JP7196940B2 - Thermoelectric conversion element and manufacturing method thereof - Google Patents

Thermoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP7196940B2
JP7196940B2 JP2021000475A JP2021000475A JP7196940B2 JP 7196940 B2 JP7196940 B2 JP 7196940B2 JP 2021000475 A JP2021000475 A JP 2021000475A JP 2021000475 A JP2021000475 A JP 2021000475A JP 7196940 B2 JP7196940 B2 JP 7196940B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
layer
substrate
conversion element
conversion units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000475A
Other languages
Japanese (ja)
Other versions
JP2021061440A (en
Inventor
雄太 渕上
耕一 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2021000475A priority Critical patent/JP7196940B2/en
Publication of JP2021061440A publication Critical patent/JP2021061440A/en
Application granted granted Critical
Publication of JP7196940B2 publication Critical patent/JP7196940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electric Clocks (AREA)

Description

この発明は、熱電変換素子およびその製造方法に関する。 The present invention relates to a thermoelectric conversion element and its manufacturing method.

熱電変換素子は、熱エネルギーと電気エネルギーを相互に変換することができる素子である。熱電変換素子をその両端に温度差が生じる環境に設置することで、可動部を必要とせずに熱電変換素子から電力を取り出すことができる。例えば、排熱から電気エネルギーを生み出すことができる。そのため、熱電変換素子を用いた発電技術は、身の周りの未利用のエネルギーを回収して利用するエネルギーハーベスティング技術として、大いに期待されている。
熱電変換素子を、例えば分散型の自立電源として利用することができれば、大規模センサネットワーク、ウェアラブルエレクトロニクスなどの電源として用いることが可能となる。特に、有機物からなる熱電変換材料を用いた場合には、熱電変換層を印刷パターンで形成できるため、軽量化、低コスト化、大面積による高出力化が可能となる。この場合、熱電変換素子ユニットの平面性を保つため、温度差はユニットの基板に垂直な方向に与えるのが一般的である。
A thermoelectric conversion element is an element capable of mutually converting thermal energy and electrical energy. By installing the thermoelectric conversion element in an environment where a temperature difference occurs between both ends thereof, electric power can be extracted from the thermoelectric conversion element without requiring a movable part. For example, electrical energy can be produced from waste heat. Therefore, power generation technology using thermoelectric conversion elements is highly expected as an energy harvesting technology for recovering and utilizing unused energy around us.
If a thermoelectric conversion element can be used as, for example, a distributed self-sustaining power source, it will be possible to use it as a power source for large-scale sensor networks, wearable electronics, and the like. In particular, when a thermoelectric conversion material made of an organic substance is used, the thermoelectric conversion layer can be formed in a printed pattern, which makes it possible to reduce the weight, reduce the cost, and increase the output due to the large area. In this case, in order to maintain the flatness of the thermoelectric conversion element unit, the temperature difference is generally applied in the direction perpendicular to the substrate of the unit.

熱電変換層を印刷パターンとして有する熱電変換素子の一例として、特許文献1に開示された熱電発電素子が挙げられる。特許文献1の熱電変換素子(熱電発電素子)では、底部と頂部とが交互に繰り返された波形の基板(基材)に、印刷パターンからなる複数の熱電変換層(熱電変換単位)が形成され、複数の熱電変換層が直列接続されている。各熱電変換層は、基板の波形を構成する一つの凸部または凹部が有する一対の斜面の一方に形成され、他方には形成されていない。
特許文献1の熱電変換素子では、底部を吸熱側、頂部を放熱側とし、底部側と頂部側の温度差により発電が行われる。また、基板が波形に形成されていることで、吸熱側と放熱側との距離が大きくなる分、大きな温度差を得ることができる。これに対して、凹凸のない基板を有する熱電変換素子では、基板を水平に保持した状態では十分な温度差が得られない。
As an example of a thermoelectric conversion element having a thermoelectric conversion layer as a printed pattern, there is a thermoelectric generation element disclosed in Patent Document 1. In the thermoelectric conversion element (thermoelectric power generation element) of Patent Document 1, a plurality of thermoelectric conversion layers (thermoelectric conversion units) made up of printed patterns are formed on a corrugated substrate (base material) in which bottom portions and top portions are alternately repeated. , a plurality of thermoelectric conversion layers are connected in series. Each thermoelectric conversion layer is formed on one of a pair of slopes of one projection or depression that constitutes the corrugation of the substrate, and is not formed on the other.
In the thermoelectric conversion element of Patent Document 1, the bottom is on the heat absorption side and the top is on the heat dissipation side, and electricity is generated by the temperature difference between the bottom side and the top side. Further, since the substrate is formed in a corrugated shape, the distance between the heat absorption side and the heat dissipation side is increased, so a large temperature difference can be obtained. On the other hand, in a thermoelectric conversion element having a substrate without unevenness, a sufficient temperature difference cannot be obtained when the substrate is held horizontally.

国際公開2013/114854号パンフレットInternational publication 2013/114854 pamphlet

特許文献1の熱電変換素子では、熱電変換層が形成されている部分だけでなく、熱電変換素子が形成されていない部分も含めて、基板全体の断面形状が波形になっている。そのため、底部と頂部との間に大きな高低差をつける場合、基板の凸部の下側空間に形状保持のための補強材を設ける必要がある。また、ホットプレートなどの平面状の加熱装置の上に安定的に設置するためには、基板の複数の底部を載せて固定する支持基材がさらに必要になる。
この発明の課題は、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置の上に安定的に設置できる熱電変換素子を提供することである。
In the thermoelectric conversion element of Patent Document 1, the cross-sectional shape of the entire substrate including not only the portion where the thermoelectric conversion layer is formed but also the portion where the thermoelectric conversion element is not formed is wavy. Therefore, when a large difference in height is to be provided between the bottom and top, it is necessary to provide a reinforcing member for maintaining the shape in the space below the protrusion of the substrate. In addition, in order to stably install the substrate on a flat heating device such as a hot plate, a support base for placing and fixing a plurality of bottom portions of the substrate is further required.
An object of the present invention is to form a plurality of thermoelectric conversion units connected in series on a substrate, have a height difference greater than the thickness of the thermoelectric conversion layer between the heat absorption side and the heat dissipation side, and be high even when used without being erected. To provide a thermoelectric conversion element capable of obtaining power generation performance and stably installed on a flat heating device only with a substrate on which thermoelectric conversion units are formed.

上記課題を解決するために、この発明の第一態様は、下記の構成(1)~(4)を有する熱電変換素子を提供する。
(1)基板と、前記基板の上面または下面に形成された複数の熱電変換単位とを有する。
(2)前記基板の前記熱電変換単位が形成されている単位形成部の断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなる。前記基板の前記熱電変換単位が形成されていない非形成部は、前記凸部の頂部より低い位置にある。
(3)前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有する。前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなる。
(4)前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により、直列接続されている。前記直列接続の両端に接続端子を有する。
In order to solve the above problems, a first aspect of the present invention provides a thermoelectric conversion element having the following configurations (1) to (4).
(1) It has a substrate and a plurality of thermoelectric conversion units formed on the upper surface or the lower surface of the substrate.
(2) The cross-sectional shape of the unit formation portion of the substrate where the thermoelectric conversion units are formed is composed of a convex portion and first and second low surface portions lower than the convex portion on both sides of the convex portion. A non-formation portion of the substrate where the thermoelectric conversion unit is not formed is located at a position lower than the top portion of the protrusion.
(3) The thermoelectric conversion unit has a first layer extending from the first low surface portion of the unit forming portion to the top portion of the convex portion, and a second layer extending from the top portion to the second low surface portion. At least one of the first layer and the second layer is made of a thermoelectric conversion material.
(4) The plurality of thermoelectric conversion units are connected in series by wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first and second low surface portions. It is connected. Connection terminals are provided at both ends of the series connection.

この発明の第二態様は、上記構成(1)~(4)を有する熱電変換素子の製造方法であって、下記の構成(11)~(13)の各工程を有することを特徴とする。
(11)基板上に、前記複数の熱電変換単位を構成する前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程。
(12)前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程。
(13)前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程。
A second aspect of the present invention is a method for manufacturing a thermoelectric conversion element having the above structures (1) to (4), characterized by comprising steps of the following structures (11) to (13).
(11) A first printing step of forming, on a substrate, a thermoelectric conversion pattern composed of the first layer and the second layer constituting the plurality of thermoelectric conversion units.
(12) A second printing step of forming a conductive layer pattern composed of the wiring and the connection terminal on the thermoelectric conversion pattern.
(13) A protrusion forming step of forming the protrusion by stretching and deforming the first layer, the second layer, and the portion of the substrate on which the first layer and the second layer are formed.

第二態様の方法で製造された熱電変換素子は、上記構成(1) ~(4) と下記の構成(21)および(22)を有する。
(21)前記複数の熱電変換単位基板は印刷パターンからなる。
(22)前記配線および前記接続端子は印刷パターンからなる。
The thermoelectric conversion element manufactured by the method of the second aspect has the above configurations (1) to (4) and the following configurations (21) and (22).
(21) The plurality of thermoelectric conversion unit substrates are formed of printed patterns.
(22) The wiring and the connection terminals are printed patterns.

この発明によれば、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置上に安定的に設置できる熱電変換素子が提供される。 According to this invention, a plurality of thermoelectric conversion units are formed in series connection on the substrate, and the difference in height between the heat absorption side and the heat dissipation side is equal to or greater than the thickness of the thermoelectric conversion layer. Provided is a thermoelectric conversion element that can be stably installed on a planar heating device with only a substrate on which thermoelectric conversion units are formed, and which has power generation performance.

