるいは、MgCl2またはRbClを使用することができる。形質転換は、所望であれば宿主細胞のプロトプラストを形成した後に、または電気穿孔によって実施することもできる。
宿主が真核生物である場合、リン酸カルシウム共沈、微量注射などの従来の機械的手順、電気穿孔、リポソームまたはウイルスベクターに封入したプラスミドの挿入などのDNAトランスフェクション方法を使用することができる。真核細胞はまた、抗体、標識した抗体またはその機能的(抗原結合性)断片をコードするポリヌクレオチド配列と、単純ヘルペスチミジンキナーゼ遺伝子などの選択可能表現型をコードする第2の外来DNA分子を用いて同時形質転換することができる。別の方法は、シミアンウイルス40(SV40)またはウシパピローマウイルスなどの真核生物ウイルスベクターを使用して真核細胞を一過性に感染させるか形質転換し、タンパク質を発現させるものである(例えば、Eukaryotic Viral Vectors、Cold Spring Harbor Laboratory、Gluzman編、1982年を参照されたい)。当業者は、COS細胞株、CHO細胞株、HeLa細胞株および骨髄腫細胞株などの高等真核細胞を含めた細胞におけるタンパク質の産生に使用されるプラスミドおよびベクターなどの発現系を容易に使用することができる。
組換えにより発現させたポリペプチドの単離および精製は、調製的クロマトグラフィーおよび免疫学的分離を含めた従来の手段によって行うことができる。DN-TNF-αタンパク質が発現したら、硫酸アンモニウム沈殿、アフィニティーカラム、カラムクロマトグラフィーなどを含めた当技術分野の標準の手順に従って精製することができる(一般に、R. Scopes、Protein Purification、Springer-Verlag、N.Y.、1982年を参照されたい)。少なくとも約90~95%の均質性である実質的に純粋な組成物が本明細書に開示されており、薬学的目的のためには98~99%またはそれよりも高い均質性を使用することができる。ポリペプチドは、治療的に使用される場合、部分的にまたは所望の均質性まで精製されたら、内毒素を実質的に含まないことが必要である。
組換え方法に加えて、DN-TNF-αタンパク質は、全体的にまたは部分的に標準のペプチド合成を使用して構築することもできる。長さが約50アミノ酸未満のポリペプチドの固相合成は、配列のC末端アミノ酸を不溶性支持体に付着させ、その後、残りのアミノ酸を配列内に逐次的に付加することによって達成することができる。固相合成のための技法は、BaranyおよびMerrifield、The Peptides: Analysis、Synthesis、Biology.、2巻:Special Methods in Peptide Synthesis、Part A、3~284頁;Merrifieldら、J. Am. Chem. Soc.、85巻:2149~2156頁、1963年、およびStewartら、Solid Phase Peptide Synthesis、第2版、Pierce Chem. Co.、Rockford、Ill.、1984年に記載されている。より長いタンパク質は、より短い断片のアミノ末端とカルボキシル末端の縮合によって合成することができる。カルボキシル末端の活性化によってペプチド結合を形成する方法(例えば、カップリング試薬N、N’-ジシクロヘキシルカルボジイミドを使用することによってなど)は当技術分野で周知である。
医薬組成物および使用方法
発癌現象を予防する、および/または腫瘍の形成を阻害する、腫瘍を処置する、もしくは腫瘍が発生するリスクを低減させるための方法が本明細書に開示されている。一部の実施形態では、良性病変から悪性病変への変換を予防する、または転移を予防するための方法が本明細書に開示されている。したがって、腫瘍は良性であっても悪性であってもよい。一部の実施形態では、腫瘍は、炎症性腫瘍である。腫瘍を有する被験体を処置するための方法が本明細書に開示されている。
方法は、被験体にドミナントネガティブ腫瘍壊死因子(DN-TNF)-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を治療有効量で投与することを含む。DN-TNF-αタンパク質をコードする核酸は、発現ベクターに含めることができる(上記を参照されたい)。方法は、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸、ならびに薬学的に許容される担体を含む医薬組成物を投与することを含み得る。投与は、全身的なものであっても局所的なものであってもよい。上に開示されているDN-TNF-αタンパク質のいずれも開示されている方法において使用することができる。具体的な非限定的実施形態では、DN-TNF-αタンパク質は、配列番号2のアミノ酸配列を含む、またはそれからなる。
一部の実施形態では、腫瘍の発生を阻害するための方法が提供される。これらの方法は、被験体におけるがんに対する免疫抑制応答を阻害することを含み得る。免疫抑制応答は、免疫抑制性サイトカインの発現であり得る。サイトカインの発現は、例えば、対照と比較して20%、30%、040%、50%、60%、70%、80%、90%、または95%低減し得る。具体的な非限定例では、サイトカインは、インターロイキン(IL)-1α、TGFβおよびIL-10である。対照は、DN-TNF-αを投与する前の被験体由来の試料におけるものなどの、DN-TNF-αの投与の不在下でのサイトカインの発現であり得る。対照は、標準値であり得る。
免疫抑制応答は、骨髄系由来サプレッサー細胞(MDSC)を含み得る。したがって、一部の実施形態では、開示されている方法により、MDSCの数が減少する。MDSCの数は、例えば、対照と比較して20%、30%、40%、50%、60%、70%、80%、90%、または95%減少し得る。対照は、DN-TNF-αを投与する前の被験体由来の試料におけるものなどの、DN-TNF-αの投与の不在下でのMDSCの数であり得る。対照は、標準値であり得る。
免疫抑制応答は、ヘルパーT細胞および細胞傷害性T細胞の枯渇または機能的消耗も含み得る。一部の実施形態では、開示されている方法により、ヘルパーT細胞および細胞傷害性T細胞の数および/または機能が増大する。ヘルパーT細胞および細胞傷害性T細胞の数および/または機能(例えばサイトカイン分泌および/または腫瘍死滅によって測定される)は、例えば、対照と比較して20%、30%、40%、50%、60%、70%、80%、90%、または95%増大する。対照は、DN-TNF-αを投与する前の被験体由来の試料におけるものなどの、DN-TNF-αの投与の不在下でのヘルパーT細胞および細胞傷害性T細胞の数であり得る。対照は、標準値であり得る。
追加的な実施形態では、前記腫瘍の発生を阻害することは、前記被験体における腫瘍に対する免疫応答を刺激することを含む。免疫応答は、Th1応答および/またはナチュラルキラー(NK)細胞と樹状細胞(DC)のクロストークを含み得る。一部の実施形態では、「クロストーク」とは、NK細胞とDCの間の、これらの自然免疫エフェクター細胞を相反的に刺激し活性化する、膜貫通TNFなどの膜結合リガンドおよびトランス提示IL-15、ならびにIL-12およびIFNγなどの分泌型サイトカインを介した相互作用である。免疫応答は、IL-1β、IL-12、IL-17および/またはIFNγなどのサイトカインの産生を含み得る。免疫応答は、抗がんT細胞応答またはB細胞応答の増大を含み得る。免疫応答は、例えば、対照と比較して20%、30%、40%、50%、60%、70%、80%、90%、または95%増大し得る。対照は、DN-TNF-αを投与する前の被験体由来の試料におけるものなどの、DN-TNF-αの投与の不在下での、NK細胞/DCクロストーク、サイトカイン産生またはB細胞およびT細胞の腫瘍抗原に対する特異的反応などの免疫応答であり得る。対照は、標準値であり得る。
さらなる実施形態では、方法は、発癌現象および/もしくは腫瘍の発生を予防すること、または良性腫瘍もしくは悪性腫瘍などの腫瘍の発生を阻害することを含み得る。方法は、良性腫瘍の悪性腫瘍への変換を阻害することを含み得る。具体的な非限定例では、腫瘍のサイズおよび数を、被験体において対照と比較して減少させることができる。腫瘍は、原発腫瘍、および、これだけに限定されないが、微小転移を含めた転移であり得る。追加的な非限定例では、対照は、未処置の被験体または担体を用いて処置した被験体である。
本明細書に開示されている方法は、状態に対する処置を必要とする被験体を選択することを含む。ある特定の実施形態では、被験体は、腫瘍が発生する素因を有するまたは腫瘍が発生するリスクがある。一部の実施形態では、被験体は、発がん物質に曝露している、被験体は放射線に曝露している、または被験体は前悪性状態を有する。被験体は、腫瘍を有している可能性があるもしくは以前に有していた、または、例えば病歴に起因して、腫瘍が発生する素因を有する。被験体は、腫瘍が発生する遺伝的素因を有し得る。一実施形態では、方法により、被験体における腫瘍の再発を予防するまたは遅延させる。場合により、追加的な薬剤を目的の被験体に投与することができる。いくつかの実施形態では、発がん物質に曝露している被験体において腫瘍が発生するリスクを低下させる、または腫瘍の発生を予防するもしくは遅延させるための方法が提供される。
処置は、予防的なものであってもよく、あるいは、前がん性病変または非悪性腫瘍などの状態が発生した後に開始することもできる。予防的な処置は、例えば、被験体に状態の症状が顕在化した後に開始することができる。具体的な非限定例では、被験体は、結腸のポリープを有し得るが、結腸がんは有さない。皮膚がんに関してなどの一部の例では、処置は、例えば、発がん物質またはUV光への曝露、酸化ストレス、アルキル化による損傷および脱アミノ化の結果など、DNAに損傷を与える作用因子に曝露する前または曝露中に開始することができる。一部の例では、処置は、DNAに損傷を与える作用因子、がんに関連するウイルス(例えば、C型肝炎ウイルス(HCV)およびBウイルス(HBV)、ヒトパピローマウイルス(HPV)またはヒト免疫不全ウイルス(HIV))に曝露した後であるが、腫瘍が出現する前に行うことができる。一部の例では、処置は、発がん物質への曝露、例えばアスベストおよび喫煙への職業性曝露など、または、例えば、それぞれ肺がん、肝がん、子宮頸がんおよび喉頭がんまたはカポジ肉腫のリスクがある被験体について、HBV、HCV、HPVおよびHIVなどへのウイルス感染への曝露の前またはその間に行うことができる。処置は、例えば、これだけに限定されないが、乳がんが発生するリスクがある、BRCA1および/またはBRCA2変異を有する被験体など、状態が発生する前に行うことができる。状態が発生する前の処置は、本明細書では、状態が生じる「リスクがある」被験体の処置と称される。したがって、組成物の投与は、本明細書に記載の状態が出現する前、出現中、または出現した後に実施することができる。一部の実施形態では、開示されている方法により、腫瘍が発生するリスクを低減させる。
DN-TNF-αを受けるのに特に適した被験体の非限定例は、自然または人工的UV照射に曝露する可能性がある被験体、工業化学物質への職業性曝露に起因してまたは喫煙に起因して発がん物質に曝露している被験体である。被験体は、アスベストまたはシリカに曝露している、したがって、中皮腫のリスクがある被験体であり得る。一部の例では、これらの被験体では、腫瘍はまだ発生していない。処置に適した被験体の例は、肺がんが発生していない喫煙者である。大量のUV光に曝露しているが、黒色腫または基底細胞癌などの皮膚がんがまだ発生していない被験体も処置に適した被験体の例である。処置に適した被験体のさらなる例は、アスベストなどの発がん物質への職業性曝露を有するまたはこれから有する被験体である。
開示されている方法は、転移性がんを処置するため、例えば、転移を阻害するためまたは追加的な転移を予防するためなどに使用することができる。一部の実施形態では、開示されている方法は、被験体における腫瘍または追加的な腫瘍の発生を減少させるため、例えば、病変の体積および数を減少させるために使用することができる。当該方法は、転移の発生を阻害もしくは予防するため、または所属リンパ節への微小転移などの微小転移の数を減少させるために使用される(Gotoら、Clin. Cancer Res.、14巻(11号):3401~3407頁、2008年を参照されたい)。最初の腫瘍状態が発生した後に開始した処置により、状態のうちの1つの症状の重症度が低下するまたは症状が完全に取り除かれる、または転移、腫瘍体積もしくは腫瘍の数が低減する可能性がある。一部の例では、これらの被験体は、悪性またはさらには転移性の病変に変換する可能性がある既存の良性腫瘍を有する。本開示のこの態様では、腫瘍の形成を遅延させる、予防する、または低下させる。一部の実施形態では、開示されている方法を使用して、転移性がんの発生を予防することができる。
