JP7192408B2 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
JP7192408B2
JP7192408B2 JP2018208608A JP2018208608A JP7192408B2 JP 7192408 B2 JP7192408 B2 JP 7192408B2 JP 2018208608 A JP2018208608 A JP 2018208608A JP 2018208608 A JP2018208608 A JP 2018208608A JP 7192408 B2 JP7192408 B2 JP 7192408B2
Authority
JP
Japan
Prior art keywords
engine
operating point
motor
transmission
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018208608A
Other languages
Japanese (ja)
Other versions
JP2020075554A (en
Inventor
建正 畑
明子 西峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018208608A priority Critical patent/JP7192408B2/en
Priority to US16/672,908 priority patent/US11479236B2/en
Priority to CN201911063562.XA priority patent/CN111204322B/en
Publication of JP2020075554A publication Critical patent/JP2020075554A/en
Application granted granted Critical
Publication of JP7192408B2 publication Critical patent/JP7192408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Description

この発明は、動力源としてエンジンおよびモータを搭載したハイブリッド車両の制御装置に関するものである。 The present invention relates to a control device for a hybrid vehicle equipped with an engine and a motor as power sources.

従来、エンジン回転数と出力トルクとをそれぞれ適宜に制御することが可能な車両として、モータによってエンジン回転数を制御できるハイブリッド車両や無段変速機を搭載した車両が知られている。 2. Description of the Related Art Conventionally, as a vehicle capable of appropriately controlling an engine speed and an output torque, a hybrid vehicle capable of controlling the engine speed by a motor and a vehicle equipped with a continuously variable transmission are known.

特許文献1には、その種のハイブリッド車両が記載されており、そのハイブリッド車両では、エンジンを最適燃費線で運転すべくエンジン回転数を第1モータで制御する。また、特許文献1に記載されたハイブリッド車両では、そのエンジンの動作点(あるいは運転点)を運転者の運転志向に応じて変更するように構成されている。例えば運転者の操作するアクセル操作によりアクセル開度が増大した場合、あるいは、前後加速度や横加速度が増大した場合など機敏さの要求度が大きい場合には、エンジンの動作点を高トルク側に変更するように構成されている。つまり、特許文献1に記載されたハイブリッド車両は、運転者の運転志向に応じて適宜にエンジンの動作点を制御するように構成されている。 Patent Literature 1 describes such a hybrid vehicle, in which the engine speed is controlled by a first motor so as to operate the engine at the optimum fuel efficiency line. In addition, the hybrid vehicle described in Patent Document 1 is configured to change the operating point (or driving point) of the engine according to the driving intention of the driver. For example, when the degree of accelerator opening increases due to the driver's operation of the accelerator, or when the demand for agility is high, such as when the longitudinal or lateral acceleration increases, the engine operating point is changed to the high-torque side. is configured to In other words, the hybrid vehicle described in Patent Literature 1 is configured to appropriately control the operating point of the engine according to the driving intention of the driver.

国際公開第2013/042177号WO2013/042177

上述したように、特許文献1に記載されたハイブリッド車両によれば、エンジンの動作点を制御することにより燃費を重視した走行、あるいは、運転志向を重視した走行が可能となる。一方、ハイブリッド車両は、トランスミッション内に複数の発熱源あるいは発熱部を備えており、上記のような燃費や運転志向を重視した走行を行うと、トランスミッション内での発熱量が増加するおそれがある。例えば、エンジン回転数を制御するモータの温度の上昇、あるいは、動力分割機構を構成するギヤユニットでの発熱が増大するおそれがある。 As described above, according to the hybrid vehicle described in Patent Literature 1, by controlling the operating point of the engine, it is possible to drive with a focus on fuel efficiency or with a focus on driving inclination. On the other hand, a hybrid vehicle has a plurality of heat generating sources or heat generating parts in the transmission, and there is a possibility that the amount of heat generated in the transmission increases when the vehicle is driven with emphasis on fuel efficiency and driving intentions as described above. For example, there is a risk that the temperature of the motor that controls the engine speed will increase, or that heat generation will increase in the gear unit that constitutes the power split mechanism.

そのようにトランスミッション内での発熱量が増大すると、各種機器の耐久性が低下し、ならびに、動力損失が増大する。そして、その発熱を抑制するために、新たな冷却機構を設け、あるいは、現在搭載している冷却機構(例えばオイルクーラ)の仕様を変更するなどのことにより冷却性能を向上させるとすれば、冷却機構の大型化や大幅なコストの増加に繋がるおそれがある。したがって、新たな機構を設けず既存の構成で、トランスミッションにおける温度上昇を抑制するには未だ改善の余地があった。 Such an increase in the amount of heat generated within the transmission reduces the durability of various devices and increases power loss. In order to suppress the heat generation, a new cooling mechanism is provided, or if the cooling performance is improved by changing the specifications of the currently installed cooling mechanism (for example, an oil cooler), cooling This may lead to an increase in the size of the mechanism and a significant increase in cost. Therefore, there is still room for improvement in suppressing the temperature rise in the transmission with the existing configuration without providing a new mechanism.

この発明は上記の技術的課題に着目して考え出されたものであり、冷却機構の性能を向上させることなく、かつ駆動要求を満たしつつトランスミッションでの過度な温度の上昇を抑制することが可能なハイブリッド車両の制御装置を提供することを目的とするものである。 The present invention was conceived with a focus on the above technical problems, and it is possible to suppress excessive temperature rise in the transmission while satisfying drive requirements without improving the performance of the cooling mechanism. It is an object of the present invention to provide a control device for a hybrid vehicle that is more efficient.

上記の目的を達成するために、この発明は、エンジンと、第1モータと、前記エンジンの出力トルクを駆動輪に伝達するトランスミッションとを備え、前記トランスミッションは、前記エンジンの前記出力トルクが伝達される第1回転要素と、前記駆動輪にトルクを伝達可能に連結された第2回転要素と、前記第1モータからトルクが伝達される第3回転要素との少なくとも三つの回転要素を有する差動機構を備え、前記トランスミッションの内部を冷却しつつ、前記エンジンの前記出力トルクを前記差動機構を介して前記駆動輪に伝達してHV走行するように構成されたハイブリッド車両の制御装置であって、前記エンジンおよび前記第1モータを制御するコントローラを備え、前記コントローラは、前記第1モータの回転数を制御することによって前記エンジンの動作点を制御するものであって、前記HV走行の際に、前記トランスミッションの内部の発熱状態を判断する所定の温度パラメータが予め定められた所定温度未満の場合は、前記エンジンの燃費が最良となる動作点で前記エンジンが運転されるように、前記第1モータの回転数を制御し、前記HV走行の際に、前記温度パラメータが前記所定温度以上の場合は、前記エンジンの燃費よりも前記トランスミッションの内部の発熱量を低減させることを優先して、前記第1モータの回転数を前記発熱量を抑制可能な0を含む所の回転数域に制御することにより、前記エンジンの動作点を前記発熱量を低減させる動作点に制御するとともに、前記エンジンの動作点を前記発熱量を低減させる動作点に制御する際に、前記エンジンの要求パワーを求め、前記要求パワーが予め定められた閾値以上か否かを判断し、前記要求パワーが前記閾値以上であると判断された場合に、前記エンジンの動作点を、前記要求パワーを満たしつつ前記燃費が最良となる動作点から前記エンジンの回転数を減少させ、かつ、前記エンジンの前記出力トルクを増大させる方向に変更し、前記要求パワーが前記閾値未満であると判断された場合に、前記エンジンの動作点を、前記要求パワーを満たしつつ前記燃費が最良となる動作点から前記エンジンの回転数を増大させ、かつ、前記エンジンの前記出力トルクを減少させる方向に変更するように構成されていることを特徴とするものである。
In order to achieve the above object, the present invention includes an engine, a first motor, and a transmission for transmitting output torque of the engine to driving wheels, the transmission transmitting the output torque of the engine. at least three rotary elements: a first rotary element connected to the driving wheel, a second rotary element connected to the drive wheels so as to transmit torque, and a third rotary element to which torque is transmitted from the first motor. a control device for a hybrid vehicle configured to transmit the output torque of the engine to the driving wheels via the differential mechanism while cooling the inside of the transmission to perform HV running. and a controller for controlling the engine and the first motor, the controller controlling the operating point of the engine by controlling the rotation speed of the first motor , wherein the HV When a predetermined temperature parameter for determining the state of heat generation inside the transmission is lower than a predetermined temperature during running, the engine is operated at an operating point that maximizes the fuel efficiency of the engine. and controlling the rotation speed of the first motor, and reducing the amount of heat generated inside the transmission rather than the fuel consumption of the engine when the temperature parameter is equal to or higher than the predetermined temperature during the HV running. An operation of preferentially controlling the rotation speed of the first motor to a predetermined rotation speed range including 0 in which the heat generation can be suppressed, thereby reducing the heat generation at the operating point of the engine. A required power of the engine is obtained when controlling the operating point of the engine to an operating point that reduces the amount of heat generated , and whether or not the required power is equal to or greater than a predetermined threshold value. is determined, and when it is determined that the required power is equal to or greater than the threshold value, the operating point of the engine is reduced from the operating point at which the fuel efficiency is optimal while satisfying the required power. and, when it is determined that the output torque of the engine is increased and the required power is less than the threshold value, the operating point of the engine is changed to satisfy the required power while achieving the best fuel efficiency. The rotation speed of the engine is increased and the output torque of the engine is changed so as to decrease from the operating point where .

また、この発明では、前記ハイブリッド車両は、前記トランスミッションおよび前記エンジンを冷却する冷却機構を更に備え、前記コントローラは、前記トランスミッションの内部の温度が前記所定温度以上か否かの判断を、前記第1モータの温度、前記第1モータおよび前記差動機構を冷却するオイルの温度、ならびに、前記冷却機構の温度のうち少なくともいずれか一つのパラメータの温度に基づいて判断するように構成されてよい。 Further, in the present invention, the hybrid vehicle further includes a cooling mechanism for cooling the transmission and the engine, and the controller determines whether or not the temperature inside the transmission is equal to or higher than the predetermined temperature. The determination may be made based on the temperature of at least one of the temperature of the motor, the temperature of oil cooling the first motor and the differential mechanism, and the temperature of the cooling mechanism.

そして、この発明では、前記閾値は、所定の車速時の値に対して前記所定の車速より高車速時の値の方が大きくなるように構成されてよい。 Further, in the present invention, the threshold value may be configured such that the value at a high vehicle speed is larger than the value at a predetermined vehicle speed.

この発明のハイブリッド車両の制御装置によれば、エンジンの動作点を制御することによりトランスミッションにおける発熱量を低減させるように構成されている。具体的には、トランスミッションの内部の温度が予め定められた所定温度未満の場合には、従来知られているようにエンジンの燃費が最良となる動作点(最適燃費線)に沿ってエンジンを制御し、それとは反対にトランスミッションの内部の温度が前記所定温度以上の場合には、エンジンの動作点をトランスミッションにおける発熱量が低減される動作点に制御するように構成されている。そのため、トランスミッションの内部の温度が比較的高温の場合には、エンジンの動作点が発熱量が低減される動作点に制御されることにより、トランスミッション内の温度が過度に上昇することを抑制できる。また、そのようにトランスミッション内の温度の上昇を抑制できるから、新たな冷却機構を設ける、あるいは、現在搭載している冷却機構の冷却性能を向上させることを要せず、言い換えれば、既存の構成で冷却性を担保できるとともに、それに伴うコストの増大を抑制もしくは回避できる。 According to the hybrid vehicle control apparatus of the present invention, the amount of heat generated in the transmission is reduced by controlling the operating point of the engine. Specifically, when the temperature inside the transmission is lower than a predetermined temperature, the engine is controlled along the well-known operating point (optimal fuel efficiency line) at which the fuel efficiency of the engine is optimal. On the contrary, when the temperature inside the transmission is equal to or higher than the predetermined temperature, the operating point of the engine is controlled to an operating point at which the amount of heat generated in the transmission is reduced. Therefore, when the temperature inside the transmission is relatively high, the operating point of the engine is controlled to an operating point at which the amount of heat generated is reduced, thereby suppressing an excessive rise in the temperature inside the transmission. In addition, since the temperature rise in the transmission can be suppressed in this way, there is no need to provide a new cooling mechanism or to improve the cooling performance of the currently installed cooling mechanism. , the cooling performance can be ensured, and the accompanying increase in cost can be suppressed or avoided.

また、この発明によれば、上述したようにエンジンの動作点を制御することにより、トランスミッションにおける発熱量を低減できるから、その発熱に伴う動力損失を低減させることができる。さらに、上記のエンジンの動作点の制御は、第1モータによって制御するように構成され、特に前記発熱量を低減させるエンジンの制御は、第1モータ2の回転数を低回転数域に制御するように構成されている。そのため、第1モータの回転数に依存する機械損を低減でき、それに伴う動力損失を低減することができる。 Further, according to the present invention, by controlling the operating point of the engine as described above, the amount of heat generated in the transmission can be reduced, thereby reducing the power loss associated with the heat generation. Furthermore, the control of the operating point of the engine is configured to be controlled by the first motor, and in particular, the control of the engine for reducing the heat generation amount controls the rotation speed of the first motor 2 to a low rotation speed range. is configured as Therefore, it is possible to reduce the mechanical loss that depends on the number of revolutions of the first motor, and to reduce the accompanying power loss.

この発明で対象とするハイブリッド車両の一例を示すスケルトン図である。1 is a skeleton diagram showing an example of a hybrid vehicle targeted by the present invention; FIG. この車両の実施形態における制御の一例を説明するためのフローチャートである。4 is a flowchart for explaining an example of control in this embodiment of the vehicle; エンジンの動作ラインおよび動作点を説明するためのマップである。1 is a map for explaining the operating line and operating points of an engine; エンジンの熱効率の一例を説明するためのマップである。4 is a map for explaining an example of thermal efficiency of an engine;

この発明の実施形態を、図を参照して説明する。なお、以下に示す実施形態は、この発明を具体化した場合の一例に過ぎず、この発明を限定するものではない。 Embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiment shown below is merely an example when the present invention is embodied, and does not limit the present invention.

図1に、この発明の実施形態で制御対象にするハイブリッド車両(以下、単に車両とも記す)Veの一例を示してある。この車両Veは、駆動力源としてエンジン(ENG)1、および、第1モータ(MG1)2、ならびに、第2モータ(MG2)3を備え、エンジン1が出力する動力を、動力分割機構4によって第1モータ2側と駆動軸5側とに分割して伝達するように構成されている。また、第1モータ2で発生した電力を第2モータ3に供給し、第2モータ3が出力する駆動力を駆動軸5および駆動輪6に付加することができるように構成されている。また、エンジン1や各モータ2,3の動力を駆動輪6に伝達するトランスミッション7が設けられ、そのトランスミッション7は、トランスミッションケース7aと、トランスミッションケース7a内に収容される前記動力分割機構4、カウンタギヤ機構、および、デファレンシャルギヤ機構などを含む各種の機能部品とから構成されている。 FIG. 1 shows an example of a hybrid vehicle (hereinafter simply referred to as a vehicle) Ve to be controlled in an embodiment of the invention. The vehicle Ve includes an engine (ENG) 1, a first motor (MG1) 2, and a second motor (MG2) 3 as driving force sources. It is configured to be divided and transmitted to the first motor 2 side and the drive shaft 5 side. Further, the electric power generated by the first motor 2 is supplied to the second motor 3 so that the driving force output by the second motor 3 can be applied to the drive shaft 5 and the drive wheels 6 . Further, a transmission 7 is provided for transmitting the power of the engine 1 and the motors 2 and 3 to the drive wheels 6. The transmission 7 includes a transmission case 7a, the power split mechanism 4 accommodated in the transmission case 7a, and a counter. It is composed of various functional parts including a gear mechanism and a differential gear mechanism.

エンジン1は、例えば、ガソリンエンジンやディーゼルエンジンなどの内燃機関であり、出力の調整、ならびに、始動および停止などの作動状態が電気的に制御されるように構成されている。ガソリンエンジンであれば、スロットルバルブの開度、燃料の供給量または噴射量、点火の実行および停止、ならびに、点火時期などが電気的に制御される。ディーゼルエンジンであれば、燃料の噴射量、燃料の噴射時期、あるいは、EGR[Exhaust Gas Recirculation]システムにおけるスロットルバルブの開度などが電気的に制御される。 The engine 1 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine, and is configured such that its output is adjusted and operating conditions such as starting and stopping are electrically controlled. In the case of a gasoline engine, the opening of the throttle valve, the amount of fuel supplied or injected, execution and stop of ignition, ignition timing, etc. are electrically controlled. In the case of a diesel engine, the amount of fuel injection, the timing of fuel injection, or the opening of a throttle valve in an EGR (Exhaust Gas Recirculation) system is electrically controlled.

第1モータ2および第2モータ3は、いずれも、駆動電力が供給されることによりトルクを出力するモータとしての機能と、トルクが与えられることにより発電電力を発生する発電機としての機能(発電機能)との両方を兼ね備えた電動機である。すなわち、第1モータ2および第2モータ3は、発電機能を有するモータ(いわゆるモータ・ジェネレータ)であり、例えば、永久磁石式の同期モータ、あるいは、誘導モータなどによって構成されている。なお、上記の第1モータ2および第2モータ3は、インバータを介してバッテリやキャパシタなどの蓄電装置(共に図示せず)に電気的に接続されており、その蓄電装置から電力が供給され、または発電した電力を蓄電装置に充電することもできるように構成されている。 Both the first motor 2 and the second motor 3 function as motors that output torque when drive power is supplied, and function as generators that generate power when torque is applied (power generation function). That is, the first motor 2 and the second motor 3 are motors (so-called motor generators) having a power generation function, and are configured by, for example, permanent magnet synchronous motors or induction motors. The first motor 2 and the second motor 3 are electrically connected to a power storage device (both not shown) such as a battery or a capacitor via an inverter, and are supplied with electric power from the power storage device. Alternatively, it is configured so that the power storage device can be charged with the generated power.

動力分割機構4は、エンジン1および第1モータ2と駆動輪6との間でトルクを伝達する伝動機構であり、サンギヤ8、リングギヤ9、および、キャリヤ10を有する遊星歯車機構によって構成されている。図1に示す例では、シングルピニオン型の遊星歯車機構が用いられている。遊星歯車機構のサンギヤ8に対して同心円上に、内歯歯車のリングギヤ9が配置されている。これらサンギヤ8とリングギヤ9とに噛み合っているピニオンギヤ11がキャリヤ10によって自転および公転が可能なように保持されている。なお、この動力分割機構4が、この発明の実施形態における「差動機構」に相当し、またキャリヤ10がこの発明の実施形態における「第1回転要素」に相当し、リングギヤ9がこの発明の実施形態における「第2回転要素」に相当し、ならびに、サンギヤ8がこの発明の実施形態における「第3回転要素」に相当する。 The power split mechanism 4 is a transmission mechanism that transmits torque between the engine 1 and the first motor 2 and the drive wheels 6, and is composed of a planetary gear mechanism having a sun gear 8, a ring gear 9, and a carrier 10. . In the example shown in FIG. 1, a single pinion type planetary gear mechanism is used. A ring gear 9, which is an internal gear, is arranged concentrically with the sun gear 8, which is a planetary gear mechanism. A pinion gear 11 meshing with the sun gear 8 and ring gear 9 is held by a carrier 10 so as to rotate and revolve. The power split mechanism 4 corresponds to the "differential mechanism" in the embodiment of the invention, the carrier 10 corresponds to the "first rotating element" in the embodiment of the invention, and the ring gear 9 corresponds to the "differential mechanism" in the embodiment of the invention. It corresponds to the "second rotating element" in the embodiment, and the sun gear 8 corresponds to the "third rotating element" in the embodiment of this invention.

上記の動力分割機構4は、エンジン1および第1モータ2と同一の軸線上に配置されている。動力分割機構4を構成している遊星歯車機構のキャリヤ10に、エンジン1の出力軸1aが連結されている。なお、エンジン1の出力軸1aは、同軸上でエンジン1から駆動輪6に到る動力伝達経路において動力分割機構4の入力軸12に連結されている。また、キャリヤ10は、エンジン1の出力軸1aとは反対側でオイルポンプ13の回転軸13aに連結されている。このオイルポンプ13は、各モータ2,3や動力分割機構4などの各部を潤滑あるいは冷却するために設けられている。そのオイルポンプ13は、オイルの供給用のポンプとして、従来車両に用いられている一般的な構成のオイルポンプであって、例えばエンジン1によってオイルポンプ13を駆動し、油圧を発生させるように構成されている。 The power split device 4 is arranged on the same axis as the engine 1 and the first motor 2 . An output shaft 1 a of the engine 1 is connected to a carrier 10 of a planetary gear mechanism that constitutes the power split device 4 . The output shaft 1a of the engine 1 is coaxially connected to the input shaft 12 of the power split mechanism 4 in a power transmission path from the engine 1 to the driving wheels 6. As shown in FIG. Further, the carrier 10 is connected to the rotary shaft 13a of the oil pump 13 on the side opposite to the output shaft 1a of the engine 1. As shown in FIG. The oil pump 13 is provided for lubricating or cooling each part such as the motors 2 and 3 and the power split mechanism 4 . The oil pump 13 is an oil pump having a general configuration that is conventionally used in vehicles as a pump for supplying oil, and is configured, for example, to drive the oil pump 13 by the engine 1 to generate hydraulic pressure. It is

遊星歯車機構のサンギヤ8には、第1モータ2が連結されている。第1モータ2は、動力分割機構4に隣接してエンジン1とは反対側(図1の左側)に配置されている。その第1モータ2のロータ2aに一体となって回転するロータ軸2bが、サンギヤ8に連結されている。なお、ロータ軸2bおよびサンギヤ8の回転軸は中空軸になっている。それらロータ軸2bおよびサンギヤ8の回転軸の中空部に、上記のオイルポンプ13の回転軸13aが配置されている。 The first motor 2 is connected to the sun gear 8 of the planetary gear mechanism. The first motor 2 is arranged adjacent to the power split device 4 on the side opposite to the engine 1 (left side in FIG. 1). A rotor shaft 2 b that rotates integrally with the rotor 2 a of the first motor 2 is connected to the sun gear 8 . The rotating shafts of the rotor shaft 2b and the sun gear 8 are hollow shafts. A rotary shaft 13a of the oil pump 13 is arranged in a hollow portion of the rotary shafts of the rotor shaft 2b and the sun gear 8. As shown in FIG.

遊星歯車機構のリングギヤ9の外周部分に、外歯歯車の第1ドライブギヤ14がリングギヤ9と一体に形成されている。また、動力分割機構4および第1モータ2の回転軸線と平行に、カウンタシャフト15が配置されている。このカウンタシャフト15の一方(図1での右側)の端部に、上記の第1ドライブギヤ14と噛み合うカウンタドリブンギヤ16が一体となって回転するように取り付けられている。このカウンタドリブンギヤ16は、第1ドライブギヤ14よりも大径に形成されており、第1ドライブギヤ14から伝達されたトルクを増幅させるように構成されている。一方、カウンタシャフト15の他方(図1での左側)の端部には、カウンタドライブギヤ17がカウンタシャフト15に一体となって回転するように取り付けられている。カウンタドライブギヤ17は、終減速機であるデファレンシャルギヤ18のデフリングギヤ19と噛み合っている。したがって、動力分割機構4のリングギヤ9は、上記の第1ドライブギヤ14、カウンタシャフト15、カウンタドリブンギヤ16、カウンタドライブギヤ17、および、デフリングギヤ19からなる出力ギヤ列20を介して、駆動軸5および駆動輪6に動力を伝達可能に連結されている。 A first drive gear 14 which is an external gear is formed integrally with the ring gear 9 on the outer peripheral portion of the ring gear 9 of the planetary gear mechanism. A countershaft 15 is arranged parallel to the rotation axes of the power split device 4 and the first motor 2 . A counter driven gear 16 meshing with the first drive gear 14 is attached to one end (right side in FIG. 1) of the counter shaft 15 so as to rotate together. The counter driven gear 16 has a larger diameter than the first drive gear 14 and is configured to amplify torque transmitted from the first drive gear 14 . On the other hand, a counter drive gear 17 is attached to the other (left side in FIG. 1) end of the counter shaft 15 so as to rotate integrally with the counter shaft 15 . The counter drive gear 17 meshes with a differential ring gear 19 of a differential gear 18, which is a final reduction gear. Therefore, the ring gear 9 of the power split mechanism 4 is connected to the drive shaft 5 via an output gear train 20 consisting of the first drive gear 14, the counter shaft 15, the counter driven gear 16, the counter drive gear 17, and the differential ring gear 19. and drive wheels 6 so as to be able to transmit power.

また、この車両Veは、上記の動力分割機構4から駆動軸5および駆動輪6に伝達されるトルクに、第2モータ3が出力するトルクを付加することができるように構成されている。具体的には、第2モータ3のロータ3aに一体となって回転するロータ軸3bが、上記のカウンタシャフト15と平行に配置されている。そのロータ軸3bの先端(図1での右端)に、上記のカウンタドリブンギヤ16と噛み合う第2ドライブギヤ21が一体となって回転するように取り付けられている。したがって、動力分割機構4のリングギヤ9には、上記のようなデフリングギヤ19および第2ドライブギヤ21を介して、第2モータ3が動力伝達可能に連結されている。すなわち、リングギヤ9は、第2モータ3と共に、デフリングギヤ19を介して、駆動軸5および駆動輪6にトルクを伝達可能に連結されている。 Further, the vehicle Ve is configured such that the torque output by the second motor 3 can be added to the torque transmitted from the power split mechanism 4 to the drive shaft 5 and the drive wheels 6 . Specifically, a rotor shaft 3b that rotates integrally with the rotor 3a of the second motor 3 is arranged parallel to the countershaft 15 described above. A second drive gear 21 meshing with the counter driven gear 16 is attached to the tip (right end in FIG. 1) of the rotor shaft 3b so as to rotate together. Therefore, the second motor 3 is coupled to the ring gear 9 of the power split mechanism 4 via the differential ring gear 19 and the second drive gear 21 as described above so that power can be transmitted. That is, the ring gear 9 is coupled to the drive shaft 5 and the drive wheels 6 through the differential ring gear 19 together with the second motor 3 so that torque can be transmitted.

なお、エンジン1の近傍には、冷却水と外気とで熱交換してその冷却水を冷却するラジエータ22が設けられ、また、トランスミッションケース7aの外側には各モータ2,3や動力分割機構4などの冷却対象部に供給するオイルを冷却するオイルクーラ23が設けられている。 A radiator 22 is provided in the vicinity of the engine 1 for exchanging heat between cooling water and outside air to cool the cooling water. An oil cooler 23 is provided for cooling the oil supplied to the cooling target parts such as.

図1に示すハイブリッド車両Veは、エンジン1を動力源としたHV走行(ハイブリッド走行)モード、および、第1モータ2、第2モータ3を蓄電装置の電力で駆動して走行するEV走行モードの設定が可能である。このような各モードの設定や切り替えは、電子制御装置(ECU)24により実行される。 The hybrid vehicle Ve shown in FIG. 1 has an HV travel (hybrid travel) mode using an engine 1 as a power source, and an EV travel mode in which the first motor 2 and the second motor 3 are driven by the electric power of the power storage device. Can be set. Such setting and switching of each mode are executed by an electronic control unit (ECU) 24 .

ECU24は、この発明の実施形態における「コントローラ」に相当し、例えば、エンジン1、第1モータ2、ならびに、第2モータ3に制御指令信号を伝送するように電気的に接続されている。また、このECU24は、マイクロコンピュータを主体にして構成され、入力されたデータや予め記憶しているデータならびにプログラムを使用して演算を行い、その演算結果を制御指令信号として出力するように構成されている。その入力されるデータは、各モータ2,3の温度、各モータ2,3などの冷却対象部を冷却するオイルの温度、オイルクーラ23の前後におけるのオイル温度、ラジエータ22の冷却水の温度、アクセル開度、車速、車輪速、および、蓄電装置の充電残量などである。また予め記憶しているデータは、各走行モードを決めてあるマップ、エンジン1の最適燃費線を決めてあるマップ、エンジン1の要求パワーを決めてあるマップ、エンジン1の熱効率を定めたマップなどである。そして、ECU24は、制御指令信号として、エンジン1の始動や停止の指令信号、第1モータ2のトルク指令信号、第2モータ3のトルク指令信号、エンジン1のトルク指令信号などを出力する。なお、図1では1つのECU24が設けられた例を示しているが、ECUは、例えばエンジン1や各モータ2,3など制御する装置ごと、あるいは制御内容ごとに複数設けられていてもよい。 The ECU 24 corresponds to the "controller" in the embodiment of the invention, and is electrically connected to transmit control command signals to the engine 1, the first motor 2, and the second motor 3, for example. The ECU 24 is mainly composed of a microcomputer, performs calculations using input data, pre-stored data, and programs, and outputs the calculation results as control command signals. ing. The input data includes the temperature of the motors 2 and 3, the temperature of the oil that cools the parts to be cooled such as the motors 2 and 3, the oil temperature before and after the oil cooler 23, the temperature of the cooling water of the radiator 22, They are accelerator opening, vehicle speed, wheel speed, remaining charge of the power storage device, and the like. The data stored in advance includes a map that determines each driving mode, a map that determines the optimum fuel consumption line for the engine 1, a map that determines the required power of the engine 1, a map that determines the thermal efficiency of the engine 1, and the like. is. The ECU 24 outputs, as control command signals, a command signal for starting and stopping the engine 1, a torque command signal for the first motor 2, a torque command signal for the second motor 3, a torque command signal for the engine 1, and the like. Although FIG. 1 shows an example in which one ECU 24 is provided, a plurality of ECUs may be provided for each device to be controlled, such as the engine 1 and each of the motors 2 and 3, or for each control content.

HV走行モードは、上述したように主にエンジン1を動力源として車両Veを走行させる走行モードであって、エンジン1と動力分割機構4とを連結することにより、エンジン1から出力された動力を駆動輪6に伝達する。このようにエンジン1から出力された動力を駆動輪6に伝達する際に、第1モータ2から反力を動力分割機構4に作用させる。そのため、エンジン1から出力されたトルクを駆動輪6に伝達することができるように、動力分割機構4におけるサンギヤ8を反力要素として機能させる。すなわち、第1モータ2は、エンジントルクに応じたトルクを駆動輪6に作用させるべく、そのエンジントルクに対する反力トルクを出力する。 The HV travel mode is a travel mode in which the vehicle Ve travels mainly using the engine 1 as a power source, as described above. It is transmitted to the drive wheels 6 . When the power output from the engine 1 is thus transmitted to the drive wheels 6 , the reaction force is applied to the power split mechanism 4 from the first motor 2 . Therefore, the sun gear 8 in the power split device 4 functions as a reaction force element so that the torque output from the engine 1 can be transmitted to the drive wheels 6 . That is, the first motor 2 outputs reaction torque with respect to the engine torque in order to apply torque corresponding to the engine torque to the driving wheels 6 .

また、上述した第1モータ2は、通電される電流値やその周波数に応じて回転数を任意に制御することができ、したがって、第1モータ2の回転数を制御することで、エンジン回転数を適宜にあるいは任意に制御することができる。そして、基本的には、その第1モータ2により燃費が最適となるように、エンジン1の動作点あるいはエンジン回転数が制御される。つまり、エンジン1から動力分割機構4に伝達されるトルクに応じて第1モータ2の出力トルクあるいは回転数が制御される。 Further, the rotation speed of the first motor 2 described above can be arbitrarily controlled according to the current value and its frequency. can be controlled as appropriate or arbitrarily. Basically, the operating point of the engine 1 or the engine speed is controlled so that the first motor 2 optimizes the fuel consumption. That is, the output torque or rotation speed of the first motor 2 is controlled according to the torque transmitted from the engine 1 to the power split device 4 .

このように、通常のハイブリッド車両では、HV走行モードで走行する際、主にエンジンの熱効率を考慮して、すなわち燃費を重視して走行するように構成されている。一方、そのようにエンジン1の動作点をエンジン1の燃費が最良となる動作点(以下、最適燃費線と記す)に制御すると、燃費は向上する反面、各モータ2,3や動力分割機構4などを収容するトランスミッション7での発熱量が増大するおそれがある。具体的には、従来知られているように、モータは駆動に伴って、機械損、鉄損、あるいは、銅損といった損失が生じ、これら損失に応じた熱が発生する。例えばこの発熱によりトランスミッション7内のオイルの温度が上昇し、それによりモータを冷却できず、モータの温度が過度に上昇して、各種機器や部材の耐久性が低下するおそれがある。 In this way, a normal hybrid vehicle is configured to travel mainly in consideration of the thermal efficiency of the engine, that is, with an emphasis on fuel consumption when traveling in the HV traveling mode. On the other hand, if the operating point of the engine 1 is controlled to the operating point where the fuel consumption of the engine 1 is optimal (hereinafter referred to as the optimum fuel consumption line), the fuel consumption is improved, but the motors 2 and 3 and the power split device 4 There is a risk that the amount of heat generated in the transmission 7 that accommodates, for example, may increase. Specifically, as is conventionally known, a motor generates losses such as mechanical loss, iron loss, or copper loss as it is driven, and heat is generated in accordance with these losses. For example, this heat generation raises the temperature of the oil in the transmission 7, which prevents the motor from being cooled, causing the temperature of the motor to rise excessively and possibly reducing the durability of various devices and members.

なお、上記の機械損は、例えば第1モータ2のロータ軸2bの回転に伴って生じる軸受との回転摩擦あるいは摺動摩擦による損失や動力分割機構4の各ギヤにおける摩擦による損失などであって、またこの機械損は、特にモータの回転数に依存する。つまり、HV走行モードでは、第1モータ2の回転数の絶対値が大きいほど、その機械損も大きくなる。そこで、この発明の実施形態では、既知あるいは既存の車両Veの構成で、特にエンジン1の動作点を制御することによりトランスミッション7内での発熱を抑制するように構成されている。以下に、ECU24によって実行される制御例について説明する。 The above mechanical loss includes, for example, loss due to rotational friction or sliding friction with a bearing caused by the rotation of the rotor shaft 2b of the first motor 2, loss due to friction in each gear of the power split mechanism 4, etc. In addition, this mechanical loss particularly depends on the number of revolutions of the motor. That is, in the HV running mode, the larger the absolute value of the rotation speed of the first motor 2, the larger the mechanical loss. Therefore, in the embodiment of the present invention, the heat generation in the transmission 7 is suppressed by controlling the operating point of the engine 1 in the configuration of the known or existing vehicle Ve. An example of control executed by the ECU 24 will be described below.

図2は、その制御の一例を説明するフローチャートであって、先ず、エンジン1が駆動しているか否かを判断する(ステップS1)。つまり、エンジン1を動力源としたHV走行モードで走行しているか否かを判断する。したがって、このステップS1で否定的に判断された場合、すなわちEV走行モードで走行している場合などエンジン1が停止状態である場合には、これ以降の制御を実行することなくリターンする。 FIG. 2 is a flowchart for explaining an example of the control. First, it is determined whether or not the engine 1 is running (step S1). That is, it is determined whether or not the vehicle is traveling in the HV traveling mode using the engine 1 as the power source. Therefore, if the determination in step S1 is negative, that is, if the engine 1 is stopped, such as when the vehicle is traveling in the EV traveling mode, the routine returns without executing the subsequent control.

それとは反対に、このステップS1で肯定的に判断された場合、すなわちHV走行モードで走行している場合には、ついでオイルの温度(油温)が予め定められた閾値温度α以上か否かを判断する(ステップS2)。これは、トランスミッション7内の温度が予め定められた所定温度以上か否かを判断するステップであって、より具体的には、トランスミッション7での発熱状態、あるいは、冷却対象部(例えば各モータ2,3や動力分割機構4)の発熱状態を判断するステップである。また、このオイルの温度を判断することにより、オイルクーラ23で冷却性を担保できるか否かを判断することも可能である。通常制御であれば上述したように、エンジン1を最適燃費線に沿ってを制御するから、燃費を優先してエンジン1を制御する。一方、トランスミッション7内の温度が上昇し、あるいは、そのトランスミッション7内の温度の上昇により冷却性能が不足する場合には、発熱量が増大し、トランスミッション7における動力損失が過大となるおそれがある。すなわち、このステップS2では、通常、燃費を優先してエンジン1を最適燃費線に沿って制御していたものを、トランスミッション7における発熱ならびに動力損失を考慮して、エンジン1を最適燃費線から外して制御するか否かを判断するように構成されている。 Conversely, if the determination in step S1 is affirmative, that is, if the vehicle is traveling in the HV traveling mode, then it is determined whether the oil temperature (oil temperature) is equal to or higher than a predetermined threshold temperature α. (step S2). This is a step for determining whether or not the temperature inside the transmission 7 is equal to or higher than a predetermined temperature. , 3 and the power split device 4). Further, by determining the temperature of this oil, it is also possible to determine whether or not the oil cooler 23 can ensure the cooling performance. In normal control, as described above, the engine 1 is controlled along the optimum fuel consumption line, so the engine 1 is controlled with priority given to fuel consumption. On the other hand, if the temperature inside the transmission 7 rises, or if the cooling performance becomes insufficient due to the rise in the temperature inside the transmission 7, the amount of heat generated increases, and the power loss in the transmission 7 may become excessive. That is, in step S2, the engine 1 is normally controlled along the optimum fuel consumption line with priority given to fuel consumption, but the engine 1 is removed from the optimum fuel consumption line in consideration of heat generation and power loss in the transmission 7. It is configured to determine whether or not to control by

そして、そのトランスミッション7内での発熱状態を判断するパラメータの一つが上記のオイルの温度である。また、上記の閾値温度α、ならびに、トランスミッション7内の所定温度は、実験等によって予め定められた値であって、上述した動力損失に加えて各種機器の耐久性などを考慮して定めてよい。したがって、このステップS2で否定的に判断された場合、すなわちオイルの温度が閾値温度α未満である場合には、これ以降の制御を実行することなくリターンする。 One of the parameters for judging the state of heat generation in the transmission 7 is the oil temperature. Further, the threshold temperature α and the predetermined temperature in the transmission 7 are values predetermined by experiments or the like, and may be determined in consideration of the durability of various devices in addition to the power loss described above. . Therefore, if the determination in step S2 is negative, that is, if the oil temperature is less than the threshold temperature α, the process returns without executing subsequent control.

なお、上記の発熱状態を判断するパラメータは、上述したオイルの温度の他、例えば各モータ2,3の温度、オイルクーラ23の前後でのオイルの温度、ラジエータ22の冷却液の温度などが想定され、それら各パラメータにおいても発熱状態を判断する予め定められた閾値が設けられ、各パラメータの温度が閾値温度未満の場合には、同様にこれ以降の制御を実行することなくリターンする。さらに、オイルの現在の温度に限らず、オイルの温度の変化量からその発熱状態を判断してもよい。 In addition to the temperature of the oil described above, the parameters for determining the heat generation state are assumed to include, for example, the temperature of the motors 2 and 3, the temperature of the oil before and after the oil cooler 23, and the temperature of the cooling liquid of the radiator 22. Predetermined threshold values for judging the heat generation state are also provided for each of these parameters, and if the temperature of each parameter is less than the threshold temperature, similarly the process returns without executing subsequent control. Furthermore, the heat generation state may be determined not only from the current temperature of the oil, but also from the amount of change in the temperature of the oil.

また、ステップS2で否定的に判断された場合には、トランスミッション7内における発熱量は比較的少なく、あるいは、オイルクーラ23でオイルを適正温度に冷却できる状態であるから、従来制御と同様、燃費を重視し、エンジン1の動作点を最適燃費線に沿って制御する。 Further, if the determination in step S2 is negative, the amount of heat generated in the transmission 7 is relatively small, or the oil cooler 23 is in a state where the oil can be cooled to an appropriate temperature. is emphasized, and the operating point of the engine 1 is controlled along the optimum fuel efficiency line.

一方、このステップS2で肯定的に判断された場合、すなわちオイルの温度が、閾値温度α以上である場合には、ついで所定車速の要求パワー(もしくはエンジン要求パワー)における閾値βを決定する(ステップS3)。この閾値βは、エンジン1の動作点を制御するための基準値であって、通常制御での動作点である最適燃費線上に決定される。上記のステップS2で、オイルの温度が閾値温度α以上であると判断されたことにより、エンジン1を最適燃費線に沿って制御した場合には、トランスミッション7あるいはそのトランスミッション7に収容された各モータ2,3などの冷却対象部における発熱量が増大するおそれがあると判断できる。なお、上記のオイルの温度が閾値温度α以上の場合のトランスミッション7における動力損失は、エンジン1が、どの運転点あるいは動作点を選択した場合に、動力損失が過大になるかなどを予めマップ化してECU24に記憶させておく。そのマップは、例えば縦軸にエンジントルク、横軸にエンジン回転数を採ったグラフであって、またそのグラフにおいて、最適燃費線および等出力線の各ラインを引き、その最適燃費線および等出力線との関係でどの動作点を選択することが動力損失を低減するために望ましいかを決定する。さらに、そのようなマップを各車速毎(例えば20Km/h毎)に用意してECU24に記憶させておく。 On the other hand, if the determination in step S2 is affirmative, that is, if the oil temperature is equal to or higher than the threshold temperature α, then the threshold β for the required power (or engine required power) at the predetermined vehicle speed is determined (step S3). This threshold value β is a reference value for controlling the operating point of the engine 1, and is determined on the optimum fuel efficiency line, which is the operating point in normal control. In step S2, when it is determined that the oil temperature is equal to or higher than the threshold temperature α, when the engine 1 is controlled along the optimum fuel efficiency line, the transmission 7 or each motor accommodated in the transmission 7 It can be determined that there is a possibility that the amount of heat generated in the parts to be cooled such as 2 and 3 will increase. Regarding the power loss in the transmission 7 when the temperature of the oil is equal to or higher than the threshold temperature α, a map is prepared in advance to indicate which driving point or operating point the engine 1 selects to cause excessive power loss. is stored in the ECU 24. The map is, for example, a graph with engine torque on the vertical axis and engine speed on the horizontal axis. Determine which operating point selection relative to the line is desirable to reduce power loss. Furthermore, such a map is prepared for each vehicle speed (for example, every 20 km/h) and stored in the ECU 24 .

そして、トランスミッション7における動力損失(特に機械損)は、上述したように第1モータ2の回転数に依存するため、その第1モータ2の回転数を低回転数域に制御することでトランスミッション7内での発熱を抑制できる。したがって、要求パワーにおける閾値βは、その第1モータ2の回転数をトランスミッション7内での発熱を抑制することが可能な所定の低回転数に制御した場合であって、かつ最適燃費線を通る点となる。つまり、最適燃費線上でトランスミッション7内での発熱(動力損失)を最も抑制できる点が要求パワーにおける閾値βである。 Since the power loss (especially mechanical loss) in the transmission 7 depends on the rotation speed of the first motor 2 as described above, by controlling the rotation speed of the first motor 2 to a low rotation speed range, the transmission 7 It can suppress heat generation inside. Therefore, the threshold value β for the required power is obtained when the number of revolutions of the first motor 2 is controlled to a predetermined low number of revolutions capable of suppressing the heat generation in the transmission 7 and passes the optimum fuel efficiency line. become a point. That is, the threshold β of the required power is the point at which heat generation (power loss) in the transmission 7 can be most suppressed on the optimum fuel efficiency line.

なお、上述したトランスミッション7での発熱を抑制可能な第1モータ2の回転数は、「0」を含む予め定められた所定の低回転数域であって、また上記の閾値βは、各所定の車速に応じて変更するように決定され、所定の車速に対して車速が高いほど閾値βも大きくなる。そして、それら各車速毎の要求パワーにおける閾値βを、エンジントルクとエンジン回転数との関係でマップ化するなどしてECU24に予め記憶させておく。なお、上記の要求パワーは、要求駆動力と車速とに基づいて求められ、またその要求駆動力は、例えば運転者のアクセル操作に基づくアクセル開度から求められる。 Note that the rotation speed of the first motor 2 capable of suppressing heat generation in the transmission 7 described above is a predetermined low rotation speed range including "0", and the threshold value β , and the higher the vehicle speed with respect to a predetermined vehicle speed, the larger the threshold value β. Then, the threshold value β of the required power for each vehicle speed is stored in advance in the ECU 24 by, for example, mapping the relationship between the engine torque and the engine speed. The required power is obtained based on the required driving force and the vehicle speed, and the required driving force is obtained from, for example, the accelerator opening based on the driver's accelerator operation.

図3は、この発明の実施形態におけるエンジン1の動作点(あるいは動作ライン)を説明する図であって、エンジントルクを縦軸に、エンジン回転数を横軸にそれぞれ採り、上述した要求パワーにおける閾値βを最適燃費線上で示している。なお、符号L1は最適燃費の動作点を結んだ動作ライン(すなわち最適燃費線)を示し、符号WOTは出力可能な最大トルクとなる動作点を結んだパワーラインを示し、符号P1,P2は等出力線(P1>P2)を示している。そして、上述したECU24に記憶されている動力損失を求めたマップから、閾値βより高パワー側(図3の右側)において、エンジン回転数を減少させる方向がトランスミッション7における動力損失が比較的小さいエンジン1の動作点であることが把握されている。また、それとは反対に、閾値βより低パワー側(図3の左側)において、エンジン回転数を増大させる方向がトランスミッション7における動力損失が比較的小さいエンジン1の動作点であることが把握されている。 FIG. 3 is a diagram for explaining the operating points (or operating lines) of the engine 1 in the embodiment of the present invention. The threshold β is shown on the optimum fuel efficiency line. Reference character L1 indicates an operating line connecting operating points of optimum fuel efficiency (that is, optimum fuel consumption line), reference character WOT indicates a power line connecting operating points that provide the maximum torque that can be output, reference characters P1, P2, etc. Output lines (P1>P2) are shown. Then, from the map obtained by obtaining the power loss stored in the ECU 24 described above, on the higher power side (right side in FIG. 3) than the threshold value β, the direction in which the engine speed is decreased is the engine where the power loss in the transmission 7 is relatively small. 1 operating point. On the contrary, on the lower power side (left side in FIG. 3) of the threshold value β, it is understood that the direction in which the engine speed is increased is the operating point of the engine 1 at which the power loss in the transmission 7 is relatively small. there is

つぎに、要求パワーがステップS3で決定した閾値β以上か否かを判断する(ステップS4)。これは、トランスミッション7内での動力損失を低減するために、エンジン1の動作点をマップ上でどこを選択するか、あるいは、どこに決定するかを判断するステップであって、通常制御で選択する最適燃費線を基準として、エンジン1の動作点を変更する。すなわち、上述した閾値βが基準となる。そして、要求パワーがその閾値β以上の場合には、エンジン1の動作点をエンジン回転数を減少させる方向で動作点を選択あるいは決定する(ステップS5)。つまり、上述したように要求パワーが閾値β以上の場合(例えば図3におけるP1の場合)には、通常制御であれば最適燃費線上の動作点として動作点Aを選択するものの、この動作点Aを選択してエンジン1を制御すると、トランスミッション7内での発熱量が増大し、動力損失が大きくなるおそれがある。したがって、比較的トランスミッション7での動力損失が少ないエンジン1の動作点を選択すべく、選択する動作点を動作点Aから動作点A’に変更する。なお、エンジン1の動作点の制御は、上述したように第1モータ2で制御され、かつその第1モータ2の回転数は0回転数に近い所定の低回転数域に制御される。 Next, it is determined whether or not the required power is equal to or greater than the threshold value β determined in step S3 (step S4). This is a step of determining where on the map the operating point of the engine 1 should be selected or determined in order to reduce the power loss in the transmission 7. The operating point of the engine 1 is changed on the basis of the fuel consumption line. That is, the threshold value β described above serves as a reference. Then, when the required power is equal to or greater than the threshold β, the operating point of the engine 1 is selected or determined so as to decrease the engine speed (step S5). That is, when the required power is equal to or greater than the threshold value β as described above (for example, P1 in FIG. 3), the operating point A is selected as the operating point on the optimum fuel efficiency line under normal control. is selected to control the engine 1, the amount of heat generated in the transmission 7 may increase and power loss may increase. Therefore, in order to select the operating point of the engine 1 with relatively little power loss in the transmission 7, the operating point to be selected is changed from the operating point A to the operating point A'. The operating point of the engine 1 is controlled by the first motor 2 as described above, and the rotation speed of the first motor 2 is controlled to a predetermined low rotation speed region close to zero rotation speed.

また、選択すべきエンジン1の動作点は、エンジンパワーの変化が小さい方が好ましく、したがって、図3に示すように等出力線P1上で動作点を変更する。一方、この等出力線P1上で、どの動作点を選択するかは、エンジン1の熱効率とトランスミッション7における動力損失とを考慮して決定する。図4は、一般的なエンジンの熱効率を示すマップであって、最適燃費線に沿って動作点を制御した場合が最もエンジンの熱効率が良く、その最適燃費線から外側に外れた動作点を選択するにつれて、熱効率が低下する。なお、破線で囲った閉じた領域は、それぞれ熱効率が同じになる領域を示す。 Further, the operating point of the engine 1 to be selected should preferably have a smaller change in engine power. Therefore, as shown in FIG. 3, the operating point is changed on the iso-output line P1. On the other hand, which operating point is selected on the iso-output line P1 is determined by considering the thermal efficiency of the engine 1 and the power loss in the transmission 7. FIG. FIG. 4 is a map showing the thermal efficiency of a general engine. When the operating point is controlled along the optimal fuel consumption line, the thermal efficiency of the engine is the best, and the operating point outside the optimal fuel consumption line is selected. As the temperature increases, the thermal efficiency decreases. It should be noted that each closed area surrounded by a dashed line indicates an area in which the thermal efficiency is the same.

上述したようにトランスミッション7における動力損失は、ステップS5では、エンジン回転数を下げる方向に制御することで低減される。それとは反対に、エンジン1の熱効率は、最適燃費線から外側に外れるにつれて低下する。したがって、等出力線P1上において、どの動作点を選択するかの判断は、それらエンジン1の熱効率とトランスミッション7の動力損失とを考慮して車両Ve全体としてのエネルギ効率が良い点をエンジン1の動作点として選択するように構成されている。図3に示す例では、等出力線P1と最大トルク線WOTとの交点が最も最適な動作点A’とされている。 As described above, the power loss in the transmission 7 is reduced by controlling the engine speed to decrease in step S5. Conversely, the thermal efficiency of engine 1 decreases as it deviates outward from the optimum fuel economy line. Therefore, in determining which operating point to select on the iso-output line P1, the thermal efficiency of the engine 1 and the power loss of the transmission 7 should be taken into consideration, and the energy efficiency of the vehicle Ve as a whole is good. configured to select as the operating point. In the example shown in FIG. 3, the point of intersection between the iso-output line P1 and the maximum torque line WOT is the most optimal operating point A'.

一方、上記のステップS4で否定的に判断された場合、すなわち要求パワーが閾値β未満の場合には、エンジン1の動作点をエンジン回転数を増大させる方向で動作点を選択あるいは決定する(ステップS6)。つまり、上述したように要求パワーが閾値βより小さい場合(例えば図3におけるP2の場合)には、通常制御であれば最適燃費線上の動作点として動作点Bを選択して制御するものの、この動作点Bを選択してエンジン1を制御すると、上述したトランスミッション7内での発熱量が増大し、損失が大きくなるおそれがある。したがって、比較的トランスミッション7での損失が少ないエンジン1の動作点を選択すべく、選択するエンジン1の動作点を動作点Bから動作点B’に変更する。なお、この動作点の変更は、ステップS5と同様、第1モータ2の回転数を所定の低回転数域で制御することで選択される。また選択すべきエンジン1の動作点も同様、エンジンパワーの変化が小さい方が好ましく、したがって、図3に示すように等出力線P2上で動作点を変更し、かつ上述したエンジン1の熱効率とトランスミッション7での動力損失とを考慮してその動作点を決定する。図3の例では、車両Ve全体としての効率が良い点が、その動作点B’とされている。 On the other hand, if the determination in step S4 is negative, that is, if the required power is less than the threshold value β, the operating point of the engine 1 is selected or determined in the direction of increasing the engine speed (step S6). That is, when the required power is smaller than the threshold value β as described above (for example, P2 in FIG. 3), normal control selects the operating point B as the operating point on the optimum fuel efficiency line. If the operating point B is selected and the engine 1 is controlled, the amount of heat generated in the transmission 7 may increase and the loss may increase. Therefore, in order to select the operating point of the engine 1 with relatively small loss in the transmission 7, the operating point of the engine 1 to be selected is changed from the operating point B to the operating point B'. As in step S5, this change in operating point is selected by controlling the rotation speed of the first motor 2 in a predetermined low rotation speed range. Similarly, the operating point of the engine 1 to be selected should preferably have a small change in engine power. Therefore, as shown in FIG. The operating point is determined in consideration of the power loss in the transmission 7 . In the example of FIG. 3, the operating point B' is the point where the efficiency of the vehicle Ve as a whole is good.

このように、この発明の実施形態では、オイルの温度が閾値温度α以上の場合、すなわちトランスミッション7内の温度が所定温度以上であると判断された場合には、発熱量(すなわち動力損失)が増大するため、その動力損失を低下させるようにエンジン1の動作点を制御するように構成されている。具体的には、通常、最適燃費線に沿って制御されるエンジン1の動作点を、要求パワーが上述した閾値β以上の場合には、エンジン1の動作点をエンジン回転数が減少する方向に制御するように構成されている。また反対に、要求パワーが上述した閾値β未満の場合には、エンジン1の動作点をエンジン回転数が増大する方向に制御するように構成されている。このエンジン1の動作点は、実験等から求められたトランスミッション7での動力損失が低下する動作点であって、そのようにエンジン1の動作点を通常制御の最適燃費線上から変更することにより、トランスミッション7での動力損失を低下させることができる。 Thus, in the embodiment of the present invention, when the temperature of the oil is equal to or higher than the threshold temperature α, that is, when it is determined that the temperature inside the transmission 7 is equal to or higher than the predetermined temperature, the amount of heat generated (that is, power loss) is reduced. Therefore, it is arranged to control the operating point of the engine 1 so as to reduce its power loss. Specifically, the operating point of the engine 1, which is normally controlled along the optimum fuel efficiency line, is set to decrease the engine speed when the required power is equal to or greater than the above-mentioned threshold value β. configured to control. Conversely, when the required power is less than the above threshold value β, the operating point of the engine 1 is controlled to increase the engine speed. This operating point of the engine 1 is an operating point at which the power loss in the transmission 7 is reduced, which is obtained from experiments and the like. Power loss in the transmission 7 can be reduced.

また、上記のエンジン1の動作点におけるエンジン回転数の制御は、第1モータ2によって制御され、その第1モータ2の回転数は、低回転数域に制御される。そのため、第1モータ2の回転数は低くなるから、その第1モータ2の回転数に依存する機械損が低減され、またそれに伴う発熱量が低下する。つまり、第1モータ2の動作に寄与するモータなど各種機器や歯車など各部の温度が低下し、それら機器などの耐久性が低下することを抑制できる。さらに、上述したように第1モータ2の回転数を低回転数域に制御することで、トランスミッション7内での発熱を抑制できるため、トランスミッション7内の温度の上昇を抑制できる。そのため、新たな冷却機構を設ける、あるいは、現在搭載しているオイルクーラ23などの冷却機構の性能を向上させることを要しない。したがって、冷却性能を向上させるためのコストの増大を抑制もしくは回避でき、言い換えれば、既存の車両Veの構成で冷却性を担保することができる。 Further, the control of the engine speed at the operating point of the engine 1 is controlled by the first motor 2, and the speed of the first motor 2 is controlled in the low speed range. As a result, the rotation speed of the first motor 2 becomes low, so the mechanical loss that depends on the rotation speed of the first motor 2 is reduced, and the amount of heat generated thereby is also reduced. In other words, it is possible to prevent the temperature of various devices such as the motors that contribute to the operation of the first motor 2 and the temperature of the respective parts such as the gears from dropping, thereby suppressing the deterioration of the durability of these devices. Furthermore, by controlling the rotation speed of the first motor 2 to the low rotation speed range as described above, heat generation in the transmission 7 can be suppressed, so an increase in temperature in the transmission 7 can be suppressed. Therefore, it is not necessary to provide a new cooling mechanism or to improve the performance of the currently installed cooling mechanism such as the oil cooler 23 . Therefore, it is possible to suppress or avoid an increase in cost for improving the cooling performance, and in other words, it is possible to secure the cooling performance with the configuration of the existing vehicle Ve.

また、上述したように、選択すべきエンジン1の動作点は、エンジン1の熱効率とトランスミッション7での動力損失とを考慮して決定するように構成されているから、車両Ve全体としてのエネルギ効率を向上させることができる。さらに、トランスミッション7内のオイルの温度や各モータ2,3の温度が閾値温度未満である場合には、通常制御と同様、燃費を重視して最適燃費線でエンジン1の動作点を制御するように構成されている。したがって、この発明の実施形態におけるハイブリッド車両Veによれば、燃費と冷却性とを両立することができる。 Further, as described above, the operating point of the engine 1 to be selected is configured to be determined in consideration of the thermal efficiency of the engine 1 and the power loss in the transmission 7. Therefore, the energy efficiency of the vehicle Ve as a whole is can be improved. Furthermore, when the temperature of the oil in the transmission 7 and the temperatures of the motors 2 and 3 are less than the threshold temperature, the operating point of the engine 1 is controlled along the optimum fuel consumption line with emphasis on fuel consumption, as in normal control. is configured to Therefore, according to the hybrid vehicle Ve in the embodiment of the present invention, it is possible to achieve both fuel efficiency and cooling performance.

以上、この発明の実施形態について説明したが、この発明は上述した例に限定されないのであって、この発明の目的を達成する範囲で適宜変更してもよい。上述した実施形態では、ステップS2でトランスミッション7内の温度あるいは発熱状態を判断するために、オイルの温度、あるいは、その他各モータ2,3の温度、ラジエータ22の冷却液の温度、オイルクーラ23の前後でのオイル温度などをパラメータとして説明したものの、これら各パラメータは少なくとも一つのパラメータを基に判断してよい。またこれら各パラメータを協調させて、そのトランスミッション7内の温度あるいは発熱状態を判断するように構成してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above examples, and may be modified as appropriate within the scope of achieving the object of the present invention. In the above-described embodiment, in order to determine the temperature or heat generation state in the transmission 7 in step S2, the temperature of the oil, the temperature of the motors 2 and 3, the temperature of the coolant in the radiator 22, the temperature of the oil cooler 23, and the Although the front and rear oil temperatures have been described as parameters, each of these parameters may be determined based on at least one parameter. Also, these parameters may be coordinated to determine the temperature or heat generation state within the transmission 7 .

また、この発明で対象とするハイブリッド車両は、図1のハイブリッド車両Ve以外の車両に適用してもよく、例えば上述した図1の例は、FF(フロントエンジン・フロントドライブ)車であるが、トランスミッションケース7aにデファレンシャルギヤユニットが収容されていないFR(フロントエンジン・リヤドライブ)車に適用してもよい。また、例えば上述した動力分割機構4の構成は、シングルピニオン型の遊星歯車機構に限らず、ダブルピニオン型の遊星歯車機構によって構成してもよく、あるいは、四つ以上の回転要素を備えたラビニョ型の遊星歯車機構で構成してもよい。 Further, the hybrid vehicle targeted by the present invention may be applied to a vehicle other than the hybrid vehicle Ve shown in FIG. 1. For example, the example shown in FIG. It may be applied to an FR (front engine/rear drive) vehicle in which no differential gear unit is accommodated in the transmission case 7a. Further, for example, the configuration of the power split mechanism 4 described above is not limited to a single pinion type planetary gear mechanism, and may be configured by a double pinion type planetary gear mechanism, or a Ravigneaux gear mechanism having four or more rotating elements. It may be configured with a planetary gear mechanism of the type.

1…エンジン(ENG)、 2…第1モータ(MG1)、 4…動力分割機構、 6…駆動輪、 7…トランスミッション、 7a…トランスミッションケース、 8…サンギヤ、 9…リングギヤ、 10…キャリヤ、 11…ピニオンギヤ、 22…ラジエータ、 23…オイルクーラ、 24…コントローラ(ECU)、 L1…最適燃費線、 P1,P2…等出力線、 Ve…車両。 DESCRIPTION OF SYMBOLS 1... Engine (ENG) 2... 1st motor (MG1) 4... Power split mechanism 6... Drive wheel 7... Transmission 7a... Transmission case 8... Sun gear 9... Ring gear 10... Carrier 11... Pinion gear 22 Radiator 23 Oil cooler 24 Controller (ECU) L1 Optimal fuel consumption line P1, P2 Equal output line Ve Vehicle.

Claims (3)

エンジンと、第1モータと、前記エンジンの出力トルクを駆動輪に伝達するトランスミッションとを備え、
前記トランスミッションは、前記エンジンの前記出力トルクが伝達される第1回転要素と、前記駆動輪にトルクを伝達可能に連結された第2回転要素と、前記第1モータからトルクが伝達される第3回転要素との少なくとも三つの回転要素を有する差動機構を備え、
前記トランスミッションの内部を冷却しつつ、前記エンジンの前記出力トルクを前記差動機構を介して前記駆動輪に伝達してHV走行するように構成されたハイブリッド車両の制御装置であって、
前記エンジンおよび前記第1モータを制御するコントローラを備え、
前記コントローラは、
前記第1モータの回転数を制御することによって前記エンジンの動作点を制御するものであって、
前記HV走行の際に、前記トランスミッションの内部の発熱状態を判断する所定の温度パラメータが予め定められた所定温度未満の場合は、
前記エンジンの燃費が最良となる動作点で前記エンジンが運転されるように、前記第1モータの回転数を制御し、
前記HV走行の際に、前記温度パラメータが前記所定温度以上の場合は
前記エンジンの燃費よりも前記トランスミッションの内部の発熱量を低減させることを優先して、前記第1モータの回転数を前記発熱量を抑制可能な0を含む所の回転数域に制御することにより、前記エンジンの動作点を前記発熱量を低減させる動作点に制御するとともに、
記エンジンの動作点を前記発熱量を低減させる動作点に制御する際に、
前記エンジンの要求パワーを求め、
前記要求パワーが予め定められた閾値以上か否かを判断し、
前記要求パワーが前記閾値以上であると判断された場合に、前記エンジンの動作点を、前記要求パワーを満たしつつ前記燃費が最良となる動作点から前記エンジンの回転数を減少させ、かつ、前記エンジンの前記出力トルクを増大させる方向に変更し、
前記要求パワーが前記閾値未満であると判断された場合に、前記エンジンの動作点を、前記要求パワーを満たしつつ前記燃費が最良となる動作点から前記エンジンの回転数を増大させ、かつ、前記エンジンの前記出力トルクを減少させる方向に変更する
ように構成されている
ことを特徴するハイブリッド車両の制御装置。
An engine, a first motor, and a transmission that transmits the output torque of the engine to drive wheels,
The transmission includes a first rotating element to which the output torque of the engine is transmitted, a second rotating element connected to the driving wheels so as to transmit torque, and a third rotating element to which torque is transmitted from the first motor. a differential mechanism having at least three rotating elements with a rotating element;
A control device for a hybrid vehicle configured to transmit the output torque of the engine to the driving wheels via the differential mechanism while cooling the inside of the transmission to perform HV running,
A controller that controls the engine and the first motor,
The controller is
controlling the operating point of the engine by controlling the rotation speed of the first motor ,
When a predetermined temperature parameter for determining the state of heat generation inside the transmission is lower than a predetermined temperature during HV running,
controlling the rotation speed of the first motor so that the engine is operated at an operating point at which the fuel efficiency of the engine is the best;
When the temperature parameter is equal to or higher than the predetermined temperature during HV running ,
Prioritizing reduction of heat generation inside the transmission over fuel consumption of the engine, the rotation speed of the first motor is controlled to a predetermined rotation speed range including 0 in which the heat generation can be suppressed. By controlling the operating point of the engine to an operating point that reduces the amount of heat generated ,
When controlling the operating point of the engine to an operating point that reduces the amount of heat generated ,
Finding the required power of the engine,
determining whether the required power is equal to or greater than a predetermined threshold;
When it is determined that the required power is equal to or greater than the threshold, the engine speed is reduced from the operating point at which the fuel efficiency is optimal while satisfying the required power, and change in the direction of increasing the output torque of the engine,
when it is determined that the required power is less than the threshold, the operating point of the engine is increased from the operating point at which the fuel efficiency is optimal while satisfying the required power, and A control device for a hybrid vehicle, characterized in that it is configured to change the output torque of the engine in a decreasing direction.
請求項1に記載のハイブリッド車両の制御装置であって、
前記ハイブリッド車両は、前記トランスミッションおよび前記エンジンを冷却する冷却機構を更に備え、
前記コントローラは、
前記トランスミッションの内部の温度が前記所定温度以上か否かの判断を、前記第1モータの温度、前記第1モータおよび前記差動機構を冷却するオイルの温度、ならびに、前記冷却機構の温度のうち少なくともいずれか一つのパラメータの温度に基づいて判断するように構成されている
ことを特徴とするハイブリッド車両の制御装置。
A control device for a hybrid vehicle according to claim 1,
The hybrid vehicle further includes a cooling mechanism for cooling the transmission and the engine,
The controller is
Determining whether the temperature inside the transmission is equal to or higher than the predetermined temperature is determined by selecting the temperature of the first motor, the temperature of oil that cools the first motor and the differential mechanism, and the temperature of the cooling mechanism. A control device for a hybrid vehicle, characterized in that the determination is made based on at least one parameter temperature.
請求項1または2に記載のハイブリッド車両の制御装置であって、
前記閾値は、所定の車速時の値に対して前記所定の車速より高車速時の値の方が大きくなるように構成されている
ことを特徴とするハイブリッド車両の制御装置。
A control device for a hybrid vehicle according to claim 1 or 2,
The control device for a hybrid vehicle, wherein the threshold value is set to be larger at a high vehicle speed than at a predetermined vehicle speed.
JP2018208608A 2018-11-06 2018-11-06 Hybrid vehicle control device Active JP7192408B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018208608A JP7192408B2 (en) 2018-11-06 2018-11-06 Hybrid vehicle control device
US16/672,908 US11479236B2 (en) 2018-11-06 2019-11-04 Control system for hybrid vehicle
CN201911063562.XA CN111204322B (en) 2018-11-06 2019-11-04 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208608A JP7192408B2 (en) 2018-11-06 2018-11-06 Hybrid vehicle control device

Publications (2)

Publication Number Publication Date
JP2020075554A JP2020075554A (en) 2020-05-21
JP7192408B2 true JP7192408B2 (en) 2022-12-20

Family

ID=70460288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208608A Active JP7192408B2 (en) 2018-11-06 2018-11-06 Hybrid vehicle control device

Country Status (3)

Country Link
US (1) US11479236B2 (en)
JP (1) JP7192408B2 (en)
CN (1) CN111204322B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660102B (en) * 2020-12-31 2022-05-17 吉林大学 Control method of planetary multi-gear hybrid power system based on energy consumption analysis theory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144641A (en) 2004-11-18 2006-06-08 Toyota Motor Corp Power output device and automobile equipped therewith, and control method for the power output device
JP2012111460A (en) 2010-11-29 2012-06-14 Toyota Motor Corp Motor vehicle
JP2013181613A (en) 2012-03-02 2013-09-12 Honda Motor Co Ltd Protection and control device for power unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278814A (en) * 1999-03-26 2000-10-06 Mazda Motor Corp Vehicle drive
JP3722102B2 (en) * 2002-09-10 2005-11-30 トヨタ自動車株式会社 Hybrid vehicle
JP4217253B2 (en) * 2006-07-04 2009-01-28 本田技研工業株式会社 Hybrid vehicle
JP4305541B2 (en) * 2007-03-28 2009-07-29 トヨタ自動車株式会社 Control device for hybrid vehicle
EP2759693A4 (en) * 2011-09-20 2015-11-18 Toyota Motor Co Ltd Vehicle driving force control device
JP5981439B2 (en) * 2011-10-06 2016-08-31 トヨタ自動車株式会社 Control device for hybrid vehicle
US8532856B2 (en) * 2011-11-07 2013-09-10 GM Global Technology Operations LLC Temperature-based state optimization of a hybrid transmission
JP6428672B2 (en) * 2016-02-17 2018-11-28 トヨタ自動車株式会社 Control device for vehicle drive device
WO2017170081A1 (en) * 2016-03-29 2017-10-05 マツダ株式会社 Hybrid car and vehicle
JP6540680B2 (en) * 2016-12-26 2019-07-10 トヨタ自動車株式会社 Hybrid vehicle
JP2020090116A (en) * 2018-12-03 2020-06-11 トヨタ自動車株式会社 Control device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144641A (en) 2004-11-18 2006-06-08 Toyota Motor Corp Power output device and automobile equipped therewith, and control method for the power output device
JP2012111460A (en) 2010-11-29 2012-06-14 Toyota Motor Corp Motor vehicle
JP2013181613A (en) 2012-03-02 2013-09-12 Honda Motor Co Ltd Protection and control device for power unit

Also Published As

Publication number Publication date
CN111204322A (en) 2020-05-29
US20200139958A1 (en) 2020-05-07
US11479236B2 (en) 2022-10-25
CN111204322B (en) 2023-04-14
JP2020075554A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
KR101718858B1 (en) Hybrid vehicle
JP4321648B2 (en) Hybrid vehicle and control method thereof
JP5157275B2 (en) Control device for hybrid vehicle
CN109720333B (en) Control device for hybrid vehicle
KR20130118127A (en) Hybrid vehicle transmission and method for start controlling of hybrid vehicle
JP2009096326A (en) Driving control device for oil pump unit and hybrid car equipped with the driving control device
JP6428672B2 (en) Control device for vehicle drive device
JP2008099424A (en) Power output device, control method therefor, and vehicle
JP2012111460A (en) Motor vehicle
JP2011047348A (en) Automobile
JP2010095051A (en) Hybrid vehicle
JP2013139225A (en) Control apparatus
JP2019031214A (en) Driving force controller of hybrid vehicle
JP7192408B2 (en) Hybrid vehicle control device
JP7388213B2 (en) Hybrid vehicle control device
JP5482726B2 (en) Vehicle control device
JP5803485B2 (en) Control device for hybrid vehicle
JP4631853B2 (en) Vehicle and control method thereof
JP7215967B2 (en) Hybrid vehicle control device
JP6128023B2 (en) Vehicle control device
JP2020152232A (en) Drive system
JP5699615B2 (en) Hybrid car
JP6070534B2 (en) Hybrid vehicle drive control device
JP2013071603A (en) Control device for hybrid vehicle
JP2017154585A (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7192408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151