JP7207842B2 - Grain size determination method and system for ground material - Google Patents
Grain size determination method and system for ground material Download PDFInfo
- Publication number
- JP7207842B2 JP7207842B2 JP2019082811A JP2019082811A JP7207842B2 JP 7207842 B2 JP7207842 B2 JP 7207842B2 JP 2019082811 A JP2019082811 A JP 2019082811A JP 2019082811 A JP2019082811 A JP 2019082811A JP 7207842 B2 JP7207842 B2 JP 7207842B2
- Authority
- JP
- Japan
- Prior art keywords
- ground material
- belt surface
- image
- area
- belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 244
- 238000000034 method Methods 0.000 title claims description 25
- 239000002245 particle Substances 0.000 claims description 68
- 238000001514 detection method Methods 0.000 claims description 37
- 239000008187 granular material Substances 0.000 claims description 33
- 238000003384 imaging method Methods 0.000 claims description 17
- 238000010801 machine learning Methods 0.000 claims description 9
- 230000011218 segmentation Effects 0.000 claims description 8
- 230000001131 transforming effect Effects 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 3
- 239000011236 particulate material Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000009825 accumulation Methods 0.000 description 21
- 238000010276 construction Methods 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 240000006829 Ficus sundaica Species 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 102000012498 secondary active transmembrane transporter activity proteins Human genes 0.000 description 1
- 108040003878 secondary active transmembrane transporter activity proteins Proteins 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Description
本発明は地盤材料の粒度判定方法及びシステムに関し,とくに地盤材料の画像から粒度を判定する方法及びシステムに関する。 The present invention relates to a method and system for determining grain size of ground material, and more particularly to a method and system for determining grain size from an image of ground material.
ダム・堤防・路体・路盤・路床等の土木構造物を構築する際に,材料・施工の合理化を図る観点から,現場付近の地山等の採取場で調達された地盤材料(粘土,砂,礫等の様々な粒径の粒状材が混在する土木材料)を原材料として使用することがある。例えばCSG(Cemented Sand and Gravel),セメント改良土等の構造材料は,現場付近で調達した地盤材料S(CSG材,セメント改良土母材等と呼ばれる)に水及びセメントを混合してそのまま施工するものであり,大量且つ高速な施工を可能とする利点を有している。現場付近で調達した地盤材料Sを骨材としたコンクリートを構造材料として使用する場合もある。 Ground materials (clay, Civil engineering materials mixed with granular materials of various grain sizes such as sand and gravel) may be used as raw materials. For example, structural materials such as CSG (Cemented Sand and Gravel) and cement-improved soil are constructed by mixing water and cement with ground material S (called CSG material, cement-improved soil base material, etc.) procured near the site. It has the advantage of enabling large-scale and high-speed construction. In some cases, concrete using ground material S procured near the site as an aggregate is used as a structural material.
CSG材,セメント改良土母材,骨材等の地盤材料Sは,図6に示すように,採取場1等で調達したのち破砕装置1a等で適当に破砕することはあるが,基本的に人為的な粒度調整を施さずそのまま用いるものであり,粒度や含水率の変動によって構造物の品質(とくに強度)に変動を生じさせる。そのため,採取場1からストックヤード2経由でトラック等の運搬機械3によって工事現場に順次搬入される地盤材料Sを適宜抜き取って粒度,含水率等を確認し,地盤材料Sと混合する水W及びセメントCの添加量を調整して構造材料の品質を適切に管理することが求められる。図中の符号4は工事現場に搬入された地盤材料Sを投入するホッパーを示し,符号9は水W及びセメントCを混合する混合装置(ミキサー等)を示す。
Ground materials S such as CSG materials, cement-improved soil base materials, aggregates, etc., as shown in Fig. 6, may be appropriately crushed by a crushing
一般に地盤材料Sの粒度(粒度分布)は,混在する各粒状材の粒径dを横軸(対数軸)とし,各粒径d以下の粒状材の全体に対する質量百分率(=その粒径d以下の粒状材の総質量/粒状材全体の総質量×100。以下,加積通過率ということがある)を縦軸(線形軸)とした片対数グラフ,すなわち図7のような粒径加積曲線Pによって表すことができる。粒径加積曲線Pを作成するためには,地盤材料Sを複数回篩い分けして複数の粒径dの加積通過率P(d)を求める必要がある。しかし,地盤材料Sの篩い分けには非常に手間がかかるため,地盤材料Sの撒き出し画像Gからコンピュータ(画像処理装置)によって粒径加積曲線Pを求める方法が開発されている(特許文献1~3参照)。 In general, the particle size (particle size distribution) of the ground material S is expressed by the horizontal axis (logarithmic axis) of the particle size d of each mixed granular material, and the mass percentage (= the particle size d or less) of the total particle size d or less. The total mass of the granular material / total mass of the entire granular material × 100. Hereinafter, it may be referred to as the cumulative passage rate) is a semi-logarithmic graph with the vertical axis (linear axis), i.e. It can be represented by curve P. In order to create the grain size accumulation curve P, it is necessary to sift the ground material S a plurality of times and obtain the accumulated passage rate P(d) of a plurality of grain sizes d. However, since it takes a lot of time and effort to sieve the ground material S, a method has been developed to determine the particle size accumulation curve P from the unloaded image G of the ground material S using a computer (image processing device) (Patent document 1-3).
地盤材料Sは最大粒径から最小粒径までの範囲(粒径範囲)が広いので,地盤材料Sの撒き出し画像Gから特定の粒径d(例えば100mm)以下の粒状材を全て検出して加積通過率P(d)を直接的に求めることは困難である。特許文献1~3は,画像Gから特定の粒径d以上の粒状材を全て検出し,画像Gの全体面積Eに対する粒径d以上の粒状材の面積eの総和(Σe)の割合Σe/E(以下,粒度インデクスIという)から,その粒径dの加積通過率P(d)を間接的に求めるものである。
Since the ground material S has a wide range from the maximum particle size to the minimum particle size (particle size range), all granular materials having a specific particle size d (for example, 100 mm) or less are detected from the spread image G of the ground material S. It is difficult to obtain the cumulative pass rate P(d) directly.
図8は,地盤材料Sの粒度インデクスIと加積通過率P(d)との変換式Kの一例を示すグラフである。このグラフは,地盤材料Sの複数の粒径d=10mm,20mm,30mm,40mmについて従来の篩い分けで加積通過率P(d)を求め,他方でその地盤材料Sの撒き出し画像Gから各粒径d=10mm,20mm,30mm,40mmの粒度インデクスI(d)を算出し,それらを二次平面にプロットして両者の関係を示したものである。同グラフから,各粒径dの加積通過率P(d)=yが粒度インデクスI(d)=xの多次元回帰モデルK(y=Σan・xn)で表せること,すなわち各粒径dの粒度インデクスIを加積通過率Pに変換できることが分かる。このような変換式K(例えば回帰モデル)を利用すれば,地盤材料Sの撒き出し画像Gから所要粒径dの粒度インデクスIを求めて加積通過率Pに変換することできる。 FIG. 8 is a graph showing an example of the conversion formula K between the grain size index I of the ground material S and the cumulative passage rate P(d). This graph obtains the cumulative passage rate P(d) by conventional sieving for a plurality of particle sizes d = 10 mm, 20 mm, 30 mm, and 40 mm of the ground material S, and on the other hand, from the spread image G of the ground material S The particle size index I(d) for each particle size d=10 mm, 20 mm, 30 mm, and 40 mm was calculated and plotted on a quadratic plane to show the relationship between the two. From the same graph, it can be seen that the cumulative passage rate P(d)=y for each particle size d can be represented by the multidimensional regression model K (y=Σa n x n ) of the particle size index I(d)=x. It can be seen that the particle size index I of the diameter d can be converted into an accumulated throughput P. By using such a conversion formula K (for example, a regression model), the particle size index I of the required particle size d can be obtained from the ground image G of the ground material S and converted into the cumulative passage rate P.
