JP7206965B2 - チタン鋳塊の製造方法および製造装置 - Google Patents

チタン鋳塊の製造方法および製造装置 Download PDF

Info

Publication number
JP7206965B2
JP7206965B2 JP2019015486A JP2019015486A JP7206965B2 JP 7206965 B2 JP7206965 B2 JP 7206965B2 JP 2019015486 A JP2019015486 A JP 2019015486A JP 2019015486 A JP2019015486 A JP 2019015486A JP 7206965 B2 JP7206965 B2 JP 7206965B2
Authority
JP
Japan
Prior art keywords
titanium ingot
titanium
mold
ingot
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015486A
Other languages
English (en)
Other versions
JP2020121331A (ja
Inventor
英夫 水上
知之 北浦
宜大 武田
善久 白井
繁 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019015486A priority Critical patent/JP7206965B2/ja
Publication of JP2020121331A publication Critical patent/JP2020121331A/ja
Application granted granted Critical
Publication of JP7206965B2 publication Critical patent/JP7206965B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チタン鋳塊の製造方法および製造装置に関する。
チタンは、その溶融温度では激しく空気酸化される活性な金属であるため、鉄鋼材料のように耐火物製るつぼを用いて大気雰囲気下で溶解することは難しい。このため、工業用純チタン鋳塊またはチタン合金鋳塊(本明細書では、これらを総称して「チタン鋳塊」ともいう。)の製造時、水冷銅ハースを用いる。そして、チタン鋳塊の製造において実用化されている技術として、高真空下で、高電圧加速した電子線を被溶解材の表面に照射することにより得られる衝撃熱を利用する電子ビーム溶解(EBM:Electron Beam Melting)技術や、不活性ガス雰囲気下で、非消耗電極としてプラズマトーチを用いた溶解法であるプラズマ溶解(PAM:Plasma Arc Melting)技術を挙げることができる。
工業用純チタンまたはチタン合金(本明細書では、これらを総称して「チタン」ともいう。)を溶解して鋳造する際には、高密度介在物(以下、HDI(High Density Inclusion)という)や低密度介在物(以下、LDI(Low Density Inclusion)という)が溶湯中の成分に起因して不可避的に生成する。上述の溶解技術は、高い精錬効果を有することからHDIやLDIの除去も期待され、HDIやLDIの除去に特に厳格な航空機用素材の製造方法として用いられている。
近年、HDIおよびLDIのより一層の低減が航空機用素材の性能のさらなる厳格化に伴い望まれており、様々な取り組みが行われている。アルミニウムを6質量%、バナジウムを4質量%含有するTi-6Al-4V合金の鋳塊が、上述の溶解技術により製造され、主に航空機用素材に用いられている。
しかし、航空機用素材の代表的なTi-6Al-4V合金は、アルミニウムやバナジウムを高濃度に含有するため、チタン鋳塊の凝固過程で著しい偏析が生じる傾向にある。特に、チタン鋳塊の鋳造における凝固速度が低いため、凝固組織が大きくなって偏析が顕著になる。このため、偏析の低減対策が重要である。なお、JIS 1~4種の純チタンの鋳塊の製造時においても不純物である鉄がチタン鋳塊の凝固過程で偏析し易い。
ところで、凝固組織の微細化が溶質元素の偏析を低減するために有効であることが知られている。溶質元素は凝固組織であるデンドライトの樹枝間隙に濃化するため、凝固組織が微細であるほど偏析の程度も小さい。さらに、チタン鋳塊の鋳造時間は長い。このため、凝固完了後のチタン鋳塊は、高温に長時間保持されるため、拡散が促進される。なお、拡散は、拡散距離の二乗に反比例することが拡散の効果を表すフーリエ数から分かる。
特許文献1には、電子ビーム溶解法あるいはプラズマ溶解法により高融点金属または金属合金の鋳塊を製造する際に、鋳型内の溶湯に1~50kHzの超音波振動エネルギーを付与することが開示されている。また、特許文献1には、鋳型内で凝固させた凝固金属または金属合金が再結晶温度領域を通過する時に再結晶温度領域内の金属または合金に1~50kHzの超音波振動エネルギーを付与することも開示されている。これにより、鋳塊の平均結晶粒径を微細化することが意図されている。
特許文献2には、電子ビーム溶解法により原料のチタンをハース内で溶解した後、ハース内の溶湯を鋳型内に流し込むことによりチタン鋳塊を製造する際に、ハースに20kHzの超音波振動を付与することにより不純物が少ない高純度のチタンを製造する発明が開示されている。この発明は、鋳塊の凝固組織を直接微細化するのではない。しかしながら、振動、特に超音波振動によりハース内の溶湯中に凝固核を生成し、生成した凝固核が鋳型内に流れて、凝固組織を微細化するとしている。
さらに、特許文献3には、溶湯保留部から鋳型までの間に設けられた溶湯流動案内通路を流動中の溶湯に、振動発生器による超音波振動を、液相線温度を挟んだ温度域で連続して付与することにより、16~60μmの結晶粒径を有するAl-Si合金鋳塊を製造する発明が開示されている。
特開平06-287661号公報 特開平11-350051号公報 特開2008-272819号公報
特許文献1により開示された発明は、鋳型を振動させることにより溶湯へ1~50kHzの超音波振動エネルギーを間接的に付与するため、振動の付与効率が低い。このため、結晶粒の微細化効果が小さい。さらに、超音波振動により鋳型を破損するおそれがあり、工業的規模で実施することは難しい。また、特許文献1により開示された発明は、凝固が完了したチタン合金鋳塊を再結晶温度領域で超音波振動させるものであり、凝固組織の微細化を図れない。
特許文献2により開示された発明においてハース内の溶湯中で発生する凝固核は、ハース内の溶湯温度の変動により溶解して消滅する可能性がある。このため、特許文献2により開示された発明では、凝固組織が微細なチタン鋳塊を工業的規模で製造することは難しい。
さらに、チタン合金の融点は一般的なAl-Si合金の融点よりも約1000℃高い。このため、特許文献3により開示された発明で付与する振動の効果を高めるために溶湯流動案内通路の長さを長くすると、溶湯流動案内通路を溶湯が接触して通過する際に、溶湯流動案内通路内で凝固シェルが不可避的に形成される。このため、通過中の溶湯に振動が伝播し難くなる。凝固シェルの形成を防ぐために溶湯流動案内通路を電子ビーム等により加熱すると、超音波振動を付与することにより生成した凝固核が溶解してしまう。このため、特許文献3により開示された発明では、凝固組織が微細なチタン鋳塊を工業的規模で製造することは難しい。
本発明は、従来の技術が有する課題に鑑みてなされたものであり、凝固組織が微細であり、溶質元素の偏析が抑制されたチタン鋳塊の製造方法および製造装置を提供することを課題とする。
チタン鋳塊は、チャンバー内で減圧下または不活性ガス雰囲気下で製造されることが多い。このため、チタン鋳塊の製造法として、チタン鋳塊の長さが限定されたバッチ式で操業する半連続鋳造法が用いられる。半連続鋳造法の鋳造速度は小さい。そして、チタン鋳塊の凝固は、鋳型の底部から上部へ向けて進行し、いわゆる一方向凝固と同じ凝固組織形態となる。
凝固核の生成を促進することが凝固組織の微細化に有効である。チタン鋳塊の固液界面に振動を与えることが凝固核の生成を促進するために有効であり、これにより、一方向的に成長している凝固組織を微細化することができる。ここで、「固液界面」とは、凝固組織である固相のデンドライトと、このデンドライトの間隙に存在する液相との界面を意味する。
固液界面への振動の与え方としては、液相側から振動を与える方法と、凝固した固相側から振動を与える方法とに大別される。
ところで、電子ビーム溶解法あるいはプラズマ溶解法によってチタン鋳塊を鋳造するときの鋳造速度は、低い。このため、鋳型内の溶湯の湯面(上面)が凝固して皮張りする可能性がある。この皮張りを防ぐために、チャンバー内の溶湯のうち鋳型内の溶湯における湯面に電子ビームあるいはプラズマを照射する必要がある。このため、振動子を溶湯に直接接触して鋳型内の溶湯の湯面を振動させることや、ホーンからの音波により鋳型内の溶湯の湯面を振動させることは、電子ビームまたはプラズマが振動子やホーンに照射されてしまうために困難である。
Ti-6Al-4V合金には、上述のようにアルミニウムやバナジウムが含有されていることから、固液共存温度範囲が存在する。この固液共存温度範囲で形成される凝固組織であるデンドライトの樹間にある液相は、凝固直前の状態にある。この液相に振動を付与することができれば、凝固する際の核生成頻度を高めて凝固組織を微細化することができる。
しかし、複雑な形態を呈するデンドライト樹間に存在する液相に、液相側から振動を付与しても、振動の減衰率が大きいために振動の付与効率が低い。これに対し、凝固が完了した固相側から振動を付与すれば、デンドライト樹間に存在する液相に高い効率で振動を付与・伝播することができる。これにより、凝固核がデンドライト樹間の液相に多く発生し、凝固組織を微細化できる。
通常のチタン鋳塊の凝固組織は、前述したように一方向的である。したがって、半連続鋳造法による鋳造中のチタン鋳塊における固液界面の固相から振動を付与することにより、この固液界面に均等に振動を付与することができる。
また、振動の効果を一定にするためには、固液界面から一定の位置でチタン鋳塊を振動させることが好ましい。すなわち、固液界面に振動を効率よく付与するためには、鋳型の直下でチタン鋳塊またはチタン合金鋳塊に振動を付与すればよい。
さらに、付与する振動を、特許文献1が開示する1~50kHzの超音波振動では決して得られないmmオーダーの大きな振幅を有する振動とすることが、チタン鋳塊の結晶粒をより一層微細化するのに好ましい。
このように、本発明者らは、電子ビーム溶解法あるいはプラズマ溶解法により、凝固組織が微細で溶質元素の偏析が抑制されたチタン鋳塊を安定して製造するためには、チタン鋳塊の鋳造時にチタン鋳塊の固相から大きな振幅の振動を付与すればよいことに想到し、さらに検討を重ねて本発明を完成した。本発明は以下に列記の通りである。
(1) チタンを含有する原料を供給する原料供給工程と、
供給された前記原料に電子ビームまたはプラズマを照射することにより前記原料を溶解する溶解工程と、
前記原料の溶融物を含む溶湯をハースで精錬する精錬工程と、
前記ハースで精錬された前記溶湯を鋳型で冷却凝固することで前記チタンを含む鋳塊としてのチタン鋳塊を成形する鋳造工程と、
前記鋳型工程で鋳造されている最中の前記チタン鋳塊と前記溶湯との界面としての固液界面を振動させるために前記チタン鋳塊を振動させる振動工程と、
を含む、チタン鋳塊の製造方法。
(2) 前記鋳造工程では、前記鋳型内から前記鋳型外へ前記チタン鋳塊が下方へ移動することで前記チタン鋳塊が前記鋳型から取り出され、
前記振動工程では、前記鋳型直下の領域において、前記チタン鋳塊を振動させる、(1)に記載のチタン鋳塊の製造方法。
(3) 前記鋳型直下の領域は、前記鋳型のキャビティ下端の高さ位置を起点として、この起点から下方へ1mの高さ位置までの領域である、(2)に記載のチタン鋳塊の製造方法。
(4) 前記チタン鋳塊に付与される前記振動は、振動数が5~500Hzであるとともに振幅が0.1~5mmである、(1)~(3)の何れか1項に記載のチタン鋳塊の製造方法。
(5) 前記振動工程では、加振部材を前記チタン鋳塊に直接接触させることで前記チタン鋳塊に前記振動を付与する、(1)~(4)の何れか1項に記載のチタン鋳塊の製造方法。
(6) チタンを含有する原料を供給する原料供給部と、
供給された前記原料に電子ビームまたはプラズマを照射することにより前記原料を溶解する電子ビームまたはプラズマ照射部と、
前記原料の溶融物を含む溶湯を精錬するハースと、
前記ハースから供給された前記溶湯を冷却凝固することで前記チタンを含む鋳塊としてのチタン鋳塊を成形する鋳型と、
前記鋳型で鋳造されている最中の前記チタン鋳塊と前記溶湯との界面としての固液界面を振動させるために前記チタン鋳塊を振動させる振動発生装置と、
を備える、チタン鋳塊の製造装置。
(7) 前記鋳型内から前記鋳型外へ前記チタン鋳塊を下方へ移動させることで前記チタン鋳塊が前記鋳型から取り出されるように前記鋳型が構成されており、
前記振動発生装置は、前記鋳型直下の領域において、前記チタン鋳塊を振動させる、(6)に記載のチタン鋳塊の製造装置。
(8) 前記鋳型の直下の領域は、前記鋳型のキャビティ下端の高さ位置を起点として、この起点から下方へ1mの高さ位置までの領域である、(7)に記載のチタン鋳塊の製造装置。
(9) 前記振動発生装置が前記チタン鋳塊に発生させる前記振動は、振動数が5~500Hzであるとともに振幅が0.1~5mmである、(6)~(8)の何れか1項に記載のチタン鋳塊の製造装置。
(10) 前記振動発生部材は、加振部材を含み、
前記加振部材は、前記チタン鋳塊に直接接触することで前記チタン鋳塊に前記振動を付与する、(6)~(9)の何れか1項に記載のチタン鋳塊の製造装置。
本発明により、凝固組織が微細で溶質元素(合金元素)の偏析が抑制されたチタン鋳塊の製造が可能になる。
図1は、本発明に係るチタン鋳塊の製造装置を模式的に示す斜視図である。 図2は、図1のII-II線に沿う断面図であって、振動発生装置とチタン鋳塊の周辺の縦断面を示す。 図3は、変形例の主要部の平面断面図である。
添付図面を参照しながら、本発明を説明する。以降の説明では、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。また、以降の説明では、チタン合金鋳塊の製造装置および製造方法を例にとるが、本発明は例えばJIS H 4600(2012年)に規定されたJIS1~4種の工業用純チタン鋳塊の製造にも等しく適用される。
1.本発明に係る製造装置
図1は、本発明に係るチタン合金鋳塊の製造装置1を模式的に示す斜視図である。図2は、図1のII-II線に沿う断面図であって、振動発生装置11とチタン鋳塊52の周辺の縦断面を示す。
図1および図2を参照して、製造装置1は、原料供給部2と、電子ビームまたはプラズマ照射部(以下、単に「照射部」という)3,9,10と、第1ハース4、湯道5および第2ハース6を有するハース7と、鋳型8と、振動発生装置11と、を有している。
製造装置1の各部2~11は、図示しないチャンバー内に収容されている。照射部3,9,10が電子ビームを照射する構成の場合、製造装置1の各部2~11は、真空雰囲気下に置かれ、これらの照射部3,9,10は、電子ビームガン等の公知の電子ビーム発生装置を有している。また、照射部3,9,10がプラズマを照射する構成の場合、製造装置1の各部2~11は、アルゴンガス等の不活性ガス雰囲気下に置かれ、これらの照射部3,9,10は、公知のプラズマ発生装置を有している。なお、本実施形態では、照射部3,9,10が設けられるけれども、照射部9,10は、省略されてもよい。
原料供給部2は、工業用純チタンの鋳塊またはチタン合金の鋳塊としてのチタン鋳塊52を製造するための、チタンを含有する原料50を供給する。原料50としては、チタン合金の原料、チタンと合金元素の混合原料、または、チタンとチタン合金の混合原料が例示される。
原料50はチタンブリケットであることが望ましいが、チタンのスクラップ等を混在させてもよい。なお、チタンブリケットとは、チタンを主成分とする原料をプレス加工して、特定の形状に成型したものである。原料供給部2は、原料50を、照射部3による原料50の溶解速度に応じた供給速度で、供給することが望ましい。
原料供給部2は、原料50が載せ置かれる台座2aと、この台座2aから原料50を第1ハース4へ落下させる投入装置(図示せず)と、を有している。原料供給部2は、原料50を第1ハース4の上方から供給する。
照射部3は、供給された原料50に電子ビームまたはプラズマを照射することにより原料50を溶解する。
原料供給部2および照射部3は、この原料50を第1ハース4の上方から第1ハース4へ連続的に供給しながらこの原料50に電子ビームあるいはプラズマを照射することで溶解し、第1ハース4内に溶湯51を供給する。これにより、第1ハース4に供給する溶湯温度を安定に保持することができる。
なお、原料供給部2は原料50を連続して供給することが望ましく、照射部3は原料50を連続して溶解することが望ましいけれども、このような連続供給および連続溶解は、必須ではない。
上述の構成により、原料50の溶融物を含む溶湯51が、第1ハース4に溜められる。
ハース7は、溶湯51を精錬するために設けられている。ハース7は、本実施形態のように、第1ハース4と、湯道5と、第2ハース6と、を含むことが望ましい。
本実施形態では、第1ハース4に向けて溶湯51の温度調整用の電子ビームまたはプラズマを照射する照射部9が1基配置されていることが好ましい。さらに、第2ハース6に向けて溶湯51の温度調整用の電子ビームまたはプラズマを照射する照射部9が設けられていることが好ましく、本実施形態では、第2ハース6用の照射部9が2基配置されている。また、照射部10は、鋳型8のキャビティ8aに収容された溶湯51に温度調整用の電子ビームまたはプラズマを走査しながら照射する。
第1ハース4は、原料50が投入され原料50を溶解する溶解ハースとして設けられる。第2ハース6は、第1ハース4から流入する一部の溶湯51を冷却凝固し、底部にスカル(溶湯51が急冷されて直ちに凝固した薄い凝固層)を形成しながら、残部の溶湯51を溶湯出口7aから鋳型8へ流す精錬ハースとして設けられる。なお、ハース7は、一つのハースによって構成されていてもよい。
第1ハース4は、平面視で細長い矩形状に形成されている。第1ハース4は、周壁、および、この周壁の下部に形成された底壁を有している。第1ハース4の周壁は、平面視で細長い矩形状に形成されている。第1ハース4の周壁のうち、第2ハース6側に配置された側壁としての第1側壁21は、第1ハース4の長手方向に沿って延びている。第1側壁21のうち、第1ハース4における溶湯51の主流れ方向Dの下流端部は、上端側の一部を切り欠かれた形状を有しており、この切り欠かれた部分が、湯道5を形成している。
湯道5は、溶湯51を第1ハース4から第2ハース6へ送るために設けられている。本実施形態では、湯道5における溶湯51の主流れ方向Dは、平面視において、第1ハース4の長手方向と直交する方向である。
第2ハース6では、電子ビームあるいはプラズマの照射によって溶湯51の温度を調節可能であることが好ましい。このため、本実施形態では、照射部9が、第2ハース6を流れる溶湯51の表面に、電子ビームまたはプラズマを走査しながら照射することにより、溶湯51の温度を調整する。照射部9は、さらに、例えば、本実施形態のように、第1ハース4を流れる溶湯51に、溶湯51の温度調整用の電子ビームまたはプラズマを走査するために設けられてもよい。
第2ハース6は、平面視で細長い矩形状に形成されている。本実施形態では、第2ハース6の長手方向と第1ハース4の長手方向とは平行である。第2ハース4は、周壁、および、この周壁の下部に形成された底壁を有している。
第2ハース6の周壁のうち、第1ハース4側に配置された側壁としての第2側壁22は、第2ハース6の長手方向に沿って延びている。第2側壁22のうち、主流れ方向Dにおける上流端部は、上端側の一部を切り欠かれた形状を有している。この切り欠かれた部分が、湯道5を形成している。また、第2側壁22のうち、第2ハース6における主流れ方向Dの下流側端部は、上端側の一部を切り欠かれた形状を有している。この切り書かれた部分が、溶湯出口7aを形成している。第2ハース6内の溶湯51は、溶湯出口7aから、鋳型8へ流入する。
なお、主流れ方向Dとは、ハース7において溶湯51が溶湯出口7aへ向かうための流れ方向をいい、例えば、溶湯51が局所的に渦を巻いているときのこの渦の流れ方向は含まないことを意味している。
本実施形態では、主流れ方向Dは、第1主流れ方向D1と、第2主流れ方向D2と、第3主流れ方向D3と、第4主流れ方向D4と、を含んでいる。
第1主流れ方向D1は、第1ハース4の長手方向に沿う方向である。第2主流れ方向D2は、湯道5における溶湯51の流れ方向であり、本実施形態では、第1主流れ方向Dと平面視で直交している。第3主流れ方向D3は、第2ハース6の長手方向に沿う方向であり、本実施形態では、第2主流れ方向D2と平面視で直交している。第4主流れ方向D4は、溶湯出口7aにおける溶湯51の流れ方向であり、本実施形態では、第3主流れ方向D3と平面視で直交している。このように、本実施形態では、主流れ方向Dは、平面視でクランク形状をなしており、溶湯51はこのクランク形状に沿って溶湯出口7aへ移動する。
鋳型8は、ハース4から供給された溶湯51を冷却凝固することで、チタンを含む鋳塊としてのチタン鋳塊(インゴット)52を成形する。鋳型8は、筒状(本実施形態では、円筒状)に形成されている。鋳型8のキャビティ8aは、円柱状の空間を形成しており、鋳型8の上方および下方に開放されている。鋳型8のキャビティ8a内へは、第2ハース6から溶湯出口7aを通じて溶湯51が注入される。
鋳型8の下方には、支持台13が配置されており、この支持台13に形成されたダミーブロック(図示せず)に、チタン合金鋳塊52の下端部が支持されている。支持台13は、図示しない移動機構によって上下方向に移動するように構成されている。チタン鋳塊52の鋳造時、キャビティ8aへの溶湯51の注入量に応じて、支持台13は、移動機構によって下方へ移動される。そして、鋳型8のキャビティ8aで溶湯51が冷却凝固されることに伴い、チタン合金鋳塊52が円柱状に成形され、このチタン合金鋳塊52が、下方に延びていく。このように、鋳型8内から鋳型8外へチタン鋳塊52を下方へ移動させることで、チタン鋳塊52が鋳型8から取り出される。
なお、鋳型8のキャビティ8a内においては、チタン合金鋳塊52の上方に溶湯51が存在している。そして、この溶湯51の下方における、鋳造最中のチタン合金鋳塊52と溶湯51との界面としての固液界面53において、溶湯51がチタン合金鋳塊52となる。固液界面53には、溶湯51を構成する成分が凝固することで形成される凝固組織であるデンドライトが存在している。そして、この固液界面53では、デンドライト樹間に液相である溶湯51が存在している。固液界面53は、巨視的に見て、鋳型8のキャビティ8aの内周面から鋳型8の径方向内方に進むに従い下方に進む椀状(bowl状)の面である。
このキャビティ8a内の溶湯51に向けて照射部10から電子ビームまたはプラズマが照射されることにより、鋳型8における溶湯51の湯面51aでの皮張り現象が抑制される。鋳型8の周辺では、照射部10による皮張り抑制が行われつつ、振動発生装置11によって、固相であるチタン鋳塊52から固液界面53へ振動が与えられる。
振動発生装置11は、鋳造されている最中で且つ支持台13から取り出される前のチタン鋳塊52と溶湯51との界面である固液界面53を振動させるために、チタン鋳塊52を振動させる。
振動発生装置11は、鋳型8の直下の領域(直下領域25)に設置されており、この直下領域25において、チタン鋳塊52を振動させる。直下領域25は、鋳型8のキャビティ8aの下端の高さ位置h1を起点として、この起点から鉛直方向に沿って下方1mの高さ位置h2までの領域であることが望ましい。高さ位置h1から下方1mを超えた高さ位置でチタン鋳塊52へ振動が付与されると、すなわち、高さ位置h2よりも下方の位置からチタン鋳塊52に振動発生装置11から振動が付与されると、チタン鋳塊52の表面(外周面)に与えた振動が、高温のチタン鋳塊52において大きく減衰する。このため、振動発生装置11から固液界面53に十分な振動を与えることが難しくなる。
振動発生装置11は、チャンバー内に存在するチタン鋳塊52に振動を与えることができる機械式の振動装置が望ましい。振動発生装置11として、モータの回転運動を利用した偏芯カムや、往復運動を利用した装置が例示される。また、振動発生装置11は、電磁気力により振動子を振動させてチタン鋳塊52に振動を与える装置でもよい。本実施形態では、振動発生装置11は、機械式の振動装置である。
振動発生装置11は、電動モータまたは油圧モータであるモータ31と、このモータ31の出力軸に一体回転可能に連結された加振部材32と、を含んでいる。本実施形態では、振動発生装置11は、モータ31の回転運動を振動力に変換する機構を含んでいる。
モータ31のケーシングは、図示しないステー等に固定されている。加振部材32は、例えば偏心カム部材であり、円板状に形成されている。平面視で加振部材32の図心からずれた(偏心した)位置に、モータ31の出力軸の中心軸線が通るように、加振部材32とモータ31の出力軸とが連結されている。そして、モータ31の出力軸が回転すると、加振部材32の外周面は、チタン鋳塊52の外周面を、モータ31の回転速度に応じた周期で繰り返し打撃する。このとき、加振部材32は、前述した直下領域25において、チタン鋳塊52の外周面に直接接触する。
なお、加振部材32は、モータ31の回転に伴い周期的にチタン鋳塊52の外周面を打撃できればよく、具体的な形状は限定されない。
加振部材32の少なくとも一部の高さ位置は、固液界面53の高さ位置と揃えられていることが望ましい。例えば、加振部材32の高さ位置が、固液界面53の下端位置53aよりも高い高さ位置にあると、加振部材32からの振動を、より小さい減衰率で固液界面53に伝達できる。加振部材32からチタン鋳塊52に与えられる振動のベクトル(チタン鋳塊52の振動力のベクトル)は、水平で且つチタン鋳塊52の中心軸線を通るように設定されていることが好ましい。本実施形態では、加振部材32からチタン鋳塊52に付与される振動とは、加振部材32によってチタン鋳塊52が振動するときにおける、チタン鋳塊52のうちの加振部材32との接触部位における振動をいう。
加振部材32がチタン鋳塊52に発生させる振動の周波数は、5~500Hzが望ましい。振動の周波数が5Hz未満であると、固液共存状態にある固液界面53において十分な凝固核を発生できないおそれがある。また、振動の周波数が500Hzを超えると、微細化効果が飽和するだけでなく、振動がチタン鋳塊52以外にも伝搬して、例えばチャンバーにおける接合部に緩みを発生させてしまい、操業が困難になるおそれがある。このため、チタン鋳塊52に与える振動の振動数は5~500Hzであることが望ましい。
加振部材32がチタン鋳塊52の外周面に付与する振動の振幅は、0.1~5mmが望ましい。振幅が0.1mm未満であると、チタン鋳塊52に十分な振動を与えることができず、固液界面53に振動を付与できないおそれがある。また。振幅が5mmを超えると、鋳型8内の溶湯51の表面で形成された脆弱な凝固シェルが変形し、凝固シェルと鋳型8との間隙に溶湯51が差し込み、二重肌が形成されるおそれがある。このため、チタン鋳塊52の表面に付与する振動の振幅は0.1~5mmであることが望ましい。この場合の振幅とは、円筒状のチタン鋳塊52の径方向に沿った当該チタン鋳塊52の振幅をいう。
なお、本実施形態では、一つのモータ31および加振部材32によって、チタン鋳塊52の一カ所からチタン鋳塊52を介して固液界面53に振動を付与する形態を例に説明している。しかしながら、この通りでなくてもよい。例えば、変形例の主要部の平面断面図である図3に示すように、振動発生装置11を複数設けてもよい。この場合、複数の振動発生装置11の加振部材32によってチタン鋳塊52の外周面の複数箇所からチタン鋳塊52に振動を付与する。複数の加振部材32は、チタン鋳塊52の円周方向に等ピッチで配置されていることが望ましい。例えば、一対の加振部材32が180度のピッチで配置されていれば、一方の加振部材32によって、振動方向の一方への加振を行うことができるとともに、他方の加振部材32によって、振動方向の他方への加振を行うことができる。
2.本発明に係る製造方法
図1および図2を参照して、本実施形態に係るチタン合金鋳塊52の製造方法は、第1~5の工程を有する。
第1の工程は、原料供給工程である。この第1の工程では、原料供給部2が原料50を第1ハース4の上方から第1ハース4へ供給する。原料供給工程では、第2の工程での原料50の溶解速度に応じた供給速度で、原料50を供給することが望ましい。
第2の工程は、溶解工程である。この第2の工程では、第1ハース4へ供給された原料50に照射部3が電子ビームまたはプラズマを照射することにより、原料50を溶解する。なお、原料供給工程で原料50を連続して供給し、溶解工程で原料50を連続して溶解することが望ましい。
第3の工程は、ハース7において溶湯51を精錬する精錬工程である。この第3の工程では、溶解された原料50の溶湯51が第1および第2ハース4,6に収容される。そして、溶湯51の一部は、冷却凝固されることで第2ハース6の底部にスカルを形成し、溶湯51の残部は、溶湯出口7aへ流れる。すなわち、精錬工程では、溶解された原料50の溶湯51を収容する第1ハース4と、第1ハース4から湯道5を介して流入する溶湯51の一部を冷却し、底部にスカルを形成しながら、溶湯51の残部を流す第2ハース6と、を用いることが望ましい。
精錬工程についてさらに詳細に説明すると、第1ハース4は、原料50に電子ビームまたはプラズマを照射して溶解した、チタンを含有する原料50の溶融プールを形成する。第2ハース6は、第1ハース4から送られた溶湯51を受け、溶湯出口7aから鋳型8へ溶湯51を供給する。
第1ハース4において、電子ビームまたはプラズマの照射によって原料50が溶解され、第1ハース4内を満たすと、湯道5を介して第2ハース6へ溶湯が注がれる。第1ハース4の供給口(第1ハース4における主流れ方向Dの上流側端部)からの溶湯51は、第2ハース6の壁面に向かって流れ、この壁面と衝突して流れの向きが変わる。流れの向きが変わった溶湯51は、第2ハース6の溶湯出口7a、すなわち鋳型8への供給口に向かって流れることになる。
精錬工程では、第2ハース6を流れる溶湯51に、照射部9から電子ビームまたはプラズマを照射することにより、溶湯の温度を調整することが望ましい。
第4の工程は、鋳造工程である。この第4の工程では、ハース7で精錬された溶湯51を鋳型8で冷却凝固することで、チタン合金鋳塊52を成形する。この鋳造工程では、鋳型8のキャビティ8aへの溶湯51の流入に伴い支持台13が下方へ移動する。これにより、チタン合金鋳塊52が円柱状に成形されていく。このように、鋳造工程では、鋳型8内から鋳型8外へチタン鋳塊52が下方へ移動することで、チタン鋳塊52が鋳型8から取り出される。
第5の工程は、振動工程である。この第5の工程では、鋳造工程で鋳造されている最中のチタン鋳塊52と溶湯51との界面としての固液界面53を振動させるために、チタン鋳塊52を振動させる。本実施形態では、振動発生装置11により、鋳型8の直下の直下領域25において、チタン鋳塊52に振動を付与する。すなわち、チャンバー内にあるチタン鋳塊52に振動を効率よく、しかも安定して付与するために、本実施形態では、鋳型8の直下に、チタン鋳塊52の表面に振動を与える振動発生装置11が設置されている。振動発生装置11は、加振部材32をチタン鋳塊52に直接接触させることでチタン鋳塊52に振動を付与する。鋳造工程および振動工程では、キャビティ8a内の溶湯51へ照射部10から電子ビームまたはプラズマを照射することにより、溶湯51の温度を調整するとともに溶湯51の皮張り防止をすることが望ましい。
このようにして、温度の安定した溶湯51が供給されることで、鋳型8内で形成される固液界面53の位置を一定に保つことができ、振動発生装置11により安定した振動をチタン鋳塊52に付与することができる。
3.本発明により製造されるチタン鋳塊52
チタン鋳塊52は、電子ビームあるいはプラズマの照射を用いて原料を溶解し、鋳造中に振動を付与されて製造された鋳塊である。
チタン鋳塊52は、鋳込み方向(本実施形態では、鉛直方向)と直交する断面において、チタン鋳塊52の厚み方向(本実施形態では、チタン鋳塊52の径方向)の中央位置を中心として厚み方向へ±15mmの範囲である中心部の結晶粒径と、表層から深さ方向へ30mmの範囲である表層部における結晶粒径との比の値が0.9~1.1であることが望ましく、また、前記表層部における結晶粒径が0.5~5mmであることが望ましい。
前記比の値および前記表層部における結晶粒径が前記の範囲内であれば、割れが発生し難く、良好な熱間加工性を得ることができる。
上記結晶粒径は、チタン鋳塊52の中心部、表層部から切り出した試料をエッチングし、エッチングにより顕出した結晶粒に対する円相当直径を意味し、試料数30個の算術平均値である。チタン鋳塊52は、凝固が完了した固相側から振動発生装置11により振動が付与されるため、デンドライト樹間に存在する液相に効率よく振動を伝播できる。このため、チタン鋳塊52のデンドライト樹間の液相に凝固核が多く発生し、表層部のみならず中心部においても凝固組織が微細化する。したがって、チタン鋳塊52は、割れを発生せずに、熱間加工性が良好である。
従来より、鋳造後のチタン合金鋳塊を急冷(例えば水冷)することによりチタン合金鋳塊の凝固組織を微細する方法(以下、「急冷法」という)が知られている。しかし、この急冷法による結晶粒の微細化は、鋳型の厚みに限界があり、その厚みは高々20mmである。その理由は、鋳型の冷却がチタン合金鋳塊の熱伝導率により決定されるため、チタン合金鋳塊の内部で急冷効果を得ることが不可能なためである。
ただし、急冷法により得られる、表層部の結晶粒径は例えば0.1~5mmと微細である。これに対し、本発明によれば、チタン鋳塊52の表層部のみならず中心部においても結晶粒を微細化できる。
また、本発明によれば、例えばクロール法により製造された原料に不可避的に含まれる塩素が、鋳造中の振動によって凝固直前に溶湯から排除され易くなる。その結果、チタン鋳塊52に不純物として含有される塩素量が例えば0.001~0.005%程度に低減される。
チタン鋳塊52の横断面形状は、図1に示す円形に限らず、長方形等の多角形形状であってもよい。長方形の場合の中心部は、幅方向の中央および厚み方向の中央が会合する位置である。多角形形状の場合の中心部は、横断面形状の例えば図心である。
本発明におけるチタン鋳塊52(チタン鋳塊を含む)のサイズについては、その断面形状が円形の場合は、直径100mm以上、長方形の場合は、短辺100mm以上、長辺100mm超のサイズが例示される。
チタン鋳塊52の化学組成を以下に例示する。
(A)耐食チタン合金
Pd,Ru,Ni,Co等を含むJIS11種~JIS23種(JIS H 4600(2012年)チタン及びチタン合金-板及び条)であり、耐食性および耐隙間腐食性に優れる。
(B)チタン合金
Ti-1.5Al(JIS50種(JIS H 4600(2012年)チタン及びチタン合金-板及び条))であり、耐食性に優れ、耐水素吸収性および耐熱性に優れる。
Ti-6Al-4V(JIS60種(JIS H 4600(2012年)チタン及びチタン合金-板及び条))であり、高強度で汎用性が高い。
Ti-3Al-2.5V(JIS61種(JIS H 4600(2012年)チタン及びチタン合金-板及び条))であり、溶接性、成形性が良好で、切削性が良好である。
Ti-4Al-22V(JIS80種(JIS H 4600(2012年)チタン及びチタン合金-板及び条))であり、高強度で冷間加工性に優れる。
本発明は、上記以外にJISに規定されていない化学成分を有するチタン鋳塊52を製造することもできる。このようなチタン鋳塊52として、米国のASTM B265、ドイツの DIN 17860を例示できる。また、例えば、以下に列記の通りである。
耐熱性を有するTi-6Al-2Sn-4Zr-2Mo-0.08Si,Ti-6Al-5Zr-0.5Mo-0.2Si,Ti-8Al-1Mo-1V等と、
低合金で高強度のTi-1~1.5Fe-0.3~0.5O-0.01~0.04N等と、
低合金で耐熱性のあるTi-1Cu,Ti-1Cu-0.5Nb,Ti-1Cu-1Sn-0.35Si-0.5Nb等と、
耐クリープ性に優れるTi-6Al-2Sn-4Zr-6Mo等と、
高強度で冷間加工性の良いTi-15V-3Cr-3Sn-3Al,Ti-20V-4Al-1Sn等と、
高強度高靭性のTi-10V-2Fe-3Al等と、
耐摩耗性Ti-6Al-4V-10Cr-1.3C等とが例示される。
本発明により製造可能なチタン鋳塊52の化学成分を以下に列記する。
(C)工業用純チタン
酸素と鉄を調整したJIS1種~JIS4種(JIS H 4600(2012年)チタン及びチタン合金-板及び条)であり、酸素と鉄が少ないほど加工性が良好であり、酸素と鉄が多いほど高強度である。
JIS1種とは、酸素:0.15%以下、鉄:0.20%以下、窒素:0.03%以下、炭素:0.08%以下、水素:0.013%以下であり、
JIS2種とは、酸素:0.20%以下、鉄:0.25%以下、窒素:0.03%以下、炭素:0.08%以下、水素:0.013%以下であり、
JIS3種とは、酸素:0.30%以下、鉄:0.30%以下、窒素:0.05%以下、炭素:0.08%以下、水素:0.013%以下であり、
JIS4種とは、酸素:0.40%以下、鉄:0.50%以下、窒素:0.05%以下、炭素:0.08%以下、水素:0.013%以下である。
以上説明したように、本実施形態によると、チタン鋳塊52の成形に際して、チタン鋳塊52の固相から固液界面53へ、振動発生装置11から振動が与えられる。この構成によると、固体部分であるチタン鋳塊52から、固相と液相の境界部である固液界面53へ向けて、振動が伝達される。この構成であれば、固液界面53のうち、チタン鋳塊52の外周部からチタン鋳塊52の厚み方向の中心に亘って、より均等な振動が与えられる。すなわち、振動発生装置11からの振動は、固相を介して固液界面53に伝わることで、チタン鋳塊52の中心においても減衰率は小さい。これにより、固液界面53の全体において凝固核の生成を促進できる。その結果、チタン鋳塊52の結晶粒をより均等に微細化できる。よって、溶質元素の偏析が抑制されたチタン鋳塊52を安定して製造できる。しかも、チタン鋳塊52の厚みの影響をほとんど受けずにこのような優れた効果を発揮できる。
また、本実施形態によると、振動工程において、加振部材32は、チタン鋳塊52に直接接触することでチタン鋳塊52に振動を付与する。この構成によると、加振部材32の振動が固液界面53に伝わるまでの間における振動の減衰率をより小さくできる。また、加振部材32からの加振力のベクトルが、チタン鋳塊52に直接伝わる。これにより、固液界面53における振動の態様をより容易に所望の態様にすることができる。
本発明の効果を確認するため、図1および図2に示す製造装置1を用いて、以下に示す試験を実施してその結果を評価した。
(1)溶解および鋳造条件
(1-1)溶湯成分:Ti-6.4%Al-4.2%V
(1-2)溶湯温度:1700℃(第2ハース6内の溶湯温度)
(1-3)鋳型8の内径:650mm
(1-4)溶解量:8000kg
(1-5)溶解速度:8000kg/時間
(1-6)照射方法:電子ビームあるいはプラズマ
(1-7)ハース:以下の2種類(第1ハース4および第2ハース6)
(i)第1ハース4
原料50を電子ビームで溶解することで生成された溶湯51を溜め、この溶湯51を第2ハース6に供給するためのハースである。寸法は、幅500mm×長1500mm×深100mmである。
(ii)第2ハース6
第1ハース4からの溶湯51をいったん溜めて精錬し、鋳型8に供給するためのハースである。寸法は、幅500mm×長1000mm×深150mmである。
(1-8)第1ハース4および第2ハース6の連結角度:平面視で第1ハース4の長手方向と湯道5での主流れ方向D2とが直角となるように、且つ、主流れ方向D2と第2ハース6の長手方向とが直角となるように連結。
(1-9)原料50:スポンジ・チタン、合金成分を混合した直径100mm×長200mmのブリケット
(1-10)原料50の溶解方法:ブリケットを溶解速度に合わせて連続供給するか、あるいは、ブリケットを1000kgずつ8回に分けて第1ハース4内に一括添加した。
(1-11)電子ビーム照射手段:原料50の溶解用の照射部3が1基、第1ハース4用の照射部9が1基、第2ハース6用の照射部9が2基、鋳型8用照射部10が1基の合計5基。
(1-12)振動発生装置11
振動方法:偏芯カムである加振部材32によりチタン鋳塊52の外周面を打撃した。
振動数:1~1000Hz
振幅:0.05~10mm
(2)評価
結晶粒径指数の求め方について以下に説明する。全長が約5500mmのチタン鋳塊52のボトムから180mm間隔で横断面30枚を切り出し、この横断面の中心を含む幅30mm×長30mm×軸方向厚10mm、チタン鋳塊52の径方向厚み1/4位置を中心として幅30mm×長30mm×軸方向厚10mmの観察用サンプルを採取して、観察面を鏡面研磨した。
その後、弗硝酸溶液を用いて組織を顕出し、光学顕微鏡を用いて結晶粒径を測定し、試料数30個の平均値を求めた。ここで、結晶粒径とは、鋳込み方向と直交する断面において、チタン鋳塊52の厚み方向の中央位置を中心として厚み方向へ±15mmの範囲である中心部の結晶粒径と、表層から深さ方向へ30mmの範囲である表層部における結晶粒径である。中心部の結晶粒径を表層部の結晶粒径で割った値を結晶粒径比とした。
次に、EPMA分析(Electron Probe Micro Analyzer)による偏析比指数の求め方を説明する。全長が約5500mmのチタン鋳塊52のボトムから1000mm間隔で横断面5枚を切り出し、この横断面の中心を含む幅100mm×長100mm×軸方向厚10mm、チタン鋳塊52の径方向厚み1/4位置を中心として幅100mm×長100mm×軸方向厚10mmの観察用サンプルを採取して、EPMAで分析を行った。アルミニウム濃度の最大値を初期濃度で割った値を偏析比と定義し、比較例1の偏析比を基準として偏析比指数を求めた。
結果を表1にまとめて示す。
Figure 0007206965000001
表1における「連続添加」は、溶解速度に合わせてブリケット7を第1ハース4の直上に一定速度で連続供給し、これに電子ビームあるいはプラズマを照射させて連続的に溶解することを意味し、「一括添加」は、1000kgのブリケット7を8回に分けて、それぞれを第1ハース4に一括添加して、これに電子ビームあるいはプラズマを照射させて溶解することを意味する。
上述したように、表1における「偏析比指数」は、比較例1の偏析比を基準とした時の値である。なお、偏析比は、アルミニウム濃度の最大値を初期濃度で割った値である。
表1に示すように、本発明例1~10と比較例1~4とを比較すると、チタン鋳塊に振動を付与することにより、結晶粒比が少なくとも50%より小さくなり、偏析比指数も50%より小さくなることが分かる。すなわち、より均等な粒子が形成されているととともに、アルミニウム濃度のばらつきが小さく、偏析の少ないチタン鋳塊52を製造できることが実証された。
なお、本発明例6,7,8,10は、振動数5~500Hz、および、振幅0.1~5.0mmの条件の少なくとも一方から外れている。そして、本発明例6,7,8,10では、チャンバーの緩み発生、または、鋳塊表面における二重肌発生という現象が生じたけれども、結晶粒径比、および、偏析比指数は、良好であった。
なお、振幅が5mmを超えると、凝固シェルと鋳型の間隙に溶湯が差し込んでチタン鋳塊52に二重肌が形成されたため、結晶粒径指数の値は測定できなかった。
1 製造装置
2 原料供給部
3,9,10 照射部
7 ハース
8 鋳型
11 振動発生装置
25 鋳型直下の領域
32 加振部材
50 原料
51 溶湯
52 チタン鋳塊
53 固液界面
h1 キャビティ下端の高さ位置

Claims (8)

  1. チタンを含有する原料を供給する原料供給工程と、
    供給された前記原料に電子ビームまたはプラズマを照射することにより前記原料を溶解する溶解工程と、
    前記原料の溶融物を含む溶湯をハースで精錬する精錬工程と、
    前記ハースで精錬された前記溶湯を鋳型で冷却凝固することで前記チタンを含む鋳塊としてのチタン鋳塊を成形する鋳造工程と、
    前記鋳型工程で鋳造されている最中の前記チタン鋳塊と前記溶湯との界面としての固液界面を振動させるために前記チタン鋳塊を振動させる振動工程と、
    を含み、
    前記チタン鋳塊に付与される前記振動は、振動数が5~500Hzであるとともに振幅が0.1~5mmである、チタン鋳塊の製造方法。
  2. 前記鋳造工程では、前記鋳型内から前記鋳型外へ前記チタン鋳塊が下方へ移動することで前記チタン鋳塊が前記鋳型から取り出され、
    前記振動工程では、前記鋳型直下の領域において、前記チタン鋳塊を振動させる、請求項1に記載のチタン鋳塊の製造方法。
  3. 前記鋳型直下の領域は、前記鋳型のキャビティ下端の高さ位置を起点として、この起点から下方へ1mの高さ位置までの領域である、請求項2に記載のチタン鋳塊の製造方法。
  4. 前記振動工程では、加振部材を前記チタン鋳塊に直接接触させることで前記チタン鋳塊に前記振動を付与する、請求項1~請求項の何れか1項に記載のチタン鋳塊の製造方法。
  5. チタンを含有する原料を供給する原料供給部と、
    供給された前記原料に電子ビームまたはプラズマを照射することにより前記原料を溶解する電子ビームまたはプラズマ照射部と、
    前記原料の溶融物を含む溶湯を精錬するハースと、
    前記ハースから供給された前記溶湯を冷却凝固することで前記チタンを含む鋳塊としてのチタン鋳塊を成形する鋳型と、
    前記鋳型で鋳造されている最中の前記チタン鋳塊と前記溶湯との界面としての固液界面を振動させるために前記チタン鋳塊を振動させる振動発生装置と、
    を備え
    前記振動発生装置が前記チタン鋳塊に発生させる前記振動は、振動数が5~500Hzであるとともに振幅が0.1~5mmである、チタン鋳塊の製造装置。
  6. 前記鋳型内から前記鋳型外へ前記チタン鋳塊を下方へ移動させることで前記チタン鋳塊が前記鋳型から取り出されるように前記鋳型が構成されており、
    前記振動発生装置は、前記鋳型直下の領域において、前記チタン鋳塊を振動させる、請求項に記載のチタン鋳塊の製造装置。
  7. 前記鋳型の直下の領域は、前記鋳型のキャビティ下端の高さ位置を起点として、この起点から下方へ1mの高さ位置までの領域である、請求項に記載のチタン鋳塊の製造装置。
  8. 前記振動発生部材は、加振部材を含み、
    前記加振部材は、前記チタン鋳塊に直接接触することで前記チタン鋳塊に前記振動を付与する、請求項~請求項の何れか1項に記載のチタン鋳塊の製造装置。
JP2019015486A 2019-01-31 2019-01-31 チタン鋳塊の製造方法および製造装置 Active JP7206965B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015486A JP7206965B2 (ja) 2019-01-31 2019-01-31 チタン鋳塊の製造方法および製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015486A JP7206965B2 (ja) 2019-01-31 2019-01-31 チタン鋳塊の製造方法および製造装置

Publications (2)

Publication Number Publication Date
JP2020121331A JP2020121331A (ja) 2020-08-13
JP7206965B2 true JP7206965B2 (ja) 2023-01-18

Family

ID=71991822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015486A Active JP7206965B2 (ja) 2019-01-31 2019-01-31 チタン鋳塊の製造方法および製造装置

Country Status (1)

Country Link
JP (1) JP7206965B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981179A (zh) * 2021-02-07 2021-06-18 广东省科学院材料与加工研究所 镍钛形状记忆合金材料、合金丝材及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118041A (ja) 2005-10-28 2007-05-17 Showa Denko Kk アルミニウム合金の連続鋳造棒、連続鋳造棒の鋳造方法、連続鋳造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287661A (ja) * 1993-03-31 1994-10-11 Nikko Kinzoku Kk 高融点金属溶製材の製造法
JPH11350051A (ja) * 1998-06-03 1999-12-21 Sumitomo Sitix Amagasaki:Kk チタンインゴットの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118041A (ja) 2005-10-28 2007-05-17 Showa Denko Kk アルミニウム合金の連続鋳造棒、連続鋳造棒の鋳造方法、連続鋳造装置

Also Published As

Publication number Publication date
JP2020121331A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
Zhang et al. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy
Nafisi et al. Semi-solid processing of aluminum alloys
CN105458264B (zh) 一种接触式机械振动条件下增材制造方法
Zhang et al. Effects of high-intensity ultrasound on the microstructures and mechanical properties of ultra-large 2219 Al alloy ingot
JP5492982B2 (ja) β−γ−TiAl基合金の製造方法
LÜ et al. Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy
Czerwinski Modern aspects of liquid metal engineering
JP2006102807A (ja) 金属組織改質方法
JP4243192B2 (ja) 合金インゴットを製造する方法
Pillai et al. A simple inexpensive technique for enhancing density and mechanical properties of Al Si alloys
JP7206965B2 (ja) チタン鋳塊の製造方法および製造装置
Balasubramani et al. A review of the origin of equiaxed grains during solidification under mechanical stirring, vibration, electromagnetic, electric-current, and ultrasonic treatments
CN101899634B (zh) 一种消除铝合金中针片状富Fe相的方法
CA3053911A1 (en) Ultrasonic grain refining and degassing procedures and systems for metal casting including enhanced vibrational coupling
Gao et al. Defect elimination and microstructure improvement of laser powder bed fusion β-solidifying γ-TiAl alloys via circular beam oscillation technology
JPH06287661A (ja) 高融点金属溶製材の製造法
JP7211122B2 (ja) チタン鋳塊
Abugh et al. Microstructure and mechanical properties of vibrated castings and weldments: A review
JP7135556B2 (ja) チタン鋳塊の製造方法
Wang et al. Treatment by external fields
Jiang et al. Effects of Bi modification and ultrasonic treatment on microstructure evolution and mechanical properties of AlMg5Si2Mn alloy
Yadav et al. Influence of high amplitude mould vibration on the morphology of silicon in the Al-Si alloy (A308)
JP7406073B2 (ja) チタン鋳塊の製造方法
Ying et al. Microstructure evolution of 3003/4004 clad ingots under diverse physical fields
Li et al. Effect of multi-source ultrasonic on the microstructure and mechanical properties of a large scale 2219 Al alloy ingot during casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7206965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151