第一実施形態の熱電変換素子を示す部分断面図であって、一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。FIG. 2 is a partial cross-sectional view showing the thermoelectric conversion element of the first embodiment, showing a unit formation portion of a substrate corresponding to one thermoelectric conversion unit and non-formation portions on both sides thereof. 図1に示す熱電変換素子の製造方法を構成する第一印刷工程の前段工程を説明する平面図である。FIG. 2 is a plan view for explaining a pre-stage step of a first printing step that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 1; 図1に示す熱電変換素子の製造方法を構成する第一印刷工程の後段工程を説明する平面図である。FIG. 3 is a plan view for explaining a post-process of a first printing process that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 1; 図1に示す熱電変換素子の製造方法を構成する第二印刷工程を説明する平面図である。2 is a plan view for explaining a second printing step that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 1. FIG. 図1に示す熱電変換素子の製造方法を構成する貫通穴形成工程を説明する平面図である。3 is a plan view for explaining a through-hole forming step that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 1. FIG. 図5のA-A断面図である。FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5; 第二実施形態の熱電変換素子を示す部分断面図であって、基板面内での一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。FIG. 10 is a partial cross-sectional view showing the thermoelectric conversion element of the second embodiment, showing a unit formation portion of the substrate corresponding to one thermoelectric conversion unit within the substrate surface and non-formation portions on both sides thereof. 図7に示す熱電変換素子の凸部形成工程前の状態を示す平面図であって、凸部形成後のA’-A’断面図が図7に相当する。FIG. 7 is a plan view showing the state of the thermoelectric conversion element shown in FIG. 7 before the process of forming the projections, and a cross-sectional view taken along line A'-A' after the formation of the projections corresponds to FIG. 第三実施形態の熱電変換素子を示す部分断面図であって、基板面内での一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。FIG. 10 is a partial cross-sectional view showing the thermoelectric conversion element of the third embodiment, showing a unit formation portion of the substrate corresponding to one thermoelectric conversion unit in the substrate plane and non-formation portions on both sides thereof. 図9に示す熱電変換素子の製造方法を構成する絶縁層形成工程を説明する平面図である。FIG. 10 is a plan view for explaining an insulating layer forming step that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 9; 図9に示す熱電変換素子の製造方法を構成する被覆層形成工程を説明する平面図である。FIG. 10 is a plan view for explaining a coating layer forming step that constitutes the method for manufacturing the thermoelectric conversion element shown in FIG. 9; 図11のA-A断面図である。FIG. 12 is a cross-sectional view taken along the line AA of FIG. 11; 第一実施形態の熱電変換素子を用いた無線センサ送信装置の一例を説明する斜視図である。It is a perspective view explaining an example of the wireless sensor transmission device using the thermoelectric conversion element of the first embodiment. 第三実施形態の熱電変換素子を用いたウェアラブル機器用電源の一例である牛用首輪を説明する正面図である。FIG. 10 is a front view illustrating a cow collar, which is an example of a wearable device power supply using the thermoelectric conversion element of the third embodiment. 図14の牛用首輪が牛に巻きつけられた状態を示す概要図である。FIG. 15 is a schematic diagram showing a state in which the cow collar of FIG. 14 is wrapped around a cow; 図15のB-B断面に対応する模式図である。FIG. 16 is a schematic diagram corresponding to the BB cross section of FIG. 15; 実施形態の熱電変換素子を構成する基板の凸部に関し、第一乃至第二実施形態とは異なる形状の例を示す正面図である。FIG. 4A is a front view showing an example of a shape different from that of the first and second embodiments, relating to the convex portion of the substrate that constitutes the thermoelectric conversion element of the embodiment.

以下、この発明の実施形態について説明する。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この発明は以下に示す実施形態に限定されない。 Embodiments of the present invention will be described below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but the present invention is not limited to the embodiments shown below.

[第一実施形態]
この実施形態の熱電変換素子は、図2~5に示す各工程を行うことで製造される熱電変換素子である。図1には、この実施形態の熱電変換素子1を構成する一つの熱電変換単位10の断面が示されている。
熱電変換素子1は、図2に示す第一印刷工程の前段工程と、図3に示す第一印刷工程の後段工程と、図4に示す第二印刷工程と、図5に示す貫通穴形成工程と、図6の状態から図1の状態にする凸部形成工程と、を行うことで製造される。
[First embodiment]
The thermoelectric conversion element of this embodiment is a thermoelectric conversion element manufactured by performing each step shown in FIGS. FIG. 1 shows a cross section of one thermoelectric conversion unit 10 that constitutes the thermoelectric conversion element 1 of this embodiment.
The thermoelectric conversion element 1 is formed in the first step of the first printing step shown in FIG. 2, the latter step of the first printing step shown in FIG. 3, the second printing step shown in FIG. 4, and the through hole forming step shown in FIG. , and a step of forming projections from the state shown in FIG. 6 to the state shown in FIG.

熱電変換素子1は、可撓性を有する基板2と、基板2の上面に形成された印刷パターンからなる複数の熱電変換単位10とを有する。基板2の熱電変換単位10が形成されている単位形成部21の断面形状は、凸部211と第一低面部212と第二低面部213とからなる。第一低面部212と第二低面部213は、凸部211の両脇の凸部より低い部分であり、熱電変換単位10が形成されていない非形成部22と同じ高さである。
熱電変換単位10は、単位形成部21の第一低面部212から凸部211の頂部211aに至る第一層31と、頂部211aから第二低面部213に至る第二層32を有する。第一層31は、p型導電性高分子(熱電変換材料)からなり、第二層32は銀ペーストの硬化物(導電性材料)からなる。第二層32としてn型導電性高分子(熱電変換材料)からなる層を設けてもよいが、現時点で安定的な性能を有するものがないため、この実施形態では、その代替として銀ペーストの硬化物からなる第二層32を設けている。
The thermoelectric conversion element 1 has a substrate 2 having flexibility and a plurality of thermoelectric conversion units 10 each having a printed pattern formed on the upper surface of the substrate 2 . The cross-sectional shape of the unit formation portion 21 on which the thermoelectric conversion units 10 of the substrate 2 are formed is composed of a convex portion 211 , a first low surface portion 212 and a second low surface portion 213 . The first low surface portion 212 and the second low surface portion 213 are lower than the convex portions on both sides of the convex portion 211 and have the same height as the non-forming portion 22 where the thermoelectric conversion units 10 are not formed.
The thermoelectric conversion unit 10 has a first layer 31 extending from the first low surface portion 212 of the unit forming portion 21 to the top portion 211 a of the convex portion 211 and a second layer 32 extending from the top portion 211 a to the second low surface portion 213 . The first layer 31 is made of a p-type conductive polymer (thermoelectric conversion material), and the second layer 32 is made of a cured silver paste (conductive material). A layer made of an n-type conductive polymer (thermoelectric conversion material) may be provided as the second layer 32, but at present there is no one with stable performance, so in this embodiment, silver paste is used as an alternative. A second layer 32 of hardened material is provided.

図5に示すように、基板2の上面には2列7行、14個の熱電変換単位10が形成されている。基板2の行間で隣り合う熱電変換単位10の間に、凸部211の範囲全体で長方形の貫通穴25が形成されている。つまり、基板2の行間で隣り合う熱電変換単位10の間が、凸部211の範囲内で切り離されている。
そして、行間および列間で隣り合う熱電変換単位10の第一層31と第二層32を接続する下側配線41が、第一低面部212および第二低面部213上に、第一層31および第二層32を介して形成されている。
As shown in FIG. 5, on the upper surface of the substrate 2, 14 thermoelectric conversion units 10 are formed in 2 columns and 7 rows. Rectangular through holes 25 are formed over the entire range of the projections 211 between the adjacent thermoelectric conversion units 10 between rows of the substrate 2 . In other words, the thermoelectric conversion units 10 adjacent to each other between the rows of the substrate 2 are separated within the range of the protrusions 211 .
Then, the lower wiring 41 connecting the first layer 31 and the second layer 32 of the thermoelectric conversion units 10 adjacent between rows and columns is formed on the first lower surface portion 212 and the second lower surface portion 213, and the first layer 31 and the second layer 32 .

また、第一層31と第二層32が異なる材料からなるため、凸部211の頂部211aの位置に、熱電変換単位10内の第一層31と第二層32を接続する上側配線42が形成
されている。さらに、基板2の上面の一方の縁部に直列接続の両端が存在し、各位置に外部との接続端子43が形成されている。
この実施形態の熱電変換素子1の製造方法では、先ず、第一印刷工程の前段工程として、図2に示す配置で、一つの熱電変換単位10に一つの第一層31を、長方形の平面形状で形成する。つまり、2列14個の熱電変換単位10の列内および列間で、隣り合う第一層31を、長方形の長辺方向で反対側となる位置に配置する。
In addition, since the first layer 31 and the second layer 32 are made of different materials, the upper wiring 42 connecting the first layer 31 and the second layer 32 in the thermoelectric conversion unit 10 is located at the top portion 211a of the convex portion 211. formed. Furthermore, both ends of the series connection exist at one edge of the upper surface of the substrate 2, and connection terminals 43 with the outside are formed at each position.
In the method for manufacturing the thermoelectric conversion element 1 of this embodiment, first, as a pre-stage step of the first printing step, one first layer 31 is formed in one thermoelectric conversion unit 10 in the arrangement shown in FIG. form with That is, the first layers 31 adjacent to each other in the two rows of 14 thermoelectric conversion units 10 and between the rows are arranged on opposite sides in the long side direction of the rectangle.

次に、第一印刷工程の後段工程として、図3に示すように、一つの熱電変換単位10に一つの第二層32を、第一層31の隣に接触状態で、第一層31と同じ平面形状および厚さで形成する。
このようにして、基板2の上面に、2列14個の熱電変換単位10を構成する全ての第一層31および第二層32からなる熱電変換パターンが形成される。図3の状態で、基板2の第一層31および第二層32が存在している部分が単位形成部である。
次に、第二印刷工程として、図3に示す熱電変換パターン上に、図4に示すように、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成する。
Next, as a subsequent step of the first printing step, as shown in FIG. They are formed with the same planar shape and thickness.
In this way, a thermoelectric conversion pattern consisting of all the first layers 31 and the second layers 32 constituting the two rows of 14 thermoelectric conversion units 10 is formed on the upper surface of the substrate 2 . In the state of FIG. 3, the portion where the first layer 31 and the second layer 32 of the substrate 2 are present is the unit formation portion.
Next, as a second printing step, as shown in FIG. 4, a conductive layer pattern composed of lower wiring 41, connection terminals 43, and upper wiring 42 is formed on the thermoelectric conversion pattern shown in FIG.

次に、図5に示すように、後工程で凸部211を形成する範囲全体の、基板2の行間で隣り合う熱電変換単位10の間となる部分に、打ち抜き法または切り抜き法により貫通穴25を形成する。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、凸部形成工程として、図1の凸部211に対応させた雄部および雌部を有する金型を用意し、基板2の裏面側に雄部を表面側に雌部を押し当てて加熱しながら加圧する(加熱加圧成形を行う)。これにより、第一層31および第二層32と、基板2の第一層31および第二層32が形成されている部分を延伸変形させて、凸部211を形成する。その際に、全ての単位形成部21の凸部211に対応させた雄部および雌部を有する金型を使用することで、一度に全ての熱電変換単位10に凸部211を形成する。
Next, as shown in FIG. 5 , through holes 25 are formed by punching or cutting in portions between adjacent thermoelectric conversion units 10 between rows of the substrate 2 in the entire range where the projections 211 are to be formed in a post-process. to form In this state, the thermoelectric conversion unit 10 is formed in a flat shape on the flat substrate 2, as shown in FIG.
Next, as a convex portion forming step, a mold having a male portion and a female portion corresponding to the convex portion 211 in FIG. Apply pressure while heating (perform heat and pressure molding). As a result, the first layer 31 and the second layer 32 and the portion of the substrate 2 where the first layer 31 and the second layer 32 are formed are stretched and deformed to form the convex portion 211 . At that time, by using a mold having male and female portions corresponding to the convex portions 211 of all the unit forming portions 21, the convex portions 211 are formed in all the thermoelectric conversion units 10 at once.

このようにして製造された熱電変換素子1は、全ての熱電変換単位10において、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
そのため、熱電変換素子1を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
In the thermoelectric conversion element 1 manufactured in this way, in all the thermoelectric conversion units 10, the lower portion 31a which is the portion on the first lower surface portion 212 of the first layer 31 and the second lower surface portion 213 of the second layer 32 Between the lower portion 32a, which is the upper portion, and the high portions 31b, 32b, which are portions above the top portions 211a of the first layer 31 and the second layer 32, there is a thickness equal to or greater than the thickness of the first layer 31 and the second layer 32. has a height difference of
Therefore, the thermoelectric conversion element 1 is placed on, for example, a hot plate while holding the non-formation portion 22 of the substrate 2 horizontally, and the lower portion 31 a of the first layer 31 and the lower portion of the second layer 32 are placed through the substrate 2 . Even when the portion 32a is heated and used, high power generation performance can be obtained. Also, the substrate 2 on which the print pattern is formed can be stably placed on the hot plate.

さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10の間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図1に示すように、凸部211の範囲全体で、熱電変換単位10毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214からなる空間(貫通穴25)と凸部211の下方空間Kとが連通している。そのため、熱電変換単位10毎に、その周囲に大気が触れる状態となる。
よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10の低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
なお、この実施形態の熱電変換素子1の製造方法では、第一層31、第二層32、導電層パターン(下側配線41、接続端子43、および上側配線42)の順に、印刷工程を行っているが、これらの層の印刷順は任意に変更できる。
Furthermore, due to the formation of the through holes 25 , the adjacent thermoelectric conversion units 10 between the rows of the substrate 2 are separated from each other over the entire range of the protrusions 211 in all the unit forming portions 21 . That is, as shown in FIG. 1, all the unit forming portions 21 have cut surfaces 214 separated independently for each thermoelectric conversion unit 10 over the entire range of the convex portions 211, and the cut surfaces 214 adjacent between the rows. The space (through-hole 25) formed by and the lower space K of the convex part 211 are communicating. Therefore, every 10 thermoelectric conversion units are in contact with the surrounding air.
Therefore, if the top portion 211a is cooled by circulating air through the flow path formed by the lower space K during heating by the hot plate described above, the lower portions 31a and 32a and the higher portions 31b and 32b of the thermoelectric conversion unit 10 It can be expected that a larger temperature difference will be generated between them.
In addition, in the manufacturing method of the thermoelectric conversion element 1 of this embodiment, the printing process is performed in the order of the first layer 31, the second layer 32, and the conductive layer pattern (the lower wiring 41, the connection terminal 43, and the upper wiring 42). However, the order in which these layers are printed can be changed arbitrarily.

[第二実施形態]
第二実施形態の熱電変換素子101は、図7に示すように、第一実施形態の熱電変換素子1と同様に、基板2の上面に2列7行の熱電変換単位10を有するだけでなく、2列7行の熱電変換単位10Aを基板2の下面に有する。
各熱電変換単位10Aは、基板2を挟んで各熱電変換単位10と重なる位置に配置されている。熱電変換単位10Aの第一層31は熱電変換単位10の第二層32と重なるように形成され、熱電変換単位10Aの第二層32は熱電変換単位10の第一層31と重なるように形成されている。また、全ての単位形成部21は、凸部211の範囲全体で、熱電変換単位10,10A毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
[Second embodiment]
As shown in FIG. 7, the thermoelectric conversion element 101 of the second embodiment not only has two columns and seven rows of thermoelectric conversion units 10 on the upper surface of the substrate 2, like the thermoelectric conversion element 1 of the first embodiment. , 2 columns and 7 rows of thermoelectric conversion units 10A on the lower surface of the substrate 2 .
Each thermoelectric conversion unit 10A is arranged at a position overlapping with each thermoelectric conversion unit 10 with the substrate 2 interposed therebetween. The first layer 31 of the thermoelectric conversion unit 10A is formed so as to overlap the second layer 32 of the thermoelectric conversion unit 10, and the second layer 32 of the thermoelectric conversion unit 10A is formed so as to overlap the first layer 31 of the thermoelectric conversion unit 10. It is In addition, all the unit forming portions 21 have cut surfaces 214 separated independently for each of the thermoelectric conversion units 10 and 10A over the entire range of the convex portions 211, and the space between the cut surfaces 214 adjacent between rows and the convex portions It communicates with the lower space K of the part 211 .

また、図8に示すように、上面の接続端子43aと、基板2を挟んでこれと重なる下面の接続端子43aとが、例えば基板2の端面に設けた電極で接続されている。これにより、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが直列接続されている。この場合、上面および下面の接続端子43bが外部との接続端子となる。
なお、熱電変換単位10Aの第一層31を熱電変換単位10の第一層31と重なるように形成し、熱電変換単位10Aの第二層32を熱電変換単位10の第二層32と重なるように形成し、上面および下面の接続端子43a同士および接続端子43b同士を接続してもよい。この場合、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが並列接続され、上下で接続された状態の接続端子43aおよび接続端子43bが外部との接続端子となる。
Further, as shown in FIG. 8, the connection terminals 43a on the upper surface and the connection terminals 43a on the lower surface overlapping with the substrate 2 are connected by electrodes provided on the end surfaces of the substrate 2, for example. Thus, the thermoelectric conversion units 10 arranged in 2 columns and 7 rows on the upper surface and the thermoelectric conversion units 10A arranged in 2 columns and 7 rows on the lower surface are connected in series. In this case, the connection terminals 43b on the upper surface and the lower surface serve as connection terminals with the outside.
In addition, the first layer 31 of the thermoelectric conversion unit 10A is formed so as to overlap the first layer 31 of the thermoelectric conversion unit 10, and the second layer 32 of the thermoelectric conversion unit 10A is formed so as to overlap the second layer 32 of the thermoelectric conversion unit 10. , and the connection terminals 43a on the upper and lower surfaces and the connection terminals 43b on the upper surface and the lower surface may be connected to each other. In this case, the thermoelectric conversion units 10 of 2 columns and 7 rows on the upper surface and the thermoelectric conversion units 10A of 2 columns and 7 rows on the lower surface are connected in parallel, and the connection terminals 43a and 43b in a state of being connected vertically are connected to the outside. become a terminal.

熱電変換素子101は、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2の上面と下面に対する第一印刷工程および第二印刷工程を行った後、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2に対する貫通穴形成工程と凸部形成工程を行うことで製造できる。
この実施形態の熱電変換素子101によれば、第一実施形態の熱電変換素子1が有する効果に加えて、基板2の両面に熱電変換単位を有することで、一枚の基板で高い起電力が得られるという効果も有する。
The thermoelectric conversion element 101 is produced by performing the first printing step and the second printing step on the upper surface and the lower surface of the substrate 2 in the same method as the method for manufacturing the thermoelectric conversion element 1 of the first embodiment, and then the thermoelectric conversion element 101 of the first embodiment. It can be manufactured by performing a through-hole forming process and a projection forming process on the substrate 2 in the same method as the manufacturing method of the conversion element 1 .
According to the thermoelectric conversion element 101 of this embodiment, in addition to the effects of the thermoelectric conversion element 1 of the first embodiment, by having thermoelectric conversion units on both sides of the substrate 2, a single substrate can generate a high electromotive force. It also has the effect of being obtained.

つまり、第二実施形態の熱電変換素子101は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Aを基板2の厚さ方向に二層有するため、直列接続の場合は出力電圧が熱電変換素子1の二倍となり、並列接続の場合は出力電流が熱電変換素子1の二倍となる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第二実施形態の熱電変換素子101は、全ての熱電変換単位10と下側配線41および上側配線42が耐候性材料で覆われていることが好ましい。その場合には、耐候性材料からなる被覆層の形成を、凸部211の形成前後のどちらのタイミングで行ってもよい。
That is, in the thermoelectric conversion element 101 of the second embodiment, the area of the substrate 2 is the same as that of the thermoelectric conversion element 1 of the first embodiment, but the thermoelectric conversion units 10 and 10A of the same pattern are arranged in the thickness direction of the substrate 2. Since there are two layers, the output voltage is double that of the thermoelectric conversion element 1 in the case of series connection, and the output current is double that of the thermoelectric conversion element 1 in the case of parallel connection.
Further, by increasing the number of thermoelectric conversion units 10 in the thickness direction of the substrate 2 to three layers, four layers, or more, the output current of the thermoelectric conversion element can be increased without changing the area of the substrate 2. .
Moreover, in the thermoelectric conversion element 101 of the second embodiment, all the thermoelectric conversion units 10, the lower wirings 41 and the upper wirings 42 are preferably covered with a weather resistant material. In that case, the coating layer made of the weather-resistant material may be formed either before or after the formation of the projections 211 .

[第三実施形態]
第三実施形態の熱電変換素子102は、図9に示すように、第一実施形態の熱電変換素子1と同様に、基板2の面内に2列7行の熱電変換単位10を有するだけでなく、同じ2列7行の熱電変換単位10を基板2の上面に二層有する。図9は、熱電変換素子102の熱電変換単位10,10Bが重なっている部分の断面を示す。図9に示すように、熱電変換素子102は、二層の熱電変換単位10,10B間に絶縁層44を有し、基板2とは反対の面に耐候性材料からなる被覆層45を有する。
熱電変換素子102は以下の方法で製造される。
[Third embodiment]
As shown in FIG. 9, the thermoelectric conversion element 102 of the third embodiment only has thermoelectric conversion units 10 of 2 columns and 7 rows in the plane of the substrate 2 in the same manner as the thermoelectric conversion element 1 of the first embodiment. Instead, two layers of thermoelectric conversion units 10 of the same 2 columns and 7 rows are provided on the upper surface of the substrate 2 . FIG. 9 shows a cross section of the portion where the thermoelectric conversion units 10 and 10B of the thermoelectric conversion element 102 overlap. As shown in FIG. 9, the thermoelectric conversion element 102 has an insulating layer 44 between the two layers of thermoelectric conversion units 10 and 10B, and a coating layer 45 made of a weather-resistant material on the surface opposite to the substrate 2 .
Thermoelectric conversion element 102 is manufactured by the following method.

先ず、第一実施形態の熱電変換素子1と同様に図2~図5に示す各工程を行って、基板2上に、一層目の熱電変換単位10のパターン(熱電変換パターンと導電層パターン)と貫通穴25を形成する。次に、図5に示す状態の基板2上の接続端子43の部分を除いた全面に絶縁層44を形成する。図10はこの状態を示す。次に、図2~図4に示す各工程を同じ方法で行って、図10に示す状態の基板2上に、二層目の熱電変換単位10Bのパターン(熱電変換パターンと導電層パターン)を形成した後、基板2上の全面に被覆層45を形成して、図11に示す状態とする。 First, each step shown in FIGS. 2 to 5 is performed in the same manner as the thermoelectric conversion element 1 of the first embodiment, and the pattern of the thermoelectric conversion unit 10 of the first layer (thermoelectric conversion pattern and conductive layer pattern) is formed on the substrate 2. and through holes 25 are formed. Next, an insulating layer 44 is formed on the entire surface of the substrate 2 in the state shown in FIG. FIG. 10 shows this state. Next, each step shown in FIGS. 2 to 4 is performed in the same manner to form a second-layer thermoelectric conversion unit 10B pattern (thermoelectric conversion pattern and conductive layer pattern) on the substrate 2 in the state shown in FIG. After the formation, a coating layer 45 is formed on the entire surface of the substrate 2 to obtain the state shown in FIG.

この状態の熱電変換素子102は平板状であり、図12に示すように、熱電変換単位10,10Bも平板状である。次に、第一実施形態と同じ凸部形成工程を行うことで、全ての熱電変換単位10,10Bに凸部211を形成する。
このようにして製造された熱電変換素子102は、全ての熱電変換単位10,10Bにおいて、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
The thermoelectric conversion element 102 in this state is flat, and as shown in FIG. 12, the thermoelectric conversion units 10 and 10B are also flat. Next, by performing the same protrusion forming step as in the first embodiment, protrusions 211 are formed on all the thermoelectric conversion units 10 and 10B.
The thermoelectric conversion element 102 manufactured in this manner has a lower portion 31a which is a portion above the first lower surface portion 212 of the first layer 31 and a second lower portion of the second layer 32 in all the thermoelectric conversion units 10 and 10B. The thickness of the first layer 31 and the second layer 32 is between the lower portion 32a which is the portion on the face portion 213 and the high portions 31b and 32b which are the portions on the top portion 211a of the first layer 31 and the second layer 32. It has a height difference of more than

そのため、熱電変換素子102を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10,10Bの間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図9に示すように、凸部211の範囲全体で、熱電変換単位10,10B毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
Therefore, the thermoelectric conversion element 102 is placed on, for example, a hot plate while holding the non-formation portion 22 of the substrate 2 horizontally, and the lower portion 31 a of the first layer 31 and the lower portion of the second layer 32 are placed through the substrate 2 . Even when the portion 32a is heated and used, high power generation performance can be obtained. Also, the substrate 2 on which the print pattern is formed can be stably placed on the hot plate.
Furthermore, due to the formation of the through holes 25 , the adjacent thermoelectric conversion units 10 and 10B between the rows of the substrate 2 are separated from each other over the entire range of the protrusions 211 in all the unit forming portions 21 . That is, as shown in FIG. 9, all the unit forming portions 21 have cut surfaces 214 that are independently separated for each of the thermoelectric conversion units 10 and 10B over the entire range of the convex portions 211, and cut surfaces that are adjacent to each other between the rows. The space between the surfaces 214 and the space K below the projection 211 communicate with each other.

よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
また、第三実施形態の熱電変換素子102は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Bを基板2の厚さ方向に二層有するため、熱電変換素子1よりも出力電流が多くなる。
なお、第三実施形態の熱電変換素子102は、二層の熱電変換単位10,10Bの導電層パターン(下側配線41、上側配線42、および接続端子43)が同じであり、二層目の導電層パターンの形成時に、一層目の接続端子43の上に重ねて二層目の接続端子43が印刷されるため、二層の熱電変換単位10,10Bが並列に接続されている。
Therefore, when heating by the hot plate described above, if the top portion 211a is cooled by circulating air through the flow path formed by the lower space K, the lower portions 31a and 32a and the higher portions 31b and 32b of the thermoelectric conversion units 10 and 10B It can be expected that a larger temperature difference will be generated between
Further, in the thermoelectric conversion element 102 of the third embodiment, the area of the substrate 2 is the same as that of the thermoelectric conversion element 1 of the first embodiment. Since it has two layers, the output current is larger than that of the thermoelectric conversion element 1 .
In addition, in the thermoelectric conversion element 102 of the third embodiment, the conductive layer patterns (lower wiring 41, upper wiring 42, and connection terminal 43) of the thermoelectric conversion units 10 and 10B of the two layers are the same, and the second layer When the conductive layer pattern is formed, the connection terminals 43 of the second layer are printed on the connection terminals 43 of the first layer, so that the two layers of thermoelectric conversion units 10 and 10B are connected in parallel.

また、導電層および絶縁層の印刷パターンの設定により、二層の熱電変換単位10,10Bを直列に接続すれば、熱電変換素子102の出力電圧を増やすこともできる。また、二層の熱電変換単位10,10Bを、各層内および層間で並列接続と直列接続を組み合わせて接続することで、熱電変換素子102の出力を自在に調整することもできる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第三実施形態では、被覆層45の形成を行った後に凸部211の形成を行っているが、最上層の熱電変換単位10Bを形成した後に凸部211の形成を行ってから、被覆層45を形成してもよい。
Moreover, by setting the printed patterns of the conductive layer and the insulating layer, the output voltage of the thermoelectric conversion element 102 can be increased by connecting the two layers of the thermoelectric conversion units 10 and 10B in series. In addition, by connecting two layers of thermoelectric conversion units 10 and 10B in a combination of parallel connection and series connection within each layer and between layers, the output of thermoelectric conversion element 102 can be freely adjusted.
Further, by increasing the number of thermoelectric conversion units 10 in the thickness direction of the substrate 2 to three layers, four layers, or more, the output current of the thermoelectric conversion element can be increased without changing the area of the substrate 2. .
Further, in the third embodiment, the convex portions 211 are formed after the formation of the coating layer 45, but after forming the thermoelectric conversion units 10B of the uppermost layer, the convex portions 211 are formed, and then the coating A layer 45 may be formed.

[応用]
第一実施形態の熱電変換素子1および第二実施形態の熱電変換素子101の応用例とし
ては、無線センサ送信装置の自立電源が挙げられる。
図13に示す無線センサ送信装置5は、回路基板51に形成されたアンテナ回路52およびセンサ端子53と、熱電変換素子1からなる自立電源と、信号処理・送信回路54と、電圧増幅部・バッテリー55と、で構成されている。
上述のように、実施形態の熱電変換素子1は、熱電変換単位10の低部(吸熱部)31a,32aと高部(放熱部)31b,32bとで、熱電変換層(第一層31および第二層32)の厚さ以上の高低差を有するため、吸熱部に付与する熱エネルギーが小さい場合でも、無線センサを駆動させるに十分な電力を供給できる。よって、実施形態の熱電変換素子1を電源として用いた無線センサ送信装置5は、太陽電池が使用できない照明のない場所においても、常時稼動できる自立型無線センサ送信装置として使用できる。
第三実施形態の熱電変換素子102の応用例としては、ウェアラブル無線センサ送信装置の自立電源が挙げられる。
[application]
An application example of the thermoelectric conversion element 1 of the first embodiment and the thermoelectric conversion element 101 of the second embodiment includes a self-sustaining power supply for a wireless sensor transmitter.
The wireless sensor transmitter 5 shown in FIG. 13 includes an antenna circuit 52 and a sensor terminal 53 formed on a circuit board 51, a self-sustaining power supply composed of the thermoelectric conversion element 1, a signal processing/transmission circuit 54, a voltage amplifier/battery 55 and .
As described above, in the thermoelectric conversion element 1 of the embodiment, the thermoelectric conversion layers (first layer 31 and Since the height difference is greater than the thickness of the second layer 32), it is possible to supply sufficient power to drive the wireless sensor even when the thermal energy applied to the heat absorbing portion is small. Therefore, the wireless sensor transmitter 5 using the thermoelectric conversion element 1 of the embodiment as a power source can be used as a self-supporting wireless sensor transmitter that can always operate even in places without lighting where solar cells cannot be used.
As an application example of the thermoelectric conversion element 102 of the third embodiment, there is an independent power supply for a wearable wireless sensor transmitter.

図14に示す牛用首輪6は、首輪本体(装着物)61の内側の面に、熱電変換素子102からなる自立電源が固定されたものである。熱電変換素子102の被覆層45側が首輪本体61に貼り付けてあり、基板2側が露出している。
図15に示すように、牛用首輪6は、熱電変換素子102側を内側にして牛(恒温動物)7の首71に巻きつけ、熱電変換素子102の接続端子43にウェアラブル無線センサ送信装置を接続して使用される。図16に示すように、牛用首輪6が牛7に巻きつけられた状態で、熱電変換素子102の下方空間Kが牛7の首71側に存在する。つまり、牛7の首71と首輪本体61との間に、熱電変換単位10,10Bの列毎の下方空間Kが繋がった大気の流路が存在する。
The cattle collar 6 shown in FIG. 14 has a self-sustaining power supply composed of a thermoelectric conversion element 102 fixed to the inner surface of a collar body (attachment) 61 . The coating layer 45 side of the thermoelectric conversion element 102 is attached to the collar body 61, and the substrate 2 side is exposed.
As shown in FIG. 15 , the cow collar 6 is wrapped around the neck 71 of a cow (warm-blooded animal) 7 with the thermoelectric conversion element 102 side facing inward, and the wearable wireless sensor transmitter is connected to the connection terminal 43 of the thermoelectric conversion element 102 . Used in connection. As shown in FIG. 16 , the space K below the thermoelectric conversion element 102 exists on the neck 71 side of the cow 7 when the cow collar 6 is wrapped around the cow 7 . In other words, between the neck 71 of the cow 7 and the collar main body 61, there is an atmospheric flow path in which the lower spaces K for each row of the thermoelectric conversion units 10 and 10B are connected.

そして、熱電変換素子102の基板2が可撓性を有するため、牛用首輪6は、牛7の首71に簡単に装着できるとともに、自立電源として薄く形成された熱電変換素子102を有するため、装着状態で牛7の行動に支障をきたさない。また、熱電変換素子102により、牛7の体表面と牛7の存在する環境との温度差で、ウェアラブル無線センサ送信装置を駆動可能な電力を供給できる。
さらに、下方空間Kに伴う大気の流路を大気が通ることで、放熱板を使用しなくても、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間の温度差が確保できる。これにより、放熱板の分だけ牛用首輪6の厚さを薄くできる。
Further, since the substrate 2 of the thermoelectric conversion element 102 has flexibility, the cow collar 6 can be easily attached to the neck 71 of the cow 7 and has the thin thermoelectric conversion element 102 as an independent power supply. The behavior of the cow 7 is not hindered in the attached state. Moreover, the thermoelectric conversion element 102 can supply electric power capable of driving the wearable wireless sensor transmission device due to the temperature difference between the body surface of the cow 7 and the environment in which the cow 7 exists.
In addition, since the air passes through the air flow path associated with the lower space K, the temperature between the low parts 31a, 32a and the high parts 31b, 32b of the thermoelectric conversion units 10, 10B can be adjusted without using a heat sink. difference can be guaranteed. As a result, the thickness of the cattle collar 6 can be reduced by the thickness of the radiator plate.

また、熱電変換素子102が耐候性材料からなる被覆層45を有するため、屋外で使用した場合でも熱電変換素子102を長期に渡って使用可能である。なお、屋内や短期間での使用であれば、第三実施形態の熱電変換素子102の代わりに、被覆層45のない第一実施形態の熱電変換素子1を用いてもよい。
なお、図14に示す牛用首輪6はウェアラブル機器用電源の一例であるが、ウェアラブル機器用電源の装着物の形状や材質は制限されず、恒温動物の四肢、首、胴体などの体表面の一部に装着可能で、熱電変換素子の周りの大気の流通を著しく妨げることがなく、装着位置から容易に脱落することがなければよい。
Moreover, since the thermoelectric conversion element 102 has the coating layer 45 made of a weather-resistant material, the thermoelectric conversion element 102 can be used for a long period of time even when used outdoors. For indoor use or short-term use, the thermoelectric conversion element 1 of the first embodiment without the coating layer 45 may be used instead of the thermoelectric conversion element 102 of the third embodiment.
Although the cow collar 6 shown in FIG. 14 is an example of a wearable device power source, the shape and material of the wearable device power source are not limited, and the body surface such as the limbs, neck, and body of a warm-blooded animal can be used. It is sufficient that it can be attached to a part of the thermoelectric conversion element, does not significantly hinder the circulation of air around the thermoelectric conversion element, and does not easily come off from the attachment position.

[凸部の形状について]
図17に、基板2の単位形成部21の断面形状を構成する凸部の形状を複数例示す。
図17(a)の凸部は、基板2の裏面と同じ平面26と対向する円弧面からなる頂部27と、平面26をなす直線の両端と頂部27をなす円弧の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
図17(b)の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
[Regarding the shape of the convex part]
FIG. 17 shows a plurality of examples of the shape of the convex portion that constitutes the cross-sectional shape of the unit forming portion 21 of the substrate 2. As shown in FIG.
17(a) includes a top portion 27 formed of an arc surface facing the same plane 26 as the back surface of the substrate 2, and a pair of inclined surfaces connecting both ends of the straight line forming the plane 26 and both ends of the arc forming the top portion 27. 28 and . A boundary between the top portion 27 and the inclined surface 28 is formed round.
17(b) has a top portion 27 formed of a plane facing parallel to the plane 26 which is the same as the back surface of the substrate 2, and a pair of slopes connecting both ends of the straight line forming the plane 26 and both ends of the straight line forming the top portion 27. a surface 28; A boundary between the top portion 27 and the inclined surface 28 is formed round.

図17(c)の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結び、両直線に対して垂直な一対の垂直面29と、を有する。頂部27と垂直面29との境界は丸く形成されている。
図17(d)の凸部は、基板2の裏面と同じ平面26と対向し、平面26をなす直線の両端と結合された円弧面27Aからなる。円弧面27Aの平面26から最も離れている位置が頂部となる。
17(c) has a top portion 27 formed of a plane parallel to the plane 26 which is the same as the back surface of the substrate 2, and both ends of the straight line forming the plane 26 and both ends of the straight line forming the top portion 27. and a pair of vertical surfaces 29 perpendicular to the . The boundary between the top portion 27 and the vertical surface 29 is rounded.
The convex portion in FIG. 17(d) is composed of an arcuate surface 27A that faces the same plane 26 as the back surface of the substrate 2 and that is joined to both ends of a straight line that forms the plane 26. As shown in FIG. The position of the arc surface 27A farthest from the plane 26 is the top.

[材料について]
<熱電変換材料>
熱電変換材料としては、導電性高分子或いはCNT(カーボンナノチューブ)を好適に用いることができ、導電性高分子の種類によっては、成型する上で必要となる熱硬化性樹脂などのバインダ、導電性を高めるためのCNT(カーボンナノチューブ)分散体やエチレングリコール、ジメチルスルホキシド、n-メチルピロリドンあるいはジメチルホルムアミド、ポリエチレングリコール、ジエチレングリコールモノメチルエーテルなどの極性高沸点溶媒を添加できる。
なお、熱電変換材料としては、基板の変形に追従できる材料であれば、種類は限定されず、無機材料もしくは有機物と無機物の混合材料を使用することもできる。一般的には、熱電変換材料の破断歪みが10%以上であると、基板の変形に追従し易い。
[About materials]
<Thermoelectric conversion material>
As the thermoelectric conversion material, a conductive polymer or CNT (carbon nanotube) can be preferably used. CNT (carbon nanotube) dispersions to increase the polar high boiling point solvents such as ethylene glycol, dimethyl sulfoxide, n-methylpyrrolidone or dimethylformamide, polyethylene glycol, diethylene glycol monomethyl ether can be added.
The thermoelectric conversion material is not limited in kind as long as it can follow the deformation of the substrate, and an inorganic material or a mixed material of an organic substance and an inorganic substance can also be used. In general, when the breaking strain of the thermoelectric conversion material is 10% or more, it easily follows the deformation of the substrate.

<導電性高分子からなる熱電変換材料の例示>
p型導電性高分子(p型半導体特性を有する導電性高分子)としては、共役系の分子構造を有する高分子化合物(共役系高分子)を用いることができる。
共役系高分子としては、ポリチオフェン系化合物(破断歪み10~20%)、ポリピロール系化合物(破断歪み20%)、ポリアニリン系化合物(破断歪み~35%)、ポリアセチレン系化合物(破断歪み~800%)、ポリ(p-フェニレン)系化合物、ポリ(p-フェニレンビニレン)系化合物(PPV系化合物、150℃加熱延伸処理後の破断歪み5%)、ポリ(p-フェニレンエチニレン)系化合物(破断歪み2.5%)、ポリ(p-フルオレニレンビニレン)系化合物(破断歪み2.5%)、ポリアセン系化合物(破断歪み1%)、ポリフェナントレン系化合物(破断歪み1%)が挙げられる。
また、上記高分子化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子も挙げられる。
n型導電性高分子(n型半導体特性を有する導電性高分子)としても、共役系の分子構造を有する高分子化合物が挙げられるが、不安定な物質が多い。
<Example of thermoelectric conversion material made of conductive polymer>
As the p-type conductive polymer (conductive polymer having p-type semiconductor properties), a polymer compound having a conjugated molecular structure (conjugated polymer) can be used.
Conjugated polymers include polythiophene compounds (breaking strain 10-20%), polypyrrole compounds (breaking strain 20%), polyaniline compounds (breaking strain ~35%), polyacetylene compounds (breaking strain ~800%). , Poly (p-phenylene) compound, poly (p-phenylene vinylene) compound (PPV compound, breaking strain after 150 ° C heat stretching treatment 5%), poly (p-phenyleneethynylene) compound (breaking strain 2.5%), poly(p-fluorenylene vinylene) compounds (breaking strain 2.5%), polyacene compounds (breaking strain 1%), and polyphenanthrene compounds (breaking strain 1%).
Further, a conjugated polymer having a repeating unit composed of a derivative in which a substituent is introduced into the monomer of the polymer compound is also included.
Examples of n-type conductive polymers (conductive polymers having n-type semiconductor properties) include polymer compounds having a conjugated molecular structure, but many of them are unstable substances.

<第一層および第二層について>
第一層および第二層の少なくともいずれかは熱電変換材料からなり、第一層および第二層は同じ材料または異なる材料からなる。第一層および第二層が異なる材料からなる場合は、凸部の頂部に、熱電変換単位内の第一層と第二層を接続する配線(上側配線)を形成する。
つまり、第一層および第二層が異なる材料からなる場合の材料の組み合わせは、p型熱電材料とn型熱電材料、p型熱電材料と導電性材料(熱電変換機能無し)、n型熱電材料と導電性材料(熱電変換機能無し)が挙げられる。ただし、上述のように、導電性高分子からなるn型熱電材料(n型導電性高分子)は不安定な物質が多い。
<Regarding the first and second layers>
At least one of the first layer and the second layer is made of a thermoelectric conversion material, and the first layer and the second layer are made of the same material or different materials. When the first layer and the second layer are made of different materials, a wiring (upper wiring) connecting the first layer and the second layer in the thermoelectric conversion unit is formed on the top of the projection.
That is, when the first layer and the second layer are made of different materials, the combination of materials is p-type thermoelectric material and n-type thermoelectric material, p-type thermoelectric material and conductive material (no thermoelectric conversion function), n-type thermoelectric material and conductive materials (without thermoelectric conversion function). However, as described above, many n-type thermoelectric materials made of conductive polymers (n-type conductive polymers) are unstable substances.

<基板>
基板の種類は特に限定されないが、電極の形成や熱電変換層の形成時に影響を受けにくく、さらに変形に際して割れにくい基板(破断歪み50%以上)を使用することが好ましい。コストや柔軟性の観点から、プラスチックフィルムが好ましく、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレ
フタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6 -フタレンジカルボキシレート、ビスフェノールAとイソおよびテレフタル酸との重合で得られるポリエステルフィルムなどのポリエステルフィルム、ポリシクロオレフィンフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムなどが挙げられる。
これらのうち、入手の容易性、100℃以上の耐熱性、加工性、経済性および効果の観点から、市販のポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、各種ポリイミドやポリカーボネートフィルムが好ましい。印刷工程を考えると、例えば、片面易接着加工されたシートが好ましい。
<Substrate>
The type of substrate is not particularly limited, but it is preferable to use a substrate (breaking strain of 50% or more) that is less likely to be affected during the formation of the electrodes and the thermoelectric conversion layer and that is less likely to crack when deformed. From the viewpoint of cost and flexibility, plastic films are preferable, and polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly(1,4-cyclohexylene dimethylene terephthalate), polyethylene-2,6-phthalenedicarboxy polycycloolefin films, polyimide films, polycarbonate films, polyether ether ketone films, polyphenyl sulfide films and the like.
Among these, commercially available polyethylene terephthalate (PET), polyethylene naphthalate (PEN), various polyimides and polycarbonate films are preferred from the viewpoint of availability, heat resistance of 100° C. or more, workability, economy and effect. Considering the printing process, for example, a sheet having one side treated for easy adhesion is preferable.

[好ましい態様について]
この発明の第一態様の熱電変換素子は、上記構成(1)~(4)に加えて下記の構成(5)または(5')を有することができる。
(5)前記単位形成部は、前記凸部の範囲内で、前記熱電変換単位毎に独立に切り離された複数の切断面を有する。
この場合、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができる。
[Regarding preferred embodiments]
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (5) or (5') in addition to the above configurations (1) to (4).
(5) The unit forming portion has a plurality of cut surfaces separated independently for each thermoelectric conversion unit within the range of the convex portion.
In this case, each thermoelectric conversion unit can be brought into contact with the atmosphere around the thermoelectric conversion unit.

(5')前記単位形成部は、前記凸部の範囲内で前記非形成部との間が切り離されている。この場合、並列に隣り合う前記熱電変換単位間の前記非形成部を含めて、基板面は一つの面(第一低面部および第二低面部を含む面)内に存在する。そのため、前記構成(5')を有することにより、前記構成(5')を有さない場合よりも平面状の加熱装置上に安定的に設置できる効果が高い。
また、前記構成(5')を有するとともに、複数の熱電変換単位が、X列Y行(X≧1,Y≧2)のマトリックス状に配置され、基板の行間で隣り合う熱電変換単位の間が、全ての凸部の範囲内で切り離されていれば、熱電変換単位の列毎に、全ての凸部の下方空間が凸部の頂部側でつながって、大気の流路となる。
(5') The unit formation portion is separated from the non-formation portion within the range of the convex portion. In this case, the substrate surface including the non-formation portion between the thermoelectric conversion units adjacent in parallel exists within one surface (a surface including the first and second low surface portions). Therefore, by having the configuration (5'), the effect of being able to be stably installed on a flat heating device is higher than when the configuration (5') is not provided.
In addition to having the configuration (5′), a plurality of thermoelectric conversion units are arranged in a matrix of X columns and Y rows (X≧1, Y≧2), and adjacent thermoelectric conversion units are arranged between rows of the substrate. However, if they are separated within the range of all the projections, the spaces below all the projections are connected on the top side of the projections for each row of the thermoelectric conversion units to form air passages.

よって、第一態様の熱電変換素子が構成(5) または(5')を有する場合、平面状の加熱装置に載せて加熱する際に、凸部の下方空間からなる流路に大気を流通させて頂部を冷却することで、熱電変換単位の低部と高部との間に、より大きな温度差を生じさせることができる。
なお、特許文献1の熱電素子では、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができないため、凸部の頂部を効果的に冷却するという点でも課題がある。第一態様の熱電変換素子が構成(5)または(5')を有することで、この課題を解決することができる。
Therefore, when the thermoelectric conversion element of the first aspect has the configuration (5) or (5'), when the thermoelectric conversion element is placed on a flat heating device and heated, air is allowed to flow through the flow path formed by the space below the convex portion. By cooling the top part, a larger temperature difference can be generated between the lower part and the upper part of the thermoelectric conversion unit.
In addition, in the thermoelectric element of Patent Document 1, since the surroundings of each thermoelectric conversion unit cannot be brought into contact with the atmosphere, there is also a problem in that the top of the convex portion is effectively cooled. This problem can be solved by the thermoelectric conversion element of the first aspect having the configuration (5) or (5').

この発明の第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(6)を有することができる。
(6)前記複数の熱電変換単位と前記配線が、前記基板の上面と下面の両方に形成されている。前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている。
この発明の第一態様の熱電変換素子は、上記構成(1)~(4)に加えて下記の構成(7)を有することができる。
(7)前記第一層および前記第二層は異なる材料からなり、前記頂部に、前記熱電変換単位内の前記第一層と前記第二層を接続する配線が形成されている。
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (6) in addition to the above configurations (1) to (4).
(6) The plurality of thermoelectric conversion units and the wiring are formed on both upper and lower surfaces of the substrate. The connection terminals on the top surface and the bottom surface are connected to each other at least one end of the series connection.
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (7) in addition to the above configurations (1) to (4).
(7) The first layer and the second layer are made of different materials, and wiring is formed on the top portion to connect the first layer and the second layer in the thermoelectric conversion unit.

この発明の第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(8) を有することができる。
(8)前記複数の熱電変換単位と前記配線が耐候性材料で覆われている。
第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(9) を有することができる。
(9)前記熱電変換単位を、前記基板の厚さ方向に絶縁層を介して複数有する。
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (8) in addition to the above configurations (1) to (4).
(8) The plurality of thermoelectric conversion units and the wiring are covered with a weather resistant material.
The thermoelectric conversion element of the first aspect can have the following configuration (9) in addition to the above configurations (1) to (4).
(9) A plurality of thermoelectric conversion units are provided in the thickness direction of the substrate via an insulating layer.

この発明の第一態様の熱電変換素子は、さらに下記の構成(a) ~(e) の少なくともいずれかを有することが好ましい。
(a) 前記第一層および前記第二層の少なくともいずれかが導電性高分子からなる。
(b) 前記第一層および前記第二層の少なくともいずれかが、ポリチオフェン系化合物、ポリピロール系化合物、ポリアニリン系化合物、ポリアセチレン系化合物、ポリ(p-フェニレン)系化合物、ポリ(p-フェニレンビニレン)系化合物、ポリ(p-フェニレンエチニレン)系化合物、ポリ(p-フルオレニレンビニレン)系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、およびこれらの化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子から選択される少なくとも一つを有する。
Preferably, the thermoelectric conversion element of the first aspect of the present invention further has at least one of the following structures (a) to (e).
(a) At least one of the first layer and the second layer is made of a conductive polymer.
(b) at least one of the first layer and the second layer is polythiophene-based compound, polypyrrole-based compound, polyaniline-based compound, polyacetylene-based compound, poly(p-phenylene)-based compound, poly(p-phenylene vinylene); -based compounds, poly(p-phenyleneethynylene)-based compounds, poly(p-fluorenylenevinylene)-based compounds, polyacene-based compounds, polyphenanthrene-based compounds, and derivatives in which substituents are introduced into the monomers of these compounds at least one selected from conjugated polymers having repeating units of

(c)前記熱電変換材料はp型導電性高分子である。
(d)前記基板は、ポリエチレンテレフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)フィルム、ポリエチレン-2,6-フタレンジカルボキシレートフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムから選択される少なくとも一つからなる。
(e) 前記熱電変換素子の前記印刷パターンが保護層(例えば、合成樹脂からなるコーティング剤を塗布して硬化させた層、耐候性材料からなる層)で覆われている。
(c) The thermoelectric conversion material is a p-type conductive polymer.
(d) The substrate is polyethylene terephthalate film, polyethylene isophthalate film, polyethylene naphthalate film, polybutylene terephthalate film, poly(1,4-cyclohexylene dimethylene terephthalate) film, polyethylene-2,6-phthalene dicarboxylate. At least one selected from a film, a polyimide film, a polycarbonate film, a polyetheretherketone film, and a polyphenylsulfide film.
(e) The printed pattern of the thermoelectric conversion element is covered with a protective layer (for example, a layer formed by applying and curing a coating agent made of a synthetic resin, a layer made of a weather-resistant material).

上記構成(1)~構成(5)を有する熱電変換素子は、例えば、上記構成(11)~(13)と下記の構成(14)を有する方法で製造することができる。
(14)前記凸部形成工程の前に、前記基板の、前記凸部を形成する範囲内の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程。
この発明の第三態様として、前記第一態様の熱電変換素子を備えた無線センサ用電源が挙げられる。
この発明の第四態様として、前記第一態様の熱電変換素子からなる自立電源と、信号処理・送信回路と、電圧増幅部・バッテリーと、アンテナ回路およびセンサ端子が形成された回路基板と、を有する無線センサが挙げられる。
The thermoelectric conversion elements having the configurations (1) to (5) can be produced, for example, by a method having the configurations (11) to (13) and the configuration (14) below.
(14) A step of forming a through hole in a portion of the substrate, which is located between the adjacent thermoelectric conversion units between the rows within the range where the convex portion is formed, before the convex portion forming step.
A third aspect of the present invention includes a wireless sensor power supply including the thermoelectric conversion element of the first aspect.
As a fourth aspect of the present invention, a self-sustaining power supply comprising the thermoelectric conversion element of the first aspect, a signal processing/transmitting circuit, a voltage amplifying section/battery, and a circuit board on which an antenna circuit and a sensor terminal are formed. wireless sensors with

この発明の第五態様として、恒温動物の四肢、首、胴体などの体表面の一部に装着される装着物と、前記装着物の面に固定された前記第一態様の熱電変換素子と、を有するウェアラブル機器用電源が挙げられる。
第五態様のウェアラブル機器用電源は、人を含む恒温動物の体温をエネルギー源とするため、装着されている恒温動物の生命活動が維持されている限り、電力が著しく減衰することはない。また、第一態様の熱電変換素子が前記構成(8)を有することで、屋外での使用でも長期に渡って電力を供給し続けることが期待できる。
これに対して、電磁波や力学的エネルギーを利用した環境発電技術では、場所や時間などの条件によって電力が著しく減衰する。つまり、第五態様の電源を用いたウェアラブル無線センサ送信装置は、常時稼働できる自立型無線センサ送信装置として優れている。
As a fifth aspect of the present invention, an attachment that is attached to a part of the body surface of a warm-blooded animal such as limbs, neck, body, etc.; the thermoelectric conversion element of the first aspect fixed to the surface of the attachment; A power supply for wearable devices having
Since the power supply for wearable devices of the fifth aspect uses the body temperature of warm-blooded animals including humans as an energy source, the electric power does not significantly decrease as long as the vital activity of the warm-blooded animals worn is maintained. Further, since the thermoelectric conversion element of the first aspect has the configuration (8), it can be expected to continue supplying electric power over a long period of time even when used outdoors.
On the other hand, in energy harvesting technology using electromagnetic waves or mechanical energy, the power is significantly attenuated depending on conditions such as location and time. In other words, the wearable wireless sensor transmitter using the power source of the fifth aspect is excellent as an independent wireless sensor transmitter that can always operate.

[熱電変換材料について]
第一層31の材料として、ポリチオフェン系化合物を含むコーティング剤であるヘレウス株式会社の「Clevios PH1000(水分散液)」を使用した。ポリチオフェン系化合物はp型導電性高分子であり、このコーティング剤の主成分は「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」である。
セルロースナノファイバ(中越パルプ社製、最大幅500nm以下、平均幅50nm以下、平均繊維長0.5μm、重合度350)を、PH1000の有効成分に対して10質量%添加し、エチレングリコールをPH1000に対して5体積%となるように添加した後、攪拌しながら加温して、水分を蒸発させてゲル状のp型熱電変換材料を得た。
第二層32、下側配線41、接続端子43、および上側配線42の材料としては、銀ペーストを使用した。下側配線41、接続端子43、および上側配線42はスクリーン印刷で形成した。銀ペーストとしては、例えば藤倉化成株式会社製「ドータイトFA-333」などを使用できる。また、銀の酸化を抑制するため、銀ペーストの上に、カーボンペーストを重ねて印刷しても良い。
[About thermoelectric conversion materials]
As a material for the first layer 31, "Clevios PH1000 (aqueous dispersion)" manufactured by Heraeus Co., Ltd., which is a coating agent containing a polythiophene-based compound, was used. A polythiophene-based compound is a p-type conductive polymer, and the main component of this coating agent is "poly(3,4-ethylenedioxythiophene): polystyrene sulfide".
Cellulose nanofiber (manufactured by Chuetsu Pulp Co., Ltd., maximum width 500 nm or less, average width 50 nm or less, average fiber length 0.5 μm, degree of polymerization 350) is added 10% by mass to the active ingredient of PH 1000, and ethylene glycol is added to PH 1000. After adding so as to be 5% by volume, the mixture was heated with stirring to evaporate the water content, thereby obtaining a gel-like p-type thermoelectric conversion material.
Silver paste was used as the material for the second layer 32 , the lower wiring 41 , the connection terminal 43 , and the upper wiring 42 . The lower wiring 41, the connection terminals 43, and the upper wiring 42 were formed by screen printing. As the silver paste, for example, "Dotite FA-333" manufactured by Fujikura Kasei Co., Ltd. can be used. Moreover, in order to suppress the oxidation of silver, carbon paste may be printed on the silver paste.

[熱電変換素子の製造]
<サンプルNo.1>
熱電変換単位を13列24行のマトリックス状に312個有する熱電変換素子を、以下の方法で製造した。第一実施形態では2列7行、14個の熱電変換単位10を有する熱電変換素子1について説明したが、熱電変換単位10の個数が異なる以外、各工程は第一実施形態で説明した各工程と同じ方法で行った。
先ず、16列24行の第一層31の開口パターンが、図2と同様に各列と各行で交互に形成された厚さ0.1mmのメタルマスクを用意した。このメタルマスクを用いて、厚さ100μmのPETフィルムからなる基板2の上面に、上述のゲル状のp型熱電変換材料を印刷した。これにより、各熱電変換単位10にp型熱電変換材料からなる第一層31の印刷パターンを、図2と同様の配置で形成した。
[Manufacture of thermoelectric conversion element]
<Sample No.1>
A thermoelectric conversion element having 312 thermoelectric conversion units arranged in a matrix of 13 columns and 24 rows was manufactured by the following method. In the first embodiment, the thermoelectric conversion element 1 having 2 columns, 7 rows and 14 thermoelectric conversion units 10 was described. did in the same way.
First, a metal mask having a thickness of 0.1 mm was prepared in which opening patterns of the first layer 31 of 16 columns and 24 rows were alternately formed in each column and each row in the same manner as in FIG. Using this metal mask, the gel p-type thermoelectric conversion material was printed on the upper surface of the substrate 2 made of PET film with a thickness of 100 μm. As a result, the printed pattern of the first layer 31 made of the p-type thermoelectric conversion material was formed on each thermoelectric conversion unit 10 in the same layout as in FIG.

次に、この状態の基板2を120℃で2時間加熱することで、p型熱電変換材料を乾燥させた。乾燥後の第一層31の厚さは10μmであった。
次に、全ての熱電変換単位10の第一層31の隣に、銀ペーストからなる第二層32を印刷し、120℃で2時間加熱することで銀ペーストを乾燥させた。この印刷はスクリーン印刷で行った。銀ペーストは、乾燥後の第二層32が10μmとなるように印刷した。これにより、図3と同様の第一層31と第二層32とからなる熱電変換パターンを312個形成した。
次に、全ての熱電変換パターン上に、図4と同様に、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。導電層パターンは、銀ペーストをスクリーン印刷した後に、120℃で2時間の加熱を行って乾燥させることで形成した。
Next, the p-type thermoelectric conversion material was dried by heating the substrate 2 in this state at 120° C. for 2 hours. The thickness of the first layer 31 after drying was 10 μm.
Next, the second layer 32 made of silver paste was printed next to the first layer 31 of all the thermoelectric conversion units 10, and the silver paste was dried by heating at 120°C for 2 hours. This printing was performed by screen printing. The silver paste was printed so that the dried second layer 32 had a thickness of 10 μm. As a result, 312 thermoelectric conversion patterns composed of the first layer 31 and the second layer 32 similar to those shown in FIG. 3 were formed.
Next, on all the thermoelectric conversion patterns, a conductive layer pattern including lower wirings 41, connection terminals 43, and upper wirings 42 was formed in the same manner as in FIG. The conductive layer pattern was formed by screen-printing a silver paste and drying it by heating at 120° C. for 2 hours.

次に、レーザー加工による切り抜き法で、図5と同様の配置で貫通穴25を形成した。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、312個全ての凸部211に対応させた雄部および雌部を有する金型を使用し、第一実施形態に記載した加熱加圧成形による凸部形成工程を、120℃で120分の条件で行った。これにより、312個全ての熱電変換単位10を図1に示す状態にした。凸部211の突出高さTは1.7mmとした。また、第一層31および第二層32も基板2とともに延伸変形した。
このようにして得られた熱電変換素子1は、図1に示すように、各列の熱電変換単位10毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, through holes 25 were formed in the same arrangement as in FIG. 5 by a cutting method using laser processing. In this state, the thermoelectric conversion unit 10 is formed in a flat shape on the flat substrate 2, as shown in FIG.
Next, using a mold having male and female portions corresponding to all 312 convex portions 211, the step of forming convex portions by heat and pressure molding described in the first embodiment is performed at 120° C. for 120 minutes. was performed under the conditions of As a result, all 312 thermoelectric conversion units 10 were brought into the state shown in FIG. The protrusion height T of the protrusion 211 was set to 1.7 mm. Also, the first layer 31 and the second layer 32 were stretched and deformed together with the substrate 2 .
As shown in FIG. 1, the thermoelectric conversion element 1 obtained in this manner has an air flow path in which the spaces K below the projections 211 are connected to each of the thermoelectric conversion units 10 in each row.

<サンプルNo.2>
基板2の上面と下面にそれぞれ熱電変換単位を13列24行のマトリックス状に312個(両面合計で642個)有する熱電変換素子を、以下の方法で製造した。第二実施形態では、基板2の上面と下面にそれぞれ2列7行、14個の熱電変換単位10,10Aを有
する熱電変換素子101について説明したが、熱電変換単位10,10Aの個数が異なる以外、各工程は第二実施形態で説明した各工程と同じ方法で行った。
先ず、基板2の上面と下面の両方に、サンプルNo.1と同じ方法で、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。各層のパターンは、基板2の上面と下面で同じ配置(基板を挟んで重なる配置)とした。
<Sample No.2>
A thermoelectric conversion element having 312 thermoelectric conversion units arranged in a matrix of 13 columns and 24 rows (642 units in total on both sides) on each of the upper and lower surfaces of the substrate 2 was manufactured by the following method. In the second embodiment, the thermoelectric conversion element 101 having 2 columns and 7 rows and 14 thermoelectric conversion units 10 and 10A on the upper surface and the lower surface of the substrate 2 respectively was described, but the number of thermoelectric conversion units 10 and 10A is different. , each step was performed in the same manner as each step described in the second embodiment.
First, a conductive layer pattern including lower wiring 41, connection terminal 43, and upper wiring 42 was formed on both the upper and lower surfaces of substrate 2 by the same method as for sample No. 1. FIG. The pattern of each layer was arranged in the same manner on the upper surface and the lower surface of the substrate 2 (arrangement overlapping with the substrate interposed therebetween).

次に、サンプルNo.1と同じ方法で、貫通穴形成工程および凸部形成工程を行った。つまり、凸部211の突出高さTは、サンプルNo.1と同じ1.7mmである。
次に、基板2を挟んで互いに重なる上面および下面の接続端子43aを、電気的に接続した。これにより、642個の熱電変換単位が直列接続された熱電変換素子101を得た。
このようにして得られた熱電変換素子101は、図7に示すように、各列の熱電変換単位10,10A毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, a through-hole forming step and a projection forming step were performed in the same manner as for sample No.1. That is, the protrusion height T of the protrusion 211 is 1.7 mm, which is the same as that of the sample No.1.
Next, the connection terminals 43a on the upper surface and the lower surface, which overlap with each other with the substrate 2 interposed therebetween, were electrically connected. As a result, a thermoelectric conversion element 101 having 642 thermoelectric conversion units connected in series was obtained.
As shown in FIG. 7, the thermoelectric conversion element 101 obtained in this manner has an air flow path in which the spaces K below the projections 211 are connected to each of the thermoelectric conversion units 10 and 10A in each row.

[破断歪み試験]
サンプルNo.1およびNo.2の熱電変換素子を構成する熱電変換層の破断歪みを、以下の方法で試験した。
両サンプルとも、第一層31を構成する熱電変換材料は「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」であるため、PETフィルム上に「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」を形成した試験片を用意して、引張破断試験を行った。その結果、熱電変換層の破断歪みは10%であった。つまり、サンプルNo.1およびNo.2の熱電変換素子は、第一層31が基板2の変形に追従し易いものであった。
[Breaking strain test]
The breaking strain of the thermoelectric conversion layers forming the thermoelectric conversion elements of Samples No. 1 and No. 2 was tested by the following method.
In both samples, the thermoelectric conversion material constituting the first layer 31 is "poly(3,4-ethylenedioxythiophene):polystyrene sulfide", so that "poly(3,4-ethylenedioxythiophene ): A test piece in which polystyrene sulfide was formed was prepared and subjected to a tensile breaking test. As a result, the breaking strain of the thermoelectric conversion layer was 10%. That is, in the thermoelectric conversion elements of Samples No. 1 and No. 2, the first layer 31 easily followed the deformation of the substrate 2 .

[熱電変換素子の評価]
サンプルNo.1およびNo.2の熱電変換素子を、室温25℃の環境下で、基板2の非形成部22を水平に保持して、80℃のホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱した。この状態で、両端子43間に発生した電圧をテスターで測定した。
電圧の測定値は、サンプルNo.1では80mV、サンプルNo.2では150mVであり、何れの熱電変換素子でも無線センサ用電源として使用できる起電力が得られた。
以上の結果を下記の表1にまとめて示す。
[Evaluation of thermoelectric conversion element]
The thermoelectric conversion elements of Samples No. 1 and No. 2 were placed on a hot plate at 80° C. in an environment of room temperature 25° C. while holding the non-formation portion 22 of the substrate 2 horizontally. The lower portion 31a of the first layer 31 and the lower portion 32a of the second layer 32 were heated. In this state, the voltage generated between both terminals 43 was measured with a tester.
The measured voltage values were 80 mV for sample No. 1 and 150 mV for sample No. 2, and both thermoelectric conversion elements provided an electromotive force that could be used as a power supply for wireless sensors.
The above results are summarized in Table 1 below.

Figure 0007196940000001
Figure 0007196940000001

1 熱電変換素子
10 基板上面の熱電変換単位
10A 基板下面の熱電変換単位
10B 二層目の熱電変換単位
2 基板
21 単位形成部
211 凸部
211a 凸部の頂部
212 第一低面部
213 第二低面部
214 切断面
22 非形成部
25 貫通穴
31 第一層
31a 第一層の低部
31b 第一層の高部
32 第二層
32b 第二層の高部
32a 第二層の低部
41 下側配線
42 上側配線
43 接続端子
44 絶縁層
45 耐候性材料からなる被覆層
5 無線センサ送信装置
51 回路基板
52 アンテナ回路
53 センサ端子
54 信号処理・送信回路
55 電圧増幅部・バッテリー
6 牛用首輪
61 首輪本体(装着物)
7 牛(恒温動物)
71 首
REFERENCE SIGNS LIST 1 thermoelectric conversion element 10 thermoelectric conversion unit on upper surface of substrate 10A thermoelectric conversion unit on lower surface of substrate 10B thermoelectric conversion unit in second layer 2 substrate 21 unit forming portion 211 convex portion 211a top portion of convex portion 212 first lower surface portion 213 second lower surface portion 214 cut surface 22 non-forming portion 25 through hole 31 first layer 31a first layer lower portion 31b first layer higher portion 32 second layer 32b second layer higher portion 32a second layer lower portion 41 lower wiring 42 Upper Wiring 43 Connection Terminal 44 Insulating Layer 45 Coating Layer Made of Weather Resistant Material 5 Wireless Sensor Transmitter 51 Circuit Board 52 Antenna Circuit 53 Sensor Terminal 54 Signal Processing/Transmitting Circuit 55 Voltage Amplifier/Battery 6 Cattle Collar 61 Collar Body (Equipment)
7 Cattle (warm-blooded animals)
71 neck

Claims (6)

基板と、
前記基板上に、行列状に間隔を開けて形成された複数の熱電変換単位と、
を有し、
前記基板の前記熱電変換単位が形成されている単位形成部の前記行列の行方向に沿った断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなり、前記第一低面部および前記第二低面部は同じ高さにあり、
前記基板の前記熱電変換単位が形成されていない非形成部は、全て前記第一低面部および前記第二低面部と同じ高さにあり、
前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有し、
全ての前記単位形成部は、前記凸部の範囲内の全体で、前記熱電変換単位毎に独立に切り離された切断面を有し、
前記凸部の範囲内の全体で、行間で隣り合う前記単位形成部の間の前記基板に、前記切断面を内壁面として含む貫通穴が形成され、
前記熱電変換単位の前記行列の列毎に、行間で隣り合う前記切断面からなる空間と前記凸部の下方空間とが連通し、
前記行方向端部の前記非形成部と前記列間の前記非形成部には貫通穴が存在せず、
前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなり、
前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により直列接続され、
前記直列接続の両端に接続端子を有する熱電変換素子。
a substrate;
a plurality of thermoelectric conversion units formed on the substrate at intervals in a matrix;
has
The cross-sectional shape along the row direction of the matrix of the unit forming portions in which the thermoelectric conversion units of the substrate are formed is from the first lower surface portion and the second lower surface portion lower than the convex portion and the convex portions on both sides of the convex portion. and the first lower surface portion and the second lower surface portion are at the same height,
All non-formed portions of the substrate where the thermoelectric conversion units are not formed are at the same height as the first and second low surface portions,
The thermoelectric conversion unit has a first layer extending from the first bottom surface portion of the unit forming portion to the top portion of the convex portion, and a second layer extending from the top portion to the second bottom surface portion,
all of the unit forming portions have cut surfaces separated independently for each of the thermoelectric conversion units throughout the range of the convex portion;
a through hole including the cut surface as an inner wall surface is formed in the substrate between the unit forming portions adjacent to each other between rows in the entire range of the convex portion;
For each column of the matrix of the thermoelectric conversion units, the space formed by the adjacent cut surfaces between rows communicates with the space below the convex portion,
There is no through hole in the non-formation portion at the end in the row direction and the non-formation portion between the columns,
At least one of the first layer and the second layer is made of a thermoelectric conversion material,
The plurality of thermoelectric conversion units are connected in series by wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first and second low surface portions,
A thermoelectric conversion element having connection terminals at both ends of the series connection.
前記複数の熱電変換単位と前記配線が、前記基板の上面と下面の両方に形成され、
前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている請求項1記載の熱電変換素子。
The plurality of thermoelectric conversion units and the wiring are formed on both the top surface and the bottom surface of the substrate,
2. The thermoelectric conversion element according to claim 1, wherein said connection terminals on said upper surface and said lower surface are connected to each other at least one end of said series connection.
前記複数の熱電変換単位を、前記基板の厚さ方向に絶縁層を介して複数有する請求項1記載の熱電変換素子。 2. The thermoelectric conversion element according to claim 1, wherein said plurality of thermoelectric conversion units are provided in plurality in the thickness direction of said substrate via an insulating layer. 前記基板とは反対側の最外面において、前記複数の熱電変換単位と前記配線が耐候性材料で覆われている請求項1~3のいずれか一項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 3, wherein the plurality of thermoelectric conversion units and the wiring are covered with a weather resistant material on the outermost surface opposite to the substrate. 請求項1記載の熱電変換素子を製造する方法であって、
基板上に、行列状に間隔を開けて配置される前記複数の熱電変換単位を形成するための、前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程と、
前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程と、
前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程と、
を有するとともに、
前記凸部形成工程の前に、
前記基板の、前記凸部を形成する範囲内全体の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程を、さらに有する熱電変換素子の製造方法。
A method for manufacturing the thermoelectric conversion element according to claim 1,
a first printing step of forming a thermoelectric conversion pattern composed of the first layer and the second layer for forming the plurality of thermoelectric conversion units arranged at intervals in a matrix on a substrate;
a second printing step of forming a conductive layer pattern composed of the wiring and the connection terminal on the thermoelectric conversion pattern;
a protrusion forming step of forming the protrusion by stretching and deforming the first layer, the second layer, and a portion of the substrate on which the first layer and the second layer are formed;
and
Before the convex portion forming step,
The method of manufacturing a thermoelectric conversion element, further comprising the step of forming through holes in portions of the substrate that are between the adjacent thermoelectric conversion units between the rows in the entire range where the convex portions are formed.
恒温動物の四肢、首、胴体などの体表面の一部に装着される装着物と、前記装着物の面に固定された熱電変換素子と、を有し、前記熱電変換素子は請求項1~4のいずれか一項に記載の熱電変換素子であるウェアラブル機器用電源。 It comprises an attachment that is attached to a part of the body surface of a warm-blooded animal such as limbs, neck, body, etc., and a thermoelectric conversion element fixed to the surface of the attachment, wherein the thermoelectric conversion element is according to claims 1- 5. A power supply for wearable equipment, which is the thermoelectric conversion element according to any one of items 4.
JP2021000475A 2021-01-05 2021-01-05 Thermoelectric conversion element and manufacturing method thereof Active JP7196940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000475A JP7196940B2 (en) 2021-01-05 2021-01-05 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000475A JP7196940B2 (en) 2021-01-05 2021-01-05 Thermoelectric conversion element and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016203443A Division JP2018067567A (en) 2016-10-17 2016-10-17 Thermoelectric transducer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021061440A JP2021061440A (en) 2021-04-15
JP7196940B2 true JP7196940B2 (en) 2022-12-27

Family

ID=75380509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000475A Active JP7196940B2 (en) 2021-01-05 2021-01-05 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7196940B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2005259944A (en) 2004-03-11 2005-09-22 Nagoya Industrial Science Research Inst Thin film thermo-electronic semiconductor device and manufacturing method thereof
JP2006301711A (en) 2005-04-15 2006-11-02 Ricoh Co Ltd Ic card, communication terminal and method for manufacturing ic card
JP2011216803A (en) 2010-04-02 2011-10-27 Tdk Corp Thermoelectric module
JP2014135455A (en) 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
WO2016046713A1 (en) 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
JP2016518707A (en) 2013-03-14 2016-06-23 ウェイク フォレスト ユニバーシティ Thermoelectric device and article and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303469A (en) * 1997-04-23 1998-11-13 Sharp Corp Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2005259944A (en) 2004-03-11 2005-09-22 Nagoya Industrial Science Research Inst Thin film thermo-electronic semiconductor device and manufacturing method thereof
JP2006301711A (en) 2005-04-15 2006-11-02 Ricoh Co Ltd Ic card, communication terminal and method for manufacturing ic card
JP2011216803A (en) 2010-04-02 2011-10-27 Tdk Corp Thermoelectric module
JP2014135455A (en) 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
JP2016518707A (en) 2013-03-14 2016-06-23 ウェイク フォレスト ユニバーシティ Thermoelectric device and article and its application
WO2016046713A1 (en) 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator

Also Published As

Publication number Publication date
JP2021061440A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
Tee et al. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future
Qian et al. Stretchable organic semiconductor devices
He et al. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications
Zhao et al. Advances in organic thermoelectric materials and devices for smart applications
Trung et al. Materials and devices for transparent stretchable electronics
Hong et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin
Jeong et al. Stretchable thermoelectric generators metallized with liquid alloy
Qian et al. Thin-film organic semiconductor devices: from flexibility to ultraflexibility
KR102395732B1 (en) Flexible substrate, electronic device, manufacturing method of electronic device
JP6448980B2 (en) Thermoelectric conversion element and thermoelectric conversion module
Kaufmann et al. Efficiency of a compact elliptical planar ultra‐wideband antenna based on conductive polymers
Rao et al. All‐Polymer Based Stretchable Rubbery Electronics and Sensors
US20160218268A1 (en) Thermoelectric conversion module
Huang et al. Flexible and stretchable polyaniline supercapacitor with a high rate capability
WO2013065856A1 (en) Thermoelectric conversion element and thermoelectric conversion module
Hwang et al. All Direct Ink Writing of 3D Compliant Carbon Thermoelectric Generators for High‐Energy Conversion Efficiency
KR20180103590A (en) Thermoelectric device and method for manufacturing the same
JP7196940B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2018067567A (en) Thermoelectric transducer and manufacturing method thereof
Hasan et al. Wearable thermoelectric generator with vertically aligned PEDOT: PSS and carbon nanotubes thermoelements for energy harvesting
JP6606853B2 (en) Thermoelectric conversion element and manufacturing method thereof
Zhou et al. Intrinsically stretchable low-dimensional conductors for wearable organic light-emitting diodes
KR101397265B1 (en) Dedoped conductive film have high-efficient thermoelectric performance
JP2016207933A5 (en)
KR101602726B1 (en) Method for preparing electroconductive polymer and thermoelectric device comprising electroconductive polymer film prepared using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150