図9は,粒度インデクスIを利用して地盤材料Sの粒径加積曲線P(d)を作成する特許文献3の粒度計測システムを示す。図示例のシステムは,地盤材料Sの撒き出し画像Gを撮影するデジタルカメラ等の撮像装置5と,その画像Gを入力して地盤材料Sの粒径加積曲線P(d)を作成するコンピュータ30とを有している。図示例のコンピュータ30は,キーボード等の入力装置31と,ディスプレイ・プリンタ等の出力装置32と,粒度インデクスIを加積通過率Pに変換する変換式K等を記憶する記憶手段35とを有する。
FIG. 9 shows the particle size measurement system of
また図示例のコンピュータ30は,内蔵プログラム(画像処理プログラム)として,画像Gから地盤材料S中の各粒状材の輪郭を検出する検出手段41と,各粒状材の輪郭から粒径d及び面積eを求めて複数の粒径dの粒度インデクスI(d)を算出する算出手段42と,算出した複数の粒径dの粒度インデクスI(d)を変換式Kにより加積通過率Pに変換して粒径加積曲線P(d)を作成する作成手段43と,作成した粒径加積曲線P(d)に基づき地盤材料Sの粒度品質を判定・評価する評価手段44とを有している。
Further, the
図9の粒度計測システムによれば,工事現場に搬入される地盤材料Sを適宜抜き取って撒き出し,その撒き出し画像Gを撮影してコンピュータ30に入力することにより,地盤材料Sの粒径加積曲線P(d)を迅速に作成することができ,地盤材料Sの粒度品質を例えば15分~30分に1回程度の頻度で判定・評価(管理)することができる。また,図5に示すように地盤材料Sを搬送するベルトコンベア10上で振動させて撒き出す(分散させる)技術が開発されており(特許文献4参照),そのような振動ベルトコンベア10等を用いて撒き出す時間を更に短縮ないし省略することにより,工事現場に搬入される地盤材料Sの粒度品質をほぼ連続的に判定・評価(管理)することも可能である。
According to the particle size measurement system of FIG. 9, the ground material S brought into the construction site is appropriately extracted and spread out, and the image G of the spread out is taken and input to the
図5(A)は,地盤材料Sを載置して搬送しながら分散させる特許文献4の振動ベルトコンベア10を示す。図示例のベルトコンベア10は,通常のベルトコンベアと同様に駆動プーリ11とテールプーリ13との間に環状に帯状ベルト14を架け渡したものである。駆動装置12により駆動プーリ11を駆動し,駆動プーリ11とテールプーリ13との間で帯状ベルト14を回転させることにより,ベルト面に載置した地盤材料Sを搬送する。ベルト面の下方には,搬送方向に沿って複数のキャリアローラ15,16が並べられており,ベルト面の上流部のキャリアローラ15は第1支持体21によって連結支持され,下流部のキャリアローラ16は第1支持体21から縁切りされた第2支持体17によって連結支持されている。第1支持体21及び第2支持体17は,それぞれ支持脚によって工事現場の基盤上に支持されている。
FIG. 5(A) shows a
図5(A)のベルトコンベア10において,ベルト面の荷重はキャリアローラ15,16を介して第1支持体21及び第2支持体17により支持されるが,第1支持体21と第2支持体17とは相互に縁切りされているので,第1支持台21にはキャリアローラ15の荷重のみが伝達され,他のキャリアローラ16の荷重は伝達されない。また,ベルトコンベア10は第1支持体21を振動させる振動装置22を有しているが,振動装置22の振動は第2支持体17に伝達されることはなく,第1支持体21とそれに連結されたキャリアローラ15のみを振動させることができる。
In the
図5(A)の撮像装置5は,ベルトコンベア10の下流部の無振動エリアに,ベルト面と対向するように配置されている。ベルトコンベア10の上流部において地盤材料Sを振動させながらベルト面画像Gを撮影すると,撮影のたびに地盤材料S中の粒子や土塊が異なる形として写り込み,画像Gから測定される粒度の精度が低下するおそれがある。図5(A)のように,地盤材料Sを上流の振動エリアにおいて振動させて分散させたのち,その下流の無振動エリアにおいてベルト面画像Gを撮影することにより,画像Gから粒度を精度よく求めることができる。
The
上述したように,例えば図5の振動ベルトコンベア10等に地盤材料Sを載置して搬送しながら分散させ,ベルトコンベア10上の分散した状態の地盤材料Sのベルト面画像Gを図9のコンピュータ30に入力することにより,工事現場に搬入される地盤材料Sの粒度品質をほぼ連続的に管理することが期待できる。しかし,本発明者らの予備的実験によると,ベルトコンベア10のベルト面14と対向する撮像装置5で撮影したベルト面画像Gには,地盤材料Sだけでなく,地盤材料S以外の物体(例えば露出したベルト面等)も写り込んでおり,その物体の輪郭を誤って地盤材料Sと認識してしまうことが経験された。地盤材料Sの誤認識は粒径加積曲線P(d)の誤差の原因となり,ひいては地盤材料Sの粒度品質管理の精度低下につながる。また,地盤材料Sを用いる構造物の品質低下を招くことから,地盤材料Sの誤認識はできる限り小さく抑えることが必要である。
As described above, for example, the ground material S is placed on the
また,地盤材料S以外の物体が写り込んだベルト面画像Gは,上述した地盤材料Sの粒度インデクスIの誤差の原因ともなりうる。すなわち,粒度インデクスIは画像Gの全体面積Eに対する特定粒径d以上の粒状材の面積eの総和(Σe)の割合Σe/Eとして定義されるが,全体面積Eに地盤材料S以外の物体が含まれると誤差となり,特定粒径dの粒状材の面積eに地盤材料S以外の物体が含まれる場合も誤差となるので,粒度インデクスIから加積通過率P(d)を正確に求めることができなくなる。工事現場に搬入される地盤材料Sの粒度品質の連続的な管理を実現するためには,画像Gに写り込んだ地盤材料S以外の物体の影響を避ける技術の開発が必要である。 Further, the belt surface image G in which an object other than the ground material S is reflected may cause an error in the particle size index I of the ground material S described above. That is, the grain size index I is defined as the ratio Σe/E of the total sum (Σe) of the area e of granular materials having a specific grain size d or larger to the total area E of the image G. If is included, it will be an error, and if an object other than the ground material S is included in the area e of the granular material with a specific grain size d, it will also be an error. I can't do it. In order to continuously manage the granularity and quality of the ground material S brought into the construction site, it is necessary to develop a technique to avoid the influence of objects other than the ground material S reflected in the image G.
そこで本発明の目的は,ベルトコンベア上の分散した状態の地盤材料の画像から精度よく粒度を判定できる地盤材料の粒度判定方法及びシステムを提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method and system for determining the grain size of a ground material that can accurately determine the grain size from an image of the ground material dispersed on a belt conveyor.
