JP7196940B2 - Thermoelectric conversion element and manufacturing method thereof - Google Patents
Thermoelectric conversion element and manufacturing method thereof Download PDFInfo
- Publication number
- JP7196940B2 JP7196940B2 JP2021000475A JP2021000475A JP7196940B2 JP 7196940 B2 JP7196940 B2 JP 7196940B2 JP 2021000475 A JP2021000475 A JP 2021000475A JP 2021000475 A JP2021000475 A JP 2021000475A JP 7196940 B2 JP7196940 B2 JP 7196940B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- layer
- substrate
- conversion element
- conversion units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 292
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000758 substrate Substances 0.000 claims description 114
- 239000000463 material Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 28
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- 238000007639 printing Methods 0.000 claims description 18
- 241001465754 Metazoa Species 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 161
- 150000001875 compounds Chemical class 0.000 description 25
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 23
- -1 Poly (p-phenylene) Polymers 0.000 description 21
- 241000283690 Bos taurus Species 0.000 description 19
- 229920001940 conductive polymer Polymers 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229920000547 conjugated polymer Polymers 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 229920006289 polycarbonate film Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229920003026 Acene Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Electric Clocks (AREA)
Description
この発明は、熱電変換素子およびその製造方法に関する。 The present invention relates to a thermoelectric conversion element and its manufacturing method.
熱電変換素子は、熱エネルギーと電気エネルギーを相互に変換することができる素子である。熱電変換素子をその両端に温度差が生じる環境に設置することで、可動部を必要とせずに熱電変換素子から電力を取り出すことができる。例えば、排熱から電気エネルギーを生み出すことができる。そのため、熱電変換素子を用いた発電技術は、身の周りの未利用のエネルギーを回収して利用するエネルギーハーベスティング技術として、大いに期待されている。
熱電変換素子を、例えば分散型の自立電源として利用することができれば、大規模センサネットワーク、ウェアラブルエレクトロニクスなどの電源として用いることが可能となる。特に、有機物からなる熱電変換材料を用いた場合には、熱電変換層を印刷パターンで形成できるため、軽量化、低コスト化、大面積による高出力化が可能となる。この場合、熱電変換素子ユニットの平面性を保つため、温度差はユニットの基板に垂直な方向に与えるのが一般的である。
A thermoelectric conversion element is an element capable of mutually converting thermal energy and electrical energy. By installing the thermoelectric conversion element in an environment where a temperature difference occurs between both ends thereof, electric power can be extracted from the thermoelectric conversion element without requiring a movable part. For example, electrical energy can be produced from waste heat. Therefore, power generation technology using thermoelectric conversion elements is highly expected as an energy harvesting technology for recovering and utilizing unused energy around us.
If a thermoelectric conversion element can be used as, for example, a distributed self-sustaining power source, it will be possible to use it as a power source for large-scale sensor networks, wearable electronics, and the like. In particular, when a thermoelectric conversion material made of an organic substance is used, the thermoelectric conversion layer can be formed in a printed pattern, which makes it possible to reduce the weight, reduce the cost, and increase the output due to the large area. In this case, in order to maintain the flatness of the thermoelectric conversion element unit, the temperature difference is generally applied in the direction perpendicular to the substrate of the unit.
熱電変換層を印刷パターンとして有する熱電変換素子の一例として、特許文献1に開示された熱電発電素子が挙げられる。特許文献1の熱電変換素子(熱電発電素子)では、底部と頂部とが交互に繰り返された波形の基板(基材)に、印刷パターンからなる複数の熱電変換層(熱電変換単位)が形成され、複数の熱電変換層が直列接続されている。各熱電変換層は、基板の波形を構成する一つの凸部または凹部が有する一対の斜面の一方に形成され、他方には形成されていない。
特許文献1の熱電変換素子では、底部を吸熱側、頂部を放熱側とし、底部側と頂部側の温度差により発電が行われる。また、基板が波形に形成されていることで、吸熱側と放熱側との距離が大きくなる分、大きな温度差を得ることができる。これに対して、凹凸のない基板を有する熱電変換素子では、基板を水平に保持した状態では十分な温度差が得られない。
As an example of a thermoelectric conversion element having a thermoelectric conversion layer as a printed pattern, there is a thermoelectric generation element disclosed in
In the thermoelectric conversion element of
特許文献1の熱電変換素子では、熱電変換層が形成されている部分だけでなく、熱電変換素子が形成されていない部分も含めて、基板全体の断面形状が波形になっている。そのため、底部と頂部との間に大きな高低差をつける場合、基板の凸部の下側空間に形状保持のための補強材を設ける必要がある。また、ホットプレートなどの平面状の加熱装置の上に安定的に設置するためには、基板の複数の底部を載せて固定する支持基材がさらに必要になる。
この発明の課題は、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置の上に安定的に設置できる熱電変換素子を提供することである。
In the thermoelectric conversion element of
An object of the present invention is to form a plurality of thermoelectric conversion units connected in series on a substrate, have a height difference greater than the thickness of the thermoelectric conversion layer between the heat absorption side and the heat dissipation side, and be high even when used without being erected. To provide a thermoelectric conversion element capable of obtaining power generation performance and stably installed on a flat heating device only with a substrate on which thermoelectric conversion units are formed.
上記課題を解決するために、この発明の第一態様は、下記の構成(1)~(4)を有する熱電変換素子を提供する。
(1)基板と、前記基板の上面または下面に形成された複数の熱電変換単位とを有する。
(2)前記基板の前記熱電変換単位が形成されている単位形成部の断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなる。前記基板の前記熱電変換単位が形成されていない非形成部は、前記凸部の頂部より低い位置にある。
(3)前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有する。前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなる。
(4)前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により、直列接続されている。前記直列接続の両端に接続端子を有する。
In order to solve the above problems, a first aspect of the present invention provides a thermoelectric conversion element having the following configurations (1) to (4).
(1) It has a substrate and a plurality of thermoelectric conversion units formed on the upper surface or the lower surface of the substrate.
(2) The cross-sectional shape of the unit formation portion of the substrate where the thermoelectric conversion units are formed is composed of a convex portion and first and second low surface portions lower than the convex portion on both sides of the convex portion. A non-formation portion of the substrate where the thermoelectric conversion unit is not formed is located at a position lower than the top portion of the protrusion.
(3) The thermoelectric conversion unit has a first layer extending from the first low surface portion of the unit forming portion to the top portion of the convex portion, and a second layer extending from the top portion to the second low surface portion. At least one of the first layer and the second layer is made of a thermoelectric conversion material.
(4) The plurality of thermoelectric conversion units are connected in series by wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first and second low surface portions. It is connected. Connection terminals are provided at both ends of the series connection.
この発明の第二態様は、上記構成(1)~(4)を有する熱電変換素子の製造方法であって、下記の構成(11)~(13)の各工程を有することを特徴とする。
(11)基板上に、前記複数の熱電変換単位を構成する前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程。
(12)前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程。
(13)前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程。
A second aspect of the present invention is a method for manufacturing a thermoelectric conversion element having the above structures (1) to (4), characterized by comprising steps of the following structures (11) to (13).
(11) A first printing step of forming, on a substrate, a thermoelectric conversion pattern composed of the first layer and the second layer constituting the plurality of thermoelectric conversion units.
