JP2018067567A - Thermoelectric transducer and manufacturing method thereof - Google Patents

Thermoelectric transducer and manufacturing method thereof Download PDF

Info

Publication number
JP2018067567A
JP2018067567A JP2016203443A JP2016203443A JP2018067567A JP 2018067567 A JP2018067567 A JP 2018067567A JP 2016203443 A JP2016203443 A JP 2016203443A JP 2016203443 A JP2016203443 A JP 2016203443A JP 2018067567 A JP2018067567 A JP 2018067567A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
layer
substrate
conversion element
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016203443A
Other languages
Japanese (ja)
Inventor
雄太 渕上
Yuta Fuchigami
雄太 渕上
耕一 八谷
Koichi Yatani
耕一 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2016203443A priority Critical patent/JP2018067567A/en
Publication of JP2018067567A publication Critical patent/JP2018067567A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric transducer with which a plurality of thermoelectric conversion units are formed in series connection on a substrate, and which has a height difference equal to or greater than thickness of a thermoelectric conversion layer between a heat absorption side and a heat radiation side, is capable of obtaining a high power generation performance even if used without being stood, and can be stably installed on a planar heating device only with a substrate on which the thermoelectric conversion units are formed.SOLUTION: A thermoelectric transducer 1 comprises a substrate 2 and a plurality of thermoelectric conversion units 10. A cross-sectional shape of a unit formed part 21 is formed from a projection 211, a first low surface part 212 and a second low surface part 213 at both sides of the projection. A non-formed part 22 in which no thermoelectric conversion unit is formed is located at a position lower than an apex 211a of the projection 211. The thermoelectric conversion unit 10 includes a first layer 31 from the first low surface part 212 of the unit formed part 21 to the apex 211a, and a second layer 32 from the apex 211a to the second low surface part 213. At least one of the first layer 31 and the second layer 32 are formed from a thermoelectric conversion material.SELECTED DRAWING: Figure 1

Description

この発明は、熱電変換素子およびその製造方法に関する。   The present invention relates to a thermoelectric conversion element and a manufacturing method thereof.

熱電変換素子は、熱エネルギーと電気エネルギーを相互に変換することができる素子である。熱電変換素子をその両端に温度差が生じる環境に設置することで、可動部を必要とせずに熱電変換素子から電力を取り出すことができる。例えば、排熱から電気エネルギーを生み出すことができる。そのため、熱電変換素子を用いた発電技術は、身の周りの未利用のエネルギーを回収して利用するエネルギーハーベスティング技術として、大いに期待されている。
熱電変換素子を、例えば分散型の自立電源として利用することができれば、大規模センサネットワーク、ウェアラブルエレクトロニクスなどの電源として用いることが可能となる。特に、有機物からなる熱電変換材料を用いた場合には、熱電変換層を印刷パターンで形成できるため、軽量化、低コスト化、大面積による高出力化が可能となる。この場合、熱電変換素子ユニットの平面性を保つため、温度差はユニットの基板に垂直な方向に与えるのが一般的である。
A thermoelectric conversion element is an element which can mutually convert heat energy and electric energy. By installing the thermoelectric conversion element in an environment where a temperature difference occurs between both ends, electric power can be extracted from the thermoelectric conversion element without the need for a movable part. For example, electrical energy can be generated from exhaust heat. Therefore, the power generation technology using the thermoelectric conversion element is highly expected as an energy harvesting technology for recovering and using unused energy around us.
If the thermoelectric conversion element can be used as, for example, a distributed self-supporting power source, it can be used as a power source for large-scale sensor networks, wearable electronics, and the like. In particular, when a thermoelectric conversion material made of an organic material is used, the thermoelectric conversion layer can be formed with a printed pattern, so that weight reduction, cost reduction, and high output due to a large area are possible. In this case, in order to maintain the flatness of the thermoelectric conversion element unit, the temperature difference is generally given in a direction perpendicular to the unit substrate.

熱電変換層を印刷パターンとして有する熱電変換素子の一例として、特許文献1に開示された熱電発電素子が挙げられる。特許文献1の熱電変換素子(熱電発電素子)では、底部と頂部とが交互に繰り返された波形の基板(基材)に、印刷パターンからなる複数の熱電変換層(熱電変換単位)が形成され、複数の熱電変換層が直列接続されている。各熱電変換層は、基板の波形を構成する一つの凸部または凹部が有する一対の斜面の一方に形成され、他方には形成されていない。
特許文献1の熱電変換素子では、底部を吸熱側、頂部を放熱側とし、底部側と頂部側の温度差により発電が行われる。また、基板が波形に形成されていることで、吸熱側と放熱側との距離が大きくなる分、大きな温度差を得ることができる。これに対して、凹凸のない基板を有する熱電変換素子では、基板を水平に保持した状態では十分な温度差が得られない。
As an example of a thermoelectric conversion element having a thermoelectric conversion layer as a print pattern, a thermoelectric power generation element disclosed in Patent Document 1 can be given. In the thermoelectric conversion element (thermoelectric power generation element) of Patent Document 1, a plurality of thermoelectric conversion layers (thermoelectric conversion units) formed of a print pattern are formed on a corrugated substrate (base material) in which a bottom portion and a top portion are alternately repeated. A plurality of thermoelectric conversion layers are connected in series. Each thermoelectric conversion layer is formed on one of a pair of inclined surfaces of one convex portion or concave portion constituting the corrugation of the substrate, and is not formed on the other.
In the thermoelectric conversion element of Patent Document 1, the bottom is the heat absorption side and the top is the heat dissipation side, and power is generated by the temperature difference between the bottom and the top. Further, since the substrate is formed in a corrugated shape, a large temperature difference can be obtained as the distance between the heat absorption side and the heat dissipation side increases. On the other hand, in a thermoelectric conversion element having a substrate without unevenness, a sufficient temperature difference cannot be obtained in a state where the substrate is held horizontally.

国際公開2013/114854号パンフレットInternational Publication 2013/114854 Pamphlet

特許文献1の熱電変換素子では、熱電変換層が形成されている部分だけでなく、熱電変換素子が形成されていない部分も含めて、基板全体の断面形状が波形になっている。そのため、底部と頂部との間に大きな高低差をつける場合、基板の凸部の下側空間に形状保持のための補強材を設ける必要がある。また、ホットプレートなどの平面状の加熱装置の上に安定的に設置するためには、基板の複数の底部を載せて固定する支持基材がさらに必要になる。
この発明の課題は、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置の上に安定的に設置できる熱電変換素子を提供することである。
In the thermoelectric conversion element of Patent Document 1, not only the portion where the thermoelectric conversion layer is formed, but also the portion where the thermoelectric conversion element is not formed, the cross-sectional shape of the entire substrate is a waveform. For this reason, when a large height difference is provided between the bottom and the top, it is necessary to provide a reinforcing material for maintaining the shape in the lower space of the convex portion of the substrate. In addition, in order to stably install on a flat heating device such as a hot plate, a support base material for mounting and fixing a plurality of bottom portions of the substrate is further required.
An object of the present invention is that a plurality of thermoelectric conversion units are formed in series connection on a substrate, have a difference in height over the thickness of the thermoelectric conversion layer between the heat absorption side and the heat dissipation side, and are high even when used without standing It is an object to provide a thermoelectric conversion element that has a power generation performance and can be stably installed on a planar heating device only by a substrate on which a thermoelectric conversion unit is formed.

上記課題を解決するために、この発明の第一態様は、下記の構成(1) 〜(4) を有する熱電変換素子を提供する。
(1) 基板と、前記基板の上面または下面に形成された複数の熱電変換単位とを有する。
(2) 前記基板の前記熱電変換単位が形成されている単位形成部の断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなる。前記基板の前記熱電変換単位が形成されていない非形成部は、前記凸部の頂部より低い位置にある。
(3) 前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有する。前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなる。
(4) 前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により、直列接続されている。前記直列接続の両端に接続端子を有する。
In order to solve the above problems, a first aspect of the present invention provides a thermoelectric conversion element having the following configurations (1) to (4).
(1) It has a substrate and a plurality of thermoelectric conversion units formed on the upper surface or the lower surface of the substrate.
(2) The cross-sectional shape of the unit forming portion on which the thermoelectric conversion unit of the substrate is formed includes a convex portion and a first low surface portion and a second low surface portion that are lower than the convex portions on both sides thereof. The non-formation part in which the said thermoelectric conversion unit of the said board | substrate is not formed exists in the position lower than the top part of the said convex part.
(3) The thermoelectric conversion unit has a first layer extending from the first low surface portion of the unit forming portion to the top of the convex portion, and a second layer extending from the top to the second low surface portion. At least one of the first layer and the second layer is made of a thermoelectric conversion material.
(4) The plurality of thermoelectric conversion units are connected in series by the wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first low surface portion and the second low surface portion. It is connected. Connection terminals are provided at both ends of the series connection.

この発明の第二態様は、上記構成(1) 〜(4) を有する熱電変換素子の製造方法であって、下記の構成(11)〜(13)の各工程を有することを特徴とする。
(11)基板上に、前記複数の熱電変換単位を構成する前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程。
(12)前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程。
(13)前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程。
According to a second aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion element having the above configurations (1) to (4), which includes the following steps of the following configurations (11) to (13).
(11) A first printing step of forming a thermoelectric conversion pattern comprising the first layer and the second layer constituting the plurality of thermoelectric conversion units on a substrate.
(12) A second printing step of forming a conductive layer pattern including the wiring and the connection terminal on the thermoelectric conversion pattern.
(13) A projecting portion forming step of forming the projecting portion by stretching and deforming the first layer and the second layer and a portion of the substrate where the first layer and the second layer are formed.

第二態様の方法で製造された熱電変換素子は、上記構成(1) 〜(4) と下記の構成(21)および(22)を有する。
(21)前記複数の熱電変換単位基板は印刷パターンからなる。
(22)前記配線および前記接続端子は印刷パターンからなる。
The thermoelectric conversion element manufactured by the method of the second aspect has the above configurations (1) to (4) and the following configurations (21) and (22).
(21) The plurality of thermoelectric conversion unit substrates are formed of a printing pattern.
(22) The wiring and the connection terminal are formed of a printed pattern.

この発明によれば、基板上に複数の熱電変換単位が直列接続で形成され、吸熱側と放熱側とで熱電変換層の厚さ以上の高低差を有し、立てずに使用しても高い発電性能が得られ、熱電変換単位が形成されている基板だけで平面状の加熱装置上に安定的に設置できる熱電変換素子が提供される。   According to the present invention, a plurality of thermoelectric conversion units are formed on the substrate in series connection, and have a difference in height over the thickness of the thermoelectric conversion layer between the heat absorption side and the heat dissipation side, which is high even when used without standing. There is provided a thermoelectric conversion element that has a power generation performance and can be stably installed on a planar heating device only by a substrate on which a thermoelectric conversion unit is formed.

第一実施形態の熱電変換素子を示す部分断面図であって、一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。It is a fragmentary sectional view showing the thermoelectric conversion element of a first embodiment, and shows the unit formation part of a substrate corresponding to one thermoelectric conversion unit, and the non-formation part of the both sides. 図1に示す熱電変換素子の製造方法を構成する第一印刷工程の前段工程を説明する平面図である。It is a top view explaining the front | former stage process of the 1st printing process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図1に示す熱電変換素子の製造方法を構成する第一印刷工程の後段工程を説明する平面図である。It is a top view explaining the back | latter stage process of the 1st printing process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図1に示す熱電変換素子の製造方法を構成する第二印刷工程を説明する平面図である。It is a top view explaining the 2nd printing process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図1に示す熱電変換素子の製造方法を構成する貫通穴形成工程を説明する平面図である。It is a top view explaining the through-hole formation process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図5のA−A断面図である。It is AA sectional drawing of FIG. 第二実施形態の熱電変換素子を示す部分断面図であって、基板面内での一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。It is a fragmentary sectional view which shows the thermoelectric conversion element of 2nd embodiment, Comprising: The unit formation part of the board | substrate corresponding to one thermoelectric conversion unit in a substrate surface, and the non-formation part of the both sides are shown. 図7に示す熱電変換素子の凸部形成工程前の状態を示す平面図であって、凸部形成後のA’−A’断面図が図7に相当する。FIG. 8 is a plan view showing a state before the convex portion forming step of the thermoelectric conversion element shown in FIG. 7, and an A′-A ′ cross-sectional view after the convex portion is formed corresponds to FIG. 7. 第三実施形態の熱電変換素子を示す部分断面図であって、基板面内での一つの熱電変換単位に対応する基板の単位形成部とその両脇の非形成部を示す。It is a fragmentary sectional view which shows the thermoelectric conversion element of 3rd embodiment, Comprising: The unit formation part of the board | substrate corresponding to one thermoelectric conversion unit in a board | substrate surface, and the non-formation part of the both sides are shown. 図9に示す熱電変換素子の製造方法を構成する絶縁層形成工程を説明する平面図である。It is a top view explaining the insulating layer formation process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図9に示す熱電変換素子の製造方法を構成する被覆層形成工程を説明する平面図である。It is a top view explaining the coating layer formation process which comprises the manufacturing method of the thermoelectric conversion element shown in FIG. 図11のA−A断面図である。It is AA sectional drawing of FIG. 第一実施形態の熱電変換素子を用いた無線センサ送信装置の一例を説明する斜視図である。It is a perspective view explaining an example of the wireless sensor transmitter using the thermoelectric conversion element of a first embodiment. 第三実施形態の熱電変換素子を用いたウェアラブル機器用電源の一例である牛用首輪を説明する正面図である。It is a front view explaining the collar for cattle which is an example of the power supply for wearable apparatus using the thermoelectric conversion element of 3rd embodiment. 図14の牛用首輪が牛に巻きつけられた状態を示す概要図である。It is a schematic diagram which shows the state by which the cow collar of FIG. 14 was wound around the cow. 図15のB−B断面に対応する模式図である。It is a schematic diagram corresponding to the BB cross section of FIG. 実施形態の熱電変換素子を構成する基板の凸部に関し、第一乃至第二実施形態とは異なる形状の例を示す正面図である。It is a front view which shows the example of the shape different from 1st thru | or 2nd embodiment regarding the convex part of the board | substrate which comprises the thermoelectric conversion element of embodiment.

以下、この発明の実施形態について説明する。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この発明は以下に示す実施形態に限定されない。   Embodiments of the present invention will be described below. In the embodiment described below, a technically preferable limitation is made for carrying out the present invention, but the present invention is not limited to the embodiment described below.

[第一実施形態]
この実施形態の熱電変換素子は、図2〜5に示す各工程を行うことで製造される熱電変換素子である。図1には、この実施形態の熱電変換素子1を構成する一つの熱電変換単位10の断面が示されている。
熱電変換素子1は、図2に示す第一印刷工程の前段工程と、図3に示す第一印刷工程の後段工程と、図4に示す第二印刷工程と、図5に示す貫通穴形成工程と、図6の状態から図1の状態にする凸部形成工程と、を行うことで製造される。
[First embodiment]
The thermoelectric conversion element of this embodiment is a thermoelectric conversion element manufactured by performing each process shown in FIGS. FIG. 1 shows a cross section of one thermoelectric conversion unit 10 constituting the thermoelectric conversion element 1 of this embodiment.
The thermoelectric conversion element 1 includes a pre-process of the first printing process shown in FIG. 2, a post-process of the first printing process shown in FIG. 3, a second printing process shown in FIG. 4, and a through-hole forming process shown in FIG. And the convex part formation process which changes from the state of FIG. 6 to the state of FIG. 1 is manufactured.

熱電変換素子1は、可撓性を有する基板2と、基板2の上面に形成された印刷パターンからなる複数の熱電変換単位10とを有する。基板2の熱電変換単位10が形成されている単位形成部21の断面形状は、凸部211と第一低面部212と第二低面部213とからなる。第一低面部212と第二低面部213は、凸部211の両脇の凸部より低い部分であり、熱電変換単位10が形成されていない非形成部22と同じ高さである。
熱電変換単位10は、単位形成部21の第一低面部212から凸部211の頂部211aに至る第一層31と、頂部211aから第二低面部213に至る第二層32を有する。第一層31は、p型導電性高分子(熱電変換材料)からなり、第二層32は銀ペーストの硬化物(導電性材料)からなる。第二層32としてn型導電性高分子(熱電変換材料)からなる層を設けてもよいが、現時点で安定的な性能を有するものがないため、この実施形態では、その代替として銀ペーストの硬化物からなる第二層32を設けている。
The thermoelectric conversion element 1 includes a flexible substrate 2 and a plurality of thermoelectric conversion units 10 each having a print pattern formed on the upper surface of the substrate 2. The cross-sectional shape of the unit forming portion 21 on which the thermoelectric conversion unit 10 of the substrate 2 is formed includes a convex portion 211, a first low surface portion 212, and a second low surface portion 213. The 1st low surface part 212 and the 2nd low surface part 213 are parts lower than the convex part of the both sides of the convex part 211, and are the same height as the non-formation part 22 in which the thermoelectric conversion unit 10 is not formed.
The thermoelectric conversion unit 10 includes a first layer 31 that extends from the first low surface portion 212 of the unit forming portion 21 to the top portion 211 a of the convex portion 211, and a second layer 32 that extends from the top portion 211 a to the second low surface portion 213. The first layer 31 is made of a p-type conductive polymer (thermoelectric conversion material), and the second layer 32 is made of a cured silver paste (conductive material). Although a layer made of an n-type conductive polymer (thermoelectric conversion material) may be provided as the second layer 32, since there is no material that has stable performance at present, in this embodiment, as an alternative, a silver paste is used. A second layer 32 made of a cured product is provided.

図5に示すように、基板2の上面には2列7行、14個の熱電変換単位10が形成されている。基板2の行間で隣り合う熱電変換単位10の間に、凸部211の範囲全体で長方形の貫通穴25が形成されている。つまり、基板2の行間で隣り合う熱電変換単位10の間が、凸部211の範囲内で切り離されている。
そして、行間および列間で隣り合う熱電変換単位10の第一層31と第二層32を接続する下側配線41が、第一低面部212および第二低面部213上に、第一層31および第二層32を介して形成されている。
As shown in FIG. 5, 14 thermoelectric conversion units 10 are formed on the upper surface of the substrate 2 in two columns and seven rows. Between the thermoelectric conversion units 10 adjacent between the rows of the substrates 2, rectangular through holes 25 are formed in the entire range of the convex portions 211. That is, the adjacent thermoelectric conversion units 10 between the rows of the substrates 2 are separated within the range of the convex portions 211.
And the lower wiring 41 which connects the 1st layer 31 and the 2nd layer 32 of the thermoelectric conversion unit 10 adjacent between row | line | columns and between columns is on the 1st layer 31 on the 1st low surface part 212 and the 2nd low surface part 213. And the second layer 32.

また、第一層31と第二層32が異なる材料からなるため、凸部211の頂部211aの位置に、熱電変換単位10内の第一層31と第二層32を接続する上側配線42が形成されている。さらに、基板2の上面の一方の縁部に直列接続の両端が存在し、各位置に外部との接続端子43が形成されている。
この実施形態の熱電変換素子1の製造方法では、先ず、第一印刷工程の前段工程として、図2に示す配置で、一つの熱電変換単位10に一つの第一層31を、長方形の平面形状で形成する。つまり、2列14個の熱電変換単位10の列内および列間で、隣り合う第一層31を、長方形の長辺方向で反対側となる位置に配置する。
In addition, since the first layer 31 and the second layer 32 are made of different materials, the upper wiring 42 that connects the first layer 31 and the second layer 32 in the thermoelectric conversion unit 10 is located at the top 211a of the convex portion 211. Is formed. Further, both ends of the series connection exist at one edge portion of the upper surface of the substrate 2, and connection terminals 43 to the outside are formed at each position.
In the manufacturing method of the thermoelectric conversion element 1 of this embodiment, first, as the pre-stage process of the first printing process, one first layer 31 is arranged in one rectangular shape in the arrangement shown in FIG. Form with. In other words, the adjacent first layers 31 are arranged at positions opposite to each other in the long-side direction of the rectangle, within and between the two rows of the 14 thermoelectric conversion units 10.

次に、第一印刷工程の後段工程として、図3に示すように、一つの熱電変換単位10に一つの第二層32を、第一層31の隣に接触状態で、第一層31と同じ平面形状および厚さで形成する。
このようにして、基板2の上面に、2列14個の熱電変換単位10を構成する全ての第一層31および第二層32からなる熱電変換パターンが形成される。図3の状態で、基板2の第一層31および第二層32が存在している部分が単位形成部である。
次に、第二印刷工程として、図3に示す熱電変換パターン上に、図4に示すように、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成する。
Next, as a subsequent step of the first printing step, as shown in FIG. 3, one second layer 32 for one thermoelectric conversion unit 10 is in contact with the first layer 31 next to the first layer 31. They are formed with the same planar shape and thickness.
Thus, the thermoelectric conversion pattern which consists of all the 1st layers 31 and the 2nd layers 32 which comprise the 14 rows of thermoelectric conversion units 10 in the upper surface of the board | substrate 2 is formed. In the state of FIG. 3, a portion where the first layer 31 and the second layer 32 of the substrate 2 exist is a unit forming portion.
Next, as a second printing step, as shown in FIG. 4, a conductive layer pattern composed of the lower wiring 41, the connection terminal 43, and the upper wiring 42 is formed on the thermoelectric conversion pattern shown in FIG. 3.

次に、図5に示すように、後工程で凸部211を形成する範囲全体の、基板2の行間で隣り合う熱電変換単位10の間となる部分に、打ち抜き法または切り抜き法により貫通穴25を形成する。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、凸部形成工程として、図1の凸部211に対応させた雄部および雌部を有する金型を用意し、基板2の裏面側に雄部を表面側に雌部を押し当てて加熱しながら加圧する(加熱加圧成形を行う)。これにより、第一層31および第二層32と、基板2の第一層31および第二層32が形成されている部分を延伸変形させて、凸部211を形成する。その際に、全ての単位形成部21の凸部211に対応させた雄部および雌部を有する金型を使用することで、一度に全ての熱電変換単位10に凸部211を形成する。
Next, as shown in FIG. 5, a through hole 25 is formed by a punching method or a cutting method in a portion between the adjacent thermoelectric conversion units 10 between the rows of the substrate 2 in the entire range in which the convex portions 211 are formed in the subsequent process. Form. In this state, the thermoelectric conversion unit 10 is formed in a flat plate shape on the flat plate substrate 2 as shown in FIG.
Next, as a convex forming step, a mold having a male part and a female part corresponding to the convex part 211 in FIG. 1 is prepared, and the male part is pressed against the back side of the substrate 2 and the female part is pressed against the front side. Pressurizing while heating (heat-press molding is performed). Thereby, the first layer 31 and the second layer 32 and the portion of the substrate 2 where the first layer 31 and the second layer 32 are formed are stretched and deformed to form the convex portion 211. In that case, the convex part 211 is formed in all the thermoelectric conversion units 10 at once by using the metal mold | die which has the male part and female part corresponding to the convex part 211 of all the unit formation parts 21. FIG.

このようにして製造された熱電変換素子1は、全ての熱電変換単位10において、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
そのため、熱電変換素子1を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
Thus, the manufactured thermoelectric conversion element 1 is the low part 31a which is a part on the 1st low surface part 212 of the 1st layer 31, and the 2nd low surface part 213 of the 2nd layer 32 in all the thermoelectric conversion units 10. More than the thickness of the 1st layer 31 and the 2nd layer 32 between the low part 32a which is an upper part, and the high parts 31b and 32b which are the parts on the top part 211a of the 1st layer 31 and the 2nd layer 32 There is a difference in height.
Therefore, the thermoelectric conversion element 1 is placed on, for example, a hot plate while holding the non-formed portion 22 of the substrate 2 horizontally, and the low portion 31 a of the first layer 31 and the low portion of the second layer 32 are interposed via the substrate 2. Even when the part 32a is heated and used, high power generation performance can be obtained. Further, the substrate 2 on which the printed pattern is formed can be stably placed on the hot plate.

さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10の間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図1に示すように、凸部211の範囲全体で、熱電変換単位10毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214からなる空間(貫通穴25)と凸部211の下方空間Kとが連通している。そのため、熱電変換単位10毎に、その周囲に大気が触れる状態となる。
よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10の低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
なお、この実施形態の熱電変換素子1の製造方法では、第一層31、第二層32、導電層パターン(下側配線41、接続端子43、および上側配線42)の順に、印刷工程を行っているが、これらの層の印刷順は任意に変更できる。
Further, the thermoelectric conversion units 10 adjacent between the rows of the substrates 2 are separated by the entire range of the convex portions 211 in all the unit forming portions 21 by forming the through holes 25. That is, as shown in FIG. 1, all the unit forming portions 21 have the cut surfaces 214 that are separated independently for each thermoelectric conversion unit 10 in the entire range of the convex portions 211, and the cut surfaces 214 that are adjacent between the rows. The space (through hole 25) made of and the lower space K of the convex portion 211 communicate with each other. Therefore, for each thermoelectric conversion unit 10, the atmosphere is in contact with the surroundings.
Therefore, when the top portion 211a is cooled by circulating the air through the flow path formed of the lower space K during the heating by the hot plate described above, the low portions 31a and 32a and the high portions 31b and 32b of the thermoelectric conversion unit 10 are cooled. In the meantime, it can be expected that a larger temperature difference is generated.
In the method of manufacturing the thermoelectric conversion element 1 of this embodiment, the printing process is performed in the order of the first layer 31, the second layer 32, and the conductive layer pattern (the lower wiring 41, the connection terminal 43, and the upper wiring 42). However, the printing order of these layers can be arbitrarily changed.

[第二実施形態]
第二実施形態の熱電変換素子101は、図7に示すように、第一実施形態の熱電変換素子1と同様に、基板2の上面に2列7行の熱電変換単位10を有するだけでなく、2列7行の熱電変換単位10Aを基板2の下面に有する。
各熱電変換単位10Aは、基板2を挟んで各熱電変換単位10と重なる位置に配置されている。熱電変換単位10Aの第一層31は熱電変換単位10の第二層32と重なるように形成され、熱電変換単位10Aの第二層32は熱電変換単位10の第一層31と重なるように形成されている。また、全ての単位形成部21は、凸部211の範囲全体で、熱電変換単位10,10A毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
[Second Embodiment]
As shown in FIG. 7, the thermoelectric conversion element 101 according to the second embodiment not only has the thermoelectric conversion units 10 in two columns and seven rows on the upper surface of the substrate 2, similarly to the thermoelectric conversion element 1 according to the first embodiment. Two columns and seven rows of thermoelectric conversion units 10 </ b> A are provided on the lower surface of the substrate 2.
Each thermoelectric conversion unit 10A is arranged at a position overlapping each thermoelectric conversion unit 10 with the substrate 2 interposed therebetween. The first layer 31 of the thermoelectric conversion unit 10A is formed to overlap the second layer 32 of the thermoelectric conversion unit 10, and the second layer 32 of the thermoelectric conversion unit 10A is formed to overlap the first layer 31 of the thermoelectric conversion unit 10. Has been. Moreover, all the unit formation parts 21 have the cut surface 214 cut | disconnected independently for every thermoelectric conversion unit 10 and 10A in the whole range of the convex part 211, and the space and the space between the adjacent cut surfaces 214 between rows are convex. The lower space K of the part 211 is in communication.

また、図8に示すように、上面の接続端子43aと、基板2を挟んでこれと重なる下面の接続端子43aとが、例えば基板2の端面に設けた電極で接続されている。これにより、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが直列接続されている。この場合、上面および下面の接続端子43bが外部との接続端子となる。
なお、熱電変換単位10Aの第一層31を熱電変換単位10の第一層31と重なるように形成し、熱電変換単位10Aの第二層32を熱電変換単位10の第二層32と重なるように形成し、上面および下面の接続端子43a同士および接続端子43b同士を接続してもよい。この場合、上面の2列7行の熱電変換単位10と下面の2列7行の熱電変換単位10Aが並列接続され、上下で接続された状態の接続端子43aおよび接続端子43bが外部との接続端子となる。
Further, as shown in FIG. 8, the connection terminal 43 a on the upper surface and the connection terminal 43 a on the lower surface that overlaps with the substrate 2 are connected by, for example, electrodes provided on the end surface of the substrate 2. Thereby, the thermoelectric conversion unit 10 of 2 columns 7 rows on the upper surface and the thermoelectric conversion unit 10A of 2 columns 7 rows on the lower surface are connected in series. In this case, the connection terminals 43b on the upper surface and the lower surface serve as connection terminals to the outside.
The first layer 31 of the thermoelectric conversion unit 10A is formed so as to overlap the first layer 31 of the thermoelectric conversion unit 10, and the second layer 32 of the thermoelectric conversion unit 10A is overlapped with the second layer 32 of the thermoelectric conversion unit 10. The connection terminals 43a on the upper surface and the lower surface and the connection terminals 43b may be connected to each other. In this case, the thermoelectric conversion unit 10 of 2 columns and 7 rows on the upper surface and the thermoelectric conversion unit 10A of 2 columns and 7 rows on the lower surface are connected in parallel, and the connection terminal 43a and the connection terminal 43b in the state of being connected vertically are connected to the outside. It becomes a terminal.

熱電変換素子101は、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2の上面と下面に対する第一印刷工程および第二印刷工程を行った後、第一実施形態の熱電変換素子1の製造方法と同じ方法で、基板2に対する貫通穴形成工程と凸部形成工程を行うことで製造できる。
この実施形態の熱電変換素子101によれば、第一実施形態の熱電変換素子1が有する効果に加えて、基板2の両面に熱電変換単位を有することで、一枚の基板で高い起電力が得られるという効果も有する。
The thermoelectric conversion element 101 is the same method as the manufacturing method of the thermoelectric conversion element 1 of the first embodiment, and after performing the first printing process and the second printing process on the upper surface and the lower surface of the substrate 2, the thermoelectric conversion element 101 of the first embodiment. It can manufacture by performing the through-hole formation process and convex part formation process with respect to the board | substrate 2 by the same method as the manufacturing method of the conversion element 1. FIG.
According to the thermoelectric conversion element 101 of this embodiment, in addition to the effects that the thermoelectric conversion element 1 of the first embodiment has, a high electromotive force can be obtained on a single substrate by having thermoelectric conversion units on both sides of the substrate 2. It also has the effect of being obtained.

つまり、第二実施形態の熱電変換素子101は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Aを基板2の厚さ方向に二層有するため、直列接続の場合は出力電圧が熱電変換素子1の二倍となり、並列接続の場合は出力電流が熱電変換素子1の二倍となる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第二実施形態の熱電変換素子101は、全ての熱電変換単位10と下側配線41および上側配線42が耐候性材料で覆われていることが好ましい。その場合には、耐候性材料からなる被覆層の形成を、凸部211の形成前後のどちらのタイミングで行ってもよい。
That is, the thermoelectric conversion element 101 of the second embodiment has the same area of the substrate 2 as the thermoelectric conversion element 1 of the first embodiment, but the thermoelectric conversion units 10 and 10A having the same pattern are arranged in the thickness direction of the substrate 2. Since it has two layers, the output voltage is twice that of the thermoelectric conversion element 1 in the case of series connection, and the output current is twice that of the thermoelectric conversion element 1 in the case of parallel connection.
Further, by increasing the number of thermoelectric conversion units 10 in the thickness direction of the substrate 2 to three layers, four layers, or more, the output current of the thermoelectric conversion element can be increased without changing the area of the substrate 2. .
Moreover, it is preferable that the thermoelectric conversion element 101 of 2nd embodiment is covering all the thermoelectric conversion units 10, the lower wiring 41, and the upper wiring 42 with a weather resistant material. In that case, the formation of the covering layer made of the weather resistant material may be performed at any timing before and after the formation of the convex portion 211.

[第三実施形態]
第三実施形態の熱電変換素子102は、図9に示すように、第一実施形態の熱電変換素子1と同様に、基板2の面内に2列7行の熱電変換単位10を有するだけでなく、同じ2列7行の熱電変換単位10を基板2の上面に二層有する。図9は、熱電変換素子102の熱電変換単位10,10Bが重なっている部分の断面を示す。図9に示すように、熱電変換素子102は、二層の熱電変換単位10,10B間に絶縁層44を有し、基板2とは反対の面に耐候性材料からなる被覆層45を有する。
熱電変換素子102は以下の方法で製造される。
[Third embodiment]
As shown in FIG. 9, the thermoelectric conversion element 102 of the third embodiment has only two columns and seven rows of thermoelectric conversion units 10 in the plane of the substrate 2, as in the thermoelectric conversion element 1 of the first embodiment. The same two columns and seven rows of thermoelectric conversion units 10 are provided on the upper surface of the substrate 2. FIG. 9 shows a cross section of a portion where the thermoelectric conversion units 10 and 10B of the thermoelectric conversion element 102 overlap. As shown in FIG. 9, the thermoelectric conversion element 102 has an insulating layer 44 between the two thermoelectric conversion units 10 and 10 </ b> B, and has a coating layer 45 made of a weather resistant material on the surface opposite to the substrate 2.
The thermoelectric conversion element 102 is manufactured by the following method.

先ず、第一実施形態の熱電変換素子1と同様に図2〜図5に示す各工程を行って、基板2上に、一層目の熱電変換単位10のパターン(熱電変換パターンと導電層パターン)と貫通穴25を形成する。次に、図5に示す状態の基板2上の接続端子43の部分を除いた全面に絶縁層44を形成する。図10はこの状態を示す。次に、図2〜図4に示す各工程を同じ方法で行って、図10に示す状態の基板2上に、二層目の熱電変換単位10Bのパターン(熱電変換パターンと導電層パターン)を形成した後、基板2上の全面に被覆層45を形成して、図11に示す状態とする。   First, each process shown in FIGS. 2 to 5 is performed in the same manner as the thermoelectric conversion element 1 of the first embodiment, and the pattern of the first thermoelectric conversion unit 10 (thermoelectric conversion pattern and conductive layer pattern) is formed on the substrate 2. And a through hole 25 is formed. Next, an insulating layer 44 is formed on the entire surface excluding the connection terminal 43 on the substrate 2 in the state shown in FIG. FIG. 10 shows this state. Next, the steps shown in FIGS. 2 to 4 are performed by the same method, and the pattern (thermoelectric conversion pattern and conductive layer pattern) of the thermoelectric conversion unit 10B of the second layer is formed on the substrate 2 in the state shown in FIG. After the formation, a coating layer 45 is formed on the entire surface of the substrate 2 to obtain the state shown in FIG.

この状態の熱電変換素子102は平板状であり、図12に示すように、熱電変換単位10,10Bも平板状である。次に、第一実施形態と同じ凸部形成工程を行うことで、全ての熱電変換単位10,10Bに凸部211を形成する。
このようにして製造された熱電変換素子102は、全ての熱電変換単位10,10Bにおいて、第一層31の第一低面部212上の部分である低部31aおよび第二層32の第二低面部213上の部分である低部32aと、第一層31および第二層32の頂部211a上の部分である高部31b,32bとの間に、第一層31および第二層32の厚さ以上の高低差を有する。
The thermoelectric conversion element 102 in this state has a flat plate shape, and the thermoelectric conversion units 10 and 10B have a flat plate shape as shown in FIG. Next, the convex part 211 is formed in all the thermoelectric conversion units 10 and 10B by performing the same convex part formation process as 1st embodiment.
The thermoelectric conversion element 102 manufactured in this way has the low portion 31a and the second low level of the second layer 32 that are portions on the first low surface portion 212 of the first layer 31 in all the thermoelectric conversion units 10 and 10B. The thickness of the first layer 31 and the second layer 32 between the low part 32a that is a part on the surface part 213 and the high parts 31b and 32b that are parts on the top part 211a of the first layer 31 and the second layer 32. It has a height difference of more than that.

そのため、熱電変換素子102を、基板2の非形成部22を水平に保持して、例えばホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱して使用した場合でも、高い発電性能を得ることができる。また、印刷パターンが形成されている基板2だけでホットプレートの上に安定的に設置できる。
さらに、貫通穴25の形成により、基板2の行間で隣り合う熱電変換単位10,10Bの間が、全ての単位形成部21において凸部211の範囲全体で切り離されている。つまり、全ての単位形成部21は、図9に示すように、凸部211の範囲全体で、熱電変換単位10,10B毎に独立に切り離された切断面214を有し、行間で隣り合う切断面214間の空間と凸部211の下方空間Kとが連通している。
Therefore, the thermoelectric conversion element 102 is placed on, for example, a hot plate while holding the non-forming portion 22 of the substrate 2 horizontally, and the low portion 31 a of the first layer 31 and the low portion of the second layer 32 are interposed via the substrate 2. Even when the part 32a is heated and used, high power generation performance can be obtained. Further, the substrate 2 on which the printed pattern is formed can be stably placed on the hot plate.
Further, the thermoelectric conversion units 10 and 10B adjacent between the rows of the substrate 2 are separated by the entire range of the convex portions 211 in all the unit forming portions 21 by forming the through holes 25. That is, as shown in FIG. 9, all the unit forming portions 21 have cutting surfaces 214 that are separated independently for each thermoelectric conversion unit 10, 10 </ b> B in the entire range of the convex portion 211, and are adjacent to each other between rows. The space between the surfaces 214 and the lower space K of the convex portion 211 communicate with each other.

よって、上述のホットプレートによる加熱の際に、下方空間Kからなる流路に大気を流通させて頂部211aを冷却すれば、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間に、さらに大きな温度差を生じさせることが期待できる。
また、第三実施形態の熱電変換素子102は、第一実施形態の熱電変換素子1と基板2の面積は同じであるが、同じパターンの熱電変換単位10,10Bを基板2の厚さ方向に二層有するため、熱電変換素子1よりも出力電流が多くなる。
なお、第三実施形態の熱電変換素子102は、二層の熱電変換単位10,10Bの導電層パターン(下側配線41、 上側配線42、 および接続端子43)が同じであり、二層目の導電層パターンの形成時に、一層目の接続端子43の上に重ねて二層目の接続端子43が印刷されるため、二層の熱電変換単位10,10Bが並列に接続されている。
Therefore, when the top portion 211a is cooled by circulating the air through the flow path formed by the lower space K during the heating by the hot plate described above, the low portions 31a and 32a and the high portions 31b and 32b of the thermoelectric conversion units 10 and 10B. It can be expected that a larger temperature difference will occur between the two.
Moreover, the thermoelectric conversion element 102 of 3rd embodiment has the same area of the thermoelectric conversion element 1 and board | substrate 2 of 1st embodiment, However, The thermoelectric conversion units 10 and 10B of the same pattern are the thickness direction of the board | substrate 2. Since it has two layers, the output current is larger than that of the thermoelectric conversion element 1.
In the thermoelectric conversion element 102 of the third embodiment, the conductive layer patterns (lower wiring 41, upper wiring 42, and connection terminal 43) of the two-layer thermoelectric conversion units 10 and 10B are the same, and the second layer When the conductive layer pattern is formed, the second-layer connection terminal 43 is printed on the first-layer connection terminal 43 so that the two-layer thermoelectric conversion units 10 and 10B are connected in parallel.

また、導電層および絶縁層の印刷パターンの設定により、二層の熱電変換単位10,10Bを直列に接続すれば、熱電変換素子102の出力電圧を増やすこともできる。また、二層の熱電変換単位10,10Bを、各層内および層間で並列接続と直列接続を組み合わせて接続することで、熱電変換素子102の出力を自在に調整することもできる。
また、基板2の厚さ方向での熱電変換単位10の数を三層、四層、或いはそれ以上に増やすことで、基板2の面積を変えずに熱電変換素子の出力電流を増やすことができる。
また、第三実施形態では、被覆層45の形成を行った後に凸部211の形成を行っているが、最上層の熱電変換単位10Bを形成した後に凸部211の形成を行ってから、被覆層45を形成してもよい。
Further, if the two-layer thermoelectric conversion units 10 and 10B are connected in series by setting the print pattern of the conductive layer and the insulating layer, the output voltage of the thermoelectric conversion element 102 can be increased. Moreover, the output of the thermoelectric conversion element 102 can also be freely adjusted by connecting the two-layer thermoelectric conversion units 10 and 10B by combining parallel connection and series connection in each layer and between layers.
Further, by increasing the number of thermoelectric conversion units 10 in the thickness direction of the substrate 2 to three layers, four layers, or more, the output current of the thermoelectric conversion element can be increased without changing the area of the substrate 2. .
Further, in the third embodiment, the convex portion 211 is formed after the coating layer 45 is formed. However, after the convex portion 211 is formed after the uppermost thermoelectric conversion unit 10B is formed, the covering portion 45 is formed. Layer 45 may be formed.

[応用]
第一実施形態の熱電変換素子1および第二実施形態の熱電変換素子101の応用例としては、無線センサ送信装置の自立電源が挙げられる。
図13に示す無線センサ送信装置5は、回路基板51に形成されたアンテナ回路52およびセンサ端子53と、熱電変換素子1からなる自立電源と、信号処理・送信回路54と、電圧増幅部・バッテリー55と、で構成されている。
上述のように、実施形態の熱電変換素子1は、熱電変換単位10の低部(吸熱部)31a,32aと高部(放熱部)31b,32bとで、熱電変換層(第一層31および第二層32)の厚さ以上の高低差を有するため、吸熱部に付与する熱エネルギーが小さい場合でも、無線センサを駆動させるに十分な電力を供給できる。よって、実施形態の熱電変換素子1を電源として用いた無線センサ送信装置5は、太陽電池が使用できない照明のない場所においても、常時稼動できる自立型無線センサ送信装置として使用できる。
第三実施形態の熱電変換素子102の応用例としては、ウェアラブル無線センサ送信装置の自立電源が挙げられる。
[application]
As an application example of the thermoelectric conversion element 1 of the first embodiment and the thermoelectric conversion element 101 of the second embodiment, there is a self-supporting power source of a wireless sensor transmission device.
A wireless sensor transmission device 5 shown in FIG. 13 includes an antenna circuit 52 and a sensor terminal 53 formed on a circuit board 51, a self-supporting power source including a thermoelectric conversion element 1, a signal processing / transmission circuit 54, a voltage amplification unit, and a battery. 55.
As described above, the thermoelectric conversion element 1 of the embodiment includes the thermoelectric conversion layer (the first layer 31 and the first layer 31 and the heat absorption portion) 31a and 32a and the high portions (heat dissipation portions) 31b and 32b of the thermoelectric conversion unit 10. Since it has a height difference equal to or greater than the thickness of the second layer 32), it is possible to supply sufficient power to drive the wireless sensor even when the thermal energy applied to the heat absorbing portion is small. Therefore, the wireless sensor transmission device 5 using the thermoelectric conversion element 1 of the embodiment as a power source can be used as a self-supporting wireless sensor transmission device that can always operate even in a place where there is no illumination where a solar cell cannot be used.
As an application example of the thermoelectric conversion element 102 of the third embodiment, there is a self-supporting power source of a wearable wireless sensor transmission device.

図14に示す牛用首輪6は、首輪本体(装着物)61の内側の面に、熱電変換素子102からなる自立電源が固定されたものである。熱電変換素子102の被覆層45側が首輪本体61に貼り付けてあり、基板2側が露出している。
図15に示すように、牛用首輪6は、熱電変換素子102側を内側にして牛(恒温動物)7の首71に巻きつけ、熱電変換素子102の接続端子43にウェアラブル無線センサ送信装置を接続して使用される。図16に示すように、牛用首輪6が牛7に巻きつけられた状態で、熱電変換素子102の下方空間Kが牛7の首71側に存在する。つまり、牛7の首71と首輪本体61との間に、熱電変換単位10,10Bの列毎の下方空間Kが繋がった大気の流路が存在する。
A cow collar 6 shown in FIG. 14 has a self-supporting power source composed of a thermoelectric conversion element 102 fixed to an inner surface of a collar body (attachment) 61. The cover layer 45 side of the thermoelectric conversion element 102 is attached to the collar body 61, and the substrate 2 side is exposed.
As shown in FIG. 15, the cow collar 6 is wound around the neck 71 of the cow (constant animal) 7 with the thermoelectric conversion element 102 side inward, and a wearable wireless sensor transmission device is connected to the connection terminal 43 of the thermoelectric conversion element 102. Used in connection. As shown in FIG. 16, the lower space K of the thermoelectric conversion element 102 exists on the neck 71 side of the cow 7 in a state where the cow collar 6 is wound around the cow 7. That is, there is an air flow path between the neck 71 of the cow 7 and the collar body 61 where the lower space K for each row of the thermoelectric conversion units 10 and 10B is connected.

そして、熱電変換素子102の基板2が可撓性を有するため、牛用首輪6は、牛7の首71に簡単に装着できるとともに、自立電源として薄く形成された熱電変換素子102を有するため、装着状態で牛7の行動に支障をきたさない。また、熱電変換素子102により、牛7の体表面と牛7の存在する環境との温度差で、ウェアラブル無線センサ送信装置を駆動可能な電力を供給できる。
さらに、下方空間Kに伴う大気の流路を大気が通ることで、放熱板を使用しなくても、熱電変換単位10,10Bの低部31a,32aと高部31b,32bとの間の温度差が確保できる。これにより、放熱板の分だけ牛用首輪6の厚さを薄くできる。
And since the board | substrate 2 of the thermoelectric conversion element 102 has flexibility, while the cow collar 6 can be easily attached to the neck 71 of the cow 7, and has the thermoelectric conversion element 102 formed thinly as a self-supporting power source, It does not interfere with the behavior of the cow 7 in the mounted state. In addition, the thermoelectric conversion element 102 can supply power that can drive the wearable wireless sensor transmission device based on a temperature difference between the body surface of the cow 7 and the environment in which the cow 7 exists.
Furthermore, the temperature between the low portions 31a and 32a and the high portions 31b and 32b of the thermoelectric conversion units 10 and 10B can be obtained without using a heat sink because the air passes through the air flow path associated with the lower space K. A difference can be secured. As a result, the thickness of the cow collar 6 can be reduced by the amount of the heat sink.

また、熱電変換素子102が耐候性材料からなる被覆層45を有するため、屋外で使用した場合でも熱電変換素子102を長期に渡って使用可能である。なお、屋内や短期間での使用であれば、第三実施形態の熱電変換素子102の代わりに、被覆層45のない第一実施形態の熱電変換素子1を用いてもよい。
なお、図14に示す牛用首輪6はウェアラブル機器用電源の一例であるが、ウェアラブル機器用電源の装着物の形状や材質は制限されず、恒温動物の四肢、首、胴体などの体表面の一部に装着可能で、熱電変換素子の周りの大気の流通を著しく妨げることがなく、装着位置から容易に脱落することがなければよい。
Moreover, since the thermoelectric conversion element 102 has the coating layer 45 made of a weather resistant material, the thermoelectric conversion element 102 can be used for a long time even when used outdoors. Note that the thermoelectric conversion element 1 according to the first embodiment without the coating layer 45 may be used instead of the thermoelectric conversion element 102 according to the third embodiment for indoor or short-term use.
The cow collar 6 shown in FIG. 14 is an example of a wearable device power supply, but the shape and material of the wearable device power supply are not limited, and the body surface such as the limb, neck, and torso of a thermostat animal is not limited. It can be attached to a part, does not significantly disturb the circulation of air around the thermoelectric conversion element, and does not have to be easily removed from the attachment position.

[凸部の形状について]
図17に、基板2の単位形成部21の断面形状を構成する凸部の形状を複数例示す。
図17(a) の凸部は、基板2の裏面と同じ平面26と対向する円弧面からなる頂部27と、平面26をなす直線の両端と頂部27をなす円弧の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
図17(b) の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結ぶ一対の傾斜面28と、を有する。頂部27と傾斜面28との境界は丸く形成されている。
[About convex shape]
FIG. 17 shows a plurality of examples of the shape of the convex portion constituting the cross-sectional shape of the unit forming portion 21 of the substrate 2.
17A is a pair of inclined surfaces that connect a top portion 27 formed of an arc surface facing the same plane 26 as the back surface of the substrate 2, and both ends of a straight line forming the plane 26 and both ends of the arc forming the top portion 27. 28. The boundary between the top 27 and the inclined surface 28 is rounded.
The convex portion in FIG. 17B is a pair of slopes connecting a top portion 27 formed of a plane facing the same plane 26 as the back surface of the substrate 2, and both ends of a straight line forming the plane 26 and both ends of a straight line forming the top portion 27. Surface 28. The boundary between the top 27 and the inclined surface 28 is rounded.

図17(c) の凸部は、基板2の裏面と同じ平面26と平行に対向する平面からなる頂部27と、平面26をなす直線の両端と頂部27をなす直線の両端を結び、両直線に対して垂直な一対の垂直面29と、を有する。頂部27と垂直面29との境界は丸く形成されている。
図17(d) の凸部は、基板2の裏面と同じ平面26と対向し、平面26をなす直線の両端と結合された円弧面27Aからなる。円弧面27Aの平面26から最も離れている位置が頂部となる。
The convex part of FIG. 17 (c) connects the top part 27 formed of a plane facing the same plane 26 as the back surface of the substrate 2 in parallel with both ends of the straight line forming the plane 26 and both ends of the straight line forming the top part 27. And a pair of vertical surfaces 29 perpendicular to each other. The boundary between the top 27 and the vertical surface 29 is rounded.
The convex portion in FIG. 17D is formed of an arcuate surface 27A that faces the same plane 26 as the back surface of the substrate 2 and is joined to both ends of a straight line that forms the plane 26. The position farthest from the flat surface 26 of the circular arc surface 27A is the top.

[材料について]
<熱電変換材料>
熱電変換材料としては、導電性高分子或いはCNT(カーボンナノチューブ)を好適に用いることができ、導電性高分子の種類によっては、成型する上で必要となる熱硬化性樹脂などのバインダ、導電性を高めるためのCNT(カーボンナノチューブ)分散体やエチレングリコール、ジメチルスルホキシド、n−メチルピロリドンあるいはジメチルホルムアミド、ポリエチレングリコール、ジエチレングリコールモノメチルエーテルなどの極性高沸点溶媒を添加できる。
なお、熱電変換材料としては、基板の変形に追従できる材料であれば、種類は限定されず、無機材料もしくは有機物と無機物の混合材料を使用することもできる。一般的には、熱電変換材料の破断歪みが10%以上であると、基板の変形に追従し易い。
[About materials]
<Thermoelectric conversion material>
As the thermoelectric conversion material, a conductive polymer or CNT (carbon nanotube) can be preferably used. Depending on the type of the conductive polymer, a binder such as a thermosetting resin necessary for molding, a conductive material A CNT (carbon nanotube) dispersion for increasing the viscosity and a polar high-boiling solvent such as ethylene glycol, dimethyl sulfoxide, n-methylpyrrolidone or dimethylformamide, polyethylene glycol, diethylene glycol monomethyl ether can be added.
Note that the thermoelectric conversion material is not limited as long as the material can follow the deformation of the substrate, and an inorganic material or a mixed material of an organic substance and an inorganic substance can also be used. Generally, when the breaking strain of the thermoelectric conversion material is 10% or more, it is easy to follow the deformation of the substrate.

<導電性高分子からなる熱電変換材料の例示>
p型導電性高分子(p型半導体特性を有する導電性高分子)としては、共役系の分子構造を有する高分子化合物(共役系高分子)を用いることができる。
共役系高分子としては、ポリチオフェン系化合物(破断歪み10〜20%)、ポリピロール系化合物(破断歪み20%)、ポリアニリン系化合物(破断歪み〜35%)、ポリアセチレン系化合物(破断歪み〜800%)、ポリ(p−フェニレン)系化合物、ポリ(p−フェニレンビニレン)系化合物(PPV系化合物、150℃加熱延伸処理後の破断歪み5%)、ポリ(p−フェニレンエチニレン)系化合物(破断歪み2.5%)、ポリ(p−フルオレニレンビニレン)系化合物(破断歪み2.5%)、ポリアセン系化合物(破断歪み1%)、ポリフェナントレン系化合物(破断歪み1%)が挙げられる。
また、上記高分子化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子も挙げられる。
n型導電性高分子(n型半導体特性を有する導電性高分子)としても、共役系の分子構造を有する高分子化合物が挙げられるが、不安定な物質が多い。
<Example of thermoelectric conversion material made of conductive polymer>
As the p-type conductive polymer (conductive polymer having p-type semiconductor characteristics), a polymer compound having a conjugated molecular structure (conjugated polymer) can be used.
Conjugated polymers include polythiophene compounds (breaking strain 10-20%), polypyrrole compounds (breaking strain 20%), polyaniline compounds (breaking strain 35%), polyacetylene compounds (breaking strain 800%). , Poly (p-phenylene) compound, poly (p-phenylene vinylene) compound (PPV compound, 5% strain at break after 150 ° C. heat-stretching treatment), poly (p-phenylene ethynylene) compound (break strain) 2.5%), poly (p-fluorenylene vinylene) compound (breaking strain 2.5%), polyacene compound (breaking strain 1%), and polyphenanthrene compound (breaking strain 1%).
Moreover, the conjugated polymer which has a repeating unit which consists of a derivative | guide_body in which the substituent was introduce | transduced into the monomer of the said high molecular compound is also mentioned.
As the n-type conductive polymer (conductive polymer having n-type semiconductor characteristics), a polymer compound having a conjugated molecular structure can be given, but many unstable substances are present.

<第一層および第二層について>
第一層および第二層の少なくともいずれかは熱電変換材料からなり、第一層および第二層は同じ材料または異なる材料からなる。第一層および第二層が異なる材料からなる場合は、凸部の頂部に、熱電変換単位内の第一層と第二層を接続する配線(上側配線)を形成する。
つまり、第一層および第二層が異なる材料からなる場合の材料の組み合わせは、p型熱電材料とn型熱電材料、p型熱電材料と導電性材料(熱電変換機能無し)、n型熱電材料と導電性材料(熱電変換機能無し)が挙げられる。ただし、上述のように、導電性高分子からなるn型熱電材料(n型導電性高分子)は不安定な物質が多い。
<About the first layer and the second layer>
At least one of the first layer and the second layer is made of a thermoelectric conversion material, and the first layer and the second layer are made of the same material or different materials. When the first layer and the second layer are made of different materials, wiring (upper wiring) that connects the first layer and the second layer in the thermoelectric conversion unit is formed at the top of the convex portion.
That is, when the first layer and the second layer are made of different materials, the combination of materials is p-type thermoelectric material and n-type thermoelectric material, p-type thermoelectric material and conductive material (no thermoelectric conversion function), n-type thermoelectric material. And conductive materials (without thermoelectric conversion function). However, as described above, many n-type thermoelectric materials (n-type conductive polymers) made of conductive polymers are unstable.

<基板>
基板の種類は特に限定されないが、電極の形成や熱電変換層の形成時に影響を受けにくく、さらに変形に際して割れにくい基板(破断歪み50%以上)を使用することが好ましい。コストや柔軟性の観点から、プラスチックフィルムが好ましく、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6 −フタレンジカルボキシレート、ビスフェノールAとイソおよびテレフタル酸との重合で得られるポリエステルフィルムなどのポリエステルフィルム、ポリシクロオレフィンフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムなどが挙げられる。
これらのうち、入手の容易性、100℃以上の耐熱性、加工性、経済性および効果の観点から、市販のポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、各種ポリイミドやポリカーボネートフィルムが好ましい。印刷工程を考えると、例えば、片面易接着加工されたシートが好ましい。
<Board>
The type of the substrate is not particularly limited, but it is preferable to use a substrate (breaking strain of 50% or more) that is not easily affected by the formation of the electrode or the thermoelectric conversion layer and that is not easily broken during deformation. From the viewpoint of cost and flexibility, a plastic film is preferable. Polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-phthalenedicarboxy Examples thereof include polyester film such as polyester film obtained by polymerization of rate, bisphenol A with iso and terephthalic acid, polycycloolefin film, polyimide film, polycarbonate film, polyether ether ketone film, polyphenyl sulfide film and the like.
Of these, commercially available polyethylene terephthalate (PET), polyethylene naphthalate (PEN), various polyimides and polycarbonate films are preferred from the viewpoints of availability, heat resistance of 100 ° C. or higher, processability, economy and effects. Considering the printing process, for example, a sheet subjected to one-side easy adhesion processing is preferable.

[好ましい態様について]
この発明の第一態様の熱電変換素子は、上記構成(1) 〜(4) に加えて下記の構成(5) または(5')を有することができる。
(5) 前記単位形成部は、前記凸部の範囲内で、前記熱電変換単位毎に独立に切り離された複数の切断面を有する。
この場合、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができる。
[About preferred embodiments]
The thermoelectric conversion element according to the first aspect of the present invention can have the following configuration (5) or (5 ′) in addition to the above configurations (1) to (4).
(5) The unit forming portion has a plurality of cut surfaces that are independently cut for each thermoelectric conversion unit within the range of the convex portion.
In this case, for each thermoelectric conversion unit, the atmosphere can be brought into contact with the surroundings of the thermoelectric conversion unit.

(5')前記単位形成部は、前記凸部の範囲内で前記非形成部との間が切り離されている。この場合、並列に隣り合う前記熱電変換単位間の前記非形成部を含めて、基板面は一つの面(第一低面部および第二低面部を含む面)内に存在する。そのため、前記構成(5')を有することにより、前記構成(5')を有さない場合よりも平面状の加熱装置上に安定的に設置できる効果が高い。
また、前記構成(5')を有するとともに、複数の熱電変換単位が、X列Y行(X≧1,Y≧2)のマトリックス状に配置され、基板の行間で隣り合う熱電変換単位の間が、全ての凸部の範囲内で切り離されていれば、熱電変換単位の列毎に、全ての凸部の下方空間が凸部の頂部側でつながって、大気の流路となる。
(5 ′) The unit forming portion is separated from the non-forming portion within the range of the convex portion. In this case, the substrate surface, including the non-formed portion between the thermoelectric conversion units adjacent in parallel, exists in one surface (a surface including the first low surface portion and the second low surface portion). Therefore, by having the configuration (5 ′), the effect of being able to be stably installed on a planar heating device is higher than in the case without the configuration (5 ′).
The thermoelectric conversion unit having the configuration (5 ′) is arranged in a matrix of X columns and Y rows (X ≧ 1, Y ≧ 2), and between adjacent thermoelectric conversion units between the rows of the substrate. However, if it is separated within the range of all the convex portions, the lower space of all the convex portions is connected on the top side of the convex portion for each row of thermoelectric conversion units, thereby forming an air flow path.

よって、第一態様の熱電変換素子が構成(5) または(5')を有する場合、平面状の加熱装置に載せて加熱する際に、凸部の下方空間からなる流路に大気を流通させて頂部を冷却することで、熱電変換単位の低部と高部との間に、より大きな温度差を生じさせることができる。
なお、特許文献1の熱電素子では、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができないため、凸部の頂部を効果的に冷却するという点でも課題がある。第一態様の熱電変換素子が構成(5) または(5')を有することで、この課題を解決することができる。
Therefore, when the thermoelectric conversion element of the first aspect has the configuration (5) or (5 ′), the air is circulated through the flow path formed by the space below the convex portion when the thermoelectric conversion element is heated on the flat heating device. By cooling the top part, a larger temperature difference can be generated between the low part and the high part of the thermoelectric conversion unit.
In addition, in the thermoelectric element of patent document 1, since it cannot be made the state which air | atmosphere touches the circumference | surroundings of a thermoelectric conversion unit for every thermoelectric conversion unit, there also exists a subject also in the point of cooling the top part of a convex part effectively. This problem can be solved when the thermoelectric conversion element of the first aspect has the configuration (5) or (5 ′).

この発明の第一態様の熱電変換素子は、上記構成(1) 〜(4) に加えて下記の構成(6) を有することができる。
(6) 前記複数の熱電変換単位と前記配線が、前記基板の上面と下面の両方に形成されている。前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている。
この発明の第一態様の熱電変換素子は、上記構成(1) 〜(4) に加えて下記の構成(7) を有することができる。
(7) 前記第一層および前記第二層は異なる材料からなり、前記頂部に、前記熱電変換単位内の前記第一層と前記第二層を接続する配線が形成されている。
The thermoelectric conversion element according to the first aspect of the present invention can have the following configuration (6) in addition to the above configurations (1) to (4).
(6) The plurality of thermoelectric conversion units and the wiring are formed on both the upper surface and the lower surface of the substrate. The connection terminals on the upper surface and the lower surface are connected to each other at at least one end of the series connection.
The thermoelectric conversion element according to the first aspect of the present invention can have the following configuration (7) in addition to the above configurations (1) to (4).
(7) The first layer and the second layer are made of different materials, and a wiring connecting the first layer and the second layer in the thermoelectric conversion unit is formed on the top.

この発明の第一態様の熱電変換素子は、上記構成(1) 〜(4) に加えて下記の構成(8) を有することができる。
(8) 前記複数の熱電変換単位と前記配線が耐候性材料で覆われている。
第一態様の熱電変換素子は、上記構成(1) 〜(4) に加えて下記の構成(9) を有することができる。
(9) 前記熱電変換単位を、前記基板の厚さ方向に絶縁層を介して複数有する。
The thermoelectric conversion element according to the first aspect of the present invention can have the following configuration (8) in addition to the above configurations (1) to (4).
(8) The plurality of thermoelectric conversion units and the wiring are covered with a weather resistant material.
The thermoelectric conversion element of the first aspect can have the following configuration (9) in addition to the above configurations (1) to (4).
(9) A plurality of the thermoelectric conversion units are provided via an insulating layer in the thickness direction of the substrate.

この発明の第一態様の熱電変換素子は、さらに下記の構成(a) 〜(e) の少なくともいずれかを有することが好ましい。
(a) 前記第一層および前記第二層の少なくともいずれかが導電性高分子からなる。
(b) 前記第一層および前記第二層の少なくともいずれかが、ポリチオフェン系化合物、ポリピロール系化合物、ポリアニリン系化合物、ポリアセチレン系化合物、ポリ(p−フェニレン)系化合物、ポリ(p−フェニレンビニレン)系化合物、ポリ(p−フェニレンエチニレン)系化合物、ポリ(p−フルオレニレンビニレン)系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、およびこれらの化合物のモノマーに置換基が導入された誘導体からなる繰り返し単位を有する共役系高分子から選択される少なくとも一つを有する。
The thermoelectric conversion element according to the first aspect of the present invention preferably further has at least one of the following configurations (a) to (e).
(a) At least one of the first layer and the second layer is made of a conductive polymer.
(b) At least one of the first layer and the second layer is a polythiophene compound, a polypyrrole compound, a polyaniline compound, a polyacetylene compound, a poly (p-phenylene) compound, or poly (p-phenylene vinylene). Compounds, poly (p-phenyleneethynylene) compounds, poly (p-fluorenylene vinylene) compounds, polyacene compounds, polyphenanthrene compounds, and derivatives in which substituents are introduced into the monomers of these compounds And having at least one selected from conjugated polymers having a repeating unit.

(c) 前記熱電変換材料はp型導電性高分子である。
(d) 前記基板は、ポリエチレンテレフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)フィルム、ポリエチレン−2,6−フタレンジカルボキシレートフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニルスルフィドフィルムから選択される少なくとも一つからなる。
(e) 前記熱電変換素子の前記印刷パターンが保護層(例えば、合成樹脂からなるコーティング剤を塗布して硬化させた層、耐候性材料からなる層)で覆われている。
(c) The thermoelectric conversion material is a p-type conductive polymer.
(d) The substrate is made of polyethylene terephthalate film, polyethylene isophthalate film, polyethylene naphthalate film, polybutylene terephthalate film, poly (1,4-cyclohexylenedimethylene terephthalate) film, polyethylene-2,6-phthalenedicarboxylate. It consists of at least one selected from a film, a polyimide film, a polycarbonate film, a polyether ether ketone film, and a polyphenyl sulfide film.
(e) The printed pattern of the thermoelectric conversion element is covered with a protective layer (for example, a layer formed by applying a coating agent made of a synthetic resin and cured, or a layer made of a weather resistant material).

上記構成(1) 〜構成(5) を有する熱電変換素子は、例えば、上記構成(11)〜(13)と下記の構成(14)を有する方法で製造することができる。
(14)前記凸部形成工程の前に、前記基板の、前記凸部を形成する範囲内の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程。
この発明の第三態様として、前記第一態様の熱電変換素子を備えた無線センサ用電源が挙げられる。
この発明の第四態様として、前記第一態様の熱電変換素子からなる自立電源と、信号処理・送信回路と、電圧増幅部・バッテリーと、アンテナ回路およびセンサ端子が形成された回路基板と、を有する無線センサが挙げられる。
The thermoelectric conversion elements having the above configurations (1) to (5) can be produced, for example, by a method having the above configurations (11) to (13) and the following configuration (14).
(14) A step of providing a through hole in a portion of the substrate between the adjacent thermoelectric conversion units between the rows within the range of forming the convex portion before the convex portion forming step.
As a third aspect of the present invention, there is a power supply for a wireless sensor provided with the thermoelectric conversion element of the first aspect.
As a fourth aspect of the present invention, a self-supporting power source comprising the thermoelectric conversion element of the first aspect, a signal processing / transmission circuit, a voltage amplification unit / battery, and a circuit board on which an antenna circuit and a sensor terminal are formed, The wireless sensor which has is mentioned.

この発明の第五態様として、恒温動物の四肢、首、胴体などの体表面の一部に装着される装着物と、前記装着物の面に固定された前記第一態様の熱電変換素子と、を有するウェアラブル機器用電源が挙げられる。
第五態様のウェアラブル機器用電源は、人を含む恒温動物の体温をエネルギー源とするため、装着されている恒温動物の生命活動が維持されている限り、電力が著しく減衰することはない。また、第一態様の熱電変換素子が前記構成(8) を有することで、屋外での使用でも長期に渡って電力を供給し続けることが期待できる。
これに対して、 電磁波や力学的エネルギーを利用した環境発電技術では、場所や時間などの条件によって電力が著しく減衰する。つまり、第五態様の電源を用いたウェアラブル無線センサ送信装置は、常時稼働できる自立型無線センサ送信装置として優れている。
As a fifth aspect of the present invention, an attachment attached to a part of a body surface such as a limb, neck, torso, etc. of a thermostat animal, and the thermoelectric conversion element of the first aspect fixed to a surface of the attachment, A power source for wearable devices having
Since the power source for the wearable device according to the fifth aspect uses the body temperature of a constant temperature animal including a human as an energy source, the power is not significantly attenuated as long as the life activity of the constant temperature animal is maintained. In addition, since the thermoelectric conversion element of the first aspect has the configuration (8), it can be expected that electric power will continue to be supplied for a long time even when used outdoors.
On the other hand, in the energy harvesting technology using electromagnetic waves and mechanical energy, power is significantly attenuated depending on conditions such as location and time. That is, the wearable wireless sensor transmission device using the power supply of the fifth aspect is excellent as a self-supporting wireless sensor transmission device that can always operate.

[熱電変換材料について]
第一層31の材料として、ポリチオフェン系化合物を含むコーティング剤であるヘレウス株式会社の「Clevios PH1000(水分散液)」を使用した。ポリチオフェン系化合物はp型導電性高分子であり、このコーティング剤の主成分は「ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルフィド」である。
セルロースナノファイバ(中越パルプ社製、最大幅500nm以下、平均幅50nm以下、平均繊維長0.5μm、重合度350)を、PH1000の有効成分に対して10質量%添加し、エチレングリコールをPH1000に対して5体積%となるように添加した後、攪拌しながら加温して、水分を蒸発させてゲル状のp型熱電変換材料を得た。
第二層32、下側配線41、接続端子43、および上側配線42の材料としては、銀ペーストを使用した。下側配線41、接続端子43、および上側配線42はスクリーン印刷で形成した。銀ペーストとしては、例えば藤倉化成株式会社製「ドータイトFA−333」などを使用できる。また、銀の酸化を抑制するため、銀ペーストの上に、カーボンペーストを重ねて印刷しても良い。
[About thermoelectric conversion materials]
As a material for the first layer 31, “Clevios PH1000 (aqueous dispersion)” of Heraeus Co., Ltd., which is a coating agent containing a polythiophene compound, was used. The polythiophene compound is a p-type conductive polymer, and the main component of this coating agent is “poly (3,4-ethylenedioxythiophene): polystyrene sulfide”.
Cellulose nanofibers (manufactured by Chuetsu Pulp Co., Ltd., maximum width of 500 nm or less, average width of 50 nm or less, average fiber length of 0.5 μm, polymerization degree of 350) are added at 10 mass% with respect to the active ingredient of PH1000, and ethylene glycol is added to PH1000. After adding to 5% by volume, the mixture was heated with stirring to evaporate the water, thereby obtaining a gel-like p-type thermoelectric conversion material.
As a material for the second layer 32, the lower wiring 41, the connection terminal 43, and the upper wiring 42, silver paste was used. The lower wiring 41, the connection terminal 43, and the upper wiring 42 were formed by screen printing. As the silver paste, for example, “Dotite FA-333” manufactured by Fujikura Kasei Co., Ltd. can be used. Further, in order to suppress silver oxidation, a carbon paste may be printed over the silver paste.

[熱電変換素子の製造]
<サンプルNo.1>
熱電変換単位を13列24行のマトリックス状に312個有する熱電変換素子を、以下の方法で製造した。第一実施形態では2列7行、14個の熱電変換単位10を有する熱電変換素子1について説明したが、熱電変換単位10の個数が異なる以外、各工程は第一実施形態で説明した各工程と同じ方法で行った。
先ず、16列24行の第一層31の開口パターンが、図2と同様に各列と各行で交互に形成された厚さ0.1mmのメタルマスクを用意した。このメタルマスクを用いて、厚さ100μmのPETフィルムからなる基板2の上面に、上述のゲル状のp型熱電変換材料を印刷した。これにより、各熱電変換単位10にp型熱電変換材料からなる第一層31の印刷パターンを、図2と同様の配置で形成した。
[Manufacture of thermoelectric conversion elements]
<Sample No.1>
A thermoelectric conversion element having 312 thermoelectric conversion units in a matrix of 13 columns and 24 rows was manufactured by the following method. In the first embodiment, the thermoelectric conversion element 1 having 2 columns and 7 rows and 14 thermoelectric conversion units 10 has been described. However, each process is the same as that described in the first embodiment except that the number of thermoelectric conversion units 10 is different. Was done in the same way.
First, a metal mask having a thickness of 0.1 mm was prepared in which the opening pattern of the first layer 31 of 16 columns and 24 rows was alternately formed in each column and each row as in FIG. Using this metal mask, the gel p-type thermoelectric conversion material described above was printed on the upper surface of the substrate 2 made of a PET film having a thickness of 100 μm. Thereby, the printing pattern of the 1st layer 31 which consists of p-type thermoelectric conversion material was formed in each thermoelectric conversion unit 10 by the arrangement | positioning similar to FIG.

次に、この状態の基板2を120℃で2時間加熱することで、p型熱電変換材料を乾燥させた。乾燥後の第一層31の厚さは10μmであった。
次に、全ての熱電変換単位10の第一層31の隣に、銀ペーストからなる第二層32を印刷し、120℃で2時間加熱することで銀ペーストを乾燥させた。この印刷はスクリーン印刷で行った。銀ペーストは、乾燥後の第二層32が10μmとなるように印刷した。これにより、図3と同様の第一層31と第二層32とからなる熱電変換パターンを312個形成した。
次に、全ての熱電変換パターン上に、図4と同様に、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。導電層パターンは、銀ペーストをスクリーン印刷した後に、120℃で2時間の加熱を行って乾燥させることで形成した。
Next, the substrate 2 in this state was heated at 120 ° C. for 2 hours to dry the p-type thermoelectric conversion material. The thickness of the first layer 31 after drying was 10 μm.
Next, the second layer 32 made of a silver paste was printed next to the first layers 31 of all the thermoelectric conversion units 10, and the silver paste was dried by heating at 120 ° C. for 2 hours. This printing was performed by screen printing. The silver paste was printed so that the second layer 32 after drying was 10 μm. Thereby, 312 thermoelectric conversion patterns composed of the first layer 31 and the second layer 32 similar to those in FIG. 3 were formed.
Next, a conductive layer pattern composed of the lower wiring 41, the connection terminal 43, and the upper wiring 42 was formed on all the thermoelectric conversion patterns as in FIG. The conductive layer pattern was formed by screen-printing a silver paste, followed by heating at 120 ° C. for 2 hours and drying.

次に、レーザー加工による切り抜き法で、図5と同様の配置で貫通穴25を形成した。この状態で、熱電変換単位10は、図6に示すように、平板状の基板2上に平板状に形成されている。
次に、312個全ての凸部211に対応させた雄部および雌部を有する金型を使用し、第一実施形態に記載した加熱加圧成形による凸部形成工程を、120℃で120分の条件で行った。これにより、312個全ての熱電変換単位10を図1に示す状態にした。凸部211の突出高さTは1.7mmとした。また、第一層31および第二層32も基板2とともに延伸変形した。
このようにして得られた熱電変換素子1は、図1に示すように、各列の熱電変換単位10毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, the through holes 25 were formed in the same arrangement as in FIG. 5 by a laser cutting method. In this state, the thermoelectric conversion unit 10 is formed in a flat plate shape on the flat plate substrate 2 as shown in FIG.
Next, using a mold having a male part and a female part corresponding to all 312 convex parts 211, the convex part forming step by heating and pressing described in the first embodiment is performed at 120 ° C. for 120 minutes. It went on condition of. Thereby, all 312 thermoelectric conversion units 10 were brought into the state shown in FIG. The protrusion height T of the convex portion 211 was 1.7 mm. The first layer 31 and the second layer 32 were also stretched and deformed together with the substrate 2.
As shown in FIG. 1, the thermoelectric conversion element 1 obtained in this way has an air flow path in which the lower space K of the convex portion 211 is connected for each row of thermoelectric conversion units 10.

<サンプルNo.2>
基板2の上面と下面にそれぞれ熱電変換単位を13列24行のマトリックス状に312個(両面合計で642個)有する熱電変換素子を、以下の方法で製造した。第二実施形態では、基板2の上面と下面にそれぞれ2列7行、14個の熱電変換単位10,10Aを有する熱電変換素子101について説明したが、熱電変換単位10,10Aの個数が異なる以外、各工程は第二実施形態で説明した各工程と同じ方法で行った。
先ず、基板2の上面と下面の両方に、サンプルNo.1と同じ方法で、下側配線41、接続端子43、および上側配線42からなる導電層パターンを形成した。各層のパターンは、基板2の上面と下面で同じ配置(基板を挟んで重なる配置)とした。
<Sample No.2>
Thermoelectric conversion elements having 312 thermoelectric conversion units on a top surface and a bottom surface of the substrate 2 in a matrix of 13 columns and 24 rows (642 in total on both surfaces) were manufactured by the following method. In the second embodiment, the thermoelectric conversion element 101 having 2 columns and 7 rows and 14 thermoelectric conversion units 10 and 10A on the upper surface and the lower surface of the substrate 2 has been described, but the number of thermoelectric conversion units 10 and 10A is different. Each process was performed by the same method as each process explained in the second embodiment.
First, a conductive layer pattern composed of the lower wiring 41, the connection terminal 43, and the upper wiring 42 was formed on both the upper and lower surfaces of the substrate 2 by the same method as Sample No. 1. The pattern of each layer was the same arrangement on the upper surface and lower surface of the substrate 2 (arrangement with the substrate sandwiched therebetween).

次に、サンプルNo.1と同じ方法で、貫通穴形成工程および凸部形成工程を行った。つまり、凸部211の突出高さTは、サンプルNo.1と同じ1.7mmである。
次に、基板2を挟んで互いに重なる上面および下面の接続端子43aを、電気的に接続した。これにより、642個の熱電変換単位が直列接続された熱電変換素子101を得た。
このようにして得られた熱電変換素子101は、図7に示すように、各列の熱電変換単位10,10A毎に、凸部211の下方空間Kがつながった大気の流路を有する。
Next, the through hole forming step and the convex portion forming step were performed by the same method as Sample No. 1. That is, the protrusion height T of the convex portion 211 is 1.7 mm, which is the same as that of the sample No. 1.
Next, the connection terminals 43a on the upper surface and the lower surface that overlap each other with the substrate 2 interposed therebetween were electrically connected. Thereby, the thermoelectric conversion element 101 in which 642 thermoelectric conversion units were connected in series was obtained.
As shown in FIG. 7, the thermoelectric conversion element 101 obtained in this manner has an air flow path in which the lower space K of the convex portion 211 is connected to each row of the thermoelectric conversion units 10 and 10 </ b> A.

[破断歪み試験]
サンプルNo.1およびNo.2の熱電変換素子を構成する熱電変換層の破断歪みを、以下の方法で試験した。
両サンプルとも、第一層31を構成する熱電変換材料は「ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルフィド」であるため、PETフィルム上に「ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルフィド」を形成した試験片を用意して、引張破断試験を行った。その結果、熱電変換層の破断歪みは10%であった。つまり、サンプルNo.1およびNo.2の熱電変換素子は、第一層31が基板2の変形に追従し易いものであった。
[Breaking strain test]
The fracture strains of the thermoelectric conversion layers constituting the thermoelectric conversion elements of samples No. 1 and No. 2 were tested by the following method.
In both samples, since the thermoelectric conversion material constituting the first layer 31 is “poly (3,4-ethylenedioxythiophene): polystyrene sulfide”, “poly (3,4-ethylenedioxythiophene) is formed on the PET film. ): A test piece on which “polystyrene sulfide” was formed was prepared, and a tensile fracture test was performed. As a result, the breaking strain of the thermoelectric conversion layer was 10%. That is, in the thermoelectric conversion elements of samples No. 1 and No. 2, the first layer 31 easily follows the deformation of the substrate 2.

[熱電変換素子の評価]
サンプルNo.1およびNo.2の熱電変換素子を、室温25℃の環境下で、基板2の非形成部22を水平に保持して、80℃のホットプレートの上に置き、基板2を介して第一層31の低部31aと第二層32の低部32aを加熱した。この状態で、両端子43間に発生した電圧をテスターで測定した。
電圧の測定値は、サンプルNo.1では80mV、サンプルNo.2では150mVであり、何れの熱電変換素子でも無線センサ用電源として使用できる起電力が得られた。
以上の結果を下記の表1にまとめて示す。
[Evaluation of thermoelectric conversion element]
Samples No. 1 and No. 2 were placed on a hot plate at 80 ° C. while holding the non-formed portion 22 of the substrate 2 horizontally in an environment of room temperature of 25 ° C. The lower part 31a of the first layer 31 and the lower part 32a of the second layer 32 were heated. In this state, the voltage generated between both terminals 43 was measured with a tester.
The measured voltage was 80 mV for sample No. 1 and 150 mV for sample No. 2, and an electromotive force that can be used as a power source for a wireless sensor was obtained with any thermoelectric conversion element.
The above results are summarized in Table 1 below.

Figure 2018067567
Figure 2018067567

1 熱電変換素子
10 基板上面の熱電変換単位
10A 基板下面の熱電変換単位
10B 二層目の熱電変換単位
2 基板
21 単位形成部
211 凸部
211a 凸部の頂部
212 第一低面部
213 第二低面部
214 切断面
22 非形成部
25 貫通穴
31 第一層
31a 第一層の低部
31b 第一層の高部
32 第二層
32b 第二層の高部
32a 第二層の低部
41 下側配線
42 上側配線
43 接続端子
44 絶縁層
45 耐候性材料からなる被覆層
5 無線センサ送信装置
51 回路基板
52 アンテナ回路
53 センサ端子
54 信号処理・送信回路
55 電圧増幅部・バッテリー
6 牛用首輪
61 首輪本体(装着物)
7 牛(恒温動物)
71 首
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 10 Thermoelectric conversion unit of board | substrate upper surface 10A Thermoelectric conversion unit of board | substrate lower surface 10B Thermoelectric conversion unit of 2nd layer 2 Board | substrate 21 Unit formation part 211 Projection part 211a Top part of projection part 212 1st low surface part 213 2nd low surface part 214 Cut surface 22 Non-formed part 25 Through hole 31 1st layer 31a 1st layer low part 31b 1st layer high part 32 2nd layer 32b 2nd layer high part 32a 2nd layer low part 41 Lower wiring 42 upper wiring 43 connection terminal 44 insulating layer 45 coating layer made of weathering material 5 wireless sensor transmission device 51 circuit board 52 antenna circuit 53 sensor terminal 54 signal processing / transmission circuit 55 voltage amplifier / battery 6 cattle collar 61 collar body (Wearing thing)
7 cattle (constant animals)
71 neck

Claims (6)

基板と、
前記基板の上面または下面に形成された複数の熱電変換単位と、
を有し、
前記基板の前記熱電変換単位が形成されている単位形成部の断面形状は、凸部とその両脇の前記凸部より低い第一低面部および第二低面部からなり、
前記基板の前記熱電変換単位が形成されていない非形成部は前記凸部の頂部より低い位置にあり、
前記熱電変換単位は、前記単位形成部の前記第一低面部から前記凸部の頂部に至る第一層と、前記頂部から第二低面部に至る第二層を有し、
前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなり、
前記複数の熱電変換単位は、前記第一低面部および前記第二低面部に形成された、隣り合う前記熱電変換単位の前記第一層と前記第二層を接続する配線により直列接続され、
前記直列接続の両端に接続端子を有する熱電変換素子。
A substrate,
A plurality of thermoelectric conversion units formed on the upper or lower surface of the substrate;
Have
The cross-sectional shape of the unit forming part in which the thermoelectric conversion unit of the substrate is formed is composed of a first low surface part and a second low surface part lower than the convex part and the convex part on both sides thereof,
The non-formation part in which the thermoelectric conversion unit of the substrate is not formed is in a position lower than the top part of the convex part,
The thermoelectric conversion unit has a first layer from the first low surface portion of the unit forming portion to the top of the convex portion, and a second layer from the top to the second low surface portion,
At least one of the first layer and the second layer is made of a thermoelectric conversion material,
The plurality of thermoelectric conversion units are connected in series by wiring connecting the first layer and the second layer of the adjacent thermoelectric conversion units formed on the first low surface portion and the second low surface portion,
A thermoelectric conversion element having connection terminals at both ends of the series connection.
前記単位形成部は、前記凸部の範囲内で、前記熱電変換単位毎に独立に切り離された切断面を有する請求項1記載の熱電変換素子。   2. The thermoelectric conversion element according to claim 1, wherein the unit forming portion has a cut surface that is independently cut for each thermoelectric conversion unit within the range of the convex portion. 前記複数の熱電変換単位と前記配線が、前記基板の上面と下面の両方に形成され、
前記上面および前記下面の前記接続端子同士が前記直列接続の少なくとも一端で接続されている請求項1または2記載の熱電変換素子。
The plurality of thermoelectric conversion units and the wiring are formed on both the upper surface and the lower surface of the substrate,
The thermoelectric conversion element according to claim 1 or 2, wherein the connection terminals on the upper surface and the lower surface are connected at at least one end of the series connection.
前記複数の熱電変換単位と前記配線が耐候性材料で覆われている請求項1〜3のいずれか一項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 3, wherein the plurality of thermoelectric conversion units and the wiring are covered with a weather resistant material. 請求項1記載の熱電変換素子を製造する方法であって、
基板上に、前記複数の熱電変換単位を構成する前記第一層および前記第二層からなる熱電変換パターンを形成する第一印刷工程と、
前記配線および前記接続端子からなる導電層パターンを、前記熱電変換パターン上に形成する第二印刷工程と、
前記第一層および前記第二層と、前記基板の前記第一層および前記第二層が形成されている部分を延伸変形させて、前記凸部を形成する凸部形成工程と、
を有する熱電変換素子の製造方法。
A method for producing the thermoelectric conversion element according to claim 1,
A first printing step for forming a thermoelectric conversion pattern comprising the first layer and the second layer constituting the plurality of thermoelectric conversion units on a substrate;
A second printing step of forming a conductive layer pattern composed of the wiring and the connection terminal on the thermoelectric conversion pattern;
A projecting portion forming step of forming the projecting portion by stretching and deforming the first layer and the second layer, and a portion of the substrate where the first layer and the second layer are formed;
The manufacturing method of the thermoelectric conversion element which has this.
前記凸部形成工程の前に、前記基板の、前記凸部を形成する範囲内の前記行間で隣り合う前記熱電変換単位の間となる部分に、貫通穴を設ける工程を、さらに有する請求項5記載の熱電変換素子の製造方法。   6. The method according to claim 5, further comprising a step of providing a through hole in a portion of the substrate that is between the thermoelectric conversion units adjacent to each other between the rows within a range in which the convex portion is formed, before the convex portion forming step. The manufacturing method of the thermoelectric conversion element of description.
JP2016203443A 2016-10-17 2016-10-17 Thermoelectric transducer and manufacturing method thereof Pending JP2018067567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203443A JP2018067567A (en) 2016-10-17 2016-10-17 Thermoelectric transducer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203443A JP2018067567A (en) 2016-10-17 2016-10-17 Thermoelectric transducer and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021000475A Division JP7196940B2 (en) 2021-01-05 2021-01-05 Thermoelectric conversion element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018067567A true JP2018067567A (en) 2018-04-26

Family

ID=62087241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203443A Pending JP2018067567A (en) 2016-10-17 2016-10-17 Thermoelectric transducer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018067567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113617A (en) * 2019-01-10 2020-07-27 日本精工株式会社 Thermoelectric element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303469A (en) * 1997-04-23 1998-11-13 Sharp Corp Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2005259944A (en) * 2004-03-11 2005-09-22 Nagoya Industrial Science Research Inst Thin film thermo-electronic semiconductor device and manufacturing method thereof
WO2016046713A1 (en) * 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303469A (en) * 1997-04-23 1998-11-13 Sharp Corp Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2005259944A (en) * 2004-03-11 2005-09-22 Nagoya Industrial Science Research Inst Thin film thermo-electronic semiconductor device and manufacturing method thereof
WO2016046713A1 (en) * 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113617A (en) * 2019-01-10 2020-07-27 日本精工株式会社 Thermoelectric element
JP7192509B2 (en) 2019-01-10 2022-12-20 日本精工株式会社 Thermoelectric conversion element

Similar Documents

Publication Publication Date Title
JP6087151B2 (en) Tile, aggregate of tile and carrier, and method of manufacturing aggregate
WO2013114854A1 (en) Organic thermoelectric power generating element and production method therefor
CN105940461A (en) Stretchable conductor, method for manufacturing same, and paste for forming stretchable conductor
Cho et al. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications
KR102395732B1 (en) Flexible substrate, electronic device, manufacturing method of electronic device
WO2016169481A1 (en) Electric heating film device and preparation method therefor, and electric heating apparatus
TW200950148A (en) Addressable or static light emitting, power generating or other electronic apparatus
JP2015144212A (en) thermoelectric conversion module
JP6205333B2 (en) Thermoelectric conversion module
KR20160090144A (en) Heat dissipation sheet unified antenna module
JP2016018867A (en) Flexible thermoelectric conversion device
JP2018067567A (en) Thermoelectric transducer and manufacturing method thereof
JP7196940B2 (en) Thermoelectric conversion element and manufacturing method thereof
Chen et al. Wrap-like transfer printing for three-dimensional curvy electronics
JP6606853B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2016207933A5 (en)
KR20160005221A (en) Electrostatic force based actuator including poly-imide organic dielectric layer
JP2018067608A (en) Thermoelectric conversion element
KR101521693B1 (en) flexible/stretchable transparent film having conductivity and manufacturing method thereof
CN112600461B (en) Piezoelectric energy collector
US10573835B2 (en) Modular electronics apparatuses and methods
Jocqué et al. Wearable coupled-quarter-mode SIW antenna platform with hybrid kinetic and ambient-light energy harvesting
JP7092217B2 (en) Thermoelectric conversion element
CN107135641A (en) A kind of electromagnetic shielding film of novel metalloid system and preparation method thereof
JP2012134204A (en) Method for manufacturing led package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006