一態様において本発明は,図1の実施例及び図2の流れ図並びに図3(B)及び図4(D)に示すように,異なる粒径dの粒状材が混在した地盤材料Sをベルトコンベア10の帯状ベルト14に分散した状態で載置し,ベルトコンベア10と対向する撮像装置5により地盤材料Sを載置したベルト面画像G(図3(A)及び図4(A)参照)を撮影し,ベルト面画像G上の地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを機械学習による推定により検知し,露出ベルト面14の輪郭領域T2を地盤材料S以外の領域としてベルト面画像Gから差し引いた除去画像E(図3(B)及び図4(D)参照)を作成し,その除去画像Eから地盤材料Sの粒度P(d)を判定してなる地盤材料の粒度判定方法を提供する。
In one embodiment of the present invention, as shown in the embodiment of FIG. 1, the flow chart of FIG. 2, and FIGS . 10 belt-
他の態様において本発明は,図1,図3(B)及び図4(D)の実施例に示すように,異なる粒径dの粒状材が混在した地盤材料Sを帯状ベルト14に分散した状態で載置するベルトコンベア10,ベルトコンベア10と対向して地盤材料Sを載置したベルト面画像G(図3(A)及び図4(A)参照)を撮影する撮像装置5,ベルト面画像Gから地盤材料S以外の領域T2,T3を差し引いた除去画像E(図3(B)及び図4(D)参照)を作成する画素選択手段50,及び除去画像Eから地盤材料Sの粒度P(d)を判定する判定手段40を備え,画素選択手段50にベルト面画像G上の地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを検知する検知手段52(図1のブロック図参照)を含め,その検知手段52を,地盤材料S中の各粒状材の輪郭形状とベルト面14上に分散させた地盤材料S周りの露出ベルト面14の輪郭形状とを教師データとして用い,ベルト面画像Gからセマンティックセグメンテーション手法の機械学習により生成された地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを推定する輪郭推定モデルとし,画素選択手段50により露出ベルト面14の輪郭領域T2を地盤材料S以外の領域として除去画像Eを作成してなる地盤材料の粒度判定システムを提供する。
In another aspect of the present invention, as shown in the embodiments of FIGS.
更に他の態様において本発明は,図1,図3(C),図3(D)及び図4(D)の実施例に示すように,異なる粒径dの粒状材が混在した地盤材料Sを帯状ベルト14に分散した状態で載置するベルトコンベア10,ベルトコンベア10と対向して地盤材料Sを載置したベルト面画像G(図3(A)及び図4(A)参照)を撮影する撮像装置5,ベルト面画像Gから地盤材料S以外の領域T2,T3を差し引いた除去画像E(図3(B)及び図4(D)参照)を作成する画素選択手段50,及び除去画像Eから地盤材料Sの粒度P(d)を判定する判定手段40を備え,画素選択手段50にベルト面画像G上の地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを検知する検知手段52(図1のブロック図参照)と共に露出ベルト面14の輪郭領域T2をベルト面14の帯幅方向に拡大してベルト面全幅にわたる矩形領域T4,T5に変形する領域変形手段54を含め(図3(C)参照)を含め,画素選択手段50によりベルト面全幅にわたる矩形領域T4,T5を地盤材料以外の領域として除去画像Eを作成してなる地盤材料の粒度判定システムを提供する。In still another aspect, the present invention provides a ground material S in which granular materials with different particle sizes d are mixed, as shown in the examples of FIGS. A belt surface image G (see FIGS. 3A and 4A) on which the ground material S is placed facing the
好ましい実施例では,図4(B)~(C)に示すように,画素選択手段50にベルト面画像Gを所要大きさの複数の分割画像g1~g8(図4(B)参照)に区分けする分割手段51(図1のブロック図参照)と各分割画像g1~g8を統合する統合手段53(図1のブロック図参照)とを含め,検知手段52により分割画像g1~g8毎に地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを推定し(図4(C)参照),統合手段53により各分割画像g1~g8の地盤材料Sの輪郭領域T1と露出ベルト面14の輪郭領域T2とをそれぞれ統合してベルト面画像G上の地盤材料Sの輪郭領域T1と露出ベルト面14の輪郭領域T2とを検知する。
In a preferred embodiment, as shown in FIGS. 4B to 4C, the belt surface image G is divided into a plurality of divided images g1 to g8 (see FIG. 4B) by the pixel selection means 50. The ground material for each of the divided images g1 to g8 is detected by the detection means 52, including the dividing means 51 (see the block diagram in FIG. 1) and the integrating means 53 (see the block diagram in FIG. 1) for integrating the divided images g1 to g8. S and the contour region T2 of the exposed
本発明による地盤材料の粒度判定方法及びシステムは,異なる粒径dの粒状材が混在した地盤材料Sをベルトコンベア10の帯状ベルト14に分散した状態で載置し,ベルトコンベア10と対向する撮像装置5により地盤材料Sを載置したベルト面画像Gを撮影し,ベルト面画像G上の地盤材料Sの輪郭領域T1とその地盤材料S周りの露出ベルト面14の輪郭領域T2とを機械学習による推定により検知し,露出ベルト面14の輪郭領域T2を地盤材料S以外の領域としてベルト面画像Gから差し引いた除去画像Eを作成し,その除去画像Eから地盤材料Sの粒度P(d)を判定するので,次の有利な効果を奏する。
The method and system for determining the grain size of a ground material according to the present invention is to place a ground material S in which granular materials having different particle sizes d are mixed on the belt-shaped
(イ)ベルト面画像Gから地盤材料S以外の領域T2,T3を差し引いた除去画像Eを作成し,地盤材料Sのみが写り込んだ除去画像Eに基づいて粒径加積曲線P(d)を作成することにより,地盤材料S以外の物体の影響を避け,精度の高い粒径加積曲線Pを作成することができる。
(ロ)色彩や光反射率の相違等を利用してベルト面画像Gに写り込んだ地盤材料S以外の物体を識別検知することもできるが,地盤材料S以外の物体は地盤材料S中の粒状材とは通常異なる輪郭形状であることから,輪郭形状を利用してベルト面画像Gの地盤材料S以外の領域T2,T3を識別検知することにより,色彩や光反射率の相違等が利用できない条件下でも地盤材料Sの粒径加積曲線Pを精度よく作成できる。
(ハ)地盤材料Sの輪郭形状は一定ではなく,地盤材料S以外の輪郭領域T2,T3の輪郭形状も一定ではないが,セマンティックセグメンテーション手法の機械学習により生成された輪郭推定モデルを利用することにより,ベルト面画像Gから地盤材料S以外の輪郭領域T2,T3を精度よく識別検知し,地盤材料Sの粒径加積曲線Pの精度を高めることが可能である。判定対象の地盤材料Sを教師データとして輪郭推定モデルのパラメタを最適化することにより,判定対象の地盤材料Sに応じて地盤材料S以外の輪郭領域T2,T3の検知精度を高めることもできる。
(a) A removed image E is created by subtracting the areas T2 and T3 other than the ground material S from the belt surface image G, and the grain size accumulation curve P(d) is based on the removed image E in which only the ground material S is reflected. By creating , it is possible to avoid the influence of objects other than the ground material S and create a grain size accumulation curve P with high accuracy.
(B) It is possible to identify and detect objects other than the ground material S reflected in the belt surface image G by using differences in color and light reflectance, etc., but objects other than the ground material S are Since the outline shape is usually different from that of the granular material, the areas T2 and T3 other than the ground material S of the belt surface image G are identified and detected by using the outline shape, so that the difference in color and light reflectance can be used. The grain size accumulation curve P of the ground material S can be created with high accuracy even under conditions where it is not possible.
