JP7211669B2 - Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof - Google Patents

Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof Download PDF

Info

Publication number
JP7211669B2
JP7211669B2 JP2021551986A JP2021551986A JP7211669B2 JP 7211669 B2 JP7211669 B2 JP 7211669B2 JP 2021551986 A JP2021551986 A JP 2021551986A JP 2021551986 A JP2021551986 A JP 2021551986A JP 7211669 B2 JP7211669 B2 JP 7211669B2
Authority
JP
Japan
Prior art keywords
copper foil
secondary battery
electrolytic copper
electrolytic
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551986A
Other languages
Japanese (ja)
Other versions
JP2022522513A (en
Inventor
スン ミン キム
イン ス ジュン
ヨン テ キム
サン ヒュン ジュン
Original Assignee
エスケー ネクシリス カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスケー ネクシリス カンパニー リミテッド filed Critical エスケー ネクシリス カンパニー リミテッド
Publication of JP2022522513A publication Critical patent/JP2022522513A/en
Application granted granted Critical
Publication of JP7211669B2 publication Critical patent/JP7211669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/181Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/187Mixtures of inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は引裂またはシワ不良を防止するために、谷平均粗さ(Valley Mean Roughness、VMR)が最適化された電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関する。 The present invention relates to an electrodeposited copper foil with optimized Valley Mean Roughness (VMR) to prevent tearing or wrinkling, an electrode containing the same, a secondary battery containing the same, and a method for producing the same. .

二次電池は電気エネルギーを化学エネルギーに変えて貯蔵してから、電気が必要な時に化学エネルギーを再び電気エネルギーに変換させることによって電気を発生させるエネルギー変換機器の一種であり、携帯電話、ノートパソコンなどのような携帯用家電はもちろん、電気自動車のエネルギー源として利用されている。二次電池は再充電が可能であるという点で充電式電池(rechargeable battery)とも呼ばれる。 A secondary battery is a type of energy conversion device that converts electrical energy into chemical energy, stores it, and converts the chemical energy back into electrical energy to generate electricity when electricity is needed. It is used as an energy source for electric vehicles as well as portable home appliances such as Secondary batteries are also called rechargeable batteries in that they can be recharged.

使い捨ての一次電池に比べ、経済的にそして環境的に利点を有している二次電池としては、鉛蓄電池、ニッケルカドミウム二次電池、ニッケル水素二次電池、リチウム二次電池などがある。 Secondary batteries that have economic and environmental advantages over disposable primary batteries include lead-acid batteries, nickel-cadmium secondary batteries, nickel-hydrogen secondary batteries, and lithium secondary batteries.

特に、リチウム二次電池は他の二次電池に比べて大きさおよび重量対比相対的に多くのエネルギーを貯蔵することができる。したがって、携帯性および移動性が重要な情報通信機器分野の場合、リチウム二次電池が好まれており、ハイブリッド自動車および電気自動車のエネルギー貯蔵装置にもその応用範囲が拡大している。 In particular, a lithium secondary battery can store a large amount of energy relative to its size and weight compared to other secondary batteries. Therefore, lithium secondary batteries are preferred in the field of information communication equipment where portability and mobility are important, and their application range is expanding to energy storage devices for hybrid and electric vehicles.

リチウム二次電池は充電と放電を一つの周期として繰り返し使われる。完全に充電されたリチウム二次電池で何らかの機器を稼動させる時、前記機器の稼動時間を増やすためには前記リチウムイオン二次電池が高い充電/放電容量を有さなければならない。したがって、リチウム二次電池の充電/放電容量に対する需要者の日々高まる期待値(needs)を満足させるための研究が持続的に要求されている。 Lithium secondary batteries are repeatedly used in cycles of charging and discharging. When operating some device with a fully charged lithium secondary battery, the lithium ion secondary battery should have high charge/discharge capacity in order to increase the operating time of the device. Therefore, there is a continuous demand for research to meet the increasing needs of consumers for the charge/discharge capacity of lithium secondary batteries.

このような二次電池は銅箔からなる負極集電体を含むが、銅箔のうち、電解銅箔が二次電池の負極集電体として広く使われている。二次電池に対する需要の増加とともに、高容量、高効率および高品質の二次電池に対する需要が増加するにつれ、二次電池の特性を向上させ得る電解銅箔が要求されている。特に、二次電池の高容量化および安定した容量維持を担保できる電解銅箔が要求されている。 Such a secondary battery includes a negative electrode current collector made of copper foil, and among copper foils, electrolytic copper foil is widely used as the negative electrode current collector of the secondary battery. As the demand for secondary batteries increases and the demand for secondary batteries with high capacity, high efficiency and high quality increases, there is a demand for an electrolytic copper foil that can improve the characteristics of secondary batteries. In particular, there is a demand for an electrolytic copper foil that can ensure high capacity secondary batteries and stable capacity maintenance.

電解銅箔の厚さが薄いほど同一空間に含まれ得る活物質の量が増加し、集電体数が増加し得るため、二次電池の容量が増加し得る。しかし、電解銅箔が薄いほどカール(curl)が発生し、電解銅箔の巻き取り時にエッジ(edge)部のカールによる電解銅箔の引裂(tear)またはシワ(wrinkle)のような不良が発生するため、極薄膜(very thin film)形態の電解銅箔を製造および使用するのに困難がある。したがって、非常に薄い厚さを有する電解銅箔の製造のために、電解銅箔のカール(curl)が防止されなければならない。 As the thickness of the electrodeposited copper foil becomes thinner, the amount of active material that can be contained in the same space increases and the number of current collectors increases, thereby increasing the capacity of the secondary battery. However, the thinner the electrodeposited copper foil, the more curling occurs, and defects such as tearing or wrinkling of the electrodeposited copper foil occur due to the curling of the edge portion when the electrodeposited copper foil is wound. Therefore, it is difficult to manufacture and use a very thin film type electrodeposited copper foil. Therefore, in order to manufacture an electrodeposited copper foil having a very thin thickness, curling of the electrodeposited copper foil should be prevented.

また、電解銅箔の製造過程だけでなく、電解銅箔を利用した二次電池用電極または二次電池の製造過程時に電解銅箔での引裂またはシワが発生してはならない。特に、ロール-ツー-ロール(Roll to Roll、RTR)工程による電解銅箔または電解銅箔を利用した二次電池用電極の製造過程で、巻き取り過程または活物質のコーティング過程において電解銅箔の角が引き裂かれるなどの不良が発生してはならない。 In addition, the electrodeposited copper foil should not be torn or wrinkled during the manufacturing process of the secondary battery electrode or the secondary battery using the electrodeposited copper foil. In particular, in the process of manufacturing an electrodeposited copper foil or a secondary battery electrode using the electrodeposited copper foil by a roll-to-roll (RTR) process, the electrodeposited copper foil is removed during the winding process or the coating process of the active material. Defects such as corner tearing should not occur.

したがって、本発明は前記のような関連技術の制限および要求を満足できる電解銅箔、それを含む電極、それを含む二次電池、および電解銅箔の製造方法に関する。 Accordingly, the present invention relates to an electrodeposited copper foil, an electrode including the same, a secondary battery including the same, and a method for manufacturing the electrodeposited copper foil that can satisfy the limitations and requirements of the related art as described above.

本発明の一実施形態は薄い厚さを有しても、製造過程でカール、シワまたは引裂が発生しない電解銅箔を提供しようとする。また、本発明の一実施形態は、電解銅箔を利用した二次電池用電極または二次電池の製造過程でカール、シワまたは引裂が発生しない電解銅箔を提供しようとする。 An embodiment of the present invention seeks to provide an electrodeposited copper foil that does not curl, wrinkle, or tear during the manufacturing process even though it has a small thickness. In addition, an embodiment of the present invention provides an electrode for a secondary battery using the electrodeposited copper foil or an electrodeposited copper foil that does not curl, wrinkle, or tear during the manufacturing process of the secondary battery.

本発明の他の一実施形態は、このような電解銅箔を含む二次電池用電極、およびこのような二次電池用電極を含む二次電池を提供しようとする。 Another embodiment of the present invention seeks to provide a secondary battery electrode including such an electrolytic copper foil, and a secondary battery including such a secondary battery electrode.

本発明のさらに他の一実施形態は、カール、シワまたは引裂の発生が防止された電解銅箔の製造方法を提供しようとする。 Yet another embodiment of the present invention seeks to provide a method for manufacturing an electrolytic copper foil that prevents curling, wrinkling, or tearing.

前述した本発明の観点の他にも、本発明の他の特徴および利点が以下で説明されるか、そのような説明から本発明が属する技術分野で通常の知識を有する者に明確に理解され得るであろう。 In addition to the aspects of the invention described above, other features and advantages of the invention are set forth below or may be apparent from such description to those of ordinary skill in the art to which the invention pertains. would get.

前記のような本発明の一観点により、銅層を含み、0.8~12.5の谷平均粗さ(Valley Mean Roughness)、0.49~1.28の(220)面集合組織係数[TC(220)]、25~51kgf/mmの引張強度、および3%以下の幅方向重量偏差を有する電解銅箔が提供され、前記幅方向重量偏差は下記の式1で算出され、前記谷平均粗さ(Valley Mean Roughness)は下記の式2で算出される。 According to one aspect of the present invention as described above, comprising a copper layer and having a Valley Mean Roughness of 0.8-12.5, a (220) plane texture coefficient of 0.49-1.28 [ TC(220)], a tensile strength of 25 to 51 kgf/mm 2 , and a widthwise weight deviation of 3% or less. The average roughness (Valley Mean Roughness) is calculated by Equation 2 below.

[式1]
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[Formula 1]
Width direction weight deviation (%) = (standard deviation of weight / arithmetic mean of weight) × 100

[式2]
谷平均粗さVMR=[粗さプロファイルの最大谷深さRv]/[表面粗さRa]
[Formula 2]
Valley average roughness VMR = [maximum valley depth Rv of roughness profile] / [surface roughness Ra]

前記電解銅箔は2.5μm以下の表面粗さを有することができる。 The electrolytic copper foil may have a surface roughness of 2.5 μm or less.

前記電解銅箔は両面の表面粗さの差が0.65μm以下であり得る。 The electrodeposited copper foil may have a surface roughness difference of 0.65 μm or less between both surfaces.

前記電解銅箔は4~30μmの厚さを有することができる。 The electrolytic copper foil may have a thickness of 4-30 μm.

前記電解銅箔は前記銅層に配置された保護層を含むことができる。 The electrolytic copper foil may include a protective layer disposed on the copper layer.

前記保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。 The protective layer may include at least one of chromium (Cr), a silane compound, and a nitrogen compound.

本発明の他の観点により、電解銅箔;および前記電解銅箔上に配置された活物質層を含むものの、前記電解銅箔は銅層を含み;0.8~12.5の谷平均粗さ(Valley Mean Roughness);0.49~1.28の(220)面集合組織係数[TC(220)];25~51kgf/mmの引張強度;および3%以下の幅方向重量偏差;を有する二次電池用電極が提供され、前記幅方向重量偏差は下記の式1で算出され、前記谷平均粗さ(Valley Mean Roughness)は下記の式2で算出される。 According to another aspect of the present invention, an electrodeposited copper foil; and an active material layer disposed on said electrodeposited copper foil, said electrodeposited copper foil comprising a copper layer; (220) plane texture coefficient [TC(220)] of 0.49 to 1.28; tensile strength of 25 to 51 kgf/ mm2 ; and width direction weight deviation of 3% or less; The width direction weight deviation is calculated by Equation 1 below, and the Valley Mean Roughness is calculated by Equation 2 below.

[式1]
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[Formula 1]
Width direction weight deviation (%) = (standard deviation of weight / arithmetic mean of weight) × 100

[式2]
谷平均粗さVMR=[粗さプロファイルの最大谷深さRv]/[表面粗さRa]
[Formula 2]
Valley average roughness VMR = [maximum valley depth Rv of roughness profile] / [surface roughness Ra]

前記二次電池用電極の電解銅箔は2.5μm以下の表面粗さを有することができる。 The electrolytic copper foil of the secondary battery electrode may have a surface roughness of 2.5 μm or less.

前記二次電池用電極の電解銅箔は両面の表面粗さの差が0.65μm以下であり得る。 The electrolytic copper foil of the secondary battery electrode may have a surface roughness difference of 0.65 μm or less between both surfaces.

前記二次電池用電極の電解銅箔は4~30μmの厚さを有することができる。 The electrolytic copper foil of the secondary battery electrode may have a thickness of 4 to 30 μm.

前記二次電池用電極の電解銅箔は前記銅層に配置された保護層を含むことができる。 The electrolytic copper foil of the secondary battery electrode may include a protective layer disposed on the copper layer.

前記二次電池用電極の保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。 The secondary battery electrode protective layer may include at least one of chromium (Cr), a silane compound, and a nitrogen compound.

前記活物質層は、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質を含むことができる。 The active material layer includes carbon; a metal of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; an oxide of the metal; and a composite of the metal and carbon. one or more active materials selected from the group consisting of

本発明のさらに他の観点により、正極(cathode);前記二次電池用電極で構成された負極(anode);前記正極と負極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および前記正極と前記負極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池が提供される。 According to still another aspect of the present invention, a positive electrode; a negative electrode composed of the electrode for a secondary battery; an electrolyte providing an environment in which lithium ions can move between the positive electrode and the negative electrode; and a separator electrically insulating the positive electrode and the negative electrode.

本発明のさらに他の観点により、電解液を準備する段階;および前記電解液を利用して電気メッキを遂行して銅層を形成する段階を含み、前記電解液は、70~90g/Lの銅イオン、50~150g/Lの硫酸、5~45mg/Lのヒ素(As)、5~25mg/Lのアセトアミド(Acetamide)、および5~20mg/Lのポリプロピレングリコール(Polypropyleneglycol、PPG)を含み、前記銅層を形成する段階は、前記電解液内に互いに離隔するように配置された電極板および回転ドラムの間に40~80A/dmの電流密度を加える段階を含む電解銅箔製造方法が提供される。 According to still another aspect of the present invention, the steps of preparing an electrolytic solution; and performing electroplating using the electrolytic solution to form a copper layer, the electrolytic solution containing 70-90 g/L Copper ions, 50-150 g/L sulfuric acid, 5-45 mg/L arsenic (As), 5-25 mg/L acetamide, and 5-20 mg/L Polypropylene glycol (PPG), forming the copper layer includes applying a current density of 40 to 80 A/dm 2 between electrode plates and a rotating drum spaced apart from each other in the electrolytic solution. provided.

前記銅層を形成する段階で、前記電解液は単位分当り5%以下の流量偏差で供給され得、前記単位分当りの流量偏差は下記の式4で算出される。 In forming the copper layer, the electrolyte may be supplied with a flow rate deviation of 5% or less per unit minute, and the flow rate deviation per unit minute may be calculated by Equation 4 below.

[式4]
電解液の単位分当りの流量偏差(%)=[(分当り流量の最大値-分当り流量の最小値)/分当り流量の平均値]×100
[Formula 4]
Electrolytic solution flow rate deviation per unit minute (%) = [(maximum flow rate per minute - minimum flow rate per minute) / average flow rate per minute] x 100

前記電解銅箔製造方法は、前記銅層上に保護層を形成する段階をさらに含むことができる。 The electrodeposited copper foil manufacturing method may further include forming a protective layer on the copper layer.

前記保護層を形成する段階は、クロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを利用して前記銅層の表面を防錆処理する段階を含むことができる。 Forming the protective layer may include anticorrosion treating the surface of the copper layer using at least one of chromium (Cr), a silane compound, and a nitrogen compound.

前記保護層を形成する段階は、0.5~1.5g/Lのクロム(Cr)を含む防錆液内に前記銅層を浸漬させる段階を含むことができる。 Forming the protective layer may include immersing the copper layer in an antirust solution containing 0.5 to 1.5 g/L of chromium (Cr).

前記のような本発明に対する一般的な叙述は本発明を例示または説明するためのものに過ぎず、本発明の権利範囲を制限しない。 The general description of the present invention as set forth above is merely for the purpose of illustrating or explaining the present invention, and does not limit the scope of the present invention.

本発明の一実施形態によると、電解銅箔の製造過程でカール、シワまたは引裂の発生が防止される。そして、充放電サイクルの反復にもかかわらず高い充放電容量を長期間維持できる長寿名の二次電池が製造され得る。また、このような電解銅箔が使われる場合、二次電池用電極または二次電池の製造過程で電解銅箔のカール、シワまたは引裂が防止される。 According to an embodiment of the present invention, curling, wrinkling, or tearing is prevented during the manufacturing process of the electrolytic copper foil. In addition, a long-life secondary battery that can maintain a high charge-discharge capacity for a long period of time despite repeated charge-discharge cycles can be manufactured. In addition, when such an electrolytic copper foil is used, curling, wrinkling, or tearing of the electrolytic copper foil is prevented during the manufacturing process of the secondary battery electrode or the secondary battery.

添付された図面は本発明の理解を助け、本明細書の一部を構成するためのものであり、本発明の実施形態を例示し、発明の詳細な説明と共に本発明の原理を説明する。
本発明の一実施形態に係る電解銅箔の概略的な断面図である。 JIS B 0601:2001規格に基づく「粗さプロファイルの最大谷深さ(maximum valley depth of roughness profile:Rv)」を説明するための粗さプロファイルの例示である。 電解銅箔のXRDグラフに対する例示である。 本発明の他の一実施形態に係る電解銅箔の概略的な断面図である。 本発明のさらに他の一実施形態に係る二次電池用電極の概略的な断面図である。 本発明のさらに他の一実施形態に係る二次電池用電極の概略的な断面図である。 本発明のさらに他の一実施形態に係る二次電池の概略的な断面図である。 図4に図示された銅箔の製造工程に対する概略図である。
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the detailed description, serve to explain the principles of the invention.
1 is a schematic cross-sectional view of an electrolytic copper foil according to one embodiment of the present invention; FIG. It is an example of a roughness profile for explaining the "maximum valley depth of roughness profile (Rv)" based on the JIS B 0601:2001 standard. It is an illustration for an XRD graph of an electrolytic copper foil. FIG. 4 is a schematic cross-sectional view of an electrolytic copper foil according to another embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of a secondary battery electrode according to still another embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of a secondary battery electrode according to still another embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of a secondary battery according to still another embodiment of the present invention; 5 is a schematic diagram of a manufacturing process of the copper foil illustrated in FIG. 4; FIG.

以下、添付された図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の技術的思想および範囲を逸脱しない範囲内で本発明の多様な変更および変形が可能であることは当業者に自明であろう。したがって、本発明は特許請求の範囲に記載された発明およびその均等物の範囲内の変更と変形をすべて含む。 It will be obvious to those skilled in the art that various modifications and variations of the present invention are possible without departing from the spirit and scope of the present invention. Accordingly, this invention includes all modifications and variations that come within the scope of the appended claims and their equivalents.

本発明の実施形態を説明するために図面に開示された形状、大きさ、比率、角度、個数等は例示的なものであるので、本発明が図面に図示された事項によって限定されるものではない。明細書全体に亘って同一構成要素は同一参照符号で指称され得る。 Shapes, sizes, ratios, angles, numbers, etc. disclosed in the drawings for describing embodiments of the present invention are exemplary, and the present invention is not limited by the items shown in the drawings. Absent. The same components may be referred to by the same reference numerals throughout the specification.

本明細書で言及された「含む」、「有する」、」なる」等が使われる場合、「~のみ」という表現が使われない限り、他の部分が追加され得る。構成要素が単数で表現された場合、特に明示的な記載事項がない限り複数を含む。また、構成要素の解釈において、別途の明示的な記載がなくても誤差範囲を含むものと解釈される。 Where "including," "having," "consisting," etc. are used herein, other parts may be added unless the phrase "only" is used. Where an element is referred to in the singular, it includes the plural unless expressly specified otherwise. Also, in interpreting the components, it is interpreted to include an error range even if there is no separate explicit description.

位置関係に対する説明の場合、例えば、「~上に」、「~上部に」、「~下部に」、「~そばに」等で二つの部分の位置関係が説明される場合、「すぐに」または「直接」という表現が使われない限り、二つの部分間に一つ以上の他の部分が位置することができる。 When describing a positional relationship, for example, when the positional relationship between two parts is explained by "above", "above", "below", "beside", etc., "immediately" Alternatively, one or more other parts can be positioned between the two parts unless the expression "directly" is used.

時間関係に対する説明の場合、例えば、「~後に」、「~に引き続き」、「~次に」、「~前に」等で時間的な前後関係が説明される場合、「すぐに」または「直接」という表現が使われない限り、連続的ではない場合が含まれ得る。 In the case of a description of a temporal relationship, for example, when the temporal context is explained by "after", "following", "next", "before", etc., "immediately" or " Non-continuous instances may be included unless the term "directly" is used.

多様な構成要素を叙述するために、「第1」、「第2」などのような表現が使われるが、これら構成要素はこのような用語によって制限されない。このような用語は単に一つの構成要素を他の構成要素と区別するために使うものである。したがって、以下で言及される第1構成要素は本発明の技術的思想内で第2構成要素であってもよい。 Phrases such as “first,” “second,” etc. are used to describe various components, but these components are not limited by such terms. Such terms are merely used to distinguish one component from another. Therefore, the first component referred to below may be the second component within the spirit of the present invention.

「少なくとも一つ」の用語は一つ以上の関連項目から提示可能なすべての組み合わせを含むものと理解されるべきである。 The term "at least one" should be understood to include all possible combinations of one or more related items.

本発明の多様な実施形態のそれぞれの特徴が部分的にまたは全体的に互いに結合または組み合わせ可能であり、技術的に多様な連動および駆動が可能であり、各実施形態が互いに対して独立的に実施可能であってもよく、関連関係で共に実施されてもよい。 Each feature of various embodiments of the present invention can be partially or wholly combined or combined with each other, various technical interlocking and driving are possible, and each embodiment can be independent of each other They may be operable and may be implemented together in a related relationship.

図1は、本発明の一実施形態に係る電解銅箔101の概略的な断面図である。 FIG. 1 is a schematic cross-sectional view of an electrolytic copper foil 101 according to one embodiment of the invention.

図1に図示された通り、本発明の電解銅箔101は銅層111を含む。銅層111はマット面(matte surface)MSおよびその反対側のシャイニー面(shiny surface)SSを有する。 As shown in FIG. 1 , the electrolytic copper foil 101 of the present invention includes a copper layer 111 . Copper layer 111 has a matte surface MS and an opposite shiny surface SS.

銅層111は、例えば、電気メッキを通じて回転負極ドラム上に形成され得る(図8参照)。この時、シャイニー面SSは電気メッキ過程で回転負極ドラムと接触した面を指称し、マット面MSはシャイニー面SSの反対側面を指称する。 A copper layer 111 can be formed on the rotating anode drum, for example, through electroplating (see FIG. 8). At this time, the shiny surface SS refers to the surface in contact with the rotating negative electrode drum during the electroplating process, and the matte surface MS refers to the side opposite to the shiny surface SS.

電解銅箔101は銅層111を基準としてマット面MS方向の表面である第1面S1およびシャイニー面SS方向の表面である第2面S2を有する。図1を参照すると、電解銅箔101の第1面S1は第1保護層112aの表面であり、第2面S2はシャイニー面SSである。本発明の一実施形態によると、第1保護層112aは省略されてもよく、第1保護層112aが省略される場合、銅層111のマット面MSが電解銅箔101の第1面S1となる。 Electrodeposited copper foil 101 has a first surface S1, which is the surface in the matte surface MS direction, and a second surface S2, which is the surface in the shiny surface SS direction, with copper layer 111 as a reference. Referring to FIG. 1, the first surface S1 of the electrolytic copper foil 101 is the surface of the first protective layer 112a, and the second surface S2 is the shiny surface SS. According to an embodiment of the present invention, the first protective layer 112a may be omitted, and when the first protective layer 112a is omitted, the matte surface MS of the copper layer 111 may be the first surface S1 of the electrolytic copper foil 101. Become.

一般的に第2面は第1面に比べて低い表面粗さRzを有する。しかし、本発明の一実施形態はこれに限定されるものではなく、第2面の表面粗さRzが第1面の表面粗さRzと同一であるかさらに高くてもよい。例えば、銅層111の製造に使われる回転負極ドラム12(図8参照)の研磨の程度により、第2面の表面粗さは第1面の表面粗さRzより低くてもよく、高くてもよい。回転負極ドラム12の表面は#800~#3000の粒度(Grit)を有する研磨ブラシによって研磨され得る。 The second surface generally has a lower surface roughness Rz than the first surface. However, one embodiment of the present invention is not limited to this, and the surface roughness Rz of the second surface may be the same as or higher than the surface roughness Rz of the first surface. For example, the surface roughness of the second surface may be lower or higher than the surface roughness Rz of the first surface, depending on the degree of polishing of the rotating negative electrode drum 12 (see FIG. 8) used to manufacture the copper layer 111. good. The surface of the rotating negative electrode drum 12 can be polished with a polishing brush having a grit of #800 to #3000.

図1を参照すると、電解銅箔101は銅層111のマット面MS上に配置された第1保護層112aを含む。第1保護層112aは省略されてもよい。 Referring to FIG. 1, the electrolytic copper foil 101 includes a first protective layer 112a disposed on the matte surface MS of the copper layer 111. As shown in FIG. The first protective layer 112a may be omitted.

保護層112は銅層111のマット面MSおよびシャイニー面SSのうち少なくとも一つに配置され得る。図1を参照すると、第1保護層112aがマット面MSに配置される。しかし、本発明の一実施形態はこれに限定されるものではなく、第1保護層112aがシャイニー面SSにのみ配置されてもよく、マット面MSとシャイニー面SSの両方に配置されてもよい。 The protective layer 112 may be disposed on at least one of the matte surface MS and the shiny surface SS of the copper layer 111 . Referring to FIG. 1, a first protective layer 112a is disposed on the matte surface MS. However, an embodiment of the present invention is not limited to this, and the first protective layer 112a may be arranged only on the shiny surface SS, or may be arranged on both the matte surface MS and the shiny surface SS. .

保護層112は銅層111を保護して、保存または流通過程で銅層111が酸化し、変質することを防止することができる。したがって、保護層112を防錆膜とも言う。 The protective layer 112 can protect the copper layer 111 and prevent the copper layer 111 from being oxidized and degraded during storage or distribution. Therefore, the protective layer 112 is also called an antirust film.

本発明の一実施形態によると、保護層112はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。 According to an embodiment of the present invention, protective layer 112 may include at least one of chromium (Cr), a silane compound, and a nitrogen compound.

例えば、クロム(Cr)を含む防錆液、すなわち、クロム酸化合物を含む防錆液によって保護層112が作られ得る。 For example, the protective layer 112 may be made of an anti-rust solution containing chromium (Cr), ie, an anti-rust solution containing a chromate compound.

本発明の電解銅箔101は常温(25±15℃)で25~51kgf/mmの引張強度を有することができる。 The electrolytic copper foil 101 of the present invention can have a tensile strength of 25-51 kgf/mm 2 at room temperature (25±15° C.).

前記引張強度は万能試験機(UTM)を利用して測定するが、この時、サンプルを135℃で10分の間熱処理後に測定する。この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、テスト速度は50mm/minである。 The tensile strength is measured using a universal testing machine (UTM), where the sample is heat-treated at 135° C. for 10 minutes before being measured. At this time, the width of the sample is 12.7 mm, the distance between grips is 50 mm, and the test speed is 50 mm/min.

電解銅箔101の引張強度が25kgf/mm未満であると、電極製造過程および/または二次電池製造過程のロール-ツー-ロール工程で加えられる力によって電解銅箔101が容易に変形されて引裂および/またはシワが発生する危険がある。その反面、電解銅箔101の引張強度が51kgf/mmを超過すると、電解銅箔101が製造過程で力(tension)を受けると引き裂かれる危険が高くなり、二次電池製造工程の作業性が低下する。 When the tensile strength of the electrodeposited copper foil 101 is less than 25 kgf/mm 2 , the electrodeposited copper foil 101 is easily deformed by the force applied during the roll-to-roll process of the electrode manufacturing process and/or the secondary battery manufacturing process. There is a risk of tearing and/or wrinkling. On the other hand, when the tensile strength of the electrodeposited copper foil 101 exceeds 51 kgf/mm 2 , the electrodeposited copper foil 101 is likely to be torn when subjected to tension during the manufacturing process, and the workability of the secondary battery manufacturing process is reduced. descend.

本発明の電解銅箔101の幅方向の重量偏差は3%以下であり得る。前記幅方向の重量偏差は次のように求められ得る。 The weight deviation in the width direction of the electrolytic copper foil 101 of the present invention may be 3% or less. The weight deviation in the width direction can be obtained as follows.

まず、電解銅箔101の幅方向に沿って位置する左側地点、中央地点、および右側地点から5cm×5cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの重量をそれぞれ測定する。引き続き、前記測定値の算術平均および標準偏差を求め、下記の式1によって幅方向の重量偏差を算出する。 First, 5 cm×5 cm samples are taken from the left, center, and right points along the width of the electrodeposited copper foil 101, and the weights of the three samples are measured. Subsequently, the arithmetic mean and standard deviation of the measured values are obtained, and the weight deviation in the width direction is calculated by Equation 1 below.

[式1]
幅方向の重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[Formula 1]
Weight deviation in width direction (%) = (standard deviation of weight/arithmetic mean of weight) x 100

電解銅箔101の幅方向の重量偏差が3%を超過すると、電池製造ロール-ツー-ロール工程で重量偏差3%超過の部分でシワが発生し、これによって不良率が上昇することになる。 If the weight deviation in the width direction of the electrodeposited copper foil 101 exceeds 3%, wrinkles are generated at the portion where the weight deviation exceeds 3% in the roll-to-roll process of manufacturing the battery, thereby increasing the defect rate.

一方、本発明の一実施形態によると、二次電池の充放電が繰り返されるにつれて、活物質層120a、120bの収縮および膨張が交互に発生し、これは前記活物質層120a、120bと前記電解銅箔101の分離を誘発して二次電池の容量を減少させる。したがって、電極が一定水準以上の容量維持率および寿命を確保するためには(すなわち、二次電池の容量減少を抑制するためには)、前記電解銅箔101が前記活物質に対して優秀なコーティング性を有することによって前記電解銅箔101と活物質層120a、120bの間の接着強度が高くなければならない。 Meanwhile, according to an embodiment of the present invention, as the secondary battery is repeatedly charged and discharged, contraction and expansion of the active material layers 120a and 120b alternately occur. Separation of the copper foil 101 is induced to reduce the capacity of the secondary battery. Therefore, in order to ensure the capacity retention rate and life of the electrode above a certain level (that is, to suppress the capacity decrease of the secondary battery), the electrolytic copper foil 101 is superior to the active material. The adhesion strength between the electrolytic copper foil 101 and the active material layers 120a and 120b should be high due to the coating property.

一般的に、前記電解銅箔101の表面粗さRzの制御を通じて電解銅箔101と活物質層120a、120bの間の接着強度を向上できると知られている。前記表面粗さRzは十点平均粗さとも言う。表面粗さRzは表面粗さプロファイルにおいて、サンプル区間の中心線から上側に最も遠く離れた5ヶ所の距離の和(絶対値)と、下側に最も遠く離れた5ヶ所の距離の和(絶対値)を足して5で割った値に決定される。前記表面粗さRzはJIS B 0601:2001規格によりMahr社のMahrsurf M300粗さ計を利用して測定され得る。 Generally, it is known that the adhesive strength between the electrodeposited copper foil 101 and the active material layers 120a and 120b can be improved by controlling the surface roughness Rz of the electrodeposited copper foil 101. FIG. The surface roughness Rz is also referred to as ten-point average roughness. In the surface roughness profile, the surface roughness Rz is the sum (absolute value) of the five distances farthest on the upper side from the center line of the sample section, and the sum of the distances of the five farthest points on the lower side (absolute value value) and divided by 5. The surface roughness Rz can be measured according to JIS B 0601:2001 using a Mahrsurf M300 roughness meter manufactured by Mahr.

本発明の一実施形態によると、前記電解銅箔101の第1および第2面S1、S2それぞれの表面粗さRz1、Rz2は2.5μm以下であり得る。前記表面粗さRz1、Rz2が2.5μmを超過する場合には、電解銅箔101の第1および第2面S1、S2が過度に不均一であるため負極活物質のコーティング均一性が低下し、これによって電解銅箔101と第1および第2活物質層120a、120bの間の密着力が顕著に低下する。 According to an embodiment of the present invention, surface roughnesses Rz1 and Rz2 of the first and second surfaces S1 and S2 of the electrolytic copper foil 101 may be 2.5 μm or less. When the surface roughnesses Rz1 and Rz2 exceed 2.5 μm, the first and second surfaces S1 and S2 of the electrolytic copper foil 101 are excessively non-uniform, resulting in poor coating uniformity of the negative active material. As a result, the adhesion between the electrolytic copper foil 101 and the first and second active material layers 120a and 120b is significantly reduced.

本発明の一実施形態によると、前記第1面の表面粗さRz1と前記第2面の表面粗さRz2の差(|Rz1 - Rz2|)は0.65μm以下であり得る。前記第1および第2面の表面粗さの差が0.65を超過すると、前記第1および第2面S1、S2の表面粗さRzの差によって活物質が前記第1および第2面S1、S2の両面で均等にコーティングされない。そのため、二次電池の充放電時に両面S1、S2の電気的および物理的特性の差が発生し得、これによって二次電池の容量維持率および寿命が低下し得る。例えば、活物質コーティング後に第1および第2面で第1および第2活物質層120a、120bと電解銅箔101の間の密着力の差が発生する。したがって、これによって、電極製造後に密着力が大きい方向に電極が曲がることになって不良率が上昇することになる。 According to an embodiment of the present invention, a difference (|Rz1−Rz2|) between the surface roughness Rz1 of the first surface and the surface roughness Rz2 of the second surface may be 0.65 μm or less. When the difference in surface roughness between the first and second surfaces exceeds 0.65, the difference in surface roughness Rz between the first and second surfaces S1 and S2 causes the active material to , S2 are not evenly coated on both sides. Therefore, a difference in electrical and physical properties may occur between the two surfaces S1 and S2 during charging and discharging of the secondary battery, which may reduce the capacity retention rate and life of the secondary battery. For example, after active material coating, there is a difference in adhesion between the first and second active material layers 120a and 120b and the electrolytic copper foil 101 on the first and second surfaces. As a result, the electrode is bent in the direction in which the adhesive strength is large after the electrode is manufactured, thereby increasing the defect rate.

しかし、実際には、表面粗さRzが適切に調整された(例えば、2.5μm以下に調整された)電解銅箔101が仕様で要求される電解銅箔101と活物質層120a、120b間の接着力を必ずしも満足させるものではない。すなわち、2.5μm以下の表面粗さRzを有する電解銅箔101が業界で要求される83%以上の二次電池容量維持率(500回充放電後)をいつも担保できるものではない。 However, in practice, the specifications require that the electrodeposited copper foil 101 whose surface roughness Rz is appropriately adjusted (for example, adjusted to 2.5 μm or less) is used. does not necessarily satisfy the adhesive strength of That is, the electrodeposited copper foil 101 having a surface roughness Rz of 2.5 μm or less cannot always guarantee a secondary battery capacity retention rate of 83% or more (after 500 charge/discharge cycles) required by the industry.

特に、二次電池の高容量化のために前記活物質層120a、120bがSiを含む場合、電解銅箔101の表面粗さRzと二次電池の容量維持率の間の関連性がさらに低いものと示された。 In particular, when the active material layers 120a and 120b contain Si to increase the capacity of the secondary battery, the relationship between the surface roughness Rz of the electrolytic copper foil 101 and the capacity retention rate of the secondary battery is even lower. was shown.

本発明の一実施形態によると、83%以上の二次電池容量維持率を担保できる程度に十分に大きな電解銅箔101と活物質層120a、120bの間の接着力を確保するにおいて、電解銅箔101の「谷平均粗さ(Valley Mean RoughnessVMR)」が表面粗さRzより重要な因子であることが発見された。 According to one embodiment of the present invention, in ensuring the adhesion between the electrolytic copper foil 101 and the active material layers 120a and 120b that is sufficiently large enough to ensure a secondary battery capacity retention rate of 83% or more, the electrolytic copper It has been discovered that the "Valley Mean RoughnessVMR" of the foil 101 is a more important factor than the surface roughness Rz.

以下では、図2を参照して電解銅箔101の「谷平均粗さVMR」を具体的に説明する。 Hereinafter, the "valley mean roughness VMR" of the electrolytic copper foil 101 will be specifically described with reference to FIG.

前記「谷平均粗さVMR」は電解銅箔101の「粗さプロファイルの最大谷深さRv」および「表面粗さRa」をそれぞれ測定し、前記「粗さプロファイルの最大谷深さRv」および「表面粗さRa」の測定値を下記の式2により計算して算出され得る。 The "valley average roughness VMR" is obtained by measuring the "maximum valley depth Rv of the roughness profile" and the "surface roughness Ra" of the electrolytic copper foil 101, respectively, and the "maximum valley depth Rv of the roughness profile" and It can be calculated by calculating the measured value of "surface roughness Ra" according to Equation 2 below.

[式2]
谷平均粗さVMR=[粗さプロファイルの最大谷深さRv]/[表面粗さRa]
[Formula 2]
Valley average roughness VMR = [maximum valley depth Rv of roughness profile] / [surface roughness Ra]

JIS B 0601:2001規格に定義された前記「粗さプロファイルの最大谷深さRv」は、図2に例示された通り、表面粗さプロファイル(サンプリング長さ:4mm)で最も深い谷(deepest valley)の平均線(mean line)からの深さを意味する。 The "maximum valley depth Rv of the roughness profile" defined in the JIS B 0601:2001 standard is the deepest valley in the surface roughness profile (sampling length: 4 mm), as illustrated in FIG. ) from the mean line.

JIS B 0601:2001規格に定義された前記「表面粗さRa」は算術平均粗さともいう。表面粗さRaは表面粗さプロファイルにおいて、測定区間(基準長さ)の中心線で上側と下側の全体面積の和を求め、その和を測定区間の長さで割った値で決定される。 The "surface roughness Ra" defined in the JIS B 0601:2001 standard is also called arithmetic mean roughness. In the surface roughness profile, the surface roughness Ra is determined by summing the total area of the upper and lower sides of the center line of the measurement section (reference length) and dividing the sum by the length of the measurement section. .

前記「粗さプロファイルの最大谷深さRv」および「表面粗さRa」は、表面の任意の3個の地点でMitutoyo社の粗さ計を利用して、JIS B 0601:2001規格により「粗さプロファイルの最大谷深さRv」および「表面粗さRa」をそれぞれ測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75mN]した後、これらの平均値を算出することによってそれぞれ求めることができる。粗さプロファイルは電解銅箔の表面に対するものである。 The "maximum valley depth Rv of the roughness profile" and the "surface roughness Ra" are measured at any three points on the surface using a roughness meter manufactured by Mitutoyo Co., Ltd. according to the JIS B 0601:2001 standard. Measure the maximum valley depth Rv of the profile and the surface roughness Ra, respectively [sampling length: 4 mm, stylus tip radius: 2 μm, stylus tip taper angle : 60°, measuring force: 0.75 mN], and then calculating these average values. The roughness profile is for the surface of the electrolytic copper foil.

本発明の一実施形態によると、前記第1および第2面S1、S2の粗さプロファイルの谷平均粗さVMRが0.8~12.5である。 According to one embodiment of the present invention, the valley average roughness VMR of the roughness profile of said first and second surfaces S1, S2 is between 0.8 and 12.5.

前記第1および第2面S1、S2の粗さプロファイルの谷平均粗さVMRが0.8未満であると、電解銅箔101を製造するためのロール-ツー-ロール工程で、ロールで銅箔の滑りが発生して銅箔に張力が不均一に印加されて引裂が発生する。 When the valley-average roughness VMR of the roughness profiles of the first and second surfaces S1 and S2 is less than 0.8, the copper foil is Slippage occurs, tension is unevenly applied to the copper foil, and tearing occurs.

反面、前記第1および第2面S1、S2の粗さプロファイルの谷平均粗さVMRが12.5を超過すると、二次電池製造工程で谷平均粗さVMRが高い部分はノッチ(notch)として作用して引裂が発生する。 On the other hand, if the valley-average roughness VMR of the roughness profiles of the first and second surfaces S1 and S2 exceeds 12.5, a portion having a high valley-average roughness VMR is formed as a notch in the manufacturing process of the secondary battery. It acts and tears occur.

本発明の一実施形態によると、銅層111のマット面MSおよびシャイニー面SSは結晶面を有し、前記銅層111のマット面MSおよびシャイニー面SSそれぞれの(220)面集合組織係数[TC(220)]は0.49~1.28である。 According to one embodiment of the present invention, the matte surface MS and the shiny surface SS of the copper layer 111 have crystallographic planes, and the (220) plane texture coefficient [TC (220)] is between 0.49 and 1.28.

より具体的には、銅層111は複数の結晶面を有し、結晶面はミラー指数(Miller Index)を利用して表現され得る。具体的には、銅層111の結晶面は(hkl)面で表示され得る。このような結晶面はそれぞれ集合組織係数(texture coefficient)(TC)を有し、結晶面の集合組織係数(TC)X線回折(XRD)を利用して測定または計算され得る。 More specifically, the copper layer 111 has a plurality of crystal planes, and the crystal planes can be expressed using a Miller index. Specifically, the crystal plane of the copper layer 111 may be represented by the (hkl) plane. Each such crystal face has a texture coefficient (TC), which can be measured or calculated using X-ray diffraction (XRD) of the crystal face.

以下、図3を参照して、電解銅箔101を構成する銅層111の結晶面の集合組織係数(TC)を測定および算出する方法を説明する。 A method for measuring and calculating the texture coefficient (TC) of the crystal plane of the copper layer 111 forming the electrolytic copper foil 101 will be described below with reference to FIG.

図3は、電解銅箔のXRDグラフに対する例示である。より具体的には、図3は電解銅箔101を構成する銅層111のXRDグラフである。図3のピークはそれぞれ結晶面に対応する。 FIG. 3 is an illustration for an XRD graph of an electrolytic copper foil. More specifically, FIG. 3 is an XRD graph of copper layer 111 forming electrolytic copper foil 101 . Each peak in FIG. 3 corresponds to a crystal plane.

前記(220)面集合組織係数[TC(220)]は次のように求められ得る。 The (220) plane texture coefficient [TC(220)] can be obtained as follows.

30°~95°の回折角(2θ)の範囲でX線回折法(XRD)[Target:Copper K alpha 1、2θinterval:0.01°、2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフ[例えば、図3に例示された通り、(111)面、(200)面、(220)面、および(311)面に該当するピーク(n=4)が現れたXRDグラフ]を得、このグラフから各結晶面(hkl)のXRD回折強度[I(hkl)]を求める。また、JCPDS(Joint Committee on Powder Diffraction Standards)により規定された標準銅粉末の前記n個の結晶面それぞれに対するXRD回折強度[I(hkl)]を求める。引き続き、前記n個の結晶面のI(hkl)/I(hkl)の算術平均値を求めた後、前記算術平均値で(220)面のI(220)/I(220)を割ることによって(220)面集合組織係数[TC(220)]を算出する。すなわち、(220)面集合組織係数[TC(220)]は下記の式3に基づいて算出される。 By performing X-ray diffraction (XRD) [Target: Copper K alpha 1, 2θ interval: 0.01°, 2θ scan speed: 3°/min] in the range of diffraction angles (2θ) from 30° to 95°, An XRD graph with peaks corresponding to n crystal planes [for example, peaks corresponding to (111), (200), (220), and (311) planes (n = 4)] is obtained, and the XRD diffraction intensity [I(hkl)] of each crystal plane (hkl) is obtained from this graph. Also, the XRD diffraction intensity [I 0 (hkl)] for each of the n crystal planes of the standard copper powder specified by JCPDS (Joint Committee on Powder Diffraction Standards) is determined. Subsequently, after calculating the arithmetic mean value of I(hkl)/I 0 (hkl) of the n crystal planes, divide I(220)/I 0 (220) of the (220) plane by the arithmetic mean value. Then, the (220) plane texture coefficient [TC(220)] is calculated. That is, the (220) plane texture coefficient [TC(220)] is calculated based on Equation 3 below.

[式3]

Figure 0007211669000001
[Formula 3]
Figure 0007211669000001

前記(220)面集合組織係数[TC(220)]が高いほど銅層111がより緻密な結晶構造を有することを意味する。マット面MSおよびシャイニー面SSそれぞれの(220)面集合組織係数[TC(220)]は0.49以上であることが好ましい。前記(220)面集合組織係数[TC(220)]が0.49未満であると電解銅箔101の結晶構造が緻密でないため、電解銅箔101が製造過程で引き裂かれる危険が大きい。本発明の一実施形態によると、銅層111のマット面MSまたはシャイニー面SSの(220)面集合組織係数を電解銅箔101の(220)面集合組織係数[TC(220)]ともいう。また、本発明の一実施形態によると、銅層111の結晶構造を電解銅箔101の結晶構造とも言える。 A higher (220) plane texture coefficient [TC(220)] means that the copper layer 111 has a denser crystal structure. The (220) plane texture coefficient [TC(220)] of each of the matte surface MS and the shiny surface SS is preferably 0.49 or more. When the (220) plane texture coefficient [TC(220)] is less than 0.49, the crystal structure of the electrodeposited copper foil 101 is not dense, and the risk of the electrodeposited copper foil 101 being torn during the manufacturing process is high. According to one embodiment of the present invention, the (220) plane texture coefficient of the matte surface MS or shiny surface SS of the copper layer 111 is also referred to as the (220) plane texture coefficient [TC(220)] of the electrolytic copper foil 101 . In addition, according to an embodiment of the present invention, the crystal structure of the copper layer 111 can also be referred to as the crystal structure of the electrolytic copper foil 101 .

反面、(220)面集合組織係数[TC(220)]が1.28を超過すると、銅層111の結晶構造が過度に緻密であるため延伸率が3%未満に低下することになって製造過程で容易に引き裂かれる。また、負極活物質が安定的に接触できる活性面積が足りないため、電解銅箔101と負極活物質の間に十分な接着力が確保され得ない。したがって、二次電池が充放電される時に電解銅箔101が第1および第2活物質層120a、120bと共に膨張および収縮しないため電解銅箔101から第1および第2活物質層120a、120bが分離される危険が高くなり、その結果、前記二次電池の容量維持率が低下して安定した製品を製造できなくなる。 On the other hand, if the (220) plane texture coefficient [TC(220)] exceeds 1.28, the crystal structure of the copper layer 111 is too dense, so the elongation ratio is reduced to less than 3%. Easily torn in the process. In addition, since the active area with which the negative electrode active material can stably contact is insufficient, sufficient adhesive strength cannot be secured between the electrolytic copper foil 101 and the negative electrode active material. Therefore, since the electrolytic copper foil 101 does not expand and contract together with the first and second active material layers 120a and 120b when the secondary battery is charged and discharged, the first and second active material layers 120a and 120b are separated from the electrolytic copper foil 101. The risk of separation increases, and as a result, the capacity retention rate of the secondary battery decreases, making it impossible to manufacture stable products.

本発明の一実施形態によると、電解銅箔101は4~30μmの厚さを有することができる。 According to one embodiment of the present invention, the electrolytic copper foil 101 may have a thickness of 4-30 μm.

電解銅箔101が二次電池において電極の集電体として使われる時、電解銅箔101の厚さが薄いほど同一空間内により多くの集電体が収容され得るため、二次電池の高容量化に有利である。しかし、電解銅箔101の厚さが4μm未満である場合、電解銅箔101を利用した二次電池用電極および二次電池の製造過程で作業性が顕著に低下する。 When the electrodeposited copper foil 101 is used as a current collector of an electrode in a secondary battery, the thinner the electrodeposited copper foil 101 is, the more current collectors can be accommodated in the same space, thereby increasing the capacity of the secondary battery. It is advantageous for conversion. However, when the thickness of the electrodeposited copper foil 101 is less than 4 μm, workability is significantly reduced in the process of manufacturing secondary battery electrodes and secondary batteries using the electrodeposited copper foil 101 .

反面、電解銅箔101の厚さが30μmを超過する場合には、電解銅箔101を利用した二次電池用電極の厚さが大きくなり、このような厚さによって二次電池の高容量の具現に困難が発生し得る。 On the other hand, when the thickness of the electrodeposited copper foil 101 exceeds 30 μm, the thickness of the electrode for a secondary battery using the electrodeposited copper foil 101 is increased, and such a thickness reduces the capacity of the secondary battery. Implementation can be difficult.

図4は、本発明の他の一実施形態に係る電解銅箔102の概略的な断面図である。以下、重複を避けるためにすでに説明された構成要素に対する説明は省略する。 FIG. 4 is a schematic cross-sectional view of an electrolytic copper foil 102 according to another embodiment of the invention. In order to avoid duplication, the description of the components already described will be omitted.

図4を参照すると、本発明の他の一実施形態に係る電解銅箔102は、銅層111および銅層111のマット面MSとシャイニー面SSにそれぞれ配置された第1および第2保護層112a、112bを含む。図1に図示された電解銅箔101と比べ、図4に図示された電解銅箔102は銅層111のシャイニー面SSに配置された保護層112bをさらに含む。 Referring to FIG. 4, an electrolytic copper foil 102 according to another embodiment of the present invention includes a copper layer 111 and first and second protective layers 112a disposed on the matte surface MS and shiny surface SS of the copper layer 111, respectively. , 112b. Compared with the electrolytic copper foil 101 shown in FIG. 1, the electrolytic copper foil 102 shown in FIG.

説明の便宜のために、二つの保護層112a、112bのうち銅層111のマット面MSに配置された保護層112aを第1保護層といい、シャイニー面SSに配置された保護層112bを第2保護層ともいう。 For convenience of explanation, of the two protective layers 112a and 112b, the protective layer 112a arranged on the matte surface MS of the copper layer 111 is called a first protective layer, and the protective layer 112b arranged on the shiny surface SS is called a first protective layer. Also referred to as 2 protective layers.

また、図4に図示された電解銅箔102は、銅層111を基準として、マット面MS方向の表面である第1面S1とシャイニー面SS方向の表面である第2面S2を有する。ここで、電解銅箔102の第1面S1はマット面MSに配置された第1保護層112aの表面であり、第2面S2はシャイニー面SSに配置された第2保護層112bの表面である。 In addition, the electrolytic copper foil 102 shown in FIG. 4 has a first surface S1, which is a surface in the matte surface MS direction, and a second surface S2, which is a surface in the shiny surface SS direction, with the copper layer 111 as a reference. Here, the first surface S1 of the electrolytic copper foil 102 is the surface of the first protective layer 112a arranged on the matte surface MS, and the second surface S2 is the surface of the second protective layer 112b arranged on the shiny surface SS. be.

本発明の他の一実施形態によると、二つの保護層112a、112bはそれぞれクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。 According to another embodiment of the present invention, each of the two protective layers 112a and 112b may include at least one of chromium (Cr), a silane compound and a nitrogen compound.

図4に図示された電解銅箔102の第1および第2面S1、S2の粗さプロファイルの谷平均粗さVMRは0.8~12.5である。 The valley average roughness VMR of the roughness profile of the first and second surfaces S1 and S2 of the electrolytic copper foil 102 shown in FIG. 4 is 0.8 to 12.5.

電解銅箔102は、マット面MSおよびシャイニー面SSそれぞれの(220)面集合組織係数[TC(220)]は0.49~1.28であり得る。 Electrodeposited copper foil 102 may have a (220) plane texture coefficient [TC(220)] of 0.49 to 1.28 for each of matte surface MS and shiny surface SS.

電解銅箔102は常温(25±15℃)で25~51kgf/mmの引張強度を有することができる。 The electrolytic copper foil 102 may have a tensile strength of 25-51 kgf/mm 2 at room temperature (25±15° C.).

電解銅箔102の幅方向の重量偏差は3%以下であり得る。 The weight deviation in the width direction of the electrolytic copper foil 102 may be 3% or less.

図4に図示された電解銅箔102の第1および第2面S1、S2それぞれの表面粗さRz1、Rz2は2.5μm以下であり、前記第1面の表面粗さRz1と前記第2面の表面粗さRz2の差(|Rz1 - Rz2|)は0.65μm以下であり得る。 The surface roughnesses Rz1 and Rz2 of the first and second surfaces S1 and S2 of the electrolytic copper foil 102 shown in FIG. 4 are 2.5 μm or less. The difference in surface roughness Rz2 (|Rz1-Rz2|) can be 0.65 μm or less.

図4の電解銅箔102は4~30μmの厚さを有する。 The electrolytic copper foil 102 of FIG. 4 has a thickness of 4-30 μm.

図5は、本発明のさらに他の一実施形態に係る二次電池用電極103の概略的な断面図である。図5に図示された二次電池用電極103は、例えば、図7に図示された二次電池105に適用され得る。 FIG. 5 is a schematic cross-sectional view of a secondary battery electrode 103 according to still another embodiment of the present invention. The secondary battery electrode 103 shown in FIG. 5 can be applied to the secondary battery 105 shown in FIG. 7, for example.

図5を参照すると、本発明のさらに他の一実施形態に係る二次電池用電極103は電解銅箔101および電解銅箔101上に配置された活物質層120aを含む。ここで、電解銅箔101は銅層111および銅層111上に配置された第1保護層112aを含み、電流集電体として使われる。 Referring to FIG. 5, a secondary battery electrode 103 according to still another embodiment of the present invention includes an electrolytic copper foil 101 and an active material layer 120 a disposed on the electrolytic copper foil 101 . Here, the electrolytic copper foil 101 includes a copper layer 111 and a first protective layer 112a disposed on the copper layer 111, and is used as a current collector.

具体的には、電解銅箔101は第1面S1と第2面S2を有し、活物質層120aは電解銅箔101の第1面S1と第2面S2のうち少なくとも一つに配置される。活物質層120aは第1保護層112a上に配置され得る。 Specifically, the electrolytic copper foil 101 has a first surface S1 and a second surface S2, and the active material layer 120a is disposed on at least one of the first surface S1 and the second surface S2 of the electrolytic copper foil 101. be. An active material layer 120a may be disposed on the first protective layer 112a.

図5に、電流集電体として図1の電解銅箔101が利用された例が図示されている。しかし、本発明のさらに他の一実施形態はこれに限定されるものではなく、図4に図示された銅箔102が二次電池用電極103の集電体として使われてもよい。 FIG. 5 shows an example in which the electrolytic copper foil 101 of FIG. 1 is used as a current collector. However, another embodiment of the present invention is not limited to this, and the copper foil 102 shown in FIG. 4 may be used as the current collector of the secondary battery electrode 103 .

また、電解銅箔101の第1面S1にのみ第1活物質層120aが配置された構造が図5に図示されているが、本発明のさらに他の一実施形態はこれに限定されるものではなく、電解銅箔101の第1面S1と第2面S2の双方に第1および第2活物質層120a、120bがそれぞれ配置され得る。また、活物質層120は電解銅箔101の第2面S2にのみ配置されてもよい。 Also, FIG. 5 shows a structure in which the first active material layer 120a is disposed only on the first surface S1 of the electrolytic copper foil 101, but another embodiment of the present invention is limited thereto. Instead, the first and second active material layers 120a and 120b can be arranged on both the first surface S1 and the second surface S2 of the electrolytic copper foil 101, respectively. Also, the active material layer 120 may be arranged only on the second surface S2 of the electrolytic copper foil 101 .

図5に図示された第1活物質層120aは電極活物質からなり、特に負極活物質からなり得る。すなわち、図5に図示された二次電池用電極103は負極として使われ得る。 The first active material layer 120a shown in FIG. 5 may be made of an electrode active material, particularly a negative electrode active material. That is, the secondary battery electrode 103 shown in FIG. 5 may be used as a negative electrode.

活物質層120は、炭素;金属;金属を含む合金;金属の酸化物;および金属と炭素の複合体のうち少なくとも一つを負極活物質として含むことができる。金属として、Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiおよびFeのうち少なくとも一つが使われ得る。具体的には、二次電池の充放電容量を増加させるために、前記金属はシリコン(Si)を含むことが好ましい。 The active material layer 120 may include, as a negative active material, at least one of carbon; metal; alloy containing metal; oxide of metal; and composite of metal and carbon. At least one of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni and Fe may be used as the metal. Specifically, the metal preferably contains silicon (Si) in order to increase the charge/discharge capacity of the secondary battery.

二次電池の充放電が繰り返されることによって活物質層120の収縮および膨張が交互に発生し、これは活物質層120と銅箔101の分離を誘発して二次電池の充放電効率を低下させる。特に、シリコン(Si)を含む活物質層120は膨張と収縮の程度が大きい。 As the secondary battery is repeatedly charged and discharged, contraction and expansion of the active material layer 120 alternately occur, which induces separation between the active material layer 120 and the copper foil 101, thereby reducing the charge/discharge efficiency of the secondary battery. Let In particular, the active material layer 120 containing silicon (Si) expands and contracts significantly.

本発明のさらに他の一実施形態によると、集電体として使われた電解銅箔101が活物質層120の収縮および膨張に対応して収縮および膨張し得るため、活物質層120が収縮および膨張しても、これによって電解銅箔101が変形され、引き裂かれない。それにより、電解銅箔101と活物質層120aの間から分離が発生しない。したがって、このような二次電池用電極103を含む二次電池は優秀な充放電効率および優秀な容量維持率を有する。 According to still another embodiment of the present invention, the electrodeposited copper foil 101 used as a current collector can contract and expand in response to the contraction and expansion of the active material layer 120, so that the active material layer 120 contracts and expands. Even if it expands, the electrodeposited copper foil 101 is thereby deformed and is not torn. Accordingly, no separation occurs between the electrolytic copper foil 101 and the active material layer 120a. Accordingly, a secondary battery including the secondary battery electrode 103 has excellent charge/discharge efficiency and excellent capacity retention rate.

図6は、本発明のさらに他の一実施形態に係る二次電池用電極104の概略的な断面図である。 FIG. 6 is a schematic cross-sectional view of a secondary battery electrode 104 according to still another embodiment of the present invention.

本発明のさらに他の一実施形態に係る二次電池用電極104は、電解銅箔102および電解銅箔102上に配置された第1および第2活物質層120a、120bを含む。電解銅箔102は銅層111および銅層111の両面に配置された第1および第2保護層112a、112bを含む。しかし、本発明の一実施形態はこれに限定されるものではなく、第1活物質層120aおよび第2活物質層120bのうちいずれか一つは省略されてもよい。 A secondary battery electrode 104 according to still another embodiment of the present invention includes an electrolytic copper foil 102 and first and second active material layers 120 a and 120 b disposed on the electrolytic copper foil 102 . Electrodeposited copper foil 102 includes copper layer 111 and first and second protective layers 112 a and 112 b disposed on both sides of copper layer 111 . However, an embodiment of the present invention is not limited thereto, and one of the first active material layer 120a and the second active material layer 120b may be omitted.

具体的には、図6に図示された二次電池用電極104は電解銅箔102の第1面S1と第2面S2にそれぞれ配置された二つの第1および第2活物質層120a、120bを含む。ここで、電解銅箔102の第1面S1上に配置された活物質層120aを第1活物質層といい、電解銅箔102の第2面S2に配置された活物質層120bを第2活物質層ともいう。 Specifically, the secondary battery electrode 104 shown in FIG. including. Here, active material layer 120a disposed on first surface S1 of electrolytic copper foil 102 is referred to as a first active material layer, and active material layer 120b disposed on second surface S2 of electrolytic copper foil 102 is referred to as a second active material layer. Also called an active material layer.

二つの第1および第2活物質層120a、120bは、互いに同一の材料によって同一の方法で作られてもよく、異なる材料または異なる方法で作られてもよい。 The two first and second active material layers 120a, 120b may be made of the same material and the same method, or may be made of different materials or different methods.

図7は、本発明のさらに他の一実施形態に係る二次電池105の概略的な断面図である。図7に図示された二次電池105は、例えば、リチウム二次電池である。 FIG. 7 is a schematic cross-sectional view of a secondary battery 105 according to still another embodiment of the invention. The secondary battery 105 illustrated in FIG. 7 is, for example, a lithium secondary battery.

図7を参照すると、二次電池105は、正極(cathode)370、負極(anode)340、正極370と負極340の間に配置されてイオンが移動できる環境を提供する電解質(electrolyte)350、および正極370と負極340を電気的に絶縁させる分離膜(separator)360を含む。ここで、正極370と負極340の間で移動するイオンは、例えば、リチウムイオンである。分離膜360は、一つの電極で発生した電荷が二次電池105の内部を通じて他の電極に移動することによって無益に消耗することを防止するために正極370と負極340を分離する。図7を参照すると、分離膜360は電解質350内に配置される。 Referring to FIG. 7, the secondary battery 105 includes a cathode 370, an anode 340, an electrolyte 350 disposed between the cathode 370 and the anode 340 to provide an environment in which ions can move, and It includes a separator 360 that electrically isolates the positive electrode 370 and the negative electrode 340 . Here, the ions that move between the positive electrode 370 and the negative electrode 340 are, for example, lithium ions. Separation membrane 360 separates positive electrode 370 and negative electrode 340 to prevent charge generated at one electrode from moving to another electrode through secondary battery 105 and being wasted. Referring to FIG. 7, separation membrane 360 is positioned within electrolyte 350 .

正極370は正極集電体371および正極活物質層372を含み、正極集電体371としてアルミホイル(foil)が使われ得る。 The cathode 370 includes a cathode current collector 371 and a cathode active material layer 372, and the cathode current collector 371 may be aluminum foil.

負極340は負極集電体341および負極活物質層342を含み、負極集電体341として電解銅箔が使われ得る。 The negative electrode 340 includes a negative current collector 341 and a negative active material layer 342 , and an electrolytic copper foil may be used as the negative current collector 341 .

本発明の一実施形態によると、負極集電体341として図1または図4に開示された電解銅箔101、102が使われ得る。また、図5または図6に図示された二次電池用電極103、104が図7に図示された二次電池105の負極340として使われ得る。 According to an embodiment of the present invention, the electrodeposited copper foils 101 and 102 disclosed in FIG. 1 or 4 may be used as the negative electrode current collector 341 . Also, the secondary battery electrodes 103 and 104 shown in FIG. 5 or 6 may be used as the negative electrode 340 of the secondary battery 105 shown in FIG.

以下では、図8を参照して、本発明の一実施形態に係る電解銅箔102の製造方法を具体的に説明する。 Hereinafter, a method for manufacturing the electrolytic copper foil 102 according to one embodiment of the present invention will be specifically described with reference to FIG.

図8は、図4に図示された電解銅箔102の製造方法に対する概略図である。 FIG. 8 is a schematic diagram of a method for manufacturing the electrolytic copper foil 102 shown in FIG.

本発明の電解銅箔102製造方法は、電解液11を準備する段階;および電解液11を利用して電気メッキを遂行して銅層111を形成する段階;を含む。 The method of manufacturing the electrolytic copper foil 102 of the present invention includes the steps of preparing the electrolyte solution 11 and performing electroplating using the electrolyte solution 11 to form the copper layer 111 .

具体的には、電解液11を準備する段階は、まず銅イオンを含む電解液11が製造される。電解液11は電解槽10に収容される。 Specifically, in the step of preparing the electrolytic solution 11, the electrolytic solution 11 containing copper ions is first produced. Electrolytic solution 11 is contained in electrolytic bath 10 .

引き続き、前記電解液11を利用して電気メッキを遂行して銅層111を形成する段階は、電解液11内に互いに離隔するように配置された正極板13および回転負極ドラム12を40~80ASD(A/dm)の電流密度で通電させて電気メッキを遂行することによって前記銅層111を前記回転負極ドラム12上に形成させる。銅層111は電気メッキの原理によって形成される。 Subsequently, in the step of forming the copper layer 111 by performing electroplating using the electrolyte 11, the cathode plate 13 and the rotating anode drum 12, which are spaced apart from each other, are placed in the electrolyte 11 at 40 to 80 ASD. The copper layer 111 is formed on the rotating negative electrode drum 12 by performing electroplating at a current density of (A/dm 2 ). The copper layer 111 is formed by the principle of electroplating.

正極板13と回転負極ドラム12の間に印加される電流密度が40ASD未満の場合、銅層111の結晶粒の生成が増加し、80ASDを超過する場合、結晶粒の微細化が加速化する。より具体的には、電流密度は50ASD以上に調整され得る。 When the current density applied between the positive electrode plate 13 and the rotating negative electrode drum 12 is less than 40 ASD, grain formation of the copper layer 111 increases, and when it exceeds 80 ASD, grain refinement is accelerated. More specifically, the current density can be adjusted to 50 ASD or higher.

銅層111のシャイニー面SSの表面特性は、回転負極ドラム12の表面のバフ研磨または研磨の程度により変わり得る。シャイニー面SS方向の表面特性の調整のために、例えば、#800~#3000の粒度(Grit)を有する研磨ブラシで回転負極ドラム12の表面が研磨され得る。 The surface properties of the shiny surface SS of the copper layer 111 may vary depending on the degree of buffing or polishing of the surface of the rotating negative electrode drum 12 . In order to adjust the surface properties in the SS direction of the shiny surface, the surface of the rotating negative electrode drum 12 may be polished with a polishing brush having a grit of #800 to #3000, for example.

銅層111形成段階で、電解液11は50~65℃の温度に維持され、電解液11が供給される流量の偏差は単位分当り5%以下に維持される。この時、電解液11の組成が調整されることによって銅層111の物理的、化学的および電気的特性が制御され得る。 In the step of forming the copper layer 111, the electrolyte 11 is maintained at a temperature of 50 to 65° C., and the flow rate deviation of the electrolyte 11 is maintained at 5% or less per unit minute. At this time, the physical, chemical and electrical properties of the copper layer 111 can be controlled by adjusting the composition of the electrolyte 11 .

本発明の一実施形態によると、電解液11は70~90g/Lの銅イオン、50~150g/Lの硫酸、5~45mg/Lのヒ素(As)、5~25mg/Lのアセトアミド(Acetamide)および5~20mg/Lのポリプロピレングリコール(Polypropyleneglycol(PPG))を含む。 According to one embodiment of the present invention, the electrolyte 11 comprises 70-90 g/L copper ions, 50-150 g/L sulfuric acid, 5-45 mg/L arsenic (As), 5-25 mg/L acetamide ) and 5-20 mg/L Polypropylene glycol (PPG).

銅の電着による銅層111の形成が円滑となるようにするために、電解液11内の銅イオンの濃度と硫酸の濃度はそれぞれ70~90g/Lおよび50~150g/Lに調整される。より具体的には、電解液11内の硫酸の濃度は70~120g/Lに調整することが好ましい。 In order to facilitate the formation of the copper layer 111 by electrodeposition of copper, the concentrations of copper ions and sulfuric acid in the electrolytic solution 11 are adjusted to 70-90 g/L and 50-150 g/L, respectively. . More specifically, it is preferable to adjust the concentration of sulfuric acid in the electrolytic solution 11 to 70 to 120 g/L.

電解液11内でヒ素(As)の濃度は5~45mg/Lに管理される。しかし、本発明の一実施形態はこれに限定されるものではない。 The concentration of arsenic (As) in the electrolytic solution 11 is controlled at 5-45 mg/L. However, an embodiment of the invention is not so limited.

ヒ素は一定濃度の区間では銅(Cu)の還元反応を促進する加速剤の役割をする。ヒ素の濃度が5mg/L未満である場合、銅層111形成過程で銅層111の表面が平坦にメッキされて電解銅箔102の第1および第2面それぞれの谷平均粗さVMRが0.8未満となる。 Arsenic acts as an accelerator to accelerate the reduction reaction of copper (Cu) at a constant concentration. When the concentration of arsenic is less than 5 mg/L, the surface of the copper layer 111 is plated flat during the formation of the copper layer 111, and the valley average roughness VMR of each of the first and second surfaces of the electrolytic copper foil 102 is 0.0. less than 8.

反面、ヒ素の濃度が45mg/Lを超過する場合、銅イオンであるCu2+またはCu1+が銅(Cu)に還元する時に不溶性化合物が形成されて不純物が銅層111に共に電着(共析)され得る。したがって、銅層111が粉状にメッキされて谷(valley)の深さが急激に増加し、それにより電解銅箔102の第1および第2面それぞれの谷平均粗さVMRが12.5を超過することになる。また、ヒ素の濃度が高い場合、銅層111形成過程で結晶面基準として(311)面、(111)面および(100)面が先に成長し、(220)面の成長が抑制され得る。 On the other hand, when the concentration of arsenic exceeds 45 mg/L, an insoluble compound is formed when Cu2 + or Cu1+ , which is a copper ion, is reduced to copper (Cu), and impurities are electrodeposited (eutectoid) on the copper layer 111 together. ) can be done. Therefore, the copper layer 111 is powder-plated and the depth of the valleys increases sharply, so that the valley average roughness VMR of each of the first and second surfaces of the electrodeposited copper foil 102 reaches 12.5. will exceed. In addition, when the concentration of arsenic is high, the (311), (111) and (100) planes grow first in the process of forming the copper layer 111, and the growth of the (220) plane may be suppressed.

したがって、銅層111の結晶構造において(220)面の集合組織係数[TC(220)]が0.49~1.28となるようにし、電解銅箔102の第1および第2面それぞれの谷平均粗さVMRが0.8~12.5となるようにするために、電解液11内のヒ素の濃度は5~45mg/L以下に調整される。 Therefore, in the crystal structure of the copper layer 111, the texture coefficient [TC(220)] of the (220) plane is set to 0.49 to 1.28, and the valleys of the first and second planes of the electrolytic copper foil 102 The concentration of arsenic in the electrolytic solution 11 is adjusted to 5 to 45 mg/L or less so that the average roughness VMR is 0.8 to 12.5.

前記アセトアミド(Acetamide)は電解液11内の銅メッキ粒子の大きさを制御するために電解液11に添加される物質である。銅メッキ粒子の大きさが過度に小さいと電解銅箔102の引張強度が増加することになり、その反対に、銅メッキ粒子の大きさが過度に大きいと電解銅箔102の引張強度が減少することになる。 The acetamide is a substance added to the electrolyte 11 to control the size of copper plating particles in the electrolyte 11 . If the size of the copper-plated particles is too small, the tensile strength of the electrolytic copper foil 102 increases, and if the size of the copper-plated particles is too large, the tensile strength of the electrolytic copper foil 102 decreases. It will be.

電解液11内で前記アセトアミドの濃度は5~25mg/Lに管理される。しかし、本発明の一実施形態はこれに限定されるものではない。 The concentration of the acetamide in the electrolytic solution 11 is controlled at 5-25 mg/L. However, an embodiment of the invention is not so limited.

前記アセトアミドの濃度が25mg/L超過する場合、銅メッキ粒子が超微細にメッキされて電解銅箔102の熱処理後の引張強度が51kgf/mmを超過することになる。 When the concentration of acetamide exceeds 25 mg/L, the copper plating particles are ultrafinely plated, and the tensile strength of the electrolytic copper foil 102 after heat treatment exceeds 51 kgf/mm 2 .

反面、前記アセトアミドの濃度が5mg/L未満である場合、銅メッキ粒子が粗大にメッキされて電解銅箔102の熱処理後の引張強度が25kgf/mm未満となる。 On the other hand, when the concentration of acetamide is less than 5 mg/L, the copper plating particles are coarsely plated, and the tensile strength of the electrolytic copper foil 102 after heat treatment is less than 25 kgf/mm 2 .

前記ポリプロピレングリコール(PPG)は銅メッキの結晶構造を制御するために前記電解液に添加される物質である。 The polypropylene glycol (PPG) is a substance added to the electrolyte to control the crystal structure of copper plating.

前記電解液内のポリプロピレングリコール(PPG)の濃度が高いほど電解銅箔102の結晶構造が緻密であるため(220)面集合組織係数がさらに大きくなり、前記電解液内のポリプロピレングリコール(PPG)の濃度が低いほど電解銅箔102の結晶構造が緻密でないため、(220)面集合組織係数がさらに小さくなる。 The higher the concentration of polypropylene glycol (PPG) in the electrolytic solution, the denser the crystal structure of the electrolytic copper foil 102, the larger the (220) plane texture coefficient. The lower the concentration, the less dense the crystal structure of the electrodeposited copper foil 102, and the smaller the (220) plane texture coefficient.

本発明によると、前記電解液内のポリプロピレングリコール(PPG)の濃度は5~20mg/Lである。 According to the invention, the concentration of polypropylene glycol (PPG) in the electrolyte is 5-20 mg/L.

前記電解液内のポリプロピレングリコール(PPG)の濃度が5mg/L未満であると、前記電解銅箔102の結晶構造が十分に発達できないため(220)面集合組織係数が0.49未満となる。前述した通り、(220)面集合組織係数が0.49未満であると、電解銅箔102の結晶構造が緻密でないため電解銅箔102が製造過程で引き裂かれる危険が大きい。 If the concentration of polypropylene glycol (PPG) in the electrolytic solution is less than 5 mg/L, the crystal structure of the electrolytic copper foil 102 cannot be sufficiently developed, resulting in a (220) plane texture coefficient of less than 0.49. As described above, when the (220) plane texture coefficient is less than 0.49, the crystal structure of the electrodeposited copper foil 102 is not dense, and the risk of the electrodeposited copper foil 102 being torn during the manufacturing process is high.

反面、前記電解液内のポリプロピレングリコール(PPG)の濃度が20mg/Lを超過すると、前記電解銅箔102の結晶構造が過度に緻密であるため(220)面集合組織係数が1.28超過することになる。前述した通り、(220)面集合組織係数が1.28を超過すると、延伸率が3%未満に低下して製造過程で容易に引き裂かれる。また、負極活物質が安定的に接触できる活性面積が足りないため、電解銅箔102と負極活物質の間に十分な接着力が確保され得ない。 On the other hand, when the concentration of polypropylene glycol (PPG) in the electrolyte exceeds 20 mg/L, the crystal structure of the electrodeposited copper foil 102 is too dense, and the (220) plane texture coefficient exceeds 1.28. It will be. As described above, when the (220) plane texture coefficient exceeds 1.28, the elongation ratio decreases to less than 3% and the film is easily torn during the manufacturing process. In addition, sufficient adhesive strength cannot be secured between the electrolytic copper foil 102 and the negative active material because the active area for stably contacting the negative active material is insufficient.

銅層111形成段階で、電解液11が供給される流量の偏差は単位分当り5%以下に維持する。電解液11が供給される流量の偏差は電解銅箔102の幅方向の重量偏差を調整するためのものである。前記流量の偏差は次のように求められ得る。 During the formation of the copper layer 111, the flow rate deviation of the electrolytic solution 11 is maintained at 5% or less per unit minute. The deviation of the flow rate of the electrolytic solution 11 is for adjusting the weight deviation of the electrolytic copper foil 102 in the width direction. The flow deviation can be determined as follows.

まず、1分の間電解液11が供給される流量を少なくとも2回以上測定する。測定された単位分当りの流量値を利用して分当り流量の平均値、分当り流量の最大値および分当り流量の最小値をそれぞれ求め、下記の式4によって電解液が供給される流量の偏差を算出することができる。 First, the flow rate of the electrolytic solution 11 supplied for one minute is measured at least twice. Using the measured flow rate per unit minute, the average flow rate per minute, the maximum flow rate per minute, and the minimum flow rate per minute are obtained, and the flow rate at which the electrolyte is supplied is calculated according to Equation 4 below. A deviation can be calculated.

[式4]
電解液の単位分当りの流量偏差(%)=[(分当り流量の最大値-分当り流量の最小値)/分当り流量の平均値]×100
[Formula 4]
Electrolytic solution flow rate deviation per unit minute (%) = [(maximum flow rate per minute - minimum flow rate per minute) / average flow rate per minute] x 100

電解銅箔102の幅方向の重量偏差を3%以下となるようにするために、電解液11が供給される流量の偏差を単位分当り5%以下に維持する。電解液11が供給される流量の偏差が5%を超過すると、電解銅箔102の幅方向の電解液11供給流速の偏差が発生する。これによって、幅方向に銅メッキするにおいて効率の差が発生し、それにより電解銅箔102の重量偏差が3%を超過することになる。 In order to keep the weight deviation in the width direction of the electrolytic copper foil 102 at 3% or less, the flow rate deviation of the electrolytic solution 11 is maintained at 5% or less per unit minute. If the flow rate deviation of the electrolyte solution 11 exceeds 5%, the electrolyte solution 11 supply flow rate deviation occurs in the width direction of the electrolytic copper foil 102 . As a result, there is a difference in the efficiency of copper plating in the width direction, which causes the weight deviation of the electrolytic copper foil 102 to exceed 3%.

このように製造された銅層111は洗浄槽20で洗浄され得る。 The copper layer 111 manufactured in this way can be cleaned in the cleaning bath 20 .

例えば、銅層111の表面上の不純物、例えば、樹脂成分または自然酸化膜(natural oxide)等を除去するための酸洗浄(acid cleaning)および酸洗浄に使われた酸性溶液の除去のための水洗浄(water cleaning)が順次遂行され得る。洗浄工程は省略されてもよい。 For example, acid cleaning for removing impurities on the surface of the copper layer 111, such as a resin component or a natural oxide film, and water for removing the acid solution used for the acid cleaning. Water cleaning may be performed sequentially. The washing step may be omitted.

本発明の一実施形態によると、追加で前記銅層111上に第1および第2保護層112a、112bを形成する段階;をさらに含むことができる。 According to an embodiment of the present invention, the method may further include forming first and second passivation layers 112a and 112b on the copper layer 111 additionally.

保護層112形成段階では、前記のように製造された銅層111上に第1および第2保護層112a、112bが形成される。 In the step of forming the protective layer 112, first and second protective layers 112a and 112b are formed on the copper layer 111 manufactured as described above.

図8を参照すると、防錆組30に入っている防錆液31内に銅層111を浸漬して銅層111上に第1および第2保護層112a、112bを形成することができる。 Referring to FIG. 8, the copper layer 111 may be immersed in the antirust solution 31 contained in the antirust group 30 to form first and second protective layers 112a and 112b on the copper layer 111. Referring to FIG.

前記防錆液31はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。 The rust preventive liquid 31 may include at least one of chromium (Cr), a silane compound, and a nitrogen compound.

具体的には、前記防錆液31はクロム(Cr)を含むことができ、クロム(Cr)は防錆液31内でイオン状態で存在することができる。 Specifically, the rust preventive liquid 31 may contain chromium (Cr), and the chromium (Cr) may exist in the rust preventive liquid 31 in an ionic state.

前記防錆液31は0.5~1.5g/Lのクロムを含むことができる。第1および第2保護層112a、112b形成のために、防錆液31の温度は20~40℃に維持され得る。銅層111は防錆液31内に1~30秒程度浸漬され得る。 The rust preventive liquid 31 may contain 0.5-1.5 g/L of chromium. The temperature of the antirust liquid 31 can be maintained at 20-40° C. for the formation of the first and second protective layers 112a, 112b. The copper layer 111 can be immersed in the antirust solution 31 for about 1 to 30 seconds.

具体的には、製造された銅層111を0.5~1.5g/Lのクロム(Cr)を含む防錆液内に浸漬(例えば、常温に2~20秒の間)させた後に乾燥させることによって、前記銅層111上に第1および第2保護層112a、112bをそれぞれ形成させる。 Specifically, the manufactured copper layer 111 is immersed in an antirust solution containing 0.5 to 1.5 g/L of chromium (Cr) (for example, at room temperature for 2 to 20 seconds) and then dried. to form first and second protective layers 112a and 112b on the copper layer 111, respectively.

前記防錆液はシラン化合物と窒素化合物のうち少なくとも1種以上をさらに含むことができる。例えば、前記防錆液は0.5~1.5g/Lのクロム(Cr)および0.5~1.5g/Lのシラン化合物を含むことができる。 The rust preventive liquid may further include at least one of a silane compound and a nitrogen compound. For example, the antirust solution may contain 0.5-1.5 g/L of chromium (Cr) and 0.5-1.5 g/L of silane compounds.

このような保護層112の形成によって電解銅箔102が作られる。 The electrolytic copper foil 102 is produced by forming the protective layer 112 in this manner.

次に、電解銅箔102が洗浄槽40で洗浄される。このような洗浄工程は省略され得る。 Electrodeposited copper foil 102 is then cleaned in cleaning bath 40 . Such washing steps may be omitted.

このように製造された本発明の電解銅箔102上に負極活物質をコーティングすることによって、本発明の二次電池用電極(すなわち、負極)が製造され得る。 The secondary battery electrode (ie, negative electrode) of the present invention can be manufactured by coating the electrodeposited copper foil 102 of the present invention with a negative electrode active material.

前記負極活物質は、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択され得る。 The negative electrode active material is carbon; a metal of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; an oxide of the metal; and a composite of the metal and carbon. can be selected from the group consisting of

例えば、100重量部の負極活物質用炭素に1~3重量部のスチレンブタジエン ゴム(SBR)および1~3重量部のカルボキシメチルセルロース(CMC)を混合した後、蒸溜水を溶剤として使ってスラリーを調製する。引き続き、ドクターブレードを利用して前記電解銅箔102上に20~100μm厚さで前記スラリーを塗布し、110~130℃で0.5~1.5ton/cmの圧力でプレスする。 For example, after mixing 1 to 3 parts by weight of styrene-butadiene rubber (SBR) and 1 to 3 parts by weight of carboxymethyl cellulose (CMC) with 100 parts by weight of carbon for the negative electrode active material, distilled water is used as a solvent to form a slurry. Prepare. Subsequently, the slurry is coated on the electrodeposited copper foil 102 with a thickness of 20-100 μm using a doctor blade and pressed at 110-130° C. with a pressure of 0.5-1.5 ton/cm 2 .

以上の方法で製造された本発明の二次電池用電極(負極)と共に通常の正極、電解質、および分離膜を利用してリチウム二次電池を製造することができる。 A lithium secondary battery can be manufactured using the secondary battery electrode (negative electrode) of the present invention manufactured by the method described above, as well as a conventional positive electrode, electrolyte, and separation membrane.

以下では、実施形態および比較例を通じて本発明を具体的に説明する。ただし、下記の実施形態および比較例は本発明の理解を助けるためのものに過ぎず、本発明の権利範囲は実施形態または比較例によって限定されない。 Hereinafter, the present invention will be described in detail through embodiments and comparative examples. However, the following embodiments and comparative examples are merely for helping understanding of the present invention, and the scope of the present invention is not limited by the embodiments or comparative examples.

実施形態1~7および比較例1~7 Embodiments 1-7 and Comparative Examples 1-7

電解液11内に互いに離隔するように配置された正極板13および回転負極ドラム12を含む製箔機で60ASDの電気密度を通電させて電気メッキを遂行することによって銅層111を製造した。電解液11は硫酸銅溶液である。電解液11内の銅イオン濃度は75g/L、硫酸の濃度は100g/L、電解液の温度は55℃、電流密度は60ASDに設定された。電気メッキを遂行する間、循環ポンプで42m/hrの流量でメッキ液を供給槽とメッキ槽の間に循環させ、メッキ液内の微細不純物は供給槽とメッキ槽の間のCartridg Filterで除去した。 A copper layer 111 was manufactured by electroplating by applying an electric density of 60 ASD to a foil-making machine including a positive electrode plate 13 and a rotating negative electrode drum 12 which are spaced apart from each other in an electrolytic solution 11 . The electrolytic solution 11 is a copper sulfate solution. The copper ion concentration in the electrolytic solution 11 was set to 75 g/L, the sulfuric acid concentration to 100 g/L, the temperature of the electrolytic solution to 55° C., and the current density to 60 ASD. During electroplating, a circulation pump circulates the plating solution between the supply bath and the plating bath at a flow rate of 42 m 3 /hr, and fine impurities in the plating solution are removed by a Cartridg filter between the supply bath and the plating bath. bottom.

また、電解液11に含まれたヒ素(As)の濃度、アセトアミド(Acetamide)の濃度、ポリプロピレングリコール(PPG)の濃度およびメッキが進行される間電解液が供給される流量の偏差は下記の表1の通りである。 In addition, the concentration of arsenic (As), the concentration of acetamide, the concentration of polypropylene glycol (PPG) contained in the electrolytic solution 11, and the deviation of the flow rate of the electrolytic solution during plating are shown in the table below. 1.

回転負極ドラム12と正極板13の間に50ASDの電流密度で電流を印加して銅層111を製造した。次に、銅層111を防錆液に約2秒間浸漬させて銅層111の表面にクロメート処理をして第1および第2保護層112a、112bを形成することによって電解銅箔102を製造した。防錆液としてクロム酸を主成分とする防錆液が使われ、クロム酸の濃度は1.0g/Lであった。前記電気メッキを通じて形成された銅層を防錆液に浸漬させた後に乾燥させることによって電解銅箔を完成した。 A current density of 50 ASD was applied between the rotating negative drum 12 and the positive plate 13 to fabricate the copper layer 111 . Next, the copper layer 111 was immersed in an antirust solution for about 2 seconds to apply chromate treatment to the surface of the copper layer 111 to form the first and second protective layers 112a and 112b, thereby manufacturing the electrolytic copper foil 102. . A rust preventive solution containing chromic acid as a main component was used as the rust preventive solution, and the concentration of chromic acid was 1.0 g/L. An electrolytic copper foil was completed by immersing the copper layer formed through the electroplating in an antirust solution and then drying it.

その結果、実施形態1~7および比較例1~7の電解銅箔が製造された。 As a result, electrolytic copper foils of Examples 1 to 7 and Comparative Examples 1 to 7 were produced.

Figure 0007211669000002
Figure 0007211669000002

このように製造された実施形態1~7および比較例1~7の電解銅箔に対して、(i)谷平均粗さVMR(ii)引張強度(iii)(220)面集合組織係数[TC(220)](iv)重量偏差(v)第1および第2面の表面粗さRzを測定した。 (i) valley average roughness VMR (ii) tensile strength (iii) (220) surface texture coefficient [TC (220)] (iv) weight deviation (v) surface roughness Rz of the first and second surfaces were measured.

また、電解銅箔を利用して二次電池を製造し、二次電池に対して充放電を実施した後、(vi)二次電池を解体して電解銅箔の引裂およびシワ発生の有無を観察した。 In addition, after manufacturing a secondary battery using an electrolytic copper foil and charging and discharging the secondary battery, (vi) the secondary battery is disassembled to check for tearing and wrinkling of the electrolytic copper foil. Observed.

(i)谷平均粗さVMR測定
電解銅箔表面の任意の3個の地点でMitutoyo社の粗さ計を利用して、JIS B 0601:2001規格により「粗さプロファイルの最大谷深さRv」および「表面粗さRa」をそれぞれ測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75mN]した後、これらの平均値を算出し、算出した「粗さプロファイルの最大谷深さRv」および「表面粗さRa」の測定値を下記の式2により計算して「谷平均粗さVMR」を算出することができる。
(i) Valley average roughness VMR measurement Using a Mitutoyo roughness meter at three arbitrary points on the surface of the electrolytic copper foil, "maximum valley depth Rv of roughness profile" according to JIS B 0601: 2001 standard and "surface roughness Ra" respectively [sampling length: 4 mm, stylus tip radius: 2 µm, stylus tip taper angle: 60 °, measuring force ): 0.75 mN], these average values are calculated, and the measured values of the calculated “maximum valley depth Rv of the roughness profile” and “surface roughness Ra” are calculated by the following formula 2, and “ valley mean roughness VMR" can be calculated.

[式2]
谷平均粗さVMR=[粗さプロファイルの最大谷深さRv]/[表面粗さRa]
[Formula 2]
Valley average roughness VMR = [maximum valley depth Rv of roughness profile] / [surface roughness Ra]

(ii)印章強度測定
引張強度は万能試験機(UTM)を利用して測定するが、この時、サンプルを135℃で10分の間熱処理後に測定する。この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、テスト速度は50mm/minである。
(ii) Stamp strength measurement Tensile strength is measured using a universal testing machine (UTM), where the sample is measured after heat treatment at 135°C for 10 minutes. At this time, the width of the sample is 12.7 mm, the distance between grips is 50 mm, and the test speed is 50 mm/min.

(iii)(220)面集合組織係数[TC(220)]測定
30°~95°の回折角(2θ)範囲でX線回折法(XRD)[Target:Copper K alpha 1、2θinterval:0.01°、2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフ[例えば、図3に例示された通り(111)面、(200)面、(220)面、および(311)面に該当するピーク(n=4)が現れたXRDグラフ]を得、このグラフから各結晶面(hkl)のXRD回折強度[I(hkl)]を求める。また、JCPDS(Joint Committee on Powder Diffraction Standards)により規定された標準銅粉末の前記n個の結晶面それぞれに対するXRD回折強度[I(hkl)を求める。引き続き、前記n個の結晶面のI(hkl)/I(hkl)の算術平均値を求めた後、前記算術平均値で(220)面のI(220)/I(220)を割ることによって(220)面集合組織係数[TC(220)]を算出する。すなわち、(220)面集合組織係数[TC(220)]は下記の式3に基づいて算出される。
(iii) (220) plane texture coefficient [TC (220)] measurement X-ray diffraction method (XRD) in the diffraction angle (2θ) range of 30° to 95° [Target: Copper K alpha 1, 2θ interval: 0.01 °, 2θ scan speed: 3°/min], an XRD graph having peaks corresponding to n crystal planes [for example, the (111) plane, (200) plane, ( 220) plane and the peak (n=4) corresponding to the (311) plane] is obtained, and the XRD diffraction intensity [I(hkl)] of each crystal plane (hkl) is obtained from this graph. Also, the XRD diffraction intensity [I 0 (hkl) for each of the n crystal planes of the standard copper powder specified by JCPDS (Joint Committee on Powder Diffraction Standards) is determined. Subsequently, after calculating the arithmetic mean value of I(hkl)/I 0 (hkl) of the n crystal planes, divide I(220)/I 0 (220) of the (220) plane by the arithmetic mean value. Then, the (220) plane texture coefficient [TC(220)] is calculated. That is, the (220) plane texture coefficient [TC(220)] is calculated based on Equation 3 below.

[式3]

Figure 0007211669000003
[Formula 3]
Figure 0007211669000003

(iv)幅方向の重量偏差測定
電解銅箔102の幅方向に沿って位置する左側地点、中央地点、および右側地点から5cm×5cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの重量をそれぞれ測定する。引き続き、前記測定値の算術平均および標準偏差を求め、下記の式1によって幅方向の重量偏差を算出する。
(iv) Measurement of Weight Deviation in Width Direction Samples with a size of 5 cm×5 cm were taken from the left, center, and right points along the width direction of the electrolytic copper foil 102, and then these three samples were taken. weigh each. Subsequently, the arithmetic mean and standard deviation of the measured values are obtained, and the weight deviation in the width direction is calculated by Equation 1 below.

[式1]
幅方向の重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[Formula 1]
Weight deviation in width direction (%) = (standard deviation of weight/arithmetic mean of weight) x 100

(v)第1および第2面の表面粗さRz1、Rz2およびその差(|Rz1 - Rz2|) (v) surface roughnesses Rz1 and Rz2 of the first and second surfaces and their difference (|Rz1-Rz2|)

JIS B 0601-2001規格により表面粗さ測定機(M300、Mahr)を利用して、実施形態1~7および比較例1~7で製造された電解銅箔102の第1面S1と第2面S2の表面粗さRz1、Rz2をそれぞれ測定した。測定結果を利用して、電解銅箔の第1面S1と第2面S2の表面粗さの差(|Rz1 - Rz2|)を計算した。 Using a surface roughness measuring machine (M300, Mahr) according to the JIS B 0601-2001 standard, the first surface S1 and the second surface of the electrolytic copper foil 102 produced in Embodiments 1 to 7 and Comparative Examples 1 to 7 Surface roughnesses Rz1 and Rz2 of S2 were measured. Using the measurement results, the difference in surface roughness (|Rz1-Rz2|) between the first surface S1 and the second surface S2 of the electrolytic copper foil was calculated.

(vi)シワおよび引裂発生の観察 (vi) Observation of wrinkles and tearing

1)負極の製造
商業的に利用可能な負極活物質用シリコン/カーボン複合負極材100重量部に2重量部のスチレンブタジエンゴム(SBR)および2重量部のカルボキシメチルセルロース(CMC)を混合し、蒸溜水を溶剤として利用して負極活物質用スラリーを調製した。ドクターブレードを利用して10cm幅を有する実施形態1~7および比較例1~7の電解銅箔上に40μm厚さで負極活物質用スラリーを塗布し、これを120℃で乾燥し、1ton/cmの圧力を加えて二次電池用負極を製造した。
1) Production of Negative Electrode 100 parts by weight of a commercially available silicon/carbon composite negative electrode material for a negative electrode active material was mixed with 2 parts by weight of styrene-butadiene rubber (SBR) and 2 parts by weight of carboxymethyl cellulose (CMC) and distilled. A negative electrode active material slurry was prepared using water as a solvent. Using a doctor blade, the negative electrode active material slurry was applied to a thickness of 40 μm on the electrolytic copper foils of Embodiments 1 to 7 and Comparative Examples 1 to 7 having a width of 10 cm, dried at 120 ° C., and 1 ton/ A pressure of cm 2 was applied to manufacture a negative electrode for a secondary battery.

2)電解液製造
エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を1:2の割合で混合した非水性有機溶媒に溶質であるLiPF6を1Mの濃度で溶解して基本電解液を製造した。99.5重量%の基本電解液と0.5重量%の琥珀酸無水物(Succinic anhydride)を混合して非水電解液を製造した。
2) Preparation of Electrolyte A basic electrolyte was prepared by dissolving LiPF6 as a solute at a concentration of 1M in a non-aqueous organic solvent in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a ratio of 1:2. A non-aqueous electrolyte was prepared by mixing 99.5% by weight of basic electrolyte and 0.5% by weight of succinic anhydride.

3)正極製造
Li1.1Mn1.85Al0.05O4であるリチウムマンガン酸化物とo-LiMnO2であるorthorhombic結晶構造のリチウムマンガン酸化物を90:10(重量比)の比で混合して正極活物質を製造した。正極活物質、カーボンブラック、および結着剤であるPVDF[Poly(vinylidenefluoride)]を85:10:5(重量比)で混合して、これを有機溶媒であるNMPと混合してスラリーを製造した。このように製造されたスラリーを厚さ20μmのAl箔(foil)の両面に塗布した後、乾燥して正極を製造した。
3) Positive Electrode Preparation Lithium manganese oxide Li1.1Mn1.85Al0.05O4 and lithium manganese oxide having an orthorhombic crystal structure o-LiMnO2 were mixed at a ratio of 90:10 (weight ratio) to prepare a positive electrode active material. bottom. A cathode active material, carbon black, and PVDF [Poly (vinylidenefluoride)] as a binder were mixed at 85:10:5 (weight ratio), and mixed with NMP as an organic solvent to prepare a slurry. . The slurry thus prepared was coated on both sides of an Al foil having a thickness of 20 μm and then dried to prepare a positive electrode.

4)試験用リチウム二次電池製造
アルミニウム缶の内部に、アルミニウム缶と絶縁されるように正極と負極を配置し、その間に非水電解液および分離膜を配置し、コイン形態のリチウム二次電池を製造した。使われた分離膜はポリプロピレン(Celgard 2325;厚さ25μm、average pore sizeφ28 nm、porosity 40%)であった。
4) Manufacture of lithium secondary battery for test A positive electrode and a negative electrode are placed inside an aluminum can so as to be insulated from the aluminum can, and a non-aqueous electrolyte and a separation membrane are placed between them to produce a coin-shaped lithium secondary battery. manufactured. The separation membrane used was polypropylene (Celgard 2325; thickness 25 μm, average pore size φ28 nm, porosity 40%).

5)二次電池の充放電
このように製造されたリチウム二次電池を利用して、4.3V充電電圧および3.4V放電電圧で電池を駆動し、50℃の高温で0.2C率(current rate、C-rate)で100回の充/放電を遂行した。
5) Charging and discharging of secondary battery Using the lithium secondary battery manufactured in this way, the battery was driven at a charging voltage of 4.3 V and a discharging voltage of 3.4 V, and at a high temperature of 50 ° C. The battery was charged/discharged 100 times at the current rate (C-rate).

6)シワまたは引裂発生の有無
100回の充放電後に二次電池を分解して銅箔にシワまたは引裂が発生するか否かを観察した。銅箔にシワまたは引裂が発行した場合を「発生」で表示し、発生しなかった場合を「なし」で表記した。
6) Presence or Absence of Wrinkles or Tearing After 100 charge/discharge cycles, the secondary battery was disassembled to observe whether wrinkles or tears occurred in the copper foil. When the copper foil was wrinkled or torn, it was indicated as "Occurrence", and when it did not occur, it was indicated as "None".

以上の試験結果は表2の通りである。 The above test results are shown in Table 2.

Figure 0007211669000004
Figure 0007211669000004

表1および表2を参照すると、次のような結果を確認することができる。 Referring to Tables 1 and 2, the following results can be confirmed.

ヒ素(As)を少量で含む電解液によって製造された比較例1の電解銅箔はVMRが0.7であって基準値より小さく、引裂が発生した。また、ヒ素(As)を過量に含む電解液によって製造された比較例2の電解銅箔はVMRが12.7であって基準値より大きく、両面の表面粗さの差(|Rz1 - Rz2|)も0.66であって基準値より大きく、引裂が発生した。 The electrodeposited copper foil of Comparative Example 1, which was manufactured using an electrolyte containing a small amount of arsenic (As), had a VMR of 0.7, which was lower than the reference value, and tearing occurred. In addition, the electrodeposited copper foil of Comparative Example 2, which was manufactured using an electrolyte containing an excessive amount of arsenic (As), had a VMR of 12.7, which was larger than the reference value, and the difference in surface roughness between both surfaces (|Rz1 - Rz2| ) was also 0.66, which was larger than the reference value, and tearing occurred.

アセトアミド(Acetamide)を少量で含む電解液によって製造された比較例3の電解銅箔は引張強度が基準値より低い値を有し、引裂が発生した。その反面、アセトアミド(Acetamide)を過量に含む電解液によって製造された比較例4の電解銅箔は引張強度が基準値より高い値を有し、引裂が発生するものと示された。 The electrodeposited copper foil of Comparative Example 3, which was manufactured using an electrolyte containing a small amount of acetamide, had a lower tensile strength than the reference value and was torn. On the other hand, the electrodeposited copper foil of Comparative Example 4, which was manufactured using an electrolyte containing an excessive amount of acetamide, had a higher tensile strength than the reference value, indicating that tearing occurred.

ポリプロピレングリコール(PPG)を少量で含む電解液によって製造された比較例5の電解銅箔は(220)面集合組織係数[TC(220)]が基準値より低く、引裂が発生した。その反面、ポリプロピレングリコール(PPG)を過量に含む電解液によって製造された比較例6の電解銅箔は(220)面集合組織係数[TC(220)]が基準値より高く、引裂が発生した。 The electrodeposited copper foil of Comparative Example 5, which was produced with an electrolyte solution containing a small amount of polypropylene glycol (PPG), had a (220) plane texture coefficient [TC(220)] lower than the reference value, and tearing occurred. On the other hand, the electrodeposited copper foil of Comparative Example 6, which was produced using an electrolyte containing an excessive amount of polypropylene glycol (PPG), had a (220) plane texture coefficient [TC(220)] higher than the reference value, and tearing occurred.

電解液11が供給される流量の偏差が、単位分当り5.3%に高く供給して製造された比較例7の電解銅箔は重量偏差が基準値より高く、引裂が発生しない代わりに、シワが発生した。 The electrolytic copper foil of Comparative Example 7, which was produced by supplying the electrolytic solution 11 with a flow rate deviation as high as 5.3% per unit minute, had a weight deviation higher than the reference value and did not tear. A wrinkle occurred.

反面、本発明に係る実施形態1~7の銅箔ではすべての数値が基準値以内であり、シワと引裂が発生しなかった。 On the other hand, in the copper foils of Embodiments 1 to 7 according to the present invention, all numerical values were within the standard values, and wrinkles and tears did not occur.

以上で説明された本発明は前述した実施形態および添付された図面によって限定されるものではなく、本発明の技術的事項を逸脱しない範囲内で多様な置換、変形および変更が可能であることが本発明が属する技術分野で通常の知識を有する者に自明である。したがって、本発明の範囲は後述する特許請求の範囲によって表現され、特許請求の範囲の意味、範囲そしてその等価概念から導き出されるすべての変更または変形された形態も本発明の範囲に含まれるものと解釈されるべきである。 The present invention described above is not limited by the above-described embodiments and attached drawings, and various substitutions, modifications and alterations can be made without departing from the technical scope of the present invention. It will be obvious to those who have ordinary knowledge in the technical field to which the present invention belongs. Therefore, the scope of the present invention is defined by the claims set forth below, and all changes or modifications derived from the meaning, scope and equivalents of the claims are to be included within the scope of the present invention. should be interpreted.

101、102:銅箔
112a、112b:第1および第2保護層
120a、120b:第1および第2活物質層
103、104:二次電池用電極
MS:マット面
SS:シャイニー面
101, 102: copper foil 112a, 112b: first and second protective layers 120a, 120b: first and second active material layers 103, 104: secondary battery electrode MS: matte surface SS: shiny surface

Claims (18)

銅層を含み、
0.8~12.5の谷平均粗さ(Valley Mean Roughness)、
0.49~1.28の(220)面集合組織係数[TC(220)]、
25~51kgf/mmの引張強度、および
3%以下の幅方向の重量偏差を有する、電解銅箔;
前記幅方向の重量偏差は下記の式1で算出され、
前記谷平均粗さ(Valley Mean Roughness)は下記の式2で算出される。
[式1]
幅方向の重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[式2]
谷平均粗さ(VMR)=[粗さプロファイルの最大谷深さ(Rv)]/[表面粗さ(Ra)]
including a copper layer,
Valley Mean Roughness from 0.8 to 12.5;
(220) plane texture coefficient [TC(220)] between 0.49 and 1.28,
An electrolytic copper foil having a tensile strength of 25 to 51 kgf/mm 2 and a weight deviation in the width direction of 3% or less;
The weight deviation in the width direction is calculated by the following formula 1,
The valley mean roughness (Valley Mean Roughness) is calculated by Equation 2 below.
[Formula 1]
Weight deviation in width direction (%) = (standard deviation of weight/arithmetic mean of weight) x 100
[Formula 2]
Valley mean roughness (VMR) = [maximum valley depth of roughness profile (Rv)]/[surface roughness (Ra)]
2.5μm以下の表面粗さ(Rz)を有する、請求項1に記載の電解銅箔。 The electrolytic copper foil according to claim 1, having a surface roughness (Rz) of 2.5 µm or less. 両面の表面粗さ(Rz)の差は0.65μm以下である、請求項1に記載の電解銅箔。 The electrolytic copper foil according to claim 1, wherein the difference in surface roughness (Rz) between both surfaces is 0.65 µm or less. 4~30μmの厚さを有する、請求項1に記載の電解銅箔。 The electrolytic copper foil according to claim 1, having a thickness of 4 to 30 µm. 前記銅層に配置された保護層を含む、請求項1に記載の電解銅箔。 2. The electrolytic copper foil of claim 1, comprising a protective layer disposed on said copper layer. 前記保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含む、請求項5に記載の電解銅箔。 6. The electrolytic copper foil of claim 5, wherein the protective layer includes at least one of chromium (Cr), a silane compound, and a nitrogen compound. 電解銅箔;および
前記電解銅箔上に配置された活物質層を含むものの、
前記電解銅箔は銅層を含み;
0.8~12.5の谷平均粗さ(Valley Mean Roughness);
0.49~1.28の(220)面集合組織係数[TC(220)];
25~51kgf/mmの引張強度;および
3%以下の幅方向の重量偏差;を有する、二次電池用電極;
前記幅方向の重量偏差は下記の式1で算出され、
前記谷平均粗さ(Valley Mean Roughness)は下記の式2で算出される。
[式1]
幅方向の重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
[式2]
谷平均粗さ(VMR)=[粗さプロファイルの最大谷深さ(Rv)]/[表面粗さ(Ra)]
an electrolytic copper foil; and an active material layer disposed on said electrolytic copper foil,
the electrolytic copper foil comprises a copper layer;
Valley Mean Roughness from 0.8 to 12.5;
(220) face texture coefficient [TC(220)] of 0.49-1.28;
A secondary battery electrode having a tensile strength of 25 to 51 kgf/mm 2 and a weight deviation in the width direction of 3% or less;
The weight deviation in the width direction is calculated by the following formula 1,
The valley mean roughness (Valley Mean Roughness) is calculated by Equation 2 below.
[Formula 1]
Weight deviation in width direction (%) = (standard deviation of weight/arithmetic mean of weight) x 100
[Formula 2]
Valley mean roughness (VMR) = [maximum valley depth of roughness profile (Rv)]/[surface roughness (Ra)]
前記電解銅箔は2.5μm以下の表面粗さ(Rz)を有する、請求項7に記載の二次電池用電極。 8. The secondary battery electrode according to claim 7, wherein said electrolytic copper foil has a surface roughness (Rz) of 2.5 [mu]m or less. 前記電解銅箔は両面の表面粗さ(Rz)の差が0.65μm以下である、請求項7に記載の二次電池用電極。 8. The secondary battery electrode according to claim 7, wherein the electrolytic copper foil has a surface roughness (Rz) difference of 0.65 [mu]m or less between both surfaces. 前記電解銅箔は4~30μmの厚さを有する、請求項7に記載の二次電池用電極。 8. The secondary battery electrode according to claim 7, wherein said electrolytic copper foil has a thickness of 4 to 30 μm. 前記電解銅箔は、前記銅層に配置された保護層を含む、請求項7に記載の二次電池用電極。 The secondary battery electrode according to claim 7, wherein the electrolytic copper foil includes a protective layer disposed on the copper layer. 前記保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含む、請求項11に記載の二次電池用電極。 12. The secondary battery electrode of claim 11, wherein the protective layer includes at least one of chromium (Cr), a silane compound, and a nitrogen compound. 前記活物質層は、
炭素;
Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;
前記金属を含む合金;
前記金属の酸化物;および
前記金属と炭素の複合体からなる群から選択される一つ以上の活物質を含む、請求項7に記載の二次電池用電極。
The active material layer is
carbon;
metals Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe;
an alloy comprising said metal;
8. The electrode for a secondary battery according to claim 7, comprising one or more active materials selected from the group consisting of an oxide of said metal; and a composite of said metal and carbon.
正極(cathode);
請求項7~請求項13のいずれか一項に記載された二次電池用電極で構成された負極(anode);
前記正極と負極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および
前記正極と前記負極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池。
cathode;
A negative electrode composed of the secondary battery electrode according to any one of claims 7 to 13;
A secondary battery, comprising: an electrolyte providing an environment in which lithium ions can move between the positive electrode and the negative electrode; and a separator electrically insulating the positive electrode and the negative electrode.
電解液を準備する段階;および
前記電解液を利用して電気メッキを遂行して銅層を形成する段階を含み、
前記電解液は、
70~90g/Lの銅イオン、
50~150g/Lの硫酸、
5~45mg/Lのヒ素(As)、
5~25mg/Lのアセトアミド(Acetamide)、および
5~20mg/Lのポリプロピレングリコール(Polypropyleneglycol、PPG)を含み、
前記銅層を形成する段階は、前記電解液内に互いに離隔するように配置された電極板および回転ドラムの間に40~80A/dmの電流密度を加える段階を含み、
前記銅層を形成する段階で、
前記電解液は単位分当り5%以下の流量偏差で供給される電解銅箔製造方法;
前記単位分当りの流量偏差は下記の式4で算出される。
[式4]
電解液の単位分当りの流量偏差(%)=[(分当り流量の最大値-分当り流量の最小値)/分当り流量の平均値]×100
preparing an electrolyte; and performing electroplating using the electrolyte to form a copper layer;
The electrolytic solution is
70-90 g/L of copper ions,
50-150 g/L of sulfuric acid,
5-45 mg/L arsenic (As),
5-25 mg/L acetamide, and 5-20 mg/L Polypropylene glycol (PPG),
forming the copper layer includes applying a current density of 40 to 80 A/dm 2 between an electrode plate and a rotating drum spaced apart from each other in the electrolytic solution;
In forming the copper layer,
A method for manufacturing an electrolytic copper foil, wherein the electrolytic solution is supplied at a flow rate deviation of 5% or less per unit minute;
The flow rate deviation per unit minute is calculated by Equation 4 below.
[Formula 4]
Electrolytic solution flow rate deviation per unit minute (%) = [(maximum flow rate per minute - minimum flow rate per minute) / average flow rate per minute] x 100
前記銅層上に保護層を形成する段階をさらに含む、請求項15に記載の電解銅箔製造方法。 16. The method of claim 15, further comprising forming a protective layer on the copper layer. 前記保護層を形成する段階は、クロム(Cr)、シラン化合物、および窒素化合物のうち少なくとも一つを利用して前記銅層の表面を防錆処理する段階を含む、請求項16に記載の電解銅箔製造方法。 17. The electrolysis of claim 16 , wherein forming the protective layer comprises anticorrosion treatment of the surface of the copper layer using at least one of chromium (Cr), a silane compound, and a nitrogen compound. Copper foil manufacturing method. 前記保護層を形成する段階は、0.5~1.5g/Lのクロム(Cr)を含む防錆液内に前記銅層を浸漬させる段階を含む、請求項16に記載の電解銅箔製造方法。 17. The electrolytic copper foil manufacturing method according to claim 16 , wherein forming the protective layer comprises immersing the copper layer in an antirust solution containing 0.5 to 1.5 g/L of chromium (Cr). Method.
JP2021551986A 2019-11-21 2020-11-13 Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof Active JP7211669B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190150514A KR20210062369A (en) 2019-11-21 2019-11-21 Electrolytic Copper Foil Capable of Preventing Defects of Tear or Wrinkle Thereof, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR10-2019-0150514 2019-11-21
PCT/KR2020/015965 WO2021101176A1 (en) 2019-11-21 2020-11-13 Electrolytic copper foil proof against tear or wrinkle defects, electrode comprising same, secondary battery comprising same, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2022522513A JP2022522513A (en) 2022-04-19
JP7211669B2 true JP7211669B2 (en) 2023-01-24

Family

ID=75980849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551986A Active JP7211669B2 (en) 2019-11-21 2020-11-13 Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20220200010A1 (en)
EP (1) EP3919655A4 (en)
JP (1) JP7211669B2 (en)
KR (1) KR20210062369A (en)
CN (1) CN113661587A (en)
MY (1) MY196205A (en)
TW (1) TWI747626B (en)
WO (1) WO2021101176A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777760B (en) 2021-08-09 2022-09-11 頎邦科技股份有限公司 Flexible printed circuit board with heat-dissipation plate and heat-dissipation plate thereof
KR20240039471A (en) 2022-09-19 2024-03-26 동아대학교 산학협력단 Manufacturing method for multilayer metal thin plate using electroplating and multilayer metal thin plate therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505955A (en) 1996-12-13 2001-05-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Copper layer electrolytic deposition method
JP2018032624A (en) 2016-08-23 2018-03-01 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2018111882A (en) 2017-01-13 2018-07-19 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil substantially free from wrinkles, an electrode comprising the same, a secondary battery comprising the same, and a method for producing the same
US20190003066A1 (en) 2017-06-20 2019-01-03 Kcf Technologies Co., Ltd. Copper foil with minimized bagginess and tear, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same
WO2019027174A1 (en) 2017-07-31 2019-02-07 케이씨에프테크놀로지스 주식회사 Anti-creasing copper foil, electrode comprising same, secondary battery comprising same, and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124523B2 (en) * 1999-01-28 2001-01-15 日本エレクトロプレイテイング・エンジニヤース株式会社 Copper plating method
KR102691091B1 (en) * 2016-11-15 2024-08-01 에스케이넥실리스 주식회사 Electrolytic Copper Foil with Minimized Curl, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR102646185B1 (en) * 2017-02-27 2024-03-08 에스케이넥실리스 주식회사 Copper foil having improved adhesion, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
TW201900939A (en) * 2017-05-09 2019-01-01 日商Jx金屬股份有限公司 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505955A (en) 1996-12-13 2001-05-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Copper layer electrolytic deposition method
JP2018032624A (en) 2016-08-23 2018-03-01 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2018111882A (en) 2017-01-13 2018-07-19 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil substantially free from wrinkles, an electrode comprising the same, a secondary battery comprising the same, and a method for producing the same
US20190003066A1 (en) 2017-06-20 2019-01-03 Kcf Technologies Co., Ltd. Copper foil with minimized bagginess and tear, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same
WO2019027174A1 (en) 2017-07-31 2019-02-07 케이씨에프테크놀로지스 주식회사 Anti-creasing copper foil, electrode comprising same, secondary battery comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
EP3919655A4 (en) 2022-08-10
KR20210062369A (en) 2021-05-31
TW202120748A (en) 2021-06-01
WO2021101176A1 (en) 2021-05-27
US20220200010A1 (en) 2022-06-23
TWI747626B (en) 2021-11-21
JP2022522513A (en) 2022-04-19
MY196205A (en) 2023-03-22
CN113661587A (en) 2021-11-16
EP3919655A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
CN111801444B (en) Electrolytic copper foil, electrode and lithium ion secondary battery comprising same
JP7324297B2 (en) Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof
US10547081B2 (en) Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2020530878A (en) Copper foil with wrinkle prevention, electrodes containing it, secondary battery containing it, and method for manufacturing the same.
JP6822629B2 (en) Copper foil, its manufacturing method, electrodes containing it, and secondary batteries containing it
TW201825716A (en) Electrolytic copper foil having optimized peak roughness, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP7211669B2 (en) Electrolytic copper foil capable of preventing tearing or wrinkling defects, electrode containing the same, secondary battery containing the same, and manufacturing method thereof
KR102546687B1 (en) Copper foil capable of manufacturing high capacity secondary battery, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP2022529462A (en) Copper foil with wrinkles prevented, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
JP2021193214A (en) Copper foil with excellent adhesivity, electrode therewith, secondary battery therewith, and production method thereof
Jeong et al. Embossed aluminum as a current collector for high-rate lithium cathode performance
CN111316486A (en) Electrolytic copper foil, method for producing same, and negative electrode for high-capacity lithium secondary battery comprising same
KR102492813B1 (en) Copper foil for high capacity secondary battery with improved handling property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR20220096493A (en) Electrolytic Copper Foil Capable of Preventing Defects of curl, Tear or Wrinkle Thereof, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP2024081615A (en) Copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
JP2024084705A (en) High-strength highly elongated copper foil, electrode including the same, secondary battery including the same, and method for producing the same
JP2024094274A (en) Copper foil capable of preventing bursting or wrinkle defects, electrode including same, secondary battery including same, and manufacturing method thereof
JP2024076377A (en) Copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230106

R150 Certificate of patent or registration of utility model

Ref document number: 7211669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150