JP7205165B2 - Drying equipment for woody biomass raw materials - Google Patents

Drying equipment for woody biomass raw materials Download PDF

Info

Publication number
JP7205165B2
JP7205165B2 JP2018205302A JP2018205302A JP7205165B2 JP 7205165 B2 JP7205165 B2 JP 7205165B2 JP 2018205302 A JP2018205302 A JP 2018205302A JP 2018205302 A JP2018205302 A JP 2018205302A JP 7205165 B2 JP7205165 B2 JP 7205165B2
Authority
JP
Japan
Prior art keywords
air
temperature
drying
heat exchanger
woody biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205302A
Other languages
Japanese (ja)
Other versions
JP2020070970A (en
Inventor
克行 冨田
茂樹 高橋
忠利 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018205302A priority Critical patent/JP7205165B2/en
Publication of JP2020070970A publication Critical patent/JP2020070970A/en
Application granted granted Critical
Publication of JP7205165B2 publication Critical patent/JP7205165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

この発明は、木質バイオマスを得るにあたり、水分を含んだ木質バイオマス原料を乾燥させる方法、及びそれに用いる乾燥設備に関する。 TECHNICAL FIELD The present invention relates to a method for drying woody biomass raw materials containing water in obtaining woody biomass, and drying equipment used therefor.

近年、石炭火力発電における石炭・木質バイオマス混焼(以下、単にバイオマス混焼と言う場合がある)が注目を集めている。樹木の伐採や造材のときに発生する枝や幹、葉等の林地残材をはじめ、製材工場等で発生する樹皮やのこ屑、住宅の解体材、街路樹の剪定枝等の木材を利用した木質バイオマスは、いわゆるカーボンニュートラルの特性を有することから、これを燃料とすれば二酸化炭素の排出を抑えて、地球温暖化の防止に貢献できる。特に、2012年に導入された自然エネルギー(再生可能エネルギー)の固定価格買取制度(FIT)では、発電効率の算出に際して、基準となる投入エネルギー量から木質バイオマスのエネルギー量が控除されることから、バイオマス混焼の利用も広がりつつある。 In recent years, co-firing of coal and woody biomass (hereinafter sometimes simply referred to as co-firing of biomass) in coal-fired power generation has attracted attention. Wood such as branches, trunks, leaves, and other forest residue left over from felling and building wood, bark and sawdust generated at sawmills, house demolitions, pruned branches of roadside trees, etc. The woody biomass used has so-called carbon-neutral properties, so if it is used as fuel, carbon dioxide emissions can be suppressed, contributing to the prevention of global warming. In particular, under the feed-in tariff (FIT) system for natural energy (renewable energy) introduced in 2012, when calculating power generation efficiency, the energy amount of woody biomass is deducted from the amount of energy input, which serves as a standard. The use of biomass co-firing is also spreading.

木質バイオマスを燃料として使用する場合、水分量が多いと燃焼炉の炉内温度が低下してしまうことから、十分に乾燥させる必要がある。つまり、バイオマス混焼での木質バイオマスの混焼率を上げるためには、木質バイオマスの水分量を下げることが重要になってくる。 When woody biomass is used as fuel, it must be sufficiently dried because the temperature inside the combustion furnace drops if the woody biomass contains a large amount of moisture. In other words, in order to increase the co-firing rate of woody biomass in biomass co-firing, it is important to reduce the moisture content of woody biomass.

ここで、木質バイオマスを得るための乾燥方法としては、水分を含んだ木質バイオマス原料をキルン等の回転円筒体に装入し、外部から熱風を供給して、掻き上げ羽根等で回転円筒体内の木質バイオマス原料を掻き上げたり、落下させたりしながら撹拌して、乾燥させる方法が知られている(例えば特許文献1参照)。このように熱風を利用する方法は、高温の風を当てることから乾燥を促進させる点で有利であり、日本国内ではこれまで主に利用されてきた。 Here, as a drying method for obtaining woody biomass, woody biomass raw materials containing moisture are charged into a rotating cylindrical body such as a kiln, hot air is supplied from the outside, and the inside of the rotating cylindrical body is dried by raking blades or the like. There is known a method of drying woody biomass raw materials by stirring them while scraping them up or dropping them (see Patent Document 1, for example). The method of using hot air in this way is advantageous in promoting drying by applying high-temperature air, and has been mainly used in Japan so far.

ところが、熱風を得るためにはボイラー焚き等が必要となってしまう。また、熱風の温度が少なくとも200~300℃程度に達するため、乾燥中に木質バイオマスが自然発火する危険性があり、酸素センサ等を用いて常に回転円筒内の酸素濃度をモニタリングしたり、消火設備を設けるなどして、発火の危険を排除しなければならない。更には、回転円筒体から排出される高温排ガスは高濃度で水分を含むことから、例えば、別途ガスを供給して希釈するなどの露結対策が必要となる。そのため、熱風を利用する方法は、結果的に設備が大型化したり、コストの上昇を招いてしまう。 However, in order to obtain hot air, a boiler or the like is required. In addition, since the temperature of the hot air reaches at least 200 to 300°C, there is a risk that the woody biomass will spontaneously ignite during drying. The danger of ignition must be eliminated by, for example, providing Furthermore, since the high-temperature exhaust gas discharged from the rotating cylinder contains high-concentration moisture, it is necessary to take countermeasures against dew condensation, such as diluting the gas by supplying it separately. Therefore, the method using hot air results in an increase in the size of equipment and an increase in cost.

一方で、比較的温度の低い温風を使用する方法として、例えば、大気から吸引(導入)した空気を加温して得た温風を木質バイオマス原料が積載されたコンベアを収容した貯留ホッパの下部から供給して、コンベア上の木質バイオマス原料を乾燥させる方法が知られている(特許文献2参照)。このような方法は50℃程度の温風を使用するものであることから、熱風を使用する方法に比べて燃料コストを抑えることができる。また、そもそも低温の温風を使用することから、木質バイオマスの自然発火の危険性を抑えることができる(この特許文献2の方法では、貯留ホッパ内の温度が所定の設定温度を超えたときには、更に、貯留ホッパ内の温風を大気中に放散するようにしている)。 On the other hand, as a method of using warm air with a relatively low temperature, for example, warm air obtained by heating the air sucked (introduced) from the atmosphere is used in a storage hopper containing a conveyor loaded with woody biomass raw materials. A method is known in which woody biomass raw materials on a conveyor are dried by supplying from the bottom (see Patent Document 2). Since such a method uses hot air of about 50° C., it is possible to reduce the fuel cost compared to the method using hot air. In addition, since low-temperature warm air is used in the first place, the risk of spontaneous ignition of woody biomass can be suppressed (in the method of Patent Document 2, when the temperature in the storage hopper exceeds a predetermined set temperature, Furthermore, the warm air in the storage hopper is dissipated into the atmosphere).

特開2016-090120号公報JP 2016-090120 A 特開2016-80217号公報JP 2016-80217 A

温風を利用した木質バイオマス原料の乾燥方法は、熱風を利用した方法に比べて乾燥効率は劣るものの、設備やコストを抑えたり、自然発火の危険性を減らすことができる。 The method of drying woody biomass raw materials using hot air is inferior to the method using hot air in drying efficiency, but it can reduce equipment and costs and reduce the risk of spontaneous combustion.

しかしながら、温風を得るにあたって大気を利用することから、大気の温度(以下、気温又は外気温と言う)の影響を受けてしまう。つまり、気温が下がると、その分だけ温風を得るための熱媒体の流量や熱量確保に必要な燃料が増加してしまう。また、乾燥処理量を一定に保つためには、気温が低い場合に対応して設備を大型化する必要がある。特に、夏場と冬場で気温の差が激しい場所や地域ではこの影響は顕著になり、冬場の気温を想定して熱交換器の仕様(スペック)や熱媒体等の容量を用意することから、夏場には過剰な設備を保有することになってしまう。 However, since the air is used to obtain warm air, it is affected by the temperature of the air (hereinafter referred to as air temperature or outside air temperature). In other words, when the temperature drops, the flow rate of the heat medium for obtaining warm air and the amount of fuel required to secure the amount of heat increase accordingly. In addition, in order to keep the drying throughput constant, it is necessary to increase the size of the equipment to cope with low temperatures. This effect is particularly noticeable in places and regions where there is a large temperature difference between summer and winter. will end up owning excessive equipment.

そこで、本発明者らは、温風を利用した木質バイオマス原料の乾燥での気温の影響を抑える方法について鋭意検討した結果、地下水や工場温排水といった外気温より高い温度を有した予加熱用水を利用するのが効果的であることを見出した。すなわち、例えば、地下水の温度は比較的変動が少なく、年間を通じてほぼ一定の値を示し、特に、地域によっては冬場に大気よりも地下水の温度が高くなることから、大気から導入した空気を地下水との熱交換により予熱した上で温風を得るようにすることで、上述したような問題を解決することができることから、本発明を完成させた。 Therefore, the present inventors have made intensive studies on methods for suppressing the influence of air temperature when drying woody biomass raw materials using hot air. It has been found to be effective to use For example, the temperature of groundwater is relatively constant throughout the year with relatively little fluctuation. By obtaining warm air after preheating by heat exchange, the above-described problems can be solved, so the present invention was completed.

したがって、本発明の目的は、季節要因での気温変化による影響を排除して、常に乾燥処理量に見合った設備や燃料等を使用することができるようになり、トータルで効率的に木質バイオマス原料の乾燥を行うことができる木質バイオマス原料の乾燥方法を提供することにある。
また、本発明の別の目的は、上記の方法を用いることができる木質バイオマス原料の乾燥設備を提供することにある。
Therefore, the object of the present invention is to eliminate the influence of temperature changes due to seasonal factors, to be able to always use equipment, fuel, etc. commensurate with the amount of drying treatment, and to provide a total and efficient woody biomass raw material. To provide a method for drying a woody biomass raw material capable of drying a woody biomass raw material.
Another object of the present invention is to provide a woody biomass raw material drying facility that can use the above method.

すなわち、本発明は、大気から導入した導入空気を水の沸点以下に加温して得た温風を用いて、木質バイオマス原料を乾燥させる木質バイオマス原料の乾燥方法であって、
前記加温は、外気温より高い温度の予加熱用水との熱交換による前記導入空気の予加熱と、該予加熱を受けた予加熱空気の高温熱源との熱交換による本加熱とを有することを特徴とする、木質バイオマス原料の乾燥方法である。
That is, the present invention is a method for drying a woody biomass raw material by using hot air obtained by heating air introduced from the atmosphere to a temperature below the boiling point of water, wherein the woody biomass raw material is dried,
The heating includes preheating of the introduced air by heat exchange with preheating water having a temperature higher than the outside air temperature, and main heating by heat exchange of the preheated preheated air with a high-temperature heat source. A method for drying a woody biomass raw material, characterized by

また、本発明は、大気から導入した導入空気を水の沸点以下に加温して温風を得る導入空気加温装置と、前記温風を用いて木質バイオマス原料を乾燥させる乾燥装置本体とを有する木質バイオマス原料の乾燥設備であって、
前記導入空気加温装置が、前記導入空気と外気温より高い温度の予加熱用水との間で熱交換を行って前記導入空気を予加熱する第1の熱交換器と、予加熱された予加熱空気と高温熱源の熱を吸収した熱媒体との間で熱交換を行って本加熱する第2の熱交換器とを備えて温風を得ることを特徴とする、木質バイオマス原料の乾燥設備である。
Further, the present invention includes an introduced air heating device for heating the introduced air introduced from the atmosphere to a temperature below the boiling point of water to obtain warm air, and a drying device main body for drying the woody biomass raw material using the warm air. A drying facility for woody biomass raw materials having
The introduced air warming device includes a first heat exchanger for preheating the introduced air by exchanging heat between the introduced air and preheating water having a temperature higher than the outside air temperature; A drying facility for woody biomass raw materials, characterized by comprising a second heat exchanger for performing heat exchange between heated air and a heat medium that has absorbed heat from a high-temperature heat source for main heating to obtain warm air. is.

本発明では、大気から導入した導入空気を水の沸点以下に加温して得た温風を用いて木質バイオマス原料を乾燥させる際に、外気温より高い温度の予加熱用水で導入空気を予加熱した上で、得られた予加熱空気を予加熱用水より高い温度の高温熱源で熱交換して本加熱することで、温風を得るようにする。このように、木質バイオマス原料を乾燥させる温風を得るために、大気から導入した導入空気の加温を予加熱と本加熱とに分けて行うことで、導入空気を直接高温熱源で熱交換する場合に比べて、温風を得るためのエネルギーを低減することができる。特に、本発明のように、比較的低温の温風を利用する場合には、大気の温度が下がると、その影響を受けて、温風を得るために必要な温水等の熱媒体の流量やその熱量確保のための燃料を増やさなければならず、高温熱源を余計に使用することになり、また、年間を通じて気温の低い冬場を想定してこれらの高温熱源に係る設備を用意すれば、気温の高い夏場には過剰なスペックとなるところ、本発明のように、予加熱用水を利用して導入空気を予熱することで、季節要因での気温の変化による影響を排除することができることから、これらの変動費や固定費を削減することができる。 In the present invention, when drying a woody biomass raw material using warm air obtained by heating introduced air introduced from the atmosphere to a temperature below the boiling point of water, the introduced air is preheated with preheating water having a temperature higher than the outside air temperature. After heating, the obtained preheated air is heat-exchanged with a high-temperature heat source having a temperature higher than that of the preheating water, and main heating is performed to obtain warm air. In this way, in order to obtain warm air for drying the woody biomass raw material, the heating of the introduced air introduced from the atmosphere is divided into preheating and main heating, so that the introduced air is directly heat-exchanged with the high-temperature heat source. Energy for obtaining warm air can be reduced compared with the case. In particular, when relatively low-temperature warm air is used as in the present invention, when the temperature of the atmosphere drops, the flow rate of the heat medium such as hot water required to obtain the warm air is affected by the temperature drop. We have to increase the amount of fuel to secure that amount of heat, which means using extra high-temperature heat sources. In the summer when the temperature is high, the specifications are excessive, but by preheating the introduced air using preheating water as in the present invention, the influence of temperature changes due to seasonal factors can be eliminated. These variable costs and fixed costs can be reduced.

本発明において、好ましくは、大気から導入した導入空気の温度と予加熱用水の温度とを比較して、導入空気の温度が予加熱用水の温度より低い場合に、予加熱用水との熱交換により導入空気を予熱するようにするのがよい。例えば、地下水については、温度の変動が少なく比較的一定であるため、昼夜の気温差であったり、夏場と冬場の季節の差により、導入空気の温度が地下水の温度より低い場合に、地下水との熱交換で導入空気を予熱するのがよい。ここでの地下水には、温泉水も含む。このような地下水は昼夜の水温変動や年間を通した水温変動が小さい点で有利な予加熱用水の例として挙げたが、一般的な水道水でも外気温より高い水温である限り予加熱用水とすることができる。また、工場や発電所、ごみ焼却場等から排出される温排水(以下、工場温排水という。)などでも外気温より水温が高く比較的温度の変動が少ない点で地下水と共通であり、地下水や水道水のほかにも、これらを予加熱用水として利用することができる。なお、夏場等で大気の温度が地下水の温度よりも高いときなど、導入空気の温度が予加熱用水の温度と同じか又は予加熱用水の温度より高い場合には、予加熱をバイパスするなどして導入空気と予加熱用水との間の熱交換は行わないようにすればよい。 In the present invention, preferably, the temperature of the introduced air introduced from the atmosphere and the temperature of the preheating water are compared, and if the temperature of the introduced air is lower than the temperature of the preheating water, heat exchange with the preheating water It is advisable to preheat the incoming air. For example, groundwater has little temperature fluctuation and is relatively constant. It is preferable to preheat the introduced air by heat exchange of . Underground water here also includes hot spring water. This kind of groundwater was mentioned as an example of preheating water, which is advantageous in that it has little temperature fluctuation between day and night and water temperature throughout the year. can do. Thermal wastewater discharged from factories, power plants, waste incineration plants, etc. (hereinafter referred to as "thermal wastewater from factories") is similar to groundwater in that the water temperature is higher than the outside air temperature and the temperature fluctuations are relatively small. In addition to water and tap water, these can be used as preheating water. If the temperature of the introduced air is the same as or higher than the temperature of the preheating water, such as when the temperature of the air is higher than the temperature of the groundwater in the summer, preheating should be bypassed. Therefore, heat exchange between the introduced air and the preheating water should be avoided.

また、本発明において、木質バイオマス原料を乾燥させる温風の温度としては、一般に温風乾燥方式で採用される温度と同程度である水の沸点以下とすることができ、好ましくは60℃以上95℃以下である。また、このような温風を得るための本加熱について、上記温度の温風が得られる高温熱源との熱交換であればその手段は特に制限はなく、例えば、ボイラー等を用いて得られた温水や水蒸気等の熱を吸収した熱媒体との熱交換により、予熱した予加熱空気を加温すればよい。また、ボイラー等で燃料を燃焼させるかわりに、他の設備等で発生した廃熱を利用するようにしてもよい。 In the present invention, the temperature of the hot air for drying the woody biomass raw material can be set to the boiling point or lower of water, which is about the same as the temperature generally employed in the hot air drying method, preferably 60° C. or higher and 95° C. °C or less. In addition, regarding the main heating for obtaining such hot air, the means is not particularly limited as long as it is heat exchange with a high-temperature heat source that can obtain hot air at the above temperature. The preheated air may be heated by exchanging heat with a heat medium such as hot water or steam that absorbs heat. Also, instead of burning fuel in a boiler or the like, waste heat generated in other facilities may be used.

本発明における木質バイオマス原料の乾燥方法を利用するにあたり、使用する装置については特に制限されないが、好ましくは、大気から導入した導入空気を水の沸点以下に加温して温風を得る導入空気加温装置と、得られた温風を用いて木質バイオマス原料を乾燥させる乾燥装置本体とを有した乾燥設備であって、このうち、導入空気加温装置としては、大気から導入した導入空気と外気温より高い温度の予加熱用水との間で熱交換を行うことで導入空気を予加熱する第1の熱交換器と、予加熱された予加熱空気と予加熱用水より高い温度の高温熱源の熱を吸収した熱媒体との間で熱交換を行って本加熱する第2の熱交換器とを備えるようにするのがよい。 In utilizing the woody biomass raw material drying method of the present invention, the device to be used is not particularly limited. A drying facility having a heating device and a drying device body for drying the woody biomass raw material using the obtained warm air. A first heat exchanger that preheats the introduced air by exchanging heat with preheating water having a temperature higher than the air temperature, and a high-temperature heat source having a temperature higher than the preheated preheating air and the preheating water. It is preferable to provide a second heat exchanger that performs heat exchange with the heat medium that has absorbed the heat for main heating.

また、導入空気加温装置で得られた温風を用いて木質バイオマス原料を乾燥させる乾燥装置本体については特に制限はなく、例えば、キルン等の回転円筒体に装入された木質バイオマス原料を回転させながら、温風を吹き込むことで乾燥させる通気回転式の乾燥装置や、通気性を有する無端状の搬送ベルトを備えたコンベアの該搬送ベルトに木質バイオマス原料を積載して、木質バイオマス原料からなる原料層の厚み方向に対して直角に温風を上向き又は下向きに通気して乾燥させるバンド式乾燥装置、流動層内で木質バイオマス原料と温風とを激しく混合して乾燥させる流動層式乾燥装置等を挙げることができるが、なかでも好ましくは、バンド式乾燥装置であるのがよい。その場合、例えば、導入空気加温装置において、大気から導入した導入空気の流れに沿うようにして、第1の熱交換器と第2の熱交換器とをこの順に配して(順次配して)、かつ、第2の熱交換器で得られた温風が、バンド式乾燥装置の搬送ベルト上に積載された木質バイオマス原料からなる原料層の厚み方向に吹出されるようにするのがよい。このように、木質バイオマス原料からなる原料層の上方から又は下方からその厚み方向に温風を通気させることで、温風を原料層と並行に吹き付ける(コンベアの移動方向と並行に温風を吹き付ける)場合に比べて、乾燥時間を短くすることができる。また、これによって乾燥設備のサイズを小さくすることもできる。 There are no particular restrictions on the main body of the drying device that dries the woody biomass raw material using the warm air obtained by the introduced air warming device. The woody biomass raw material is loaded on the conveying belt of a conveyer equipped with a ventilation rotary drying device that dries by blowing warm air while drying, or an endless conveying belt having air permeability. A band-type dryer that dries by blowing hot air upward or downward at right angles to the thickness direction of the raw material bed, and a fluidized-bed dryer that dries by vigorously mixing the woody biomass raw material and warm air in the fluidized bed. Among them, a band-type drying apparatus is preferable. In that case, for example, in the introduced air heating device, the first heat exchanger and the second heat exchanger are arranged in this order along the flow of the introduced air introduced from the atmosphere. ), and the warm air obtained by the second heat exchanger is blown in the thickness direction of the raw material layer made of woody biomass raw material loaded on the conveyor belt of the band-type drying device. good. In this way, by blowing hot air from above or below the raw material layer made of woody biomass raw material in the thickness direction, the hot air is blown in parallel with the raw material layer (the warm air is blown in parallel with the moving direction of the conveyor). ), the drying time can be shortened. This also allows the size of the drying equipment to be reduced.

また、本発明における導入空気加温装置については、好ましくは、大気から導入した導入空気の温度を測定する温度計と、予加熱用水の温度を測定する水温計とを更に備えるようにするのがよい。更には、これらを利用して、導入空気の温度が予加熱用水の温度より低い場合に、第1の熱交換器に予加熱用水を供給して導入空気の予加熱を行い、得られた予加熱空気を第2の熱交換器に導くような予加熱制御機構を同時に備えるようにしてもよい。その際、これらの熱交換による予熱の効率を考慮して、予加熱用水の温度と導入空気の温度との差が所定の値を上回る場合に、第1の熱交換器に予加熱用水が供給されるようにして、導入空気を予熱するようにしてもよい。一方で、導入空気の温度が予加熱用水の温度と同じか又は予加熱用水の温度より高い場合、第1の熱交換器への予加熱用水の供給を遮断して、導入空気を予加熱せずに第2の熱交換器に導くようにしたり、或いは、導入空気を第1の熱交換器をバイパスさせて直接第2の熱交換器に導くようにしてもよい。 Further, the introduced air heating device of the present invention preferably further comprises a thermometer for measuring the temperature of the introduced air introduced from the atmosphere and a water temperature gauge for measuring the temperature of the preheating water. good. Furthermore, by utilizing these, when the temperature of the introduced air is lower than the temperature of the preheating water, the preheating water is supplied to the first heat exchanger to preheat the introduced air, and the obtained preheating A preheating control mechanism that directs the heated air to the second heat exchanger may be provided at the same time. At that time, considering the efficiency of preheating by these heat exchanges, preheating water is supplied to the first heat exchanger when the difference between the temperature of the preheating water and the temperature of the introduced air exceeds a predetermined value. It is also possible to preheat the introduced air. On the other hand, when the temperature of the introduced air is the same as or higher than the temperature of the preheating water, the supply of the preheating water to the first heat exchanger is cut off to preheat the introduced air. Alternatively, the introduced air may bypass the first heat exchanger and be led directly to the second heat exchanger.

本発明において、木質バイオマス原料を乾燥させる際の乾燥の程度については特に制限はなく、乾燥後の木質バイオマスをペレットにするなどの加工方法や、燃料として利用するなどの木質バイオマスの用途によっても変化するが、例えば、バイオマス混焼で使用する場合には、乾燥後の木質バイオマスの含水率が15~35%(wetベース)程度に乾燥処理されるのが一般的である。また、乾燥処理の対象である木質バイオマス原料の含水率についても一概に特定するのは難しく、木質バイオマス原料の種類や保管方法によっても異なるが、一般的には40~60%(wetベース)程度であると言える。 In the present invention, the degree of drying when drying the woody biomass raw material is not particularly limited. However, for example, when used for biomass co-firing, it is common to dry the woody biomass so that the moisture content of the dried woody biomass is about 15 to 35% (wet basis). In addition, it is difficult to specify the moisture content of the woody biomass raw material that is the target of the drying process. Although it varies depending on the type of woody biomass raw material and storage method, it is generally about 40 to 60% (wet basis). It can be said that

本発明によれば、気温の変化による影響を排除しながら温風を得ることができることから、乾燥させる木質バイオマス原料の処理量に見合った設備や燃料等を使用することができ、結果的に効率良く木質バイオマス原料の乾燥を行うことができるようになる。 According to the present invention, since it is possible to obtain warm air while eliminating the influence of temperature changes, it is possible to use equipment, fuel, etc. that are commensurate with the processing amount of the woody biomass raw material to be dried, resulting in high efficiency. It becomes possible to dry woody biomass raw materials well.

図1は、本発明の乾燥設備を示す模式説明図である。FIG. 1 is a schematic explanatory diagram showing the drying equipment of the present invention. 図2は、ある地域(大船渡市)における2017年の気温の年間推移のデータである。FIG. 2 shows the data of annual transition of temperature in a certain area (Ofunato City) in 2017. 図3は、従来の乾燥方法を用いて木質バイオマス原料の乾燥処理を行ったときの温水の循環水量を示すデータである。FIG. 3 is data showing the amount of circulating hot water when a woody biomass raw material is dried using a conventional drying method. 図4は、本発明の実施例に係る乾燥方法を用いたときの予熱後の空気の温度を示すデータである。FIG. 4 is data showing the temperature of air after preheating when using the drying method according to the embodiment of the present invention. 図5は、本発明における乾燥方法を用いて木質バイオマス原料の乾燥処理を行ったときの温水の循環水量を示すデータである。FIG. 5 is data showing the amount of circulating hot water when a woody biomass raw material is dried using the drying method of the present invention.

以下、添付した図面を参照しながら、本発明を具体化した実施の形態について説明する。なお、図1では、バンド式乾燥装置を乾燥装置本体に採用した場合について説明するが、これらは一例であって、本発明は以下の内容に制限されるものではない。
図1には、本発明の木質バイオマス原料の乾燥方法に用いられる乾燥設備Xの例が示されている。この乾燥設備Xは、大気から導入した導入空気を水の沸点以下に加温して温風を得る導入空気加温装置X1と、前記温風を用いて木質バイオマス原料を乾燥させる、バンド式の乾燥装置本体X2とを有しており、コンベア1で搬送される木質バイオマス原料2を温風8で乾燥させる。この例では、導入空気加温装置X1が、大気から導入した導入空気3と地下から汲み上げた地下水(予加熱用水)4との間で熱交換を行い、導入空気3を予加熱する第1の熱交換器5と、これにより予加熱された予加熱空気6と地下水4より温度の高い高温熱源の熱を吸収した熱媒体(この例では温水)7との間で熱交換を行い、予加熱空気6を本加熱して所定の温度の温風8を得る第2の熱交換器9とを備えている。
Embodiments embodying the present invention will be described below with reference to the attached drawings. In FIG. 1, a case where a band-type drying device is adopted as a drying device main body will be described, but this is an example and the present invention is not limited to the following contents.
FIG. 1 shows an example of a drying facility X used in the method for drying woody biomass raw materials of the present invention. This drying equipment X consists of an introduced air heating device X1 that heats the introduced air introduced from the atmosphere to a temperature below the boiling point of water to obtain warm air, and a band-type device that dries the woody biomass raw material using the warm air. It has a drying device main body X2 and dries the woody biomass raw material 2 conveyed by the conveyor 1 with warm air 8. - 特許庁In this example, the introduced air heating device X1 performs heat exchange between the introduced air 3 introduced from the atmosphere and the groundwater (preheating water) 4 pumped up from the underground, thereby preheating the introduced air 3. Heat exchange is performed between the heat exchanger 5 and the preheated air 6 preheated thereby and the heat medium (hot water in this example) 7 that has absorbed the heat of the high-temperature heat source whose temperature is higher than that of the ground water 4, thereby preheating. and a second heat exchanger 9 for pre-heating the air 6 to obtain warm air 8 having a predetermined temperature.

この乾燥設備Xにおけるバンド式の乾燥装置本体X2は、コンベア1が収容されて木質バイオマス原料2の乾燥処理が行われるコンベア室10を備えており、また、導入空気加温装置X1は、第1の熱交換器5及び第2の熱交換器9が収容される熱交換器室11を備えて2階建て構造を有しており、1階のコンベア室10と2階の熱交換器室11との間はグレーチングのような通気性を有する金属製の床材12で仕切られている。そして、1階のコンベア室10には、コンベア1の下方側床面に複数の吸引口13を有した排気ダクト14が備え付けられており、室外ではこの排気ダクト14に排気ブロワー15が接続されている。一方で、2階の熱交換器室11の側壁の上方(天井側)には図示外の外気取り入れ口が複数設けられており、先の排気ブロワー15を稼働させることで、2階の熱交換器室11の側壁から大気が導入され、熱交換器室11の室内に取り入れられた導入空気3は、通気性を有する床材12を抜けて1階のコンベア室10に供給され、最後に排気ダクト14を通じて室外に排気される。 The band-type drying device main body X2 in the drying equipment X includes a conveyor chamber 10 in which a conveyor 1 is accommodated and the woody biomass raw material 2 is dried. It has a two-story structure with a heat exchanger room 11 in which the heat exchanger 5 and the second heat exchanger 9 are accommodated. are partitioned by a metal floor material 12 having air permeability such as grating. In the conveyor room 10 on the first floor, an exhaust duct 14 having a plurality of suction ports 13 is provided on the floor surface on the lower side of the conveyor 1, and an exhaust blower 15 is connected to the exhaust duct 14 outside the room. there is On the other hand, a plurality of outside air intakes (not shown) are provided above the side wall (ceiling side) of the heat exchanger room 11 on the second floor. Air is introduced from the side wall of the chamber 11, and the introduced air 3 taken into the heat exchanger room 11 passes through the air-permeable floor material 12, is supplied to the conveyor room 10 on the first floor, and is finally exhausted. The air is exhausted to the outside through the duct 14 .

その間に、2階の熱交換器室11では、この導入空気3の流れに沿って第1の熱交換器5及び第2の熱交換器9が順次配されていることから、1階のコンベア室10には温風8が供給される。しかも、コンベア1の下方の床面に排気ダクト14に通じる吸引口13が備え付けられていることから、温風8は、コンベア1上の木質バイオマス原料2からなる原料層2aの上方から吹き付けられ、原料層2aの下方に抜ける。つまり、コンベア1は、通気性を有する無端状の搬送ベルトがベルトローラーに取り付けられたものであり、この搬送ベルトに積載された木質バイオマス原料2は、コンベア1が稼働して所定の速度で搬送される間に、原料層2aの厚み方向に温風8が通気して乾燥される。なお、1階のコンベア室10には、図示外の原料投入口が設けられて、水分を含んだ木質バイオマス原料2がコンベア1に供給される。また、原料投入口とは反対のコンベア1の下流側では、乾燥して水分が除去された乾燥処理後の木質バイオマス16が回収される。 Meanwhile, in the heat exchanger room 11 on the second floor, the first heat exchanger 5 and the second heat exchanger 9 are sequentially arranged along the flow of the introduced air 3. Hot air 8 is supplied to the chamber 10 . Moreover, since the suction port 13 leading to the exhaust duct 14 is provided on the floor surface below the conveyor 1, the hot air 8 is blown from above the raw material layer 2a composed of the woody biomass raw material 2 on the conveyor 1, It exits below the raw material layer 2a. That is, the conveyor 1 has an endless permeable conveying belt attached to belt rollers. During this time, hot air 8 is blown in the thickness direction of the raw material layer 2a to dry it. A raw material input port (not shown) is provided in the conveyor room 10 on the first floor, and the woody biomass raw material 2 containing moisture is supplied to the conveyor 1 . Further, on the downstream side of the conveyor 1 opposite to the raw material inlet, the dried woody biomass 16 from which moisture has been removed is recovered.

第1の熱交換器5に対しては、ポンプ17により地下から汲み上げられた地下水4が供給され、大気から導入された導入空気3との間での熱交換後は排水として処理される。また、第2の熱交換器9に対しては、高温熱源であるボイラー18によって得られた温水7が供給される。この温水7はボイラー18と第2の熱交換器9との間を循環し、予加熱された予加熱空気6との熱交換後は、再度ボイラー18にて熱を吸収させて使用する。 The first heat exchanger 5 is supplied with groundwater 4 pumped up from underground by a pump 17, and treated as waste water after heat exchange with the introduced air 3 introduced from the atmosphere. Hot water 7 obtained by a boiler 18 as a high-temperature heat source is supplied to the second heat exchanger 9 . The hot water 7 circulates between the boiler 18 and the second heat exchanger 9, and after heat exchange with the preheated preheated air 6, the heat is absorbed again by the boiler 18 and used.

また、この乾燥設備Xでは、2階の熱交換器室11において大気から導入した導入空気3の温度を測定する温度計19と、ポンプ17により地下から汲み上げた地下水4の温度を測定する水温計20とを備えている。そのため、これらを利用した予加熱制御機構により、温風8を得るための効率を考えて、導入空気3の温度T1が地下水4の温度T2より低い場合(T2>T1)であったり、或いは、地下水4の温度T2と導入空気3の温度T1との差が設定温度Xを上回る場合(T2-T1>X)に、第1の熱交換器5に接続される配管に設けられた遮断弁21を開けて、第1の熱交換器5に地下水4を供給するようにしてもよい。つまり、導入空気3の温度T1が地下水4の温度T2以上(T1≧T2)であったり、或いは、地下水4の温度T2と空気3の温度T1との差が設定温度X以下の場合(X≧T2-T1)には、遮断弁21を閉じて第1の熱交換器5には地下水4を供給せずに、排水側に戻すようにしてバイパスしてもよい。 The drying equipment X also includes a thermometer 19 for measuring the temperature of the air 3 introduced from the atmosphere in the heat exchanger room 11 on the second floor, and a water temperature gauge for measuring the temperature of the groundwater 4 pumped from the underground by the pump 17. 20. Therefore, considering the efficiency for obtaining warm air 8 by the preheating control mechanism using these, the temperature T1 of the introduced air 3 is lower than the temperature T2 of the groundwater 4 (T2>T1), or When the difference between the temperature T2 of the groundwater 4 and the temperature T1 of the introduced air 3 exceeds the set temperature X (T2-T1>X), the shutoff valve 21 provided in the pipe connected to the first heat exchanger 5 may be opened to supply groundwater 4 to the first heat exchanger 5 . That is, when the temperature T1 of the introduced air 3 is equal to or higher than the temperature T2 of the groundwater 4 (T1≧T2), or the difference between the temperature T2 of the groundwater 4 and the temperature T1 of the air 3 is equal to or lower than the set temperature X (X≧ During T2-T1), the shut-off valve 21 may be closed so that the groundwater 4 may not be supplied to the first heat exchanger 5 and may be bypassed by returning to the drain side.

図2には、2017年の大船渡市の気温の年間推移のデータが示されており、30℃を超える夏場から零下5℃以下になる冬場まで、季節によって気温が大きく変動していることが分かる。
ここで、水分50%の木質バイオマス原料7.5ton-wet/hrを水分25%まで乾燥させる場合を想定して、図1に示した乾燥装置Xにおいて第1の熱交換器5を用いずに、図2の気温データを大気から導入した空気3の温度として、この空気3を第2の熱交換器9で熱交換して温風8を得ながら、上記木質バイオマス原料の乾燥処理を行ったときの温水7の循環水量を計算により求めた結果を図3に示す。このとき、第2の熱交換器9に供給される温水7の入り口側の温度は80℃とし、出口側での温水7の温度は60℃として、72℃の温風8が得られるとした。
Figure 2 shows data on the yearly changes in temperature in Ofunato City in 2017. It can be seen that the temperature fluctuates greatly depending on the season, from over 30°C in the summer to -5°C or less in the winter. .
Here, assuming a case where 7.5 ton-wet/hr of woody biomass raw material with a moisture content of 50% is dried to a moisture content of 25%, the drying apparatus X shown in FIG. Using the temperature data of FIG. 2 as the temperature of the air 3 introduced from the atmosphere, the woody biomass raw material was dried while heat-exchanging the air 3 with the second heat exchanger 9 to obtain warm air 8. FIG. 3 shows the result of calculation of the circulating water volume of the hot water 7 at that time. At this time, the temperature of the hot water 7 supplied to the second heat exchanger 9 was set to 80°C on the inlet side, and the temperature of the hot water 7 on the outlet side was set to 60°C, so that the warm air 8 of 72°C was obtained. .

上述したように、本発明の比較例に該当する図3の結果より、第2の熱交換器9に供給される温水7の循環水量は冬場に150ton/hr程度になり、最も多いときでは160ton/hrに達する。また、このときのボイラー18での燃焼に必要な燃料は冬場に最大で約2.7ton-wet/hrになる。一方で、温水7の夏場の循環水量は80~90ton/hr程度であり、ボイラー18の燃料も1.3~1.5ton-wet/hr程度でおさまる。つまり、大気から導入した導入空気3から温風8を得る場合、熱交換器に供給される温水7の循環水量は、季節によって80~160ton/hrと必要量が大きく変わってくる。 As described above, according to the results of FIG. 3, which corresponds to the comparative example of the present invention, the amount of circulating hot water 7 supplied to the second heat exchanger 9 is about 150 tons/hr in winter, and 160 tons/hr at the maximum. /hr. In addition, the maximum amount of fuel required for combustion in the boiler 18 at this time is about 2.7 ton-wet/hr in winter. On the other hand, the amount of circulating hot water 7 in summer is about 80 to 90 ton/hr, and the fuel for the boiler 18 is about 1.3 to 1.5 ton-wet/hr. That is, when hot air 8 is obtained from air 3 introduced from the atmosphere, the amount of circulating hot water 7 supplied to the heat exchanger varies greatly from 80 to 160 tons/hr depending on the season.

これに対して、図1に示した乾燥設備Xを用いて、本発明に係る方法で上記の木質バイオマス原料の乾燥処理を行った結果は次のとおりである。ここでは、地下から汲み上げた地下水4の温度は、図2で示した2017年の大船渡市の平均気温である11.6℃と同じであるとみなして計算している。また、第1の熱交換器5において、大気から導入した導入空気3と地下水4との間の熱交換は理想的な状態であると仮定して(熱交換性能と地下水の水量はともに無限大であると仮定して)、予熱後の予加熱空気6は地下水4の水温に一致する(11.6℃まで予熱される)としている。但し、導入空気3と地下水4との間での熱交換は、導入空気3の温度T1が地下水4の温度T2より低い場合に行い、導入空気3の温度T1が地下水4の温度T2以上のときには熱交換は行わないとした。その他については先の比較例の場合と同様であり、また、比較例と同じ前提で計算している。 On the other hand, using the drying equipment X shown in FIG. 1, the above woody biomass raw material was dried by the method according to the present invention, and the results are as follows. Here, the temperature of the groundwater 4 pumped up from the ground is assumed to be the same as the average temperature of Ofunato City in 2017, 11.6° C., as shown in FIG. Also, in the first heat exchanger 5, it is assumed that the heat exchange between the air 3 introduced from the atmosphere and the groundwater 4 is in an ideal state (both the heat exchange performance and the amount of groundwater are infinite). ), the preheated air 6 after preheating matches the water temperature of the groundwater 4 (preheated to 11.6° C.). However, the heat exchange between the introduced air 3 and the groundwater 4 is performed when the temperature T1 of the introduced air 3 is lower than the temperature T2 of the groundwater 4, and when the temperature T1 of the introduced air 3 is equal to or higher than the temperature T2 of the groundwater 4. No heat exchange was performed. Others are the same as in the previous comparative example, and calculations are made on the same assumptions as in the comparative example.

図4には、第1の熱交換器5で熱交換された予熱後の予加熱空気6の温度が示されている。また、図5には、本発明の実施例に相当する結果であって、先の比較例において述べた木質バイオマス原料の乾燥処理を行ったときの温水7の循環水量の計算結果が示されている。図5から分かるように、第2の熱交換器9に供給される温水7の循環水量は、比較例の場合(図3)に比べて季節変動が抑えられている。すなわち、冬場の循環水量が120ton/hr程度になっており、最大でも約125ton/hrまで下げることができている。また、ボイラー18での燃焼に必要な燃料は、冬場で最大約2.0ton-wet/hrに抑えることができる。 FIG. 4 shows the temperature of the preheated air 6 after being heat-exchanged in the first heat exchanger 5 . FIG. 5 shows results corresponding to the examples of the present invention, which are calculation results of the circulating water volume of the hot water 7 when the woody biomass raw material was dried as described in the comparative example. there is As can be seen from FIG. 5, seasonal variations in the amount of circulating hot water 7 supplied to the second heat exchanger 9 are suppressed compared to the case of the comparative example (FIG. 3). That is, the amount of circulating water in winter is about 120 tons/hr, and it can be lowered to about 125 tons/hr at maximum. Also, the fuel required for combustion in the boiler 18 can be suppressed to a maximum of about 2.0 ton-wet/hr in winter.

つまり、本発明によれば、木質バイオマス原料を乾燥させる温風を得る際に、本加熱に使用する熱媒体の流量やその熱量確保に必要な燃料を減らすことができ、また、大気の温度変化の影響を抑えることができることから、乾燥設備を処理量に見合ったものに小型化することができるようになる。 That is, according to the present invention, when hot air for drying the woody biomass raw material is obtained, the flow rate of the heat medium used for the main heating and the fuel required to secure the heat amount can be reduced. Since it is possible to suppress the influence of , the size of the drying equipment can be reduced to match the throughput.

X:乾燥設備、X1:導入空気加温装置、X2:乾燥装置本体、1:コンベア、2:木質バイオマス原料、2a:原料層、3:導入空気、4:地下水、5:第1の熱交換器、6:予加熱空気、7:温水、8:温風、9:第2の熱交換器、10:コンベア室、11:熱交換器室、12:床材、13:吸引口、14:排気ダクト、15:排気ブロワー、16:(乾燥処理後の)木質バイオマス、17:ポンプ、18:ボイラー、19:温度計、20:水温計、21:遮断弁。
X: Drying equipment, X1: Introduced air heating device, X2: Drying device main body, 1: Conveyor, 2: Woody biomass raw material, 2a: Raw material layer, 3: Introduced air, 4: Underground water, 5: First heat exchange device, 6: preheated air, 7: hot water, 8: hot air, 9: second heat exchanger, 10: conveyor chamber, 11: heat exchanger chamber, 12: floor material, 13: suction port, 14: Exhaust duct, 15: Exhaust blower, 16: Woody biomass (after drying), 17: Pump, 18: Boiler, 19: Thermometer, 20: Water temperature gauge, 21: Shutoff valve.

Claims (2)

大気から導入した導入空気を水の沸点以下に加温して温風を得る導入空気加温装置と、前記温風を用いて木質バイオマス原料を乾燥させる乾燥装置本体とを有する木質バイオマス原料の乾燥設備であって、
前記導入空気加温装置が、前記導入空気と外気温より高い温度の予加熱用水との間で熱交換を行って前記導入空気を予加熱する第1の熱交換器と、予加熱された予加熱空気と高温熱源の熱を吸収した熱媒体との間で熱交換を行って本加熱する第2の熱交換器と、前記導入空気の温度を測定する温度計と、前記予加熱用水の温度を測定する水温計とを備えると共に、
前記導入空気の温度が前記予加熱用水の温度より低い場合に、前記第1の熱交換器に前記予加熱用水を供給して前記導入空気を予加熱し、得られた予加熱空気を前記第2の熱交換器に導くようにし、また、前記導入空気の温度が前記予加熱用水の温度と同じか又は高い場合には、前記第1の熱交換器への前記予加熱用水の供給を遮断して、前記導入空気を予加熱せずに前記第1の熱交換器を通過させて前記第2の熱交換器に導くか、或いは前記導入空気を前記第1の熱交換器をバイパスさせて直接前記第2の熱交換器に導く予加熱制御機構とを備えて温風を得ることを特徴とする、木質バイオマス原料の乾燥設備。
Drying of woody biomass raw materials, comprising an introduced air heating device for heating air introduced from the atmosphere to a temperature below the boiling point of water to obtain warm air, and a drying device main body for drying the woody biomass raw materials using the warm air. equipment,
The introduced air warming device includes a first heat exchanger for preheating the introduced air by exchanging heat between the introduced air and preheating water having a temperature higher than the outside air temperature; A second heat exchanger for main heating by exchanging heat between heated air and a heat medium that has absorbed heat from a high-temperature heat source, a thermometer for measuring the temperature of the introduced air, and the temperature of the preheating water. and a water temperature gauge that measures
When the temperature of the introduced air is lower than the temperature of the preheating water, the preheating water is supplied to the first heat exchanger to preheat the introduced air, and the obtained preheated air is transferred to the first heat exchanger. 2, and when the temperature of the introduced air is the same as or higher than the temperature of the preheating water, cut off the supply of the preheating water to the first heat exchanger. Then, the introduced air is passed through the first heat exchanger and guided to the second heat exchanger without being preheated, or the introduced air is bypassed the first heat exchanger. A drying facility for woody biomass raw materials, characterized by comprising a preheating control mechanism that directly leads to the second heat exchanger to obtain warm air.
前記乾燥装置本体が、通気性を有する無端状の搬送ベルトを備えたコンベアを有するバンド式乾燥装置であって、前記搬送ベルト上に積載された木質バイオマス原料からなる原料層の厚み方向に対して、前記導入空気加温装置で得られた温風を通気させて乾燥することを特徴とする、請求項に記載の木質バイオマス原料の乾燥設備。 The drying apparatus main body is a band-type drying apparatus having a conveyor provided with an endless air-permeable conveying belt, and the thickness direction of the raw material layer made of the woody biomass raw material loaded on the conveying belt 2. Drying equipment for woody biomass material according to claim 1 , characterized in that the warm air obtained by said introduced air heating device is passed through for drying.
JP2018205302A 2018-10-31 2018-10-31 Drying equipment for woody biomass raw materials Active JP7205165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205302A JP7205165B2 (en) 2018-10-31 2018-10-31 Drying equipment for woody biomass raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205302A JP7205165B2 (en) 2018-10-31 2018-10-31 Drying equipment for woody biomass raw materials

Publications (2)

Publication Number Publication Date
JP2020070970A JP2020070970A (en) 2020-05-07
JP7205165B2 true JP7205165B2 (en) 2023-01-17

Family

ID=70547772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205302A Active JP7205165B2 (en) 2018-10-31 2018-10-31 Drying equipment for woody biomass raw materials

Country Status (1)

Country Link
JP (1) JP7205165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477120B1 (en) * 2021-08-26 2022-12-14 한국지역난방공사 Microalgal biomass drying device using waste heat generated from urban power plants
CN116447856B (en) * 2023-06-09 2024-05-07 盛胜电子科技(广州)有限公司 Container type coal low-temperature dryer and drying method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170456A (en) 2004-12-10 2006-06-29 Takenaka Komuten Co Ltd Natural heat utilizing system
JP2013108724A (en) 2011-11-24 2013-06-06 Sanshu Sangyo Co Ltd Wood dryer and drying control method therefor
JP2016080217A (en) 2014-10-14 2016-05-16 新日鉄住金エンジニアリング株式会社 Woody fuel dryer and woody fuel drying method using the same
JP2017145335A (en) 2016-02-18 2017-08-24 三菱重工環境・化学エンジニアリング株式会社 Biomass Fuel Production Plant
WO2018091049A1 (en) 2016-11-18 2018-05-24 Gea Process Engineering A/S Drying system with improved energy efficiency and capacity control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356756A (en) * 1976-11-01 1978-05-23 Kiichi Taga Apparatus for concentrating or drying water containing substance
JPH0791835A (en) * 1993-09-20 1995-04-07 Dainippon Printing Co Ltd Dryer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170456A (en) 2004-12-10 2006-06-29 Takenaka Komuten Co Ltd Natural heat utilizing system
JP2013108724A (en) 2011-11-24 2013-06-06 Sanshu Sangyo Co Ltd Wood dryer and drying control method therefor
JP2016080217A (en) 2014-10-14 2016-05-16 新日鉄住金エンジニアリング株式会社 Woody fuel dryer and woody fuel drying method using the same
JP2017145335A (en) 2016-02-18 2017-08-24 三菱重工環境・化学エンジニアリング株式会社 Biomass Fuel Production Plant
WO2018091049A1 (en) 2016-11-18 2018-05-24 Gea Process Engineering A/S Drying system with improved energy efficiency and capacity control

Also Published As

Publication number Publication date
JP2020070970A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
DK2519797T3 (en) Process and plant for drying sludge-like materials, especially sludge from wastewater treatment plants, with thermal energy production
CN106382790B (en) A kind of brown coal drying method and drying equipment using power-plant flue gas and steam waste heat
CN102353237A (en) High-moisture-content lignite predrying method and system integrated with thermal power plant
JP7205165B2 (en) Drying equipment for woody biomass raw materials
US11187458B2 (en) Slurry drying plant, a method for drying slurry and use of a slurry drying plant
CN110440530B (en) Industrial waste heat composite solar greenhouse drying system and method
CN107782125B (en) Self-adaptive and self-adjusting heat pump hot blast stove system
CN104501547A (en) Radiator and furnace gas hybrid application drying kiln system
Zatsarinnaya et al. Analysis of thermodynamic efficiency of the fuel preparation systems with an intermediate hopper at thermal power plants
JP6101889B2 (en) Continuous hot water production system using wood biomass as fuel
FI100550B (en) Method and apparatus for burning a vegetable chip-like fuel
US6138381A (en) Treatment of moist fuel
CN205170640U (en) Utilize solar energy self -heating series connection heat pipe heat exchange efficient drying mud system
FI123073B (en) Arrangement and method for drying fuel material in a boiler system
CN103983088A (en) System and method for predrying lignite and recycling water by using waste heat of power station
CN107429970B (en) Drying device with a drying zone
FI122692B (en) DRYING DEVICE
CN108626714A (en) A kind of generating power with biomass combustion system and its boiler exhaust gas processing unit
Sokhansanj et al. Evaluating industrial drying of cellulosic feedstock for bioenergy: a systems approach
CN104501570A (en) Dry kiln device
EP2392879B1 (en) Process and dryer for drying bulk material
CN204854290U (en) Dry kiln device
CN211976924U (en) System for utilize fused salt heat carrier to improve hot-blast temperature
CN103672944A (en) Booster air heater for high moisture fuels
CN103121786A (en) Integrated condensation dehydration and waste heat utilization sludge treatment device and technological process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151