JP7215412B2 - METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM - Google Patents

METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM Download PDF

Info

Publication number
JP7215412B2
JP7215412B2 JP2019237212A JP2019237212A JP7215412B2 JP 7215412 B2 JP7215412 B2 JP 7215412B2 JP 2019237212 A JP2019237212 A JP 2019237212A JP 2019237212 A JP2019237212 A JP 2019237212A JP 7215412 B2 JP7215412 B2 JP 7215412B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor wafer
wafer
semiconductor
semiconductor wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237212A
Other languages
Japanese (ja)
Other versions
JP2021106226A (en
Inventor
武 多久島
忠広 佐藤
浩二 溝脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2019237212A priority Critical patent/JP7215412B2/en
Publication of JP2021106226A publication Critical patent/JP2021106226A/en
Application granted granted Critical
Publication of JP7215412B2 publication Critical patent/JP7215412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウェーハ用研磨布の使用開始時期の判定方法及びそれを用いた半導体ウェーハの研磨方法、並びに半導体ウェーハ研磨システムに関する。 The present invention relates to a method for determining when to start using a semiconductor wafer polishing cloth, a semiconductor wafer polishing method using the same, and a semiconductor wafer polishing system.

半導体ウェーハとして、シリコンウェーハおよびGaAs等の化合物半導体ウェーハが知られている。半導体ウェーハは、一般的に、単結晶インゴットをワイヤーソーによりスライスして薄円板状のウェーハとするスライス工程と、スライスしたウェーハの表裏面を平坦化しつつ、所定の厚みにする研削工程と、粗研磨及び仕上げ研磨を経て平坦度の高い鏡面仕上げを施す研磨工程とを順次行うことで得られる。また、用途に応じて、研磨後の半導体ウェーハ表面に、CVD法などを用いてエピタキシャル層を形成することもある。 Silicon wafers and compound semiconductor wafers such as GaAs wafers are known as semiconductor wafers. Semiconductor wafers generally have a slicing process of slicing a single crystal ingot with a wire saw into thin disc-shaped wafers, a grinding process of flattening the front and back surfaces of the sliced wafers to a predetermined thickness, It can be obtained by sequentially performing a polishing step of performing rough polishing, finishing polishing, and mirror finishing with high flatness. Depending on the application, an epitaxial layer may be formed on the surface of the semiconductor wafer after polishing using a CVD method or the like.

上述の半導体ウェーハの研磨工程においては、半導体ウェーハの両面を同時に研磨する両面研磨法と、片面のみを研磨する片面研磨法とのいずれか一方または両方が用いられる。両面研磨法を行った後、さらに片面研磨法を順次行う多段研磨も行われている。 In the above-described semiconductor wafer polishing process, either one or both of a double-sided polishing method in which both surfaces of the semiconductor wafer are polished simultaneously and a single-sided polishing method in which only one side is polished is used. Multistage polishing is also performed in which a single-sided polishing method is sequentially performed after a double-sided polishing method is performed.

例えば片面研磨法を用いる仕上げ研磨工程では、図1に示すような片面研磨装置200で半導体ウェーハ290の片面をメカノケミカル研磨(CMP)する。CMPは、被研磨材である半導体ウェーハ290に対してエッチング作用を有する研磨液を用い、半導体ウェーハ290をエッチングしながら研磨液に含まれる砥粒によってウェーハを機械的に研磨する研磨技術である。片面研磨装置200は、半導体ウェーハを保持するヘッド202と、表面に半導体ウェーハ用研磨布(以下、単に「研磨布」と略称する場合がある)212を設けた定盤210とを有する。ヘッド202は、研磨布212に対してウェーハの被研磨面を押圧する。そして、研磨液供給部226から研磨布212上に研磨液228を供給しながら、ヘッド202と定盤210を共に回転させることにより、ウェーハ表面を研磨する。 For example, in a final polishing process using a single-side polishing method, one side of a semiconductor wafer 290 is subjected to mechanochemical polishing (CMP) by a single-side polishing apparatus 200 as shown in FIG. CMP is a polishing technique for mechanically polishing the wafer with abrasive grains contained in the polishing liquid while etching the semiconductor wafer 290 using a polishing liquid having an etching action on the semiconductor wafer 290 to be polished. The single-side polishing apparatus 200 has a head 202 that holds a semiconductor wafer, and a surface plate 210 having a semiconductor wafer polishing cloth (hereinafter sometimes simply referred to as "polishing cloth") 212 on its surface. The head 202 presses the surface of the wafer to be polished against the polishing cloth 212 . The wafer surface is polished by rotating the head 202 and the platen 210 together while supplying the polishing liquid 228 from the polishing liquid supply unit 226 onto the polishing cloth 212 .

ところで一般に、未使用の研磨布には、研磨布の製造過程で種々の不純物が付着している。これら不純物は、半導体ウェーハの被研磨面にダメージを与える原因となる。そのため、研磨布の使用初期で研磨されたウェーハの表面からは、研磨後の検査工程において多数のLPD(Light Point Defect)が検出される。そこで、特許文献1に記載のように、新品の研磨布を使用する場合、製品としては出荷しないウェーハ(以下、「ダミーウェーハ」と称することがある。)を所定の枚数だけ研磨し、その後製品として出荷するウェーハ(以下、「製品用ウェーハ」と称することがある。)の研磨を行っている。以下、本明細書では、新品の研磨布の使用初期に行う、ダミーウェーハを用いて行う研磨を「ダミー研磨」と称し、その後に行う、製品用ウェーハを研磨して、研磨後のウェーハを製品とする研磨を「本研磨」と称する。 By the way, in general, various impurities adhere to an unused polishing cloth during the manufacturing process of the polishing cloth. These impurities cause damage to the polished surface of the semiconductor wafer. Therefore, a large number of LPDs (Light Point Defects) are detected in the inspection process after polishing from the surface of the wafer polished at the beginning of use of the polishing cloth. Therefore, as described in Patent Document 1, when using a new polishing cloth, a predetermined number of wafers that are not shipped as a product (hereinafter sometimes referred to as "dummy wafers") are polished, and then the product is polished. We polish wafers to be shipped as products (hereinafter sometimes referred to as “product wafers”). Hereinafter, in this specification, polishing performed using a dummy wafer performed at the beginning of use of a new polishing cloth is referred to as "dummy polishing", and a product wafer is polished after that, and the wafer after polishing is used as a product. This polishing is called "main polishing".

これまでは、ダミー研磨を所定回数行ったら、換言すると、新品の研磨布によるウェーハの累積研磨枚数が所定枚数となってから本研磨工程に移行しており、この「所定回数」、「所定枚数」は、同種の研磨布を用いる限りは一律に一定の値に設定するのが一般的であった。 In the past, when dummy polishing was performed a predetermined number of times, in other words, after the accumulated number of wafers polished with a new polishing cloth reached a predetermined number, the main polishing process was started. is generally set to a constant value as long as the same type of polishing cloth is used.

しかし、同種の研磨布(同一素材の研磨布、同一製品の研磨布等)であっても、個々の研磨布ごとに、研磨後のウェーハのLPD数等の研磨結果指標が少ないレベルで安定するまでに要するダミー研磨工程の回数(ウェーハの累積研磨枚数)が異なる。そのため、製品用ウェーハの品質を確保するためには、本研磨に先立つダミー研磨の回数を十分に大きくする必要があった。また、ダミー研磨を行う回数が多くなれば研磨布の使用可能回数(ライフ)が減少するし、生産時間にも影響するため、研磨布の使用開始時期を正確に判定する手法の確立が望まれる。なお、特許文献1には、研磨布中の銅の濃度が0.01ppm以下になるまでダミー研磨を行うことが記載されているものの、この方法は銅の濃度を測定するために研磨布から試験片を切り出す破壊検査を伴う。そのため、特許文献1に記載の方法では研磨布の状態をリアルタイムで把握することはできず、実用面で改善の余地がある。 However, even with polishing cloths of the same type (polishing cloth of the same material, polishing cloth of the same product, etc.), the polishing result index such as the number of LPD of the wafer after polishing is stabilized at a low level for each individual polishing cloth. The number of times of the dummy polishing process (accumulated number of polished wafers) required until the time is different. Therefore, in order to ensure the quality of product wafers, it was necessary to sufficiently increase the number of times of dummy polishing prior to main polishing. In addition, if the number of times of dummy polishing increases, the number of times the polishing pad can be used (life) will decrease, and it will also affect the production time. . Incidentally, although Patent Document 1 describes that dummy polishing is performed until the concentration of copper in the polishing cloth becomes 0.01 ppm or less, this method uses a polishing cloth to measure the concentration of copper. It involves destructive testing to cut out pieces. Therefore, the method described in Patent Document 1 cannot grasp the state of the polishing cloth in real time, and there is room for improvement in terms of practical use.

