JP7197353B2 - Diagnostic device and exhaust purification device for internal combustion engine - Google Patents

Diagnostic device and exhaust purification device for internal combustion engine Download PDF

Info

Publication number
JP7197353B2
JP7197353B2 JP2018247017A JP2018247017A JP7197353B2 JP 7197353 B2 JP7197353 B2 JP 7197353B2 JP 2018247017 A JP2018247017 A JP 2018247017A JP 2018247017 A JP2018247017 A JP 2018247017A JP 7197353 B2 JP7197353 B2 JP 7197353B2
Authority
JP
Japan
Prior art keywords
concentration
selective reduction
downstream
value
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018247017A
Other languages
Japanese (ja)
Other versions
JP2020106002A (en
Inventor
隆裕 田辺
寿子 岡崎
康彰 赤羽
尚裕 久柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2018247017A priority Critical patent/JP7197353B2/en
Publication of JP2020106002A publication Critical patent/JP2020106002A/en
Application granted granted Critical
Publication of JP7197353B2 publication Critical patent/JP7197353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、診断装置及び内燃機関の排気浄化装置に関する。 The present invention relates to a diagnostic device and an exhaust purification device for an internal combustion engine.

ディーゼルエンジン等の内燃機関の排気中に含まれる窒素酸化物(NOX)を還元して排気を浄化する部材として、NOX吸蔵触媒及びNOX選択還元触媒が知られている。NOX吸蔵触媒は、内燃機関で燃焼される混合気が理論空燃比(ストイキ)に対して燃料希薄(リーン)状態のときに排気中のNOXを吸蔵し、混合気がストイキ状態又は燃料過濃(リッチ)状態のときにNOXを放出して、排気中の未燃炭化水素(HC:Hydrocarbon)と反応させることにより、NOXを窒素(N2)に還元する。NOX選択還元触媒は、NOXの還元成分としてのアンモニア(NH3)を吸着する機能を有し、流入する排気中のNOXをNH3と反応させることにより、NOXをN2に還元する。 NO X storage catalysts and NO X selective reduction catalysts are known as members for reducing nitrogen oxides (NO X ) contained in the exhaust gas of internal combustion engines such as diesel engines to purify the exhaust gas. The NOx storage catalyst stores NOx in the exhaust gas when the air-fuel mixture burned in the internal combustion engine is in a fuel-lean state with respect to the stoichiometric air-fuel ratio (stoichiometric). When in a rich state, NOx is released and reacted with unburned hydrocarbons (HC: Hydrocarbon) in the exhaust, thereby reducing NOx to nitrogen ( N2 ). The NO X selective reduction catalyst has a function of adsorbing ammonia (NH 3 ) as a reducing component of NO X , and reduces NO X to N 2 by reacting NO X in the inflowing exhaust gas with NH 3 . do.

例えば、特許文献1には、内燃機関の排気を浄化する排気浄化装置の一態様として、NOX吸蔵触媒及びNOX選択還元触媒をともに備えた排気浄化装置が開示されている。具体的に、特許文献1に開示された排気浄化装置では、NOX吸蔵触媒とNOX選択還元触媒とがこの順に排気通路の上流側から順に配置されている。かかる排気浄化装置においては、NOX吸蔵触媒でのNOXとHCとの反応によりNH3が生成される場合に、NOX選択還元触媒が当該NH3を吸着する。そして、NOX吸蔵触媒からNOXが流出する場合に、NOX選択還元触媒はNH3を用いてNOXを還元する。 For example, Patent Literature 1 discloses an exhaust purification device provided with both an NO X storage catalyst and a NO X selective reduction catalyst as one aspect of an exhaust purification device for purifying exhaust gas from an internal combustion engine. Specifically, in the exhaust purification device disclosed in Patent Document 1, the NO X storage catalyst and the NO X selective reduction catalyst are arranged in this order from the upstream side of the exhaust passage. In such an exhaust purification device, when NH 3 is produced by the reaction between NO X and HC in the NO X storage catalyst, the NO X selective reduction catalyst adsorbs the NH 3 . Then, when NO X flows out from the NO X storage catalyst, the NO X selective reduction catalyst reduces NO X using NH 3 .

特表2006-522257号公報Japanese Patent Publication No. 2006-522257

ここで、特許文献1に開示された排気浄化装置では、NOX選択還元触媒の劣化が進んだ場合やNOX選択還元触媒が欠落(未装着)している場合、大気中へのNOXやNH3の放出量が増大するおそれがある。このため、NOX選択還元触媒の欠落又は劣化を検出可能な診断機能があれば有意義である。 Here, in the exhaust purification device disclosed in Patent Document 1, when the deterioration of the NO X selective reduction catalyst progresses or when the NO X selective reduction catalyst is missing (not installed), NO X and NH 3 emissions may increase. Therefore, it would be significant if there was a diagnostic function capable of detecting the lack or deterioration of the NOx selective reduction catalyst.

例えば、NOX選択還元触媒が熱容量を持つことを利用して、NOX選択還元触媒よりも下流側に温度センサを設け、NOX選択還元触媒の熱容量を考慮して作成した温度モデルと温度センサによる検出温度とを比較することにより、NOX選択還元触媒の欠落を判定することが考えられる。 For example, using the fact that the NO X selective reduction catalyst has a heat capacity, a temperature sensor is provided downstream of the NO X selective reduction catalyst, and a temperature model and temperature sensor are created taking into consideration the heat capacity of the NO X selective reduction catalyst. It is conceivable to determine the lack of the NO X selective reduction catalyst by comparing the temperature detected by .

しかしながら、温度モデルと検出温度とを比較する方法の場合、診断結果の精度を高めるには、排気の温度変化が比較的少ない運転状態で診断を実行する必要があり、診断を実行可能な運転状態が限定的となる。また、NOX選択還元触媒が劣化しても熱容量の変化は少ないことから、温度モデルと検出温度とを比較する方法の場合、NOX選択還元触媒の欠落を検出することができる一方、NOX選択還元触媒の劣化を検出することは困難である。 However, in the case of the method of comparing the temperature model and the detected temperature, in order to improve the accuracy of the diagnosis result, it is necessary to execute the diagnosis in an operating state in which the temperature change of the exhaust gas is relatively small. is limited. In addition, even if the NO X selective reduction catalyst deteriorates, the change in heat capacity is small . It is difficult to detect deterioration of the selective reduction catalyst.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒の欠落や劣化等の異常の検出精度を向上可能な診断装置及び内燃機関の排気浄化装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to solve problems such as missing or deterioration of the NO X selective reduction catalyst provided in the exhaust passage on the downstream side of the NO X storage catalyst. An object of the present invention is to provide a diagnosis device and an exhaust emission control device for an internal combustion engine that can improve the detection accuracy of abnormality.

上記課題を解決するために、本発明のある観点によれば、内燃機関の排気通路に上流側から順にNO吸蔵触媒とNO選択還元触媒とを備えた排気浄化装置におけるNO選択還元触媒の異常を診断する診断装置において、NO選択還元触媒よりも下流側の排気通路内のNO濃度の推定値である下流側NO濃度推定値を算出する下流側NO濃度推定部と、NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサのセンサ値を取得するセンサ値検出部と、NO 吸蔵触媒よりも下流側、かつ、NO 選択還元触媒よりも上流側の排気通路内のアンモニア濃度の推定値である上流側アンモニア濃度推定値を求める上流側アンモニア濃度推定部と、上流側アンモニア濃度推定値、下流側NO濃度推定値及びセンサ値に基づいてNO選択還元触媒の欠落又は劣化を判定する判定部と、を備える、診断装置が提供される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a NO X selective reduction catalyst in an exhaust gas purification system having an NO X storage catalyst and a NO X selective reduction catalyst in order from the upstream side in an exhaust passage of an internal combustion engine. a downstream NO X concentration estimation unit that calculates a downstream NO X concentration estimated value that is an estimated value of the NO X concentration in the exhaust passage downstream of the NO X selective reduction catalyst; a sensor value detection unit that acquires a sensor value of an NO X concentration sensor provided in an exhaust passage downstream of the NO X selective reduction catalyst ; an upstream ammonia concentration estimator that obtains an estimated upstream ammonia concentration that is an estimated value of the ammonia concentration in the upstream exhaust passage ; and a determination unit that determines lack or deterioration of the NO X selective reduction catalyst.

また、上記課題を解決するために、本発明の別の観点によれば、内燃機関の排気通路に備えられたNO吸蔵触媒と、NO吸蔵触媒よりも下流側の排気通路に備えられたNO選択還元触媒と、NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサと、NO選択還元触媒の異常を診断する診断装置と、を備えた内燃機関の排気浄化装置において、診断装置は、NO選択還元触媒よりも下流側の排気通路内のNO濃度の推定値である下流側NO濃度推定値を算出する下流側NO濃度推定部と、NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサのセンサ値を取得するセンサ値検出部と、NO 吸蔵触媒よりも下流側、かつ、NO 選択還元触媒よりも上流側の排気通路内のアンモニア濃度の推定値である上流側アンモニア濃度推定値を求める上流側アンモニア濃度推定部と、上流側アンモニア濃度推定値、下流側NO濃度推定値及びセンサ値に基づいてNO選択還元触媒の欠落又は劣化を判定する判定部と、を備える、内燃機関の排気浄化装置が提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, an NO X storage catalyst provided in an exhaust passage of an internal combustion engine and an NO X storage catalyst provided in an exhaust passage downstream of the NO X storage catalyst An exhaust of an internal combustion engine provided with a NO X selective reduction catalyst, a NO X concentration sensor provided in an exhaust passage downstream of the NO X selective reduction catalyst, and a diagnostic device for diagnosing abnormality of the NO X selective reduction catalyst. In the purification device, the diagnosis device includes a downstream NO X concentration estimation unit that calculates a downstream NO X concentration estimated value, which is an estimated value of the NO X concentration in the exhaust passage downstream of the NO X selective reduction catalyst; a sensor value detection unit that acquires a sensor value of an NO X concentration sensor provided in an exhaust passage downstream of the X selective reduction catalyst ; an upstream ammonia concentration estimating unit that obtains an estimated upstream ammonia concentration value that is an estimated value of the ammonia concentration in the exhaust passage on the upstream side ; and a determination unit that determines lack or deterioration of the X selective reduction catalyst.

以上説明したように本発明によれば、NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒の欠落や劣化等の異常の検出精度を向上させることができる。 As described above, according to the present invention, it is possible to improve the accuracy of detecting an abnormality such as missing or deterioration of the NO X selective reduction catalyst provided in the exhaust passage downstream of the NO X storage catalyst.

本実施形態に係る排気浄化装置の構成例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the structural example of the exhaust gas purification apparatus which concerns on this embodiment. 診断装置(制御装置)の構成例を示すブロック図である。It is a block diagram which shows the structural example of a diagnostic apparatus (control apparatus). 下流側NOX濃度検出値の積算値の変化を示す説明図である。FIG. 4 is an explanatory diagram showing changes in the integrated value of the downstream side NO X concentration detection value; 診断装置(制御装置)の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a diagnostic apparatus (control apparatus).

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

<1.内燃機関の排気浄化装置の全体構成>
本実施形態に係る内燃機関の排気浄化装置の構成例について説明する。図1は、排気浄化装置10の構成例を示す模式図である。
<1. Overall Configuration of Exhaust Purification Device for Internal Combustion Engine>
A configuration example of an exhaust emission control system for an internal combustion engine according to this embodiment will be described. FIG. 1 is a schematic diagram showing a configuration example of an exhaust purification device 10. As shown in FIG.

排気浄化装置10は、ディーゼルエンジン等に代表される内燃機関5の排気系に備えられる。本実施形態において、内燃機関5がディーゼルエンジンである例を説明する。内燃機関5は、各気筒に供給される燃料を噴射する燃料噴射システムを備える。燃料噴射システムは、例えば高圧の燃料を保持するコモンレールと、コモンレールに接続された複数の燃料噴射弁とを含むコモンレールシステムであってよい。ただし、内燃機関5は上記の構成例に限定されない。 The exhaust purification device 10 is provided in an exhaust system of an internal combustion engine 5 typified by a diesel engine or the like. In this embodiment, an example in which the internal combustion engine 5 is a diesel engine will be described. The internal combustion engine 5 includes a fuel injection system that injects fuel supplied to each cylinder. The fuel injection system may be, for example, a common rail system including a common rail holding high pressure fuel and a plurality of fuel injectors connected to the common rail. However, the internal combustion engine 5 is not limited to the above configuration example.

内燃機関5の運転状態は、制御装置100により制御される。内燃機関5では、燃焼される混合気の空燃比が、運転条件に応じてストイキ状態、燃料リーン状態又は燃料リッチ状態に切り換えられる。内燃機関5の排気には、NOX、粒子状物質(PM)、一酸化炭素(CO)又はHC等が含まれる。 The operating state of the internal combustion engine 5 is controlled by the control device 100 . In the internal combustion engine 5, the air-fuel ratio of the air-fuel mixture to be combusted is switched to a stoichiometric state, a fuel-lean state, or a fuel-rich state according to operating conditions. Exhaust gas from the internal combustion engine 5 contains NO x , particulate matter (PM), carbon monoxide (CO), HC, and the like.

排気浄化装置10は、内燃機関5の排気管11に配設された酸化触媒19と、NOX吸蔵触媒15と、パティキュレートフィルタ17と、NOX選択還元触媒13と、NOX濃度センサ23とを備える。酸化触媒19、NOX吸蔵触媒15、パティキュレートフィルタ17及びNOX選択還元触媒13は、排気の流れの上流側からこの順に排気管11に配設されている。 The exhaust purification device 10 includes an oxidation catalyst 19 arranged in an exhaust pipe 11 of the internal combustion engine 5, an NO X storage catalyst 15, a particulate filter 17, an NO X selective reduction catalyst 13, and an NO X concentration sensor 23. Prepare. The oxidation catalyst 19, the NO X storage catalyst 15, the particulate filter 17, and the NO X selective reduction catalyst 13 are arranged in the exhaust pipe 11 in this order from the upstream side of the exhaust flow.

酸化触媒19は、排気中に含まれるHC、CO又はNO等を酸化する。例えば、HC、CO又はNOは、H2O、CO2又はNO2に酸化される。パティキュレートフィルタ17は、排気中のPMを捕集するフィルタである。パティキュレートフィルタ17に捕集されたPMは、適宜の時期に燃焼させられる。例えば内燃機関5の排気中に含まれる未燃のHCを増加させて酸化触媒19で当該HCが酸化する際に生じる酸化熱により排気温度を上昇させて、パティキュレートフィルタ17に捕集されたPMを燃焼させる。なお、パティキュレートフィルタ17に捕集されたPMを燃焼させる方法は、上記の例に限られない。 The oxidation catalyst 19 oxidizes HC, CO, NO, or the like contained in the exhaust. For example, HC, CO or NO are oxidized to H2O , CO2 or NO2. The particulate filter 17 is a filter that collects PM in the exhaust. The PM captured by the particulate filter 17 is combusted at appropriate times. For example, by increasing the amount of unburned HC contained in the exhaust gas of the internal combustion engine 5 and oxidizing the HC in the oxidation catalyst 19, the temperature of the exhaust gas is raised by increasing the temperature of the exhaust gas, thereby increasing the PM trapped in the particulate filter 17. to burn. In addition, the method of burning PM collected by the particulate filter 17 is not limited to the above example.

NOX吸蔵触媒15は、排気中のNOXをHC及びCOと反応させることにより、NOXをN2に変換する。具体的に、NOX吸蔵触媒15は、内燃機関5が燃料リーン状態のときに排気中のNOXを吸蔵し、内燃機関5が燃料リッチ状態のときに吸蔵していたNOXを放出して排気中のHC及びCOによってNOXをN2へと変換する。NOX吸蔵触媒15におけるNOXの浄化時にはNH3も生成される。 The NOx storage catalyst 15 converts NOx into N2 by reacting NOx in the exhaust gas with HC and CO. Specifically, the NO X storage catalyst 15 stores NO X in the exhaust when the internal combustion engine 5 is in a fuel-lean state, and releases the stored NO X when the internal combustion engine 5 is in a fuel-rich state. HC and CO in the exhaust convert NOx to N2 . NH 3 is also produced when NO X is purified in the NO X storage catalyst 15 .

NOX選択還元触媒13は、排気中のNOXをNH3と反応させることにより、NOXをN2に還元する。具体的に、NOX選択還元触媒13は、NOX吸蔵触媒15で生成されたNH3を吸着し、流入する排気中のNOXをNH3によってN2へと還元する。NOX選択還元触媒13は、触媒温度が高いほどNH3の吸着可能量が減少する特性を有する。また、NOX選択還元触媒13は、NH3吸着量が多いほどNOXの還元効率が高くなる特性を有する。 The NO X selective reduction catalyst 13 reduces NO X to N 2 by reacting NO X in the exhaust gas with NH 3 . Specifically, the NO X selective reduction catalyst 13 adsorbs NH 3 produced by the NO X storage catalyst 15 and reduces NO X in the inflowing exhaust gas to N 2 by NH 3 . The NO X selective reduction catalyst 13 has a characteristic that the higher the catalyst temperature, the smaller the amount of NH 3 that can be adsorbed. In addition, the NO X selective reduction catalyst 13 has a characteristic that the NO X reduction efficiency increases as the NH 3 adsorption amount increases.

NOX濃度センサ23は、NOX選択還元触媒13よりも下流の排気管11に設けられ、主としてNOX選択還元触媒13から流出する排気中のNOX濃度を検出するために用いられる。NOX濃度センサ23のセンサ信号S_noxは、制御装置100に送信される。NOX濃度センサ23のセンサ信号S_noxの情報は、NOX選択還元触媒13の異常診断に用いられる。 The NO X concentration sensor 23 is provided in the exhaust pipe 11 downstream of the NO X selective reduction catalyst 13 and is mainly used to detect the NO X concentration in the exhaust flowing out from the NO X selective reduction catalyst 13 . A sensor signal S_nox from the NO X concentration sensor 23 is transmitted to the control device 100 . Information of the sensor signal S_nox of the NO X concentration sensor 23 is used for abnormality diagnosis of the NO X selective reduction catalyst 13 .

NOX濃度センサ23は、NOXだけでなくNH3にも反応することが知られている。ただし、NOX選択還元触媒13が正常に機能している場合、NOX選択還元触媒13よりも下流側へのNH3の流出はほぼゼロか極めて少量となる。このため、本実施形態に係る排気浄化装置10では、NOX濃度センサ23のセンサ信号S_noxは基本的に排気ガス中のNOX濃度を示すものとして構築されている。 The NOx concentration sensor 23 is known to respond not only to NOx but also to NH3 . However, when the NO X selective reduction catalyst 13 is functioning normally, the outflow of NH 3 to the downstream side of the NO X selective reduction catalyst 13 is almost zero or extremely small. Therefore, in the exhaust purification device 10 according to the present embodiment, the sensor signal S_nox of the NO X concentration sensor 23 is constructed so as to basically indicate the NO X concentration in the exhaust gas.

この他、排気管11の適宜の位置に、排気温度を検出する一つ又は複数の排気温度センサが備えられていてもよい。排気温度センサのセンサ信号S_tgは制御装置100に送信される。排気温度センサが設けられた位置での排気温度の情報は、NOX吸蔵触媒15又はNOX選択還元触媒13の温度の推定に用いることができる。 In addition, one or more exhaust temperature sensors may be provided at appropriate positions on the exhaust pipe 11 to detect the exhaust temperature. A sensor signal S_tg of the exhaust temperature sensor is transmitted to the control device 100 . Information on the exhaust temperature at the position where the exhaust temperature sensor is provided can be used to estimate the temperature of the NO X storage catalyst 15 or the NO X selective reduction catalyst 13 .

<2.診断装置(制御装置)>
次に、本実施形態に係る診断装置として機能する制御装置100の構成例について説明する。図2は、制御装置100の構成例を示すブロック図である。図示した制御装置100は、内燃機関5の運転状態を制御する制御装置100である。なお、制御装置100は、1つの制御装置から構成されていてもよく、あるいは、複数の制御装置が互いに通信可能に接続されて構成されていてもよい。
<2. Diagnosis device (control device)>
Next, a configuration example of the control device 100 functioning as a diagnostic device according to this embodiment will be described. FIG. 2 is a block diagram showing a configuration example of the control device 100. As shown in FIG. The illustrated control device 100 is a control device 100 that controls the operating state of the internal combustion engine 5 . Note that the control device 100 may be configured by one control device, or may be configured by connecting a plurality of control devices so as to be able to communicate with each other.

制御装置100はそれぞれCPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサと電気回路等を備えて構成され、プロセッサがコンピュータプログラムを実行することにより種々の機能が実現される装置であってよい。なお、制御装置100の一部又は全部は、例えば、マイクロコンピュータ、マイクロプロセッサユニット等で構成されていてもよく、また、ファームウェア等の更新可能なもので構成されていてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。 Each control device 100 is configured to include a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), an electric circuit, and the like, and is a device in which various functions are realized by the processor executing a computer program. you can Note that part or all of the control device 100 may be configured by, for example, a microcomputer, a microprocessor unit, or the like, or may be configured by an updatable device such as firmware, or may be configured by a CPU or the like. It may be a program module or the like that is executed by a command from.

制御装置100は、上流側NOX濃度取得部112と、上流側アンモニア濃度推定部113と、下流側NOX濃度推定部114と、センサ値検出部116と、判定部118とを備えている。これらの各部は、プロセッサによるコンピュータプログラムの実行により実現される機能であってよい。また、制御装置100は、RAM(Random Access Memory)又はROM(Read Only Memory)等の1つ又は複数の記憶素子を含む図示しない記憶部を備えている。記憶部は、プロセッサにより実行されるコンピュータプログラム、演算に用いられる制御パラメータ、プロセッサによる演算結果、及び取得したセンサ値等を記憶する。記憶部は、HDD(Hard Disk Drive)やストレージ装置等を含んでいてもよい。 The control device 100 includes an upstream NO X concentration acquiring section 112 , an upstream ammonia concentration estimating section 113 , a downstream NO X concentration estimating section 114 , a sensor value detecting section 116 and a determining section 118 . Each of these units may be a function realized by execution of a computer program by a processor. The control device 100 also includes a storage unit (not shown) including one or more storage elements such as RAM (Random Access Memory) or ROM (Read Only Memory). The storage unit stores computer programs executed by the processor, control parameters used for calculation, calculation results by the processor, acquired sensor values, and the like. The storage unit may include an HDD (Hard Disk Drive), a storage device, or the like.

(上流側NOX濃度取得部)
上流側NOX濃度取得部112は、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のNOX濃度の推定値(上流側NOX濃度推定値)N_us_modを算出する。NOX選択還元触媒13よりも上流側の排気に含まれるNOXは、NOX吸蔵触媒15において浄化されずに流出したNOXである。
(Upstream side NO X concentration acquisition unit)
The upstream NO X concentration acquisition unit 112 obtains an estimated value of the NO X concentration in the exhaust passage on the downstream side of the NO X storage catalyst 15 and on the upstream side of the NO X selective reduction catalyst 13 (upstream NO X concentration estimation value). value) N_us_mod. NO X contained in the exhaust upstream of the NO X selective reduction catalyst 13 is NO X that has flowed out without being purified by the NO X storage catalyst 15 .

NOXの変換効率は、NOX吸蔵触媒15の温度や排気ガスの状態によって変動し得る。このため、上流側NOX濃度取得部112は、例えばあらかじめ記憶部に格納されたマップを参照し、NOX吸蔵触媒15の温度や内燃機関5の運転条件に基づいて、計算に用いるNOX吸蔵触媒15におけるNOXの変換効率を設定する。NOX吸蔵触媒15の温度は、例えば排気温度に基づいて推定することができる。 The NO X conversion efficiency may vary depending on the temperature of the NO X storage catalyst 15 and the state of the exhaust gas. For this reason, the upstream NO X concentration acquisition unit 112 refers to, for example, a map stored in advance in the storage unit, and based on the temperature of the NO X storage catalyst 15 and the operating conditions of the internal combustion engine 5, determines the NO X storage amount used for calculation. The conversion efficiency of NO x in the catalyst 15 is set. The temperature of the NO X storage catalyst 15 can be estimated based on the exhaust temperature, for example.

具体的に、上流側NOX濃度取得部112は、NOX吸蔵触媒15の温度、内燃機関5が燃料リッチ状態に切り換えられたときのNOX吸蔵触媒15におけるNOX吸蔵量、内燃機関5の燃料リッチ状態でのリッチ度合(空燃比)、及び内燃機関5のリッチ燃焼時間等の情報に基づいて上流側NOX濃度N_us_modを算出する。内燃機関5の燃料リッチ状態におけるNOX吸蔵量、リッチ度合、及びリッチ燃焼時間は、内燃機関5の運転条件に基づいて推定することができる。 Specifically, the upstream NO X concentration acquisition unit 112 obtains the temperature of the NO X storage catalyst 15, the NO X storage amount in the NO X storage catalyst 15 when the internal combustion engine 5 is switched to the fuel-rich state, The upstream side NO X concentration N_us_mod is calculated based on information such as the rich degree (air-fuel ratio) in the fuel-rich state and the rich combustion time of the internal combustion engine 5 . The NO X storage amount, rich degree, and rich combustion time in the fuel-rich state of the internal combustion engine 5 can be estimated based on the operating conditions of the internal combustion engine 5 .

なお、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のNOX濃度を検出するNOX濃度センサを備える場合、上流側NOX濃度取得部112は、当該NOX濃度センサのセンサ信号に基づいて上流側NOX濃度N_us_modを取得してもよい。 Note that when a NOx concentration sensor for detecting the NOx concentration in the exhaust passage on the downstream side of the NOx storage catalyst 15 and on the upstream side of the NOx selective reduction catalyst 13 is provided, the upstream NOx concentration acquisition unit 112 may acquire the upstream NOx concentration N_us_mod based on the sensor signal of the NOx concentration sensor.

(上流側アンモニア濃度推定部)
上流側アンモニア濃度推定部113は、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のNH3濃度の推定値(上流側NH3濃度推定値)NH3_us_modを算出する。
(Upstream ammonia concentration estimator)
The upstream ammonia concentration estimation unit 113 obtains an estimated value of the NH 3 concentration in the exhaust passage downstream of the NO X storage catalyst 15 and upstream of the NO X selective reduction catalyst 13 (upstream NH 3 concentration estimated value ) calculate NH3_us_mod .

NOX選択還元触媒13よりも上流側の排気に含まれるNH3は、NOX吸蔵触媒15において生成されたNH3である。NOX吸蔵触媒15では、下記反応式(1)にしたがってNH3が生成される。
3.5H2+NO2→NH3+2H2O … (1)
NH 3 contained in the exhaust upstream of the NO X selective reduction catalyst 13 is NH 3 produced in the NO X storage catalyst 15 . In the NOx storage catalyst 15, NH3 is produced according to the following reaction formula (1).
3.5H 2 +NO 2 →NH 3 +2H 2 O (1)

例えば、上流側アンモニア濃度推定部113は、NOX吸蔵触媒15の温度、内燃機関5がリッチ燃焼状態に切り換えられたときのNOX吸蔵量、内燃機関5のリッチ燃焼状態でのリッチ度合(空燃比)及び内燃機関5のリッチ燃焼時間等の情報に基づいて上流側NH3濃度NH3_us_modを算出する。NOX吸蔵触媒15の温度は、例えば排気温度に基づいて推定することができる。内燃機関5のリッチ燃焼状態におけるNOX吸蔵量、リッチ度合、及びリッチ燃焼時間は、例えば内燃機関5の運転条件に基づいて推定することができる。 For example, the upstream ammonia concentration estimator 113 determines the temperature of the NO X storage catalyst 15, the NO X storage amount when the internal combustion engine 5 is switched to the rich combustion state, the rich degree of the internal combustion engine 5 in the rich combustion state (empty fuel ratio) and information such as the rich combustion time of the internal combustion engine 5, the upstream side NH 3 concentration NH 3 _us_mod is calculated. The temperature of the NO X storage catalyst 15 can be estimated based on the exhaust temperature, for example. The NO X storage amount, rich degree, and rich combustion time in the rich combustion state of the internal combustion engine 5 can be estimated based on the operating conditions of the internal combustion engine 5, for example.

なお、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のNH3濃度を検出するアンモニア濃度センサを備える場合、上流側アンモニア濃度推定部113は、当該アンモニア濃度センサのセンサ信号に基づいて上流側NH3濃度NH3_us_modを取得してもよい。 Note that when an ammonia concentration sensor that detects the NH 3 concentration in the exhaust passage on the downstream side of the NO X storage catalyst 15 and on the upstream side of the NO X selective reduction catalyst 13 is provided, the upstream ammonia concentration estimation unit 113 is , the upstream NH 3 concentration NH 3 _us_mod may be obtained based on the sensor signal of the ammonia concentration sensor.

(下流側NOX濃度推定部)
下流側NOX濃度推定部114は、NOX選択還元触媒13よりも下流側の排気通路内のNOX濃度の推定値(下流側NOX濃度推定値)N_ds_modを算出する。NOX選択還元触媒13よりも下流側の排気に含まれるNOXは、NOX吸蔵触媒15で浄化されずに流出したNOXのうち、さらにNOX選択還元触媒13においても還元されずに流出したNOXである。NOX選択還元触媒13が正常に機能している場合、NOX選択還元触媒13から流出するNOXは極僅かである。このため、下流側NOX濃度推定値N_ds_modは比較的小さい値となる。
(Downstream side NO X concentration estimator)
The downstream NO X concentration estimator 114 calculates an estimated value of the NO X concentration in the exhaust passage on the downstream side of the NO X selective reduction catalyst 13 (downstream NO X concentration estimated value) N_ds_mod. The NO X contained in the exhaust downstream of the NO X selective reduction catalyst 13 flows out of the NO X that has flowed out without being purified by the NO X storage catalyst 15 without being reduced in the NO X selective reduction catalyst 13 as well. NO X When the NO X selective reduction catalyst 13 is functioning normally, the amount of NO X flowing out from the NO X selective reduction catalyst 13 is extremely small. Therefore, the downstream NO X concentration estimated value N_ds_mod is a relatively small value.

上述のとおり、NOX選択還元触媒13におけるNH3の最大吸着量は、NOX選択還元触媒13の温度が高いほど減少する。また、NOX選択還元触媒13におけるNOXの還元効率は、上記吸着率が高いほど高くなる。このため、下流側NOX濃度推定部114は、例えばあらかじめ記憶部に格納されたマップを参照し、NOX選択還元触媒13の温度やNH3の吸着率に基づいて、計算に用いるNOX選択還元触媒13におけるNOXの還元効率を設定する。NOX選択還元触媒13の温度は、例えば排気温度に基づいて推定することができる。NH3の吸着率は、上流側NOX濃度N_us_mod、上流側NH3濃度NH3_us_mod、排気流量及びNOX選択還元触媒13の温度に基づいて推定することができる。 As described above, the maximum adsorption amount of NH 3 in the NO X selective reduction catalyst 13 decreases as the temperature of the NO X selective reduction catalyst 13 increases. In addition, the NO X reduction efficiency of the NO X selective reduction catalyst 13 increases as the adsorption rate increases. Therefore, the downstream NO x concentration estimation unit 114 refers to, for example, a map stored in advance in the storage unit, and selects NO x to be used for calculation based on the temperature of the NO x selective reduction catalyst 13 and the adsorption rate of NH 3 . The NO X reduction efficiency of the reduction catalyst 13 is set. The temperature of the NO X selective reduction catalyst 13 can be estimated based on the exhaust temperature, for example. The NH 3 adsorption rate can be estimated based on the upstream NO X concentration N_us_mod, the upstream NH 3 concentration NH 3 _us_mod, the exhaust flow rate, and the temperature of the NO X selective reduction catalyst 13 .

NH3の吸着率は、例えば以下のように推定することができる。
NOX選択還元触媒13では、下記反応式(2)にしたがってNOXの還元反応が生じる。
4NH3+3NO2→3.5N2+6H2O … (2)
下流側NOX濃度推定部114は、NOX選択還元触媒13に流入するNOX量及びNH3量と、NOX選択還元触媒13の温度とを用いてNOX選択還元触媒13におけるNH3の吸着量を算出することができる。
The adsorption rate of NH3 can be estimated as follows, for example.
In the NO X selective reduction catalyst 13, a reduction reaction of NO X occurs according to the following reaction formula (2).
4NH 3 +3NO 2 →3.5N 2 +6H 2 O (2)
The downstream NO X concentration estimation unit 114 uses the NO X amount and the NH 3 amount flowing into the NO X selective reduction catalyst 13 and the temperature of the NO X selective reduction catalyst 13 to estimate the amount of NH 3 in the NO X selective reduction catalyst 13. The amount of adsorption can be calculated.

NOX選択還元触媒に流入するNOX量及びNH3量は、それぞれ上流側NOX濃度N_us_mod及び上流側アンモニア濃度NH3_usに排気流量をかけることで求めることができる。下流側NOX濃度推定部114は、所定の演算サイクルごとに、各演算サイクル中にNOX選択還元触媒13に流入するNOX量及びNH3量を算出する。そして、下流側NOX濃度推定部114は、算出したNOX量のNOXを還元するために必要なNH3量を、算出したNH3量から引き、得られた値を演算サイクルごとに積算し続ける。これにより、下流側NOX濃度推定部114は、NOX選択還元触媒13におけるNH3の吸着量の変化を見ることができる。 The NO X amount and NH 3 amount flowing into the NO X selective reduction catalyst can be obtained by multiplying the upstream NO X concentration N_us_mod and the upstream ammonia concentration NH 3 _us by the exhaust flow rate, respectively. The downstream NO X concentration estimator 114 calculates the NO X amount and the NH 3 amount that flow into the NO X selective reduction catalyst 13 during each calculation cycle for each predetermined calculation cycle. Then, the downstream NO x concentration estimating unit 114 subtracts the NH 3 amount required to reduce the NO x of the calculated NO x amount from the calculated NH 3 amount, and integrates the obtained value for each calculation cycle. keep doing As a result, the downstream NO X concentration estimator 114 can see changes in the amount of NH 3 adsorbed in the NO X selective reduction catalyst 13 .

このようにしてNH3の吸着量が算出されると、NOX選択還元触媒13の温度に応じた最大吸着量に対するNH3の吸着率が求められる。下流側NOX濃度推定部114は、NH3の吸着率に応じたNOX選択還元触媒13におけるNOXの還元効率を上流側NOX濃度N_us_modにかけることで、下流側NOX濃度推定値N_ds_modを算出することができる。 When the NH 3 adsorption amount is calculated in this manner, the NH 3 adsorption rate with respect to the maximum adsorption amount corresponding to the temperature of the NO X selective reduction catalyst 13 is obtained. The downstream NO X concentration estimation unit 114 multiplies the upstream NO X concentration N_us_mod by the NO X reduction efficiency of the NO X selective reduction catalyst 13 corresponding to the adsorption rate of NH 3 to obtain the downstream NO X concentration estimated value N_ds_mod can be calculated.

(センサ値検出部)
センサ値検出部116は、NOX濃度センサ23のセンサ信号S_noxに基づいて、センサ値としての下流側NOX濃度(下流側NOX濃度検出値)N_ds_detを検出する。この下流側NOX濃度検出値N_ds_detは、基本的にはNOX濃度の値を示すが、NOX選択還元触媒13の下流側にNH3が流出している状態ではNH3濃度の値を示すことになる。
(Sensor value detector)
Sensor value detection unit 116 detects downstream NO X concentration (downstream NO X concentration detection value) N_ds_det as a sensor value based on sensor signal S_nox from NO X concentration sensor 23 . The downstream NO X concentration detection value N_ds_det basically indicates the NO X concentration value, but indicates the NH 3 concentration value when NH 3 is flowing out to the downstream side of the NO X selective reduction catalyst 13. It will be.

(判定部)
判定部118は、少なくとも下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detに基づいてNOX選択還元触媒13の異常を判定する。本実施形態では、判定部118は、上流側NOX濃度N_us_mod、上流側NH3濃度NH3_us_mod、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detに基づいて、NOX選択還元触媒13の欠落及び劣化を判定する。
(Judgment part)
The determination unit 118 determines abnormality of the NO X selective reduction catalyst 13 based on at least the downstream NO X concentration estimated value N_ds_mod and the downstream NO X concentration detected value N_ds_det. In this embodiment, the determination unit 118 selects NO X based on the upstream NO X concentration N_us_mod, the upstream NH 3 concentration NH 3 _us_mod, the downstream NO X concentration estimated value N_ds_mod, and the downstream NO X concentration detected value N_ds_det. Defects and deterioration of the reduction catalyst 13 are determined.

NOX選択還元触媒13に欠落や劣化等の異常がない場合、NOX濃度センサ23のセンサ信号S_noxに基づいて得られる下流側NOX濃度検出値N_ds_detは、下流側NOX濃度推定部114で推定される下流側NOX濃度推定値N_ds_modに近似する。一方、NOX選択還元触媒13に欠落や劣化等の異常が生じている場合、NOX選択還元触媒13におけるNH3の最大吸着量は減少するために、NOX選択還元触媒13の下流側へのNH3の流出量が増加する。 When the NO X selective reduction catalyst 13 has no abnormality such as missing or deterioration, the downstream NO X concentration detection value N_ds_det obtained based on the sensor signal S_nox of the NO X concentration sensor 23 is calculated by the downstream NO X concentration estimation unit 114. Approximate the estimated downstream NOx concentration N_ds_mod. On the other hand, if the NO X selective reduction catalyst 13 has an abnormality such as missing or deterioration, the maximum adsorption amount of NH 3 in the NO X selective reduction catalyst 13 decreases . of NH 3 increases.

このため、NOX選択還元触媒13の異常時において、NOX濃度センサ23を用いて検出される下流側NOX濃度検出値N_ds_detは、下流側NOX濃度推定値N_ds_modよりも大きい値となる。このような現象を利用して、判定部118は、下流側NOX濃度検出値N_ds_detと下流側NOX濃度推定値N_ds_modとを比較することにより、NOX選択還元触媒13の異常の有無を判定することができる。 Therefore, when the NO X selective reduction catalyst 13 is abnormal, the downstream NO X concentration detection value N_ds_det detected using the NO X concentration sensor 23 becomes a larger value than the downstream NO X concentration estimated value N_ds_mod. Using such a phenomenon, the determination unit 118 determines whether or not the NO X selective reduction catalyst 13 is abnormal by comparing the downstream NO X concentration detection value N_ds_det and the downstream NO X concentration estimated value N_ds_mod. can do.

また、NOX選択還元触媒13が欠落している場合と劣化している場合とでは、下流側NOX濃度検出値N_ds_detの値に差が生じる。本実施形態において、判定部118は、NOX選択還元触媒13の劣化又は欠落を判別する。具体的に、NOX選択還元触媒13が欠落している場合、NOX選択還元触媒13に吸着されるNH3の量はゼロであり、すべてのNH3がNOX濃度センサ23の設置位置に到達する。一方、NOX選択還元触媒13が劣化している場合、NOX選択還元触媒13に流入するNH3の一部はNOX選択還元触媒13に吸着され、又はNOXの還元反応に用いられる。 Further, there is a difference in the value of the downstream NO X concentration detection value N_ds_det between when the NO X selective reduction catalyst 13 is missing and when it is deteriorated. In this embodiment, the determination unit 118 determines whether the NO X selective reduction catalyst 13 is deteriorated or missing. Specifically, when the NO X selective reduction catalyst 13 is missing, the amount of NH 3 adsorbed to the NO X selective reduction catalyst 13 is zero, and all NH 3 is at the installation position of the NO X concentration sensor 23. reach. On the other hand, when the NO X selective reduction catalyst 13 has deteriorated, part of the NH 3 flowing into the NO X selective reduction catalyst 13 is adsorbed by the NO X selective reduction catalyst 13 or used for the NO X reduction reaction.

したがって、NOX選択還元触媒13の欠落時にNOX濃度センサ23を用いて検出される下流側NOX濃度検出値N_ds_detは、NOX選択還元触媒13の劣化時に検出される下流側NOX濃度検出値N_ds_detに比べて大きい値になる。判定部118は、NOX選択還元触媒13の異常時に、下流側NOX濃度推定値N_ds_modに対する下流側NOX濃度検出値N_ds_detのずれ幅に基づいて、NOX選択還元触媒13の欠落又は劣化を判定することができる。 Therefore, the downstream NO X concentration detection value N_ds_det detected using the NO X concentration sensor 23 when the NO X selective reduction catalyst 13 is missing is the same as the downstream NO X concentration detection value N_ds_det detected when the NO X selective reduction catalyst 13 deteriorates. It becomes a large value compared to the value N_ds_det. When the NO X selective reduction catalyst 13 is abnormal, the determination unit 118 determines whether the NO X selective reduction catalyst 13 is missing or deteriorated based on the deviation width of the downstream NO X concentration detection value N_ds_det from the downstream NO X concentration estimated value N_ds_mod. can judge.

このとき判定部118は、所定期間における下流側NOX濃度検出値N_ds_detの積算値と、下流側NOX濃度推定値N_ds_modの積算値とを比較してもよい。それぞれの積算値を比較することにより、下流側NOX濃度検出値N_ds_detと、下流側NOX濃度推定値N_ds_modとのずれ幅がより判別しやすくなる。 At this time, the determination unit 118 may compare the integrated value of the downstream NO X concentration detection value N_ds_det and the integrated value of the downstream NO X concentration estimated value N_ds_mod in the predetermined period. By comparing the respective integrated values, it becomes easier to determine the amount of deviation between the downstream NO X concentration detected value N_ds_det and the downstream NO X concentration estimated value N_ds_mod.

図3は、NOX選択還元触媒13の正常時、欠落時、及び劣化時における下流側NOX濃度検出値N_ds_detの違いを示す説明図である。図3は、時刻t1から時刻t2までの期間における下流側NOX濃度検出値N_ds_det及び下流側NOX濃度推定値N_ds_modの積算値の例を示している。 FIG. 3 is an explanatory diagram showing differences in the downstream NO X concentration detection value N_ds_det when the NO X selective reduction catalyst 13 is normal, missing, and deteriorated. FIG. 3 shows an example of integrated values of the downstream NO X concentration detected value N_ds_det and the downstream NO X concentration estimated value N_ds_mod in the period from time t1 to time t2.

NOX選択還元触媒13が正常に機能している場合、下流側NOX濃度検出値N_ds_detは下流側NOX濃度推定値NH3_ds_modに近似する。このため、NOX選択還元触媒13の正常時において、下流側NOX濃度検出値N_ds_detの積算値は、下流側NOX濃度推定値N_ds_modの積算値とほぼ同じように推移する。 When the NO X selective reduction catalyst 13 is functioning normally, the downstream NO X concentration detected value N_ds_det approximates the downstream NO X concentration estimated value NH 3 _ds_mod. Therefore, when the NO X selective reduction catalyst 13 is normal, the integrated value of the downstream NO X concentration detected value N_ds_det transitions in substantially the same manner as the integrated value of the downstream NO X concentration estimated value N_ds_mod.

一方、NOX選択還元触媒13が欠落している場合、NOX吸蔵触媒15で生成されたNH3がNOX濃度センサ23により検出されるため、下流側NOX濃度検出値N_ds_detは、下流側NOX濃度推定値N_ds_modに比べて大きい値になる。このため、NOX選択還元触媒13の欠落時において、下流側NOX濃度検出値N_ds_detの積算値は、下流側NOX濃度推定値N_ds_modの積算値を大きく上回りながら推移する。 On the other hand, when the NO X selective reduction catalyst 13 is missing, the NO X concentration sensor 23 detects NH 3 produced by the NO X storage catalyst 15, so the downstream NO X concentration detection value N_ds_det is It becomes a larger value than the NO X concentration estimated value N_ds_mod. Therefore, when the NO X selective reduction catalyst 13 is missing, the integrated value of the downstream NO X concentration detection value N_ds_det changes while greatly exceeding the integrated value of the downstream NO X concentration estimated value N_ds_mod.

また、NOX選択還元触媒13が劣化している場合、NOX吸蔵触媒15で生成されたNH3の一部がNOX選択還元触媒13の下流側に流出するために、下流側NOX濃度検出値N_ds_detは、下流側NOX濃度推定値N_ds_modに比べて大きい値になる。ただし、このときの下流側NOX濃度検出値N_ds_detは、NOX選択還元触媒13の欠落時の値に比べて小さい値になる。このため、NOX選択還元触媒13の劣化時において、下流側NOX濃度検出値N_ds_detの積算値は、NOX選択還元触媒13の正常時の積算値と欠落時の積算値との間を推移する。 Further, when the NO X selective reduction catalyst 13 is degraded, part of the NH 3 produced by the NO X storage catalyst 15 flows out to the downstream side of the NO X selective reduction catalyst 13, so the downstream NO X concentration The detected value N_ds_det becomes a larger value than the downstream NO X concentration estimated value N_ds_mod. However, the downstream NO X concentration detection value N_ds_det at this time becomes a smaller value than the value when the NO X selective reduction catalyst 13 is missing. Therefore, when the NO X selective reduction catalyst 13 deteriorates, the integrated value of the downstream NO X concentration detection value N_ds_det transitions between the integrated value when the NO X selective reduction catalyst 13 is normal and the integrated value when the NO X selective reduction catalyst 13 is defective. do.

このように、判定部118は、時刻t2における下流側NOX濃度検出値N_ds_detの積算値と下流側NOX濃度推定値N_ds_modの積算値との差が小さい場合には、NOX選択還元触媒13が正常に機能していると判定することができる。また、時刻t2における下流側NOX濃度検出値N_ds_detの積算値と下流側NOX濃度推定値N_ds_modの積算値との差が大きい場合には、判定部118は、NOX選択還元触媒13が異常であると判定する。 In this way, when the difference between the integrated value of the downstream NO X concentration detection value N_ds_det and the integrated value of the downstream NO X concentration estimated value N_ds_mod at time t2 is small, the determination unit 118 determines that the NO X selective reduction catalyst 13 can be determined to be functioning normally. Further, when the difference between the integrated value of the downstream NO X concentration detection value N_ds_det and the integrated value of the downstream NO X concentration estimated value N_ds_mod at time t2 is large, the determination unit 118 determines that the NO X selective reduction catalyst 13 is abnormal. It is determined that

さらに、判定部118は、例えば時刻t2における下流側NOX濃度推定値N_ds_modの積算値(X)に対する下流側NOX濃度検出値N_ds_detの積算値(Y)の比(Y/X)が、あらかじめ設定した閾値βを超える場合に、NOX選択還元触媒13が欠落していると判定してもよい。閾値βは、例えば、下流側NOX濃度推定値N_ds_modの積算値(X)に対する上流側NH3濃度推定値NH3_us_modの積算値(Z)の比(Z/X)とすることができる。 Furthermore, determination unit 118 determines that the ratio (Y/X) of the integrated value (Y) of downstream NO X concentration detected value N_ds_det to the integrated value (X) of downstream NO X concentration estimated value N_ds_mod at time t2, for example, is set in advance. If the set threshold value β is exceeded, it may be determined that the NO X selective reduction catalyst 13 is lacking. The threshold value β can be, for example, the ratio (Z/X) of the integrated value (Z) of the upstream side NH 3 concentration estimated value NH 3 _us_mod to the integrated value (X) of the downstream side NO X concentration estimated value N_ds_mod.

NOX選択還元触媒13が欠落している場合、NOX濃度センサ23の設置位置には、NOX吸蔵触媒15で生成されたNH3と併せてNOX吸蔵触媒15から流出したNOXが到達する。このため、NOX選択還元触媒13の欠落時のNOX濃度センサ23の検出値(下流側NOX濃度検出値N_ds_mod)は、少なくとも上流側NH3濃度推定値NH3_us_modを上回る。したがって、閾値βを、下流側NOX濃度推定値N_ds_modの積算値(X)に対する上流側NH3濃度推定値NH3_us_modの積算値(Z)の比(Z/X)とすることで、NOX選択還元触媒13の欠落を判別することができる。 When the NO X selective reduction catalyst 13 is missing, the NO X flowing out from the NO X storage catalyst 15 together with the NH 3 produced in the NO X storage catalyst 15 reaches the installation position of the NO X concentration sensor 23 . do. Therefore, when the NO X selective reduction catalyst 13 is missing, the detected value of the NO X concentration sensor 23 (downstream NO X concentration detected value N_ds_mod) exceeds at least the upstream NH 3 concentration estimated value NH 3 _us_mod. Therefore, by setting the threshold value β to the ratio (Z/X) of the integrated value (Z) of the upstream NH 3 concentration estimated value NH 3 _us_mod to the integrated value (X) of the downstream NO X concentration estimated value N_ds_mod, NO Deficiency of the X- selective reduction catalyst 13 can be determined.

NOX選択還元触媒13の欠落時には、NOX選択還元触媒13が意図的に除去されていることも考えられるため、判定部118は、例えば内燃機関5を強制的に停止させる処置を取るようにしてもよい。また、NOX選択還元触媒13の劣化時には、判定部118は、例えば警告ランプを点灯させたり警報を鳴らしたりすることで、運転者等にNOX選択還元触媒13の交換を促すようにしてもよい。 When the NO X selective reduction catalyst 13 is missing, it is conceivable that the NO X selective reduction catalyst 13 has been intentionally removed. may Further, when the NO X selective reduction catalyst 13 deteriorates, the determination unit 118 may urge the driver or the like to replace the NO X selective reduction catalyst 13 by, for example, turning on a warning lamp or sounding an alarm. good.

<3.診断装置の動作例>
次に、図4のフローチャートを参照して、診断装置として機能する制御装置100の動作例を説明する。
<3. Operation example of the diagnostic device>
Next, an operation example of the control device 100 functioning as a diagnostic device will be described with reference to the flowchart of FIG.

まず、制御装置100の上流側アンモニア濃度推定部113、下流側NOX濃度推定部114及びセンサ値検出部116は、上流側NH3濃度推定値NH3_us_mod、下流側NOX濃度推定値N_ds_mod、及び下流側NOX濃度検出値N_ds_detの積算を開始する(ステップS11)。例えば、各部は、内燃機関5が燃料リーン状態から燃料リッチ状態に切り換えられたときに上記積算を開始してもよい。これにより、NOX吸蔵触媒15でNH3が生成される期間を利用した診断を行うことができ、診断結果の信頼性を向上させることができる。 First, the upstream ammonia concentration estimating unit 113, the downstream NO X concentration estimating unit 114, and the sensor value detecting unit 116 of the control device 100 obtain the upstream NH 3 concentration estimated value NH 3 _us_mod, the downstream NO X concentration estimated value N_ds_mod, And the integration of the downstream NO X concentration detection value N_ds_det is started (step S11). For example, each unit may start the integration when the internal combustion engine 5 is switched from the fuel-lean state to the fuel-rich state. As a result, diagnosis can be performed using the period during which NH 3 is produced in the NO X storage catalyst 15, and the reliability of the diagnosis result can be improved.

次いで、上流側アンモニア濃度推定部113及び下流側NOX濃度推定部114は、それぞれ上流側NH3濃度推定値NH3_us_mod及び下流側NOX濃度推定値N_ds_modを算出し、センサ値検出部116は下流側NOX濃度検出値N_ds_detを検出する(ステップS13)。 Next, the upstream ammonia concentration estimating unit 113 and the downstream NO x concentration estimating unit 114 respectively calculate the upstream NH 3 concentration estimated value NH 3 _us_mod and the downstream NO x concentration estimated value N_ds_mod, and the sensor value detecting unit 116 A downstream NO X concentration detection value N_ds_det is detected (step S13).

次いで、上流側アンモニア濃度推定部113、下流側NOX濃度推定部114及びセンサ値検出部116は、それぞれステップS13で得られた上流側NH3濃度推定値NH3_us_mod、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detを積算する(ステップS15)。 Next, the upstream ammonia concentration estimating unit 113, the downstream NO X concentration estimating unit 114, and the sensor value detecting unit 116 obtain the upstream NH 3 concentration estimated value NH 3 _us_mod and the downstream NO X concentration estimated value NH 3 _us_mod obtained in step S13, respectively. The value N_ds_mod and the downstream NO X concentration detection value N_ds_det are integrated (step S15).

次いで、上流側アンモニア濃度推定部113、下流側NOX濃度推定部114及びセンサ値検出部116は、積算を開始してからの経過時間が、あらかじめ設定された所定時間を経過したか否かを判別する(ステップS17)。所定時間は、診断結果の信頼性の許容範囲等を考慮して、適宜の時間に設定されてよい。 Next, the upstream ammonia concentration estimating unit 113, the downstream NO X concentration estimating unit 114, and the sensor value detecting unit 116 determine whether or not the elapsed time from the start of integration has passed a predetermined time. It is determined (step S17). The predetermined time may be set to an appropriate time in consideration of the allowable range of reliability of the diagnostic result and the like.

経過時間が所定時間を経過していない場合(S17/No)、上流側アンモニア濃度推定部113、下流側NOX濃度推定部114及びセンサ値検出部116は、ステップS13に戻って、上流側NH3濃度推定値NH3_us_mod、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detの算出あるいは検出、及び積算を繰り返す。 If the elapsed time has not passed the predetermined time (S17/No), the upstream ammonia concentration estimating unit 113, the downstream NO x concentration estimating unit 114, and the sensor value detecting unit 116 return to step S13, and the upstream NH 3 Calculation or detection of concentration estimated value NH 3 _us_mod, downstream side NO X concentration estimated value N_ds_mod, and downstream side NO X concentration detected value N_ds_det, and integration are repeated.

一方、経過時間が所定時間を経過した場合(S17/Yes)、制御装置100の判定部118は、下流側NOX濃度検出値N_ds_detの積算値∫N_ds_detと下流側NOX濃度推定値NH3_ds_modの積算値∫NH3_ds_modとの差が閾値αを超えているか否かを判別する(ステップS19)。閾値αは、下流側NOX濃度推定値N_ds_modの誤差や、積算を行う所定時間の長さ等を考慮して、適切な値に設定することができる。 On the other hand, if the elapsed time has passed the predetermined time (S17/Yes), the determination unit 118 of the control device 100 calculates the integrated value ∫N_ds_det of the downstream NO X concentration detected value N_ds_det and the downstream NO X concentration estimated value NH 3 _ds_mod NH 3 _ds_mod exceeds the threshold α (step S19). The threshold value α can be set to an appropriate value in consideration of the error of the downstream NO X concentration estimated value N_ds_mod, the length of the predetermined time for integration, and the like.

差|∫N_ds_det-∫N_ds_mod|が閾値α以下の場合(S19/No)、判定部118は、NOX選択還元触媒13が正常に機能している(異常無し)と判定し(ステップS27)、本ルーチンを終了する。一方、差|∫N_ds_det-∫N_ds_mod|が閾値αを超える場合(S19/Yes)、判定部118は、下流側NOX濃度推定値N_ds_modの積算値∫N_ds_modに対する下流側NOX濃度検出値N_ds_detの積算値∫N_ds_detの比が閾値βを超えているか否かを判別する(ステップS21)。閾値βは、例えば下流側NOX濃度推定値N_ds_modの積算値∫N_ds_modに対する上流側NH3濃度推定値NH3_us_modの積算値∫NH3_us_modの比の値であってもよい。 When the difference |∫N_ds_det−∫N_ds_mod| is equal to or less than the threshold value α (S19/No), the determination unit 118 determines that the NO X selective reduction catalyst 13 is functioning normally (no abnormality) (step S27), End this routine. On the other hand, if the difference | ∫N_ds_det∫N_ds_mod | It is determined whether or not the ratio of the integrated value ∫N_ds_det exceeds the threshold value β (step S21). The threshold value β may be, for example, the ratio of the integrated value ∫NH 3 _us_mod of the upstream side NH 3 concentration estimated value NH 3 _us_mod to the integrated value ∫N_ds_mod of the downstream side NO X concentration estimated value N_ds_mod.

下流側NOX濃度推定値N_ds_modの積算値∫N_ds_modに対する下流側NOX濃度検出値N_ds_detの積算値∫N_ds_detの比が閾値βを超える場合(S21/Yes)、判定部118は、NOX選択還元触媒13が欠落していると判定し(ステップS23)、本ルーチンを終了する。一方、下流側NOX濃度推定値N_ds_modの積算値∫N_ds_modに対する下流側NOX濃度検出値N_ds_detの積算値∫N_us_detの比が閾値β以下の場合(S21/No)、判定部118は、NOX選択還元触媒13が劣化していると判定し(ステップS25)、本ルーチンを終了する。 When the ratio of the integrated value ∫N_ds_det of the downstream NO X concentration detected value N_ds_det to the integrated value ∫N_ds_mod of the downstream NO X concentration estimated value N_ds_mod exceeds the threshold value β (S21/Yes), the determination unit 118 performs NO X selective reduction. It is determined that the catalyst 13 is lacking (step S23), and the routine ends. On the other hand, when the ratio of the integrated value ∫N_us_det of the downstream NO X concentration detected value N_ds_det to the integrated value ∫N_ds_mod of the downstream NO X concentration estimated value N_ds_mod is equal to or less than the threshold β (S21/No), the determination unit 118 It is determined that the selective reduction catalyst 13 has deteriorated (step S25), and the routine ends.

以上説明したように、本実施形態に係る内燃機関5の排気浄化装置10は、排気通路の上流側から順にNOX吸蔵触媒15及びNOX選択還元触媒13を備えるとともに、NOX選択還元触媒13よりも下流側にNOX濃度センサ23を備えている。かかる排気浄化装置10のNOX選択還元触媒13の異常を診断する診断装置として機能する制御装置100は、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detに基づいてNOX選択還元触媒13の異常の有無を判定する。したがって、制御装置100は、NOX選択還元触媒13が正常に機能していない異常状態を検知することができる。 As described above, the exhaust purification device 10 for the internal combustion engine 5 according to the present embodiment includes the NO X storage catalyst 15 and the NO X selective reduction catalyst 13 in order from the upstream side of the exhaust passage, and the NO X selective reduction catalyst 13 A NO X concentration sensor 23 is provided on the downstream side. The control device 100, which functions as a diagnostic device for diagnosing an abnormality of the NO X selective reduction catalyst 13 of the exhaust purification device 10, selects NO X based on the downstream NO X concentration estimated value N_ds_mod and the downstream NO X concentration detected value N_ds_det. The presence or absence of abnormality in the reduction catalyst 13 is determined. Therefore, the control device 100 can detect an abnormal state in which the NO X selective reduction catalyst 13 does not function normally.

また、本実施形態において、制御装置100は、NOX選択還元触媒13の異常時に、さらに上流側NH3濃度推定値NH3_us_mod、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detに基づいて、NOX選択還元触媒13の欠落又は劣化を判定する。したがって、制御装置100は、NOX選択還元触媒13の異常の状態に応じた処理を実行することができる。 Further, in the present embodiment, when the NO X selective reduction catalyst 13 is abnormal, the control device 100 further controls the upstream side NH 3 concentration estimated value NH 3 _us_mod, the downstream side NO X concentration estimated value N_ds_mod, and the downstream side NO X concentration detected value Lack or deterioration of the NO X selective reduction catalyst 13 is determined based on N_ds_det. Therefore, the control device 100 can execute processing according to the abnormal state of the NO X selective reduction catalyst 13 .

また、本実施形態において、制御装置100は、上流側NH3濃度推定値NH3_us_modの積算値∫NH3_us_mod、下流側NOX濃度推定値N_ds_modの積算値∫N_ds_mod及び下流側NOX濃度検出値N_ds_detの積算値∫N_ds_detを用いてNOX選択還元触媒13の異常を判定する。したがって、下流側NOX濃度検出値N_ds_detと、上流側NH3濃度推定値NH3_us_modあるいは下流側NOX濃度推定値N_ds_modとの差をより判別しやすくなって、NOX選択還元触媒13の異常診断結果の信頼性を向上させることができる。 Further, in the present embodiment, the control device 100 detects the integrated value ∫NH 3 _us_mod of the upstream NH 3 concentration estimated value NH 3 _us_mod, the integrated value ∫N_ds_mod of the downstream NO X concentration estimated value N_ds_mod, and the downstream NO X concentration detection The abnormality of the NO X selective reduction catalyst 13 is determined using the integrated value ∫N_ds_det of the value N_ds_det. Therefore, the difference between the downstream NO X concentration detected value N_ds_det and the upstream NH 3 concentration estimated value NH 3 _us_mod or the downstream NO X concentration estimated value N_ds_mod becomes easier to discriminate, and the NO X selective reduction catalyst 13 malfunctions. The reliability of diagnostic results can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

例えば上記実施形態において、上流側NH3濃度推定値NH3_us_mod、下流側NOX濃度推定値N_ds_mod及び下流側NOX濃度検出値N_ds_detの積算は、必ずしも連続する期間において行われなくてもよい。上記積算は、内燃機関5が燃料リーン状態から燃料リッチ状態に切り換えられた後に行われ、途中燃料リーン状態に切り換えられたときに一旦中断されて、その後再び燃料リーン状態に切り換えられたときに再開されてもよい。 For example, in the above embodiment, the upstream NH 3 concentration estimated value NH 3 _us_mod, the downstream NO X concentration estimated value N_ds_mod, and the downstream NO X concentration detected value N_ds_det do not necessarily need to be integrated in consecutive periods. The above integration is performed after the internal combustion engine 5 is switched from the fuel-lean state to the fuel-rich state, is temporarily interrupted when the state is switched to the fuel-lean state, and is resumed when the state is switched to the fuel-lean state again. may be

また、上記実施形態では、制御装置100がNOX選択還元触媒13の異常の有無を判別するだけでなく、NOX選択還元触媒13の欠落又は劣化を判別するようになっていたが、本発明はかかる例に限定されない。制御装置100は、NOX選択還元触媒13の異常の有無のみを判別するようになっていてもよい。 In the above embodiment, the control device 100 not only determines whether the NO X selective reduction catalyst 13 is abnormal, but also determines whether the NO X selective reduction catalyst 13 is missing or deteriorated. is not limited to such examples. The control device 100 may determine only whether the NO X selective reduction catalyst 13 is abnormal.

5・・・内燃機関、10・・・排気浄化装置、11・・・排気管、13・・・NOX選択還元触媒、15・・・NOX吸蔵触媒、23・・・アンモニア濃度センサ、100・・・制御装置(診断装置)、112・・・上流側NOX濃度取得部、113・・・上流側アンモニア濃度推定部、114・・・下流側NOX濃度推定部、116・・・センサ値検出部、118・・・判定部 5 Internal combustion engine 10 Exhaust purification device 11 Exhaust pipe 13 NO X selective reduction catalyst 15 NO X storage catalyst 23 Ammonia concentration sensor 100 ... control device (diagnostic device), 112 ... upstream NO x concentration acquiring unit, 113 ... upstream ammonia concentration estimating unit, 114 ... downstream NO x concentration estimating unit, 116 ... sensor value detector, 118 ... decision unit

Claims (4)

内燃機関の排気通路に上流側から順にNO吸蔵触媒とNO選択還元触媒とを備えた排気浄化装置における前記NO選択還元触媒の異常を診断する診断装置において、
前記NO選択還元触媒よりも下流側の排気通路内のNO濃度の推定値である下流側NO濃度推定値を算出する下流側NO濃度推定部と、
前記NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサのセンサ値を取得するセンサ値検出部と、
前記NO 吸蔵触媒よりも下流側、かつ、前記NO 選択還元触媒よりも上流側の排気通路内のアンモニア濃度の推定値である上流側アンモニア濃度推定値を求める上流側アンモニア濃度推定部と、
前記上流側アンモニア濃度推定値、前記下流側NO濃度推定値及び前記センサ値に基づいて前記NO選択還元触媒の欠落又は劣化を判定する判定部と、
を備える、診断装置。
A diagnostic device for diagnosing an abnormality of the NO X selective reduction catalyst in an exhaust gas purification system having an NO X storage catalyst and an NO X selective reduction catalyst in order from the upstream side in an exhaust passage of an internal combustion engine,
a downstream NO X concentration estimating unit that calculates a downstream NO X concentration estimated value, which is an estimated value of the NO X concentration in the exhaust passage downstream of the NO X selective reduction catalyst;
a sensor value detection unit that acquires a sensor value of an NO X concentration sensor provided in an exhaust passage on the downstream side of the NO X selective reduction catalyst;
an upstream ammonia concentration estimating unit that calculates an upstream ammonia concentration estimated value that is an estimated value of ammonia concentration in an exhaust passage downstream of the NO X storage catalyst and upstream of the NO X selective reduction catalyst;
a determination unit that determines lack or deterioration of the NO X selective reduction catalyst based on the estimated upstream ammonia concentration value, the estimated downstream NO X concentration value, and the sensor value;
A diagnostic device comprising:
前記判定部は、前記上流側アンモニア濃度推定値の積算値、前記下流側NO濃度推定値の積算値及び前記センサ値の積算値を用いて、前記NO選択還元触媒の欠落及び劣化を判定する、請求項に記載の診断装置。 The determination unit determines lack and deterioration of the NO X selective reduction catalyst using the integrated value of the upstream ammonia concentration estimated value, the integrated value of the downstream NO X concentration estimated value, and the integrated value of the sensor value. 2. The diagnostic device of claim 1 , wherein: 前記判定部は、前記NO吸蔵触媒からアンモニアが流出する期間における前記上流側アンモニア濃度推定値、前記下流側NO濃度推定値及び前記センサ値を用いて前記NO選択還元触媒の欠落及び劣化を判定する、請求項1又は2に記載の診断装置。 The determination unit uses the upstream ammonia concentration estimated value, the downstream NO X concentration estimated value, and the sensor value during a period in which ammonia flows out from the NO X storage catalyst to determine whether the NO X selective reduction catalyst is missing or deteriorated. 3. The diagnostic device according to claim 1 or 2 , which determines 内燃機関の排気通路に備えられたNO吸蔵触媒と、
前記NO吸蔵触媒よりも下流側の排気通路に備えられたNO選択還元触媒と、
前記NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサと、
前記NO選択還元触媒の異常を診断する診断装置と、を備えた内燃機関の排気浄化装置において、
前記診断装置は、
前記NO選択還元触媒よりも下流側の排気通路内のNO濃度の推定値である下流側NO濃度推定値を算出する下流側NO濃度推定部と、
前記NO選択還元触媒よりも下流側の排気通路に備えられたNO濃度センサのセンサ値を取得するセンサ値検出部と、
前記NO 吸蔵触媒よりも下流側、かつ、前記NO 選択還元触媒よりも上流側の排気通路内のアンモニア濃度の推定値である上流側アンモニア濃度推定値を求める上流側アンモニア濃度推定部と、
前記上流側アンモニア濃度推定値、前記下流側NO濃度推定値及び前記センサ値に基づいて前記NO選択還元触媒の欠落又は劣化を判定する判定部と、
を備える、内燃機関の排気浄化装置。
a NO X storage catalyst provided in an exhaust passage of an internal combustion engine;
an NO X selective reduction catalyst provided in an exhaust passage downstream of the NO X storage catalyst;
an NO X concentration sensor provided in an exhaust passage downstream of the NO X selective reduction catalyst;
and a diagnostic device for diagnosing abnormality of the NO X selective reduction catalyst,
The diagnostic device
a downstream NO X concentration estimating unit that calculates a downstream NO X concentration estimated value, which is an estimated value of the NO X concentration in the exhaust passage downstream of the NO X selective reduction catalyst;
a sensor value detection unit that acquires a sensor value of an NO X concentration sensor provided in an exhaust passage downstream of the NO X selective reduction catalyst;
an upstream ammonia concentration estimating unit that obtains an upstream ammonia concentration estimated value that is an estimated value of ammonia concentration in an exhaust passage downstream of the NO X storage catalyst and upstream of the NO X selective reduction catalyst;
a determination unit that determines lack or deterioration of the NO X selective reduction catalyst based on the estimated upstream ammonia concentration value, the estimated downstream NO X concentration value, and the sensor value;
An exhaust purification device for an internal combustion engine.
JP2018247017A 2018-12-28 2018-12-28 Diagnostic device and exhaust purification device for internal combustion engine Active JP7197353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018247017A JP7197353B2 (en) 2018-12-28 2018-12-28 Diagnostic device and exhaust purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018247017A JP7197353B2 (en) 2018-12-28 2018-12-28 Diagnostic device and exhaust purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2020106002A JP2020106002A (en) 2020-07-09
JP7197353B2 true JP7197353B2 (en) 2022-12-27

Family

ID=71448649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247017A Active JP7197353B2 (en) 2018-12-28 2018-12-28 Diagnostic device and exhaust purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP7197353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168792A1 (en) * 2021-02-05 2022-08-11 ヤマハ発動機株式会社 Straddle-type vehicle
JP2024064612A (en) * 2022-10-28 2024-05-14 株式会社Ihi Combustion System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125323A (en) 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2011220126A (en) 2010-04-05 2011-11-04 Bosch Corp Failure diagnosis device of exhaust gas purification system, failure diagnosis method, and exhaust gas purification system
JP2018105146A (en) 2016-12-22 2018-07-05 株式会社豊田中央研究所 Deterioration diagnostic device for exhaust emission control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079852A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Abnormality determination system of exhaust emission control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125323A (en) 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2011220126A (en) 2010-04-05 2011-11-04 Bosch Corp Failure diagnosis device of exhaust gas purification system, failure diagnosis method, and exhaust gas purification system
JP2018105146A (en) 2016-12-22 2018-07-05 株式会社豊田中央研究所 Deterioration diagnostic device for exhaust emission control device

Also Published As

Publication number Publication date
JP2020106002A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP6593374B2 (en) NOx sensor diagnostic device and diagnostic method
JP4530081B2 (en) Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP5993293B2 (en) Abnormality diagnosis device
US20120023911A1 (en) Detection of exhaust particulate filter substrate failure
US8336293B2 (en) Exhaust gas purification system of an internal combustion engine
EP2878782B1 (en) Exhaust purification device of internal combustion engine
US20150101310A1 (en) Exhaust Gas Treatment System Including an Enhanced SCR Diagnostic Unit
JP5604953B2 (en) Exhaust gas purification device and control method of exhaust gas purification device
JP4650109B2 (en) Exhaust gas purification method and exhaust gas purification system
JP7197353B2 (en) Diagnostic device and exhaust purification device for internal combustion engine
JP7206756B2 (en) Exhaust gas purification system for internal combustion engine
JP2010236458A (en) Deterioration diagnostic device for nox catalyst
JP2018189056A (en) Exhaust emission control device for internal combustion engine
JP4345484B2 (en) Exhaust gas purification method and exhaust gas purification system
JP7002312B2 (en) Diagnostic device and exhaust purification device for internal combustion engine
JP6149686B2 (en) HC catalyst poisoning detection system for SCR catalyst and HC catalyst poisoning detection method for SCR catalyst
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
JP4211444B2 (en) Exhaust gas purification catalyst low temperature operation function diagnostic device
JP5332664B2 (en) Engine exhaust purification system
JP7124771B2 (en) Lambda sensor response diagnostic method and exhaust purification system
JP2016003615A (en) Method and device for detecting thermal deterioration of oxidation catalyst
JP2009264313A (en) Exhaust emission control device for internal combustion engine
JP2006046198A (en) Exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R151 Written notification of patent or utility model registration

Ref document number: 7197353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151