腫瘍は、固形腫瘍および血液腫瘍を含めた任意の目的の腫瘍であってよい。肉腫および癌腫などの固形腫瘍の例としては、線維肉腫、粘液肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、および他の肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、結腸癌、リンパ系悪性疾患、膵がん、乳がん(基底乳癌、腺管癌および小葉乳癌を含む)、肺がん、卵巣がん、前立腺がん、肝細胞癌、扁平上皮癌、基底細胞癌、腺癌、汗腺癌、甲状腺髄様癌、甲状腺乳頭状癌、褐色細胞腫、脂腺癌、乳頭状癌、乳頭状腺癌、髄様癌、気管支原性肺癌、腎細胞癌、ヘパトーマ、胆管癌、絨毛癌、ウィルムス腫瘍、子宮頸がん、精巣腫瘍、セミノーマ、膀胱癌、およびCNS腫瘍(例えば、神経膠腫、星状細胞腫、髄芽腫、頭蓋咽頭腫、上衣腫、松果体腫、血管芽細胞腫、聴神経腫、乏突起神経膠腫、髄膜腫、黒色腫、神経芽細胞腫および網膜芽細胞腫など)が挙げられる。血液腫瘍の例としては、急性白血病(例えば、11q23陽性急性白血病、急性リンパ球性白血病、急性骨髄球性白血病、急性骨髄性白血病および骨髄芽球性白血病、前骨芽球性白血病、骨髄単球性白血病、単球性白血病および赤白血病など)、慢性白血病(例えば、慢性骨髄球性(顆粒球性)白血病、慢性骨髄性白血病、および慢性リンパ球性白血病など)などの白血病、真性赤血球増加症、リンパ腫、ホジキン病、非ホジキンリンパ腫(無痛性のおよび高悪性度の形態)、多発性骨髄腫、ワルデンシュトレームマクログロブリン血症、重鎖病、骨髄異形成症候群、ヘアリー細胞白血病ならびに脊髄形成異常症が挙げられる。具体的な非限定例では、腫瘍は、乳がん、前立腺がん、肺がん、肝がん、子宮頸がん、頭頸部がん、黒色腫、腎細胞癌、カポジ肉腫または結腸がんである。
腫瘍の存在は、当技術分野で公知の方法によって決定することができ、一般には、細胞学的評価および形態学的評価を含む。細胞は、生検から得られる細胞を含め、in vivoにおけるものであってもex vivoにおけるものであってもよい。
本明細書に開示されている任意のDN-TNF-αタンパク質および/またはDN-TNF-αをコードする核酸を開示されている任意の方法において使用することができる。具体的な非限定例では、DN-TNF-αタンパク質は、配列番号2と記載されるアミノ酸配列を含む、またはそれからなる。DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、任意の目的の腫瘍を阻害する、予防する、それが発生するリスクを低下させるために、被験体に投与するための種々のやり方で製剤化することができる。本明細書に開示されているDN-TNF-αタンパク質および/またはDN-TNF-αをコードする核酸は、薬学的に許容される担体で投与することができる。
DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、単独でまたは追加的な薬剤と併せて投与することができる。医薬組成物は、本明細書に開示されているDN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を活性成分として含んでもよく、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸と、追加的な抗炎症性薬、抗免疫抑制剤(例えば、抗PD-1抗体、抗CTLA-4遮断抗体、Tregを低減させるシクロホスファミドおよび/もしくは抗IL-2Rα抗体)、免疫賦活剤(例えば、抗上皮増殖因子受容体(EGFR)抗体、OX40アゴニスト、CD40アゴニスト、ワクチンおよび/またはIFNα、IL-2などのサイトカイン)、免疫回復剤(例えば、幹細胞因子(SCF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、マクロファージコロニー刺激因子(M-CSF)、Fms関連チロシンキナーゼ(Flt)3-リガンド、インターロイキン(IL)-7および/もしくは幹細胞)または化学療法剤などの追加的な薬剤の両方を含んでもよい。例示的な化学療法剤は、変異したBRAFV600EまたはMEKを標的とする小分子阻害剤または抗体である。しかし、化学療法剤は、シスプラチン、カルボプラチン、ゲムシタビン、ダカルバジン、テモゾロミド、パクリタキセルおよびその他などの、任意の目的の化学療法剤であってよい。
したがって、局所的使用(例えば、局部、腫瘍内、または吸入など)のための医薬組成物および全身的使用(例えば、経口または静脈内など)のための医薬組成物の両方が提供される。したがって、ヒト医学または獣医学において使用するための、製剤化された、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を含む医薬組成物が本開示の範囲内に含まれる。DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、一般には、ヒト被験体を処置するために使用されるが、他の霊長類、イヌ、ネコ、ウマ、およびウシなどの他の脊椎動物における同様または同一の疾患を処置するためにも使用することができる。適切な投与形式は、医療実践者が、各被験体について個別に決定することができる。種々の薬学的に許容される担体およびそれらの製剤は、標準の製剤の専門書、例えば、E. W. MartinによるRemington’s Pharmaceutical Sciencesに記載されている。Wang、Y. J.およびHanson、M. A.、Journal of Parenteral Science and Technology、Technical Report No. 10、補遺、42:2S、1988年。医薬組成物の剤形は、選択された投与形式によって決定される。
一実施形態では、治療有効量のDN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を、皮膚への投与用に製剤化する。局部投与に適した製剤としては、活性化合物を皮膚細胞などの細胞に投与するための散布剤(dusting powder)、軟膏剤、クリーム剤、ゲル剤または噴霧剤が挙げられる。そのような製剤は、場合により、無機色素、有機色素、無機散剤、有機散剤、炭化水素、シリコーン、エステル、トリグリセリド、ラノリン、蝋、蝋膜(cere)、動物油または植物油、界面活性物質、多価アルコール、糖、ビタミン、アミノ酸、抗酸化剤、フリーラジカルスカベンジャー、紫外線遮断薬、日焼け止め、防腐剤、芳香剤、増粘剤、またはこれらの組合せを含んでよい。例えば、防腐剤、殺菌剤、香料、消泡剤、染料、着色作用を有する色素、界面活性物質、増粘剤、懸濁化剤、充填剤、保湿剤、保水剤(humectant)、脂肪、油、ワックス、またはアルコール、ポリオール、ポリマー、泡安定剤、電解質、有機溶媒、またはシリコーン誘導体などの他の通例の化粧品製剤の構成要素などの添加剤を含めることができる。
DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、例えば、これだけに限定されないが、肺がんまたは食道がんを処置するための製剤など、吸入による投与用に製剤化することができる。吸入用調製物としては、エアロゾル、微粒子物などが挙げられる。一般に、吸入のための粒子サイズの目標は、医薬を吸収のために肺の肺胞領域に到達させるために、約1μmまたはそれ未満である。しかし、粒子サイズを調節して肺内の配置の領域を調整することができる。したがって、呼吸器細気管支および気腔(air space)内への沈着を達成するために、より大きな粒子を利用することができる(例えば、直径約1~約5μmなど)。さらに、経口用製剤は、液体(例えば、シロップ剤、液剤、または懸濁剤)であっても固体(例えば、散剤、丸剤、錠剤、またはカプセル剤)であってもよい。
吸入による投与に関しては、化合物は、適切な噴霧体、例えば、ジクロロジフルオロメタン、トリクロロフルオロメタン、ジクロロテトラフルオロエタン、二酸化炭素または他の適切なガスを使用する、加圧されたパックまたはネブライザーからのエアロゾル噴霧提示の形態で都合よく送達することができる。加圧されたエアロゾルの場合では、投与量単位は、定量を送達するための弁を提供することによって決定することができる。吸入器または吹き入れ器(insufflator)に使用するためのカプセルおよびカートリッジは、化合物とラクトースまたはデンプンなどの適切な粉末基剤の粉末混合物を含有させて製剤化することができる。
組成物または医薬組成物は、非経口投与、例えば、静脈内、腹腔内、筋肉内、腹腔内、胸骨内、髄腔内、もしくは関節内への注射もしくは注入によるもの、または舌下投与、経口投与、局部投与、鼻腔内投与、もしくは経粘膜投与によるものを含めた任意の経路によって投与することもできる。DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を、例えば、注射または注入用の非経口用組成物として提供する場合、一般に、水性担体、例えば、pH約3.0~約8.0、好ましくはpH約3.5~約7.4、3.5~6.0、または3.5~約5.0の等張緩衝溶液に懸濁させる。有用な緩衝液としては、クエン酸ナトリウム-クエン酸、およびリン酸ナトリウム-リン酸、および酢酸ナトリウム-酢酸緩衝液が挙げられる。治療有効量の調製物が経皮注射または送達後に多くの時間または日数にわたって血流中に送達されるように、レポジトリまたは「デポー」緩慢放出調製物の形態を使用することができる。
DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸はまた、持続放出系によっても適切に投与される。持続放出製剤の適切な例としては、適切なポリマー材料(例えば、成形された物品、例えば、フィルム、もしくはマイクロカプセルの形態の半透性ポリマーマトリックス)、適切な疎水性材料(例えば、許容される油中エマルションなど)またはイオン交換樹脂、および、やや難溶性の誘導体(例えば、やや難溶性の塩など)が挙げられる。持続放出組成物は、経口投与、直腸投与、非経口投与、槽内投与、膣内投与、腹腔内投与、局部投与(散剤、軟膏剤、ゲル剤、滴剤(drop)もしくは経皮パッチとして)、頬側投与、または経口もしくは経鼻スプレーとして投与することができる。
投与するための調製物は、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸の制御放出が長期間にわたってもたらされるように適切に製剤化することができる。例えば、医薬組成物は、生分解性ポリマーおよび/または多糖ゼリー化および/もしくは生体接着性ポリマー、両親媒性ポリマー、粒子の界面特性を調節する薬剤と、薬理活性のある物質とを含む粒子の形態であってよい。これらの組成物は、活性物質の制御放出を可能にするある特定の生体適合性の特徴を示す。米国特許第5,700,486号を参照されたい。
経口投与に関しては、医薬組成物は、例えば、結合剤(例えば、アルファ化トウモロコシデンプン、ポリビニルピロリドンもしくはヒドロキシプロピルメチルセルロース);充填剤(例えば、ラクトース、微結晶性セルロースもしくはリン酸水素カルシウム);滑沢剤(例えば、ステアリン酸マグネシウム、タルクもしくはシリカ);崩壊剤(例えば、ジャガイモデンプンもしくはデンプングリコール酸ナトリウム);または湿潤剤(例えば、ラウリル硫酸ナトリウム)などの薬学的に許容される賦形剤を用いて従来の手段によって調製された錠剤またはカプセル剤の形態をとってよい。錠剤は、当技術分野で周知の方法によってコーティングすることができる。経口投与用の液体調製物は、例えば、液剤、シロップ剤または懸濁剤の形態をとってもよく、使用前に水または他の適切なビヒクルを用いて構成するための乾燥生成物として提供されてもよい。そのような液体調製物は、懸濁化剤(例えば、ソルビトールシロップ、セルロース誘導体または硬化食用脂肪);乳化剤(例えば、レシチンまたはアラビアゴム);非水性ビヒクル(例えば、アーモンド油、油性エステル、エチルアルコールまたは分画植物油);および防腐剤(例えば、p-ヒドロキシ安息香酸メチルもしくはプロピルまたはソルビン酸)などの薬学的に許容される添加剤を用いて従来の手段によって調製することができる。調製物は、必要に応じて緩衝塩、矯味矯臭剤、着色剤、および甘味剤も含有してよい。固体組成物に関しては、従来の無毒性固体担体として、医薬品グレードのマンニトール、ラクトース、デンプン、またはステアリン酸マグネシウムが挙げられる。そのような剤形の実際の調製方法は当業者には公知である、または明らかになる。