(12) A second printing step of forming a conductive layer pattern composed of the wiring and the connection terminal on the thermoelectric conversion pattern.
(13) A protrusion forming step of forming the protrusion by stretching and deforming the first layer, the second layer, and the portion of the substrate on which the first layer and the second layer are formed.
第二態様の方法で製造された熱電変換素子は、上記構成(1) ~(4) と下記の構成(21)および(22)を有する。
(21)前記複数の熱電変換単位基板は印刷パターンからなる。
(22)前記配線および前記接続端子は印刷パターンからなる。
The thermoelectric conversion element manufactured by the method of the second aspect has the above configurations (1) to (4) and the following configurations (21) and (22).
(21) The plurality of thermoelectric conversion unit substrates are formed of printed patterns.
(22) The wiring and the connection terminals are printed patterns.
この発明によれば、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置上に安定的に設置できる熱電変換素子が提供される。 According to this invention, a plurality of thermoelectric conversion units are formed in series connection on the substrate, and the difference in height between the heat absorption side and the heat dissipation side is equal to or greater than the thickness of the thermoelectric conversion layer. Provided is a thermoelectric conversion element that can be stably installed on a planar heating device with only a substrate on which thermoelectric conversion units are formed, and which has power generation performance.
以下、この発明の実施形態について説明する。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この発明は以下に示す実施形態に限定されない。 Embodiments of the present invention will be described below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but the present invention is not limited to the embodiments shown below.
[第一実施形態]
この実施形態の熱電変換素子は、図2~5に示す各工程を行うことで製造される熱電変換素子である。図1には、この実施形態の熱電変換素子1を構成する一つの熱電変換単位10の断面が示されている。
熱電変換素子1は、図2に示す第一印刷工程の前段工程と、図3に示す第一印刷工程の後段工程と、図4に示す第二印刷工程と、図5に示す貫通穴形成工程と、図6の状態から図1の状態にする凸部形成工程と、を行うことで製造される。
[First embodiment]
The thermoelectric conversion element of this embodiment is a thermoelectric conversion element manufactured by performing each step shown in FIGS. FIG. 1 shows a cross section of one
The
熱電変換素子1は、可撓性を有する基板2と、基板2の上面に形成された印刷パターンからなる複数の熱電変換単位10とを有する。基板2の熱電変換単位10が形成されている単位形成部21の断面形状は、凸部211と第一低面部212と第二低面部213とからなる。第一低面部212と第二低面部213は、凸部211の両脇の凸部より低い部分であり、熱電変換単位10が形成されていない非形成部22と同じ高さである。
熱電変換単位10は、単位形成部21の第一低面部212から凸部211の頂部211aに至る第一層31と、頂部211aから第二低面部213に至る第二層32を有する。第一層31は、p型導電性高分子(熱電変換材料)からなり、第二層32は銀ペーストの硬化物(導電性材料)からなる。第二層32としてn型導電性高分子(熱電変換材料)からなる層を設けてもよいが、現時点で安定的な性能を有するものがないため、この実施形態では、その代替として銀ペーストの硬化物からなる第二層32を設けている。
The
The
図5に示すように、基板2の上面には2列7行、14個の熱電変換単位10が形成されている。基板2の行間で隣り合う熱電変換単位10の間に、凸部211の範囲全体で長方形の貫通穴25が形成されている。つまり、基板2の行間で隣り合う熱電変換単位10の間が、凸部211の範囲内で切り離されている。
そして、行間および列間で隣り合う熱電変換単位10の第一層31と第二層32を接続する下側配線41が、第一低面部212および第二低面部213上に、第一層31および第二層32を介して形成されている。
As shown in FIG. 5, on the upper surface of the
Then, the
また、第一層31と第二層32が異なる材料からなるため、凸部211の頂部211aの位置に、熱電変換単位10内の第一層31と第二層32を接続する上側配線42が形成
されている。さらに、基板2の上面の一方の縁部に直列接続の両端が存在し、各位置に外部との接続端子43が形成されている。
この実施形態の熱電変換素子1の製造方法では、先ず、第一印刷工程の前段工程として、図2に示す配置で、一つの熱電変換単位10に一つの第一層31を、長方形の平面形状で形成する。つまり、2列14個の熱電変換単位10の列内および列間で、隣り合う第一層31を、長方形の長辺方向で反対側となる位置に配置する。
In addition, since the
In the method for manufacturing the
次に、第一印刷工程の後段工程として、図3に示すように、一つの熱電変換単位10に一つの第二層32を、第一層31の隣に接触状態で、第一層31と同じ平面形状および厚さで形成する。
このようにして、基板2の上面に、2列14個の熱電変換単位10を構成する全ての第一層31および第二層32からなる熱電変換パターンが形成される。図3の状態で、基板2の第一層31および第二層32が存在している部分が単位形成部である。
次に、第二印刷工程として、図3に示す熱電変換パターン上に、図4に示すように、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成する。
Next, as a subsequent step of the first printing step, as shown in FIG. They are formed with the same planar shape and thickness.
In this way, a thermoelectric conversion pattern consisting of all the
Next, as a second printing step, as shown in FIG. 4, a conductive layer pattern composed of
次に、図5に示すように、後工程で凸部211を形成する範囲全体の、基板2の行間で隣り合う熱電変換単位10の間となる部分に、打ち抜き法または切り抜き法により貫通穴25を形成する。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、凸部形成工程として、図1の凸部211に対応させた雄部および雌部を有する金型を用意し、基板2の裏面側に雄部を表面側に雌部を押し当てて加熱しながら加圧する(加熱加圧成形を行う)。これにより、第一層31および第二層32と、基板2の第一層31および第二層32が形成されている部分を延伸変形させて、凸部211を形成する。その際に、全ての単位形成部21の凸部211に対応させた雄部および雌部を有する金型を使用することで、一度に全ての熱電変換単位10に凸部211を形成する。
Next, as shown in FIG. 5 , through
Next, as a convex portion forming step, a mold having a male portion and a female portion corresponding to the
このようにして製造された熱電変換素子1は、全ての熱電変換単位10において、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
そのため、熱電変換素子1を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
In the
Therefore, the
さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10の間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図1に示すように、凸部211の範囲全体で、熱電変換単位10毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214からなる空間(貫通穴25)と凸部211の下方空間Kとが連通している。そのため、熱電変換単位10毎に、その周囲に大気が触れる状態となる。
よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10の低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
なお、この実施形態の熱電変換素子1の製造方法では、第一層31、第二層32、導電層パターン(下側配線41、接続端子43、および上側配線42)の順に、印刷工程を行っているが、これらの層の印刷順は任意に変更できる。
Furthermore, due to the formation of the through
Therefore, if the