そこで本出願人は、特許文献2において、定盤の表面に設けられた研磨布にウェーハを接触させて、前記定盤および前記ウェーハを回転させることで、前記ウェーハ表面を研磨する研磨処理を、同一研磨布により複数回行うウェーハの研磨方法であって、前記研磨処理は、研磨後のウェーハを製品としない初期研磨工程と、前記初期研磨工程後、研磨後のウェーハを製品とする本研磨工程とからなり、前記研磨布の接触角を測定し、その測定値に基づいて、前記初期研磨工程から前記本研磨工程への切替え時期を決定することを特徴とするウェーハの研磨方法を提案している。この特許文献2において提案するウェーハの研磨方法により、ダミー研磨によるウェーハロスを確実に減らすことができ、かつ、製品用のウェーハのLPDの数を少ないレベルで安定させることが可能である。 Therefore, the applicant of the present application disclosed in Patent Document 2 that the polishing process for polishing the surface of the wafer by bringing the wafer into contact with a polishing cloth provided on the surface of a surface plate and rotating the surface plate and the wafer is performed by: A wafer polishing method performed multiple times with the same polishing cloth, wherein the polishing process includes an initial polishing step in which the polished wafer is not used as a product, and a main polishing step in which the polished wafer is used as a product after the initial polishing step. and measuring the contact angle of the polishing cloth, and determining the switching timing from the initial polishing step to the main polishing step based on the measured value. there is With the wafer polishing method proposed in Patent Document 2, it is possible to reliably reduce wafer loss due to dummy polishing, and to stabilize the number of LPDs on product wafers at a low level.

特開2005-209863号公報JP-A-2005-209863 国際公開第2015/092294号WO2015/092294

しかしながら、特許文献2に記載の研磨方法では、ダミー研磨を行う度に、研磨布の接触角を都度測定する必要がある。特許文献2に記載の研磨方法において接触角を正確に測定するための準備工程を考慮すると、半導体ウェーハ用研磨布の使用開始時期をリアルタイムに判定するためには改善の余地がある。 However, in the polishing method described in Patent Document 2, it is necessary to measure the contact angle of the polishing pad each time dummy polishing is performed. Considering the preparatory step for accurately measuring the contact angle in the polishing method described in Patent Document 2, there is room for improvement in determining the time to start using the polishing pad for semiconductor wafers in real time.

そこで本発明は、半導体ウェーハ用研磨布の使用開始時期を正確かつリアルタイムに判定することのできる半導体ウェーハ用研磨布の使用開始時期の判定方法を提供することを目的とする。さらに本発明は、この判定方法を用いた半導体ウェーハの研磨方法及び半導体ウェーハ研磨システムを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for determining when to start using a polishing pad for semiconductor wafers, which can accurately and in real time determine when to start using a polishing pad for semiconductor wafers. A further object of the present invention is to provide a semiconductor wafer polishing method and a semiconductor wafer polishing system using this determination method.

上記課題を解決すべく本発明者らは鋭意検討し、順次行う研磨の各回での定盤の定盤負荷電流値の時間波形データと、研磨後の半導体ウェーハの研磨結果指標とに相関関係があることを見出した。上記知見に基づき完成した本発明の要旨構成は以下のとおりである。 In order to solve the above problems, the present inventors have conducted extensive studies and found that there is a correlation between the time waveform data of the surface plate load current value of the surface plate in each successive polishing and the polishing result index of the semiconductor wafer after polishing. I found something. The gist and configuration of the present invention completed based on the above findings are as follows.

(1)半導体ウェーハの研磨装置の定盤に設置された半導体ウェーハ用研磨布の使用開始時期の判定方法であって、
第1の半導体ウェーハ用研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨し、各回研磨での前記定盤の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の前記半導体ウェーハの研磨結果指標との対応関係に基づく判定条件を求める予備工程と、
第2の半導体ウェーハ用研磨布を前記定盤に設置する第1工程と、
前記予備工程と同種の研磨条件を用いて、少なくとも1枚以上の半導体ウェーハを順次研磨して、各回研磨での前記時間波形データを取得して波形解析する第2工程と、
前記第2工程において波形解析した結果が、前記判定条件を満足するか否かを判定する第3工程と、
を含むことを特徴とする半導体ウェーハ用研磨布の使用開始時期の判定方法。
(1) A method for determining when to start using a semiconductor wafer polishing cloth placed on a surface plate of a semiconductor wafer polishing apparatus, comprising:
The surface of at least one or more semiconductor wafers is sequentially polished using the first polishing cloth for semiconductor wafers, and the result of waveform analysis of the time waveform data of the surface plate load current value of the surface plate in each polishing, and each time a preliminary step of obtaining a judgment condition based on a correspondence relationship with the polishing result index of the semiconductor wafer after polishing;
a first step of placing a second semiconductor wafer polishing cloth on the surface plate;
a second step of sequentially polishing at least one or more semiconductor wafers using the same polishing conditions as in the preliminary step, acquiring the time waveform data in each polishing step, and analyzing the waveform;
a third step of determining whether the result of waveform analysis in the second step satisfies the determination condition;
A method for determining when to start using a polishing pad for semiconductor wafers, comprising:

(2)前記研磨結果指標は研磨後の半導体ウェーハの被研磨面において観察されるLPD個数である、前記(1)に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 (2) The method for determining the time to start using the polishing pad for semiconductor wafers according to (1), wherein the polishing result index is the number of LPDs observed on the polished surface of the semiconductor wafer after polishing.

(3)SAX法を用いて前記時間波形データにおける前記定盤負荷電流値を3段階以上に分割して符号化し、かつ、時系列に対応させた離散パラメータ群を求めることにより前記波形解析を行う、前記(1)又は(2)に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 (3) Using the SAX method, the surface plate load current value in the time waveform data is divided into three or more stages and encoded, and the waveform analysis is performed by obtaining a discrete parameter group corresponding to the time series. and a method for judging when to start using the polishing pad for semiconductor wafers according to (1) or (2) above.

(4)前記研磨装置は半導体ウェーハの片面研磨装置である、前記(1)~(3)のいずれかに記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 (4) The method for determining the time to start using a polishing cloth for semiconductor wafers according to any one of (1) to (3), wherein the polishing apparatus is a single-sided polishing apparatus for semiconductor wafers.

(5)前記(1)~(4)のいずれか1項に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法に従い、前記第2の半導体ウェーハ用研磨布を使用開始可能と判定される回までは非製品用の半導体ウェーハを用いて前記研磨を行い、前記使用開始可能と判定された回の後に製品用の半導体ウェーハを用いて前記研磨を行うことを特徴とする半導体ウェーハの研磨方法。 (5) It is determined that the second polishing cloth for semiconductor wafers can be used according to the method for determining when to start using the polishing cloth for semiconductor wafers according to any one of (1) to (4) above. A method of polishing a semiconductor wafer, wherein the polishing is performed by using a semiconductor wafer for non-product use until the first time, and the polishing is performed by using a semiconductor wafer for product after the time when it is determined that the use can be started. .

(6)半導体ウェーハを保持する保持部と、表面に研磨布が設置された定盤とを有し、前記研磨布に前記半導体ウェーハを接触させて、前記定盤及び前記半導体ウェーハを回転させることで、前記半導体ウェーハの表面を研磨する研磨処理を、同一の研磨布により複数回行う半導体ウェーハ研磨システムであって、
半導体ウェーハ研磨システムは、制御部、並びに、前記制御部を介して制御される波形解析部、記憶部、判定部、ウェーハ交換部をさらに備え、
前記記憶部には、前記研磨布と同種の研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨したときに、各回研磨での前記定盤の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の前記半導体ウェーハの研磨結果指標との対応関係に基づく判定条件が記憶され、
前記制御部は、
(i)前記保持部にダミーウェーハを保持させ、
(ii)前記波形解析部を用いて、前記記憶部に記憶された研磨条件と同種の研磨条件を用いて、少なくとも1枚以上の前記ダミーウェーハを順次研磨して、各回研磨での前記時間波形データを取得して波形解析し、
(iii)前記判定部を用いて、前記ダミーウェーハを用いて波形解析した結果が、前記記憶部に記憶された判定条件を満足するか否かを判定し、
(iv)前記判定条件を満足した後、前記ウェーハ交換部を用いて前記保持部に前記半導体ウェーハを保持させる
ことを特徴とする半導体ウェーハ研磨システム。
(6) Having a holder for holding a semiconductor wafer and a surface plate having a polishing cloth on the surface thereof, and rotating the surface plate and the semiconductor wafer while bringing the semiconductor wafer into contact with the polishing cloth. A semiconductor wafer polishing system that performs a polishing process for polishing the surface of the semiconductor wafer a plurality of times with the same polishing cloth,
The semiconductor wafer polishing system further comprises a control unit, and a waveform analysis unit, a storage unit, a determination unit, and a wafer exchange unit controlled via the control unit,
Time waveform data of the surface plate load current value of the surface plate in each polishing when the surfaces of at least one or more semiconductor wafers are sequentially polished using a polishing cloth of the same kind as the polishing cloth, in the storage unit. and a determination condition based on a correspondence relationship between a result of waveform analysis of and a polishing result index of the semiconductor wafer after each polishing,
The control unit
(i) causing the holder to hold a dummy wafer;
(ii) using the waveform analysis unit to sequentially polish at least one or more dummy wafers using the same polishing conditions as the polishing conditions stored in the storage unit, and the time waveform in each polishing; Acquire data, analyze waveforms,
(iii) using the determination unit to determine whether the result of waveform analysis using the dummy wafer satisfies the determination conditions stored in the storage unit;
(iv) A semiconductor wafer polishing system, wherein after the determination condition is satisfied, the semiconductor wafer is held by the holding section using the wafer exchange section.

本発明によれば、半導体ウェーハ用研磨布の使用開始時期を正確かつリアルタイムに判定することのできる半導体ウェーハ用研磨布の使用開始時期の判定方法及びこれを用いた半導体ウェーハの研磨方法、並びに半導体ウェーハ研磨システムを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there are provided a method for judging the timing of starting use of a polishing cloth for semiconductor wafers, which can accurately and in real time determine the timing for starting use of a polishing cloth for semiconductor wafers, a method for polishing semiconductor wafers using the same, and a semiconductor. A wafer polishing system can be provided.

従来の片面研磨装置の模式図である。1 is a schematic diagram of a conventional single-sided polishing apparatus; FIG. 本発明者らの実験による研磨時間と定盤負荷電流値と関係を示すグラフである。4 is a graph showing the relationship between the polishing time and the platen load current value according to experiments conducted by the present inventors. 図2の定盤負荷電流値から各研磨回の時間波形データを抽出し、さらにSAX法を用いて負荷電流値を3段階で時系列に離散化したグラフである。3 is a graph obtained by extracting time waveform data of each polishing cycle from the surface plate load current values of FIG. 2 and discretizing the load current values in three steps in time series using the SAX method. 図3Aの各研磨回の符号出現頻度を研磨順に並べた帯グラフである。FIG. 3B is a bar graph in which the frequency of occurrence of codes for each polishing cycle in FIG. 3A is arranged in the order of polishing; 本発明者らの実験による各研磨回における研磨後の被研磨面のLPD個数を示すグラフである。4 is a graph showing the number of LPDs on the surface to be polished after polishing in each polishing cycle according to experiments conducted by the present inventors; 本発明に従う判定方法及び研磨方法を説明するためのフローチャートである。4 is a flow chart for explaining a determination method and a polishing method according to the present invention; 本発明に従う半導体ウェーハ研磨システムを説明するためのブロック図である。1 is a block diagram for explaining a semiconductor wafer polishing system according to the present invention; FIG. 実施例1において、定盤負荷電流値から各研磨回の時間波形データを抽出し、さらにSAX法を用いて負荷電流値を6段階で時系列に離散化したグラフである。5 is a graph obtained by extracting time waveform data of each polishing time from the surface plate load current value and discretizing the load current value in six steps in time series using the SAX method in Example 1. FIG. 図7Aの各研磨回の符号出現頻度を研磨順に並べた帯グラフである。FIG. 7B is a bar graph in which the code appearance frequencies of each polishing cycle in FIG. 7A are arranged in order of polishing. 実施例2において、定盤負荷電流値から各研磨回の時間波形データを抽出し、さらにSAX法を用いて負荷電流値を10段階で時系列に離散化したグラフである。10 is a graph obtained by extracting time waveform data of each polishing time from the surface plate load current value and discretizing the load current value in time series in 10 steps using the SAX method in Example 2. FIG. 図8Aの各研磨回の符号出現頻度を研磨順に並べた帯グラフである。FIG. 8B is a bar graph in which the code appearance frequency of each polishing cycle in FIG. 8A is arranged in the order of polishing. 実施例2において、各研磨回における研磨後の被研磨面のLPD個数を示すグラフである。7 is a graph showing the number of LPDs on the surface to be polished after polishing in each polishing cycle in Example 2. FIG.

本発明の実施形態の説明に先立ち、本発明を完成させるに至った予備実験例をまず説明する。 Prior to the description of the embodiments of the present invention, a preliminary experimental example that has led to the completion of the present invention will be described first.

[予備実験例]
直径300mm、総厚み775μmであるシリコンウェーハを34枚用意した。また、枚葉式の片面研磨装置の定盤に、未使用状態のスウェード素材の研磨布を設置した。この枚葉式片面研磨装置を用いて、コロイダルシリカ砥粒含有アルカリ研磨液を研磨スラリーとして研磨布表面に供給しながら、1枚のシリコンウェーハの表面を化学機械研磨して、研磨を終える度にシリコンウェーハを交換して、これら34枚のシリコンウェーハの片面研磨を同様の研磨条件で順次行った。ただし、1回目の研磨と2回目の研磨では、研磨布の不純物を除去するために、研磨時間を3回目以降の研磨時間よりも十分長くした。また、研磨中には定盤負荷電流値を測定した。定盤負荷電流値の測定結果を図2に示す。
[Preliminary experiment example]
Thirty-four silicon wafers having a diameter of 300 mm and a total thickness of 775 μm were prepared. Also, an unused polishing cloth made of suede material was placed on the surface plate of a single-wafer type single-sided polishing apparatus. Using this single-wafer single-sided polishing apparatus, the surface of one silicon wafer is chemically and mechanically polished while supplying an alkaline polishing liquid containing colloidal silica abrasive grains as polishing slurry to the surface of the polishing cloth. The silicon wafers were exchanged, and one-sided polishing of these 34 silicon wafers was sequentially performed under the same polishing conditions. However, in the first polishing and the second polishing, the polishing time was made sufficiently longer than the polishing time after the third time in order to remove impurities from the polishing cloth. Also, the platen load current value was measured during polishing. FIG. 2 shows the measurement result of the surface plate load current value.

図2に示すグラフから、研磨回ごとに時間波形データを抽出した。次いで、各回の時間波形データに対して、時系列データを離散化させるための公知の離散化手法であるSAX(Symbolic Aggregate approXimation)法を用いて、時系列に対応させた離散パラメータ群を取得した。なお、SAX法は特開2017-156942号公報、特開2016-058027号公報などにおいても使用される周知の時系列データの近似表現方法であり、これら公報を引用して本明細書に援用する。 From the graph shown in FIG. 2, time waveform data was extracted for each polishing cycle. Next, for each time waveform data, a discrete parameter group corresponding to the time series was obtained using the SAX (Symbolic Aggregate approXimation) method, which is a known discretization method for discretizing time series data. . The SAX method is a well-known approximate expression method for time-series data that is also used in Japanese Patent Application Laid-Open Nos. 2017-156942 and 2016-058027, and these publications are incorporated herein by reference. .

SAX法による具体的な離散化条件は次のとおりである。定盤負荷電流値については図2のグラフに図示したとおり3段階に分割し、レベルA、B、Cに符号化(レベルAが低電流値領域であり、レベルCが高電流値領域である)した。時間軸については研磨時間を正規化した後、53区間に分割して最終3区間を除外した後、5区間毎に分割して合計10区間に分割した。SAX法による離散化後の定盤負荷電流値のグラフを図3Aに示し、図3Aの各研磨回の符号出現頻度を研磨回の順序で並べた帯グラフを図3Bに示す。例えば1回目の研磨による定盤負荷電流値から取得した離散パラメータ群は「ABBBBBBBBB」(Aが1個、Bが9個、Cが0個)であり、8回目の研磨から取得した離散パラメータ群は「ABBBBBCCCC」(Aが1個、Bが5個、Cが4個)である。なお、図3Aには、34個の波形データ(図2参照)から取得した34個の離散パラメータ群を重ね合わせている。 Specific discretization conditions by the SAX method are as follows. The platen load current value is divided into three stages as shown in the graph of FIG. )bottom. As for the time axis, after normalizing the polishing time, it was divided into 53 sections, and after excluding the last 3 sections, it was divided into 5 sections and divided into a total of 10 sections. FIG. 3A shows a graph of the surface plate load current value after discretization by the SAX method, and FIG. 3B shows a band graph in which the code appearance frequency of each polishing cycle in FIG. 3A is arranged in the order of polishing cycles. For example, the discrete parameter group obtained from the surface plate load current value in the first polishing is "ABBBBBBBBB" (1 for A, 9 for B, and 0 for C), and the discrete parameter group obtained from the 8th polishing. is "ABBBBBCCCC" (1 A, 5 B, 4 C). Note that 34 discrete parameter groups obtained from 34 waveform data (see FIG. 2) are superimposed on FIG. 3A.

さらに、研磨後の34枚のシリコンウェーハのそれぞれに対し、市販のレーザパーティクルカウンタ(SP2;KLAテンコール社製)を用いて、被研磨面におけるLPDサイズ35nm以上のLPDの個数/ウェーハを測定した。結果を図4に示す。 Furthermore, for each of the 34 silicon wafers after polishing, a commercially available laser particle counter (SP2; manufactured by KLA-Tencor) was used to measure the number of LPDs having an LPD size of 35 nm or more on the surface to be polished/wafer. The results are shown in FIG.

まず、図2のグラフと,図4のグラフとを対比すると、研磨回数を重ねるにつれて定盤負荷電流値が増大し、研磨回数を重ねるにつれてLPD個数が減少していくことが確認される。さらに、研磨初期のLPD個数に比べて、LPD個数が一度大幅に減少した後は、以降の研磨ではLPD個数が実用上の許容値を超えることはない。この傾向は、研磨布の使用初期ではLPDが多発するためダミー研磨が必要であるとの従来の経験則と整合するものであり、定盤負荷電流値の時間波形データを波形解析して得られるパラメータと、LPD個数とには有意な相関関係があることが確認された。 First, comparing the graph of FIG. 2 with the graph of FIG. 4, it is confirmed that the surface plate load current value increases as the number of polishing times increases, and the number of LPDs decreases as the number of polishing times increases. Furthermore, after the number of LPDs is significantly reduced once compared to the number of LPDs at the initial stage of polishing, the number of LPDs does not exceed the practical allowable value in subsequent polishing. This tendency is consistent with the conventional empirical rule that dummy polishing is necessary because LPD occurs frequently in the initial stage of use of the polishing cloth, and is obtained by waveform analysis of the time waveform data of the surface plate load current value. It was confirmed that there is a significant correlation between the parameter and the number of LPDs.

さて、この予備実験例では、図4より8回目の研磨より後(9回目以降)ではLPD個数が10個/ウェーハ以下となることが確認された。そして図3B及び図4によれば、離散パラメータ群の中に初めてレベルCが登場するのは8回目であるため、レベルCが出現すれば、次回以降の研磨ではLPD個数が10個/ウェーハ以下になる。そこで本例において、ダミー研磨を終えてもよい、すなわち、実研磨を開始してもよいとの判定基準の一例は、定盤負荷電流値の時間波形データから取得した離散パラメータ群の中にレベルCが1以上出現するか否かを判定条件とすれば、次回以降の研磨ではLPD個数が10個/ウェーハ以下になると判断できる。そして、本予備実験例で用いたのと同種のスウェード素材の研磨布を用いた場合でも、同様の離散化処理を行った場合にレベルCが出現すれば以後の研磨でもLPD個数が10個/ウェーハ以下になることが確認された。 In this preliminary experiment, it was confirmed from FIG. 4 that the number of LPDs was 10 or less per wafer after the eighth polishing (the ninth and subsequent polishing). According to FIGS. 3B and 4, since level C appears for the first time in the discrete parameter group at the eighth time, when level C appears, the number of LPDs is 10 or less per wafer in subsequent polishing. become. Therefore, in this example, an example of a criterion for judging whether dummy polishing can be finished, that is, whether actual polishing can be started is the level If the determination condition is whether or not one or more C appear, it can be determined that the number of LPDs will be 10 or less per wafer in subsequent polishing. Even when the same type of suede polishing cloth as used in this preliminary experiment was used, if level C appeared when the same discretization process was performed, the number of LPDs in the subsequent polishing was 10/10. It was confirmed to be below the wafer.

このように、定盤負荷電流値の時間波形データから波形解析して取得した離散パラメータ群と、研磨後の半導体ウェーハの被研磨面のLPD個数とには有意な相関関係があることを本発明者らは確認した。また、本予備実験例による時系列対応の離散パラメータ群は一例であって、定盤負荷電流値の各回研磨での時間波形データを波形解析したパラメータと、研磨後の半導体ウェーハの被研磨面のLPD個数とにも有意な相関関係は認められるし、本予備実験例におけるLPD個数は表面粗さなどの研磨結果指標であっても代替可能である。定盤負荷電流値は研磨中にリアルタイムで取得可能なデータであるため、この実験事実を考慮すれば、半導体ウェーハ用研磨布の使用開始時期を正確かつリアルタイムに判定できることを本発明者らは知見した。 Thus, the present invention shows that there is a significant correlation between the discrete parameter group obtained by waveform analysis from the time waveform data of the platen load current value and the number of LPDs on the polished surface of the semiconductor wafer after polishing. they confirmed. In addition, the discrete parameter group corresponding to time series according to this preliminary experiment example is an example, and the parameter obtained by waveform analysis of the time waveform data of the surface plate load current value in each polishing time, and the polished surface of the semiconductor wafer after polishing. A significant correlation is also recognized with the number of LPDs, and the number of LPDs in this preliminary experiment can be replaced by a polishing result index such as surface roughness. Since the surface plate load current value is data that can be acquired in real time during polishing, the present inventors have found that it is possible to accurately and in real time determine when to start using the polishing cloth for semiconductor wafers by considering this experimental fact. bottom.

以下、図面を参照しつつ本発明の実施形態を詳細に説明する。なお、図中の各構成は模式図であり、実際の縦横比とは異なる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that each configuration in the drawing is a schematic diagram, and differs from the actual aspect ratio.

(半導体ウェーハ用研磨布の使用開始時期の判定方法)
図5のフローチャートを参照する。本発明の一実施形態による半導体ウェーハ用研磨布の使用開始時期の判定方法は、予備工程S10と、第1工程S21、第2工程S22及び第3工程S23とを少なくとも含む。この予備工程S10では、第1の半導体ウェーハ用研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨し、各回研磨での定盤の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の半導体ウェーハの研磨結果指標との対応関係に基づく判定条件を求める。この予備工程とは別に、第1工程S21では第2の半導体ウェーハ用研磨布を定盤に設置する。次いで、第2工程S22では、予備工程S10と同種の研磨条件を用いて、少なくとも1枚以上の半導体ウェーハを順次研磨して、各回研磨での時間波形データを取得して波形解析する。そして、第3工程S23では、第2工程S22において波形解析した結果が、判定条件を満足するか否かを判定する。以下、各工程の詳細を順次説明する。また、以下では、第1の半導体ウェーハ用研磨布を「プレ研磨布」と称し、第2の半導体ウェーハ用研磨布を「判定対象研磨布」と称する。
(Method for Determining When to Start Using Polishing Cloth for Semiconductor Wafers)
Please refer to the flow chart of FIG. A method for determining when to start using a polishing pad for semiconductor wafers according to an embodiment of the present invention includes at least a preliminary step S10, a first step S21, a second step S22 and a third step S23. In this preliminary step S10, the surfaces of at least one or more semiconductor wafers are sequentially polished using the first polishing cloth for semiconductor wafers, and the time waveform data of the surface plate load current value of the surface plate in each polishing is analyzed. A judgment condition is obtained based on the correspondence relationship between the result of polishing and the polishing result index of the semiconductor wafer after each polishing. Separately from this preliminary step, in the first step S21, a second semiconductor wafer polishing cloth is placed on a surface plate. Next, in the second step S22, at least one or more semiconductor wafers are successively polished using the same polishing conditions as in the preliminary step S10, and time waveform data is acquired and analyzed for each polishing step. Then, in the third step S23, it is determined whether or not the result of the waveform analysis in the second step S22 satisfies the determination condition. Details of each step will be described below. Further, hereinafter, the first polishing cloth for semiconductor wafers is referred to as "pre-polishing cloth", and the second polishing cloth for semiconductor wafers is referred to as "determination target polishing cloth".

<予備工程>
予備工程S10は、第1工程~第3工程による本研磨布の使用開始時期の判定に先立って行う工程であり、判定対象研磨布と同種のプレ研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨する。なお、ここでいう「同種」とは、同一素材の研磨布であり、かつ、製品としては同一の研磨布であるが、製造時期等の異なる研磨布を指す。また、枚葉式片面研磨、バッチ式片面研磨などの研磨方式、加圧力、定盤回転数、使用スラリー種などの研磨条件は、多数枚の半導体ウェーハを順次研磨するときに不可避的に変化する条件を除き、プレ研磨布を用いて研磨するときの研磨条件と、判定対象研磨布を用いて研磨するときの研磨条件とを同一にする。また、半導体ウェーハの研磨枚数は特に制限されないが、例示すると概ね5~20枚程度であり、判定条件を求めるために必要な枚数の研磨を行えばよい。
<Preliminary process>
The preliminary step S10 is a step performed prior to the determination of the use start time of the main polishing cloth in the first to third steps, and uses a pre-polishing cloth of the same kind as the polishing cloth to be judged, and prepares at least one or more semiconductor wafers. The surface of each is polished sequentially. The term "same type" as used herein refers to polishing cloths made of the same material and having the same polishing cloth as a product, but having different manufacturing dates and the like. In addition, polishing conditions such as polishing methods such as single-wafer single-side polishing and batch-type single-side polishing, applied pressure, surface plate rotation speed, and type of slurry used inevitably change when polishing a large number of semiconductor wafers in sequence. Except for the conditions, the polishing conditions for polishing with the pre-polishing cloth are the same as the polishing conditions for polishing with the judgment target polishing cloth. The number of semiconductor wafers to be polished is not particularly limited, but is approximately 5 to 20 as an example.

予備工程S10では、プレ研磨布を用いて半導体ウェーハを順次研磨したときに得られる各回研磨での定盤負荷電流値の時間波形データを取得する。次いで、この時間波形データを波形解析する。例えば、既述の予備実験例と同様にSAX法を用いて、時間波形データにおける定盤負荷電流値を3段階以上に分割して符号化し、かつ、時系列に対応させた離散パラメータ群を求めることで上記波形解析を行うことができる。 In the preliminary step S10, time waveform data of the surface plate load current value in each polishing time obtained when the semiconductor wafers are sequentially polished using the pre-polishing cloth is obtained. Next, waveform analysis is performed on this time waveform data. For example, using the SAX method in the same manner as in the preliminary experiment described above, the surface plate load current value in the time waveform data is divided into three or more stages and encoded, and a discrete parameter group corresponding to the time series is obtained. By doing so, the above waveform analysis can be performed.

そして、上記波形解析とは別に、プレ研磨布を用いて順次研磨した場合の、各回研磨後の研磨結果指標を求める。研磨結果指標は既述の予備実験例と同様に研磨後の被研磨面のLPD個数を用いてもよいし、表面粗さやSFQR(Site front least squares range)、GBIR(Global backside ideal range)などの平坦度など、研磨で作り込むための任意の品質パラメータを用いることができる。 Then, separately from the waveform analysis, a polishing result index after each polishing is obtained when polishing is performed sequentially using the pre-polishing cloth. As a polishing result index, the number of LPDs on the surface to be polished after polishing may be used as in the preliminary experiment example described above, or surface roughness, SFQR (Site front least squares range), GBIR (Global backside ideal range), etc. Any quality parameter for polishing can be used, such as flatness.

さらに、時間波形データを波形解析した結果と、各回研磨後の上記研磨結果指標との対応関係に基づく判定条件を求める。例えば、以後の研磨では研磨結果指標が所定の閾値以下が得られる判定条件を求めればよい。既述の予備実験例ではレベルCが出現すれば、次回以降の研磨では研磨指標に相当するLPD個数が10個/ウェーハ以下となることを判定条件としたが、これは一例に過ぎず、波形解析結果と、研磨結果指標との対応関係を照らし合わせて適宜定めればよい。 Further, determination conditions are obtained based on the correspondence relationship between the result of waveform analysis of the time waveform data and the polishing result index after each polishing. For example, in the subsequent polishing, it is sufficient to obtain a judgment condition under which the polishing result index is equal to or less than a predetermined threshold value. In the above-described preliminary experiment example, if level C appears, the determination condition is that the number of LPDs corresponding to the polishing index is 10 or less per wafer in subsequent polishing. It may be appropriately determined by comparing the correspondence between the analysis result and the polishing result index.

なお、波形解析の手法はSAX法に限定されるものではなく、LPD個数などの研磨結果指標が良好なプレ研磨布の時間波形データの集合を単位空間としてダミー研磨時の時間波形の各時間の電流値が、当該単位空間からどの程度離れているかを、MT法を適用して解析してもよい。解析の対象として、実際に測定した時間波形データを用いてもよいが、波形が特定の値を横切った回数や、特定の範囲内の値をとっている時間を特徴量として、これらの特徴量を解析の対象にしてもよい。また、予め測定しておいた時間波形データを、k-means法などのクラスタリング手法を用いていくつかのグループに分けておき、本研磨時でのダミー研磨の時間波形データがどのグループに属するかを求め、そのグループの研磨結果指標の過去の実績が良好であったか否かに基づき、本研磨時の判定対象研磨布のダミー研磨終点を判定することも可能である。 The method of waveform analysis is not limited to the SAX method, and a unit space is a set of time waveform data of a pre-polishing cloth having a good polishing result index such as the number of LPDs. How far the current value is from the unit space may be analyzed by applying the MT method. Although actually measured time waveform data may be used as the object of analysis, the number of times the waveform crosses a specific value or the time during which the value is within a specific range is used as a feature quantity. may be analyzed. In addition, the time waveform data measured in advance is divided into several groups using a clustering method such as the k-means method, and to which group the time waveform data of dummy polishing in the main polishing belongs. , and based on whether or not the past performance of the polishing result index of the group was good, it is possible to determine the dummy polishing end point of the polishing cloth to be determined in the main polishing.

<第1工程>
予備工程S10を行った後、第1工程S21では判定対象研磨布(第2の半導体ウェーハ用研磨布)を定盤に設置する。この段階では、判定対象研磨布はダミーウェーハの研磨を含めて、一度も研磨が行われていない未使用の状態である。
<First step>
After performing the preliminary step S10, in the first step S21, a polishing cloth to be judged (second polishing cloth for semiconductor wafers) is placed on a surface plate. At this stage, the polishing cloth to be judged is in an unused state in which it has never been polished, including the polishing of dummy wafers.

<第2工程>
第1工程S21に次いで、第2工程S22では、予備工程S10と同種の研磨条件を用いて、少なくとも1枚以上の半導体ウェーハを順次研磨する。研磨中には、各回研磨での時間波形データを取得し、予備工程S10と同じ手法を用いて時間波形データを波形解析する。
<Second step>
Subsequent to the first step S21, in a second step S22, at least one or more semiconductor wafers are sequentially polished using the same polishing conditions as in the preliminary step S10. During polishing, time waveform data is obtained for each polishing, and the time waveform data is analyzed using the same method as in the preliminary step S10.

<第3工程>
そして、第3工程S23では、第2工程S22において波形解析した結果が、予備工程S10において求めた判定条件を満足するか否かを判定する。判定対象研磨布を用いて研磨したときの波形解析した結果が判定条件を満足していれば、この後に判定対象研磨布の使用を開始すれば、次回以降の研磨でも、半導体ウェーハの研磨結果指標が製品用ウェーハとして良好な結果になると判定することができる。逆に、判定対象研磨布を用いて研磨したときの波形解析した結果が判定条件を満足していないのであれば、次回の半導体ウェーハの研磨結果指標が必ずしも製品用ウェーハとして十分なものになるとは限らない。したがって、後者の場合、判定対象研磨布を本研磨に適用するためには、本研磨に先立って、さらなるダミー研磨処理を行う必要があると判断できる。
<Third step>
Then, in the third step S23, it is determined whether or not the result of the waveform analysis in the second step S22 satisfies the determination condition obtained in the preliminary step S10. If the result of waveform analysis when polishing with the polishing cloth to be judged satisfies the judgment conditions, if the use of the polishing cloth to be judged is started after this, the polishing result index of the semiconductor wafer will be obtained in the next and subsequent polishing. can be determined to produce good results as product wafers. Conversely, if the result of waveform analysis when polishing is performed using the polishing cloth to be judged does not satisfy the judgment conditions, the polishing result index of the next semiconductor wafer will not necessarily be sufficient as a product wafer. Not exclusively. Therefore, in the latter case, it can be determined that a further dummy polishing process must be performed prior to the main polishing in order to apply the judgment target polishing cloth to the main polishing.

なお、判定結果をディスプレイ、スピーカ、ランプ等の通知部を介してオペレータに通知してもよいし、判定結果を結果信号として研磨装置又はその制御部に通知してもよい。 The determination result may be notified to the operator via a notification unit such as a display, a speaker, or a lamp, or the determination result may be notified to the polishing apparatus or its control unit as a result signal.

本判定方法を用いれば、あらかじめ求めた判定条件と、研磨中に得られる定盤負荷電流値とから非破壊検査でリアルタイムに判定対象研磨布を本研磨に適用開始してよいか(換言すればダミー研磨を終了してよいか)を判定することができる。次に、本発明の一実施形態に従う研磨方法を、図5のフローチャートを参照して以下で説明する。 If this judgment method is used, it is possible to start applying the polishing cloth to be judged in real time to the main polishing by non-destructive inspection based on the judgment conditions obtained in advance and the surface plate load current value obtained during polishing (in other words, It is possible to determine whether the dummy polishing may be terminated. A polishing method according to one embodiment of the present invention will now be described below with reference to the flow chart of FIG.

(半導体ウェーハの研磨方法)
本発明の一実施形態による半導体ウェーハの研磨方法は、上述した半導体ウェーハ用研磨布の使用開始時期の判定方法に従い、判定対象研磨布(第2の半導体ウェーハ用研磨布)を使用開始可能と判定される回まではダミーウェーハ(非製品用の半導体ウェーハ)を用いて研磨を行う(S21~S23)。判定が完了するまではいわゆるダミー研磨を行うことに相当する。
(Semiconductor wafer polishing method)
In the method for polishing a semiconductor wafer according to one embodiment of the present invention, it is determined that the use of the polishing cloth to be determined (second polishing cloth for semiconductor wafers) can be started according to the above-described method for determining the time to start using the polishing cloth for semiconductor wafers. Polishing is performed using dummy wafers (semiconductor wafers for non-products) until the next time (S21 to S23). Until the judgment is completed, it corresponds to performing so-called dummy polishing.

そして、判定対象研磨布が使用開始可能と判定された回の後に、製品用の半導体ウェーハを用いて研磨を行う(S30)。使用開始可能と判定された回の次回から、本研磨を開始してもよいし、使用開始可能と判定された回の次回からさらに数回のダミー研磨を経て、本研磨を開始してもよい。 Then, after it is determined that the polishing cloth to be determined can be used, polishing is performed using a semiconductor wafer for production (S30). The main polishing may be started from the next time when it is determined that the use can be started, or the main polishing may be started after several times of dummy polishing from the next time when it is determined that the use can be started. .

本実施形態によれば、研磨布の使用開始時期を判定するために研磨を実質的に停止することなく、ダミー研磨の回数を少なくすることができる点でも、本研磨方法は有用である。 According to the present embodiment, the present polishing method is also useful in that the number of times of dummy polishing can be reduced without substantially stopping polishing to determine when to start using the polishing pad.

なお、ダミーウェーハには、製品用の半導体ウェーハと同種(同素材、同形状)の半導体ウェーハを用いることができる。ただし、ダミーウェーハの厚さに関しては、研磨可能でありさえすれば、製品用の半導体ウェーハより薄くてもよい。また、判定対象研磨布及び研磨装置を汚染しなければ、不純物が付着していてもよい。製品用ウェーハと異なり、ダミーウェーハは研磨可能な厚みを有すれば、繰り返しダミーウェーハをダミー研磨に供してもよい。 As the dummy wafer, a semiconductor wafer of the same type (same material, same shape) as the product semiconductor wafer can be used. However, the thickness of the dummy wafer may be thinner than the product semiconductor wafer as long as it can be polished. Impurities may be attached as long as they do not contaminate the polishing cloth to be judged and the polishing apparatus. Unlike product wafers, dummy wafers may be repeatedly subjected to dummy polishing as long as they have a thickness that enables polishing.

(半導体ウェーハ研磨システム)
図6を参照し、本発明の一実施形態に従う半導体ウェーハ研磨システムを説明する。半導体ウェーハ研磨システム100は、半導体ウェーハ190を保持する保持部120と、表面に研磨布112が設置された定盤110とを有し、この研磨布112に半導体ウェーハ190を接触させて、定盤110及び半導体ウェーハ190を回転させることで、半導体ウェーハ190の表面を研磨する研磨処理を、同一の研磨布112により複数回行う。そして、この半導体ウェーハ研磨システム100は、制御部130、並びに、制御部130を介して制御される波形解析部140、記憶部150、判定部160、ウェーハ交換部170をさらに備える。ウェーハ交換部170はダミーウェーハ保管部171及び製品用ウェーハ保管部172を有することができ、ダミーウェーハ保管部171にはダミー研磨用のダミーウェーハが格納され、製品用ウェーハ保管部172には本研磨用の半導体ウェーハ190が保管される。
(semiconductor wafer polishing system)
Referring to FIG. 6, a semiconductor wafer polishing system according to one embodiment of the invention is described. The semiconductor wafer polishing system 100 has a holder 120 that holds a semiconductor wafer 190 and a surface plate 110 having a polishing cloth 112 on the surface thereof. By rotating 110 and semiconductor wafer 190 , polishing processing for polishing the surface of semiconductor wafer 190 is performed multiple times with the same polishing pad 112 . The semiconductor wafer polishing system 100 further includes a control section 130 , and a waveform analysis section 140 , a storage section 150 , a determination section 160 and a wafer exchange section 170 which are controlled via the control section 130 . The wafer exchange unit 170 can have a dummy wafer storage unit 171 and a product wafer storage unit 172. The dummy wafer storage unit 171 stores dummy wafers for dummy polishing, and the product wafer storage unit 172 stores actual polishing. A semiconductor wafer 190 for is stored.

そして、記憶部150には、研磨布112と同種の研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨したときに、各回研磨での定盤110の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の半導体ウェーハ190の研磨結果指標との対応関係に基づく判定条件が記憶されている。本実施形態における波形解析手法、研磨結果指標及び判定条件については上述の判定方法の実施形態におけるプレ研磨布を用いて行った場合と同様であり、詳細については既述の説明を援用する。 The storage unit 150 stores the time of the surface plate load current value of the surface plate 110 at each polishing time when the surfaces of at least one or more semiconductor wafers are successively polished using a polishing cloth of the same kind as the polishing cloth 112. A determination condition based on the correspondence relationship between the result of waveform analysis of the waveform data and the polishing result index of the semiconductor wafer 190 after each polishing is stored. The waveform analysis method, polishing result index, and determination conditions in this embodiment are the same as in the case of using the pre-polishing cloth in the embodiment of the determination method described above, and the above description is used for details.

制御部130は、まず、(i)保持部120にダミーウェーハを保持させる。ダミーウェーハは、ウェーハ交換部170が有するダミーウェーハ保管部171から取得すればよい。 The control unit 130 first (i) causes the holding unit 120 to hold a dummy wafer. The dummy wafer may be acquired from the dummy wafer storage section 171 of the wafer exchange section 170 .

次に、制御部130は、(ii)波形解析部140を用いて、記憶部150に記憶された研磨条件と同種の研磨条件を用いて、少なくとも1枚以上のダミーウェーハを順次研磨して、各回研磨での時間波形データを取得して波形解析する。波形解析部140が定盤負荷電流値の波形データを取得する取得部を兼ねてもよい。定盤負荷電流値は、定盤110を回転させるモータ等から取得することができる。 Next, the control unit 130 (ii) uses the waveform analysis unit 140 to sequentially polish at least one or more dummy wafers using polishing conditions similar to the polishing conditions stored in the storage unit 150, Acquire the time waveform data in each polishing and analyze the waveform. The waveform analysis unit 140 may also serve as an acquisition unit that acquires the waveform data of the surface plate load current value. The platen load current value can be obtained from a motor or the like that rotates the platen 110 .

引き続き、制御部130は、(iii)判定部160を用いて、ダミーウェーハを用いて波形解析した結果が、記憶部150に記憶された判定条件を満足するか否かを判定する。 Subsequently, (iii) the control unit 130 uses the determination unit 160 to determine whether or not the result of the waveform analysis using the dummy wafer satisfies the determination conditions stored in the storage unit 150 .

そして制御部130は、(iv)判定条件を満足した後、ウェーハ交換部170を用いて保持部120に半導体ウェーハ190を保持させる。したがって、研磨対象がダミーウェーハから半導体ウェーハに切り替わる。 After (iv) the determination condition is satisfied, the control unit 130 causes the holding unit 120 to hold the semiconductor wafer 190 using the wafer exchange unit 170 . Therefore, the object to be polished is switched from the dummy wafer to the semiconductor wafer.

半導体ウェーハ研磨システム100を用いることにより、上記研磨方法を行うことができる。 By using the semiconductor wafer polishing system 100, the above polishing method can be performed.

なお、上述した判定方法、研磨方法及び研磨システムは任意の半導体ウェーハの研磨装置に用いる研磨布に適用可能であるが、特に片面研磨装置の研磨布に適用することが好ましい。 The determination method, polishing method, and polishing system described above can be applied to any polishing cloth used in a polishing apparatus for semiconductor wafers, but it is particularly preferable to apply them to a polishing cloth for a single-sided polishing apparatus.

本発明が研磨対象とする半導体ウェーハはシリコンウェーハであることが好ましいが、他にも、例えば、SiCウェーハ、サファイアウェーハなどの任意の半導体ウェーハに対しても本発明を適用することが可能である。また、半導体ウェーハはバルクのウェーハであってもよいし、その表面にホモエピタキシャル層又はヘテロエピタキシャル層が形成されていてもよいし、貼合せウェーハであってもよい。 The semiconductor wafers to be polished by the present invention are preferably silicon wafers, but the present invention can also be applied to any other semiconductor wafers such as SiC wafers and sapphire wafers. . The semiconductor wafer may be a bulk wafer, may have a homoepitaxial layer or heteroepitaxial layer formed on its surface, or may be a bonded wafer.

また、定盤110及び研磨布112には、半導体ウェーハの研磨装置に用いられる一般的な構成を適用することができる。また、片面研磨装置においては、保持部120に研磨ヘッドを適用することができる。両研磨装置においては保持部120にロボットハンド及びそれに取り付けたウェーハチャック等を適用することができ、保持部120を用いてキャリアプレートに半導体ウェーハ190を装填すればよい。 In addition, for the surface plate 110 and the polishing cloth 112, a general configuration used in a polishing apparatus for semiconductor wafers can be applied. Also, in the single-side polishing apparatus, a polishing head can be applied to the holding portion 120 . In both polishing apparatuses, a robot hand and a wafer chuck attached thereto can be applied to the holding part 120, and the semiconductor wafer 190 can be loaded onto the carrier plate using the holding part 120. FIG.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to the following examples.

既述の予備実験例において取得した定盤負荷電流値から、SAX法により離散パラメータ群を取得した。具体的な離散化条件は次のとおりである。定盤負荷電流値については6段階に分割し、レベルA~Fに符号化(レベルAが低電流値領域であり、レベルFが高電流値領域である)した。時間軸については研磨時間を正規化した後、53区間に分割して最終6区間を除外した。SAX法による離散化後の定盤負荷電流値のグラフを図7Aに示し、図7Aの各研磨回の符号出現頻度を研磨回の順序で並べた帯グラフを図7Bに示す。図7Aには、既述の予備実験例と同様、34個の波形データ(図2参照)から取得した34個の離散パラメータ群を重ね合わせている。なお、各回研磨後のウェーハ1枚あたりのLPD個数は、既述の図4に示したとおりである。 A group of discrete parameters was obtained by the SAX method from the platen load current values obtained in the preliminary experimental example described above. Specific discretization conditions are as follows. The platen load current value was divided into six levels and coded into levels A to F (level A is a low current value region and level F is a high current value region). As for the time axis, after normalizing the polishing time, it was divided into 53 sections and the last 6 sections were excluded. FIG. 7A shows a graph of the surface plate load current value after discretization by the SAX method, and FIG. 7B shows a band graph in which the code appearance frequencies of each polishing cycle in FIG. 7A are arranged in the order of polishing cycles. In FIG. 7A, 34 discrete parameter groups obtained from 34 waveform data (see FIG. 2) are superimposed as in the preliminary experiment example described above. The number of LPDs per wafer after polishing each time is as shown in FIG. 4 already described.

図4と図7Bとを対比し、本実施例1では、以下の3種の判定条件を得た。
・判定条件1:離散パラメータ群にレベルEが10個以上出現すれば、本研磨を開始可能と判定する。
研磨バッチ8回目のLPD個数がそれより前のLPD個数から急速に低減し、当該研磨バッチでレベルEが初めて10個以上出現したためである。
・判定条件2:離散パラメータ群にレベルEが10個以上出現する研磨バッチが2回連続したら本研磨を開始可能と判定する。
研磨バッチ9回目では8回目に引き続きレベルEが10個以上出現したためである。
・判定条件3:離散パラメータ群にレベルFが出現すれば、本研磨を開始可能と判定する。
研磨バッチ12回目で初めてレベルFが出現したためである。
By comparing FIG. 4 and FIG. 7B, in Example 1, the following three types of determination conditions were obtained.
Judgment condition 1: If 10 or more levels E appear in the discrete parameter group, it is judged that the main polishing can be started.
This is because the number of LPDs in the eighth polishing batch rapidly decreased from the number of LPDs before that, and 10 or more level E appeared for the first time in this polishing batch.
Judgment condition 2: If there are two consecutive polishing batches in which 10 or more levels E appear in the discrete parameter group, it is judged that the main polishing can be started.
This is because in the 9th polishing batch, 10 or more levels E appeared following the 8th polishing batch.
- Judgment condition 3: If level F appears in the discrete parameter group, it is judged that the main polishing can be started.
This is because level F appeared for the first time in the 12th polishing batch.

本研磨開始後のLPD個数をより確実に低減するためには、判定条件3が最も好ましく、次に条件2が好ましく、条件1でも確実に本研磨開始後のLPD個数を低減できる。 In order to more reliably reduce the number of LPDs after the start of main polishing, judgment condition 3 is the most preferable, followed by condition 2. Even under condition 1, the number of LPDs after the start of main polishing can be reliably reduced.

従来はダミー研磨の回数を20回としていたところ、本実施例1の判定条件2を用いて評価を行うことによりダミー研磨を約8回で終了することができた。そして、ダミー研磨終了後のLPD個数の水準も、従来のダミー研磨を20回としていた場合と同等であることを確認した。これにより、本発明の判定条件を適用可能であることを確認できた。 Conventionally, the number of times of dummy polishing was set to 20 times. It was also confirmed that the level of the number of LPDs after completion of the dummy polishing was the same as in the conventional case where the dummy polishing was performed 20 times. From this, it was confirmed that the determination conditions of the present invention can be applied.

直径300mm、総厚み775μmであるシリコンウェーハを34枚用意した。また、枚葉式の片面研磨装置の定盤に、既述の予備実験例と同型番であり、未使用状態のスウェード素材の研磨布を設置した。この枚葉式片面研磨装置を用いて、水溶性高分子成分をさらに含んだコロイダルシリカ砥粒含有アルカリ研磨液を研磨スラリーとして研磨布表面に供給しながら、1枚のシリコンウェーハの表面を化学機械研磨して、研磨を終える度にシリコンウェーハを交換して、これら34枚のシリコンウェーハの片面研磨を同様の研磨条件で順次行った。研磨中には定盤負荷電流値を測定した。 Thirty-four silicon wafers having a diameter of 300 mm and a total thickness of 775 μm were prepared. Also, on the surface plate of the single-wafer single-sided polishing apparatus, an unused suede polishing cloth having the same model number as that of the preliminary experiment was set. Using this single-wafer single-sided polishing apparatus, the surface of one silicon wafer is chemically mechanically polished while supplying an alkaline polishing liquid containing colloidal silica abrasive grains further containing a water-soluble polymer component as a polishing slurry onto the surface of the polishing cloth. Each time polishing was completed, the silicon wafers were exchanged, and one-side polishing of these 34 silicon wafers was sequentially performed under the same polishing conditions. The platen load current value was measured during polishing.

取得した定盤負荷電流値から、SAX法により離散パラメータ群を取得した。具体的な離散化条件は次のとおりである。定盤負荷電流値については10段階に分割し、レベルA~Jに符号化(レベルAが低電流値領域であり、レベルJが高電流値領域である)した。時間軸については研磨時間を正規化した後、50区間に分割した。SAX法による離散化後の定盤負荷電流値のグラフを図8Aに示し、図8Aの各研磨回の符号出現頻度を研磨回の順序で並べた帯グラフを図8Bに示す。図8Aには、34個の離散パラメータ群を重ね合わせている。 A group of discrete parameters was obtained by the SAX method from the obtained platen load current values. Specific discretization conditions are as follows. The platen load current value was divided into 10 levels and coded into levels A to J (level A is a low current value region and level J is a high current value region). The time axis was divided into 50 sections after normalizing the polishing time. FIG. 8A shows a graph of the surface plate load current value after discretization by the SAX method, and FIG. 8B shows a band graph in which the code appearance frequency of each polishing cycle in FIG. 8A is arranged in the order of polishing cycles. 34 discrete parameter groups are superimposed on FIG. 8A.

また、各回研磨後のウェーハ1枚あたりのLPD個数を予備実験例と同様にして測定した。結果を図9に示す。 In addition, the number of LPDs per wafer after each polishing was measured in the same manner as in the preliminary experiment. The results are shown in FIG.

図9と図8Bとを対比し、本実施例2では、以下の2種の判定条件を得た。
・判定条件1:離散パラメータ群にレベルJが出現すれば、本研磨を開始可能と判定する。
研磨バッチ10回目のLPD個数がそれより前のLPD個数から急速に低減し、当該研磨バッチでレベルJが初めて出現したためである。
・判定条件2:離散パラメータ群にレベルJが出現する研磨バッチが2回連続したら本研磨を開始可能と判定する。
研磨バッチ13回目では12回目に引き続きレベルJが出現したためである。
By comparing FIG. 9 and FIG. 8B, the following two determination conditions were obtained in Example 2.
- Judgment condition 1: If level J appears in the discrete parameter group, it is judged that the main polishing can be started.
This is because the number of LPDs in the 10th polishing batch decreased rapidly from the number of LPDs before it, and level J appeared for the first time in this polishing batch.
Judgment condition 2: It is judged that the main polishing can be started when there are two continuous polishing batches in which level J appears in the discrete parameter group.
This is because level J appeared in the 13th polishing batch following the 12th polishing batch.

本研磨開始後のLPD個数をより確実に低減するためには、判定条件2が好ましく、判定条件1でも確実に本研磨開始後のLPD個数を低減できる。 In order to more reliably reduce the number of LPDs after the start of main polishing, determination condition 2 is preferable, and even with determination condition 1, the number of LPDs after the start of main polishing can be reliably reduced.

本発明によれば、半導体ウェーハ用研磨布の使用開始時期を正確かつリアルタイムに判定することのできる半導体ウェーハ用研磨布の使用開始時期の判定方法及びこれを用いた半導体ウェーハの研磨方法、並びに半導体ウェーハ研磨システムを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there are provided a method for judging the timing of starting use of a polishing cloth for semiconductor wafers, which can accurately and in real time determine the timing for starting use of a polishing cloth for semiconductor wafers, a method for polishing semiconductor wafers using the same, and a semiconductor. A wafer polishing system can be provided.

110 定盤
112 半導体ウェーハ用研磨布
120 保持部
130 制御部
140 波形解析部
150 記憶部
160 判定部
170 ウェーハ交換部
171 ダミーウェーハ保管部
172 製品用ウェーハ保管部
190 半導体ウェーハ

110 surface plate 112 semiconductor wafer polishing cloth 120 holder 130 control unit 140 waveform analysis unit 150 storage unit 160 determination unit 170 wafer exchange unit 171 dummy wafer storage unit 172 product wafer storage unit 190 semiconductor wafer

Claims (6)

半導体ウェーハの研磨装置の定盤に設置された半導体ウェーハ用研磨布の使用開始時期の判定方法であって、
第1の半導体ウェーハ用研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨し、各回研磨での前記定盤の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の前記半導体ウェーハの研磨結果指標との対応関係に基づく判定条件を求める予備工程と、
第2の半導体ウェーハ用研磨布を前記定盤に設置する第1工程と、
前記予備工程と同種の研磨条件を用いて、少なくとも1枚以上の半導体ウェーハを順次研磨して、各回研磨での前記時間波形データを取得して波形解析する第2工程と、
前記第2工程において波形解析した結果が、前記判定条件を満足するか否かを判定する第3工程と、
を含むことを特徴とする半導体ウェーハ用研磨布の使用開始時期の判定方法。
A method for determining when to start using a semiconductor wafer polishing cloth placed on a surface plate of a semiconductor wafer polishing apparatus, comprising:
The surface of at least one or more semiconductor wafers is sequentially polished using the first polishing cloth for semiconductor wafers, and the result of waveform analysis of the time waveform data of the surface plate load current value of the surface plate in each polishing, and each time a preliminary step of obtaining a judgment condition based on a correspondence relationship with the polishing result index of the semiconductor wafer after polishing;
a first step of placing a second semiconductor wafer polishing cloth on the surface plate;
a second step of sequentially polishing at least one or more semiconductor wafers using the same polishing conditions as in the preliminary step, acquiring the time waveform data in each polishing step, and analyzing the waveform;
a third step of determining whether the result of waveform analysis in the second step satisfies the determination condition;
A method for determining when to start using a polishing pad for semiconductor wafers, comprising:
前記研磨結果指標は研磨後の半導体ウェーハの被研磨面において観察されるLPD個数である、請求項1に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 2. The method for determining when to start using a polishing cloth for semiconductor wafers according to claim 1, wherein said polishing result index is the number of LPDs observed on the polished surface of the semiconductor wafer after polishing. SAX法を用いて前記時間波形データにおける前記定盤負荷電流値を3段階以上に分割して符号化し、かつ、時系列に対応させた離散パラメータ群を求めることにより前記波形解析を行う、請求項1又は2に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 The waveform analysis is performed by dividing the surface plate load current value in the time waveform data into three or more stages using the SAX method, encoding the values, and obtaining a discrete parameter group corresponding to the time series. 3. A method for determining when to start using the polishing pad for semiconductor wafers according to 1 or 2. 前記研磨装置は半導体ウェーハの片面研磨装置である、請求項1~3のいずれか1項に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法。 4. The method for judging when to start using a polishing cloth for semiconductor wafers according to claim 1, wherein said polishing apparatus is a single-sided polishing apparatus for semiconductor wafers. 請求項1~4のいずれか1項に記載の半導体ウェーハ用研磨布の使用開始時期の判定方法に従い、前記第2の半導体ウェーハ用研磨布を使用開始可能と判定される回までは非製品用の半導体ウェーハを用いて前記研磨を行い、前記使用開始可能と判定された回の後に製品用の半導体ウェーハを用いて前記研磨を行うことを特徴とする半導体ウェーハの研磨方法。 According to the method for determining when to start using the polishing cloth for semiconductor wafers according to any one of claims 1 to 4, the second polishing cloth for semiconductor wafers is for non-product use until it is determined that it is possible to start using it. and performing the polishing using a product semiconductor wafer after the time when it is determined that the use can be started. 半導体ウェーハを保持する保持部と、表面に研磨布が設置された定盤とを有し、前記研磨布に前記半導体ウェーハを接触させて、前記定盤及び前記半導体ウェーハを回転させることで、前記半導体ウェーハの表面を研磨する研磨処理を、同一の研磨布により複数回行う半導体ウェーハ研磨システムであって、
半導体ウェーハ研磨システムは、制御部、並びに、前記制御部を介して制御される波形解析部、記憶部、判定部、ウェーハ交換部をさらに備え、
前記記憶部には、前記研磨布と同種の研磨布を用いて少なくとも1枚以上の半導体ウェーハの表面を順次研磨したときに、各回研磨での前記定盤の定盤負荷電流値の時間波形データを波形解析した結果と、各回研磨後の前記半導体ウェーハの研磨結果指標との対応関係に基づく判定条件が記憶され、
前記制御部は、
(i)前記保持部にダミーウェーハを保持させ、
(ii)前記波形解析部を用いて、前記記憶部に記憶された研磨条件と同種の研磨条件を用いて、少なくとも1枚以上の前記ダミーウェーハを順次研磨して、各回研磨での前記時間波形データを取得して波形解析し、
(iii)前記判定部を用いて、前記ダミーウェーハを用いて波形解析した結果が、前記記憶部に記憶された判定条件を満足するか否かを判定し、
(iv)前記判定条件を満足した後、前記ウェーハ交換部を用いて前記保持部に前記半導体ウェーハを保持させる
ことを特徴とする半導体ウェーハ研磨システム。
A holding part for holding a semiconductor wafer and a surface plate having a polishing cloth on the surface thereof are provided. A semiconductor wafer polishing system that performs polishing processing for polishing the surface of a semiconductor wafer multiple times with the same polishing cloth,
The semiconductor wafer polishing system further comprises a control unit, and a waveform analysis unit, a storage unit, a determination unit, and a wafer exchange unit controlled via the control unit,
Time waveform data of the surface plate load current value of the surface plate in each polishing when the surfaces of at least one or more semiconductor wafers are sequentially polished using a polishing cloth of the same kind as the polishing cloth, in the storage unit. and a determination condition based on a correspondence relationship between a result of waveform analysis of and a polishing result index of the semiconductor wafer after each polishing,
The control unit
(i) causing the holder to hold a dummy wafer;
(ii) using the waveform analysis unit to sequentially polish at least one or more dummy wafers using the same polishing conditions as the polishing conditions stored in the storage unit, and the time waveform in each polishing; Acquire data, analyze waveforms,
(iii) using the determination unit to determine whether the result of waveform analysis using the dummy wafer satisfies the determination conditions stored in the storage unit;
(iv) A semiconductor wafer polishing system, wherein after the determination condition is satisfied, the semiconductor wafer is held by the holding section using the wafer exchange section.
JP2019237212A 2019-12-26 2019-12-26 METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM Active JP7215412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237212A JP7215412B2 (en) 2019-12-26 2019-12-26 METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237212A JP7215412B2 (en) 2019-12-26 2019-12-26 METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM

Publications (2)

Publication Number Publication Date
JP2021106226A JP2021106226A (en) 2021-07-26
JP7215412B2 true JP7215412B2 (en) 2023-01-31

Family

ID=76919631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237212A Active JP7215412B2 (en) 2019-12-26 2019-12-26 METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM

Country Status (1)

Country Link
JP (1) JP7215412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994596B1 (en) 2021-06-28 2022-01-14 Dmg森精機株式会社 Machine tools and display controls

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432728B1 (en) 2000-10-16 2002-08-13 Promos Technologies, Inc. Method for integration optimization by chemical mechanical planarization end-pointing technique
JP2005288664A (en) 2004-04-05 2005-10-20 Ebara Corp Polishing device and method for detecting completion of polishing pad standing
JP2008027937A (en) 2006-07-18 2008-02-07 Hitachi High-Technologies Corp Vacuum processing apparatus
JP2011086704A (en) 2009-10-14 2011-04-28 Sumco Corp Semiconductor wafer polishing system and method
JP2016143837A (en) 2015-02-04 2016-08-08 信越半導体株式会社 Polishing-cloth start-up method and polishing method
JP2018074086A (en) 2016-11-02 2018-05-10 株式会社Sumco Semiconductor wafer both-sided polishing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432728B1 (en) 2000-10-16 2002-08-13 Promos Technologies, Inc. Method for integration optimization by chemical mechanical planarization end-pointing technique
JP2005288664A (en) 2004-04-05 2005-10-20 Ebara Corp Polishing device and method for detecting completion of polishing pad standing
JP2008027937A (en) 2006-07-18 2008-02-07 Hitachi High-Technologies Corp Vacuum processing apparatus
JP2011086704A (en) 2009-10-14 2011-04-28 Sumco Corp Semiconductor wafer polishing system and method
JP2016143837A (en) 2015-02-04 2016-08-08 信越半導体株式会社 Polishing-cloth start-up method and polishing method
JP2018074086A (en) 2016-11-02 2018-05-10 株式会社Sumco Semiconductor wafer both-sided polishing method

Also Published As

Publication number Publication date
JP2021106226A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
KR20020001839A (en) Method and apparatus for polishing outer peripheral chamfered part of wafer
TWI515783B (en) Processing method of semiconductor wafers
US7077726B2 (en) Semiconductor wafer with improved local flatness, and method for its production
KR101624151B1 (en) Machining process of semiconductor wafer
JP2005501410A (en) CMP process including monitoring based on frequency analysis
US11948789B2 (en) Wafer production method
JP2018074086A (en) Semiconductor wafer both-sided polishing method
US11355346B2 (en) Methods for processing semiconductor wafers having a polycrystalline finish
JP7215412B2 (en) METHOD FOR DETERMINING TIME TO BEGIN USE OF POLISHING CLOTH FOR SEMICONDUCTOR WAFERS, METHOD FOR POLISHING SEMICONDUCTOR WAFERS USING THE SAME, AND SEMICONDUCTOR WAFER POLISHING SYSTEM
JP2002542613A (en) How to adjust a wafer polishing pad
JP6323515B2 (en) Semiconductor wafer wrapping method and semiconductor wafer
JP2006294774A (en) Evaluation method of semiconductor wafer, evaluation device, and manufacturing method of semiconductor wafer
US6599174B1 (en) Eliminating dishing non-uniformity of a process layer
US9193025B2 (en) Single side polishing using shape matching
JP5515253B2 (en) Manufacturing method of semiconductor wafer
JP2010153844A (en) Method of producing wafer for active layer
WO1999031723A1 (en) Method of improving the flatness of polished semiconductor wafers
TWI771276B (en) Methods for processing semiconductor wafers having a polycrystalline finish
US20160207161A1 (en) Method of polishing wafer and wafer polishing apparatus
CN116922164A (en) Method for manufacturing ultra-flat chip on regenerated wafer by using difference value between Bow and TTV
JP2003007659A (en) Method of manufacturing silicon semiconductor wafer
KR20110042438A (en) Polishing method of sapphire wafer
JP2003347257A (en) Wrapping method of semiconductor wafer
JP2009255217A (en) Evaluation method for consumable material
JP2005135936A (en) Wafer-chamfering method and wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150