使用される薬学的に許容される担体および賦形剤は、従来のものである。例えば、非経口用製剤は、通常、例えば、水、生理的食塩水、他の平衡化塩類溶液、水性デキストロース、グリセロールなどの、薬学的におよび生理的に許容される流体ビヒクルである注射用流体を含む。含めることができる賦形剤は、例えば、ヒト血清アルブミンなどのタンパク質または血漿調製物である。所望であれば、投与される医薬組成物は、微量の無毒性補助物質、例えば、湿潤剤または乳化剤、防腐剤、およびpH緩衝剤など、例えば、酢酸ナトリウムまたはソルビタンモノラウレートも含有してよい。そのような剤形の実際の調製方法は、当業者には公知であるまたは明らかになる。
一般に、製剤は、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を液体担体または細かく分割された固体担体またはその両方に均一かつ密接に接触させることによって調製される。次いで、必要であれば、産物を所望の製剤に形づくる。場合により、担体は、非経口用担体であり、一部の実施形態では、レシピエントの血液と等張性の溶液である。そのような担体ビヒクルの例としては、水、食塩水、リンゲル液、およびブドウ糖溶液が挙げられる。不揮発性油およびオレイン酸エチルなどの非水性ビヒクル、ならびにリポソームも本発明において有用である。
さらに、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、化合物をゆっくりと放出する固体または吸収性マトリックスを被験体の近接する周囲の組織に埋め込むこと(器官(例えば、腸もしくは肝臓)に直接または皮下に)によって投与することができる。例えば、胃腸の前がん性病変の処置に関しては、化合物は、全身的に(例えば、静脈内に、直腸にまたは経口的に)投与することもでき、局所的に(例えば、腫瘍に直接)投与することもできる。あるいは、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸をウェーハまたは吸収性海綿に含浸させ、胃の組織などの組織に直接接触させることができる。DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、in vivoにおいて、ウェーハからの拡散およびポリマーマトリックスの浸食によってゆっくりと放出する。別の例として、肝臓のウイルス感染(すなわち、肝炎)を、肝臓脈管構造に、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を含有する溶液を注入することによって処置する。
治療用化合物がDN-TNF-αタンパク質をコードする核酸である場合、核酸は、コードされるタンパク質の発現を促進するために、適切な核酸発現ベクターの一部として構築し、細胞内に入るように投与することによって、例えば、レトロウイルスベクターを使用することによって、直接注射することによって、微小粒子照射(microparticle bombardment)を使用することによって、脂質もしくは細胞表面受容体もしくはトランスフェクト剤でコーティングすることによって、または核に進入することが公知であるホメオボックス様ペプチドと連結して投与することによって(例えば、Joliotら、Proc Natl Acad Sci USA、88巻:1864~1868頁、1991年を参照されたい)などで、in vivo投与することができる。あるいは、核酸治療薬を細胞内に導入し、相同組換えによって発現のために宿主細胞DNAに組み入れる、またはエピソームとして残す。
DNAの局所投与に関しては、標準の遺伝子療法ベクターを使用することができる。そのようなベクターとしては、複製欠損肝炎ウイルス(例えば、HBVおよびHCVなど)、レトロウイルス(PCT公開第WO89/07136号;Rosenbergら、N. Eng. J. Med.、323巻(9号):570~578頁、1990年を参照されたい)、アデノウイルス(Morseyら、J. Cell. Biochem.、補遺17E、1993年を参照されたい)、アデノ関連ウイルス(Kotinら、Proc. Natl. Acad. Sci. USA、87巻:2211~2215頁、1990年)、複製欠損単純ヘルペスウイルス(HSV;Luら、Abstract、66頁、Abstracts of the Meeting on Gene Therapy、Sept. 22-26、Cold Spring Harbor Laboratory、Cold Spring Harbor、New York、1992年)に由来するものを含めたウイルスベクター、およびこれらのベクターの任意の改変バージョンが挙げられる。上に開示されているベクターのいずれか、または真核細胞への核酸のin vivo移入を達成する任意の他の送達系を利用することができる。例えば、核酸を、カチオン性リポソーム(リポフェクチン)などのリポソーム、受容体媒介性送達系、非ウイルス核酸に基づくベクター、赤血球ゴースト、またはマイクロスフェア(例えば、微小粒子など;例えば、米国特許第4,789,734号;米国特許第4,925,673号;米国特許第3,625,214号を参照されたい)にパッケージングすることができる。裸のDNAを投与することもできる。
任意の所与の患者に対する投与量は、患者のサイズ、体表面積、年齢、投与される特定の化合物、性別、投与の時間および経路、全体的な健康、ならびに同時に投与される他の薬物を含めた多くの因子に依存する。投与量は変動し得るが、DNAの静脈内投与のために好ましい投与量は、DNA分子およそ106~1022コピーである。
一般には、プラスミドは、哺乳動物に、DNA約1ナノグラム~約5000マイクログラムの量で投与される。組成物は、DNA5ナノグラム~1000マイクログラム、DNA10ナノグラム~800マイクログラム、DNA0.1マイクログラム~500マイクログラム、DNA1マイクログラム~350マイクログラム、DNA25マイクログラム~250マイクログラム、またはDNA100マイクログラム~200マイクログラムを含有することが望ましい。あるいは、PD-1アンタゴニストをコードするアデノウイルスベクターなどの組換えウイルスベクターの哺乳動物への投与は、少なくとも105、106、107、108、109、1010、または1011プラーク形成単位(pfu)の濃度で施すことができる。
一部の実施形態では、DN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸を含む医薬組成物は、正確な投与量の個々の投与に適した単位剤形に製剤化することができる。投与される活性化合物(複数可)の量は、処置される被験体、苦痛の重症度、および投与の様式に依存し、処方する臨床医の判断に委ねるのが最良である。これらの範囲の中で、投与される製剤は、ある数量の活性構成成分(複数可)を、処置される被験体における所望の効果を達成するために有効な量で含有する。例えば、長期投与が達成されるように、規定された時間間隔にわたって、例えば、毎日、隔週、毎週、隔月または毎月など、複数回の処置が構想される。本明細書に開示されている通り、治療有効量のDN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、腫瘍の形成の予防、良性病変から悪性病変への変換の予防、腫瘍が発生するリスクの低減、または転移の予防に有用である。投与は、疾患の抑制または予防が望まれるときはいつでも、例えば、被験体のある特定の年齢で、または環境曝露の前に開始することができる。適切な用量は、例えば、参照により本明細書に組み込まれる米国特許第7,662,367号において開示されている。正確な用量は、特定の化合物(例えば、利用されるDN-TNF-αタンパク質など)の効力、被験体の年齢、体重、性別および生理的状態に基づいて、当業者により容易に決定される。
本明細書に開示されている方法を使用した処置後の免疫応答を測定するための方法は当技術分野で周知である。免疫細胞の活性は、例えば、サイトカイン産生を検出するアッセイ;抗原で刺激されたCD8+T細胞およびCD4+T細胞の数、増殖、細胞傷害性およびサイトカイン産生を測定するアッセイ;ならびにMDSCの数および機能を測定するアッセイによって評価することができる。例示的なアッセイは、以下、および、例えば、米国特許第6,808,710号および米国特許出願公開第2004/0137577号、同第2003/0232323号、同第2003/0166531号、同第2003/0064380号、同第2003/0044768号、同第2003/0039653号、同第2002/0164600号、同第2002/0160000号、同第2002/0110836号、同第200/20107363号、および同第2002/0106730号において開示されている。
治療有効量のDN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、治療有効量の別の薬剤と一緒に投与することができる。投与は、同時であっても逐次的であってもよい。以下の段落には、薬剤が個別に開示されているが、これらの薬剤の任意の組合せを利用することができることに留意するべきである。
薬剤は、例えば、化学療法剤(例えば、これだけに限定されないが、BRAFV600Eおよび/もしくはマイトジェン活性化プロテインキナーゼキナーゼ(MEK)を標的とする阻害剤など)、放射線、サイトカイン、ケモカイン、抗体、細胞(活性化されたNK細胞、樹状細胞、抗原特異的CD8もしくはCD4T細胞、造血幹細胞(hematopetic stem cell))または免疫賦活剤(OX40アゴニスト、CD40アゴニスト、または抗EGFR抗体)であってよい。一部の例では、薬剤は、外科的処置を伴ってよい。薬剤は、これだけに限定されないが、IL-2、IL-7、IL-15を含めたサイトカイン、またはIFN-αもしくはIFN-γなどのインターフェロン(IFN)であってよい。
治療有効量のDN-TNF-αタンパク質および/またはDN-TNF-αタンパク質をコードする核酸は、治療有効量の抗体、例えば、抗プログラム死(PD)-1抗体、抗プログラム死リガンド(PD-L)1抗体、抗PD-L2抗体、抗リンパ球活性化遺伝子(LAG3)抗体、抗T細胞免疫グロブリンおよびムチンタンパク質(TIM)-3抗体、IgドメインおよびITIMドメインを有する抗T細胞免疫受容体(TIGIT)(参照により本明細書に組み込まれるJohnsonら、Cancer Cell.、2014年12月8日;26巻(6号):923~37頁、doi: 10.1016/j.ccell.2014.10.018)、または抗細胞傷害性Tリンパ球関連タンパク質4(CTLA-4)抗体などと一緒に投与することができる。抗体は、モノクローナル抗体、ヒト化抗体、脱免疫(deimmunized)抗体、および免疫グロブリン(Ig)融合タンパク質を含む。
PD-1に結合する抗体のアミノ酸配列は、例えば、参照により本明細書に組み込まれる米国特許出願公開第2006/0210567号において開示されている。PD-1に結合する抗体は、同じく参照により本明細書に組み込まれる米国特許出願公開第2006/0034826号にも開示されている。抗体は、KEYTRUDA(登録商標)(ペムブロリズマブ)である。抗体は、Ono Pharmaceuticalsからのニボルマブ(ONO-4538/BMS-936558)またはOPDIVO(登録商標)などの抗PD-1抗体であってよい。いくつかの例では、抗体は、PD-1またはPD-L1またはPD-L2に少なくとも107M-1、例えば、少なくとも108M-1、少なくとも5×108M-1または少なくとも109M-1などの親和性定数で特異的に結合する。抗体は、Ipilmumab(MDX-010およびMDX-101およびYERVOY(登録商標)としても公知)などの抗CTLA-4抗体であってよい。抗体は、抗TIM-3抗体、抗LAG3抗体または抗TIGIT抗体であってよい。追加的な薬剤により、OX40および/またはCD40を刺激することができる。追加的な薬剤は、抗OX40抗体などの、OX40を刺激する抗体であってよい。一例では、抗体は、AgonOXから入手可能である。薬剤は、CP-870またはCP-893(Pfizer)などの、CD40を刺激する抗体であってよい。抗体は、CD40リガンドに特異的に結合する抗体であってよい。薬剤は、CD137(4-1BB;誘導性共刺激標的)に特異的に結合する抗体であってよい。