In addition, in the manufacturing method of the
[第二実施形態]
第二実施形態の熱電変換素子101は、図7に示すように、第一実施形態の熱電変換素子1と同様に、基板2の上面に2列7行の熱電変換単位10を有するだけでなく、2列7行の熱電変換単位10Aを基板2の下面に有する。
各熱電変換単位10Aは、基板2を挟んで各熱電変換単位10と重なる位置に配置されている。熱電変換単位10Aの第一層31は熱電変換単位10の第二層32と重なるように形成され、熱電変換単位10Aの第二層32は熱電変換単位10の第一層31と重なるように形成されている。また、全ての単位形成部21は、凸部211の範囲全体で、熱電変換単位10,10A毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
[Second embodiment]
As shown in FIG. 7, the
Each
また、図8に示すように、上面の接続端子43aと、基板2を挟んでこれと重なる下面の接続端子43aとが、例えば基板2の端面に設けた電極で接続されている。これにより、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが直列接続されている。この場合、上面および下面の接続端子43bが外部との接続端子となる。
なお、熱電変換単位10Aの第一層31を熱電変換単位10の第一層31と重なるように形成し、熱電変換単位10Aの第二層32を熱電変換単位10の第二層32と重なるように形成し、上面および下面の接続端子43a同士および接続端子43b同士を接続してもよい。この場合、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが並列接続され、上下で接続された状態の接続端子43aおよび接続端子43bが外部との接続端子となる。
Further, as shown in FIG. 8, the
In addition, the
熱電変換素子101は、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2の上面と下面に対する第一印刷工程および第二印刷工程を行った後、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2に対する貫通穴形成工程と凸部形成工程を行うことで製造できる。
この実施形態の熱電変換素子101によれば、第一実施形態の熱電変換素子1が有する効果に加えて、基板2の両面に熱電変換単位を有することで、一枚の基板で高い起電力が得られるという効果も有する。
The
According to the
つまり、第二実施形態の熱電変換素子101は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Aを基板2の厚さ方向に二層有するため、直列接続の場合は出力電圧が熱電変換素子1の二倍となり、並列接続の場合は出力電流が熱電変換素子1の二倍となる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第二実施形態の熱電変換素子101は、全ての熱電変換単位10と下側配線41および上側配線42が耐候性材料で覆われていることが好ましい。その場合には、耐候性材料からなる被覆層の形成を、凸部211の形成前後のどちらのタイミングで行ってもよい。
That is, in the
Further, by increasing the number of
Moreover, in the
[第三実施形態]
第三実施形態の熱電変換素子102は、図9に示すように、第一実施形態の熱電変換素子1と同様に、基板2の面内に2列7行の熱電変換単位10を有するだけでなく、同じ2列7行の熱電変換単位10を基板2の上面に二層有する。図9は、熱電変換素子102の熱電変換単位10,10Bが重なっている部分の断面を示す。図9に示すように、熱電変換素子102は、二層の熱電変換単位10,10B間に絶縁層44を有し、基板2とは反対の面に耐候性材料からなる被覆層45を有する。
熱電変換素子102は以下の方法で製造される。
[Third embodiment]
As shown in FIG. 9, the
先ず、第一実施形態の熱電変換素子1と同様に図2~図5に示す各工程を行って、基板2上に、一層目の熱電変換単位10のパターン(熱電変換パターンと導電層パターン)と貫通穴25を形成する。次に、図5に示す状態の基板2上の接続端子43の部分を除いた全面に絶縁層44を形成する。図10はこの状態を示す。次に、図2~図4に示す各工程を同じ方法で行って、図10に示す状態の基板2上に、二層目の熱電変換単位10Bのパターン(熱電変換パターンと導電層パターン)を形成した後、基板2上の全面に被覆層45を形成して、図11に示す状態とする。
First, each step shown in FIGS. 2 to 5 is performed in the same manner as the
この状態の熱電変換素子102は平板状であり、図12に示すように、熱電変換単位10,10Bも平板状である。次に、第一実施形態と同じ凸部形成工程を行うことで、全ての熱電変換単位10,10Bに凸部211を形成する。
このようにして製造された熱電変換素子102は、全ての熱電変換単位10,10Bにおいて、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
The
The
そのため、熱電変換素子102を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10,10Bの間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図9に示すように、凸部211の範囲全体で、熱電変換単位10,10B毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
Therefore, the
Furthermore, due to the formation of the through
よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
また、第三実施形態の熱電変換素子102は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Bを基板2の厚さ方向に二層有するため、熱電変換素子1よりも出力電流が多くなる。
なお、第三実施形態の熱電変換素子102は、二層の熱電変換単位10,10Bの導電層パターン(下側配線41、上側配線42、および接続端子43)が同じであり、二層目の導電層パターンの形成時に、一層目の接続端子43の上に重ねて二層目の接続端子43が印刷されるため、二層の熱電変換単位10,10Bが並列に接続されている。
Therefore, when heating by the hot plate described above, if the
Further, in the
In addition, in the
また、導電層および絶縁層の印刷パターンの設定により、二層の熱電変換単位10,10Bを直列に接続すれば、熱電変換素子102の出力電圧を増やすこともできる。また、二層の熱電変換単位10,10Bを、各層内および層間で並列接続と直列接続を組み合わせて接続することで、熱電変換素子102の出力を自在に調整することもできる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第三実施形態では、被覆層45の形成を行った後に凸部211の形成を行っているが、最上層の熱電変換単位10Bを形成した後に凸部211の形成を行ってから、被覆層45を形成してもよい。
Moreover, by setting the printed patterns of the conductive layer and the insulating layer, the output voltage of the
Further, by increasing the number of
Further, in the third embodiment, the
[応用]
第一実施形態の熱電変換素子1および第二実施形態の熱電変換素子101の応用例とし
ては、無線センサ送信装置の自立電源が挙げられる。
図13に示す無線センサ送信装置5は、回路基板51に形成されたアンテナ回路52およびセンサ端子53と、熱電変換素子1からなる自立電源と、信号処理・送信回路54と、電圧増幅部・バッテリー55と、で構成されている。
上述のように、実施形態の熱電変換素子1は、熱電変換単位10の低部(吸熱部)31a,32aと高部(放熱部)31b,32bとで、熱電変換層(第一層31および第二層32)の厚さ以上の高低差を有するため、吸熱部に付与する熱エネルギーが小さい場合でも、無線センサを駆動させるに十分な電力を供給できる。よって、実施形態の熱電変換素子1を電源として用いた無線センサ送信装置5は、太陽電池が使用できない照明のない場所においても、常時稼動できる自立型無線センサ送信装置として使用できる。
第三実施形態の熱電変換素子102の応用例としては、ウェアラブル無線センサ送信装置の自立電源が挙げられる。
[application]
An application example of the
The wireless sensor transmitter 5 shown in FIG. 13 includes an
As described above, in the
As an application example of the
図14に示す牛用首輪6は、首輪本体(装着物)61の内側の面に、熱電変換素子102からなる自立電源が固定されたものである。熱電変換素子102の被覆層45側が首輪本体61に貼り付けてあり、基板2側が露出している。
図15に示すように、牛用首輪6は、熱電変換素子102側を内側にして牛(恒温動物)7の首71に巻きつけ、熱電変換素子102の接続端子43にウェアラブル無線センサ送信装置を接続して使用される。図16に示すように、牛用首輪6が牛7に巻きつけられた状態で、熱電変換素子102の下方空間Kが牛7の首71側に存在する。つまり、牛7の首71と首輪本体61との間に、熱電変換単位10,10Bの列毎の下方空間Kが繋がった大気の流路が存在する。
The
As shown in FIG. 15 , the
そして、熱電変換素子102の基板2が可撓性を有するため、牛用首輪6は、牛7の首71に簡単に装着できるとともに、自立電源として薄く形成された熱電変換素子102を有するため、装着状態で牛7の行動に支障をきたさない。また、熱電変換素子102により、牛7の体表面と牛7の存在する環境との温度差で、ウェアラブル無線センサ送信装置を駆動可能な電力を供給できる。
さらに、下方空間Kに伴う大気の流路を大気が通ることで、放熱板を使用しなくても、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間の温度差が確保できる。これにより、放熱板の分だけ牛用首輪6の厚さを薄くできる。
Further, since the
In addition, since the air passes through the air flow path associated with the lower space K, the temperature between the
また、熱電変換素子102が耐候性材料からなる被覆層45を有するため、屋外で使用した場合でも熱電変換素子102を長期に渡って使用可能である。なお、屋内や短期間での使用であれば、第三実施形態の熱電変換素子102の代わりに、被覆層45のない第一実施形態の熱電変換素子1を用いてもよい。
なお、図14に示す牛用首輪6はウェアラブル機器用電源の一例であるが、ウェアラブル機器用電源の装着物の形状や材質は制限されず、恒温動物の四肢、首、胴体などの体表面の一部に装着可能で、熱電変換素子の周りの大気の流通を著しく妨げることがなく、装着位置から容易に脱落することがなければよい。
Moreover, since the
Although the
[凸部の形状について]
図17に、基板2の単位形成部21の断面形状を構成する凸部の形状を複数例示す。
図17(a)の凸部は、基板2の裏面と同じ平面26と対向する円弧面からなる頂部27と、平面26をなす直線の両端と頂部27をなす円弧の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
図17(b)の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
[Regarding the shape of the convex part]
FIG. 17 shows a plurality of examples of the shape of the convex portion that constitutes the cross-sectional shape of the
17(a) includes a
17(b) has a
図17(c)の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結び、両直線に対して垂直な一対の垂直面29と、を有する。頂部27と垂直面29との境界は丸く形成されている。
図17(d)の凸部は、基板2の裏面と同じ平面26と対向し、平面26をなす直線の両端と結合された円弧面27Aからなる。円弧面27Aの平面26から最も離れている位置が頂部となる。
17(c) has a
The convex portion in FIG. 17(d) is composed of an
[材料について]
<熱電変換材料>
熱電変換材料としては、導電性高分子或いはCNT(カーボンナノチューブ)を好適に用いることができ、導電性高分子の種類によっては、成型する上で必要となる熱硬化性樹脂などのバインダ、導電性を高めるためのCNT(カーボンナノチューブ)分散体やエチレングリコール、ジメチルスルホキシド、n-メチルピロリドンあるいはジメチルホルムアミド、ポリエチレングリコール、ジエチレングリコールモノメチルエーテルなどの極性高沸点溶媒を添加できる。
なお、熱電変換材料としては、基板の変形に追従できる材料であれば、種類は限定されず、無機材料もしくは有機物と無機物の混合材料を使用することもできる。一般的には、熱電変換材料の破断歪みが10%以上であると、基板の変形に追従し易い。
[About materials]
<Thermoelectric conversion material>
As the thermoelectric conversion material, a conductive polymer or CNT (carbon nanotube) can be preferably used. CNT (carbon nanotube) dispersions to increase the polar high boiling point solvents such as ethylene glycol, dimethyl sulfoxide, n-methylpyrrolidone or dimethylformamide, polyethylene glycol, diethylene glycol monomethyl ether can be added.
The thermoelectric conversion material is not limited in kind as long as it can follow the deformation of the substrate, and an inorganic material or a mixed material of an organic substance and an inorganic substance can also be used. In general, when the breaking strain of the thermoelectric conversion material is 10% or more, it easily follows the deformation of the substrate.
<導電性高分子からなる熱電変換材料の例示>
p型導電性高分子(p型半導体特性を有する導電性高分子)としては、共役系の分子構造を有する高分子化合物(共役系高分子)を用いることができる。
共役系高分子としては、ポリチオフェン系化合物(破断歪み10~20%)、ポリピロール系化合物(破断歪み20%)、ポリアニリン系化合物(破断歪み~35%)、ポリアセチレン系化合物(破断歪み~800%)、ポリ(p-フェニレン)系化合物、ポリ(p-フェニレンビニレン)系化合物(PPV系化合物、150℃加熱延伸処理後の破断歪み5%)、ポリ(p-フェニレンエチニレン)系化合物(破断歪み2.5%)、ポリ(p-フルオレニレンビニレン)系化合物(破断歪み2.5%)、ポリアセン系化合物(破断歪み1%)、ポリフェナントレン系化合物(破断歪み1%)が挙げられる。
また、上記高分子化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子も挙げられる。
n型導電性高分子(n型半導体特性を有する導電性高分子)としても、共役系の分子構造を有する高分子化合物が挙げられるが、不安定な物質が多い。
<Example of thermoelectric conversion material made of conductive polymer>
As the p-type conductive polymer (conductive polymer having p-type semiconductor properties), a polymer compound having a conjugated molecular structure (conjugated polymer) can be used.
Conjugated polymers include polythiophene compounds (breaking strain 10-20%), polypyrrole compounds (breaking strain 20%), polyaniline compounds (breaking strain ~35%), polyacetylene compounds (breaking strain ~800%). , Poly (p-phenylene) compound, poly (p-phenylene vinylene) compound (PPV compound, breaking strain after 150 ° C heat stretching treatment 5%), poly (p-phenyleneethynylene) compound (breaking strain 2.5%), poly(p-fluorenylene vinylene) compounds (breaking strain 2.5%), polyacene compounds (breaking
Further, a conjugated polymer having a repeating unit composed of a derivative in which a substituent is introduced into the monomer of the polymer compound is also included.
Examples of n-type conductive polymers (conductive polymers having n-type semiconductor properties) include polymer compounds having a conjugated molecular structure, but many of them are unstable substances.
<第一層および第二層について>
第一層および第二層の少なくともいずれかは熱電変換材料からなり、第一層および第二層は同じ材料または異なる材料からなる。第一層および第二層が異なる材料からなる場合は、凸部の頂部に、熱電変換単位内の第一層と第二層を接続する配線(上側配線)を形成する。
つまり、第一層および第二層が異なる材料からなる場合の材料の組み合わせは、p型熱電材料とn型熱電材料、p型熱電材料と導電性材料(熱電変換機能無し)、n型熱電材料と導電性材料(熱電変換機能無し)が挙げられる。ただし、上述のように、導電性高分子からなるn型熱電材料(n型導電性高分子)は不安定な物質が多い。
<Regarding the first and second layers>
At least one of the first layer and the second layer is made of a thermoelectric conversion material, and the first layer and the second layer are made of the same material or different materials. When the first layer and the second layer are made of different materials, a wiring (upper wiring) connecting the first layer and the second layer in the thermoelectric conversion unit is formed on the top of the projection.
That is, when the first layer and the second layer are made of different materials, the combination of materials is p-type thermoelectric material and n-type thermoelectric material, p-type thermoelectric material and conductive material (no thermoelectric conversion function), n-type thermoelectric material and conductive materials (without thermoelectric conversion function). However, as described above, many n-type thermoelectric materials made of conductive polymers (n-type conductive polymers) are unstable substances.
<基板>
基板の種類は特に限定されないが、電極の形成や熱電変換層の形成時に影響を受けにくく、さらに変形に際して割れにくい基板(破断歪み50%以上)を使用することが好ましい。コストや柔軟性の観点から、プラスチックフィルムが好ましく、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレ
フタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6 -フタレンジカルボキシレート、ビスフェノールAとイソおよびテレフタル酸との重合で得られるポリエステルフィルムなどのポリエステルフィルム、ポリシクロオレフィンフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムなどが挙げられる。
これらのうち、入手の容易性、100℃以上の耐熱性、加工性、経済性および効果の観点から、市販のポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、各種ポリイミドやポリカーボネートフィルムが好ましい。印刷工程を考えると、例えば、片面易接着加工されたシートが好ましい。
<Substrate>
The type of substrate is not particularly limited, but it is preferable to use a substrate (breaking strain of 50% or more) that is less likely to be affected during the formation of the electrodes and the thermoelectric conversion layer and that is less likely to crack when deformed. From the viewpoint of cost and flexibility, plastic films are preferable, and polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly(1,4-cyclohexylene dimethylene terephthalate), polyethylene-2,6-phthalenedicarboxy polycycloolefin films, polyimide films, polycarbonate films, polyether ether ketone films, polyphenyl sulfide films and the like.
Among these, commercially available polyethylene terephthalate (PET), polyethylene naphthalate (PEN), various polyimides and polycarbonate films are preferred from the viewpoint of availability, heat resistance of 100° C. or more, workability, economy and effect. Considering the printing process, for example, a sheet having one side treated for easy adhesion is preferable.
[好ましい態様について]
この発明の第一態様の熱電変換素子は、上記構成(1)~(4)に加えて下記の構成(5)または(5')を有することができる。
(5)前記単位形成部は、前記凸部の範囲内で、前記熱電変換単位毎に独立に切り離された複数の切断面を有する。
この場合、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができる。
[Regarding preferred embodiments]
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (5) or (5') in addition to the above configurations (1) to (4).
(5) The unit forming portion has a plurality of cut surfaces separated independently for each thermoelectric conversion unit within the range of the convex portion.
In this case, each thermoelectric conversion unit can be brought into contact with the atmosphere around the thermoelectric conversion unit.
(5')前記単位形成部は、前記凸部の範囲内で前記非形成部との間が切り離されている。この場合、並列に隣り合う前記熱電変換単位間の前記非形成部を含めて、基板面は一つの面(第一低面部および第二低面部を含む面)内に存在する。そのため、前記構成(5')を有することにより、前記構成(5')を有さない場合よりも平面状の加熱装置上に安定的に設置できる効果が高い。
また、前記構成(5')を有するとともに、複数の熱電変換単位が、X列Y行(X≧1,Y≧2)のマトリックス状に配置され、基板の行間で隣り合う熱電変換単位の間が、全ての凸部の範囲内で切り離されていれば、熱電変換単位の列毎に、全ての凸部の下方空間が凸部の頂部側でつながって、大気の流路となる。
(5') The unit formation portion is separated from the non-formation portion within the range of the convex portion. In this case, the substrate surface including the non-formation portion between the thermoelectric conversion units adjacent in parallel exists within one surface (a surface including the first and second low surface portions). Therefore, by having the configuration (5'), the effect of being able to be stably installed on a flat heating device is higher than when the configuration (5') is not provided.
In addition to having the configuration (5′), a plurality of thermoelectric conversion units are arranged in a matrix of X columns and Y rows (X≧1, Y≧2), and adjacent thermoelectric conversion units are arranged between rows of the substrate. However, if they are separated within the range of all the projections, the spaces below all the projections are connected on the top side of the projections for each row of the thermoelectric conversion units to form air passages.
よって、第一態様の熱電変換素子が構成(5) または(5')を有する場合、平面状の加熱装置に載せて加熱する際に、凸部の下方空間からなる流路に大気を流通させて頂部を冷却することで、熱電変換単位の低部と高部との間に、より大きな温度差を生じさせることができる。
なお、特許文献1の熱電素子では、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができないため、凸部の頂部を効果的に冷却するという点でも課題がある。第一態様の熱電変換素子が構成(5)または(5')を有することで、この課題を解決することができる。
Therefore, when the thermoelectric conversion element of the first aspect has the configuration (5) or (5'), when the thermoelectric conversion element is placed on a flat heating device and heated, air is allowed to flow through the flow path formed by the space below the convex portion. By cooling the top part, a larger temperature difference can be generated between the lower part and the upper part of the thermoelectric conversion unit.
In addition, in the thermoelectric element of
この発明の第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(6)を有することができる。
(6)前記複数の熱電変換単位と前記配線が、前記基板の上面と下面の両方に形成されている。前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている。
この発明の第一態様の熱電変換素子は、上記構成(1)~(4)に加えて下記の構成(7)を有することができる。
(7)前記第一層および前記第二層は異なる材料からなり、前記頂部に、前記熱電変換単位内の前記第一層と前記第二層を接続する配線が形成されている。
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (6) in addition to the above configurations (1) to (4).
(6) The plurality of thermoelectric conversion units and the wiring are formed on both upper and lower surfaces of the substrate. The connection terminals on the top surface and the bottom surface are connected to each other at least one end of the series connection.
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (7) in addition to the above configurations (1) to (4).
(7) The first layer and the second layer are made of different materials, and wiring is formed on the top portion to connect the first layer and the second layer in the thermoelectric conversion unit.
この発明の第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(8) を有することができる。
(8)前記複数の熱電変換単位と前記配線が耐候性材料で覆われている。
第一態様の熱電変換素子は、上記構成(1) ~(4) に加えて下記の構成(9) を有することができる。
(9)前記熱電変換単位を、前記基板の厚さ方向に絶縁層を介して複数有する。
The thermoelectric conversion element of the first aspect of the present invention can have the following configuration (8) in addition to the above configurations (1) to (4).
(8) The plurality of thermoelectric conversion units and the wiring are covered with a weather resistant material.
The thermoelectric conversion element of the first aspect can have the following configuration (9) in addition to the above configurations (1) to (4).
(9) A plurality of thermoelectric conversion units are provided in the thickness direction of the substrate via an insulating layer.
この発明の第一態様の熱電変換素子は、さらに下記の構成(a) ~(e) の少なくともいずれかを有することが好ましい。
(a) 前記第一層および前記第二層の少なくともいずれかが導電性高分子からなる。
(b) 前記第一層および前記第二層の少なくともいずれかが、ポリチオフェン系化合物、ポリピロール系化合物、ポリアニリン系化合物、ポリアセチレン系化合物、ポリ(p-フェニレン)系化合物、ポリ(p-フェニレンビニレン)系化合物、ポリ(p-フェニレンエチニレン)系化合物、ポリ(p-フルオレニレンビニレン)系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、およびこれらの化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子から選択される少なくとも一つを有する。
Preferably, the thermoelectric conversion element of the first aspect of the present invention further has at least one of the following structures (a) to (e).
(a) At least one of the first layer and the second layer is made of a conductive polymer.
(b) at least one of the first layer and the second layer is polythiophene-based compound, polypyrrole-based compound, polyaniline-based compound, polyacetylene-based compound, poly(p-phenylene)-based compound, poly(p-phenylene vinylene); -based compounds, poly(p-phenyleneethynylene)-based compounds, poly(p-fluorenylenevinylene)-based compounds, polyacene-based compounds, polyphenanthrene-based compounds, and derivatives in which substituents are introduced into the monomers of these compounds at least one selected from conjugated polymers having repeating units of
(c)前記熱電変換材料はp型導電性高分子である。
(d)前記基板は、ポリエチレンテレフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)フィルム、ポリエチレン-2,6-フタレンジカルボキシレートフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムから選択される少なくとも一つからなる。
(e) 前記熱電変換素子の前記印刷パターンが保護層(例えば、合成樹脂からなるコーティング剤を塗布して硬化させた層、耐候性材料からなる層)で覆われている。
(c) The thermoelectric conversion material is a p-type conductive polymer.
(d) The substrate is polyethylene terephthalate film, polyethylene isophthalate film, polyethylene naphthalate film, polybutylene terephthalate film, poly(1,4-cyclohexylene dimethylene terephthalate) film, polyethylene-2,6-phthalene dicarboxylate. At least one selected from a film, a polyimide film, a polycarbonate film, a polyetheretherketone film, and a polyphenylsulfide film.
(e) The printed pattern of the thermoelectric conversion element is covered with a protective layer (for example, a layer formed by applying and curing a coating agent made of a synthetic resin, a layer made of a weather-resistant material).
上記構成(1)~構成(5)を有する熱電変換素子は、例えば、上記構成(11)~(13)と下記の構成(14)を有する方法で製造することができる。
(14)前記凸部形成工程の前に、前記基板の、前記凸部を形成する範囲内の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程。
この発明の第三態様として、前記第一態様の熱電変換素子を備えた無線センサ用電源が挙げられる。
この発明の第四態様として、前記第一態様の熱電変換素子からなる自立電源と、信号処理・送信回路と、電圧増幅部・バッテリーと、アンテナ回路およびセンサ端子が形成された回路基板と、を有する無線センサが挙げられる。
The thermoelectric conversion elements having the configurations (1) to (5) can be produced, for example, by a method having the configurations (11) to (13) and the configuration (14) below.
(14) A step of forming a through hole in a portion of the substrate, which is located between the adjacent thermoelectric conversion units between the rows within the range where the convex portion is formed, before the convex portion forming step.
A third aspect of the present invention includes a wireless sensor power supply including the thermoelectric conversion element of the first aspect.
As a fourth aspect of the present invention, a self-sustaining power supply comprising the thermoelectric conversion element of the first aspect, a signal processing/transmitting circuit, a voltage amplifying section/battery, and a circuit board on which an antenna circuit and a sensor terminal are formed. wireless sensors with
この発明の第五態様として、恒温動物の四肢、首、胴体などの体表面の一部に装着される装着物と、前記装着物の面に固定された前記第一態様の熱電変換素子と、を有するウェアラブル機器用電源が挙げられる。
第五態様のウェアラブル機器用電源は、人を含む恒温動物の体温をエネルギー源とするため、装着されている恒温動物の生命活動が維持されている限り、電力が著しく減衰することはない。また、第一態様の熱電変換素子が前記構成(8)を有することで、屋外での使用でも長期に渡って電力を供給し続けることが期待できる。
これに対して、電磁波や力学的エネルギーを利用した環境発電技術では、場所や時間などの条件によって電力が著しく減衰する。つまり、第五態様の電源を用いたウェアラブル無線センサ送信装置は、常時稼働できる自立型無線センサ送信装置として優れている。
As a fifth aspect of the present invention, an attachment that is attached to a part of the body surface of a warm-blooded animal such as limbs, neck, body, etc.; the thermoelectric conversion element of the first aspect fixed to the surface of the attachment; A power supply for wearable devices having
Since the power supply for wearable devices of the fifth aspect uses the body temperature of warm-blooded animals including humans as an energy source, the electric power does not significantly decrease as long as the vital activity of the warm-blooded animals worn is maintained. Further, since the thermoelectric conversion element of the first aspect has the configuration (8), it can be expected to continue supplying electric power over a long period of time even when used outdoors.
On the other hand, in energy harvesting technology using electromagnetic waves or mechanical energy, the power is significantly attenuated depending on conditions such as location and time. In other words, the wearable wireless sensor transmitter using the power source of the fifth aspect is excellent as an independent wireless sensor transmitter that can always operate.
[熱電変換材料について]
第一層31の材料として、ポリチオフェン系化合物を含むコーティング剤であるヘレウス株式会社の「Clevios PH1000(水分散液)」を使用した。ポリチオフェン系化合物はp型導電性高分子であり、このコーティング剤の主成分は「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」である。
セルロースナノファイバ(中越パルプ社製、最大幅500nm以下、平均幅50nm以下、平均繊維長0.5μm、重合度350)を、PH1000の有効成分に対して10質量%添加し、エチレングリコールをPH1000に対して5体積%となるように添加した後、攪拌しながら加温して、水分を蒸発させてゲル状のp型熱電変換材料を得た。
第二層32、下側配線41、接続端子43、および上側配線42の材料としては、銀ペーストを使用した。下側配線41、接続端子43、および上側配線42はスクリーン印刷で形成した。銀ペーストとしては、例えば藤倉化成株式会社製「ドータイトFA-333」などを使用できる。また、銀の酸化を抑制するため、銀ペーストの上に、カーボンペーストを重ねて印刷しても良い。
[About thermoelectric conversion materials]
As a material for the
Cellulose nanofiber (manufactured by Chuetsu Pulp Co., Ltd., maximum width 500 nm or less, average width 50 nm or less, average fiber length 0.5 μm, degree of polymerization 350) is added 10% by mass to the active ingredient of PH 1000, and ethylene glycol is added to PH 1000. After adding so as to be 5% by volume, the mixture was heated with stirring to evaporate the water content, thereby obtaining a gel-like p-type thermoelectric conversion material.
Silver paste was used as the material for the
[熱電変換素子の製造]
<サンプルNo.1>
熱電変換単位を13列24行のマトリックス状に312個有する熱電変換素子を、以下の方法で製造した。第一実施形態では2列7行、14個の熱電変換単位10を有する熱電変換素子1について説明したが、熱電変換単位10の個数が異なる以外、各工程は第一実施形態で説明した各工程と同じ方法で行った。
先ず、16列24行の第一層31の開口パターンが、図2と同様に各列と各行で交互に形成された厚さ0.1mmのメタルマスクを用意した。このメタルマスクを用いて、厚さ100μmのPETフィルムからなる基板2の上面に、上述のゲル状のp型熱電変換材料を印刷した。これにより、各熱電変換単位10にp型熱電変換材料からなる第一層31の印刷パターンを、図2と同様の配置で形成した。
[Manufacture of thermoelectric conversion element]
<Sample No.1>
A thermoelectric conversion element having 312 thermoelectric conversion units arranged in a matrix of 13 columns and 24 rows was manufactured by the following method. In the first embodiment, the
First, a metal mask having a thickness of 0.1 mm was prepared in which opening patterns of the
次に、この状態の基板2を120℃で2時間加熱することで、p型熱電変換材料を乾燥させた。乾燥後の第一層31の厚さは10μmであった。
次に、全ての熱電変換単位10の第一層31の隣に、銀ペーストからなる第二層32を印刷し、120℃で2時間加熱することで銀ペーストを乾燥させた。この印刷はスクリーン印刷で行った。銀ペーストは、乾燥後の第二層32が10μmとなるように印刷した。これにより、図3と同様の第一層31と第二層32とからなる熱電変換パターンを312個形成した。
次に、全ての熱電変換パターン上に、図4と同様に、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。導電層パターンは、銀ペーストをスクリーン印刷した後に、120℃で2時間の加熱を行って乾燥させることで形成した。
Next, the p-type thermoelectric conversion material was dried by heating the
Next, the
Next, on all the thermoelectric conversion patterns, a conductive layer pattern including
次に、レーザー加工による切り抜き法で、図5と同様の配置で貫通穴25を形成した。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、312個全ての凸部211に対応させた雄部および雌部を有する金型を使用し、第一実施形態に記載した加熱加圧成形による凸部形成工程を、120℃で120分の条件で行った。これにより、312個全ての熱電変換単位10を図1に示す状態にした。凸部211の突出高さTは1.7mmとした。また、第一層31および第二層32も基板2とともに延伸変形した。
このようにして得られた熱電変換素子1は、図1に示すように、各列の熱電変換単位10毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, through
Next, using a mold having male and female portions corresponding to all 312
As shown in FIG. 1, the
<サンプルNo.2>
基板2の上面と下面にそれぞれ熱電変換単位を13列24行のマトリックス状に312個(両面合計で642個)有する熱電変換素子を、以下の方法で製造した。第二実施形態では、基板2の上面と下面にそれぞれ2列7行、14個の熱電変換単位10,10Aを有
する熱電変換素子101について説明したが、熱電変換単位10,10Aの個数が異なる以外、各工程は第二実施形態で説明した各工程と同じ方法で行った。
先ず、基板2の上面と下面の両方に、サンプルNo.1と同じ方法で、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。各層のパターンは、基板2の上面と下面で同じ配置(基板を挟んで重なる配置)とした。
<Sample No.2>
A thermoelectric conversion element having 312 thermoelectric conversion units arranged in a matrix of 13 columns and 24 rows (642 units in total on both sides) on each of the upper and lower surfaces of the
First, a conductive layer pattern including
次に、サンプルNo.1と同じ方法で、貫通穴形成工程および凸部形成工程を行った。つまり、凸部211の突出高さTは、サンプルNo.1と同じ1.7mmである。
次に、基板2を挟んで互いに重なる上面および下面の接続端子43aを、電気的に接続した。これにより、642個の熱電変換単位が直列接続された熱電変換素子101を得た。
このようにして得られた熱電変換素子101は、図7に示すように、各列の熱電変換単位10,10A毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, a through-hole forming step and a projection forming step were performed in the same manner as for sample No.1. That is, the protrusion height T of the
Next, the
As shown in FIG. 7, the
[破断歪み試験]
サンプルNo.1およびNo.2の熱電変換素子を構成する熱電変換層の破断歪みを、以下の方法で試験した。
両サンプルとも、第一層31を構成する熱電変換材料は「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」であるため、PETフィルム上に「ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルフィド」を形成した試験片を用意して、引張破断試験を行った。その結果、熱電変換層の破断歪みは10%であった。つまり、サンプルNo.1およびNo.2の熱電変換素子は、第一層31が基板2の変形に追従し易いものであった。
[Breaking strain test]
The breaking strain of the thermoelectric conversion layers forming the thermoelectric conversion elements of Samples No. 1 and No. 2 was tested by the following method.
In both samples, the thermoelectric conversion material constituting the
[熱電変換素子の評価]
サンプルNo.1およびNo.2の熱電変換素子を、室温25℃の環境下で、基板2の非形成部22を水平に保持して、80℃のホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱した。この状態で、両端子43間に発生した電圧をテスターで測定した。
電圧の測定値は、サンプルNo.1では80mV、サンプルNo.2では150mVであり、何れの熱電変換素子でも無線センサ用電源として使用できる起電力が得られた。
以上の結果を下記の表1にまとめて示す。
[Evaluation of thermoelectric conversion element]
The thermoelectric conversion elements of Samples No. 1 and No. 2 were placed on a hot plate at 80° C. in an environment of
The measured voltage values were 80 mV for sample No. 1 and 150 mV for sample No. 2, and both thermoelectric conversion elements provided an electromotive force that could be used as a power supply for wireless sensors.
The above results are summarized in Table 1 below.
1 熱電変換素子
10 基板上面の熱電変換単位
10A 基板下面の熱電変換単位
10B 二層目の熱電変換単位
2 基板
21 単位形成部
211 凸部
211a 凸部の頂部
212 第一低面部
213 第二低面部
214 切断面
22 非形成部
25 貫通穴
31 第一層
31a 第一層の低部
31b 第一層の高部
32 第二層
32b 第二層の高部
32a 第二層の低部
41 下側配線
42 上側配線
43 接続端子
44 絶縁層
45 耐候性材料からなる被覆層
5 無線センサ送信装置
51 回路基板
52 アンテナ回路
53 センサ端子
54 信号処理・送信回路
55 電圧増幅部・バッテリー
6 牛用首輪
61 首輪本体(装着物)
7 牛(恒温動物)
71 首
REFERENCE SIGNS
7 Cattle (warm-blooded animals)
71 neck
Claims (6)
前記基板上に、行列状に間隔を開けて形成された複数の熱電変換単位と、
を有し、
前記基板の前記熱電変換単位が形成されている単位形成部の前記行列の行方向に沿った断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなり、前記第一低面部および前記第二低面部は同じ高さにあり、
前記基板の前記熱電変換単位が形成されていない非形成部は、全て前記第一低面部および前記第二低面部と同じ高さにあり、
前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有し、
全ての前記単位形成部は、前記凸部の範囲内の全体で、前記熱電変換単位毎に独立に切り離された切断面を有し、
前記凸部の範囲内の全体で、行間で隣り合う前記単位形成部の間の前記基板に、前記切断面を内壁面として含む貫通穴が形成され、
前記熱電変換単位の前記行列の列毎に、行間で隣り合う前記切断面からなる空間と前記凸部の下方空間とが連通し、
前記行方向端部の前記非形成部と前記列間の前記非形成部には貫通穴が存在せず、
前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなり、
前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により直列接続され、
前記直列接続の両端に接続端子を有する熱電変換素子。 a substrate;
a plurality of thermoelectric conversion units formed on the substrate at intervals in a matrix;
has
The cross-sectional shape along the row direction of the matrix of the unit forming portions in which the thermoelectric conversion units of the substrate are formed is from the first lower surface portion and the second lower surface portion lower than the convex portion and the convex portions on both sides of the convex portion. and the first lower surface portion and the second lower surface portion are at the same height,
All non-formed portions of the substrate where the thermoelectric conversion units are not formed are at the same height as the first and second low surface portions,
The thermoelectric conversion unit has a first layer extending from the first bottom surface portion of the unit forming portion to the top portion of the convex portion, and a second layer extending from the top portion to the second bottom surface portion,
all of the unit forming portions have cut surfaces separated independently for each of the thermoelectric conversion units throughout the range of the convex portion;
a through hole including the cut surface as an inner wall surface is formed in the substrate between the unit forming portions adjacent to each other between rows in the entire range of the convex portion;
For each column of the matrix of the thermoelectric conversion units, the space formed by the adjacent cut surfaces between rows communicates with the space below the convex portion,
There is no through hole in the non-formation portion at the end in the row direction and the non-formation portion between the columns,
At least one of the first layer and the second layer is made of a thermoelectric conversion material,
The plurality of thermoelectric conversion units are connected in series by wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first and second low surface portions,
A thermoelectric conversion element having connection terminals at both ends of the series connection.
前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている請求項1記載の熱電変換素子。 The plurality of thermoelectric conversion units and the wiring are formed on both the top surface and the bottom surface of the substrate,
2. The thermoelectric conversion element according to claim 1, wherein said connection terminals on said upper surface and said lower surface are connected to each other at least one end of said series connection.
基板上に、行列状に間隔を開けて配置される前記複数の熱電変換単位を形成するための、前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程と、
前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程と、
前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程と、
を有するとともに、
前記凸部形成工程の前に、
前記基板の、前記凸部を形成する範囲内全体の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程を、さらに有する熱電変換素子の製造方法。 A method for manufacturing the thermoelectric conversion element according to claim 1,
a first printing step of forming a thermoelectric conversion pattern composed of the first layer and the second layer for forming the plurality of thermoelectric conversion units arranged at intervals in a matrix on a substrate;
a second printing step of forming a conductive layer pattern composed of the wiring and the connection terminal on the thermoelectric conversion pattern;
a protrusion forming step of forming the protrusion by stretching and deforming the first layer, the second layer, and a portion of the substrate on which the first layer and the second layer are formed;
and
Before the convex portion forming step,
The method of manufacturing a thermoelectric conversion element, further comprising the step of forming through holes in portions of the substrate that are between the adjacent thermoelectric conversion units between the rows in the entire range where the convex portions are formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000475A JP7196940B2 (en) | 2021-01-05 | 2021-01-05 | Thermoelectric conversion element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000475A JP7196940B2 (en) | 2021-01-05 | 2021-01-05 | Thermoelectric conversion element and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016203443A Division JP2018067567A (en) | 2016-10-17 | 2016-10-17 | Thermoelectric transducer and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021061440A JP2021061440A (en) | 2021-04-15 |
JP7196940B2 true JP7196940B2 (en) | 2022-12-27 |
Family
ID=75380509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021000475A Active JP7196940B2 (en) | 2021-01-05 | 2021-01-05 | Thermoelectric conversion element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7196940B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004281666A (en) | 2003-03-14 | 2004-10-07 | Ritsumeikan | Thermoelectric converter device |
JP2005259944A (en) | 2004-03-11 | 2005-09-22 | Nagoya Industrial Science Research Inst | Thin film thermo-electronic semiconductor device and manufacturing method thereof |
JP2006301711A (en) | 2005-04-15 | 2006-11-02 | Ricoh Co Ltd | Ic card, communication terminal and method for manufacturing ic card |
JP2011216803A (en) | 2010-04-02 | 2011-10-27 | Tdk Corp | Thermoelectric module |
JP2014135455A (en) | 2013-01-11 | 2014-07-24 | Fujitsu Ltd | Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element |
WO2016046713A1 (en) | 2014-09-22 | 2016-03-31 | Consorzio Delta Ti Research | Silicon integrated, out-of-plane heat flux thermoelectric generator |
JP2016518707A (en) | 2013-03-14 | 2016-06-23 | ウェイク フォレスト ユニバーシティ | Thermoelectric device and article and its application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10303469A (en) * | 1997-04-23 | 1998-11-13 | Sharp Corp | Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor |
-
2021
- 2021-01-05 JP JP2021000475A patent/JP7196940B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004281666A (en) | 2003-03-14 | 2004-10-07 | Ritsumeikan | Thermoelectric converter device |
JP2005259944A (en) | 2004-03-11 | 2005-09-22 | Nagoya Industrial Science Research Inst | Thin film thermo-electronic semiconductor device and manufacturing method thereof |
JP2006301711A (en) | 2005-04-15 | 2006-11-02 | Ricoh Co Ltd | Ic card, communication terminal and method for manufacturing ic card |
JP2011216803A (en) | 2010-04-02 | 2011-10-27 | Tdk Corp | Thermoelectric module |
JP2014135455A (en) | 2013-01-11 | 2014-07-24 | Fujitsu Ltd | Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element |
JP2016518707A (en) | 2013-03-14 | 2016-06-23 | ウェイク フォレスト ユニバーシティ | Thermoelectric device and article and its application |
WO2016046713A1 (en) | 2014-09-22 | 2016-03-31 | Consorzio Delta Ti Research | Silicon integrated, out-of-plane heat flux thermoelectric generator |
Also Published As
Publication number | Publication date |
---|---|
JP2021061440A (en) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tee et al. | Soft electronically functional polymeric composite materials for a flexible and stretchable digital future | |
Qian et al. | Stretchable organic semiconductor devices | |
He et al. | Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications | |
Zhao et al. | Advances in organic thermoelectric materials and devices for smart applications | |
Trung et al. | Materials and devices for transparent stretchable electronics | |
Hong et al. | Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin | |
Jeong et al. | Stretchable thermoelectric generators metallized with liquid alloy | |
Qian et al. | Thin-film organic semiconductor devices: from flexibility to ultraflexibility | |
KR102395732B1 (en) | Flexible substrate, electronic device, manufacturing method of electronic device | |
JP6448980B2 (en) | Thermoelectric conversion element and thermoelectric conversion module | |
Kaufmann et al. | Efficiency of a compact elliptical planar ultra‐wideband antenna based on conductive polymers | |
Rao et al. | All‐Polymer Based Stretchable Rubbery Electronics and Sensors | |
US20160218268A1 (en) | Thermoelectric conversion module | |
Huang et al. | Flexible and stretchable polyaniline supercapacitor with a high rate capability | |
WO2013065856A1 (en) | Thermoelectric conversion element and thermoelectric conversion module | |
Hwang et al. | All Direct Ink Writing of 3D Compliant Carbon Thermoelectric Generators for High‐Energy Conversion Efficiency | |
KR20180103590A (en) | Thermoelectric device and method for manufacturing the same | |
JP7196940B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP2018067567A (en) | Thermoelectric transducer and manufacturing method thereof | |
Hasan et al. | Wearable thermoelectric generator with vertically aligned PEDOT: PSS and carbon nanotubes thermoelements for energy harvesting | |
JP6606853B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
Zhou et al. | Intrinsically stretchable low-dimensional conductors for wearable organic light-emitting diodes | |
KR101397265B1 (en) | Dedoped conductive film have high-efficient thermoelectric performance | |
JP2016207933A5 (en) | ||
KR101602726B1 (en) | Method for preparing electroconductive polymer and thermoelectric device comprising electroconductive polymer film prepared using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220301 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7196940 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |