JP7191313B2 - Method for producing cellooligosaccharide - Google Patents

Method for producing cellooligosaccharide Download PDF

Info

Publication number
JP7191313B2
JP7191313B2 JP2018173782A JP2018173782A JP7191313B2 JP 7191313 B2 JP7191313 B2 JP 7191313B2 JP 2018173782 A JP2018173782 A JP 2018173782A JP 2018173782 A JP2018173782 A JP 2018173782A JP 7191313 B2 JP7191313 B2 JP 7191313B2
Authority
JP
Japan
Prior art keywords
reaction
carbon
carbon catalyst
catalyst
plant biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173782A
Other languages
Japanese (ja)
Other versions
JP2020045305A (en
Inventor
淳 福岡
アビジット シュロトリ
一郎 藤田
信 齋藤
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Hokkaido University NUC
Original Assignee
Showa Denko KK
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hokkaido University NUC filed Critical Showa Denko KK
Priority to JP2018173782A priority Critical patent/JP7191313B2/en
Publication of JP2020045305A publication Critical patent/JP2020045305A/en
Application granted granted Critical
Publication of JP7191313B2 publication Critical patent/JP7191313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明はセロオリゴ糖の製造方法に関する。さらに詳しく言えば、炭素触媒を用いた植物性バイオマスの加水分解による、グルコースの重合度(G)が3以上のオリゴマーを含有するセロオリゴ糖の選択的製造方法に関する。 The present invention relates to a method for producing cellooligosaccharides. More specifically, the present invention relates to a method for selectively producing cellooligosaccharides containing oligomers having a glucose polymerization degree (G) of 3 or more by hydrolyzing plant biomass using a carbon catalyst.

セロオリゴ糖は、グルコースがβ-1,4結合して重合した短鎖線状ポリマーであり、保湿性、べたつき抑制、清味付与、でんぷん老化低減、タンパク変性抑制などの機能性を有し、食品及び化粧品産業において添加剤として幅広く利用されている。例えば、セロオリゴ糖はヒト消化器官内の善玉バクテリアの成育を刺激することによって、糖尿病や肥満症のような生活習慣病の予防に有効であり(非特許文献1)、農業分野においても、セロオリゴ糖を低濃度で投与すると、植物の免疫防御能を活性化する誘導因子として働き、作物の収量を改善することが報告されている(非特許文献2)。
特に、グルコースの重合度が3~8程度のセロオリゴ糖は水に適度な溶解性を示し、上記の機能の持続性の増大、新たな機能性賦与という点でより大きな期待が寄せられている。
Cellooligosaccharides are short-chain linear polymers in which glucose is β-1,4-linked and polymerized. It is widely used as an additive in the cosmetics industry. For example, cellooligosaccharides are effective in preventing lifestyle-related diseases such as diabetes and obesity by stimulating the growth of beneficial bacteria in the human digestive system (Non-Patent Document 1). It has been reported that when administered at a low concentration, it acts as an inducer that activates the immune defense ability of plants and improves the yield of crops (Non-Patent Document 2).
In particular, cellooligosaccharides with a degree of polymerization of glucose of about 3 to 8 exhibit moderate solubility in water, and are expected to increase the durability of the above-mentioned functions and provide new functionalities.

現在工業的に利用されているセロオリゴ糖は、酵素反応によって製造されているが、主成分はグルコースと二量体のセロビオースであり、三量体のセロトリオース以上のオリゴマーはほとんど含有していない(特開2009-189293号公報;特許文献1)。 Cellooligosaccharides currently used industrially are produced by an enzymatic reaction, but the main components are glucose and dimeric cellobiose, and they contain almost no oligomers higher than trimeric cellotriose (especially Japanese Patent Application Laid-Open No. 2009-189293; Patent Document 1).

酵素法以外のセロオリゴ糖製造技術としては、水熱処理方法(国際公開第2012/128055パンフレット(US9284614B2);特許文献2等)、次亜塩素酸を含有する酸化水による水熱処理方法(特開2006-320261号公報;特許文献3)が知られているが、いずれもセロオリゴ糖は、セルロースをグルコースに分解する過程の中間産物として取り扱われており、収率など具体的データは開示されていない。すなわち、グルコースの重合度が3以上のオリゴマーを工業的に効率よく製造する方法は確立されておらず、現状工業生産されていないグルコースの重合度(G)が3以上のオリゴマーを含有するセロオリゴ糖が高収率で得られる製造方法の確立が望まれている。 Cellooligosaccharide production techniques other than enzymatic methods include a hydrothermal treatment method (International Publication No. 2012/128055 pamphlet (US9284614B2); Patent Document 2, etc.), a hydrothermal treatment method using oxidized water containing hypochlorous acid (JP 2006- No. 320261 and Patent Document 3) are known, but cellooligosaccharides are treated as an intermediate product in the process of decomposing cellulose into glucose, and specific data such as yield are not disclosed. That is, a method for industrially efficiently producing an oligomer having a glucose polymerization degree of 3 or more has not been established, and a cellooligosaccharide containing an oligomer having a glucose polymerization degree (G) of 3 or more that is not currently industrially produced. is desired to establish a production method that can be obtained in a high yield.

本発明に関連する技術として、セルロースを加水分解する固体触媒を用い、セルロースを含有するバイオマスなどの原料を加水分解し糖類を製造する方法が提案されている。
特許第4604194号公報(特許文献4)には、効率よくセルロースを加水分解してグルコースを得ることができる方法として、セルロースの加水分解反応を触媒する酸性官能基または塩基性官能基を有する活性炭固体触媒を用いる方法が開示されているが、セロオリゴ糖の生成については記載していない。
As a technique related to the present invention, a method of producing sugars by hydrolyzing raw materials such as biomass containing cellulose using a solid catalyst that hydrolyzes cellulose has been proposed.
In Japanese Patent No. 4604194 (Patent Document 4), as a method for efficiently hydrolyzing cellulose to obtain glucose, an activated carbon solid having an acidic functional group or a basic functional group that catalyzes the hydrolysis reaction of cellulose is disclosed. A catalytic method is disclosed, but the production of cellooligosaccharides is not described.

本発明者らは、植物性バイオマスと炭素触媒のスラリーを連続的に反応液流通管に通して水熱反応を行い生成物として、主としてグルコースを連続的に取得する方法を開示している(特開2017-109187号公報;特許文献5)。特許文献5では、反応条件によっては、G2以上のセロオリゴ糖が生成しているが、G3以上のオリゴ糖の収率及び選択率については開示されていない。 The present inventors have disclosed a method of continuously obtaining mainly glucose as a product by continuously passing a slurry of plant biomass and a carbon catalyst through a reaction liquid flow tube to cause a hydrothermal reaction (especially Japanese Patent Laid-Open No. 2017-109187; Patent Document 5). In Patent Document 5, depending on the reaction conditions, G2 or higher cellooligosaccharides are produced, but the yield and selectivity for G3 or higher oligosaccharides are not disclosed.

また、本発明者らは炭素触媒を用いた植物性バイオマスの加水分解反応において、反応温度(縦軸)と反応時間(横軸)との関係を表すグラフにおける170~230℃の範囲の温度時間積を特定の範囲となる条件に制御して水熱反応をさせてG3~G6のオリゴマーを含有するセロオリゴ糖を製造する方法を開示している(国際公開第2017/104687パンフレット;特許文献6)。 In the hydrolysis reaction of plant biomass using a carbon catalyst, the present inventors also found that the temperature time in the range of 170 to 230 ° C. in the graph showing the relationship between the reaction temperature (vertical axis) and the reaction time (horizontal axis) discloses a method for producing cellooligosaccharides containing oligomers of G3 to G6 by controlling the product to a specific range and performing a hydrothermal reaction (International Publication No. 2017/104687 pamphlet; Patent Document 6). .