DN-TNF-αタンパク質、またはDN-TNF-αタンパク質をコードする核酸は、腫瘍ワクチンなどのワクチンと一緒に投与することができる。ワクチンは、合成ペプチドワクチン、組換えタンパク質ワクチン、腫瘍溶解物ワクチン、または核酸(DNAもしくはRNA)ワクチンであってよい。ワクチンは、細菌アジュバント、ウイルスアジュバントまたは細胞アジュバント(例えば、樹状細胞)を含んでよい。ワクチンは、例えば、全長MUC-1タンパク質、MUC-1を含有する、溶解させた腫瘍細胞、MUC-1ポリペプチド、MUC-1ポリペプチドをコードする核酸配列、または任意のMUC-1形式を負荷した樹状細胞を含んでよい。腫瘍ワクチンとしては、これだけに限定されないが、BIOVAXID(登録商標)(前立腺、dasiprotimut-T)、PROVENGE(登録商標)(シプロイセルT)、Oncophage、PROSTVAC(登録商標)(PSA-TRICOM(登録商標)、Bavarian Nordic)、CV-301(結腸、膀胱および乳房、Bavarian Nordic)、MVA-BN PRO、MVA-BN HER2、またはMVA-BN Brachyury(Bavarian Nordicウェブサイトを参照されたい)が挙げられる。腫瘍ワクチンとしては、:a)CDX-1401(NCI)(黒色腫;寛解の状態にある卵巣がん、卵管がんまたは原発性腹膜がん;骨髄異形成症候群および急性骨髄性白血病に対するDEC-205/NY-ESO-1融合タンパク質ワクチン);b)PANVAC(NCI)(MUC1およびCEAワクチン;非筋肉浸潤性膀胱がん、膵がん、乳がん);c)MAGE-A3(GSK)(黒色腫および非小細胞肺癌);d)PRAME(GSK)(非小細胞肺癌、転移性皮膚がん);e)ISA101(ISA Pharmaceuticals)(子宮頸がんに対するHPV16合成の長いペプチドワクチン);f)ISA203(ISA Pharmaceuticals)(PRAME(黒色腫において優先的に発現する抗原))も挙げられる。
ワクチンは、MUC-1(またはMUC-1をコードする核酸)を含んでよい。MUC-1は、O結合炭水化物で高密度にグリコシル化された高分子量糖タンパク質である。MUC-1は、膜貫通産物およびその切断により短縮された分泌型(可溶性)産物の両方を含めたいくつかのアイソフォームで産生される。MUC-1は、通常、腺上皮細胞の頂端表面に極性化して低レベルで発現する。がんでは、MUC-1は極性を失い、高度に増加し、そのグリコシル化が減少する。MUC-1は、結腸がん、肺がん、膵がん、乳がん、卵巣がん、前立腺がん、腎がん、胃がんおよび頭頸部がんを含めた、固体上皮腫瘍がんならびに最も一般的な非固形腫瘍の90%超で発現される。低グリコシル化に起因して、腫瘍MUC-1は、免疫系によって認識され、免疫応答を誘導し、それにより、MUC-1特異的抗体および細胞傷害性T細胞の産生が導かれる。MUC-1の腫瘍バリアントおよびそのペプチドが抗原として抗がんワクチンに使用されている。KimuraおよびFinn. Expert Opin. Biol. Ther.、13巻(1号):35~49頁、2013年;Kimuraら、Cancer Prev. Res.(Phila)、6巻(1号):18~26頁、Epub、2012年12月17日を参照されたい。追加的な適切な抗原を下記の表に開示する。
DN-TNF-αタンパク質、またはDN-TNF-αタンパク質をコードする核酸は、化学療法剤または放射線療法と一緒に投与することができる。化学療法剤の例は、アルキル化剤、代謝拮抗薬、天然物、ホルモンおよびそれらのアンタゴニストまたはシグナル伝達分子の小分子阻害剤である。アルキル化剤の例としては、ナイトロジェンマスタード(例えば、メクロレタミン、シクロホスファミド、メルファラン、ウラシルマスタードまたはクロラムブシルなど)、スルホン酸アルキル(例えば、ブスルファンなど)、ニトロソ尿素(例えば、カルムスチン、ロムスチン、セムスチン、ストレプトゾシン、またはダカルバジンなど)が挙げられる。代謝拮抗薬の例としては、葉酸類似体(例えば、メトトレキサートなど)、ピリミジン類似体(例えば、5-FUまたはシタラビンなど)、およびメルカプトプリンまたはチオグアニンなどのプリン類似体が挙げられる。天然物の例としては、ビンカアルカロイド(例えば、ビンブラスチン、ビンクリスチン、またはビンデシンなど)、エピポドフィロトキシン(例えば、エトポシドまたはテニポシドなど)、抗生物質(例えば、ダクチノマイシン、ダウノルビシン、ドキソルビシン、ブレオマイシン、プリカマイシン、またはマイトマシンC(mitocycin C)など)、および酵素(例えば、L-アスパラギナーゼなど)が挙げられる。種々の薬剤の例としては、白金配位錯体(例えば、シスプラチンとしても公知のシス-ジアミン-ジクロロ白金IIなど)、置換尿素(例えば、ヒドロキシウレアなど)、メチルヒドラジン誘導体(例えば、プロカルバジンなど)、および副腎皮質抑制薬(例えば、ミトタンおよびアミノグルテチミドなど)が挙げられる。ホルモンおよびアンタゴニストの例としては、副腎皮質ステロイド(例えば、プレドニゾンなど)、プロゲスチン(例えば、カプロン酸ヒドロキシプロゲステロン、酢酸メドロキシプロゲステロン、および酢酸メゲストロール(magestrol acetate)など)、エストロゲン(例えば、ジエチルスチルベストロールおよびエチニルエストラジオールなど)、抗エストロゲン薬(例えば、タモキシフェンなど)、ならびにアンドロゲン(例えば、テストステロンプロピオネート(testerone proprionate)およびフルオキシメステロンなど)が挙げられる。小分子阻害剤の例としては、BRAFV600E変異を有するヒトがんの処置に関してFDAに認可されている、ベムラフェニブ(ZELBORAF(登録商標))、ダブラフェニブ(TAFINLAR(登録商標))およびトラメチニブ(MEKINIST(登録商標))が挙げられる。最も一般的に使用される化学療法薬の例としては、アドリアマイシン、アルケラン、Ara-C、BiCNU、ブスルファン、CCNU、カルボプラチン、シスプラチン、シトキサン、ダウノルビシン、DTIC、5-FU、フルダラビン、ハイドレア、イダルビシン、イホスファミド、メトトレキサート、ミトラマイシン、マイトマイシン、ミトキサントロン、ナイトロジェンマスタード、タキソール(またはドセタキセルなどの他のタキサン)、ベルバン(Velban)、ビンクリスチン、VP-16が挙げられ、いくつかのより新しい薬物として、ゲムシタビン(GEMZAR(登録商標))、HERCEPTIN(登録商標)、イリノテカン(カンプトサー(Camptosar)、CPT-11)、LEUSTATIN(登録商標)、NAVELBINE(登録商標)、RITUXAN(登録商標)STI-571、TAXOTERE(登録商標)、トポテカン(HYCAMTIN(登録商標))、XELODA(登録商標)(カペシタビン)、ZEVELIN(登録商標)およびカルシトリオールが挙げられる。
DN-TNF-αタンパク質、またはDN-TNF-αタンパク質をコードする核酸は、ステロイド性抗炎症剤または非ステロイド性抗炎症剤と併せて投与することができる。ステロイド性抗炎症剤としては、グルココルチコイド、デキサメタゾン、プレドニゾン、およびヒドロコルチゾンが挙げられる。非ステロイド性抗炎症剤としては、サリチラート(例えば、アセチルサリチル酸(アスピリン)、アモキシピリン、ベノリラート(benorylate)/ベノリラート(benorilate)、サリチル酸コリンマグネシウム(choline magnesiu salicylate)、ジフルニサル、エテンザミド、ファイスラミン(faislamine)、サリチル酸メチル、サリチル酸マグネシウム、サリチル酸サリチル、サリチルアミドなど)、アリールアルカン酸(例えば、ジクロフェナク、アセクロフェナク、アセメタシン、アルクロフェナク、ブロムフェナク、エトドラク、インドメタシン、ナブメトン、オキサメタシン、プログルメタシン、スリンダク、トルメチンなど)、2-アリールプロピオン酸(例えば、イブプロフェン、アルミノプロフェン、カルプロフェン、デクスイブプロフェン、デクスケトプロフェン、フェンブフェン、フェノプロフェン、フルノキサプロフェン、フルルビプロフェン、イブプロキサム、インドプロフェン、ケトロラク、ロキソプロフェン、ナプロキセン、オキサプロジン、ピルプロフェン、スプロフェン、チアプロフェン酸など)、N-アリールアントラニル酸(例えば、メフェナム酸、フルフェナム酸、メクロフェナム酸、トルフェナム酸など)、ピラゾリジン誘導体(例えば、フェニルブタゾン、アンピロン、アザプロパゾン、クロフェゾン、ケブゾン、メタミゾール、モフェブタゾン、オキシフェンブタゾン、フェナゾン、スルフィンピラゾンなど)、オキシカム(例えば、ピロキシカム、ドロキシカム、ロルノキシカム、メロキシカム、テノキシカム(tenoxicamo)など)またはCOX-2阻害剤が挙げられる。
一部の実施形態では、方法は、腫瘍抗原などの目的の抗原に特異的な細胞傷害性T細胞などのT細胞を治療有効量で投与することを含む。一例では、方法は、ドナーからT細胞を含む細胞の集団(例えば、末梢血単核細胞、腫瘍浸潤リンパ球(TIL)、またはリンパ節など)を単離し、これらの細胞を、目的の抗原を提示しているドナー由来の抗原提示細胞(APC)の集団を用いて刺激し、それにより、目的の腫瘍抗原を認識するアロ反応性T細胞が枯渇した活性化ドナーCD4+および/またはCD8+T細胞を含むドナー細胞の集団を生じさせることを含む。ドナーの活性化CD4+および/またはCD8+細胞の集団を治療有効量で、場合によりIL-2と一緒にレシピエントに注入し、それにより、目的の抗原に対する免疫応答を生じさせる。当該方法により、レシピエントにおける抗腫瘍反応を誘導することができる。したがって、レシピエントにおいて腫瘍抗原などの目的の抗原に対する免疫応答が生じる。
目的の抗原に由来する任意の抗原性ペプチド(例えば、免疫原性断片など)を使用して、その目的の抗原に特異的なT細胞の集団を生成させることができる。多数のそのような抗原性ペプチドが当技術分野で公知であり、例えば、下記の表を参照されたい。本開示は特定の抗原の使用に限定されない。目的の抗原の特定の例としては、これだけに限定されないが、表に示されているものなどの、腫瘍抗原である抗原が挙げられる。追加的な抗原性タンパク質は当技術分野で公知である(例えば、どちらも参照により本明細書に組み込まれる、Novellinoら、Cancer Immunol. Immunother.、54巻(3号):187~207頁、2005年、およびChenら、Cytotherapy、4巻:41~8頁、2002年を参照されたい)。
表には、全長の目的の抗原が開示されているが、断片または全長タンパク質も本明細書に開示されている方法において使用することができることが当業者には理解されよう。一例では、目的の抗原は、全長抗原配列の「免疫原性断片」である。「免疫原性断片」とは、MHCの分子に関連して細胞によって提示されると、T細胞活性化アッセイにおいて、当該タンパク質を発現している細胞に対してT細胞を活性化することができる、タンパク質の一部を指す。一般には、MHCクラスI分子に結合するそのような断片は、全長抗原のうちの8~12個の連続したアミノ酸であるが、より長い断片も当然使用することができる。一部の例では、免疫原性断片は、エピトープ配列のさらなるプロセシングを伴わずにAPCの表面上のMHC分子に特異的に結合することができるものである。特定の例では、免疫原性断片は、全長抗原配列からの8~50個の連続したアミノ酸、例えば、全長抗原配列からの8~20個のアミノ酸、8~15個のアミノ酸、8~12個のアミノ酸、8~10個のアミノ酸、または8個、9個、10個、11個、12個、13個、14個、15個または20個の連続したアミノ酸などである。一部の例では、APCを免疫原性断片と一緒に、免疫原性断片が細胞内プロセシングを必要とせずにAPC表面上のMHC分子に特異的に結合するのに十分な条件下でインキュベートする。
一般に、APCおよびT細胞は自己由来のものである。具体的な非限定例では、APCとレスポンダーT細胞は同じ個体に由来するものである。しかし、APCおよびレスポンダーT細胞は、同系のものであってよい。APCを使用して任意の抗原を自己由来T細胞の集団に提示することができる。MHCクラスI分子およびMHCクラスII分子に結合する抗原性ペプチドをex vivoにおいて生成し(例えば、細胞内で全長のタンパク質からプロセシングする代わりに)、細胞表面上のMHC I分子およびMHC II分子と相互作用(例えば、結合)させることができることが当業者には理解されよう。一般に、APCは、MHCクラスIおよびMHCクラスIIのどちらにも関連して抗原を提示する。