(C) The contour shape of the ground material S is not constant, and the contour shapes of the contour areas T2 and T3 other than the ground material S are also not constant, but the contour estimation model generated by machine learning using the semantic segmentation method is used. Thus, the contour regions T2 and T3 other than the ground material S can be identified and detected from the belt surface image G with high accuracy, and the accuracy of the grain size addition curve P of the ground material S can be improved. By optimizing the parameters of the contour estimation model using the ground material S to be determined as teaching data, it is possible to increase the detection accuracy of the contour regions T2 and T3 other than the ground material S according to the ground material S to be determined.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,工事現場付近で調達した地盤材料Sを原材料として構造材料(CSG,セメント改良土,コンクリート等)を製造する工事現場に適用した本発明の粒度判定システムの実施例を示す。図6に示すように,工事現場に搬入された地盤材料Sはホッパー4に投入され,ホッパー4から混合装置9(ミキサー等)に搬送して水W及びセメントCを添加することにより構造材料とする。図示例の粒度判定システムは,ホッパー4から混合装置9への搬送路に設けたベルトコンベア10と,そのベルトコンベア10上の分散させた状態の地盤材料Sを含むベルト面画像Gを継続的に撮影する撮像装置5と,そのベルト面画像Gを順次入力して地盤材料Sの粒径加積曲線P(d)を作成するコンピュータ30(画像処理装置)とにより構成されている。
FIG. 1 shows an embodiment of the grain size determination system of the present invention applied to a construction site where structural materials (CSG, cement-improved soil, concrete, etc.) are manufactured using ground material S procured near the construction site as raw material. As shown in Fig. 6, the ground material S brought into the construction site is put into the
図示例のベルトコンベア10は,例えば図5(A)を参照して上述した振動ベルトコンベア10と同様のものとすることができる。すなわち,ベルトコンベア10の上流部を振動装置22付き第1支持体21で支持された振動エリアとし,その下流部を第1支持体21から縁切りされた第2支持体17で支持された無振動エリアとし,ベルト面14を搬送方向に沿って振動エリアと無振動エリアとに区分けしたものとする。ベルト面14の上流側の振動エリアに地盤材料Sを投入・載置し,搬送しながら所要振動数で振動させて分散させ,分散後の地盤材料Sを無振動エリアに搬送して無振動状態で観察可能とする。ベルト面14は,後述する撮像装置5の画像G中に写り込んだ地盤材料Sとベルト面14とが色彩,光反射率等で識別検知できるように選択又は加工することができる。
The illustrated
ベルトコンベア10の振動エリアの長さ(第1支持体21の搬送方向長さ)及び振動周波数は,粒度の判定に適した地盤材料Sの均等な分散が得られるように適宜選択することができる。必要に応じて,図5(B)に示すように上流側の第1支持体21と下流側の第2支持体17との間に両支持体21,17から縁切りされた振動装置24付き第3支持体23を設け,地盤材料Sを二段階で振動させてもよい。図5(B)のベルトコンベア10は,振動装置22,24を同一又は異なる振動条件で振動させることができ,地盤材料Sの性状に応じて振動条件の組み合わせを変化させることもでき,より粒度の判定に適した地盤材料Sの均等な分散を得ることが期待できる。振動装置24付き第3支持体23は,第1支持体21と同様に,支持脚によって工事現場の基盤上に支持することができる。
The length of the vibration area of the belt conveyor 10 (the length of the
ただし,本発明で用いるベルトコンベア10は振動ベルトコンベアに限定されるわけではなく,地盤材料Sを搬送しながら均等に分散させることができる他のベルトコンベアとしてもよい。例えば,地盤材料Sを載置するベルト面14の上流側(上流部分)と対向させてレーキ等の敷き均し板を取り付けたベルトコンベア10を用い,ベルト面14上に載置した地盤材料Sを搬送しながら敷き均し板によって均等に分散させることも可能である。更に本発明は,ベルトコンベア10に載置した地盤材料Sを搬送しながら分散させるものに限定されず,地盤材料Sを適当に分散させたのち又は分散させつつベルトコンベア10に載置してもよい。例えばホッパー4の投入出口に適当な分散器具を取り付け,ホッパー4から投入される地盤材料Sを分散器具で適当に分散した状態でベルトコンベア10のベルト面14に載置することもできる。
However, the
図示例の撮像装置5は,ベルトコンベア10の無振動エリアのベルト面14と対向するように配置されており,上流部において分散させた状態の地盤材料Sを含むベルト面画像Gを振動させずに撮影することができる。また,図示例の撮像装置5は,遮光板又は遮光カーテンで覆われた撮影建屋5a内に照明装置(フラッシュ等)と共に配置されている。撮像装置5と組み合わせる照明装置は,後述するように画像G中に写り込んだ地盤材料Sと地盤材料S以外の物体とが色彩,光反射率等で識別検知できるように選択することができる。図示例においてベルトコンベア10上の地盤材料Sは,無振動エリアを搬送されながら撮影建屋5aの内部に進入し,所要の照明状態に維持された状態でベルト面画像G中に写り込む。撮像装置5で撮影するベルト面画像Gは静止画又は動画の何れとすることも可能である。
The
図示例のコンピュータ30は,図9を参照して上述したコンピュータと同様に,入力装置31と出力装置32と記憶手段35とを有する。記憶手段35には,ベルト面画像Gから地盤材料S以外の領域T2,T3を検知するために必要な画素選択パラメタF,地盤材料Sの粒度インデクスIiを加積通過率P(di)に変換する関係式Kその他のパラメタを記憶する。また内蔵プログラムとして,撮像装置5からベルト面画像Gを入力する入力手段33と,そのベルト面画像Gから地盤材料S以外の領域T2,T3を差し引いた除去画像Eを作成する画素選択手段50と,その画素選択手段50で作成された除去画像Eを取り込んで地盤材料Sの粒度P(d)を判定する判定手段40と,地盤材料Sの粒度P(d)その他の判定結果を出力装置32に出力する出力手段34とを有する。
The illustrated
図示例のコンピュータ30の判定手段40は,除去画像Eから地盤材料S中の各粒状材の輪郭を検出する検出手段41と,各粒状材の輪郭から粒径d及び面積eを求めて複数の粒径dの粒度インデクスI(d)を算出する算出手段42と,算出した複数の粒径dの粒度インデクスI(d)を変換式Kにより加積通過率Pに変換して粒径加積曲線P(d)を作成する作成手段43と,作成した粒径加積曲線P(d)に基づき地盤材料Sの粒度品質を判定・評価する評価手段44とを含んでいる。これらの検出手段41,算出手段42,作成手段43,及び評価手段44は,判定対象を地盤画像Sではなく除去画像Eとしている点以外は,図9を参照して上述した特許文献3の粒度計測システムと同様のものとすることできる。
The determination means 40 of the
他方,コンピュータ30の画素選択手段50は,例えば図4(A)に示すようなベルト面画像G中に写り込んだ地盤材料S以外の領域(例えばベルト面14の露出領域やベルト面14の外側領域)を検知し,その地盤材料S以外の領域(例えばベルト面14の露出領域T2)をベルト面画像Gから差し引いて図4(D)に示すような除去画像Eを作成する。図4(A)は,撮像装置5で撮影したベルト面画像Gの一例を示している。ベルト面画像Gから地盤材料S以外の領域T2を差し引いた除去画像E(図4(D)参照)を作成し,地盤材料Sの領域T1のみが写り込んだ除去画像Eを判定手段40に入力して地盤材料Sの粒度P(d)を判定することにより,地盤材料S以外の物体の写り込みによる影響を避け,地盤材料Sの粒度Pを精度よく判定することができる。
On the other hand, the pixel selection means 50 of the
図3(A)は,ベルト面画像Gに写り込んだ地盤材料S以外の物体の輪郭領域T2,T3の一例を示している。ベルトコンベア10上に載置した地盤材料Sは,ベルト面14に分散された状態で載置されるが,ベルト面14の全体を覆うように分散するとは限らず,地盤材料Sの周りにベルト面14の露出した領域T2が残ることがある(図4(A)も参照)。画素選択手段50は,例えば地盤材料Sとベルト面14との色彩や光反射率の相違に基づいて,ベルト面画像G中に写り込んだ地盤材料Sの輪郭領域T1とその地盤材料Sの周りの露出ベルト面14の輪郭領域T2とを検知する検知手段52を含んでいる。画素選択手段50は,検知手段52で検知された露出ベルト面14の輪郭領域T2を地盤材料S以外の領域としてベルト面画像Gから差し引くことにより,図3(B)のような除去画像Eを作成することができる。
FIG. 3A shows an example of contour areas T2 and T3 of objects other than the ground material S reflected in the belt surface image G. FIG. The ground material S placed on the
また図3(A)に示すように,ベルト面画像Gにはベルト面14の外側(帯幅方向の片側又は両側)に,例えばベルトコンベア10を設置した現場の基盤が写り込むことがある。画素選択手段50に含まれる検知手段52は,例えばベルト面14とその外側(例えば現場の基盤)との色彩や光反射率の相違に基づいて,ベルト面画像G中に写り込んだベルト面14の外側の輪郭領域T3とを検知する(ベルト面14とその外側との境界を検知する)ことができる。画素選択手段50は,検知手段52で検知された露出ベルト面14の輪郭領域T2と共にベルト面外側の輪郭領域T3を地盤材料S以外の領域としてベルト面画像Gから差し引いくことにより,図3(B)のような除去画像Eを作成することができる。
Further, as shown in FIG. 3A, the belt surface image G may include, for example, the site base on which the