特開2009-189293号公報JP 2009-189293 A 国際公開第2012/128055パンフレットInternational Publication No. 2012/128055 Pamphlet 特開2006-320261号公報Japanese Patent Application Laid-Open No. 2006-320261 特許第4604194号公報Japanese Patent No. 4604194 特開2017-109187号公報JP 2017-109187 A 国際公開第2017/104687パンフレットInternational Publication No. 2017/104687 Pamphlet

Polym.Int.,66,1227(2017)Polym. Int. , 66, 1227 (2017) Plant Physiol.,173,2383(2017)Plant Physiol. , 173, 2383 (2017)

本発明の課題は、炭素触媒を用いて植物性バイオマスを加水分解する方法において、特許文献6のような煩雑な制御を行うことなく、グルコースの重合度(G)が3以上のオリゴマーを含有するセロオリゴ糖を高収率、高選択率で得ることのできる製造方法を提供することにある。 An object of the present invention is to provide a method for hydrolyzing plant biomass using a carbon catalyst, which contains an oligomer having a glucose polymerization degree (G) of 3 or more without performing complicated control as in Patent Document 6. An object of the present invention is to provide a method for producing cellooligosaccharides with high yield and high selectivity.

本発明者らは、セルロースの加水分解によって、グルコースの重合度(G)が3以上のオリゴマーを選択的に高収率で得るためには、セルロースが逐次的に解重合し生成したG3以上のオリゴマーを、すみやかにそれ以上解重合しない環境下におくこと(炭素触媒系から解放すること)が有効であると考え鋭意検討を重ねた。その結果、炭素触媒と植物性バイオマスの混合物を固定床として充填したカラム(反応容器)に、セルロース成分がG3以上のオリゴマーとなる条件で加熱水を流通させることによって、生成したG3以上のオリゴマーを含む水溶液が触媒系から解放され、目的とするセロオリゴ糖が高収率(高選択率)で得られることを見出し本発明を完成するに至った。 The present inventors have found that in order to selectively obtain an oligomer having a degree of polymerization (G) of glucose of 3 or more at a high yield by hydrolysis of cellulose, G3 or more produced by sequential depolymerization of cellulose We considered that it would be effective to quickly put the oligomer in an environment where it would not depolymerize any more (to release it from the carbon catalyst system), and conducted extensive research. As a result, a column (reaction vessel) filled with a mixture of carbon catalyst and plant biomass as a fixed bed is circulated with heated water under conditions where the cellulose component becomes an oligomer of G3 or higher, and the produced oligomer of G3 or higher is produced. The present inventors have found that the aqueous solution containing the catalyst is released from the catalyst system and the target cellooligosaccharide can be obtained in high yield (high selectivity), leading to the completion of the present invention.

すなわち、本発明は以下の[1]~[7]のセロオリゴ糖の製造方法に関する。
[1] 炭素触媒と植物性バイオマスの混合物を固定床として充填した反応容器に、加熱水を流通させてバイオマス中のセルロースを加水分解し、生成するグルコース重合度が3以上のセロオリゴ糖を取得することを特徴とするセロオリゴ糖の製造方法。
[2] 前記加熱水の温度が180~240℃、反応滞留時間が20~600秒である前項1に記載のセロオリゴ糖の製造方法。
[3] 前記加熱水の線速度(LV)が0.4~5.0m/Hr、空間速度(SV)が5~100/Hrである前項1または2に記載のセロオリゴ糖の製造方法。
[4] 前記炭素触媒と前記植物性バイオマス原料を予め混合し同時粉砕した混合物を固定床として用いる前項1~3のいずれか1項に記載のセロオリゴ糖の製造方法。
[5] 前記炭素触媒が、アルカリ賦活活性炭、水蒸気賦活活性炭、薬剤賦活活性炭、及びメソポーラスカーボンからなる群から選択される1種以上の炭素触媒である前項1~4のいずれか1項に記載のセロオリゴ糖の製造方法。
[6] 前記炭素触媒が、空気酸化処理された炭素触媒である前項1~5のいずれか1項に記載のセロオリゴ糖の製造方法。
[7] 前記炭素触媒と前記植物性バイオマスに、さらにシリカを混合した混合物を固定床として用いる前項1~6のいずれか1項に記載のセロオリゴ糖の製造方法。
That is, the present invention relates to the following methods for producing cellooligosaccharides [1] to [7].
[1] Heated water is passed through a reaction vessel filled with a mixture of a carbon catalyst and plant biomass as a fixed bed to hydrolyze cellulose in the biomass to obtain cellooligosaccharides having a glucose polymerization degree of 3 or higher. A method for producing cellooligosaccharide, characterized by:
[2] The method for producing cellooligosaccharide according to the above item 1, wherein the temperature of the heating water is 180 to 240°C and the reaction residence time is 20 to 600 seconds.
[3] The method for producing cellooligosaccharide according to the above item 1 or 2, wherein the heated water has a linear velocity (LV) of 0.4 to 5.0 m/Hr and a space velocity (SV) of 5 to 100/Hr.
[4] The method for producing cellooligosaccharide according to any one of [1] to [3] above, wherein the carbon catalyst and the plant biomass raw material are mixed in advance and pulverized at the same time, and the mixture is used as a fixed bed.
[5] The carbon catalyst according to any one of the preceding items 1 to 4, wherein the carbon catalyst is one or more selected from the group consisting of alkali-activated activated carbon, steam-activated activated carbon, chemical-activated activated carbon, and mesoporous carbon. A method for producing a cellooligosaccharide.
[6] The method for producing cellooligosaccharide according to any one of [1] to [5] above, wherein the carbon catalyst is an air-oxidized carbon catalyst.
[7] The method for producing cellooligosaccharide according to any one of the above items 1 to 6, wherein a mixture of the carbon catalyst and the plant biomass further mixed with silica is used as a fixed bed.

本発明によれば、植物性バイオマスから、炭素触媒を用いてグルコースの重合度が3以上のオリゴマーを含有するセロオリゴ糖を高収率・高選択率で製造することができる。 According to the present invention, cellooligosaccharides containing oligomers having a degree of polymerization of glucose of 3 or more can be produced from plant biomass with high yield and high selectivity using a carbon catalyst.

実施例で使用した反応系(実験装置)の概要を示す。An outline of a reaction system (experimental apparatus) used in Examples is shown.

以下、本発明の方法の好適な実施形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な一例を示したものであり、本発明はそれらに限定されるものではなく、それらにより本発明の範囲が狭く解釈されるべきでない。 Preferred embodiments of the method of the present invention are described below. It should be noted that the embodiments described below are representative examples of the present invention, and the present invention is not limited to them, and the scope of the present invention should not be construed narrowly.

[植物性バイオマス(固体基質)]
バイオマスとは一般的には「再生可能な生物由来の有機性資源で化石資源を除いたもの」を指すが、本発明で使用する「植物性バイオマス」(以下、固体基質ということがある。)は、例えば、稲わら、麦わら、サトウキビわら、籾殻、バガス、広葉樹、竹、針葉樹、ケナフ、家具廃材、建築廃材、古紙、食品残渣等の主にセルロースやヘミセルロースを含むバイオマスである。
[Plant biomass (solid substrate)]
Biomass generally refers to "renewable organic resources derived from living organisms excluding fossil resources", but "vegetable biomass" (hereinafter sometimes referred to as solid substrate) used in the present invention. is biomass mainly containing cellulose and hemicellulose, such as rice straw, wheat straw, sugar cane straw, rice husk, bagasse, hardwood, bamboo, softwood, kenaf, furniture waste, construction waste, waste paper, and food residue.

植物性バイオマスは、精製処理してあるものでも、精製処理してないものでも用いることができる。精製処理してあるものとしては、アルカリ蒸煮、アルカリ性亜硫酸塩蒸煮、中性亜硫酸塩蒸煮、アルカリ性硫化ソーダ蒸煮、アンモニア蒸煮などの処理をした後に固液分離し水洗することにより脱リグニン処理を行い、セルロースを含有するものが挙げられる。さらに、工業的に調製したセルロースなどでもよい。
植物性バイオマスは、不純物として原料由来の珪素、アルミニウム、カルシウム、マグネシウム、カリウム、ナトリウムなどの灰分を含有してもよい。
The plant biomass may be purified or not purified. Refined materials are subjected to alkali steaming, alkaline sulfite steaming, neutral sulfite steaming, alkaline sodium sulfide steaming, ammonia steaming, etc., followed by solid-liquid separation and washing with water for delignification. Examples include those containing cellulose. Further, industrially prepared cellulose or the like may be used.
Plant biomass may contain ash such as silicon, aluminum, calcium, magnesium, potassium, and sodium derived from raw materials as impurities.

植物性バイオマスは、乾体でも湿体でもよく、結晶性でも非結晶性でもよい。植物性バイオマスは反応に先立ち粉砕することが望ましい。粉砕により炭素触媒との接触性が増加して、加水分解反応が促進される。したがって、植物性バイオマスの形状・大きさは、粉砕するのに適していることが好ましい。そのような形状・大きさとしては、例えば粒径が20~1000μmの粉体状が挙げられる。 Plant biomass can be dry or wet, and can be crystalline or amorphous. It is desirable to pulverize the plant biomass prior to the reaction. The pulverization increases the contact with the carbon catalyst and promotes the hydrolysis reaction. Therefore, the shape and size of the plant biomass are preferably suitable for pulverization. As such a shape and size, for example, powder having a particle size of 20 to 1000 μm can be mentioned.

[炭素触媒]
炭素触媒は、植物性バイオマスの加水分解を触媒できるものであればよく、特に限定されるものではないが、主成分であるセルロースを形成しているグルコース間のβ-1,4グリコシド結合に代表されるグリコシド結合を加水分解する活性を有する炭素材料が好ましい。
[Carbon catalyst]
The carbon catalyst is not particularly limited as long as it can catalyze the hydrolysis of plant biomass, but is typified by β-1,4 glycosidic bonds between glucose forming cellulose, which is the main component. A carbon material having the activity of hydrolyzing the glycosidic bond that is formed is preferred.

炭素材料としては、例えば活性炭、カーボンブラック、グラファイト、空気酸化した木粉などが挙げられる。これら炭素材料は、単独で使用しても、2種以上を併用してもよい。炭素材料の形状は、基質との接触面積の拡大により反応性を向上させるという点で、多孔性及び/または微粒子であることが好ましく、酸点を発現して加水分解を促進させるという点で、その表面にフェノール性水酸基、カルボキシル基、スルホ基、リン酸基などの官能基を有する炭素材料が好ましい。 Carbon materials include, for example, activated carbon, carbon black, graphite, and air-oxidized wood flour. These carbon materials may be used alone or in combination of two or more. The shape of the carbon material is preferably porous and/or fine particles in terms of improving reactivity by increasing the contact area with the substrate, and in terms of promoting hydrolysis by developing acid sites. A carbon material having a functional group such as a phenolic hydroxyl group, a carboxyl group, a sulfo group, or a phosphoric acid group on its surface is preferred.

官能基を表面に有する多孔性炭素材料としては、ヤシガラ、ユーカリ、竹、松、くるみガラ、バガスなどの木質材料や、コークス、フェノールなどを、水蒸気、二酸化炭素、空気などのガスを用いて高温処理する方法(物理法)や、アルカリ、塩化亜鉛などの薬剤を用いて高温処理する方法(化学法)により調製した活性炭が挙げられる。さらに木質材料や活性炭を空気存在下で均一に加熱処理した(空気酸化処理された)炭素材料も挙げられる。 Examples of porous carbon materials having functional groups on their surfaces include woody materials such as coconut shells, eucalyptus, bamboo, pine, walnut shells, and bagasse, coke, phenol, etc., which are treated at high temperatures using gases such as water vapor, carbon dioxide, and air. Activated carbon prepared by a method of treatment (physical method) or a method of high-temperature treatment using chemicals such as alkali and zinc chloride (chemical method) can be mentioned. Furthermore, carbon materials obtained by uniformly heating wood materials and activated carbon in the presence of air (air oxidation treatment) are also included.

セロトリオース以上の重合度のオリゴ糖収率が高いという観点から水蒸気賦活活性炭、薬剤賦活活性炭、空気酸化した木粉、空気酸化した水蒸気賦活活性炭、空気酸化した薬剤賦活活性炭を用いることが好ましい。 It is preferable to use steam-activated activated carbon, chemical-activated activated carbon, air-oxidized wood flour, air-oxidized steam-activated activated carbon, and air-oxidized chemical-activated activated carbon from the viewpoint of high yield of oligosaccharides with a degree of polymerization higher than cellotriose.

[植物性バイオマスの粉砕]
植物性バイオマスの主成分であるセルロースは、2本またはそれ以上のセルロース分子が水素結合により結合して結晶性を示す。本発明では、そのような結晶性を有するセルロースをそのまま原料として使用することができるが、結晶性低下処理を施して結晶性を低下させたセルロースを用いることが好ましい。結晶性を低下させたセルロースは、結晶性を部分的に低下させたものでも、完全にまたはほぼ完全に消失させたものでもよい。結晶性低下処理の種類には特に制限はないが、上記水素結合を切断して、1本鎖のセルロース分子を少なくとも部分的に生成できる結晶性低下処理が好ましい。少なくとも部分的に1本鎖のセルロース分子を含むセルロースを原料とすることで、加水分解の効率を大幅に向上することができる。
[Pulverization of plant biomass]
Cellulose, which is the main component of plant biomass, exhibits crystallinity when two or more cellulose molecules are bound by hydrogen bonding. In the present invention, cellulose having such crystallinity can be used as it is as a raw material, but it is preferable to use cellulose whose crystallinity has been reduced by subjecting it to a crystallinity-reducing treatment. The cellulose with reduced crystallinity may be one in which crystallinity has been partially reduced, or crystallinity has been completely or almost completely eliminated. The type of crystallinity-reducing treatment is not particularly limited, but a crystallinity-reducing treatment capable of breaking the hydrogen bonds and at least partially generating single-stranded cellulose molecules is preferred. By using cellulose as a raw material that contains at least partially single-stranded cellulose molecules, the efficiency of hydrolysis can be greatly improved.

物理的にセルロース分子間の水素結合を切断する方法は、例えば粉砕処理が挙げられる。粉砕手段は微粉化できる機能を備えているものであれば特に限定されない。例えば、粉砕装置の方式は乾式、湿式のいずれでもよく、また装置の粉砕システムは回分式、連続式いずれでもよい。さらに、装置の粉砕力は、衝撃、圧縮、せん断、摩擦などのいかなるものでも用いることができる。 Examples of methods for physically breaking hydrogen bonds between cellulose molecules include pulverization. The pulverizing means is not particularly limited as long as it has a function of pulverizing. For example, the system of the pulverizing apparatus may be either dry or wet, and the pulverizing system of the apparatus may be either batch type or continuous type. Additionally, the comminution force of the device can be anything from impact, compression, shear, friction, and the like.

粉砕処理に用いる装置としては、ポットミル、チューブミル、コニカルミルなどの転動ボールミル、円振動型振動ミル、旋回型振動ミル、遠心ミルなどの振動ボールミル、撹拌槽ミル、アニュラミル、流通型ミル、塔式粉砕機などの撹拌ミル、旋回流型ジェットミル、衝突タイプジェットミル、流動層型ジェットミル、湿式タイプジェットミルなどのジェット粉砕機、らいかい機(擂潰機)、オングミルなどのせん断ミル、乳鉢、石うすなどのコロイドミル、ハンマーミル、ケージミル、ピンミル、ディスインテグレータ、スクリーンミル、ターボ型ミル、遠心分級ミルなどの衝撃式粉砕機、さらには自転及び公転の運動を採用した種類の粉砕機である遊星ボールミルなどが挙げられる。 Equipment used for pulverization includes rolling ball mills such as pot mills, tube mills, and conical mills, vibration ball mills such as circular vibrating mills, orbital vibrating mills, and centrifugal mills, agitation tank mills, annular mills, circulation mills, and tower types. Stirring mills such as pulverizers, jet pulverizers such as swirling jet mills, impingement type jet mills, fluidized bed jet mills, wet type jet mills, mills (grinders), shear mills such as ong mills, mortars , colloid mills such as stone mills, hammer mills, cage mills, pin mills, disintegrators, screen mills, turbo mills, centrifugal classifier mills, and other types of crushers that employ rotation and revolution motion. A planetary ball mill and the like can be mentioned.

炭素触媒を用いる植物性バイオマスを加水分解する反応は、固体基質と固体触媒の反応であり、基質と触媒の接触が律速となるため、反応性を向上させる方法として、固体基質と固体触媒を予め混合し同時粉砕処理をすることが有効である。
同時粉砕処理は、混合に加え、基質の結晶性を低下させる前処理を兼ねることができる。その観点から、用いる粉砕装置は、基質の結晶性を低下させる前処理に用いられる、転動ボールミル、振動ボールミル、撹拌ミル、遊星ボールミルが好ましく、転動ボールミルに分類されるポットミル、撹拌ミルに分類される撹拌槽ミル、遊星ボールミルがより好ましい。さらに、固体触媒と固体基質とを同時粉砕処理した嵩密度の大きい原料の方が反応性が高い傾向が認められることから、固体触媒の粉砕物と固体基質の粉砕物とが食い込むような圧縮力が強く加わる転動ボールミル、撹拌ミル、遊星ボールミルを用いることがさらに好ましい。
The reaction of hydrolyzing plant biomass using a carbon catalyst is a reaction between a solid substrate and a solid catalyst, and contact between the substrate and the catalyst is rate-limiting. Mixing and pulverizing at the same time is effective.
In addition to mixing, the simultaneous milling treatment can serve as a pretreatment to reduce the crystallinity of the substrate. From that point of view, the grinding equipment to be used is preferably a rolling ball mill, a vibrating ball mill, a stirring mill, or a planetary ball mill, which are used for pretreatment to reduce the crystallinity of the substrate. Stirred tank mills and planetary ball mills are more preferred. Furthermore, since a raw material with a high bulk density obtained by simultaneous pulverization of the solid catalyst and the solid substrate tends to have higher reactivity, the crushed solid catalyst and the pulverized solid substrate are forced to bite into each other. It is more preferable to use a tumbling ball mill, a stirring mill, or a planetary ball mill to which a strong force is applied.

個別に基質を粉砕した固体基質と触媒を同時粉砕した原料は、微粉砕後の平均粒径(累計中位径(メジアン径):粉体の集団の全体積を100%として求めた累計カーブが50%となる点の粒子径(D50))は1~100μmであり、反応性をより高めるという観点から、1~30μmが好ましく、1~20μmがより好ましい。
微粉砕処理する原料の粒径が大きい場合は、微粉砕を効率的に行うために、微粉砕の前に予備的粉砕処理を行うことが好ましい。予備的粉砕処理は、例えば、シュレッダー、ジョークラッシャー、ジャイレトリクラッシャー、コーンクラッシャー、ハンマークラッシャー、ロールクラッシャー、及びロールミルなどの粗粉砕機、スタンプミル、エッジランナ、切断・せん断ミル、ロッドミル、自生粉砕機及びローラミルなどの中粉砕機を用いて実施することができる。原料の処理時間は、処理後原料が均一に微粉化されるのであれば特に限定されない。
The average particle diameter after fine pulverization (cumulative median diameter (median diameter): The cumulative curve obtained by setting the total volume of the powder group as 100% is The particle diameter (D50) at the 50% point is 1 to 100 μm, preferably 1 to 30 μm, more preferably 1 to 20 μm, from the viewpoint of further enhancing reactivity.
If the raw material to be pulverized has a large particle size, it is preferable to perform a preliminary pulverization treatment before fine pulverization in order to perform pulverization efficiently. Preliminary crushing processes include, for example, coarse crushers such as shredders, jaw crushers, gyratory crushers, cone crushers, hammer crushers, roll crushers, and roll mills, stamp mills, edge runners, cutting and shearing mills, rod mills, autogenous crushers and It can be carried out using a medium grinder such as a roller mill. The treatment time of the raw material is not particularly limited as long as the raw material is uniformly pulverized after the treatment.

炭素触媒と固体基質の比率は、個別に基質を粉砕する場合及び基質と触媒を同時粉砕する場合のいずれにおいても、特に限定されるものではないが、反応時の加水分解効率、反応後の基質残渣低減、生成糖の回収率の観点から、固体基質100質量部に対して炭素触媒1~100質量部が好ましく、2~50質量部がより好ましく、5~30質量部がさらに好ましく、10~20質量部が特に好ましい。 The ratio of the carbon catalyst to the solid substrate is not particularly limited either when the substrate is separately pulverized or when the substrate and the catalyst are pulverized simultaneously, but the hydrolysis efficiency during the reaction, the substrate after the reaction From the viewpoint of residue reduction and recovery rate of produced sugar, the carbon catalyst is preferably 1 to 100 parts by mass, more preferably 2 to 50 parts by mass, even more preferably 5 to 30 parts by mass, with respect to 100 parts by mass of the solid substrate. 20 parts by weight is particularly preferred.

[シリカの混合]
粉砕処理した炭素触媒と固体基質を反応容器に充填するときには、これらをシリカと混合して充填することが好ましい。粉砕処理した炭素触媒と固体基質は微粉末であるため、直接反応容器に充填すると、反応容器中の水の流通が阻害される。炭素触媒と固体基質にシリカを混合して充填することにより、反応容器中の水の流路が確保され、反応容器における圧力の低下を緩和することができる。使用するシリカの種類は、特に限定されず、石英などの結晶性シリカを用いても、非結晶性シリカを用いてもよい。
[Mixing of silica]
When the pulverized carbon catalyst and solid substrate are packed into the reaction vessel, it is preferable to mix them with silica before packing. Since the pulverized carbon catalyst and solid substrate are fine powders, if they are directly filled into the reaction vessel, the flow of water in the reaction vessel is impeded. By mixing silica with the carbon catalyst and the solid substrate and filling them, the flow path of water in the reaction vessel can be ensured, and the pressure drop in the reaction vessel can be alleviated. The type of silica to be used is not particularly limited, and crystalline silica such as quartz may be used, or amorphous silica may be used.

シリカの混合量は、炭素触媒と固体基質の合計量に対して、質量比(炭素触媒+固体基質:シリカ)で1:0.1~1:10となる量が好ましく、1:0.5~1:5となる量がより好ましく、1:0.7~1:2となる量がさらに好ましい。
シリカの混合方法は、特に限定されないが、例えば同時粉砕した炭素触媒と固体基質をバイアルに入れてシリカを加え、シリカが均一に分散するまでスパチュラで混合する方法が挙げられる。
なお、炭素触媒及び固体基質と混合する物質は、シリカに限定されず、他の不活性な粒状物質を用いてもよい。シリカを代替する物質として、例えば、ジルコニア、ステンレス鋼、ガラスビーズなどを挙げることができる。
The amount of silica to be mixed with respect to the total amount of the carbon catalyst and the solid substrate is preferably such that the mass ratio (carbon catalyst + solid substrate: silica) is 1:0.1 to 1:10, preferably 1:0.5. An amount of 1:5 is more preferred, and an amount of 1:0.7 to 1:2 is even more preferred.
The method of mixing silica is not particularly limited, but for example, a method of putting the co-pulverized carbon catalyst and solid substrate into a vial, adding silica, and mixing with a spatula until the silica is uniformly dispersed can be mentioned.
The substance to be mixed with the carbon catalyst and solid substrate is not limited to silica, and other inert particulate substances may be used. Substitutes for silica include, for example, zirconia, stainless steel, and glass beads.

[加水分解反応]
植物性バイオマスを基質として、グルコースの重合度が3以上のオリゴマーを含有するセロオリゴ糖を生成する加水分解反応は、固体基質と炭素触媒を前述の同時粉砕によって、好ましくは炭素触媒表面に固体基質が吸着した混合物の状態で反応容器に充填する。より好ましくは、同時粉砕した固体基質と炭素触媒を、シリカと混合した混合物の状態で、反応容器に充填する。この反応容器は図1に概要を示す(半流動式の)反応システムに取り付ける。
[Hydrolysis reaction]
The hydrolysis reaction of using plant biomass as a substrate to produce cellooligosaccharides containing oligomers with a degree of polymerization of glucose of 3 or higher is carried out by simultaneously pulverizing the solid substrate and the carbon catalyst as described above, preferably with the solid substrate on the surface of the carbon catalyst. Fill the reaction vessel with the adsorbed mixture. More preferably, the co-milled solid substrate and carbon catalyst are charged into the reaction vessel in the form of a mixture mixed with silica. This reaction vessel is attached to the (semifluidic) reaction system shown schematically in FIG.

加熱部3は、加熱水を反応容器4に流通し、加水分解反応を行う装置である。加水分解反応は、後述する条件下で行うことができる。
冷却部6は、加熱部から流出したセロオリゴ糖含有水溶液を冷却する装置である。
背圧調整器5の圧力は、0.7~50MPaが好ましく、0.8~30MPaがより好ましく、1~15MPaがさらに好ましい。
The heating unit 3 is a device that causes heated water to flow through the reaction vessel 4 to perform a hydrolysis reaction. A hydrolysis reaction can be performed under the conditions described later.
The cooling unit 6 is a device for cooling the cellooligosaccharide-containing aqueous solution flowing out from the heating unit.
The pressure of the back pressure regulator 5 is preferably 0.7-50 MPa, more preferably 0.8-30 MPa, and even more preferably 1-15 MPa.

反応容器には、バイオマス中のセルロースが主としてG3以上のセロオリゴ糖に加水分解される条件で加熱水を流通させる。反応で生成したG3以上のセロオリゴ糖は加熱水中に溶解した状態で反応容器系外に出るために(したがって、触媒系から解放されるために)、生成したG3以上のセロオリゴ糖はそれ以上加水分解を受けないので、安定した収率でG3以上のセロオリゴ糖を得ることができる。 Heated water is passed through the reaction vessel under the condition that the cellulose in the biomass is mainly hydrolyzed to cellooligosaccharides of G3 or higher. G3 or higher cellooligosaccharides produced in the reaction exit the reaction vessel system in a state of being dissolved in heated water (thus, to be released from the catalyst system). Therefore, cellooligosaccharides of G3 or higher can be obtained in a stable yield.

本発明の加水分解反応により、重合度(G)が3以上のセロオリゴ糖が生成する。生成するオリゴ糖の重合度(G)は、例えば3~15であってもよく、5~14であってもよく、7~13であってもよい。好ましくは3~10であり、より好ましくは4~9であり、さらに好ましくは5~8である。オリゴ糖の重合度(G)が3~10の範囲内であると、水への溶解性が高く回収しやすい。 Cellooligosaccharides having a degree of polymerization (G) of 3 or more are produced by the hydrolysis reaction of the present invention. The degree of polymerization (G) of the resulting oligosaccharide may be, for example, 3-15, 5-14, or 7-13. It is preferably 3-10, more preferably 4-9, still more preferably 5-8. When the degree of polymerization (G) of the oligosaccharide is within the range of 3 to 10, the solubility in water is high and the recovery is easy.

以下に、セルロースが主としてG3以上のセロオリゴ糖に加水分解される条件について詳しく説明する。 The conditions under which cellulose is mainly hydrolyzed to cellooligosaccharides of G3 or higher will be described in detail below.

加水分解反応に用いる反応容器は、特に限定されず、例えば市販のチューブを用いることができる。チューブの大きさは目的に応じ、適宜、長さ・内径を選択して使用することができる。反応容器の長さをL、内径をDとすると、長さLと内径Dの比(L/D)は、1~100が好ましく、2~50がより好ましく、3~30がさらに好ましい。
反応容器への固体基質及び炭素触媒の充填方法は、特に限定されないが、前述のようにあらかじめ固体基質、炭素触媒、及びシリカの混合物を調製して、反応容器に充填することができる。反応容器へのこれら混合物の充填率は、80~100%が好ましく、90~100%がより好ましく、95~100%がさらに好ましい。
The reaction vessel used for the hydrolysis reaction is not particularly limited, and commercially available tubes can be used, for example. As for the size of the tube, the length and inner diameter can be appropriately selected and used according to the purpose. Assuming that the length of the reaction vessel is L and the inner diameter is D, the ratio (L/D) between the length L and the inner diameter D is preferably 1-100, more preferably 2-50, and even more preferably 3-30.
The method of filling the reaction vessel with the solid substrate and the carbon catalyst is not particularly limited, but as described above, a mixture of the solid substrate, carbon catalyst and silica can be prepared in advance and filled into the reaction vessel. The filling rate of these mixtures in the reaction vessel is preferably 80-100%, more preferably 90-100%, and even more preferably 95-100%.

固定床に流通させる加熱水の温度は170~250℃であり、180℃~240℃が好ましい。加熱水の温度は、より好ましくは180℃~230℃、さらに好ましくは190℃~220℃、特に好ましくは190℃~210℃である。
固定床に流通させる水の加熱方法は、特に限定されないが、例えば、反応容器と反応容器に接続する手前の流路をヒーターにより加熱することができる。
The temperature of the heated water passed through the fixed bed is 170-250°C, preferably 180-240°C. The temperature of the heating water is more preferably 180°C to 230°C, still more preferably 190°C to 220°C, and particularly preferably 190°C to 210°C.
The method of heating the water flowing through the fixed bed is not particularly limited, but for example, the reaction vessel and the flow path before connecting to the reaction vessel can be heated by a heater.

固定床に流通する加熱水の線速度(LV)は、0.4~5.0m/Hrが好ましい。線速度(LV)は、より好ましくは0.5~4.5m/Hr、さらに好ましくは0.8~4.0m/Hr、特に好ましくは2.0~4.0m/Hrである。
線速度(LV)は、以下の式により算出することができる。
LV(m/Hr)={(流速(cm3/min))/(反応容器の断面積(cm2))}×60/100
The linear velocity (LV) of heated water flowing through the fixed bed is preferably 0.4 to 5.0 m/Hr. Linear velocity (LV) is more preferably 0.5 to 4.5 m/Hr, still more preferably 0.8 to 4.0 m/Hr, particularly preferably 2.0 to 4.0 m/Hr.
Linear velocity (LV) can be calculated by the following formula.
LV (m/Hr) = {(flow rate (cm 3 /min))/(cross-sectional area of reaction vessel (cm 2 ))} x 60/100

固定床に流通する加熱水の空間速度(SV)は、5~100/Hrが好ましい。空間速度(SV)は、より好ましくは10~90/Hr、さらに好ましくは20~80/Hr、特に好ましくは50~80/Hrである。
空間速度(SV)は、以下の式により算出することができる。
SV(1/Hr)={(流速(cm3/min))/(反応容器の容積(cm3))}×60
The space velocity (SV) of the heated water flowing through the fixed bed is preferably 5 to 100/Hr. Space velocity (SV) is more preferably 10 to 90/Hr, still more preferably 20 to 80/Hr, particularly preferably 50 to 80/Hr.
Space velocity (SV) can be calculated by the following formula.
SV (1/Hr)={(flow rate (cm 3 /min))/(volume of reaction vessel (cm 3 ))}×60

なお、加水分解はpHの影響を受ける。本発明では、pH2~9の条件で加水分解反応を行うことができるが、好ましくは、pH調整を行うことなく、加熱水を直接反応容器に流通させる。 Note that hydrolysis is affected by pH. In the present invention, the hydrolysis reaction can be carried out under conditions of pH 2 to 9. Preferably, heated water is passed directly through the reaction vessel without adjusting the pH.

加熱水が反応容器に滞留する時間(以下、「反応滞留時間」という。)は、20~600秒であることが好ましい。反応滞留時間は、より好ましくは20~400秒、さらに好ましくは30~300秒、特に好ましくは30~100秒である。 The residence time of the heated water in the reaction vessel (hereinafter referred to as "reaction residence time") is preferably 20 to 600 seconds. The reaction residence time is more preferably 20 to 400 seconds, still more preferably 30 to 300 seconds, particularly preferably 30 to 100 seconds.

反応滞留時間は、以下の式により算出することができる。
(反応滞留時間(秒))={(VolR-VolS)/(流速(cm3/分))}×60
ここで、VolRは反応容器の容積(cm3)を示し、VolSはサンプルの容積(cm3)を示す。VolSは以下の式により求めることができる。
VolS=WtS/ρS
ここで、WtSはサンプルとシリカの混合物の質量(g)を示し、ρSはサンプルとシリカの混合物の真密度(g/cm3)を示す。
The reaction residence time can be calculated by the following formula.
(Reaction residence time (seconds)) = {(Vol R -Vol S )/(flow rate (cm 3 /min))} x 60
Here, Vol R indicates the volume of the reaction vessel (cm 3 ) and Vol S indicates the volume of the sample (cm 3 ). Vol S can be calculated by the following formula.
Vol S = Wt SS
Here, Wt S indicates the mass (g) of the sample-silica mixture, and ρ S indicates the true density (g/cm 3 ) of the sample-silica mixture.

なお、真密度ρSは、以下の方法により求めることができる。サンプルとシリカの混合物を一定量、メスシリンダーに入れ、水面が固体の上面より高くなるまで水を加える。加えた水の質量(g)を水の密度(1g/cm3)で割って、加えた水の体積(cm3)を求め、以下の式により真密度ρS(g/cm3)を算出することができる。
ρS=(混合物の質量(g))/{(メスシリンダーで測った体積(cm3))-(加えた水の体積(cm3))}
Note that the true density ρ S can be obtained by the following method. A volume of the sample-silica mixture is placed in a graduated cylinder and water is added until the water level is higher than the top surface of the solid. The volume of added water (cm 3 ) is obtained by dividing the mass (g) of added water by the density of water (1 g/cm 3 ), and the true density ρ S (g/cm 3 ) is calculated by the following formula. can do.
ρ S = (mass of mixture (g))/{(volume measured in graduated cylinder (cm 3 ))−(volume of added water (cm 3 ))}

本発明のセロオリゴ糖の製造方法は、さらに、他の工程を含んでもよい。例えば、セロオリゴ糖含有水溶液のろ過工程、セロオリゴ糖の分画工程、セロオリゴ糖の精製工程などを含むことができる。 The method for producing cellooligosaccharides of the present invention may further include other steps. For example, it can include a step of filtering a cellooligosaccharide-containing aqueous solution, a step of fractionating cellooligosaccharide, a step of purifying cellooligosaccharide, and the like.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by way of examples. It should be noted that the present invention is not limited to the following examples, and can be modified as appropriate without changing the gist of the invention.

(1)固体基質
固体基質として、アビセル(Merck社製結晶性微粉セルロース)を以下の(3)の方法で粉砕処理したものを用いた。
(1) Solid Substrate As the solid substrate, Avicel (crystalline fine powder cellulose manufactured by Merck) was pulverized by the following method (3) and used.

(2)炭素触媒
炭素触媒として、比較例2~5では、水蒸気賦活活性炭であるBA50(味の素ファインテクノ株式会社製)を、以下の(3)の方法で粉砕処理したものを用いた。実施例1~4及び比較例1では、BA50を425℃で10時間、電気炉中で加熱して空気酸化したもの(以下、空気酸化BA50と略記する。)を、以下の(3)の方法で粉砕処理したものを用いた。
(2) Carbon Catalyst In Comparative Examples 2 to 5, BA50 (manufactured by Ajinomoto Fine-Techno Co., Inc.), which is steam-activated carbon, was pulverized by the following method (3) as the carbon catalyst. In Examples 1 to 4 and Comparative Example 1, BA50 was heated in an electric furnace at 425° C. for 10 hours to be air-oxidized (hereinafter abbreviated as air-oxidized BA50). used after being pulverized with

(3)混合粉砕原料
実施例1~4では、固体基質としてアビセル5.00gと炭素触媒として空気酸化BA50 0.771gを混合し、遊星ボールミル粉砕機(Fritsch P-6、アルミナボール)を用い、500rpmで1時間、粉砕処理を行った。その後、150μm以下にふるい分けした。得られた原料を、以下、混合粉砕原料と略記する。
比較例1では、粉砕処理時間を2時間とした以外は、実施例1~4と同様にして粉砕処理を行った。
比較例2~5では、固体基質としてアビセル10.00gと炭素触媒としてBA50 1.54gを混合し、60rpmで48時間、ボールミル処理した。
(3) Mixed pulverized raw material In Examples 1 to 4, 5.00 g of Avicel as a solid substrate and 0.771 g of air-oxidized BA50 as a carbon catalyst were mixed, and a planetary ball mill pulverizer (Fritsch P-6, alumina balls) was used to The pulverization treatment was performed at 500 rpm for 1 hour. After that, it was sieved to 150 μm or less. The obtained raw material is hereinafter abbreviated as mixed pulverized raw material.
In Comparative Example 1, pulverization was performed in the same manner as in Examples 1 to 4, except that the pulverization time was set to 2 hours.
In Comparative Examples 2-5, 10.00 g of Avicel as a solid substrate and 1.54 g of BA50 as a carbon catalyst were mixed and ball-milled at 60 rpm for 48 hours.

[生成物の定量]
得られたセロオリゴ糖含有水溶液は、(株)島津製作所製高速液体クロマトグラフ(カラム:Shodex(登録商標)SH-1011、移動相:水0.5mL/min、カラム温度:50℃、検出:示差屈折率)により、グルコース、セロビオース(G2)、及びG3以上のセロオリゴ糖を定量分析した。 以下に収率の計算式を示す。
生成物収率(%)={(対象成分の炭素の物質量)/(加えたセルロースの炭素の物質量)}×100
[Quantification of product]
The resulting cellooligosaccharide-containing aqueous solution was subjected to a high-performance liquid chromatograph manufactured by Shimadzu Corporation (column: Shodex (registered trademark) SH-1011, mobile phase: water 0.5 mL/min, column temperature: 50°C, detection: differential Glucose, cellobiose (G2), and cellooligosaccharides of G3 or higher were quantitatively analyzed by refractive index). The yield calculation formula is shown below.
Product yield (%) = {(substance amount of carbon in target component)/(substance amount of carbon in added cellulose)} x 100

[線速度(LV)、空間速度(SV)、反応滞留時間の算出]
線速度(LV)、空間速度(SV)及び反応滞留時間は、明細書に記載の式に基づいて算出した。なお、反応滞留時間は、真密度ρSを1.68g/cm3として算出している。
[Calculation of linear velocity (LV), space velocity (SV), and reaction residence time]
Linear velocity (LV), space velocity (SV) and reaction residence time were calculated based on the formulas described in the specification. The reaction residence time is calculated with the true density ρ S of 1.68 g/cm 3 .

実施例1:
真空乾燥した混合粉砕原料0.175gをバイアルに入れ、同質量のシリカ(富士シリシア化学株式会社、CARiACT Q30、粒径75~150μm)を加えた。シリカが均一に分散するまでスパチュラで混合し、混合粉砕原料/シリカの混合物を得た。反応容器(長さ5.15cm、内径0.39cm(外径0.25インチのSwagelokチューブを切断して作製))の一端を石英ウールで塞ぎ、上記の混合粉砕原料/シリカ混合物をすべて反応容器に充填した。反応容器の他端を石英ウールで塞いだ後、加水分解反応システムに装着した。
反応容器装着後、背圧調整器(Swagelok、KPB1N0G422P20000)により反応システムの圧力を3MPaに設定した。次にHPLCポンプを起動し、水の流速を0.75mL/minに設定した。反応システムの圧力がゆっくりと3MPaまで上昇し、液体が反応システムの出口から流出し始めてから、さらに20分間この状態を維持した。その後、ヒーター(アサヒ理化製作所、セラミック電気管状炉、ARF-30KC)の電源を入れ、温度を180℃に設定した。この時間を回収時間0分とし、セロオリゴ糖含有水溶液の回収を開始した。
回収時間40分の時点でセロオリゴ糖含有水溶液の回収を終了した。回収したセロオリゴ糖含有水溶液(30mL)はろ過後、HPLC分析を行い、生成物の収率を算出した。結果を表1に示す。
Example 1:
0.175 g of the vacuum-dried mixed pulverized raw material was placed in a vial, and the same mass of silica (CARiACT Q30, Fuji Silysia Chemical Co., Ltd., particle size 75-150 μm) was added. The mixture was mixed with a spatula until the silica was uniformly dispersed to obtain a mixed pulverized raw material/silica mixture. The reaction vessel (5.15 cm long, 0.39 cm ID (made by cutting 0.25 inch OD Swagelok tubing)) was plugged at one end with quartz wool and all of the above mixed ground stock/silica mixture was placed in the reaction vessel. filled to After closing the other end of the reaction vessel with quartz wool, it was attached to the hydrolysis reaction system.
After mounting the reaction vessel, the pressure of the reaction system was set to 3 MPa with a back pressure regulator (Swagelok, KPB1N0G422P20000). Then the HPLC pump was started and the water flow rate was set to 0.75 mL/min. The pressure of the reaction system slowly increased to 3 MPa and was maintained for another 20 minutes after the liquid began to flow out of the outlet of the reaction system. After that, the heater (Asahi Rika Seisakusho, Ceramic Electric Tubular Furnace, ARF-30KC) was turned on and the temperature was set to 180°C. This time was defined as a recovery time of 0 minutes, and recovery of the cellooligosaccharide-containing aqueous solution was started.
Collection of the cellooligosaccharide-containing aqueous solution was terminated at the point of collection time of 40 minutes. The collected cellooligosaccharide-containing aqueous solution (30 mL) was filtered and then subjected to HPLC analysis to calculate the yield of the product. Table 1 shows the results.

実施例2:
固定床を通る加熱水の温度(反応温度)を、実施例1の180℃から200℃に変えた以外は、実施例1と同様に反応を行った。結果を表1に示す。
Example 2:
The reaction was carried out in the same manner as in Example 1, except that the temperature of the heated water passing through the fixed bed (reaction temperature) was changed from 180°C in Example 1 to 200°C. Table 1 shows the results.

実施例3:
固定床を通る加熱水の温度(反応温度)を、実施例1の180℃から220℃に変えた以外は、実施例1と同様に反応を行った。結果を表1に示す。
Example 3:
The reaction was carried out in the same manner as in Example 1, except that the temperature of the heated water passing through the fixed bed (reaction temperature) was changed from 180°C in Example 1 to 220°C. Table 1 shows the results.

実施例4:
固定床を通る加熱水の温度(反応温度)を、実施例1の180℃から240℃に変えた以外は、実施例1と同様に反応を行った。結果を表1に示す。
Example 4:
The reaction was carried out in the same manner as in Example 1, except that the temperature of the heated water passing through the fixed bed (reaction temperature) was changed from 180°C in Example 1 to 240°C. Table 1 shows the results.

比較例1:
特許文献5の実施例1の記載に従って、触媒と基質の混合スラリーの流通反応を実施した。反応条件及び結果を表2に示す。
Comparative Example 1:
According to the description of Example 1 of Patent Document 5, the flow reaction of the mixed slurry of catalyst and substrate was carried out. Reaction conditions and results are shown in Table 2.

比較例2:
特許文献6の比較例1の記載に準じて、触媒と基質のバッチ撹拌反応を実施した。反応条件及び結果を表2に示す。
Comparative Example 2:
According to the description of Comparative Example 1 of Patent Document 6, a batch stirring reaction of the catalyst and the substrate was carried out. Reaction conditions and results are shown in Table 2.

比較例3:
特許文献6の実施例1の記載に従って、触媒と基質のバッチ撹拌反応を実施した。反応条件は、比較例2で反応温度を200℃、反応時間を3分としたほかは、比較例2と同一である。反応条件及び結果を表2に示す。
Comparative Example 3:
A batch stirred reaction of catalyst and substrate was carried out as described in Example 1 of US Pat. The reaction conditions were the same as in Comparative Example 2, except that the reaction temperature was 200° C. and the reaction time was 3 minutes. Reaction conditions and results are shown in Table 2.

比較例4:
特許文献6の実施例3の記載に従って、触媒と基質のバッチ撹拌反応を実施した。反応条件は、反応温度を190℃、反応時間を5分としたほかは、比較例2と同一である。反応条件及び結果を表2に示す。
Comparative Example 4:
A batch stirred reaction of catalyst and substrate was carried out as described in Example 3 of US Pat. The reaction conditions were the same as in Comparative Example 2, except that the reaction temperature was 190° C. and the reaction time was 5 minutes. Reaction conditions and results are shown in Table 2.

比較例5:
特許文献6の実施例4の記載に従って、触媒と基質のバッチ撹拌反応を実施した。反応条件は、反応温度を180℃、反応時間を20分としたほかは、比較例2と同一である。反応条件及び結果を表2に示す。
Comparative Example 5:
A batch stirring reaction of catalyst and substrate was carried out as described in Example 4 of US Pat. The reaction conditions were the same as in Comparative Example 2, except that the reaction temperature was 180° C. and the reaction time was 20 minutes. Reaction conditions and results are shown in Table 2.

Figure 0007191313000001
Figure 0007191313000001

Figure 0007191313000002
Figure 0007191313000002

本発明によれば、炭素触媒を用いた植物性バイオマスの加水分解反応により、食品及び化粧品産業において有用なG3以上のオリゴ糖を高収率、高選択率で製造することができる。 INDUSTRIAL APPLICABILITY According to the present invention, oligosaccharides of G3 or higher useful in the food and cosmetic industries can be produced with high yield and high selectivity by hydrolysis reaction of plant biomass using a carbon catalyst.

1 水
2 ポンプ
3 加熱部
4 反応容器(セルロース/触媒固定床)
5 背圧調整器
6 冷却部
7 セロオリゴ糖含有水溶液
1 water 2 pump 3 heating unit 4 reaction vessel (cellulose/catalyst fixed bed)
5 Back pressure regulator 6 Cooling unit 7 Cellooligosaccharide-containing aqueous solution

Claims (5)

炭素触媒と植物性バイオマスの混合物に、さらにシリカを混合した混合物を固定床として充填した反応容器に、加熱水を流通させてバイオマス中のセルロースを加水分解し、生成するグルコース重合度が3以上のセロオリゴ糖を取得することを特徴とし、
前記加熱水の温度が180~240℃、反応滞留時間が20~600秒であり、
前記加熱水の線速度(LV)が0.4~5.0m/Hr、空間速度(SV)が5~100/Hrである、
セロオリゴ糖の製造方法。
Heated water is passed through a reaction vessel filled with a mixture of carbon catalyst and plant biomass, and silica is further mixed as a fixed bed to hydrolyze the cellulose in the biomass, and the resulting glucose has a degree of polymerization of 3 or more. Characterized by obtaining cellooligosaccharides ,
The temperature of the heating water is 180 to 240° C., the reaction residence time is 20 to 600 seconds,
The heated water has a linear velocity (LV) of 0.4 to 5.0 m/Hr and a space velocity (SV) of 5 to 100/Hr.
A method for producing cellooligosaccharide.
前記炭素触媒と植物性バイオマスの混合物が、前記炭素触媒と植物性バイオマス原料を予め混合し同時粉砕した混合物である請求項1に記載のセロオリゴ糖の製造方法。2. The method for producing cellooligosaccharide according to claim 1, wherein the mixture of the carbon catalyst and the plant biomass is a mixture obtained by pre-mixing the carbon catalyst and the plant biomass raw material and pulverizing them simultaneously. 前記植物性バイオマス原料が、粒径が20~1000μmの粉体である、請求項2に記載のセロオリゴ糖の製造方法。The method for producing cellooligosaccharide according to claim 2, wherein the plant biomass raw material is powder having a particle size of 20 to 1000 µm. 前記炭素触媒が、アルカリ賦活活性炭、水蒸気賦活活性炭、薬剤賦活活性炭、及びメソポーラスカーボンからなる群から選択される1種以上の炭素触媒である請求項1~のいずれか1項に記載のセロオリゴ糖の製造方法。 The cellooligosaccharide according to any one of claims 1 to 3 , wherein the carbon catalyst is one or more carbon catalysts selected from the group consisting of alkali-activated activated carbon, steam-activated activated carbon, chemical-activated activated carbon, and mesoporous carbon. manufacturing method. 前記炭素触媒が、空気酸化処理された炭素触媒である請求項1~のいずれか1項に記載のセロオリゴ糖の製造方法。 The method for producing cellooligosaccharide according to any one of claims 1 to 4 , wherein the carbon catalyst is an air-oxidized carbon catalyst.
JP2018173782A 2018-09-18 2018-09-18 Method for producing cellooligosaccharide Active JP7191313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173782A JP7191313B2 (en) 2018-09-18 2018-09-18 Method for producing cellooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173782A JP7191313B2 (en) 2018-09-18 2018-09-18 Method for producing cellooligosaccharide

Publications (2)

Publication Number Publication Date
JP2020045305A JP2020045305A (en) 2020-03-26
JP7191313B2 true JP7191313B2 (en) 2022-12-19

Family

ID=69900753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173782A Active JP7191313B2 (en) 2018-09-18 2018-09-18 Method for producing cellooligosaccharide

Country Status (1)

Country Link
JP (1) JP7191313B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144336A (en) 2010-01-18 2011-07-28 Ihi Corp Biomass treating method
JP2011142893A (en) 2010-01-18 2011-07-28 Ihi Corp Hot water-flowing type saccharification apparatus
JP2014205751A (en) 2013-04-11 2014-10-30 日立化成株式会社 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides
WO2017104687A1 (en) 2015-12-18 2017-06-22 昭和電工株式会社 Method for manufacturing cellooligosaccharide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946032B2 (en) * 2011-09-20 2016-07-05 学校法人明治大学 Method for producing oligosaccharide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144336A (en) 2010-01-18 2011-07-28 Ihi Corp Biomass treating method
JP2011142893A (en) 2010-01-18 2011-07-28 Ihi Corp Hot water-flowing type saccharification apparatus
JP2014205751A (en) 2013-04-11 2014-10-30 日立化成株式会社 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides
WO2017104687A1 (en) 2015-12-18 2017-06-22 昭和電工株式会社 Method for manufacturing cellooligosaccharide

Also Published As

Publication number Publication date
JP2020045305A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6779505B2 (en) Manufacturing method of cellooligosaccharide
KR100894374B1 (en) Processes for Producing Cellooligosaccharide
Zhao et al. Extracting xylooligosaccharides in wheat bran by screening and cellulase assisted enzymatic hydrolysis
JP5915979B2 (en) Method for producing fine fibrous cellulose
CN109569734B (en) A kind of preparation method of chitin base Ru/C catalyst
JP2013139018A (en) Method for manufacturing pulverized material
EP2689862B1 (en) Pre-treatment method for plant biomass hydrolysis reaction raw materials and plant biomass saccharification method
JP7191313B2 (en) Method for producing cellooligosaccharide
WO2014007295A1 (en) Method for decomposing plant biomass, and method for producing glucose
US20150337402A1 (en) Plant-biomass hydrolysis method
WO2014097801A1 (en) Plant-biomass hydrolysis method
CN109071683A (en) Chitin oligomer, N-acetyl-glucosamine and 1-O- alkyl-N-acetyl-glucosamine manufacturing method
CN115109102A (en) Method for producing cellooligosaccharide-containing composition and cellooligosaccharide-containing composition
JP2013085523A (en) Production method for xylose, xylobiose and/or xylooligosaccharide
JP5805390B2 (en) Method for producing sugar alcohol and sugar from agricultural products or agricultural by-products
JP6431756B2 (en) Biomass component separation method
WO2014097799A1 (en) Plant-biomass hydrolysis method
JP2010057464A (en) Method for producing l-arabinose-containing material or l-arabinose
WO2021140789A1 (en) Method for decomposing chitin and method for producing chitin oligosaccharide-containing composition
KR20220131294A (en) Fertilizer manufacturing method
WO2014109345A1 (en) Biomass composition for saccharification use, method for selecting biomass composition for saccharification use, and method for producing sugar
US20160177357A1 (en) Method for pretreating cellulose-containing biomass, method for producing biomass composition for saccharification use, and method for producing sugar
US20150322625A1 (en) Pretreatment method for cellulose-containing biomass, production method for saccharifying biomass composition, and sugar production method
JP2014128235A (en) Method for producing sugar

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7191313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350