一例では、APCと一緒にインキュベートした目的の抗原は、目的の抗原からのアミノ酸配列(例えば、目的の抗原からの8~50個の連続したアミノ酸、例えば、8~15個または8~12個の連続したアミノ酸など)を含む融合タンパク質である。したがって、一連のMHC結合性エピトープを単一の抗原性ポリペプチドに含めることもでき、単鎖三量体を利用することもでき、ここで、各三量体は、MHCクラスI分子、b2ミクログロブリン、および目的の抗原性ペプチドを有する(Nature、2005年;436巻、578頁を参照されたい)。一部の例では単一の抗原のみを使用するが、他の実施形態では1種よりも多くの抗原、例えば、少なくとも2種の異なる抗原、少なくとも3種の異なる抗原、少なくとも4種の異なる抗原、少なくとも5種の異なる抗原、少なくとも10種の異なる抗原、少なくとも15種の異なる抗原、少なくとも20種の異なる抗原、またはさらには少なくとも50種の異なる抗原を使用する。
DN-TNF-αタンパク質またはDN-TNF-αタンパク質をコードする核酸に加えて、治療有効量の抗原特異的T細胞を被験体に投与することができる。治療有効量の精製された抗原特異的T細胞の特定の非限定例としては、被験体1キログラム当たり細胞約1×105個~被験体1キログラム当たり細胞約1×109個、例えば、1キログラム当たり細胞約1×106個~1キログラム当たり細胞約1×108個など、例えば、1キログラム当たり細胞約5×106個~1キログラム当たり細胞約75×106個など、例えば、1キログラム当たり細胞約25×106個など、または1キログラム当たり細胞約50×106個の用量で投与される精製された抗原特異的T細胞が挙げられる。精製された抗原特異的T細胞は、臨床医によって決定される通り単回用量によって投与することも複数回用量によって投与することもできる。例えば、細胞を、所望の応答および得られた応答に応じて、およそ2週間の間隔で投与することができる。投与は、局所的なものであっても全身的なものであってもよい。
本開示を以下の非限定例によって例示する。
腫瘍壊死因子(TNF)は、発癌現象の強力なプロモーターであり、がん予防のための潜在的に重要な標的である。TNFは、機能的に別個の膜貫通分子および可溶性分子(それぞれtmTNFおよびsTNF)として産生される。マウスにおける化学的に誘導される発癌現象へのtmTNFおよびsTNFの関与が調査された(Sobo-Vujanovic, A.ら、2016年、Cancer Immunol Res.、4巻(5号):441~51頁、参照により本明細書に組み込まれる)。ドミナントネガティブTNF生物製剤(DN-TNF)およびsTNFの特異的なアンタゴニストであるXPRO(商標)1595の腹腔内注射により、腫瘍の発生数および成長が著しく低下し、3-メチルコラントレン(MCA)を注射したマウスの生存が延長されたことが決定された。両方のTNF形態をTNF受容体2-Fc融合タンパク質(TNFR2-Fc)処置またはTNF遺伝子欠失のいずれかによって排除した後にも同様の結果が得られた。さらに、sTNFと優先的に相互作用するTNFR1の遺伝子欠失ではMCA誘導性発癌現象が一時的に遮断されたが、tmTNFと優先的に相互作用するTNFR2の遺伝子欠失ではMCA誘導性発癌現象が増強された。MCAにより、発癌現象の誘導と同時に、循環IL-1αレベル、ならびに、骨髄系由来サプレッサー細胞(MDSC)の増大、STAT3リン酸化および脾細胞の間での免疫抑制活性が増強された。著しく対照的に、DN-TNFによる処置により、MCAを注射したマウスの末梢血中において、IL-1αが劇的に減少し、中心的な免疫調節性サイトカインIL-1β、IL-12p70およびIL-17が劇的に増加した。さらに、DN-TNFによる処置、TNFR2-Fcによる処置および/またはTNFR2ではなくTNFもしくはTNFR1の遺伝子欠失により、MCAを注射したマウスにおけるMDSC増大、STAT3リン酸化および免疫抑制が予防された。sTNFがMDSCの中心的な調節因子であり、かつ発癌現象の必須のプロモーターであることが決定され、それにより、sTNFががん予防のための有意な標的になり得ることが示される。参照により本明細書に組み込まれる、Vjuanovicら、Cancer Immunol. Res.、4巻:441~451頁、2016年、DOI: 10.1158/2326-6066.CIR-15-0104も参照されたい。
(実施例1)
材料および方法
マウス
8週齢の野生型C57BL/6(B6)雌マウス、T細胞/B細胞欠損SCID(B6;129S7-Rag1tm1mom/J)雌マウス、TNF欠損(TNFko、B6;129S-Tnftm1Gkl/J)雌マウス、TNFR1欠損(TNFR1ko、B6;129S-Tnfrsf1atm1Imx Il1r1tm1Imx/J)雌マウスおよびTNFR2欠損(TNFR2ko、B6.129S2-Tnfrsf1btm1Mwm/J)雌マウスをJackson Laboratory(Bar Harbor、ME)から購入した。マウスを、国際的に認可された動物設備内に収容した。承認されたプロトコールに従って動物試験を実施した。
試薬
以下の試薬、抗体およびキットを本試験に使用した:組換えヒトインターロイキン2(IL-2)(Chiron Corp.、Emeryville、CA);TLR4リガンド、Escherichia coliリポ多糖(LPS)(Lonza、Walkersville、MD);ヒトTNFR2-Fc融合タンパク質(エタネルセプト、ENBREL;Amgen、Thousand Oaks、CA);XPRO(商標)1595ドミナントネガティブTNF構築物(DN-TNF;Xencor、Monrovia、CA);フルオレセインイソチオシアネート(FITC)とコンジュゲートした抗CD3モノクローナル抗体、抗CD4モノクローナル抗体、抗CD11bモノクローナル抗体および抗CD45Rモノクローナル抗体(mAb);フィコエリトリン(PE)とコンジュゲートした抗CD3 mAb、抗Gr1(Ly-6G)mAb、抗CD25 mAb、抗NK1.1(Ly55)mAb、抗NKp46(CD335)mAb、抗CD11c mAbおよび抗F4/80 mAb;アロフィコシアニン(APC)とコンジュゲートした抗Ly6C mAb、抗FoxP3 mAbおよび抗CD8 mAb(すべてマウスCDに対するもの);ならびに、対応する、蛍光色素とコンジュゲートしたアイソタイプ対照mAb(全てeBioscience Inc.、San Diego、CAからのmAb);リン酸化pSTAT3に対するPEとコンジュゲートしたIgG2a mAb(STAT3 Tyr705、pSTAT3 Ser727)およびアイソタイプ対照mAb(BD Biosciences、San Jose、CA);マウスQuantikineIFN-γ酵素結合免疫吸着検定法(ELISA)キット(R&D Systems);ならびにMilliporeマウス32プレックスサイトカインキット(Billerica、MA)。
in vivoにおける発癌現象の誘導、処置および測定
野生型B6マウスならびにTNF欠損B6マウス、TNFR1欠損B6マウスおよびTNFR2欠損B6マウスの剃毛した背側領域に、ゴマ油0.1mLに溶解させた3-メチルコラントレン(MCA)0.1mg(Sigma、St.Louis、MO)を皮下(s.c.)注射した。次いで、結果に記載の通り、野生型B6マウスをランダム化によって各々マウス10~15匹の群に分けた。PBS、XPRO(商標)1595-DN-TNFおよびTNFR2-Fc-ENBREL(マウス1匹当たり200μg/PBS 0.5mL)を、MCAを注射した日から開始して週に2回、12週間にわたって腹腔内(i.p.)注射した。週2回、触診によって直径2mmの腫瘍の出現を検出した。その後の腫瘍成長を、2つの垂直方向の腫瘍の直径を週2回カリパスで測定することによって決定した。データは、確立された個々の腫瘍の2つの腫瘍の直径の掛け算およびそれらの平均値として示されている。マウスの生存を毎日スコア化した。
in vitroにおけるDC/NK細胞クロストーク抑制の評価
内在性DC/NK細胞クロストークを以下の通り評価した。未処置の野生型マウスおよび処置した野生型マウスの脾細胞(2×106個/mL)を、RPMI-1640培地、0.1mMの非必須アミノ酸、2mMのピルビン酸ナトリウム、1mMのL-グルタミン、100μg/mlのストレプトマイシン、100U/mLのペニシリン、10%ウシ胎仔血清(FCS、Life Technologies、Grand Island、NY)および50μMの2-メルカプトエタノール(Bio-Rad、Hercules、CA)からなり、1μg/mLのLPSおよび6,000IU/mLのIL-2を補充した完全細胞培養培地(CM)に再懸濁させた。細胞懸濁物(100,000細胞/200μL/ウェル)を96ウェル丸底プレート(BD Biosciences、San Jose、CA)に播種し、37℃で24時間インキュベートした。
DC/NK細胞クロストークの細胞媒介性抑制の評価を以下の通り実施した:SCIDマウス脾細胞(100,000/ウェル、50%NK1.1+NKp46+CD3-NK細胞および30%CD11c+iDC、および20%F4/80+単球/マクロファージの混合物)ならびに未処置の野生型マウスまたは処置した野生型マウスの脾細胞(100,000/ウェルおよび300,000/ウェル)の、LPS(1μg/mL)およびIL-2(6,000IU/mL)を補充したCM中懸濁物を96ウェル丸底プレートに混合して播種し、37℃で24時間(h)インキュベートした。アッセイは三連で実施した。インキュベーション後、無細胞上清を回収し、IFN-γの存在についてELISAを使用して調査した。
フローサイトメトリー
蛍光色素とコンジュゲートした抗体を用いた標準の細胞表面フローサイトメトリーを以前に記載されている通り実施した(17)。B細胞(CD45R+F4/80-)、マクロファージ(CD45R-F4/80+)、NK細胞(CD3-NK.1.1+またはCD3-NKp46+)、ならびにDC(CD11b±CD11c+)、CD4(CD3+CD4+CD8-)およびCD8(CD3+CD4-CD8+)T細胞、単球性(CD11b+Grlo/-Ly6C+/hi)および顆粒球性(CD11b+GrhiLy6C+)MDSCを、直接、多色細胞表面染色を使用して調査した。Treg(CD4+Foxp3+CD25hi)をTregキット製造者プロトコール(Biolegend、San Diego、CA)に従って調査した。リン酸化STAT3を以前に記載されている通り調査した(21)。細胞をCyan Blueフローサイトメーター(Beckman Coulter、Brea、CA)で分析した。フローサイトメトリーデータの解析をSummit 4.3 software(Beckman Coulter)を使用して実施した。
サイトカインの定量化
末梢血血清中のサイトカインを、Milliporeマルチプレックスマウス-サイトカインキットを使用し、この会社によって推奨されている通り定量化した。Quantikineマウス-IFN-γ ELISA kit(R&D)を使用して細胞培養馴化培地中のIFN-γを測定した。血清または細胞培養馴化培地1mL中のサイトカインの量を決定した。
統計学
データを、SPSS(バージョン10.0 SPSS Inc.、Chicago、IL)およびR(バージョン3.0.2、R-project.orgウェブサイトを参照されたい)プログラムパッケージを使用して統計学的に評価した。データは平均±SDとして報告されている。データの統計的有意性を、スチューデントのt検定を使用して評価した。さらに、カプラン・マイヤー方法を使用して、がんの出現までの時間(腫瘍発生に対する累積的ハザード)および生存を分析した。厳密なログランク検定を使用して、実験群と対照群のがんの出現までの時間および生存曲線を比較した。p値≦0.05を有意であるとみなした。
(実施例2)
MCA誘導性発癌現象は可溶性TNFの選択的な隔離によって予防される