ベルト面画像Gに写り込んだ地盤材料S以外の輪郭領域T2,T3は,地盤材料S中の粒状材の輪郭とは異なる輪郭形状となるのが通常であることから,地盤材料Sとの色彩や光反射率の相違を利用できない条件下であっても,地盤材料S中の粒状材の輪郭形状との相違を利用して地盤材料S以外の輪郭領域T2,T3を検知することができる。粒状材の輪郭形状は一定ではなく,地盤材料S以外の輪郭領域T2,T3の輪郭形状も一定ではないが,必ずしも輪郭形状が一定でない物体の画像(例えば手書き文字の画像)から機械学習により物体の属するクラス及び輪郭形状(物体と背景との境界)を予測する技術(セマンティックセグメンテーション手法)が開発されている(非特許文献1参照)。このようなセマンティックセグメンテーション手法の機械学習により生成された輪郭推定モデルを,ベルト面画像Gから地盤材料Sの輪郭領域T1と地盤材料S以外の物体の輪郭形状T2,T3とを識別検知する画素選択手段50の検知手段52とすることができる。
The contour regions T2 and T3 other than the ground material S reflected in the belt surface image G usually have a contour shape different from the contour of the granular material in the ground material S. Even under conditions in which differences in light reflectance cannot be used, contour regions T2 and T3 other than the ground material S can be detected by utilizing the difference from the contour shape of the granular material in the ground material S. The contour shape of the granular material is not constant, and the contour shapes of the contour regions T2 and T3 other than the ground material S are also not constant. A technique (semantic segmentation method) for predicting the class to which the object belongs and the contour shape (the boundary between the object and the background) has been developed (see Non-Patent Document 1). A contour estimation model generated by machine learning of such a semantic segmentation method is used for pixel selection for identifying and detecting the contour region T1 of the ground material S and the contour shapes T2 and T3 of objects other than the ground material S from the belt surface image G. It can be the sensing means 52 of the
セマンティックセグメンテーション手法の機械学習によって画像中の物体のクラス及び輪郭形状(物体と背景との境界)を推定する検知手段52の一例は,畳み込み層とブーリング層とを積み重ねた畳み込みニューラルネットワーク(CNN)プログラムにより構成することができる。セマンティックセグメンテーション手法は,物体の属するクラスと共に画像中の物体が存在する領域を推定する物体検出手法の一種であり,通常の物体検出手法では物体を囲む矩形領域が推定されるのに対し,セマンティックセグメンテーション手法では画素中の画素レベルまで物体の領域と背景の領域とを切り分け,物体の輪郭形状(物体と背景の境界)を推定することができる(非特許文献1参照)。 An example of the detection means 52 that estimates the class and contour shape (boundary between the object and the background) of the object in the image by machine learning of the semantic segmentation method is a convolutional neural network (CNN) program that stacks convolution layers and Boolean layers. It can be configured by The semantic segmentation method is a type of object detection method that estimates the area in the image where the object exists along with the class to which the object belongs. In this method, the object area and the background area are separated down to the pixel level in pixels, and the contour shape of the object (the boundary between the object and the background) can be estimated (see Non-Patent Document 1).
例えば,図4(A)のようなベルト面画像Gに基づき,予め露出ベルト面14の輪郭領域T2(及び,必要な場合はベルト面外側の輪郭領域T3)を多角形で近似した複数の教師データを調製し,その教師データを画素選択手段50の検知手段52に入力して地盤材料S以外の輪郭領域T2を推定させ,その推定結果と教師データとの誤差が最小となるように画素選択パラメターF(畳み込みニューラルネットワークの重みデータ等のパラメタ)を最適化する。最適化されたパラメタFを用いて検知手段52の畳み込みニューラルネットワークを構成することにより,教師データ以外の通常のベルト面画像Gから地盤材料Sの輪郭領域T1と地盤材料S以外の輪郭領域T2を精度よく識別検知することができる。 For example, based on the belt surface image G shown in FIG. 4(A), a plurality of teachers are obtained by approximating the outline area T2 of the exposed belt surface 14 (and the outline area T3 outside the belt surface if necessary) with polygons. Data is prepared, and the teacher data is input to the detection means 52 of the pixel selection means 50 to estimate the contour region T2 other than the ground material S, and pixel selection is performed so that the error between the estimation result and the teacher data is minimized. Optimize the parameter F (parameter such as the weight data of the convolutional neural network). By configuring the convolutional neural network of the detection means 52 using the optimized parameter F, the contour region T1 of the ground material S and the contour region T2 other than the ground material S are detected from the normal belt surface image G other than the teacher data. It can be identified and detected with high accuracy.
地盤材料Sの輪郭領域T1,及び地盤材料S以外の輪郭領域T2は,判定対象の地盤材料Sの性状に応じて相違することがある。例えば,粘土質の土を多く含むコア材等の地盤材料Sと,礫や砕石を多く含むロック材等の地盤材料Sとは,分散させたときの輪郭形状が相違しうる。従って,上述した画素選択パラメターFを最適化するための教師データは,判定対象の地盤材料Sに基づいて調整することが望ましい。また,作業現場毎に地盤材料S中の粒状材の大きさ,色,凹凸,サイズ,形状等が変わってくるので,画素選択パラメターFを最適化するための教師データは作業現場毎に調整することが望ましい。判定対象の地盤材料Sに応じた教師データによって画素選択パラメターFを最適化することにより,その地盤材料Sに応じた輪郭領域T1と地盤材料S以外の輪郭領域T2との識別検知精度を高めることができる。 The contour area T1 of the ground material S and the contour area T2 other than the ground material S may differ depending on the property of the ground material S to be determined. For example, a ground material S such as a core material containing a large amount of clayey soil and a ground material S such as a rock material containing a large amount of gravel or crushed stone may differ in outline shape when dispersed. Therefore, it is desirable to adjust the training data for optimizing the pixel selection parameter F described above based on the ground material S to be determined. In addition, since the size, color, unevenness, size, shape, etc. of the granular materials in the ground material S change for each work site, the training data for optimizing the pixel selection parameter F is adjusted for each work site. is desirable. By optimizing the pixel selection parameter F using teacher data corresponding to the ground material S to be determined, the accuracy of discrimination detection between the contour area T1 corresponding to the ground material S and the contour area T2 other than the ground material S is improved. can be done.
好ましくは,図1の画素選択手段50に示すように,ベルト面画像Gを所要大きさの複数の分割画像g1~g8に区分けする分割手段51と,複数の分割画像g1~g8を統合する統合手段53とを画素選択手段50に含める。画素選択手段50の検知手段52により,例えば図4(A)のような撮像装置5から出力されるベルト面の帯幅全体にわたるベルト面画像Gから直接的に地盤材料S以外の輪郭領域T2,T3を検知することもできるが,全体の画像Gが大きくなると輪郭領域T2,T3の輪郭形状が複雑になり,複数の教師データの相互間のバラツキが大きくなるため,画素選択パラメターFを最適化しても,地盤材料Sの輪郭領域T1と地盤材料S以外の輪郭領域T2とを識別検知する精度の低下が経験された。
Preferably, as shown in pixel selection means 50 in FIG. 1, dividing means 51 for dividing the belt surface image G into a plurality of divided images g1 to g8 of a required size, and integration for integrating the plurality of divided images g1 to g8. means 53 are included in the pixel selection means 50; The detection means 52 of the pixel selection means 50 directly detects the contour area T2 other than the ground material S from the belt surface image G covering the entire band width of the belt surface output from the
例えば,図4(A)のベルト面画像Gを,分割手段51によって図4(B)のように所要大きさの複数の分割画像(例えば一辺300~2400画素程度の矩形画像)g1~g8に区分し,検知手段52によって図4(C)のように分割画像g1~g8毎に地盤材料Sの輪郭領域T1と露出ベルト面14の輪郭領域T2とを推定する。そのうえで,統合手段53によって図4(D)のように各分割画像g1~g8の地盤材料Sの輪郭領域T1と露出ベルト面14の輪郭領域T2とをそれぞれ統合することにより,ベルト面画像G上の地盤材料Sの輪郭領域T1と露出ベルト面14の輪郭領域T2とを検知する。ベルト面画像Gを複数の分割画像g1~g8に分割したうえで地盤材料S以外の輪郭領域T2,T3を推定することにより,地盤材料Sの輪郭領域T1と地盤材料S以外の輪郭領域T2との識別検知精度の向上を図ることができる。
For example, the belt surface image G in FIG. 4(A) is divided into a plurality of divided images (for example, rectangular images of about 300 to 2400 pixels on a side) g1 to g8 of a required size as shown in FIG. 4(B) by the dividing means 51. Then, the detection means 52 estimates the outline area T1 of the ground material S and the outline area T2 of the exposed
図2は,図1のシステムを用いて地盤材料Sの粒度P(d)を判定する方法の流れ図を示す。以下,図2の流れ図を参照して図1のシステムを説明する。図2のステップS101は,コンピュータ10の関係式設定手段46により,図8を参照して上述した地盤材料Sの粒度インデクスIと加積通過率P(d)との変換式Kを設定する初期処理を示す。例えば,工事現場付近で調達した地盤材料Sについて篩い分けにより複数の粒径dの加積通過率P(d)をそれぞれ求め,他方でその地盤材料Sのベルト面画像Gから各粒径dの粒度インデクスI(d)を算出し,それらから図8のような変換式K(例えば回帰モデル)を求めてコンピュータ30の記憶手段35に設定・記憶する。ただし,関係式Kは予め記憶手段35に記憶されていれば足り,予め記憶されている場合は図2のステップS101は省略可能であり,パラメタ設定手段56は本発明に必須のものではない。 FIG. 2 shows a flow diagram of a method for determining the grain size P(d) of a subsurface material S using the system of FIG. The system of FIG. 1 will now be described with reference to the flow diagram of FIG. Step S101 in FIG. 2 is an initial stage for setting the conversion formula K between the grain size index I of the ground material S and the cumulative passage rate P(d) described above with reference to FIG. Indicates processing. For example, for the ground material S procured near the construction site, the cumulative passage rate P(d) of a plurality of particle sizes d is obtained by sieving. A granularity index I(d) is calculated, a conversion formula K (for example, a regression model) as shown in FIG. However, it suffices if the relational expression K is stored in advance in the storage means 35, and if it is stored in advance, step S101 in FIG. 2 can be omitted, and the parameter setting means 56 is not essential to the present invention.
また図2のステップS102は,コンピュータ10のパラメタ設定手段56により,画素選択手段50の検知手段52に教師データを入力して,最適化された画素選択パラメターFを設定する初期処理を示す。例えば,検知手段52をセマンティックセグメンテーション手法の機械学習によって画像G中の物体の輪郭形状を推定する輪郭推定モデルとし,工事現場付近で調達した地盤材料Sのベルト面画Gに基づき,予め露出ベルト面14の輪郭領域T2(及び,必要な場合はベルト面外側の輪郭領域T3)を多角形で近似した複数の教師データを調製する。そして,その教師データと検知手段52の推定結果との誤差が最小となるように画素選択パラメターFを最適化し,最適化した画素選択パラメターFをコンピュータ30の記憶手段35に設定・記憶する。ただし,画素選択パラメターFも予め記憶手段35に記憶されていれば足り,予め記憶されている場合は図2のステップS102は省略可能であり,パラメタ設定手段56も本発明に必須のものではない。
Step S102 in FIG. 2 shows initial processing for inputting teacher data to the detection means 52 of the pixel selection means 50 by the parameter setting means 56 of the
図2のステップS103において,画像装置5によりベルトコンベア10上の分散させた状態の地盤材料Sを含むベルト面画像Gを撮影し,そのベルト面画像Gをコンピュータ30の入力手段33に入力する。ステップS104において,入力したベルト面画像Gを画素分離手段50に送り,画素分離手段50の検知手段52においてベルト面画像G中に写り込んだ地盤材料S以外の物体の輪郭領域T2,T3を検知し,その領域T2,T3をベルト面画像Gから差し引いて除去画像Eを作成する。必要に応じて,図4を参照して上述したように,画素分離手段50の検知手段52の前段,後段にそれぞれ分割手段51,統合手段53を設けてもよい。分割手段51によりベルト面画像Gを複数の矩形分割画像g1~g8に区分し,検知手段52により分割画像g1~g8毎に地盤材料S以外の物体の輪郭領域T2,T3を検知したのち,統合手段53により各分割画像g1~g8を統合することによりベルト面画像G上の地盤材料S以外の物体の輪郭領域T2,T3を検知し,その輪郭領域T2,T3をベルト面画像Gから差し引いて除去画像Eを作成する。
In step S103 of FIG. 2, the belt surface image G including the ground material S in the dispersed state on the
図2のステップS105において,画素分離手段50の作成した除去画像Eを判定手段40に送り,判定手段40の検出手段41により除去画像E中の個々の粒状材の輪郭を検出する。上述した画素分離手段50において個々の粒状材の輪郭形状が既に検知済みである場合は,検出手段41による検出を省略し,画素分離手段50で検出した輪郭を用いてもよい。次いでステップS106において,算出手段42により各粒状材の粒径di及び面積eを求め,複数の粒径dの粒度インデクスI(d)を算出する。更にステップS107において,複数の粒径diの粒度インデクスIiを作成手段43に入力し,作成手段43において記憶手段35の変換式Kにより各粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径加積曲線P(d)を作成する。
In step S105 of FIG. 2, the removed image E created by the pixel separation means 50 is sent to the determination means 40, and the detection means 41 of the determination means 40 detects the outline of each granular material in the removed image E. FIG. When the contour shape of each granular material has already been detected by the pixel separation means 50 described above, the detection by the detection means 41 may be omitted and the contour detected by the pixel separation means 50 may be used. Next, in step S106, the particle size di and area e of each granular material are determined by the calculating means 42, and the particle size index I(d) of the plurality of particle sizes d is calculated. Further, in step S107, the particle size index Ii of a plurality of particle sizes di is input to the creating
図2のステップS108は,ステップS107で作成した粒状材料Sの粒径加積曲線P(d)を評価手段44に入力し,評価手段44において地盤材料Sの粒度品質を判定・評価する処理を示す。例えば,地盤材料Sの粒度規定範囲を示す最粗粒標本Trの粒径加積曲線Pr(d)と最細粒標本Tsの粒径加積曲線Ps(d)とを予めコンピュータ30の記憶手段35にしておき,評価手段44により粒径加積曲線Pr,Psと比較することにより粒状材料Sの粒径加積曲線P(d)が規定範囲内であるか否かを評価する(図7を参照)。規定範囲外であると評価された場合は,例えばコンピュータ30の出力手段34を介してディスプレイ・プリンタ等の出力装置32に警報を出力し,必要に応じて粒状材料Sの粒度を調整することができる。
In step S108 in FIG. 2, the grain size accumulation curve P(d) of the granular material S created in step S107 is input to the evaluation means 44, and the evaluation means 44 performs processing for judging and evaluating the grain size quality of the ground material S. show. For example, the grain size accumulation curve Pr(d) of the coarsest-grained sample Tr and the grain size accumulation curve Ps(d) of the finest-grained sample Ts, which indicate the specified range of grain size of the ground material S, are stored in advance in the storage means of the
図2のステップS108において粒状材料Sの粒度品質が規定範囲内であると判定された場合は,例えば粒径加積曲線P(d)を記憶手段35に累積記憶したのち,ステップS109において粒状材料Sの粒度判定を継続するか否かを判断する。継続する場合はステップS103へ戻り,次回に入力されたベル面画像Gに基づいて粒径加積曲線Pを作成して記録する。粒径加積曲線Pを累積記憶しておくことにより,次回以降のステップS108において,浄化手段44により粒状材料Sの粒度の経時的変化(粒度変動)を評価することも可能である。 If it is determined in step S108 in FIG. 2 that the particle size quality of the granular material S is within the specified range, for example, after cumulatively storing the particle size accumulation curve P(d) in the storage means 35, in step S109 the granular material It is determined whether or not to continue the granularity determination of S. When continuing, the process returns to step S103, and the grain size accumulation curve P is created and recorded based on the bell surface image G input next time. By cumulatively storing the particle size accumulation curve P, it is also possible to evaluate the temporal change (particle size fluctuation) of the particle size of the granular material S by the purifying means 44 in step S108 after the next time.
本発明は,粒状材料Sを分散させたベルト面画像Gから地盤材料S以外の領域T2,T3を差し引いた除去画像Eを作成し,地盤材料Sのみが写り込んだ除去画像Eに基づいて粒径加積曲線P(d)を作成するので,地盤材料S以外の物体の影響を避けつつ,精度の高い粒径加積曲線Pを作成することができる。また,色彩や光反射率の相違等を利用してベルト面画像Gに写り込んだ地盤材料S以外の物体を識別検知することもできるが,輪郭形状を利用してベルト面画像Gの地盤材料S以外の輪郭領域T2,T3を識別検知することにより,色彩や光反射率の相違等が利用できない条件下でも地盤材料Sの粒径加積曲線Pを精度よく作成することができる。 In the present invention, a removed image E is created by subtracting regions T2 and T3 other than the ground material S from a belt surface image G in which the granular material S is dispersed, and based on the removed image E in which only the ground material S is reflected, grains Since the diameter addition curve P(d) is created, the grain size addition curve P can be created with high accuracy while avoiding the influence of objects other than the ground material S. In addition, it is possible to identify and detect an object other than the ground material S reflected in the belt surface image G by using the difference in color and light reflectance, etc. By identifying and detecting the contour areas T2 and T3 other than S, the grain size accumulation curve P of the ground material S can be accurately created even under conditions where differences in color, light reflectance, etc. cannot be used.
こうして本発明の目的である「ベルトコンベア上の分散した状態の地盤材料の画像から精度よく粒度を判定できる地盤材料の粒度判定方法及びシステム」を提供することができる。 In this way, it is possible to provide a ground material grain size determination method and system capable of accurately determining the grain size from an image of ground material dispersed on a belt conveyor, which is the object of the present invention.
図2のステップ104では,例えば図3(A)のようなベルト面画像G中に写り込んだ地盤材料S以外の輪郭領域T2,T3を検知し,その領域T2,T3をベルト面画像Gから差し引いて図3(B)のような除去画像Eを作成できるが,本発明者の予備的実験によると,地盤材料S以外の輪郭領域T2の識別検知に漏れが発生しうることも経験された。この場合,識別検知が漏れた地盤材料S以外の輪郭領域T2は,識別検知された他の輪郭領域T2とベルト面14の帯幅方向に並んでいることが多いことを見出した。このようにベルト面14の帯幅方向に並んだ複数の輪郭領域T2の一部分に識別検知の漏れが生じた原因の詳細は不明であるが,図1に示すようにベルト面14の帯幅方向は搬送方向と直角に交差しており,ベルト面14に同時に投入・載置された地盤材料Sはほぼ帯幅方向に並ぶことが一原因であると推定される。
In step 104 in FIG. 2, for example, outline regions T2 and T3 other than the ground material S reflected in the belt surface image G as shown in FIG. Although it is possible to create a removed image E as shown in FIG. . In this case, it was found that the contour region T2 other than the ground material S for which identification detection was omitted is often aligned with other contour regions T2 identified and detected in the band width direction of the
図3(C)は,上述した識別検知の漏れた地盤材料S以外の輪郭領域T2の影響を避けるため,ベルト面画像G中の識別検知された地盤材料S以外の輪郭領域T2をベルト面14の帯幅方向に拡大し,ベルト面全幅にわたる矩形領域T4,T5に変形する実施例を示している。例えば,図1に示すように,識別検知された輪郭領域T2をベルト面全幅にわたる矩形領域T4,T5に変形する領域変形手段54を画素選択手段50に含めることができる。
In FIG. 3C, in order to avoid the influence of the contour region T2 other than the ground material S for which identification detection has failed, the contour region T2 other than the ground material S identified and detected in the belt surface image G is replaced with the
領域変形手段54によってベルト面画像G中の識別検知された地盤材料S以外の輪郭領域T2をベルト面全幅にわたる矩形領域T4,T5に変更したのち,画素選択手段50によってベルト面全幅にわたる矩形領域T4,T5をベルト面画像Gから差し引いて図3(D)のような除去画像Eを作成する。図3(D)に示すように,ベルト面画像Gから矩形領域T4,T5を差し引くと,ベルト面全幅が地盤材料Sのみからなる矩形領域T1a,T1b,T1cが残るので,例えば残された矩形領域T1a,T1b,T1cを結合して単一の除去画像Eを作成することができる。或いは,残された矩形領域T1a,T1b,T1cからそれぞれ除去画像Eを作成することもできる。 After the area transforming means 54 changes the contour area T2 other than the ground material S identified and detected in the belt surface image G into rectangular areas T4 and T5 covering the entire width of the belt surface, the pixel selecting means 50 converts the rectangular area T4 covering the entire width of the belt surface. , T5 are subtracted from the belt surface image G to create a removed image E as shown in FIG. 3(D). As shown in FIG. 3(D), when the rectangular regions T4 and T5 are subtracted from the belt surface image G, rectangular regions T1a, T1b, and T1c whose entire width of the belt surface is composed only of the ground material S remain. A single ablation image E can be created by combining the regions T1a, T1b, T1c. Alternatively, the removed images E can be created from the remaining rectangular areas T1a, T1b, and T1c.
更に,図3(D)のような除去画像Eを画素選択手段50から判定手段40に送って粒度インデクスI(d)を算出する。例えば,図3(D)において複数の矩形領域T1a,T1b,T1cを結合して単一の除去画像Eとした場合は,判定手段40の算出手段42において単一の除去画像Eから粒度インデクスI(d)を算出する。また,図3(D)において複数の矩形領域T1a,T1b,T1cをそれぞれ除去画像Eとした場合は,判定手段40の算出手段42において各矩形領域T1a,T1b,T1cの粒度インデクスを算出し,それらの平均値を除去画像Eの粒度インデクスI(d)とすることもできる。 Further, the removed image E as shown in FIG. 3(D) is sent from the pixel selection means 50 to the determination means 40 to calculate the granularity index I(d). For example, in FIG. 3D, when a plurality of rectangular areas T1a, T1b, and T1c are combined to form a single removed image E, the granularity index I Calculate (d). Further, when a plurality of rectangular areas T1a, T1b, and T1c in FIG. 3D are each set as the removed image E, the calculation means 42 of the determination means 40 calculates the granularity index of each rectangular area T1a, T1b, and T1c, The average value thereof can also be used as the granularity index I(d) of the removed image E. FIG.
図3(D)のようにベルト面全幅にわたる矩形領域T4,T5を差し引いた除去画像Eの粒度インデクスI(d)から,判定手段40の作成手段43において粒径加積曲線P(d)を作成することにより,上述した識別検知の漏れが発生しうる帯幅方向に並んだ地盤材料S以外の輪郭領域T2の影響を避けることができ,精度の高い粒径加積曲線Pを作成することができる。 From the particle size index I(d) of the removed image E obtained by subtracting the rectangular areas T4 and T5 over the entire width of the belt surface as shown in FIG. By creating it, it is possible to avoid the influence of the contour area T2 other than the ground material S arranged in the band width direction, which may cause the leakage of identification detection described above, and to create a grain size accumulation curve P with high accuracy. can be done.
1…採取場(地山) 1a…破砕装置
2…ストックヤード 3…運搬装置(トラック等)
4…ホッパー 5…撮像装置
5a…撮影建屋 6…分離装置
7a…重量計測器 7b…含水率計測器
8a…セメント供給装置 8b…水供給装置
10…ベルトコンベア 11…駆動プーリ(ドライブプーリ)
12…駆動装置 13…テールプーリ
14…帯状ベルト 15,16…キャリアローラ
17…第2支持体 18…スナッププーリ
21…第1支持体 22…振動装置
23…第3支持体 24…振動装置
25,26…振動制御装置 27…駆動制御装置
30…コンピュータ 31…入力装置
32…出力装置 33…入力手段
34…出力手段 35…記憶手段
40…判定手段
41…検出手段 42…算出手段
43…作成手段 43a…調整手段
43b…合成手段 44…評価手段
45…演算手段 46…関係式設定手段
47…推定手段
50…画素選択手段 51…画像分割手段
52…検知手段 53…画像統合手段
54…領域変形手段 56…パラメタ設定手段
G…ベルト面画像 E…除去画像
S…地盤材料 K…変換式
T1…地盤材料の輪郭領域 T2…露出ベルト面の輪郭領域
T3…ベルト面の外側領域 T4,T5…変形後の矩形領域
P…加積通過率,粒径加積曲線
U,R…(微小粒状材の加積通過率推定用の)関数
F…画素選択用パラメタ
1... Collection site (ground) 1a...
4...
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019082811A JP7207842B2 (en) | 2019-04-24 | 2019-04-24 | Grain size determination method and system for ground material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019082811A JP7207842B2 (en) | 2019-04-24 | 2019-04-24 | Grain size determination method and system for ground material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020180835A JP2020180835A (en) | 2020-11-05 |
JP7207842B2 true JP7207842B2 (en) | 2023-01-18 |
Family
ID=73024572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019082811A Active JP7207842B2 (en) | 2019-04-24 | 2019-04-24 | Grain size determination method and system for ground material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7207842B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230092495A (en) * | 2021-12-17 | 2023-06-26 | 주식회사 포스코 | Apparatus and method for monnitoring particle size of raw materials of blast furnace |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249553A (en) | 2009-04-13 | 2010-11-04 | Kajima Corp | System for controlling particle size quality of granular material and program |
JP2012037296A (en) | 2010-08-05 | 2012-02-23 | Taisei Corp | Particle size distribution measurement system and diffusion apparatus |
JP2016124665A (en) | 2014-12-28 | 2016-07-11 | 鹿島建設株式会社 | Vibration method of belt conveyor and vibration belt conveyor |
WO2019019019A1 (en) | 2017-07-25 | 2019-01-31 | 深圳前海达闼云端智能科技有限公司 | Training data generation method and generation apparatus, and image semantics segmentation method therefor |
-
2019
- 2019-04-24 JP JP2019082811A patent/JP7207842B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249553A (en) | 2009-04-13 | 2010-11-04 | Kajima Corp | System for controlling particle size quality of granular material and program |
JP2012037296A (en) | 2010-08-05 | 2012-02-23 | Taisei Corp | Particle size distribution measurement system and diffusion apparatus |
JP2016124665A (en) | 2014-12-28 | 2016-07-11 | 鹿島建設株式会社 | Vibration method of belt conveyor and vibration belt conveyor |
WO2019019019A1 (en) | 2017-07-25 | 2019-01-31 | 深圳前海达闼云端智能科技有限公司 | Training data generation method and generation apparatus, and image semantics segmentation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2020180835A (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110476053B (en) | Raw material particle size distribution measuring device, particle size distribution measuring method, and porosity measuring device | |
US20020170367A1 (en) | Control feedback system and method for bulk material industrial processes using automated object or particle analysis | |
JP6521367B2 (en) | Method and system for measuring particle size distribution of ground material | |
JP4883799B2 (en) | Ground material particle size measurement system and program | |
US6885904B2 (en) | Control feedback system and method for bulk material industrial processes using automated object or particle analysis | |
Thurley | Automated online measurement of limestone particle size distributions using 3D range data | |
JP5896465B2 (en) | Method and system for measuring particle size distribution of granular material | |
Al-Thyabat et al. | Estimation of the size distribution of particles moving on a conveyor belt | |
JP2010066127A (en) | System and method for measuring particle size distribution of granular material | |
JP2011163836A (en) | Grain size measuring system for granular material and program | |
JP7207842B2 (en) | Grain size determination method and system for ground material | |
JP2017189940A (en) | Production system and production method for cement-based mixed material | |
JP2012242099A (en) | Method and system for measuring grain size of partitioned granular material | |
JP5234649B2 (en) | Granular quality control system and program for granular materials | |
JP6672823B2 (en) | Ground material particle size monitoring method and three-dimensional image processing equipment | |
RU2282176C1 (en) | Method of determining granulometric composition of mixture of arbitrary shaped particles | |
JP6319791B2 (en) | Method and system for measuring particle size of ground material | |
JP6725793B1 (en) | Old asphalt amount estimation system, asphalt plant and old asphalt amount estimation method | |
JP6696290B2 (en) | Quality control method of rock zone in rock fill dam | |
Koh et al. | Improving particle size measurement using multi-flash imaging | |
JP6764755B2 (en) | Soil quality judgment method and system | |
JP7267056B2 (en) | CSG material quality measurement and control method and quality measurement and control system | |
KR102209627B1 (en) | Real-time gradation combination system in process of producing aggregate and mixing method using that | |
JP6706514B2 (en) | Surface water control method for construction materials | |
JP6156852B2 (en) | Method and system for measuring particle size distribution of granular material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7207842 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |