JP7209449B2 - Manufacturing method of active material powder with LPO - Google Patents

Manufacturing method of active material powder with LPO Download PDF

Info

Publication number
JP7209449B2
JP7209449B2 JP2021018476A JP2021018476A JP7209449B2 JP 7209449 B2 JP7209449 B2 JP 7209449B2 JP 2021018476 A JP2021018476 A JP 2021018476A JP 2021018476 A JP2021018476 A JP 2021018476A JP 7209449 B2 JP7209449 B2 JP 7209449B2
Authority
JP
Japan
Prior art keywords
active material
lpo
material powder
positive electrode
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021018476A
Other languages
Japanese (ja)
Other versions
JP2022121229A (en
Inventor
将史 上田
有基 石垣
英一 高木
雅則 北吉
Original Assignee
プライムプラネットエナジー&ソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムプラネットエナジー&ソリューションズ株式会社 filed Critical プライムプラネットエナジー&ソリューションズ株式会社
Priority to JP2021018476A priority Critical patent/JP7209449B2/en
Publication of JP2022121229A publication Critical patent/JP2022121229A/en
Application granted granted Critical
Publication of JP7209449B2 publication Critical patent/JP7209449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子(処理前正極活物質粒子)が集合した活物質粉体(処理前活物質粉体)から、非晶質LPO部を有するLPO付き正極活物質粒子が集合したLPO付き活物質粉体を製造する、LPO付き活物質粉体の製造方法に関する。 In the present invention, an active material powder (pre-processed active material powder) in which positive electrode active material particles (pre-processed positive electrode active material particles) capable of intercalating and desorbing lithium ions are aggregated is converted into an LPO having an amorphous LPO part. The present invention relates to a method for producing an LPO-attached active material powder, in which positive electrode active material particles are aggregated to produce an LPO-attached active material powder.

リチウムイオン二次電池(以下、単に「電池」ともいう)の正極板に用いられる活物質粉体として、正極活物質からなる粒子本体の粒子表面に、Li(リチウム)、P(リン)及びO(酸素)を含む非晶質の非晶質LPO部を形成したLPO付き正極活物質粒子が集合したLPO付き活物質粉体が知られている。このようなLPO付き活物質粉体を用いて製造した電池では、非晶質LPO部の無い正極活物質粒子が集合した活物質粉体を用いた電池に比べて、電池抵抗を低くできる。 Li (lithium), P (phosphorus) and O An LPO-containing active material powder is known in which LPO-containing positive electrode active material particles forming an amorphous LPO part containing (oxygen) are aggregated. A battery manufactured using such an active material powder with LPO can have a lower battery resistance than a battery using an active material powder in which positive electrode active material particles without an amorphous LPO portion are aggregated.

このLPO付き活物質粉体は、例えば以下の手法により製造する。即ち、正極活物質からなる処理前粒子本体の粒子表面に、Liを含む表面Li化合物部を有する処理前正極活物質粒子が集合した処理前活物質粉体を用意する。また別途、例えばH3PO4(オルトリン酸)等のリン化合物を水に溶解した、Pを含むP処理液を作製しておく。そして、これら処理前活物質粉体とP処理液とを混合して、表面Li化合物部から非晶質LPO部を形成し、粒子表面に非晶質LPO部を有するLPO付き正極活物質粒子が集合したLPO付き活物質粉体を得る。なお、この手法に関連する従来技術として、特許文献1が挙げられる。 This active material powder with LPO is produced, for example, by the following method. That is, an untreated active material powder is prepared in which untreated positive electrode active material particles having a surface Li compound portion containing Li on the particle surface of an untreated particle main body made of a positive electrode active material are aggregated. Separately, a P treatment liquid containing P is prepared by dissolving a phosphorus compound such as H 3 PO 4 (orthophosphoric acid) in water. Then, the untreated active material powder and the P treatment liquid are mixed to form an amorphous LPO portion from the surface Li compound portion, and the positive electrode active material particles with LPO having the amorphous LPO portion on the particle surface are obtained. Aggregated active material powder with LPO is obtained. Incidentally, Patent Document 1 can be cited as a conventional technique related to this technique.

特開2019-153462号公報JP 2019-153462 A

しかしながら、電池抵抗を更に低くできるLPO付き活物質粉体が望まれていた。 However, an LPO-attached active material powder that can further reduce the battery resistance has been desired.

本発明は、かかる現状に鑑みてなされたものであって、電池抵抗を低くするLPO付き活物質粉体を製造できるLPO付き活物質粉体の製造方法を提供するものである。 The present invention has been made in view of such a situation, and provides a method for producing an LPO-containing active material powder that can produce an LPO-containing active material powder that reduces battery resistance.

上記課題を解決するための本発明の一態様は、リチウムイオンを吸蔵及び放出可能な正極活物質からなる処理前粒子本体と、この処理前粒子本体の粒子表面に存在し、Liを含む表面Li化合物部とを備える処理前正極活物質粒子が集合した処理前活物質粉体から、上記正極活物質からなる粒子本体と、この粒子本体の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO部とを備えるLPO付き正極活物質粒子が集合したLPO付き活物質粉体を製造するLPO付き活物質粉体の製造方法であって、上記処理前活物質粉体に水またはLiOH水溶液を混合し、乾燥させて、上記処理前正極活物質粒子よりも、多くの量のLiを含む表面Li化合物部を備えるLi増加正極活物質粒子が集合したLi増加活物質粉体を得るLi増加工程と、上記Li増加活物質粉体に、Pを含むP処理液を混合して、上記表面Li化合物部から上記非晶質LPO部を形成し、上記LPO付き活物質粉体を得るLPO形成工程と、を備えるLPO付き活物質粉体の製造方法である。 One aspect of the present invention for solving the above problems is a pre-treatment particle body made of a positive electrode active material capable of intercalating and desorbing lithium ions, and a surface Li present on the particle surface of the pre-treatment particle body and containing Li. From the unprocessed active material powder in which the unprocessed positive electrode active material particles including the compound part are aggregated, the particle body made of the positive electrode active material, and the non-containing non-containing Li, P and O formed on the particle surface of the particle body A method for producing an LPO-attached active material powder in which LPO-attached positive electrode active material particles having a crystalline amorphous LPO portion are aggregated, wherein the active material powder before treatment includes: Li-increased active material powder in which Li-increased positive electrode active material particles having a surface Li compound portion containing a larger amount of Li than the untreated positive electrode active material particles are aggregated by mixing water or an aqueous LiOH solution and drying. and a P treatment liquid containing P is mixed with the Li-increased active material powder to form the amorphous LPO portion from the surface Li compound portion, and the LPO-attached active material powder and an LPO forming step for obtaining the LPO-attached active material powder.

上述のLPO付き活物質粉体の製造方法では、Li増加工程において、処理前活物質粉体よりも、多くの量のLiを含む表面Li化合物部を有するLi増加活物質粉体を得ることができる。そして、このLi増加活物質粉体を用いてLPO形成工程を行うことで、Li増加工程を行わずにLPO形成工程を行った場合に比して、より多くの非晶質LPO部を含むLPO付き活物質粉体を作製できる。従って、このLPO付き活物質粉体を用いて電池を製造すれば、Li増加工程を行わずに得たLPO付き活物質粉体を用いた電池に比して、より一層電池抵抗を低くできる。 In the method for producing the active material powder with LPO described above, in the Li increasing step, it is possible to obtain the Li-increased active material powder having a surface Li compound portion containing a larger amount of Li than the untreated active material powder. can. Then, by performing the LPO formation step using this Li-increased active material powder, the LPO containing a larger amount of amorphous LPO part than when the LPO formation step is performed without performing the Li-increase step. Active material powder can be produced. Therefore, if a battery is manufactured using this active material powder with LPO, the battery resistance can be further reduced compared to a battery using the active material powder with LPO obtained without performing the Li increasing step.

「正極活物質」としては、例えばリチウム遷移金属酸化物が挙げられる。このリチウム遷移金属酸化物としては、リチウムニッケル複合酸化物(例えばLiNiO2)、リチウムコバルト複合酸化物(例えばLiCoO2)、リチウムマンガン複合酸化物(例えばLiMn24)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/32)のような三元系のリチウム遷移金属酸化物が挙げられる。更に、リチウム遷移金属酸化物として、リン酸マンガンリチウム(例えばLiMnPO4)、リン酸鉄リチウム(例えばLiFePO4)等の、リチウム及び遷移金属元素を含むリン酸塩なども挙げられる。 Examples of the "positive electrode active material" include lithium transition metal oxides. Examples of the lithium transition metal oxide include lithium-nickel composite oxide (eg LiNiO 2 ), lithium-cobalt composite oxide (eg LiCoO 2 ), lithium-manganese composite oxide (eg LiMn 2 O 4 ), lithium-nickel-cobalt-manganese composite oxide. ternary lithium transition metal oxides such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 . Furthermore, examples of lithium transition metal oxides include phosphates containing lithium and transition metal elements, such as lithium manganese phosphate (eg, LiMnPO 4 ) and lithium iron phosphate (eg, LiFePO 4 ).

なお、「非晶質LPO部」としては、例えば、リン酸リチウム(Li3PO4)、リン酸水素二リチウム(Li2HPO4)、リン酸二水素リチウム(LiH2PO4)などの組成で示されるLi、P及びOを含む非晶質の被膜などが挙げられる。
「P処理液」としては、例えば、五酸化二リン(P25)(十酸化四リン (P410))、オルトリン酸(H3PO4)、ピロリン酸(H427)、三リン酸(H5310)、ポリリン酸(HO(HPO3nH)、リン酸リチウム(Li3PO4)、リン酸水素リチウム(Li2HPO4)等のリン化合物を、2-プロパノール(イソプロピルアルコール,IPA)等のアルコール、N-メチルピロリドン(NMP)、水等の溶媒に溶解または分散した処理液が挙げられる。
Examples of the "amorphous LPO portion" include compositions such as lithium phosphate ( Li3PO4 ), dilithium hydrogen phosphate ( Li2HPO4 ), and lithium dihydrogen phosphate ( LiH2PO4 ). Amorphous films containing Li, P and O represented by are mentioned.
Examples of the "P treatment liquid" include diphosphorus pentoxide ( P2O5) (tetraphosphorus decaoxide ( P4O10 )), orthophosphoric acid ( H3PO4 ), pyrophosphoric acid ( H4P2O 7 ), triphosphoric acid ( H5P3O10 ), polyphosphoric acid (HO ( HPO3 ) nH ), lithium phosphate ( Li3PO4 ), lithium hydrogen phosphate ( Li2HPO4 ), etc. Treatment liquids obtained by dissolving or dispersing compounds in solvents such as alcohols such as 2-propanol (isopropyl alcohol, IPA), N-methylpyrrolidone (NMP), water, and the like can be mentioned.

更に、上記LPO付き活物質粉体の製造方法であって、前記Li増加工程は、前記処理前活物質粉体に前記LiOH水溶液を混合して、前記Li増加活物質粉体を得るLPO付き活物質粉体の製造方法とすると良い。 Further, in the method for producing the LPO-containing active material powder, the Li-increasing step includes mixing the LiOH aqueous solution with the untreated active material powder to obtain the Li-increased active material powder. A method for manufacturing a substance powder is preferable.

LiOH水溶液はLiOHを含むため、Li増加工程において、より多くの量のLiを含む表面Li化合物部を有するLi増加活物質粉体を得ることができる。このため、その後のLPO形成工程において、より多くの非晶質LPO部を含むLPO付き活物質粉体を作製できる。従って、このLPO付き活物質粉体を用いて電池を製造すれば、更に電池抵抗を低くできる。 Since the LiOH aqueous solution contains LiOH, it is possible to obtain a Li-increasing active material powder having a surface Li-compound portion containing a larger amount of Li in the Li-increasing step. Therefore, in the subsequent LPO forming step, an LPO-attached active material powder containing a larger amount of amorphous LPO portions can be produced. Therefore, if a battery is manufactured using this active material powder with LPO, the battery resistance can be further reduced.

実施形態に係り、LPO付き活物質粉体をなすLPO付き正極活物質粒子の模式的な断面図である。1 is a schematic cross-sectional view of LPO-attached positive electrode active material particles forming an LPO-attached active material powder according to an embodiment. FIG. 実施形態に係り、処理前活物質粉体をなす処理前正極活物質粒子の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of untreated positive electrode active material particles forming untreated active material powder according to the embodiment. 実施形態に係り、Li増加活物質粉体をなすLi増加正極活物質粒子の模式的な断面図である。1 is a schematic cross-sectional view of Li-enriched positive electrode active material particles forming Li-enriched active material powder according to an embodiment. FIG. 実施形態に係り、LPO付き活物質粉体の製造方法のフローチャートである。1 is a flow chart of a method for manufacturing an LPO-attached active material powder according to an embodiment. 実施形態に係り、Li増加工程において処理前活物質粉体にLiOH水溶液(または水)を混合した様子を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing a state in which an untreated active material powder is mixed with an aqueous LiOH solution (or water) in a Li increasing step according to the embodiment; 実施形態に係り、LPO形成工程においてLi増加活物質粉体にP処理液を混合した様子を模式的に示す説明図である。FIG. 4 is an explanatory view schematically showing a state in which the Li-increasing active material powder is mixed with the P treatment liquid in the LPO formation step according to the embodiment. Li増加工程前の処理前活物質粉体、及び、Li増加工程後のLi増加活物質粉体において、表面Li化合物部に含まれるLi量WLを示すグラフである。4 is a graph showing the Li amount WL contained in the surface Li compound portion in the unprocessed active material powder before the Li increasing process and the Li-increased active material powder after the Li increasing process. 実施例及び比較例に係るLPO付き活物質粉体において、粒子表面近傍に存在するP量の量比を示すグラフである。4 is a graph showing the amount ratio of the amount of P existing in the vicinity of the particle surface in active material powders with LPO according to Examples and Comparative Examples. 実施例及び比較例に係る電池の電池抵抗比を示すグラフである。4 is a graph showing battery resistance ratios of batteries according to examples and comparative examples.

(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1に本実施形態に係るLPO付き正極活物質粒子40の断面図を模式的に示す。LPO付き正極活物質粒子40が集合したLPO付き活物質粉体30は、リチウムイオン二次電池を構成する正極板の正極活物質層に用いられる。LPO付き正極活物質粒子40は、リチウムイオンを吸蔵及び放出可能な正極活物質からなる粒子本体41と、この粒子本体41の粒子表面41mに形成された非晶質LPO部43とを備える。
(embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional view of the positive electrode active material particles 40 with LPO according to this embodiment. The LPO-containing active material powder 30 in which the LPO-containing positive electrode active material particles 40 are aggregated is used for the positive electrode active material layer of the positive electrode plate constituting the lithium ion secondary battery. The positive electrode active material particles 40 with LPO include a particle body 41 made of a positive electrode active material capable of intercalating and deintercalating lithium ions, and an amorphous LPO portion 43 formed on the particle surface 41m of the particle body 41 .

本実施形態では、LPO付き正極活物質粒子40のメディアン径D50は、5μm程度である。粒子本体41をなす正極活物質は、リチウム遷移金属酸化物、具体的には、リチウムニッケルコバルトマンガン複合酸化物(詳細にはLiNi0.2Co0.5Mn0.32)である。一方、非晶質LPO部43は、Li、P及びOを含む非晶質のLPO部、具体的には、主としてLi3PO4の組成で示される非晶質の被膜であると考えられる。この非晶質LPO部43は、粒子本体41の粒子表面41mの全面に(エッジ面41maにもベーサル面41mbにも)、海島状に複数形成されていると考えられる。各非晶質LPO部43の厚みは、0.2nm程度である。各非晶質LPO部43は、それぞれ後述するLi増加正極活物質粒子20Zの表面Li化合物部23Z(図3参照)から生成されている。非晶質LPO部43は、リチウムイオン伝導性が高く、後述するように、LPO付き活物質粉体30を用いた電池の電池抵抗Rを低くできる。 In this embodiment, the median diameter D50 of the positive electrode active material particles 40 with LPO is about 5 μm. The positive electrode active material forming the particle body 41 is a lithium transition metal oxide, specifically a lithium-nickel-cobalt-manganese composite oxide (more specifically, LiNi 0.2 Co 0.5 Mn 0.3 O 2 ). On the other hand, the amorphous LPO portion 43 is considered to be an amorphous LPO portion containing Li, P and O, specifically, an amorphous film mainly having a composition of Li 3 PO 4 . It is considered that a plurality of amorphous LPO portions 43 are formed in a sea-island pattern on the entire grain surface 41m of the grain main body 41 (both on the edge surface 41ma and the basal surface 41mb). The thickness of each amorphous LPO portion 43 is about 0.2 nm. Each amorphous LPO portion 43 is generated from a surface Li compound portion 23Z (see FIG. 3) of the Li-increased positive electrode active material particle 20Z, which will be described later. The amorphous LPO portion 43 has high lithium ion conductivity, and can reduce the battery resistance R of the battery using the active material powder 30 with LPO, as will be described later.

次いで、上記LPO付き活物質粉体30の製造方法について説明する(図2~図6参照)。まず処理前正極活物質粒子20が集合した処理前活物質粉体10を用意する(図2参照)。この処理前正極活物質粒子20は、メディアン径D50が5μm程度の粒子であり、前述した正極活物質(本実施形態ではLiNi0.2Co0.5Mn0.32)からなる処理前粒子本体21と、この処理前粒子本体21の粒子表面21mに存在する表面Li化合物部23とを備える。この表面Li化合物部23は、処理前粒子本体21をなす正極活物質に含まれていた余剰のLiを起源としており、主としてLiOHからなると考えられる。表面Li化合物部23は、粒子表面21mのうちエッジ面21maに、海島状に複数存在していると考えられる。 Next, a method for manufacturing the active material powder 30 with LPO will be described (see FIGS. 2 to 6). First, an untreated active material powder 10 in which untreated positive electrode active material particles 20 are aggregated is prepared (see FIG. 2). The untreated positive electrode active material particles 20 are particles having a median diameter D 50 of about 5 μm, and the untreated particle bodies 21 made of the positive electrode active material described above (LiNi 0.2 Co 0.5 Mn 0.3 O 2 in this embodiment), and a surface Li compound portion 23 present on the particle surface 21m of the untreated particle main body 21 . The surface Li compound portion 23 originates from excess Li contained in the positive electrode active material forming the untreated particle body 21, and is considered to be mainly composed of LiOH. It is considered that a plurality of surface Li compound portions 23 are present in a sea-island pattern on the edge surface 21ma of the particle surface 21m.

次に、「Li増加工程S1」(図4参照)において、上述の処理前活物質粉体10にLiOH水溶液110を混合し、乾燥させて、処理前活物質粉体10よりも、多くの量WLのLiを含む表面Li化合物部23Zを備えるLi増加正極活物質粒子20Zが集合したLi増加活物質粉体10Zを得る(図5参照)。なお、LiOH水溶液110に代えて、水100を用いてもよい。 Next, in the “Li increasing step S1” (see FIG. 4), the above-described active material powder 10 before treatment is mixed with an aqueous LiOH solution 110 and dried to obtain a larger amount than the active material powder 10 before treatment. Li-enriched active material powder 10Z is obtained in which Li-enriched positive electrode active material particles 20Z having surface Li compound portions 23Z containing Li in the WL are aggregated (see FIG. 5). Note that water 100 may be used instead of the LiOH aqueous solution 110 .

本実施形態では、ビーカに45.0gの10wt%LiOH水溶液110を入れ、これに30.0gの処理前活物質粉体10を加えて、マグネチックスターラを用いて300rpmで5分間にわたり攪拌混合する。続いて、この混合液を吸引ろ過して、処理前活物質粉体10を回収する。続いて、回収した処理前活物質粉体10を真空乾燥炉(不図示)に入れて、100℃で3時間にわたり乾燥させる。これにより、表面Li化合物部23Zを備えるLi増加活物質粉体10Z(図3参照)が得られる。 In this embodiment, 45.0 g of 10 wt % LiOH aqueous solution 110 is placed in a beaker, 30.0 g of pre-treated active material powder 10 is added thereto, and stirred and mixed with a magnetic stirrer at 300 rpm for 5 minutes. . Subsequently, this mixed solution is suction-filtered to recover the untreated active material powder 10 . Subsequently, the collected untreated active material powder 10 is placed in a vacuum drying oven (not shown) and dried at 100° C. for 3 hours. As a result, the Li-enriched active material powder 10Z (see FIG. 3) having the surface Li compound portion 23Z is obtained.

Li増加工程S1において、処理前正極活物質粒子20の粒子表面21m(具体的にはエッジ面21ma)に元々存在していた表面Li化合物部23は、LiOH水溶液110に溶解する。しかし、その後の乾燥段階では、Li増加正極活物質粒子20Zの粒子本体21Z内からLiが染み出して、粒子表面21Zmのうちエッジ面21Zmaに、新たにLiOHからなる表面Li化合物部23Zが生じる。また、混合及びろ過段階において、LiOH水溶液110に含まれているLiOH及びLiOH水溶液110に溶解したLiが、粒子表面21Zm全体、即ちエッジ面21Zmaのみならずベーサル面21Zmbにも付着するので、その後乾燥することで、新たにLiOHからなる表面Li化合物部23Zが生じる。これらにより、表面Li化合物部23Zに含まれるLiの量WLが多くなると考えられる。 In the Li increasing step S<b>1 , the surface Li compound portion 23 originally present on the particle surface 21 m (specifically, the edge surface 21 ma ) of the untreated positive electrode active material particle 20 dissolves in the LiOH aqueous solution 110 . However, in the subsequent drying stage, Li seeps out from inside the particle main body 21Z of the Li-increased positive electrode active material particle 20Z, and a surface Li compound portion 23Z made of LiOH is newly generated on the edge surface 21Zma of the particle surface 21Zm. In the mixing and filtering steps, LiOH contained in the LiOH aqueous solution 110 and Li dissolved in the LiOH aqueous solution 110 adhere to the entire particle surface 21Zm, that is, not only the edge surface 21Zma but also the basal surface 21Zmb. As a result, a surface Li compound portion 23Z made of LiOH is newly generated. As a result, it is considered that the amount WL of Li contained in the surface Li compound portion 23Z increases.

ここで、Li増加工程S1の前後における、表面Li化合物部23,23Zに含まれるLi量WL(wt%)について調査した結果を説明する(図7参照)。ビーカに100mlの水に加え、これに10.0gのLi増加工程S1を行う前の処理前活物質粉体10、または、Li増加工程S1を行った後のLi増加活物質粉体10Zを加えて、マグネチックスターラを用いて1分間にわたり攪拌混合し、処理前活物質粉体10またはLi増加活物質粉体10Zに含まれる表面Li化合物部23,23Z(主にLiOH)を水にそれぞれ溶解した。 Here, the result of investigating the Li amount WL (wt %) contained in the surface Li compound portions 23 and 23Z before and after the Li increasing step S1 will be described (see FIG. 7). 100 ml of water was added to a beaker, and 10.0 g of the untreated active material powder 10 before performing the Li increasing step S1 or the Li increasing active material powder 10Z after performing the Li increasing step S1 was added. Then, the surface Li compound portions 23 and 23Z (mainly LiOH) contained in the pre-treated active material powder 10 or the Li-increased active material powder 10Z are dissolved in water. bottom.

その後、これらの混合液をそれぞれろ過し、得られたろ液について、HCl(塩酸)を用いた中和滴定をそれぞれ行った。具体的には、ビーカに入れたろ液をマグネチックスターラで攪拌する共に、pHメータによりろ液のpHを測定しながら、1.0MのHClを25μlずつ30秒間隔で加えた。この中和滴定では、以下の反応が生じると考えられる。
LiOH+HCl→LiCl+H2
After that, each of these mixed liquids was filtered, and neutralization titration using HCl (hydrochloric acid) was performed on the obtained filtrates. Specifically, while stirring the filtrate in a beaker with a magnetic stirrer and measuring the pH of the filtrate with a pH meter, 25 μl of 1.0 M HCl was added at intervals of 30 seconds. It is believed that the following reactions occur in this neutralization titration.
LiOH+HCl→LiCl+H 2 O

その結果、中和が完了するまでに、Li増加工程S1を行う前の処理前活物質粉体10では、滴下量Tc=0.114mlの1.0MHClを要した。また、Li増加工程S1を行った後のLi増加活物質粉体10Zでは、滴下量Tc=0.342mlの1.0MHClを要した。
処理前活物質粉体10及びLi増加活物質粉体10Zの表面Li化合物部23,23Zに含まれるLi量WL(wt%)は、以下の算出式(1)を用いて算出する。
WL(wt%)=Tc×(Mc/1000)×Fc×Mrl×(1/m)×100 ・・・(1)
Tc(ml):中和が完了するまでに要したHClの滴下量、
Mc(M,mol/L):HClの濃度(本実施形態ではMc=1.0M)、
Fc:濃度ファクタ(本実施形態ではFc=1.01)、
Mrl(g/mol):Liの原子量(Mrl=6.94g/mol)。
m(g):用いた処理前活物質粉体10またはLi増加活物質粉体10Zの量(本実施形態ではm=10.0g)。
As a result, the unprocessed active material powder 10 before the Li increasing step S1 required 1.0 M HCl in a dropping amount Tc of 0.114 ml before the neutralization was completed. Also, in the Li-increased active material powder 10Z after performing the Li-increasing step S1, a dropping amount Tc=0.342 ml of 1.0 M HCl was required.
The Li amount WL (wt %) contained in the surface Li compound portions 23 and 23Z of the untreated active material powder 10 and the Li-increased active material powder 10Z is calculated using the following calculation formula (1).
WL (wt%) = Tc x (Mc/1000) x Fc x Mrl x (1/m) x 100 (1)
Tc (ml): the dropwise amount of HCl required to complete neutralization;
Mc (M, mol/L): concentration of HCl (Mc = 1.0 M in this embodiment),
Fc: concentration factor (Fc=1.01 in this embodiment);
Mrl (g/mol): atomic weight of Li (Mrl = 6.94 g/mol).
m (g): amount of pre-treatment active material powder 10 or Li-increased active material powder 10Z used (m=10.0 g in this embodiment).

Li増加工程S1前の処理前活物質粉体10では、滴下量Tc=0.114mlであったため、Li量WL=0.114×(1.0/1000)×1.01×6.94×(1/10.0)×100=0.0080wt%である。
一方、Li増加工程S1後のLi増加活物質粉体10Zでは、滴下量Tc=0.342mlであったため、Li量WL=0.342×(1.0/1000)×1.01×6.94×(1/10.0)×100=0.024wt%である。
従って、本実施形態では、Li増加工程S1を行うことにより、表面Li化合物部23Zに含まれるLi量WLが0.024/0.0080=3.0倍に増えたと考えられる。
In the untreated active material powder 10 before the Li increasing step S1, the dropping amount Tc=0.114 ml, so the Li amount WL=0.114×(1.0/1000)×1.01×6.94× (1/10.0)×100=0.0080 wt %.
On the other hand, in the Li-increasing active material powder 10Z after the Li-increasing step S1, the dropping amount Tc=0.342 ml, so the Li amount WL=0.342×(1.0/1000)×1.01×6. 94 x (1/10.0) x 100 = 0.024 wt%.
Therefore, in the present embodiment, it is considered that the Li amount WL contained in the surface Li compound portion 23Z is increased by 0.024/0.0080=3.0 times by performing the Li increasing step S1.

次に、「LPO形成工程S2」(図4参照)において、Li増加工程S1で得たLi増加活物質粉体10Zと、Pを含むP処理液150とを混合して、表面Li化合物部23Zから非晶質LPO部43を形成し、LPO付き正極活物質粒子40が集合したLPO付き活物質粉体30を得る(図6参照)。本実施形態では、まずLPO形成工程S2で処理するLi増加活物質粉体10Zにおける、表面Li化合物部23Zの全量を非晶質LPO部43に変えるのに要する最低量(過不足ない量)のPを求める。 Next, in the “LPO forming step S2” (see FIG. 4), the Li-increased active material powder 10Z obtained in the Li-increasing step S1 and the P treatment liquid 150 containing P are mixed to form a surface Li compound portion 23Z. Amorphous LPO portions 43 are formed from the powder to obtain active material powder 30 with LPO in which positive electrode active material particles 40 with LPO are aggregated (see FIG. 6). In the present embodiment, first, in the Li-increased active material powder 10Z to be treated in the LPO formation step S2, the minimum amount (necessary amount) required to convert the entire amount of the surface Li compound portion 23Z into the amorphous LPO portion 43 Find P.

前述のように、Li増加活物質粉体10Zにおける、表面Li化合物部23Zに含まれるLi量WLは、WL=0.024wt%である。一方、非晶質LPO部43は主としてLi3PO4の組成で示される被膜であるため、必要となる最低のP量WP(wt%)を、以下の算出式(2)を用いて算出する。
WP(wt%)=(WL/3)×(Mrp/Mrl) ・・・(2)
Mrp(g/mol):Pの原子量(Mrp=30.97g/mol)。
本例では、P量WP=(0.024/3)×(30.97/6.94)=0.036wt%である。
As described above, the Li amount WL contained in the surface Li compound portion 23Z in the Li-increasing active material powder 10Z is WL=0.024 wt %. On the other hand, since the amorphous LPO portion 43 is a film mainly represented by the composition of Li 3 PO 4 , the required minimum amount of P WP (wt%) is calculated using the following formula (2). .
WP (wt%)=(WL/3)×(Mrp/Mrl) (2)
Mrp (g/mol): atomic weight of P (Mrp = 30.97 g/mol).
In this example, the P amount WP=(0.024/3)×(30.97/6.94)=0.036 wt %.

そこで、本実施形態では、P換算で0.036wt%となるように、IPAにP25を溶解して、P処理液150を得る。そして、例えば100gの処理前活物質粉体10に対して、これと同量の100gのP処理液150を加え、この混合物をプラネタリーミキサで3分間にわたり混合し、表面Li化合物部23ZとP処理液150中のリン酸イオンとを反応させて、表面Li化合物部23Zから非晶質LPO部43を形成する。その後、この混合物を80℃に加熱し乾燥させて、LPO付き正極活物質粒子40が集合したLPO付き活物質粉体30を得る。このようにすることで、理論上、表面Li化合物部23Zの全量が非晶質LPO部43となり、かつ、余剰のPがLPO付き活物質粉体30に含まれることもない。 Therefore, in the present embodiment, the P treatment liquid 150 is obtained by dissolving P 2 O 5 in IPA so that the content becomes 0.036 wt % in P conversion. Then, for example, 100 g of the untreated active material powder 10 is added with the same amount of 100 g of the P treatment liquid 150, and this mixture is mixed for 3 minutes in a planetary mixer to obtain the surface Li compound portion 23Z and the P treatment liquid 150. The amorphous LPO portion 43 is formed from the surface Li compound portion 23Z by reacting with the phosphate ions in the treatment liquid 150 . Thereafter, this mixture is heated to 80° C. and dried to obtain active material powder 30 with LPO in which positive electrode active material particles 40 with LPO are aggregated. By doing so, theoretically, the entire amount of the surface Li compound portion 23Z becomes the amorphous LPO portion 43, and excessive P is not included in the active material powder 30 with LPO.

(試験結果)
次いで、本発明の効果を検証するために行った試験結果について説明する(図8及び図9参照)。実施例として、実施形態に係る製造方法により製造したLPO付き活物質粉体30を用意した。一方、比較例として、Li増加工程S1を行わずに、処理前活物質粉体10についてLPO形成工程S2のみを行って製造したLPO付き活物質粉体30をも用意した。次に、実施例及び比較例の各LPO付き活物質粉体30に含まれる非晶質LPO部43の量Caをそれぞれ調査した。
(Test results)
Next, test results for verifying the effects of the present invention will be described (see FIGS. 8 and 9). As an example, an active material powder 30 with LPO manufactured by the manufacturing method according to the embodiment was prepared. On the other hand, as a comparative example, an active material powder 30 with LPO was also prepared by performing only the LPO forming step S2 on the untreated active material powder 10 without performing the Li increasing step S1. Next, the amounts Ca of the amorphous LPO portions 43 contained in the LPO-attached active material powders 30 of Examples and Comparative Examples were investigated.

具体的には、まずLPO付き活物質粉体30について、XRF(X-ray Fluorescence)により、粒子表面41m近傍に存在するNi、Co、Mn、Pの各元素量を測定し、粒子表面41m近傍に存在するP量Cp(%)を、Cp=P量/(Ni量+Co量+Mn量+P量)×100(%)により求めた。更に、比較例のLPO付き活物質粉体30におけるP量Cpを基準(=1.0)として、実施例のLPO付き活物質粉体30におけるP量Cpの「量比」を算出した。その結果を図8に示す。 Specifically, first, for the active material powder 30 with LPO, the amount of each element of Ni, Co, Mn, and P present in the vicinity of the particle surface 41 m is measured by XRF (X-ray Fluorescence). The P content Cp (%) present in the steel was obtained by Cp = P content/(Ni content + Co content + Mn content + P content) x 100 (%). Furthermore, the amount ratio of the P amount Cp in the active material powder 30 with LPO of the example was calculated using the P amount Cp in the active material powder 30 with LPO of the comparative example as a reference (=1.0). The results are shown in FIG.

図8のグラフから明らかなように、比較例のLPO付き活物質粉体30に比して、実施例のLPO付き活物質粉体30では、粒子表面41m近傍に存在するP量Cpが3.0倍になっている。つまり、比較例に比して、実施例では、LPO付き活物質粉体30に含まれる非晶質LPO部43の量Caが3.0倍になっていると考えられる。前述の図7の試験結果から判るように、比較例のLPO形成工程S2前の処理前活物質粉体10に比して、実施例のLPO形成工程S2前のLi増加活物質粉体10Zでは、表面Li化合物部23ZにおけるLiの量WLが3.0倍にされている。非晶質LPO部43は、この表面Li化合物部23Zから形成されるため、比較例のLPO付き活物質粉体30に比して、実施例のLPO付き活物質粉体30では、非晶質LPO部43の量Caが3.0倍になったと考えられる。このように非晶質LPO部43の量Caが増えると、後述するように、このLPO付き活物質粉体30を用いて製造した電池において、電池抵抗Rを低くできる。 As is clear from the graph of FIG. 8, in the active material powder 30 with LPO of the example, the P amount Cp existing in the vicinity of the particle surface 41 m was 3.0% as compared with the active material powder 30 with LPO of the comparative example. It is 0 times. That is, it is considered that the amount Ca of the amorphous LPO part 43 contained in the LPO-attached active material powder 30 is 3.0 times larger in the example than in the comparative example. As can be seen from the test results of FIG. 7 described above, the Li-increased active material powder 10Z before the LPO formation step S2 of the example is superior to the untreated active material powder 10 before the LPO formation step S2 of the comparative example. , the amount WL of Li in the surface Li compound portion 23Z is increased by 3.0 times. Since the amorphous LPO portion 43 is formed from the surface Li compound portion 23Z, the active material powder 30 with LPO of the example is amorphous compared to the active material powder 30 with LPO of the comparative example. It is considered that the amount Ca of the LPO portion 43 has increased 3.0 times. When the amount Ca of the amorphous LPO portion 43 is increased in this manner, the battery resistance R can be lowered in the battery manufactured using this active material powder 30 with LPO, as will be described later.

次に、実施例及び比較例のLPO付き活物質粉体30を用いて、それぞれラミネートセル型のリチウムイオン電池(不図示)を作製した。即ち、LPO付き活物質粉体30を用いて、それぞれ正極板を作製する。具体的には、LPO付き活物質粉体30と、導電粒子(アセチレンブラック粒子)と、結着剤(ポリフッ化ビニリデン)と、分散媒(NMP)とを混合して、正極活物質ペーストを作製する。そして、この正極活物質ペーストをアルミニウム箔からなる正極集電箔上に塗布し、加熱乾燥させて、正極集電箔上に正極活物質層を形成する。その後、これをプレスして正極活物質層の密度を高めて、正極板を形成した。 Next, using the LPO-attached active material powders 30 of Examples and Comparative Examples, laminated cell type lithium ion batteries (not shown) were produced. That is, using the LPO-attached active material powder 30, a positive electrode plate is produced. Specifically, the active material powder 30 with LPO, conductive particles (acetylene black particles), a binder (polyvinylidene fluoride), and a dispersion medium (NMP) are mixed to prepare a positive electrode active material paste. do. Then, this positive electrode active material paste is applied onto a positive current collecting foil made of aluminum foil and dried by heating to form a positive electrode active material layer on the positive current collecting foil. Thereafter, this was pressed to increase the density of the positive electrode active material layer to form a positive electrode plate.

また別途、負極板を作製する。具体的には、負極活物質粒子(黒鉛粒子)と、結着剤(スチレンブタジエンゴム)と、増粘剤(カルボキシメチルセルロース)と、分散媒(水)とを混合して、負極活物質ペーストを作製する。そして、この負極活物質ペーストを銅箔からなる負極集電箔上に塗布し、加熱乾燥させて、負極集電箔上に負極活物質層を形成する。その後、これをプレスして負極活物質層の密度を高めて、負極板を形成した。
次に、各正極板と負極板とをセパレータを介して対向させて、電解液と共にラミネートフィルムからなる外装体内に収容し、電池をそれぞれ作製した。
Separately, a negative electrode plate is produced. Specifically, negative electrode active material particles (graphite particles), a binder (styrene-butadiene rubber), a thickener (carboxymethyl cellulose), and a dispersion medium (water) are mixed to form a negative electrode active material paste. make. Then, this negative electrode active material paste is applied onto a negative electrode collector foil made of copper foil and dried by heating to form a negative electrode active material layer on the negative electrode collector foil. Thereafter, this was pressed to increase the density of the negative electrode active material layer, thereby forming a negative electrode plate.
Next, each positive electrode plate and each negative electrode plate were opposed to each other with a separator interposed therebetween, and housed together with an electrolytic solution in an outer package made of a laminate film to fabricate a battery.

次に、各電池について、それぞれ電池抵抗Rを測定した。具体的には、電池を環境温度-10℃下において、SOCを56%(電池電圧3.70V)に調整する。その後、1Cの定電流Iで2秒間放電を行い、放電前後の電池電圧Vを測定し、電池電圧Vの変化量ΔVを求める。また、R=ΔV/Iにより各電池の電池抵抗(IV抵抗)Rをそれぞれ求める。そして、比較例に係る電池の電池抵抗Rの基準(=1.00)として、実施例に係る電池の電池抵抗Rの「電池抵抗比」を算出した。その結果を図9に示す。 Next, the battery resistance R was measured for each battery. Specifically, the SOC of the battery is adjusted to 56% (battery voltage of 3.70 V) at an environmental temperature of -10°C. Thereafter, the battery is discharged at a constant current I of 1 C for 2 seconds, the battery voltage V before and after the discharge is measured, and the amount of change ΔV in the battery voltage V is obtained. Also, the battery resistance (IV resistance) R of each battery is obtained by R=ΔV/I. Then, as a reference (=1.00) for the battery resistance R of the battery according to the comparative example, the "battery resistance ratio" of the battery resistance R of the battery according to the example was calculated. The results are shown in FIG.

図9のグラフから明らかなように、比較例の電池に比して、実施例の電池では、電池抵抗比(電池抵抗R)が小さくなることが判る。非晶質LPO部43はリチウムイオン伝導性が高いため、非晶質LPO部43が粒子表面41mに多く存在するほど、放電の際に電解液中のリチウムイオンが非晶質LPO部43を通じて粒子表面41mに移動し易くなる。前述のように、比較例に比して実施例では、LPO付き活物質粉体30に含まれる非晶質LPO部43の量Caが3.0倍に増えているため、比較例の電池に比して実施例の電池では、電池抵抗比(電池抵抗R)が小さくなったと考えられる。なお、充電の場合は、リチウムイオンが粒子表面41mから電解液中への移動し易くなる。 As is clear from the graph of FIG. 9, the battery of the example has a smaller battery resistance ratio (battery resistance R) than the battery of the comparative example. Since the amorphous LPO portion 43 has high lithium ion conductivity, the more the amorphous LPO portion 43 exists on the particle surface 41m, the more lithium ions in the electrolytic solution pass through the amorphous LPO portion 43 during discharge. It becomes easier to move to the surface 41m. As described above, in the example, the amount Ca of the amorphous LPO part 43 contained in the LPO-attached active material powder 30 is increased by 3.0 times compared to the comparative example. In contrast, it is considered that the battery resistance ratio (battery resistance R) became smaller in the batteries of the examples. In addition, in the case of charging, lithium ions tend to move from the particle surface 41m into the electrolytic solution.

以上で説明したように、LPO付き活物質粉体30の製造方法では、Li増加工程S1において、処理前活物質粉体10よりも、多くの量WLのLiを含む表面Li化合物部23Zを有するLi増加活物質粉体10Zを得ることができる。そして、このLi増加活物質粉体10Zを用いてLPO形成工程S2を行うことで、Li増加工程S1を行わずにLPO形成工程S2を行った場合に比して、より多くの非晶質LPO部43を含むLPO付き活物質粉体30を作製できる。従って、このLPO付き活物質粉体30を用いて電池を製造すれば、Li増加工程S1を行わずに得たLPO付き活物質粉体を用いた電池に比して、より一層電池抵抗Rを低くできる。 As described above, in the method for producing the active material powder 30 with LPO, in the Li increasing step S1, the surface Li compound portion 23Z containing a larger amount WL of Li than the untreated active material powder 10 has a surface Li compound portion 23Z. Li-increased active material powder 10Z can be obtained. Then, by performing the LPO formation step S2 using this Li-increased active material powder 10Z, more amorphous LPO can be obtained than when the LPO formation step S2 is performed without performing the Li-increase step S1. The LPO-attached active material powder 30 including the portion 43 can be produced. Therefore, if a battery is manufactured using this active material powder 30 with LPO, the battery resistance R can be further improved as compared with a battery using the active material powder with LPO obtained without performing the Li increasing step S1. can be lowered.

更に実施形態では、Li増加工程S1でLiOH水溶液110を用いているため、Li増加工程S1において、より多くの量WLのLiを含む表面Li化合物部23Zを有するLi増加活物質粉体10Zを得ることができる。このため、その後のLPO形成工程S2において、より多くの非晶質LPO部43を含むLPO付き活物質粉体30を作製できる。従って、このLPO付き活物質粉体30を用いて電池を製造すれば、更に電池抵抗Rを低くできる。 Furthermore, in the embodiment, since the LiOH aqueous solution 110 is used in the Li increasing step S1, the Li increasing active material powder 10Z having the surface Li compound portion 23Z containing a larger amount WL of Li is obtained in the Li increasing step S1. be able to. Therefore, in the subsequent LPO forming step S2, the LPO-attached active material powder 30 containing more amorphous LPO portions 43 can be produced. Therefore, if a battery is manufactured using this active material powder 30 with LPO, the battery resistance R can be further reduced.

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。 Although the present invention has been described above with reference to the embodiments, it goes without saying that the present invention is not limited to the embodiments, and can be appropriately modified and applied without departing from the scope of the invention.

10 処理前活物質粉体
20 処理前正極活物質粒子
21 処理前粒子本体
21m 粒子表面
23 (Li増加工程前の)表面Li化合物部
10Z Li増加活物質粉体
20Z Li増加正極活物質粒子
21Z 粒子本体
21Zm 粒子表面
23Z (Li増加工程後の)表面Li化合物部
WL (表面Li化合物部に含まれる)Li量
30 LPO付き活物質粉体
40 LPO付き正極活物質粒子
41 粒子本体
41m 粒子表面
43 非晶質LPO部
100 水
110 LiOH水溶液
150 P処理液
S1 Li増加工程
S2 LPO形成工程
10 Untreated active material powder 20 Untreated positive electrode active material particle 21 Untreated particle main body 21m Particle surface 23 Surface Li compound portion 10Z Li-increased active material powder 20Z Li-increased positive electrode active material particle 21Z Particles Main body 21Zm Particle surface 23Z Surface Li compound portion WL (contained in surface Li compound portion) Li amount 30 LPO-containing active material powder 40 LPO-containing positive electrode active material particle 41 Particle main body 41m Particle surface 43 Non Crystalline LPO part 100 Water 110 LiOH aqueous solution 150 P treatment liquid S1 Li increasing step S2 LPO forming step

Claims (2)

リチウムイオンを吸蔵及び放出可能な正極活物質からなる処理前粒子本体と、この処理前粒子本体の粒子表面に存在し、Liを含む表面Li化合物部とを備える処理前正極活物質粒子が集合した処理前活物質粉体から、
上記正極活物質からなる粒子本体と、この粒子本体の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO部とを備えるLPO付き正極活物質粒子が集合したLPO付き活物質粉体を製造する
LPO付き活物質粉体の製造方法であって、
上記処理前活物質粉体に水またはLiOH水溶液を混合し、乾燥させて、上記処理前正極活物質粒子よりも、多くの量のLiを含む表面Li化合物部を備えるLi増加正極活物質粒子が集合したLi増加活物質粉体を得るLi増加工程と、
上記Li増加活物質粉体に、Pを含むP処理液を混合して、上記表面Li化合物部から上記非晶質LPO部を形成し、上記LPO付き活物質粉体を得るLPO形成工程と、を備える
LPO付き活物質粉体の製造方法。
An untreated positive electrode active material particle comprising an untreated particle body made of a positive electrode active material capable of intercalating and releasing lithium ions and a surface Li compound portion containing Li existing on the particle surface of the untreated particle body and containing Li. From the active material powder before treatment,
LPO-attached LPO-attached cathode active material particles having LPO-attached cathode active material particles, comprising a particle body made of the positive electrode active material, and an amorphous LPO part formed on the particle surface of the particle body and containing Li, P, and O A method for producing active material powder with LPO, comprising:
The active material powder before treatment is mixed with water or an aqueous LiOH solution and dried to obtain a Li-increased positive electrode active material particle having a surface Li compound portion containing a larger amount of Li than the positive electrode active material particle before treatment. a Li increasing step of obtaining an aggregated Li increasing active material powder;
an LPO forming step of mixing the Li-increased active material powder with a P treatment liquid containing P to form the amorphous LPO portion from the surface Li compound portion to obtain the LPO-attached active material powder; A method for producing an LPO-attached active material powder comprising:
請求項1に記載のLPO付き活物質粉体の製造方法であって、
前記Li増加工程は、
前記処理前活物質粉体に前記LiOH水溶液を混合して、前記Li増加活物質粉体を得る
LPO付き活物質粉体の製造方法。
A method for producing the active material powder with LPO according to claim 1,
The Li increasing step is
A method for producing active material powder with LPO to obtain the Li-increased active material powder by mixing the untreated active material powder with the LiOH aqueous solution.
JP2021018476A 2021-02-08 2021-02-08 Manufacturing method of active material powder with LPO Active JP7209449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018476A JP7209449B2 (en) 2021-02-08 2021-02-08 Manufacturing method of active material powder with LPO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018476A JP7209449B2 (en) 2021-02-08 2021-02-08 Manufacturing method of active material powder with LPO

Publications (2)

Publication Number Publication Date
JP2022121229A JP2022121229A (en) 2022-08-19
JP7209449B2 true JP7209449B2 (en) 2023-01-20

Family

ID=82849471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018476A Active JP7209449B2 (en) 2021-02-08 2021-02-08 Manufacturing method of active material powder with LPO

Country Status (1)

Country Link
JP (1) JP7209449B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099323A (en) 2010-11-01 2012-05-24 Toyota Motor Corp Cathode active substance material, cathode active substance layer, all-solid battery, and method for producing cathode active substance material
JP2017504947A (en) 2014-02-28 2017-02-09 エルジー・ケム・リミテッド Lithium-nickel positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP2018524776A (en) 2015-07-02 2018-08-30 ユミコア Cobalt-based lithium metal oxide cathode material
JP2019091566A (en) 2017-11-13 2019-06-13 トヨタ自動車株式会社 Production method of trilithium phosphate for nonaqueous secondary cell
JP2019153462A (en) 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2020113377A (en) 2019-01-09 2020-07-27 トヨタ自動車株式会社 Manufacturing method of cathode active material composite material for lithium ion secondary battery
JP2020535618A (en) 2017-10-20 2020-12-03 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
JP2020198261A (en) 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of positive electrode plate, and manufacturing method of lithium ion secondary battery, and wet mixture, positive electrode plate, and lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099323A (en) 2010-11-01 2012-05-24 Toyota Motor Corp Cathode active substance material, cathode active substance layer, all-solid battery, and method for producing cathode active substance material
JP2017504947A (en) 2014-02-28 2017-02-09 エルジー・ケム・リミテッド Lithium-nickel positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP2018524776A (en) 2015-07-02 2018-08-30 ユミコア Cobalt-based lithium metal oxide cathode material
JP2020535618A (en) 2017-10-20 2020-12-03 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
JP2019091566A (en) 2017-11-13 2019-06-13 トヨタ自動車株式会社 Production method of trilithium phosphate for nonaqueous secondary cell
JP2019153462A (en) 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2020113377A (en) 2019-01-09 2020-07-27 トヨタ自動車株式会社 Manufacturing method of cathode active material composite material for lithium ion secondary battery
JP2020198261A (en) 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of positive electrode plate, and manufacturing method of lithium ion secondary battery, and wet mixture, positive electrode plate, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2022121229A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CN103109399B (en) A kind of containing lithium salts-graphene composite material and preparation method thereof
JP5491460B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5491459B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5165515B2 (en) Lithium ion secondary battery
JP5491461B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP2013541142A (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5373858B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5449265B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5491462B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2020113377A (en) Manufacturing method of cathode active material composite material for lithium ion secondary battery
JP6041867B2 (en) Method for producing secondary battery negative electrode active material, secondary battery negative electrode active material, secondary battery negative electrode production method, secondary battery negative electrode, and secondary battery
JP5373857B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2018185929A (en) Composite particle
JP6455124B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7209449B2 (en) Manufacturing method of active material powder with LPO
CN111527631A (en) Manganese phosphate coated lithium nickel oxide materials
JP7284774B2 (en) Manufacturing method of active material powder with LPO and active material powder with LPO
JP7286687B2 (en) Method for measuring amount of Li on particle surface of active material powder and method for producing coating-containing active material powder
JP7341975B2 (en) Method for manufacturing high coverage positive electrode active material particles and method for manufacturing positive electrode active material particles with LPO layer as intermediates
TWI420730B (en) Positive composite material, method for making the same, and lithium-ion battery
JP7132304B2 (en) Manufacturing method of active material powder and active material powder
JP7137602B2 (en) Method for producing coated positive electrode active material particles
JP7146359B2 (en) Method for producing coated positive electrode active material particles
JP2015109227A (en) Power-storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R150 Certificate of patent or registration of utility model

Ref document number: 7209449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150