JP7192743B2 - External electrode paste - Google Patents

External electrode paste Download PDF

Info

Publication number
JP7192743B2
JP7192743B2 JP2019202445A JP2019202445A JP7192743B2 JP 7192743 B2 JP7192743 B2 JP 7192743B2 JP 2019202445 A JP2019202445 A JP 2019202445A JP 2019202445 A JP2019202445 A JP 2019202445A JP 7192743 B2 JP7192743 B2 JP 7192743B2
Authority
JP
Japan
Prior art keywords
external electrode
electrode paste
resin
solvent
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019202445A
Other languages
Japanese (ja)
Other versions
JP2021077750A (en
Inventor
直徳 塚本
淳也 田中
康弘 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2019202445A priority Critical patent/JP7192743B2/en
Priority to KR1020200139895A priority patent/KR102366442B1/en
Priority to CN202011219717.7A priority patent/CN112786309B/en
Publication of JP2021077750A publication Critical patent/JP2021077750A/en
Application granted granted Critical
Publication of JP7192743B2 publication Critical patent/JP7192743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電子部品の外部電極を形成するために用いられる外部電極用ペーストに関する。 The present invention relates to an external electrode paste used to form external electrodes of electronic components.

従来、外部電極用ペーストを用いて、積層セラミックコンデンサなどの電子部品の外部電極を形成する方法が知られている。そのような外部電極用ペーストは、一般的に、バインダとしての樹脂と、金属フィラーと、溶剤とを含む。 Conventionally, a method of forming external electrodes of an electronic component such as a multilayer ceramic capacitor using an external electrode paste is known. Such external electrode paste generally contains a resin as a binder, a metal filler, and a solvent.

特許文献1には、エチルセルロースとアクリル系重合体とを含有したバインダ組成物が記載されており、そのようなバインダ組成物を積層セラミックコンデンサなどの製造に用いることが記載されている。このバインダ組成物は、エチルセルロールとアクリル系重合体とが単に混合したものである。 Patent Document 1 describes a binder composition containing ethyl cellulose and an acrylic polymer, and describes the use of such a binder composition for manufacturing laminated ceramic capacitors and the like. This binder composition is simply a mixture of ethyl cellulose and an acrylic polymer.

特開2013-71986号公報JP 2013-71986 A

特許文献1に記載のバインダ組成物を含む外部電極用ペーストのような、従来の外部電極用ペーストをセラミック素体に塗工すると、表面張力などの影響により、端部に比べて中央部が膨らむ。したがって、形成される外部電極は、中央部が厚く、端部が薄い凸状の形状となるため、電子部品の小型化が難しくなる。 When a conventional external electrode paste, such as the external electrode paste containing the binder composition described in Patent Document 1, is applied to a ceramic body, the central portion expands compared to the end portions due to the effects of surface tension and the like. . Therefore, the formed external electrode has a convex shape with a thick central portion and thin end portions, which makes it difficult to miniaturize the electronic component.

本発明は、上記課題を解決するものであり、塗工したときに、端部に比べて中央部が膨らむ形状となることを抑制することができる外部電極用ペーストを提供することを目的とする。 An object of the present invention is to solve the above problems, and to provide an external electrode paste capable of suppressing a shape in which the central portion swells more than the end portions when coated. .

本発明の外部電極用ペーストは、積層セラミック電子部品の外部電極を形成するために用いられる外部電極用ペーストであって、
少なくとも一部が共重合しているエチルセルロース系樹脂とアクリル系樹脂とを含む樹脂と、
Cuフィラーと、
溶剤と、
ガラス粉と、
を含み、
前記樹脂と前記溶剤との間に生じる界面張力が15mN/m以上であり、
前記外部電極用ペーストに含まれる前記溶剤以外の不揮発成分の割合は、15vol%以上32vol%以下であることを特徴とする。
The external electrode paste of the present invention is an external electrode paste used for forming external electrodes of multilayer ceramic electronic components,
a resin containing an ethyl cellulose -based resin and an acrylic resin, at least a part of which is copolymerized;
Cu filler;
a solvent;
glass powder and
including
The interfacial tension generated between the resin and the solvent is 15 mN/m or more ,
A ratio of non-volatile components other than the solvent contained in the external electrode paste is 15 vol % or more and 32 vol % or less .

本発明の外部電極用ペーストによれば、塗工したときに、端部に比べて中央部が膨らむ形状となることを抑制することができる。したがって、本発明の外部電極用ペーストを用いて作製する電子部品を小型化することができる。 According to the external electrode paste of the present invention, when applied, it is possible to prevent the central portion from expanding more than the end portions. Therefore, it is possible to reduce the size of electronic components manufactured using the external electrode paste of the present invention.

少なくとも一部が共重合しているエチルセルロース系樹脂とアクリル系樹脂とを含む樹脂の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the structure of a resin containing an ethyl cellulose -based resin and an acrylic resin, at least a part of which is copolymerized. 樹脂中のエチルセルロース系樹脂の重量%と、樹脂と溶剤との間に生じる界面張力との関係を示す図である。FIG. 4 is a diagram showing the relationship between the weight percent of ethyl cellulose resin in the resin and the interfacial tension generated between the resin and the solvent. 外部電極用ペーストを、セラミック素体に塗工する工程を説明するための図であって、(a)はセラミック素体を外部電極用ペーストに浸漬した状態を示し、(b)はセラミック素体を引き上げた状態を示し、(c)は中央部から端部へと外部電極用ペーストが流れる外向流が生じる様子を示し、(d)は外部電極用ペーストが乾燥した状態を示す。FIG. 4 is a drawing for explaining the process of applying the external electrode paste to the ceramic body, (a) showing a state in which the ceramic body is immersed in the external electrode paste, and (b) showing the ceramic body. (c) shows an outward flow in which the external electrode paste flows from the center to the end, and (d) shows a dried state of the external electrode paste. 外部電極用ペーストの平坦性を調べる際に用いたセラミック素体の外観形状および切断位置を示す図である。FIG. 4 is a diagram showing the external shape and cutting position of a ceramic body used when examining the flatness of the external electrode paste. (a)は、本発明の外部電極用ペーストを用いて外部電極を形成した積層セラミックコンデンサの断面を模式的に示す図であり、(b)は、従来の外部電極用ペーストを用いて外部電極を形成した積層セラミックコンデンサの断面を模式的に示す図である。(a) is a diagram schematically showing a cross section of a multilayer ceramic capacitor in which external electrodes are formed using the paste for external electrodes of the present invention, and (b) is a diagram showing external electrodes formed using a conventional paste for external electrodes. 1 is a diagram schematically showing a cross section of a laminated ceramic capacitor in which .

以下に本発明の実施形態を示して、本発明の特徴を具体的に説明する。 Embodiments of the present invention will be shown below to specifically describe features of the present invention.

一実施の形態における外部電極用ペーストは、積層セラミック電子部品の外部電極を形成するために用いられる外部電極用ペーストであって、少なくとも一部が共重合しているエチルセルロース系樹脂とアクリル系樹脂とを含む樹脂と、Cuフィラーと、溶剤と、ガラス粉とを含み、樹脂と溶剤との間に生じる界面張力が15mN/m以上であり、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合は、15vol%以上32vol%以下であるThe external electrode paste in one embodiment is an external electrode paste used for forming external electrodes of a multilayer ceramic electronic component, and is at least partially copolymerized with an ethyl cellulose resin and an acrylic resin. , a Cu filler, a solvent, and glass powder, the interfacial tension generated between the resin and the solvent is 15 mN/m or more, and the non-volatile components other than the solvent contained in the external electrode paste The ratio is 15 vol % or more and 32 vol % or less .

エチルセルロース系樹脂は、例えば、エチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、トリチルセルロース、アセチルセルロース、カルボキシメチルセルロース、および、ニトロセルロースのうちの少なくとも1つである。 Ethyl cellulose -based resin is, for example, at least one of ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, trityl cellulose, acetyl cellulose, carboxymethyl cellulose, and nitro cellulose.

アクリル系樹脂は、例えば、メタクリル酸イソブチル、メタクリル酸メチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸nブチル、および、メタクリル酸2-エチルヘキシルのうちの少なくとも1つである。 The acrylic resin is, for example, at least one of isobutyl methacrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate.

Cuフィラーは、CuおよびCu合金のうちの少なくとも一方からなる粒子である。 Cu fillers are particles made of at least one of Cu and Cu alloys.

溶剤は、例えば、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、プロピレングリコールフェニルエーテル、ベンジルアルコール、テキサノール、および、ブチルカルビトールアセテートのうちの少なくとも1つを含む。溶剤種は、ガスクロマトグラフィー質量分析により、発生ガスを測定することにより、分析することができる。ガスクロマトグラフィー質量分析は、例えば、アジレント・テクノロジー株式会社製の質量分析計7890A/5975C(500℃加熱)を用いて行うことができる。 Solvents include, for example, at least one of terpineol, dihydroterpineol, dihydroterpinyl acetate, propylene glycol phenyl ether, benzyl alcohol, texanol, and butyl carbitol acetate. Solvent species can be analyzed by measuring the evolved gas by gas chromatography-mass spectrometry. Gas chromatography-mass spectrometry can be performed, for example, using a mass spectrometer 7890A/5975C (heated at 500° C.) manufactured by Agilent Technologies.

上述したように、エチルセルロース系樹脂およびアクリル系樹脂は、それらの少なくとも一部が共重合している。一例として、エチルセルロース系樹脂のOH基がビニル基に置換され、置換されたビニル基を介して、エチルセルロース系樹脂とアクリル系樹脂とが結合している。 As described above, the ethyl cellulose resin and the acrylic resin are at least partially copolymerized. As an example, the OH group of the ethyl cellulose resin is substituted with a vinyl group, and the ethyl cellulose resin and the acrylic resin are bonded via the substituted vinyl group.

図1は、少なくとも一部が共重合しているエチルセルロース系樹脂とアクリル系樹脂とを含む樹脂の構成を模式的に示す図である。図1では、エチルセルロース系樹脂がエチルセルロース10である場合の模式図を示している。図1に示すように、一部のエチルセルロース10と、一部のアクリル系樹脂20とが共重合している。上述したように、エチルセルロース10のOH基がビニル基11に置換され、置換されたビニル基11を介して、エチルセルロース10とアクリル系樹脂20とが結合されていてもよい。また、エチルセルロース10の少なくとも一部は、水素結合されている。 FIG. 1 is a diagram schematically showing the structure of a resin containing an ethyl cellulose resin and an acrylic resin, at least a part of which is copolymerized. FIG. 1 shows a schematic diagram when the ethyl cellulose resin is ethyl cellulose 10 . As shown in FIG. 1, part of the ethyl cellulose 10 and part of the acrylic resin 20 are copolymerized. As described above, the OH groups of the ethyl cellulose 10 may be substituted with the vinyl groups 11, and the ethyl cellulose 10 and the acrylic resin 20 may be bonded via the substituted vinyl groups 11. At least part of the ethyl cellulose 10 is hydrogen-bonded.

図2は、樹脂中のエチルセルロース系樹脂の重量%と、樹脂と溶剤との間に生じる界面張力との関係を示す図である。本実施形態における外部電極用ペーストは、樹脂と溶剤との間に生じる界面張力が15mN/m以上である。樹脂と溶剤との間に生じる界面張力が15mN/m以上であることにより、コーヒーリング効果によって生じる、界面張力差起因の外向流の力がより大きくなるので、従来の外部電極用ペーストと比べて流動性が向上し、塗工したときに、端部に比べて中央部が膨らむ形状となることを抑制することができる。 FIG. 2 is a diagram showing the relationship between the weight percent of ethyl cellulose resin in the resin and the interfacial tension generated between the resin and the solvent. The external electrode paste in this embodiment has an interfacial tension of 15 mN/m or more between the resin and the solvent. When the interfacial tension generated between the resin and the solvent is 15 mN/m or more, the force of the outward flow due to the interfacial tension difference generated by the coffee ring effect is increased, so compared to the conventional external electrode paste, Fluidity is improved, and when coated, it is possible to suppress a shape in which the central portion is swollen compared to the end portions.

また、樹脂中のエチルセルロース系樹脂の割合が20重量%以上50重量%の場合、樹脂と溶剤との間に生じる界面張力が40mN/m以上56mN/m未満となり、外部電極用ペーストを塗工したときに、端部に比べて中央部が膨らむ形状となることをより効果的に抑制することができる。したがって、樹脂と溶剤との間に生じる界面張力は、40mN/m以上56mN/m未満であることが好ましい。 Further, when the ratio of the ethyl cellulose resin in the resin was 20% by weight or more and 50% by weight, the interfacial tension generated between the resin and the solvent was 40 mN/m or more and less than 56 mN/m, and the external electrode paste was applied. In some cases, it is possible to more effectively suppress a shape in which the center portion swells more than the end portions. Therefore, the interfacial tension generated between the resin and the solvent is preferably 40 mN/m or more and less than 56 mN/m.

なお、Cuフィラーを含む外部電極用ペーストを用いて外部電極を形成する場合において、ブリスター不良の発生を抑制し、かつ、Cuの酸化を抑制するためには、酸素分圧を低くして焼き付ける必要がある。すなわち、酸素が少なくても分解する樹脂をバインダとして用いることが好ましく、そのような樹脂として、アクリル系樹脂を多く含む樹脂を用いることが好ましい。 When the external electrodes are formed using an external electrode paste containing a Cu filler, in order to suppress the occurrence of blister defects and to suppress the oxidation of Cu, it is necessary to lower the partial pressure of oxygen during baking. There is That is, it is preferable to use a resin that decomposes even in a small amount of oxygen as the binder, and as such a resin, it is preferable to use a resin containing a large amount of acrylic resin.

ここで、樹脂と溶剤との間に生じる界面張力は、以下の方法により求めることができる。まず、外部電極用ペーストに含まれる樹脂をガラス基板上に塗布して乾燥させることによって、樹脂膜を得る。続いて、接触角計を用いて、樹脂膜に対する純水、ジヨードメタン、エチレングリコールの接触角を計測し、計測値から樹脂の表面自由エネルギーを算出する。接触角計として、例えば、協和界面科学株式会社の全自動接触角計「DMo-701」を用いることができる。 Here, the interfacial tension generated between the resin and solvent can be obtained by the following method. First, a resin film is obtained by applying a resin contained in the external electrode paste onto a glass substrate and drying it. Subsequently, using a contact angle meter, the contact angles of pure water, diiodomethane, and ethylene glycol with respect to the resin film are measured, and the surface free energy of the resin is calculated from the measured values. As the contact angle meter, for example, a fully automatic contact angle meter "DMo-701" manufactured by Kyowa Interface Science Co., Ltd. can be used.

続いて、樹脂膜に対する溶剤の接触角を計測する。最後に、算出した樹脂の表面自由エネルギーと、計測した溶剤の接触角をDupreの式およびYoung-Dupreの式に代入することによって、界面張力を算出する。 Subsequently, the contact angle of the solvent with respect to the resin film is measured. Finally, the interfacial tension is calculated by substituting the calculated surface free energy of the resin and the measured contact angle of the solvent into the Dupre's formula and the Young-Dupre's formula.

ここで、共重合しておらず、単にエチルセルロース系樹脂とアクリル系樹脂とを含む外部電極用ペーストを用いた場合、その乾燥塗膜は脆くなる。したがって、そのような外部電極用ペーストを塗工したチップ型電子部品は、その搬送工程において、乾燥塗膜の欠けや剥がれが生じる場合がある。これは、以下のような理由によるものと考えられる。 Here, when an external electrode paste that does not undergo copolymerization and simply contains an ethyl cellulose resin and an acrylic resin is used, the dry coating film becomes brittle. Therefore, chip-type electronic components coated with such an external electrode paste may suffer chipping or peeling of the dry coating film during the transportation process. This is considered to be due to the following reasons.

エチルセルロース系樹脂およびアクリル系樹脂の少なくとも一部が共重合している樹脂を含む外部電極用ペーストを塗工して得られる乾燥塗膜は、アクリル系樹脂由来の柔軟性と、エチルセルロース系樹脂由来の剛直性とを有しており、乾燥塗膜として十分な強度を有している。 A dry coating film obtained by applying an external electrode paste containing a resin in which at least a portion of an ethylcellulose -based resin and an acrylic resin are copolymerized has the flexibility derived from the acrylic resin and the flexibility derived from the ethylcellulose -based resin. It has rigidity and sufficient strength as a dry coating film.

これに対して、共重合していないエチルセルロース系樹脂とアクリル系樹脂とを含む外部電極用ペーストは、その製造過程におけるCuフィラーとの混練工程において、アクリル系樹脂とエチルセルロース系樹脂との相分離が促進されるため、外部電極用ペースト中でガラス粉が偏析する。この外部電極用ペーストを塗工して得られる乾燥塗膜に外力が加わると、ガラス偏析部とCuとの界面等の脆い箇所からクラックが進展しやすくなり、これが欠けや剥がれを引き起こすものと考えられる。なお、チップ型電子部品の外部電極の欠けや剥がれは、外観を光学顕微鏡で観察することにより検出することができる。 On the other hand, the external electrode paste containing an ethyl cellulose resin and an acrylic resin that are not copolymerized undergoes phase separation between the acrylic resin and the ethyl cellulose resin in the kneading step with the Cu filler in the manufacturing process. As a result, the glass powder segregates in the external electrode paste. When an external force is applied to the dry coating film obtained by applying this external electrode paste, cracks tend to develop from fragile portions such as the interface between the glass segregation portion and Cu, and this is thought to cause chipping and peeling. be done. Chipping or peeling of the external electrodes of the chip-type electronic component can be detected by observing the external appearance with an optical microscope.

図3は、本実施形態における外部電極用ペースト31を、セラミック素体32に塗工する工程を説明するための図である。 FIG. 3 is a diagram for explaining the process of applying the external electrode paste 31 to the ceramic body 32 in this embodiment.

初めに、セラミック素体32の外部電極を形成する領域を外部電極用ペースト31に浸漬した後(図3(a)参照)、引き上げる(図3(b)参照)。外部電極を形成する領域とは、例えば、セラミック素体32の両端面である。ここでは、セラミック素体32に付着した外部電極用ペーストの符号を31aとして説明する。セラミック素体32を引き上げると、セラミック素体32に付着した外部電極用ペースト31aの中央部と、端部との間の温度差や溶質の濃度差によって、図3(b)の矢印で示すように、マランゴニ対流が生じる。なお、溶質は、外部電極用ペーストに含まれるCuフィラーと樹脂である。 First, the regions of the ceramic body 32 where the external electrodes are to be formed are immersed in the external electrode paste 31 (see FIG. 3(a)) and then pulled out (see FIG. 3(b)). The regions where the external electrodes are formed are, for example, both end surfaces of the ceramic body 32 . Here, the external electrode paste adhered to the ceramic body 32 will be described as 31a. When the ceramic body 32 is pulled up, the external electrode paste 31a adhering to the ceramic body 32 changes in temperature and solute concentration between the central portion and the end portions as indicated by the arrows in FIG. 3(b). , Marangoni convection occurs. The solute is Cu filler and resin contained in the external electrode paste.

中央部と比べて端部における外部電極用ペーストの塗工量は少ないため、端部の方が乾燥が進みやすい。したがって、外部電極用ペースト中の樹脂の割合は、中央部に比べて端部の方が多くなり、エネルギー的に不安定になるため、中央部から端部へと外部電極用ペーストが流れる外向流が生じる(図3(c)参照)。この外向流は、端部の樹脂濃度が中央部の樹脂濃度よりも高い間、生じる。なお、乾燥が進むと、溶質と溶剤との界面が増え、このときの界面張力が大きいほど、エネルギー的に不安定になって、外向流が強くなると考えられる。 Since the coating amount of the external electrode paste is smaller in the end portion than in the center portion, the end portion is more likely to be dried. Therefore, the proportion of the resin in the external electrode paste is greater at the ends than at the center, and the energy becomes unstable. occurs (see FIG. 3(c)). This outward flow occurs while the resin concentration at the edges is higher than that at the center. As the drying progresses, the number of interfaces between the solute and the solvent increases, and the higher the interfacial tension at this time, the more unstable the energy becomes, and the stronger the outward flow becomes.

ここで、エチルセルロース系樹脂は、剛直性があり、蓄熱性が高いので、乾燥工程において外部電極用ペーストが流動途中で固まることを抑制し、外向流を助長する役割を果たす。強い外向流が生じることにより、中央部から端部へと外部電極用ペーストが流動するので、中央部において、外部電極用ペーストが外側に膨らんだ形状となることを抑制することができる(図3(d)参照)。 Here, since the ethyl cellulose resin has rigidity and high heat storage property, it suppresses hardening of the external electrode paste during the flow in the drying process, and plays a role of promoting the outward flow. The strong outward flow causes the external electrode paste to flow from the central portion to the end portions, so that it is possible to suppress the external electrode paste from swelling outward in the central portion (see FIG. 3). (d)).

すなわち、本実施形態における外部電極用ペーストは、樹脂と溶剤との間に生じる界面張力が15mN/m以上であることにより、上述した外向流の力がより大きくなるので、従来の外部電極用ペーストと比べて流動性が向上し、端部に比べて中央部が膨らむ形状となることを抑制することができる。したがって、本実施形態における外部電極用ペーストを用いて作製する電子部品を小型化することができる。 That is, the external electrode paste of the present embodiment has an interfacial tension of 15 mN/m or more between the resin and the solvent, so that the force of the outward flow described above is increased. The fluidity is improved as compared with , and it is possible to suppress a shape in which the central portion is swollen compared to the end portions. Therefore, it is possible to miniaturize an electronic component manufactured using the external electrode paste of the present embodiment.

図5(a)は、セラミック素体51aに、本実施形態における外部電極用ペーストを用いて外部電極52aを形成した積層セラミックコンデンサ50aの断面を模式的に示す図である。また、図5(b)は、セラミック素体51bに、従来の外部電極用ペーストを用いて外部電極52bを形成した積層セラミックコンデンサ50bの断面を模式的に示す図である。 FIG. 5A is a schematic cross-sectional view of a multilayer ceramic capacitor 50a in which external electrodes 52a are formed on a ceramic body 51a using the external electrode paste of the present embodiment. FIG. 5(b) is a diagram schematically showing a cross section of a laminated ceramic capacitor 50b in which external electrodes 52b are formed on a ceramic body 51b using a conventional external electrode paste.

図5(b)に示すように、従来の外部電極用ペーストを用いて形成される外部電極52bは、中央部が厚く、端部が薄い凸状の形状となる。これに対して、本実施形態における外部電極用ペーストを用いて形成される外部電極52aは、平坦な形状となり、上述したような凸状の形状となることが抑制される。したがって、本実施形態における外部電極用ペーストを用いて外部電極を形成した積層セラミックコンデンサは、小型化することができる。また、同じサイズで比較した場合には、外部電極を薄くして内部素子を大きくすることができるので、大容量化することが可能となる。 As shown in FIG. 5B, the external electrode 52b formed using the conventional external electrode paste has a convex shape with a thick central portion and thin end portions. On the other hand, the external electrodes 52a formed using the external electrode paste in the present embodiment have a flat shape, and are prevented from having a convex shape as described above. Therefore, the multilayer ceramic capacitor in which the external electrodes are formed using the external electrode paste in this embodiment can be miniaturized. In addition, when compared with the same size, the external electrodes can be made thinner and the internal elements can be made larger, so that the capacity can be increased.

なお、本実施形態における外部電極用ペーストをセラミック素体に塗工する方法が上述した外部電極用ペーストへの浸漬に限定されることはない。 It should be noted that the method of applying the external electrode paste to the ceramic body in the present embodiment is not limited to the immersion in the external electrode paste described above.

表1は、本実施形態における外部電極用ペーストに含まれるCuフィラーの平均粒径D50と、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合とを変えたときの、外部電極用ペーストの平坦性を調べた結果を示す。 Table 1 shows the values of the external electrode paste when the average particle size D50 of the Cu filler contained in the external electrode paste in the present embodiment and the ratio of non-volatile components other than the solvent contained in the external electrode paste are changed. The results of examining the flatness are shown.

Figure 0007192743000001
Figure 0007192743000001

外部電極用ペーストに含まれるCuフィラーの平均粒径D50は、0.3μm以上8.0μm以下の範囲で変更した。なお、外部電極用ペーストに含まれるガラスの平均粒径D50は、1.0μmである。また、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合は、5vol%以上40vol%以下の範囲で変更した。外部電極用ペーストのPVC(Pigment Volume Concentration)は、56%である。なお、外部電極用ペーストに含まれるエチルセルロース系樹脂とアクリル系樹脂との割合は、重量比で5:5とした。 The average particle diameter D50 of the Cu filler contained in the external electrode paste was changed within the range of 0.3 μm or more and 8.0 μm or less. The average particle size D50 of the glass contained in the external electrode paste is 1.0 μm. In addition, the ratio of the non-volatile components other than the solvent contained in the external electrode paste was changed within the range of 5 vol % or more and 40 vol % or less. PVC (Pigment Volume Concentration) of the external electrode paste is 56%. The weight ratio of the ethyl cellulose resin and the acrylic resin contained in the external electrode paste was 5:5.

外部電極用ペーストの平坦性は、以下の方法により調べた。まず、図4に示すような、長さ方向Lの寸法が1.0mm、幅方向Wの寸法が0.5mm、厚さ方向Tの寸法が0.5mmのセラミック素体40を用意する。このセラミック素体40は、外部電極形成後に積層セラミックコンデンサを構成するものであって、内部電極用ペーストを塗工したセラミックグリーンシートを複数積層した積層体を焼成したものである。セラミック素体40の端面41、および、端面41と長さ方向Lの反対側に位置する端面には、内部電極42が露出している。 The flatness of the external electrode paste was examined by the following method. First, as shown in FIG. 4, a ceramic body 40 having a dimension in the length direction L of 1.0 mm, a dimension in the width direction W of 0.5 mm, and a dimension in the thickness direction T of 0.5 mm is prepared. This ceramic body 40 constitutes a laminated ceramic capacitor after the formation of the external electrodes, and is obtained by sintering a laminate obtained by laminating a plurality of ceramic green sheets coated with internal electrode paste. The internal electrodes 42 are exposed on the end surface 41 of the ceramic body 40 and the end surface located on the opposite side of the end surface 41 in the length direction L. As shown in FIG.

用意したセラミック素体40の端面41を外部電極用ペーストに浸漬した後、塗工された外部電極用ペーストを乾燥させた。そして、図4に示すA-A切断線およびB-B切断線のそれぞれに沿ってセラミック素体40を切断したときの外部電極用ペーストの膜厚の差を調べた。より具体的には、セラミック素体40をA-A切断線に沿って切断した位置における外部電極用ペーストの膜厚のうち、最も厚い部分の膜厚と、セラミック素体40をB-B切断線に沿って切断した位置における外部電極用ペーストの膜厚のうち、最も薄い部分の膜厚との差を調べた。A-A切断線に沿って切断した位置における外部電極用ペーストの膜厚のうち、最も厚い部分の膜厚とは、厚さ方向Tの中央部の位置における膜厚である。また、B-B切断線に沿って切断した位置における外部電極用ペーストの膜厚のうち、最も薄い部分の膜厚とは、厚さ方向Tの端部における膜厚である。 After the end face 41 of the prepared ceramic body 40 was immersed in the external electrode paste, the applied external electrode paste was dried. Then, the difference in film thickness of the external electrode paste was examined when the ceramic body 40 was cut along the AA and BB cutting lines shown in FIG. More specifically, the thickness of the thickest part of the thickness of the external electrode paste at the position where the ceramic body 40 is cut along the AA cutting line, and the thickness of the ceramic body 40 at the BB cut The difference between the film thickness of the thinnest portion of the film thickness of the external electrode paste at the position cut along the line was examined. Of the thicknesses of the external electrode paste cut along the AA cutting line, the thickness at the thickest portion is the thickness at the central portion in the thickness direction T. As shown in FIG. The thickness of the thinnest part of the thickness of the external electrode paste at the position cut along the BB cutting line is the thickness at the end in the thickness direction T. As shown in FIG.

ここで、A-A切断線は、セラミック素体40の幅方向Wの中央の位置で、長さ方向Lおよび厚さ方向Tで規定される面に沿って切断する際の切断線である。また、B-B切断線は、A-A切断線と平行な線であって、セラミック素体40の幅方向Wにおける内部電極42の端部の位置における切断線である。このB-B切断線の位置は、例えば、セラミック素体40の幅方向の端部から幅方向Wに30μm内側の位置である。 Here, the AA cutting line is the cutting line along the plane defined by the length direction L and the thickness direction T at the center position of the width direction W of the ceramic body 40 . Further, the BB cutting line is a line parallel to the AA cutting line and is a cutting line at the position of the end of the internal electrode 42 in the width direction W of the ceramic body 40 . The position of the BB cutting line is, for example, a position 30 μm inside in the width direction W from the end of the ceramic body 40 in the width direction.

ここでは、B-B切断線に沿って切断した位置における外部電極用ペーストの膜厚のうち、最も薄い部分の膜厚が0.5μm以上であって、上述した膜厚の差が16μm以下であり、かつ、セラミック素体40の端面に外部電極用ペーストが塗工されていない領域が存在しない場合に、良品(○)と判断し、それ以外のものを不良品(×)と判断した。 Here, among the film thicknesses of the external electrode paste at the position cut along the BB cutting line, the film thickness of the thinnest portion is 0.5 μm or more, and the difference in film thickness is 16 μm or less. When there was no external electrode paste coated region on the end surface of the ceramic body 40, it was judged as a non-defective product (○), and other products were judged as a defective product (x).

表1に示すように、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合が15vol%以上32vol%以下の場合には、Cuフィラーの平均粒径D50に関わらず、所望の外部電極用ペーストが塗工された良品が得られた。したがって、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合は、15vol%以上32vol%以下であることが好ましい。また、Cuフィラーの平均粒径D50は、表1に示す範囲、すなわち、0.3μm以上8.0μm以下であることが好ましい。 As shown in Table 1, when the ratio of non-volatile components other than the solvent contained in the external electrode paste is 15 vol% or more and 32 vol% or less, the desired external electrode paste is obtained regardless of the average particle size D50 of the Cu filler. A good product coated with was obtained. Therefore, the ratio of the non-volatile components other than the solvent contained in the external electrode paste is preferably 15 vol % or more and 32 vol % or less. Also, the average particle size D50 of the Cu filler is preferably in the range shown in Table 1, that is, 0.3 μm or more and 8.0 μm or less.

また、表1に示すように、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合が10vol%の場合には、Cuフィラーの平均粒径D50が0.3μm以上2.0μm以下であることが好ましい。また、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合が35vol%の場合には、Cuフィラーの平均粒径D50が5.0μm以上8.0μm以下であることが好ましい。 Further, as shown in Table 1, when the ratio of non-volatile components other than the solvent contained in the external electrode paste is 10 vol%, the average particle diameter D50 of the Cu filler is 0.3 μm or more and 2.0 μm or less. is preferred. Moreover, when the ratio of the non-volatile components other than the solvent contained in the external electrode paste is 35 vol %, the average particle diameter D50 of the Cu filler is preferably 5.0 μm or more and 8.0 μm or less.

ここで、酸化防止や分散性向上等のため、Cuフィラーの表面にはCが重合していることが好ましい。本実施形態における外部電極用ペーストにおいて、Cuフィラーの表面にCを重合させるとともに、重合しているCの量を変えたときの外部電極用ペーストの平坦性を調べた結果を表2に示す。 Here, in order to prevent oxidation, improve dispersibility, etc., it is preferable that C is polymerized on the surface of the Cu filler. Table 2 shows the results of examining the flatness of the external electrode paste according to the present embodiment when C is polymerized on the surface of the Cu filler and the amount of polymerized C is changed.

Figure 0007192743000002
Figure 0007192743000002

Cuフィラーの平均粒径D50は、0.05μm以上1.0μm以下であり、Cuフィラーの表面に重合しているCの量は、0.03重量%以上1.33重量%以下の範囲で変更した。なお、外部電極用ペーストに含まれるガラスの平均粒径D50は、0.5μmである。また、外部電極用ペーストに含まれる溶剤以外の不揮発成分の割合は、20vol%であり、溶剤の割合は80vol%である。外部電極用ペーストに含まれるエチルセルロース系樹脂とアクリル系樹脂との割合は、重量比で5:5とした。 The average particle size D50 of the Cu filler is 0.05 μm or more and 1.0 μm or less, and the amount of C polymerized on the surface of the Cu filler is changed in the range of 0.03% by weight or more and 1.33% by weight or less. did. The average particle diameter D50 of the glass contained in the external electrode paste is 0.5 μm. The ratio of non-volatile components other than the solvent contained in the external electrode paste was 20 vol %, and the ratio of the solvent was 80 vol %. The weight ratio of the ethyl cellulose resin and the acrylic resin contained in the external electrode paste was 5:5.

外部電極用ペーストの平坦性は、図4を用いて説明した方法により調べた。ここでは、上述した膜厚差、すなわち、A-A切断線およびB-B切断線のそれぞれに沿ってセラミック素体40を切断したときの外部電極用ペーストの膜厚の差が16μm以下である場合を良品(○)、14μm以下である場合は優良品(◎)と判断した。 The flatness of the external electrode paste was examined by the method described with reference to FIG. Here, the film thickness difference described above, that is, the difference in film thickness of the external electrode paste when the ceramic body 40 is cut along each of the AA cutting line and the BB cutting line is 16 μm or less. When the thickness was 14 μm or less, it was judged to be an excellent product (⊚).

表2に示すように、Cuフィラーの表面に重合しているCの量が少なくとも0.03重量%以上1.33重量%以下の範囲内であれば、外部電極用ペーストの平坦性が確保される。したがって、Cuフィラーの表面に重合しているCの量は、0.03重量%以上1.33重量%以下であることが好ましい。また、Cuフィラーの表面に重合しているCの量が0.11重量%以上0.98重量%以下の場合には、外部電極用ペーストの平坦性がさらに向上した。したがって、Cuフィラーの表面に重合しているCの量は、0.11重量%以上0.98重量%以下であることがより好ましい。 As shown in Table 2, when the amount of C polymerized on the surface of the Cu filler is at least in the range of 0.03% by weight to 1.33% by weight, the flatness of the external electrode paste is ensured. be. Therefore, the amount of C polymerized on the surface of the Cu filler is preferably 0.03% by weight or more and 1.33% by weight or less. Further, when the amount of C polymerized on the surface of the Cu filler was 0.11% by weight or more and 0.98% by weight or less, the flatness of the external electrode paste was further improved. Therefore, the amount of C polymerized on the surface of the Cu filler is more preferably 0.11% by weight or more and 0.98% by weight or less.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiments, and various applications and modifications can be made within the scope of the present invention.

10 エチルセルロース
11 ビニル基
20 アクリル系樹脂
31 外部電極用ペースト
31a セラミック素体に付着した外部電極用ペースト
32 セラミック素体
40 セラミック素体
41 端面
42 内部電極
50a、50b 積層セラミックコンデンサ
51a、51b セラミック素体
52a、52b 外部電極
10 Ethyl cellulose 11 Vinyl group 20 Acrylic resin 31 External electrode paste 31a External electrode paste adhered to ceramic element 32 Ceramic element 40 Ceramic element 41 End face 42 Internal electrodes 50a, 50b Multilayer ceramic capacitors 51a, 51b Ceramic element 52a, 52b external electrodes

Claims (4)

積層セラミック電子部品の外部電極を形成するために用いられる外部電極用ペーストであって、
少なくとも一部が共重合しているエチルセルロース系樹脂とアクリル系樹脂とを含む樹脂と、
Cuフィラーと、
溶剤と、
ガラス粉と、
を含み、
前記樹脂と前記溶剤との間に生じる界面張力が15mN/m以上であり、
前記外部電極用ペーストに含まれる前記溶剤以外の不揮発成分の割合は、15vol%以上32vol%以下であることを特徴とする外部電極用ペースト。
An external electrode paste used to form an external electrode of a multilayer ceramic electronic component,
a resin containing an ethyl cellulose -based resin and an acrylic resin, at least a part of which is copolymerized;
Cu filler;
a solvent;
glass powder and
including
The interfacial tension generated between the resin and the solvent is 15 mN/m or more ,
The external electrode paste, wherein the proportion of non-volatile components other than the solvent contained in the external electrode paste is 15 vol % or more and 32 vol % or less .
前記樹脂と前記溶剤との間に生じる界面張力が40mN/m以上56mN/m未満であることを特徴とする請求項1に記載の外部電極用ペースト。 2. The external electrode paste according to claim 1, wherein the interfacial tension generated between the resin and the solvent is 40 mN/m or more and less than 56 mN/m. 前記Cuフィラーは、CuおよびCu合金のうちの少なくとも一方からなる粒子であって、その平均粒径D50が8μm以下であることを特徴とする請求項1または2に記載の外部電極用ペースト。 3. The external electrode paste according to claim 1, wherein the Cu filler is particles made of at least one of Cu and a Cu alloy, and has an average particle diameter D50 of 8 μm or less. 前記溶剤は、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、プロピレングリコールフェニルエーテル、ベンジルアルコール、テキサノール、および、ブチルカルビトールアセテートのうちの少なくとも1つを含むことを特徴とする請求項1~のいずれかに記載の外部電極用ペースト。 Claims 1 to 3 , wherein the solvent contains at least one of terpineol, dihydroterpineol, dihydroterpinyl acetate, propylene glycol phenyl ether, benzyl alcohol, texanol, and butyl carbitol acetate. The external electrode paste according to any one of the above.
JP2019202445A 2019-11-07 2019-11-07 External electrode paste Active JP7192743B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019202445A JP7192743B2 (en) 2019-11-07 2019-11-07 External electrode paste
KR1020200139895A KR102366442B1 (en) 2019-11-07 2020-10-27 Paste for External Electrode
CN202011219717.7A CN112786309B (en) 2019-11-07 2020-11-04 Paste for external electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202445A JP7192743B2 (en) 2019-11-07 2019-11-07 External electrode paste

Publications (2)

Publication Number Publication Date
JP2021077750A JP2021077750A (en) 2021-05-20
JP7192743B2 true JP7192743B2 (en) 2022-12-20

Family

ID=75750309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202445A Active JP7192743B2 (en) 2019-11-07 2019-11-07 External electrode paste

Country Status (3)

Country Link
JP (1) JP7192743B2 (en)
KR (1) KR102366442B1 (en)
CN (1) CN112786309B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024214399A1 (en) * 2023-04-14 2024-10-17 株式会社村田製作所 Conductive paste and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264031A (en) 2003-01-23 2004-09-24 Matsushita Electric Ind Co Ltd Method for measuring conductive particle
JP2008050594A (en) 2006-07-26 2008-03-06 Sekisui Chem Co Ltd Binder resin composition
JP2013071986A (en) 2011-09-27 2013-04-22 Goo Chemical Co Ltd Binder composition for firing
JP2017190404A (en) 2016-04-14 2017-10-19 新中村化学工業株式会社 Burned paste composition and manufacturing method of copolymer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370568B (en) * 1999-12-13 2003-01-22 Murata Manufacturing Co Monolithic ceramic electronic component and production process therefor
US7158364B2 (en) * 2005-03-01 2007-01-02 Tdk Corporation Multilayer ceramic capacitor and method of producing the same
JP4442596B2 (en) * 2006-09-08 2010-03-31 Tdk株式会社 Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP4359607B2 (en) * 2006-09-19 2009-11-04 Tdk株式会社 Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
TW200824076A (en) * 2006-11-16 2008-06-01 Chipmos Technologies Inc Carrier film having leads with improved strength and semiconductor package utilizing the film
JP5633285B2 (en) * 2010-01-25 2014-12-03 日立化成株式会社 Electrode paste composition and solar cell
JP5683202B2 (en) 2010-10-13 2015-03-11 ナミックス株式会社 Thermosetting conductive paste
CN104620325B (en) * 2012-06-15 2016-09-21 株式会社村田制作所 Conductive paste and laminated ceramic electronic part and its manufacture method
KR20160060925A (en) * 2014-11-21 2016-05-31 한국에너지기술연구원 Paste composition containing metal particle for rear electrode of solar cell and its manufacturing method
JP2016213355A (en) * 2015-05-11 2016-12-15 ニチバン株式会社 Adhesive composition for electronic component fixing and adhesive tape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264031A (en) 2003-01-23 2004-09-24 Matsushita Electric Ind Co Ltd Method for measuring conductive particle
JP2008050594A (en) 2006-07-26 2008-03-06 Sekisui Chem Co Ltd Binder resin composition
JP2013071986A (en) 2011-09-27 2013-04-22 Goo Chemical Co Ltd Binder composition for firing
JP2017190404A (en) 2016-04-14 2017-10-19 新中村化学工業株式会社 Burned paste composition and manufacturing method of copolymer

Also Published As

Publication number Publication date
JP2021077750A (en) 2021-05-20
CN112786309A (en) 2021-05-11
KR102366442B1 (en) 2022-02-23
KR20210055596A (en) 2021-05-17
CN112786309B (en) 2023-07-28

Similar Documents

Publication Publication Date Title
JP5278709B2 (en) Conductive resin composition and chip-type electronic component
JP6645470B2 (en) Conductive paste for external electrode and method of manufacturing electronic component manufactured using conductive paste for external electrode
JP5440309B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4503298B2 (en) Terminal electrode composition for multilayer ceramic capacitor
JP6787364B2 (en) Conductive paste
JP7192743B2 (en) External electrode paste
JP2012248622A (en) Chip-like electronic component
JP2023018152A (en) Multilayer ceramic capacitor
JP6330484B2 (en) Ceramic electronic components
US9111692B2 (en) Method for manufacturing laminated ceramic electronic component
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
TW200525564A (en) Electrode paste, ceramic electronic component and method for producing same
JP2002056716A (en) Electroconductive paste and laminated ceramic electronic component
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2022234739A1 (en) Paste for external electrode
JP2023093064A (en) Multilayer ceramic capacitor
JP2023093062A (en) Multilayer ceramic capacitor
JP2009146732A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP2023093063A (en) Multilayer ceramic capacitor
JP2021010034A (en) Chip type ceramic electronic component
JP2023093061A (en) Multilayer ceramic capacitor
JP7192809B2 (en) Electrode sheet manufacturing method
JP7355182B2 (en) Manufacturing method for chip-type ceramic electronic components
JP6649840B2 (en) Conductor forming paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150