DN-TNFにより、tmTNFに影響を及ぼすことなくsTNFが選択的に隔離され、細胞内病原体およびがんを制御する主要な免疫機構に影響を及ぼすことなく炎症性反応が阻害される(Vujanovic、Immunol. Res.、2011年;50巻:159~74頁;Van Hauwermeirenら、Cytokine & Growth Factor Reviews、2011年;22巻:311~9頁)。対照的に、TNFR2-Fcでは、sTNFおよびtmTNFがどちらも中和され、炎症性反応および主要な免疫機構の両方が阻害される(Xuら、Blood、2007年;109巻:3333~41頁;Vujanovicら、Blood、2010年;116巻:575~583頁;Vujanovic、Immunol. Res.、2011年;50巻:159~74頁;Van Hauwermeirenら、Cytokine & Growth Factor Reviews、2011年;22巻:311~9頁)。DN-TNF-XPRO(商標)1595およびTNFR2-Fc-ENBRELの影響を、最初に、野生型B6マウスにおけるMCA誘導性発癌現象に関して調査した(図1A)。処置にかかわらず全てのマウスにおいてMCA注射後第4週に小さな4mm2の腫瘍が出現し始めることが見いだされた。初発の腫瘍は、PBSで処置したマウスにおいて、ENBRELで処置したマウス、特に、DN-TNFで処置したマウスにおけるものよりも著しく頻度が高かった。PBSで処置したマウスとENBRELで処置したマウス、PBSで処置したマウスとDN-TNFで処置したマウス、またはENBRELで処置したマウスとDN-TNFで処置したマウスの腫瘍頻度の差異は有意であった(それぞれp=0.009、p<0.00005、およびp=0.027)。
最初の所見を確認するため、ならびに化学的に誘導された発癌現象におけるsTNFおよびtmTNFの役割をより深く評価するために、野生型マウスにおけるリン酸緩衝生理食塩水(PBS)による処置およびDN-TNFによる処置(sTNF-隔離)の影響を、遺伝子欠損マウスにおけるTNF欠失、TNFR1欠失およびTNFR2欠失(排除:sTNFおよびtmTNF、それぞれsTNF受容体およびtmTNF受容体)のMCA誘導性発癌現象に対する影響と共に調査した。本実験では、腫瘍発生数(図1B)、腫瘍サイズ(図1C)および生存(図1D)をモニターした。腫瘍出現の時間および発生数は実験群間で変動した(図1B)。PBSで処置した野生型および未処置のTNFR2欠損マウスでは、初期に大多数の動物において4mm2の初発腫瘍が出現した(第4週:それぞれ6/10および7/10のマウス)。これらの試験群では、腫瘍発生数はそれぞれ第6週および第10週に最大(8/10のマウス)に達した。著しく対照的に、野生型マウスにおけるDN-TNFによるsTNFの特異的隔離、TNFR1をノックアウトすることによるsTNF活性の排除、またはTNFをノックアウトすることによるsTNFおよびtmTNFの両方の排除により、腫瘍の出現の遅延(3~4週間)および頻度の低下(それぞれ1/10、2/10および2/10のマウス)が導かれた。MCA注射後第9週において、低腫瘍発生数はTNF欠損マウスおよびDN-TNFで処置したマウスでは変化しないままであったが、TNFR1欠損マウスでは特に上昇した(2/10のマウスから6/10のマウスまで)。PBSで処置したマウスと、DN-TNFで処置したマウス、TNF欠損マウスまたはTNFR1欠損マウスとの間の腫瘍頻度の差異は有意であった(それぞれp=0.0007、p=0.0016、およびp=0.031)。同様に、TNFR2欠損マウスと、DN-TNFで処置したマウス、TNF欠損マウスまたはTNFR1欠損マウスとの間の腫瘍頻度の差異も有意であった(それぞれp=0.0013、p=0.0026およびp=0.029)。
腫瘍は、マウスの全ての群において、MCA注射後第10週までゆっくりと成長したまたは休止状態のままであった。その後、腫瘍の頻度が高い試験群(PBSで処置した野生型マウスおよびTNFR1欠損マウスおよびTNFR2欠損マウス)では、腫瘍は、測定の全時点において、各群内で種々の速度で成長し、サイズは広範に異なった。著しく対照的に、DN-TNFで処置したマウスおよびTNF欠損マウスにおける頻度が低い腫瘍は小さく(4~9mm2)、MCA注射後第12週まで休止状態のままであった。したがって、MCA注射後第10週と第14週の間、腫瘍は、PBSで処置したマウス、TNFR1欠損マウスおよびTNFR2欠損マウスにおいて、DN-TNFで処置したマウスおよびTNF欠損マウスよりも有意に大きかった(それぞれ、DN-TNFに対して:p=0.017、p=0.023およびp=0.029;TNFノックアウトに対して:p=0.027、p=0.031およびp=0.036)(図1C)。
DN-TNFで処置した野生型およびTNF欠損マウスにおいて、PBSで処置した野生型マウス、TNFR1欠損マウスおよびTNFR2欠損マウスよりも腫瘍頻度が著しく低いことおよび腫瘍成長が遅いことにより、マウス生存の有意な延長がもたらされた。実験のエンドポイントであるMCA注射後112日目(第16週)において、9/10のDN-TNFで処置した野生型マウスおよび10/10のTNF欠損マウスが生存していた。著しく対照的に、TNFR1欠損マウスでは5/10のみ(DN-TNFおよびTNFkoに対して:それぞれp=0.001、p=0.003)、PBSで処置したマウスでは4/10のみ(DN-TNFおよびTNFkoに対して:それぞれp=0.0026、p=0.0037)およびTNFR2欠損マウスでは1/10のみ(DN-TNFおよびTNFkoに対して:それぞれp=0.00033、p=0.00012)が生存していた(図1D)。
これらの所見から、sTNFはMCA誘導性発癌現象に関して重要であるが、tmTNFはなくてもいいことが実証される。これらの所見から、tmTNFがsTNFとは対照的に、発癌現象において保護的な役割を有することも示される。
(実施例3)
sTNFの隔離により、MCAを注射したマウスにおける免疫調節性サイトカインがモジュレートされる
MCA誘導性がんは、免疫原性である(Cicinnatiら、Int J Cancer、2005年;13巻:961~70頁)。したがって、sTNF排除後、抗腫瘍免疫応答の改変および/または増強により、MCA誘導性発癌現象に対する抵抗性の増大が引き起こされ得る。分泌型サイトカインの型および数量により、抗腫瘍免疫応答の型および効果が規定される。MCA注射の2週間後に、健康/未処置(対照)マウスおよびMCAを注射した/PBSで処置したマウス、ENBRELで処置したマウスまたはDN-TNFで処置したマウスの血清中のサイトカインのレベルを調査した(図2)。MCAを注射した/PBSで処置したマウスでは、それぞれ中心的な炎症促進性Th1サイトカインおよびTh17サイトカインである、IL-1β、IL-12p40/p70およびIL-17は、対照マウスと比べて変化しなかった(IL-1β、IL-17;図2A、2C)か、またはわずかに減少した(IL-12p40/p70、図2B)。著しく対照的に、MCAを注射した/DN-TNFで処置したマウスではこれらのサイトカインのレベルが有意に上昇した(IL-1β:p=0.026;IL-12p40/70:p=0.05;IL-17;p=0.039)。MCAを注射した/ENBRELで処置したマウスではサイトカインは変化しなかった。対照的に、IL-1αレベルは、対照マウスにおいて高く、MCAを注射した/PBSで処置したマウスでは特に上昇したが、ENBREL処置(p=0.012)またはDN-TNF処置(p=0.023)により、対照レベルを下回って強力に低下した。これらの所見から、MCAを注射したマウスにおけるインフラマソーム(IL-1β)応答、Th1(IL-12)応答およびTh17(IL-17)応答がsTNFにより抑制され、sTNFの隔離により可能になることが示される。これらの応答は健康/未処置対照およびMCAを注射した/ENBRELで処置したマウス(sTNFおよびtmTNFの両方が中和された)では異ならなかったので、sTNFの隔離後の応答の増大は、tmTNFによって媒介される可能性がある。さらに、IL-1αの高いベースラインおよびMCAにより誘導される強化はENBRELまたはDN-TNFにより強力に抑制され、このことから、sTNFによりIL-1αが上方制御されることが示される。興味深いことに、この発癌現象の初期には、sTNFはMCAを注射した/未処置または処置したマウスの血清において検出可能でなかった。したがって、sTNFは、最初は標的組織にのみ生物学的に有意な分量で存在する可能性がある。
(実施例4)
MDSC増大はMCAにより誘導され、sTNF隔離により妨げられる
発がん物質およびがんのどちらによっても強力な免疫抑制が誘導され、それにより、がんの発生および成長が可能になり得る(WojdaniおよびAlfred、Cancer Res、1984年;44巻:942~5頁;Horiguchiら、Cancer Res、1999年;59巻:2950~6頁;Baskicら、Head & Neck、2013年;35巻:388~98頁)。MDSCは、主要な免疫機能を強力に抑制する未成熟骨髄細胞の不均一な集団である(GabrilovichおよびNagaraj、Nat Rev Immunol、2009年;9巻:162~174頁;NagarajおよびGabrilovich、Cancer J、2010年;16巻:348~53頁)。MDSCは健康な生物体では希少であるが、がん宿主骨髄、末梢リンパ組織および腫瘍ではそれらの頻度および活性が高度に増大する。MDSCは、腫瘍の免疫エスケープおよび免疫療法の不首尾に寄与すると考えられている。しかし、化学的に誘導された発癌現象および免疫抑制におけるMDSCの存在および役割はまだ探求されていない(NagarajおよびGabrilovich、Cancer J、2010年;16巻:348~53頁)。MCA注射による発癌現象の誘導ならびに/またはsTNFおよび/もしくはtmTNFの排除による発癌現象の予防により、MDSC(図6、図3A~3D)および/またはマクロファージ(図7)の頻度の変化が導かれる。MCAにより、野生型マウスの脾臓における単球性MDSC(CD11b+Gr1lo/-Ly6C+/hi、図3A、3B)および顆粒球性MDSC(CD11b+Gr1hiLy6C+、図3C、3D)の増加が誘導された。MDSCの頻度の増大は、MCA誘導性発癌現象の、がん開始段階で注目すべきものであり(14日目:それぞれ1.4倍および1.3倍)、確立された腫瘍の段階で高度に強化された(84日目:それぞれ6.7倍および6.8倍)。対照的に、脾臓F4/80+マクロファージの頻度はMCA注射後に有意に変化しなかった(図7C、7D)。しかし、TNFR2-Fc-ENBRELによる両方のTNF型の中和により、腫瘍を有さない、MCAを注射したマウスおよび腫瘍を有する、MCAを注射したマウスにおいて両方の時点で、単球性MDSCおよび顆粒球性MDSCの両方ならびにマクロファージの頻度が低下した。驚くべきことに、腫瘍を有さない、MCAを注射したマウスおよび腫瘍を有する、MCAを注射したマウスにおいて、どちらの時点においても、DN-TNF-XPRO(商標)1595によるsTNFの隔離は、単球性MDSC、顆粒球性MDSCおよびマクロファージの頻度が、それらの正常/未処置対照レベルまでまたはそれ未満に一定してかつ強力に低下した。MDSC頻度のDN-TNFにより誘導される低下は、ENBRELによって誘導される低下よりも顕著であった。MCAを注射した、腫瘍を有する、両方のTNF型を欠くTNF欠損マウスおよびsTNF受容体を欠くTNFR1欠損マウスにおいても、MDSCおよびマクロファージ頻度の同様の低下が観察された。MCAを注射した、DN-TNFで処置したまたはENBRELで処置した野生型マウスおよびTNF欠損マウスまたはTNFR1欠損マウスとは著しく対照的に、かつ、MCAを注射した、PBSで処置した野生型マウスと同様に、MCAを注射した、tmTNF受容体を欠くTNFR2欠損マウスでは、健康/未処置対照マウスと比較して、単球性MDSCおよび顆粒球性MDSCのどちらの頻度も高度に増大しており、マクロファージの頻度は変化していなかった。驚いたことに、FoxP3+CD4+CD25+Treg頻度は、MCAを注射したマウスの群の全てにおいて変化しないことが見いだされた。これらのデータから、MCAにより、発癌現象中のMDSC増大が誘導されることが示される。驚くべきことに、MCA誘導性MDSCの増大およびマクロファージ集団の維持にはsTNFが必要であるが、tmTNFは必要ではないこと、ならびに選択的なsTNF阻害剤DN-TNF-XPRO(商標)1595を用いた処置によりMDSC増大が効率的に予防されることも証明された。
(実施例5)
MCAにより骨髄細胞におけるsTNF依存性STAT3活性化が誘導される
STAT3は、MDSCの発生および機能の調節において必須の役割を果たす転写因子である(NagarajおよびGabrilovich、Cancer J、2010年;16巻:348~53頁;Vasquez-Dunddelら、J Clin Invest、2013年;123巻:1580~9頁)。STAT3のリン酸化された活性な形態(pSTAT3)は、MDSCの特質であると考えられる。発がん物質に誘導されるsTNF依存性MDSCの増大を検証するために、MCAにより骨髄細胞におけるsTNF依存性pSTAT3が誘導されるかどうかを調査した。健康/未処置対照およびMCAを注射した/PBSで処置した野生型マウス、ENBRELで処置した野生型マウスまたはDN-TNFで処置した野生型マウスの脾細胞をMCA注射の84日後に回収し、フローサイトメトリーによってpSTAT3y705残基およびpSTAT3s727残基の存在について調査した(図4)。単球および顆粒球を、前方散乱(サイズ)および側方散乱(粒度)により、それぞれ非顆粒/大きな細胞および顆粒/中型の細胞として定義した(図8)。細胞集団の正体を、蛍光色素とコンジュゲートした、Gr-1に対する抗体、CD11bに対する抗体、Ly6Cに対する抗体およびF4/80に対する抗体を用いてそれらを標識することを使用して確認した(図6および7)。対照マウスでは、pSTAT3を発現する脾臓の単球および顆粒球の頻度は低かった(図4)。著しく対照的に、MCAを注射した/PBSで処置したマウスでは、STAT3y705+(図4A、4B)およびpSTAT3s727+(図4C、4D)単球(図4A、4C)および顆粒球(図4B、4D)の頻度が高度にかつ同様に上昇した。pSTAT3+細胞の頻度のMCAにより誘導される増大は、腫瘍を有さないマウスおよび腫瘍を有するマウスのどちらにおいてもTNFR2-Fc-ENBRELまたはDN-TNF-XPRO(商標)1595による処置により予防された。これらのデータから、MCAおよび/またはMCA誘導性腫瘍により、骨髄細胞における必須のMDSC転写因子STAT3が活性化することが示され、これは、MDSC増大と並行し、相関する。sTNFが、MCAに誘導されるMDSCの増大に関して重要であるだけでなく、骨髄細胞におけるSTAT3のMCAにより誘導される活性化に関しても重要であることも示される。
(実施例6)
NK細胞/DCクロストークの細胞媒介性抑制はMCAにより誘導され、sTNF阻害により妨げられる
NK細胞/DCクロストークは、自然免疫応答および獲得免疫応答の型および程度を定義する中心的な免疫調節機構である(Moretta、Nature Rev Immunol、2002年;2巻:957~64頁;Cooperら、TRENDS Immunol、2004年;25巻:47~52頁;Walzerら、Blood、2005年;106巻:2252~8頁)。がんの成長を効率的に制御する高いTh1応答を導くクロストークは、主に細胞間接触およびtmTNFによって媒介されることが以前に決定された(Xuら、Blood、2007年;109巻:3333~41頁;Vujanovicら、Blood、2010年;116巻:575~583頁;Vujanovic、Immunol Res、2011年;50巻:159~74頁、Makarenkovaら、J Leukoc Biol、2005年;77巻:408~13頁)。発がん物質および腫瘍により、NK細胞および/またはDCが抑制され(Horiguchiら、Cancer Res、1999年;59巻:2950~6頁.;Baskicら、Head & Neck、2013年;35巻:388~98頁;Gorelikら、J Natl Cancer Inst、1981年;67巻:1317~22頁;Gabrilovichら、Cell Immunol、1996年;170巻:101~10頁;Gabrilovichら、Clin Cancer Res、1997年;3巻:483~90頁)、それにより、NK細胞/DCクロストークができなくなり、発癌現象および腫瘍成長が可能になる可能性がある。MCAにより、sTNF依存性発癌現象、NK細胞/DCクロストークにおいて上方制御される中心的な免疫調節性サイトカインの抑制、およびMDSCの増大も同時に誘導されるので、NK細胞/DCクロストークのMDSC媒介性抑制がMCA誘導性免疫抑制機構であるかどうかを調査した(図5)。健康/未処置対照およびMCAを注射した/PBSで処置した野生型マウス、ENBRELで処置した野生型マウスおよびDN-TNFで処置した野生型マウスの脾細胞の間で内在性NK細胞/DCクロストークを最初に評価した(図5A、5B)。脾細胞を、IL-2およびLPSを用いて刺激してそれぞれNK細胞およびDCを活性化し、それらのクロストークおよびIFNγ分泌を促進した(Xuら、Blood、2007年;109巻:3333~41頁;Vujanovicら、Blood、2010年;116巻:575~583頁)。IL-2/LPSによる刺激により、対照脾細胞(対照2)において、それらの刺激していない対応物(対照1)と比べてNK細胞/DCクロストークおよびIFNγ分泌の増強が誘導された。発がん物質注射の14日後および84日後のどちらにおいても、MCAの84日後のDN-TNFで処置した腫瘍を有さないマウス以外は、処置にかかわらず、MCAを注射したマウス全てのIL-2/LPSで刺激した脾細胞で、Th1応答の有意な低下が示された(図5A、5B)。活性の低下は、ENBRELで処置したマウスの脾細胞において特に明白であった。これらの所見から、NK細胞/DCクロストークがMCA誘導性発癌現象全体を通して抑制されることが示される。ENBRELで処置したマウス全てにおけるNK細胞/DCクロストークの抑制の増強、およびMCA後84日目のDN-TNFで処置した腫瘍を有さないマウスにおける抑制の欠如から、内在性NK細胞/DCクロストークがtmTNFによって媒介されることが確認され(Xuら、Blood、2007年;109巻:3333~41頁;Vujanovicら、Blood、2010年;116巻:575~583頁;Vujanovic、Immunol Res、2011年;50巻:159~74頁)、また、MCA誘導性抑制におけるsTNFの潜在的な関与が示される。
MCA誘導性MDSCによりNK細胞/DCクロストークを抑制することができるかどうかを直接評価した。これらの実験では、レスポンダー細胞(レスポンダー)は、50%がNK細胞、30%がDCおよび20%が単球/マクロファージで構成されるSCIDマウス脾細胞であった。刺激因子/サプレッサー細胞(刺激因子/サプレッサー)は、MCA注射後14日目および84日目に得た、健康/未処置(対照)野生型マウス、MCAを注射した/PBSで処置した野生型マウス(腫瘍を有さない:MCA/PBS;腫瘍を有する:MCA/PBS-T)、MCAを注射した/ENBRELで処置した野生型マウス(腫瘍を有さない:MCA/EN;腫瘍を有する:MCA/EN-T)およびMCAを注射した/DN-TNFで処置した野生型マウス(腫瘍を有さない:MCA/DN;腫瘍を有する:MCA/DN-T)の脾細胞であった。レスポンダーと刺激因子/サプレッサーを、単独でまたは1:1の比および1:3の比で混合して、IL-2/LPSの存在下、細胞間接触下で24時間にわたってインキュベートした。MCA注射後14日目(図5C)および84日目(図5D)に回収したマウスの脾細胞を使用して、極めて類似した結果が得られた。どちらの時点でも、SCID NK細胞とDCは強力に相互作用し、大量のIFNγが分泌された(SCID:対照、1.0:0.0)。反応は、SCIDマウス脾細胞にMDSCの頻度が低い健康/未処置野生型マウス脾細胞を添加することにより、用量依存的に高度に増大した(図3および4)。重要なことに、観察されたIFNγ分泌の増加は、対応する刺激因子/サプレッサー単独での応答の6~10倍であり(対照2、図5A、5B)、これにより、SCIDと健康/未処置野生型マウス脾細胞の相乗的な協同作用の可能性が示される。対照的に、MDSCの大集団を含有したMCA/PBSマウス脾細胞(図3)では、SCIDマウスNK細胞/DCクロストークが14日目にはベースラインまで著しく低下し、84日目までにベースライン未満に低下した。著しく対照的に、IFNγ分泌によって測定された通り、MCA/ENBRELマウス脾細胞では、および、MCA/DN-TNFマウス脾細胞ではより顕著に、SCID NK細胞/DCクロストークが刺激された。MDSCを欠く、腫瘍を有さないMCA/DN-TNFマウス脾細胞および腫瘍を有するMCA/DN-TNFマウス脾細胞のどちらによっても、SCID-NK細胞/DCクロストークが、健康/未処置野生型脾細胞と同様に強力に刺激されたが(図3)、低~中程度の量のMDSCを有するMCA/ENBRELで処置したマウス脾細胞では刺激されなかった(図3)。MCA/ENBREL脾細胞では、健康/未処置マウス碑細胞またはMCA/DN-TNFで処置したマウス脾細胞と比べて、わずかに低下した(14日目)および実質的に低下した(84日目)SCID-NK細胞/DCクロストークの刺激が媒介された。これらの所見から、MCAおよびMCA誘導性腫瘍により、MDSCの増大だけでなく、MDSCの免疫抑制活性も強力に刺激され、それにより今度はNK細胞/DCクロストークが強力に阻害されることが示される。MDSCの増大および免疫抑制活性がどちらもsTNFに依存し、DN-TNF-XPRO(商標)1595による処置によって効率的に予防することができることも示唆される。
DN-TNF-XPRO(商標)1595による処置またはTNFR1遺伝子欠失によるsTNFの選択的な排除、ならびにENBRELによる処置またはTNF遺伝子欠失によるsTNFおよびtmTNFの両方の排除により、発癌現象が著しく予防され、腫瘍成長が低下し、また、MCAを注射したマウスの生存が延長されたことが本明細書に開示されている。著しく対照的に、TNFR2遺伝子欠失によるtmTNFの選択的な排除では、腫瘍成長の増大および生存の低下によって証明される通り、MCA誘導性発癌現象が増強された。これらの所見から、化学的に(MCAにより)誘導される発癌現象にはsTNFは必須であるが、tmTNFはなくてもいいことが実証される。データから、tmTNFが、sTNFとは対照的に、発癌現象における保護的な役割を有することも示唆される。
特に、それぞれsTNFまたはtmTNFおよびsTNFの両方を排除するDN-TNFによる処置またはTNF遺伝子欠失では、発癌現象がほぼ完全に予防されたが、2つのTNFの形態だけでなく、LTαおよびLTα2β1も中和するENBRELによる処置では(Traceyら、Pharmacology & Therapeutics、2008年;117巻:244~79頁)、発癌現象が部分的に予防された。これらの所見から、tmTNFだけでなく、LTαおよび/またはLTα2β1も、ENBRELによって阻害される、MCA誘導性発癌現象における保護的な役割を有する可能性があることが示される。
理論に束縛されることなく、以下が、発癌現象の開始に関する可能性のある筋書きである。発がん物質により、標的組織における傷害および細胞壊死が誘導される。壊死細胞により、熱ショックタンパク質、高移動性群ボックス1(HMGB1)、DNA、RNA、S100分子およびプリン代謝産物を含めた損傷関連分子パターン分子(DAMP)が放出される(Tangら、Immunol Rev、2013年;249巻:158~75頁)。DAMPにより、マクロファージ、DCおよびNK細胞などの自然免疫エフェクター細胞の活性化が誘導される。これらの自然免疫エフェクターにより、sTNFなどの炎症促進サイトカインが放出される。炎症促進サイトカインにより、発がん促進性炎症が誘導される。並行して、組織保護的/治癒的な抗炎症性および免疫抑制性フィードバック機構が生じる。本発明者らの試験では、活性化された自然免疫エフェクターによって産生され、有効なTh1およびTh17抗がん免疫機構を媒介する免疫調節性サイトカインIL-1β、IL-12およびIL-17は、MCA誘導性発癌現象の開始中は変化しないが、DN-TNFによってsTNFが排除された後に増強される。発癌現象に関しては、これらの所見から、抗がん免疫機構の活性化が、発癌現象中に誘導される可能性があるが、それらの発現は、sTNFにより誘導される免疫抑制機構によって下方制御される。これは、潜在的に免疫抑制性のサイトカインである可溶性IL-1αが、健康なマウスにおいて分泌され、MCA誘導性発癌現象の開始中に増大し、DN-TNF-αによる選択的なsTNFの隔離によって健康なマウスにおけるレベル未満まで著しく低下するという事実によって裏付けられる。
IL-1αおよびIL-1βは、同じ受容体に結合する(Apteら、Cancer Metastasis Rev.、2006年;25巻:387~408頁)。どちらのサイトカインも、31kDの前駆体として産生され、それが、それぞれプロテアーゼカルパインおよびIL-1変換酵素によってプロセシングされ、それにより、細胞外に放出される17kDの可溶性形態の生成が導かれる。可溶性IL-1βは、免疫学的に活性である。対照的に、可溶性IL-1αは、免疫学的に不活性である。17kDのIL-1αの放出により、機能的な14kDのIL-1α N末端プロピース(propiece)の生成も導かれる。IL-1αプロピースは、癌遺伝子を活性化し、腫瘍サプレッサー遺伝子を阻害する転写因子として機能する。分泌されたIL-1αは、免疫学的に不活性であるが、癌腫、肉腫、ならびにB細胞白血病および骨髄系細胞白血病を含めた種々の悪性細胞型に対する増殖因子として機能し得る。理論に束縛されることなく、免疫学的に不活性な可溶性IL-1αは、IL-1受容体に結合することができ、IL-1受容体が免疫学的に活性な形態のIL-1と相互作用し、したがって免疫応答の負の調節因子として機能することを遮断し、阻害することができる。
IL-1αは、化学的な発がん物質に曝露した細胞において過剰発現するので(Apteら、Cancer Metastasis Rev、2006年;25巻:387~408頁)、MCAを注射したマウスにおける可溶性IL-1αレベルの上昇がDN-TNFによる処置によって著しく低下するという、開示されている結果から、sTNFにより、プロピースおよび可溶性IL-1αの生成の増強を誘導することができることが示される。結果として、2つの上方制御される形態のIL-1αにより、それぞれ、標的細胞の悪性転換が促進され、新しく生成する悪性細胞の成長およびIL-1誘導性疫応答の阻害が媒介される可能性がある。MCA誘導性発癌現象により、骨髄細胞におけるSTAT3リン酸化ならびに脾臓におけるMDSCの増大および蓄積も引き起こされ、これらは、腫瘍を有さないマウスおよび腫瘍を有するマウスのどちらにおいても、DN-TNF-αもしくはENBRELによる処置および/またはTNFもしくはTNFR1遺伝子欠失によるsTNFの排除によって予防されたが、TNFR2遺伝子欠失によるtmTNFの排除によっては予防されなかった。これらの所見から、sTNFにより、MCA誘導性発癌現象におけるMDSC増大および蓄積が上方制御されることが実証される。骨髄細胞の成長およびホーミングを媒介し得る、分泌されたIL-1α(Apteら、Cancer Metastasis Rev、2006年;25巻:387~408頁;Riderら、J Immunol、2011年;187巻:4835~43頁)は、発癌現象中のMDSCの成長および調節に関与する可能性がある。本発明者らのデータから、sTNFが、発癌現象におけるMDSC増大において中心的な調節因子としての役割を有し、その役割が、IL-1αならびに/またはVEGFおよびGM-CSFなどのMDSC増殖因子の誘導を含み得ることが示唆される。MCAを注射したマウスの脾臓におけるMDSCのsTNF依存性増大および蓄積と並行して、中心的な免疫調節機構であるNK細胞/DCクロストークを阻害する強力なsTNF依存性免疫抑制性機構が見いだされた。MDSC増大と同様に、腫瘍を有さないマウスおよび腫瘍を有するマウスのどちらにおいても、DN-TNFによる処置を用いたsTNF排除によって免疫抑制活性が完全に排除された。CD4+CD25+Foxp3+TregおよびF4/80+マクロファージを含めた他の潜在的な免疫抑制性細胞の頻度は、MCA誘導性発癌現象の開始または腫瘍形成期の間には変化せず、MDSCが、発癌現象中に進化する脾細胞免疫抑制の主要なメディエーターである可能性がある。MDSCにより産生される免疫抑制性分子、特に、PGE2、TGFβおよびIL-10は、NK細胞およびDCの強力な抑制薬および/またはモジュレーターとしても公知である(Harizi Cell. Mol. Immunol.、2013年;10巻:213~21頁;Moら、Annu. Rev. Immunol、2006年;24巻:99~146頁;Moore. Annu. Rev. Immunol.、2001年;19巻:683~765頁)。したがって、本発明者らの発見から、MDSCによりNK細胞および/またはDCが強力に抑制され、それにより、MCA誘導性発癌現象におけるそれらのクロストークの抑止が導かれることが示され得る。NK細胞/DCクロストークは、有効な抗がん免疫応答の質および程度を規定する中心的な免疫調節機構であるので、MDSC媒介性免疫抑制は、MCA誘導性発癌現象におけるがん免疫エスケープの機構である可能性がある。本明細書に提示されているデータから、MCAにより、MDSCの増大、自然免疫の抑制およびがんの発生が誘導され、これらは全てsTNF隔離またはTNFR1遮断によって予防することができることが実証される。これらの所見から、発癌現象におけるsTNFの中心的な役割が明らかになり、抗がん免疫機能を下方制御し、発癌現象を促進する、自然免疫sTNF-TNFR1軸の存在が示される。新しく定義された自然免疫の負の免疫調節軸は、獲得免疫CTLA4-B7-1/2およびPD-1-B7-H1の免疫チェックポイントを補完するものであり、これを遮断することにより、進行がんを有する患者において高度に有望な有益な効果が導かれる(Postowら、Cancer J.、2012年;18巻:153~9頁;Topalianら、Cur. Opin. Immunol.、2012年;24巻:207~12頁;Ottら、Clin. Cancer Res.、2013年;19巻:5300~9頁)。本発明者らの試験から、sTNF-TNFR1軸が追加的な免疫チェックポイントであり得、これの標的化をがん予防および免疫療法に活用できることが示される。臨床的適用は、DN-TNF-XPro1595生物製剤による処置を用いて、発がん物質に誘導される免疫抑制およびがん発生のどちらも効率的に予防されることによって裏付けられる。
がん予防および療法のために、CTLA-4およびPD-1などの他の免疫チェックポイントの遮断をDN-TNF-αと組み合わせて使用することができる。
開示されている発明の原理を適用することができる多くの可能性のある実施形態を考慮して、例示されている実施形態は単に本発明の好ましい例であり、本発明の範囲を限定するものと考えるべきではないことが認識されるべきである。そうではなく、本発明の範囲は、以下の特許請求の範囲によって定義される。したがって、これらの特許請求の範囲の範囲および主旨に入る全てが本発明者らの発明であると主張する。
(実施例7)
ヘルパーT細胞および細胞傷害性T細胞の枯渇が、MCAにより誘導され、ENBRELにより促進され、Xpro1595 DN-TNFにより妨げられ、ヘルパーT細胞および細胞傷害性T細胞の増大がXpro1595 DN-TNFにより可能になる。
実施例4、5および6は、MDSC増大、および、がんを効率的に制御する強力なTh1自然抗がん免疫応答およびT細胞獲得抗がん免疫応答の生成を導く中心的な免疫調節機構であるNK細胞/DCクロストークのMDSC媒介性抑制が、MCAにより誘導され、sTNF隔離により妨げられることを実証するものである(Moretta、Nature Rev Immunol.、2002年;2巻:957~64頁;Cooperら、TRENDS Immunol、2004年;25巻:47~52頁;Walzerら、Blood、2005年;106巻:2252~8頁;Xuら、Blood、2007年;109巻:3333~41頁;Vujanovicら、Blood、2010年;116巻:575~583頁;Vujanovic、Immunol Res、2011年;50巻:159~74頁、Makarenkovaら、J Leukoc Biol、2005年;77巻:408~13頁)。有効な抗がん応答を生成するためには、ヘルパーT細胞および細胞傷害性T細胞が豊富にあり、それらが機能的でなければならない。しかし、TNFにより、腫瘍特異的T細胞応答が阻害されることが示された(Landsbergら、Nature、2012年;490巻:412~416頁;Doniaら、Cancer Res.、2015年;75巻:3747~3759頁)。フローサイトメトリーを使用して、未処置(対照)野生型マウスまたはMCA/PBS、MCA/ENBREL(ENBRELは、tmTNFおよびsTNFの両方とLTαとを中和する)、もしくはDN-TNF Xpro1595(DN-TNFはsTNFを特異的に隔離する)を用いて14日間もしくは84日間にわたって処置したマウスの脾臓におけるCD3+T細胞(図9A)ならびにそれらのCD3+CD4+ヘルパー部分集団(図9B)およびCD3+CD8+細胞傷害性部分集団(図9C)の頻度を調査した。MCA注射の14日後(発癌現象の初期)に、T細胞およびそれらの部分集団の頻度は、MCAを受けた全てのマウスにおいて増大したが、これらの増大は、ENBREL処置(CD4+細胞のみ)および特にDN-TNF処置(CD4+細胞およびCD8+細胞の両方)後により明白なものになる傾向があった。これらの所見から、MCA(例えば、MCA誘導性免疫原性悪性細胞)により最初にヘルパーT細胞および細胞傷害性T細胞の両方の増大が誘導され、これがTNF中和によってさらに促進されたことが示された。MCA注射の84日後に、T細胞およびそれらの部分集団の頻度は、MCA/PBSで処置したマウスでは強力に低下し、MCA/ENBRELで処置した腫瘍を有さない(MCA/ENBREL)マウスではわずかに低下し、MCA/ENBRELで処置した腫瘍を有する(MCA/ENBREL-T)マウスでは最も顕著に低下した。対照的に、MCA/DN-TNFで処置した腫瘍を有さないマウス(MCA/DN-TNF)では、未処置対照マウスのT細胞と同様の頻度が示された。MCA/DN-TNFで処置した腫瘍を有するマウス(MCA/DN-TNF-T)では、T細胞およびそれらの部分集団の頻度は、MCA/DN-TNFで処置した腫瘍を有さないまたは対照マウスにおけるものよりも特に高く、MCA/PBSで処置したマウスにおけるものよりもよりも有意に高かった(CD3+:p=0.0020;CD3+CD4+:0.0038;およびCD3+CD8+、0.0072)。
これらの所見から、MCAにより誘導されたsTNFおよび腫瘍により誘導されたsTNFにより、ヘルパーT細胞および細胞傷害性T細胞の両方の枯渇が導かれ、腫瘍を有するマウスにおいて、sTNFは中和するがtmTNFは保存するDN-TNFによる処置により、これを予防することができるだけでなく、ヘルパーT細胞および細胞傷害性T細胞の増大を促進することができることが示された。腫瘍を有するマウスにおけるT細胞のMCA誘導性枯渇は、ENBRELにより深まるが、Xpro1595 DN-TNFにより妨げられるので、tmTNFおよび/またはリンホトキシンにより、T細胞がsTNF媒介性枯渇から保護される可能性がある。
(実施例8)
DN-TNFにより、BRAF変異体黒色腫におけるsTNFにより誘導されるBRAFおよびMEK阻害剤抵抗性が遮断される
TNFは、MAPK経路阻害剤(MAPKi)に対する獲得されたBRAF変異体黒色腫抵抗性に関連する重要な因子であることが提唱されている(Smith、M.P.ら、Cancer Discov.、2016年、4巻:1214~1229頁;Lehraiki、A.ら、Cell Discov、2015年、1巻:15030頁)。例えば、MAPKi療法により、試験したBRAF阻害剤(BRAFi)に抵抗性である黒色腫患者病変の全てにおいて腫瘍関連マクロファージの数の増加およびTNFの発現の増大が導かれることが示され、マクロファージ由来(腫瘍由来ではない)TNFが、MAPKiに対する抵抗性に関連する重要な黒色腫増殖因子として関連付けられた。MAPKiに対するTNFにより誘導される抵抗性を特異的に標的とし、遮断するための戦略が有益であると思われる。DN-TNFを、in vitroにおいて、BRAF阻害剤およびMEK阻害剤(それぞれBRAFiおよびMEKi)に対するsTNFに誘導される黒色腫抵抗性を和らげる能力について試験した。組換えsTNFおよびマクロファージにより分泌されたsTNFは、BRAFi(PLX4720)に媒介される細胞傷害性およびMEKi(セルメチニブ)に媒介される細胞傷害性に対する強力な阻害効果を一貫して示した。これらの効果は、DN-TNF、ならびに、sTNFおよびtmTNFの両方を非特異的に遮断する抗TNF抗体により有効に緩和された(図10)。これらの試験により、選択的なsTNFアンタゴニストであるDN-TNFをBRAFV600EおよびMEKの小分子阻害剤と組み合わせることが、BRAFV600E変異体黒色腫を処置するための有効な戦略になり得ることが実証される。